
CISC 811: High Performance Computing: Take-home final

Set April 23rd 8 am due April 23rd 6 pm
All solutions should be developed on the HPCVL machine sfnode0. For each question provide
both an electronic (via email) and hardcopy of your code. All solutions should be generally
applicable and you may NOT make assumptions about the distribution of input keys
to aid solution. Any solution that does so will be heavily penalized.
When the number of possible key values in a sort is much less than the total number of keys a
“bucket sort” is a very efficient way of sorting.
Q1. (4 marks) Firstly, construct a sequential version of the algorithm at the bottom of the page
and test it using 180 × 106 keys, distributed on the interval [1:16], so that there are 16 buckets.
For simplicity and speed of generation, distribute the possible key values in a cyclic fashion within
the keyin array (i.e. keyin should be a sequence 1 2 ... 16 1 2 ... 16 ...). Check for the correct
output, and use compiler flags to achieve the fastest execution time. Timing should be performed
by placing timing tests around the sort section of the code, so as to avoid counting the start-up
costs involved with setting keyin. Provide details of the compilation flags you used, and execution
time in seconds. How much speed increase did optimization produce and is there a specific feature
of the algorithm that leads to this answer?
Q2. (6 marks) Parallelize the bucket sort algorithm using OpenMP (parallel regions are the most
effective way to parallelize this algorithm) and again use compiler optimization. Think carefully
about which parts of the algorithm need to be parallelized and which do not, and also about how
to deal with the race conditions in the algorithm. (HINT: small shared 1-dimensional arrays are
often made 2-dimensional to avoid race conditions.) Produce a table that includes the execution
times for the single processor code and the parallel code run on 1,2,4,8 threads. As for the serial
code, only time the sort itself. Graph speed up for the parallel version of the code.
Q3. (10 marks) Construct an MPI version of the code and use compiler flags to optimize
performance. To make coding more simple, distribute the keyin values across processors so that
the values may be generated locally, and each processor holds 180 × 106/(# of processor) keys.
keyout should be held solely on the root processor, although it will be useful for each processor to
use an auxiliary array (of size 180× 106/(# of processor)) to store its locally sorted values. There
will be two main communication steps, one to gather the details of the global bucket array, and
a second one to transfer the sorted data to the root process. As in the previous question produce
a table of execution times for 1,2,4,8 processors and graph overall speed-up. Comment on the
scalability of this algorithm if the keyout array is held on the root process.
integer n,nbuckets,i
integer keyin(n),keyout(n),bucket(nbuckets)
do i=1,nbuckets

bucket(i)=0
end do
do i=1,n

bucket(keyin(i))=bucket(keyin(i))+1
end do
do i=2,nbuckets

bucket(i)=bucket(i)+bucket(i-1)
end do
do i=1,n

keyout(bucket(keyin(i)))=keyin(i)
bucket(keyin(i))=bucket(keyin(i))-1

end do

1


