Dead Monsters: $\log \left(\mathrm{M}_{\star} / \mathrm{M}_{\odot}\right)$ ~ 1011.5 quiescent galaxies at cosmic high noon

Marcin Sawicki1,
Liz Arcila-Osejo ${ }^{1}$, Gurpreet Kaur Cheema ${ }^{1}$,
Stephane Arnouts ${ }^{2}$, Anneya Golob ${ }^{1}$, Thibaud Moutard ${ }^{1}$, Bobby Sorba ${ }^{3}$
${ }^{1}$ Saint Mary's University; ${ }^{2}$ LAM; ${ }^{3}$ Mount Allison University

LIZ

Goal:

Reconnaissance of the most extreme, ultra-massive quiescent population at cosmic noon

Variance is a problem (1): Sample Variance

Variance is a problem (2): Cosmic Variance

Large-area K-selected sample

CFHTLS Wide and Deep fields + K-band

25.1 deg 2 to K $_{\text {lim }}=22 A B$ (VIPERS-MLS, Moutard+16) $2.5 \mathrm{deg}^{2}$ to $\mathrm{K}_{\text {lim }}=24 \mathrm{AB}$ (WIRDS, Bielby+12) $27.6 \mathrm{deg}^{2}$ in total

Object selection

BzK technique (Daddi+04) adapted to CFHT $g z K_{s}$ filters

Quiescent galaxy SMF at z~1.6

$N(z)$ and K mag to $M_{\text {stars }}$ conversion calibrated with COSMOS multi-band photo-z \& SEDs catalog of Muzzin+13

Quiescent galaxy SMF at z~1.6

SMF very well represented by Schechter function over a wide range of mass, including very high mass
\rightarrow Mass-quenching mechanism already established by z~1.6 and universal since then

Clustering

Clustering

after Limber inversion, UMPEGs have:
$r_{0}=30.9 \pm 5.3 h^{-1} \mathrm{Mpc}$
\rightarrow DM halos of UMPEGs: Mnalo ~ $1014.2 \mathrm{M} \odot$

What halos are they in?

1. UMPEGs at $z \sim 1.6$ are in DM halos that will become massive clusters by z=0
2. Occupation fraction: only ~1/8 such z~1.6 halos host an UMPEG
\rightarrow the other $\sim 7 / 8$ halos may have a star-forming central or multiple large, but not ultra-massive, "bits" (galaxies)

Stars-to-DM ratios

star formation processes are inefficient in UMPEGs (in agreement with expectations)

Environments

Environments

companion gzK galaxies within 0.5 Mpc of our UMPEGs:

\rightarrow Most UMPEGs have no massive companions (even before statistical back/fore-ground subtraction)

Environments

Growth by minor mergers: Assume const. mass/K-mag ratio and merger timescales from simulations (Kitzbichler+08, Jiang+07)
$\rightarrow \sim 13 \%$ mass growth per Gyr due to (minor) mergers (at this rate, a $10{ }^{11.5} \mathrm{M} \odot$ UMPEG would grow to $10^{12} \mathrm{M} \odot$ at $\mathrm{z}=0$)

Summary

1. Large sample of ultra-massive passive galaxies (UMPEGs $\left.\mathrm{M}_{\text {stars }} \sim 1011.5 \mathrm{M} \odot\right)$ from $27.6 \mathrm{deg}^{2}$ via BzK-like selection
2. Clustering: UMPEGs associated with Mnalo $\sim 10^{14.2} \mathrm{M} \odot$ halos \rightarrow these halos are progenitors of massive $\left(\sim 10{ }^{15} \mathrm{M} \odot\right)$ clusters

$$
\text { by } z=0
$$

3. Very few massive satellites, growth possible by minor mergers $\rightarrow \sim 13 \%$ mass growth per Gyr
\rightarrow UMPEGs may be direct progenitors of (some) z~0 massive cluster BCGs
4. Only one in 8 UMPEG halos ($10^{14.2 \mathrm{M} \odot)}$) has an UMPEG
\rightarrow (only) 1 of 8 ultra-massive halos hosts a quiescent BCG progenitor
\rightarrow Some z~0 massive cluster BCG progenitors may already be observed as quiescent ultra-massive galaxies at cosmic high noon
