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Abstract—The current understanding of methylmercury (MeHg) toxicity to avian species has improved considerably in recent years and
indicates that exposure to environmentally relevant concentrations of MeHg through the diet can adversely affect various aspects of
avian health, reproduction, and survival. Because fish-eating birds are at particular risk for elevated MeHg exposure, the authors
surveyed the available primary and secondary literature to summarize the effects of dietary MeHg on the common loon (Gavia immer)
and to derive ecologically relevant toxic thresholds for dietary exposure to MeHg in fish prey. After considering the available data, the
authors propose three screening benchmarks of 0.1, 0.18, and 0.4 pg g’1 wet weight MeHg in prey fish. The lowest benchmark
(0.1 wg g~ " wet wt) is the threshold for adverse behavioral impacts in adult loons and is close to the empirically determined no observed
adverse effects level for subclinical effects observed in captive loon chicks. The remaining benchmarks (0.18 and 0.4 wg g~ wet wt)
correspond to MeHg levels in prey fish associated with significant reproductive impairment and reproductive failure in wild adult loons.
Overall, these benchmarks incorporate recent findings and reviews of MeHg toxicity in aquatic fish-eating birds and provide the basis for
a national ecological risk assessment for Hg and loons in Canada. Environ. Toxicol. Chem. 2012;31:2399-2407. © 2012 SETAC
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INTRODUCTION

The assessment of health risks to piscivorous birds associ-
ated with exposure to methylmercury (MeHg) has been an area
of active research for nearly 30 years [1]. Early studies tended to
focus on gross clinical symptoms related to MeHg toxicity, such
as mortality and gross motor dysfunction and reproductive
failure [2,3], and were in large part driven by the obvious
impacts of point-source Hg contamination ([4,S1]; all S-num-
bered references may be found online in the Supplemental
Data). More recently, increasingly subtle yet biologically and
ecologically important effects of MeHg exposure have been
documented in a variety of piscivorous bird species including
adverse effects on behavior and neurochemistry, and on bio-
chemical and immunological function [5-8,S2-S4]. These
more recent studies reflect both the development of tools and
approaches to assess highly sensitive toxicological endpoints as
well as the recognition that atmospherically transported Hg can
result in contamination of sensitive aquatic ecosystems [9].
Consequently, the potential for adverse effects on piscivorous
birds exposed to MeHg through their diet may be greater than
previously anticipated [10].

Extensive ecotoxicological work since the early 1990s has
established the common loon (Gavia immer) as an important
avian indicator for MeHg exposure and effects in North
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America [11-18,5S5-S9]. Common loons are widely distributed
geographically, are long lived, and feed preferentially on small
fish (10-15 cm in size) from lakes within established territories
(mean ~70ha [19]). These characteristics make this species an
ideal indicator of MeHg contamination and exposure at local
and continental scales [20]. Consequently, the common loon has
recently been selected by the U.S. Environmental Protection
Agency (U.S. EPA) National Health and Environmental
Research Laboratory (NHEERL) as the focal species for devel-
opment of ecological risk assessment frameworks linked to
population models [21] and as the primary avian receptor for
a national ecological risk assessment for MeHg under the
Mercury Science Program of Environment Canada’s Clean
Air Regulatory Agenda [22].

Despite evidence that anthropogenic Hg emissions have been
declining generally over the past few decades, concern for
adverse effects on piscivorous fish and wildlife has increased
in recent years. This is based on reports that MeHg levels appear
to be increasing both in piscivorous fish and in wildlife at various
locations across North America [13,23-25]. As a result, a timely
review and synthesis of the literature on the common loon is
appropriate. Recent comprehensive reviews of the effects of
MeHg in wildlife have been provided by Wolfe et al. [26]
and Shore et al. [27]. It is not our intent to revisit these reviews,
rather, we seek: (1) to summarize the scope and magnitude of
adverse effects of MeHg exposure documented in common loons
to date; (2) to derive, using published models, dietary MeHg
levels associated with the documented adverse effects; and (3) to
derive screening benchmarks for dietary MeHg exposure for use
in ecological risk assessment for the common loon.
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MATERIALS AND METHODS

For most wildlife species, screening benchmarks are often
based on the empirically derived no observed adverse effects
level (NOAEL [28]), and compilations of wildlife benchmarks
are available in the literature (for example, [29]). However, the
availability (or lack thereof) of species-specific data has neces-
sitated the use of interspecies extrapolation or application of
uncertainty factors [28,29]. This approach has recently been
questioned when suitable data exist for a given species [30].
Moreover, for some contaminants, such as MeHg, it is apparent
that substantial interspecies variability in sensitivity exists
among avian species [27] and further underscores the added
uncertainty when conversion or uncertainty factors are
employed.

Laboratory studies to determine empirically the NOAEL and
lowest observable adverse effect level (LOAEL) concentrations
are difficult to conduct with the common loon, because adult
birds do not survive well in captivity (http://bna.birds.cornel-
l.edu/bna/species/313), and much of the literature on common
loons and MeHg exposure is derived from field studies
[12,15,17,S1,S5-S8,S10]. When such studies examine the
potential effects of MeHg, they are generally correlative in
nature but endeavor to control or account for potential con-
founding factors such as coexposure to other contaminants [16],
anthropogenic disturbances (e.g., flooding or recreational activ-
ity [S1,S11]), nest predation [S7,S12,S13], or prey availability
[31,32,5S5,S13] that may affect interpretation of the results. Our
approach in the present study considers all available qualified
toxicity data plus their measures of variability to derive
ecologically relevant screening benchmarks.

Relevant literature and establishment of benchmark categories

We have reviewed the available primary and secondary
literature to identify suitable studies for derivation of ecolog-
ically relevant screening benchmarks for the common loon.
Studies included both field-based surveys and observational
studies on breeding adults and chicks from various regions in
North America and a series of papers documenting captive
feeding studies with loon chicks (raised from egg to 105 days
posthatch) over a period of several years (1999, 2000, and 2003;
see Kenow et al. [S2-S4,S14-S16]) at the U.S. Geological
Survey’s Upper Midwest Environmental Sciences Center in
LaCrosse, Wisconsin, USA. Although most sources have been
published in the peer-reviewed literature, technical reports
listing relevant endpoints from governmental agencies and
the Biodiversity Research Institute were also evaluated.

Adverse effects were categorized by ecological relevance
and severity as judged by the authors (Table 1) following the
framework of Suter [28]. We considered population-level or
individual-level effects to be the most important for deriving
screening benchmarks in an ecological context. Mortality,
survival, growth, and reproduction constitute endpoints that
we considered to be highly relevant to the survival and recruit-
ment of young birds and thus to population dynamics (Table 1).
Although the interpretation of the influence of adult mortality
and survival on population dynamics is relatively straightfor-
ward, the importance of decreased growth rates or reproductive
impairment may be less clear. Slower growth rates are linked
to a decreased likelihood of chick survival [33] and decreased
avian productivity (defined as the number of fledged chicks
per territorial adult pair per year [34]) and may impact pop-
ulation stability if productivity is insufficient to balance adult
mortality [35].

D.C. Depew et al.

Table 1. Classification of relevant toxicological endpoints by ecological
endpoint for the common loon®

Ecological endpoint Toxicological endpoint

Survival Survival
Mortality
Growth Growth
Body mass
Reproduction Productivity
Egg hatching success
Behavioral Altered behavioral patterns
Altered activity budgets
Impaired motor co-ordination
Subclinical Altered glutathione metabolism

Oxidative stress

Antibody suppression

Lymphoid depletion

Altered neurochemical receptor levels
Altered corticosterone

#Ecological endpoints were ranked in order of ecological relevance from
highest (survival) to lowest (subclinical) by the authors following the
framework of Suter [28].

Effects such as altered behavioral activity and changes in
neurochemistry, biochemistry, or immune function are poten-
tially more sensitive toxicological endpoints than clinical
effects at the individual level; however, quantitative relation-
ships between these endpoints and individual- or population-
level impacts are generally not well established, particularly for
wildlife species [36]. For example, a dose—response relationship
between dietary MeHg exposure and impaired immune function
is difficult to link quantitatively to impacts on disease suscept-
ibility or survival in free-living populations because sick or
dead birds from a specific study population are infrequently
recovered by researchers. Nevertheless, it is recognized that
these subtle endpoints may have cascading effects that ulti-
mately do affect population-level processes [37], and their
potential importance to predictive ecotoxicology is likely to
increase [36].

Derivation of benchmark thresholds

We evaluated the relevance and appropriateness of each
selected study toward deriving a screening benchmark. Many of
the selected publications have developed preliminary criteria
(NOAEL, LOAEL) for various measures of MeHg exposure in
loons. The LOAELs for loon chicks were estimated to be
3pg g’1 wet weight in blood, 40 pg g’1 wet weight in feathers
[S6,S7], >1.3 ngg " wet weight in eggs [S8], and 0.4 pgg '
wet weight in the diet [S2-S4]. The use of different measure-
ment matrices has both advantages and disadvantages. On the
one hand, loon tissues and blood may provide a more accurate
assessment of adverse effects because they integrate Hg expo-
sure over all dietary sources and distinct time periods [S7].
Similarly, egg Hg burdens are directly related to maternal
dietary exposure and can be readily linked to developmental
and reproductive toxicity [S16]. On the other hand, lake-specific
fish Hg data are generally more readily available and compa-
ratively simpler to acquire compared with loon tissue, blood, or
eggs. A screening benchmark based on Hg concentration in prey
fish would be beneficial for providing an economical and
defensible screening tool for assessing potential impacts of
dietary MeHg exposure to the common loon.

Studies from various regions in North America have indi-
cated that loon blood Hg levels reflect recent dietary exposure
during the breeding season and are positively correlated to Hg



Mercury toxicity to the Ccommon loon

levels in prey in the nesting lake [11,15,17]. For the purposes of
this review, we assume that total Hg measured in fish of the size
typically consumed by loons (10-15 cm [19]) is entirely MeHg
[25,38] and that, for loon blood, muscle, brain, and egg con-
tents, measured total Hg is equivalent to MeHg [S15]. Unless
measured directly, prey fish MeHg concentration associated
with the threshold criteria were estimated using the following
steps. First, for MeHg criteria developed for brain tissue, we
used equations developed by Kenow et al. [S15] to convert from
brain Hg to juvenile loon blood Hg.

LOg (HgBlood) =0.726 + 1'059[10g(HgBrain)]
? =097, n=17

Second, for criteria developed with egg Hg levels, we used
the equation developed by Evers et al. [S8] to convert egg Hg to
female blood Hg.

Blood Hgpepae = 0.2238 + 1.5544[Hgp,,|
r?=0.79, n =108

Third, for criteria developed using chick blood Hg, we
converted these to female blood using the equations developed
by Evers et al. [15].

Blood Hggepmae = 1.102286 + 0.464995[In(blood Hg iy )]
r?> = 0.64, n = 80, for chicks < 28 d old

Lastly, for threshold levels converted to female blood Hg
(steps 1-3), we calculated prey fish Hg using the relationship
developed by Evers et al. [15] for fish in the 10 to 15 cm size
range.

Fish Hg = (Blood Hgppye — 0.5079)/10.644, #* = 0.51

These steps allowed us to convert among different measure-
ment matrices to derive an estimate of dietary MeHg exposure
in preferred prey that brackets the indicator prey size chosen for
a subsequent national-scale ecological risk assessment. When
possible, we also calculated the effective concentration for 20%
(EC20) and 50% (EC50) using regression models provided in
the source document (as recommended by Allard et al. [30]).
The EC20 was chosen to remain consistent with the average
reduction in endpoint parameters (~20%) observed in dietary
exposure tests of avian reproduction for terrestrial risk assess-
ment of pesticides [39] and because the EC20 often approx-
imates the LOAEL in field studies [40].

Several studies reported only a range of concentrations
associated with a LOAEL endpoint. For these, we took the
midrange value as an unbiased approximation of the LOAEL
and estimated the NOAEL following the Canadian Council of
Ministers of the Environment recommendation [41] (LOAEL +
5.6). Estimated prey fish MeHg values, endpoints, and infor-
mation on the initial measurement matrix are listed in Table 2.

RESULTS AND DISCUSSION
Summary of studies considered for survival endpoint

Because common loon populations exhibit traits such as low
annual productivity, delayed sexual maturity, long life expect-
ancy, and suspected low adult mortality (http://bna.birds.
cornell.edu/bna/species/313), even small declines in adult
survival can have significant implications for population dem-
ographics [S17]. Data from mark-recapture programs do not
provide compelling evidence for systematic changes in adult
survival associated with MeHg exposure in Wisconsin and New
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England [12,S18]. However, Mitro et al. [S18] indicate that
small and likely significant changes (<3%) are not yet detect-
able based on current data inventories and temporal records.
Based on the 75th percentile of blood Hg concentrations
reported by Mitro et al. [S18], the highest estimated unbounded
adult survival NOAEL for dietary MeHg exposure in breeding
adults is ~0.6 pg g’1 wet weight in prey fish (Table 2 and
Fig. 1).

Adverse effects on the survival of captive loon chicks (up to
105 d posthatch) fed up to 1.2 pg g’1 wet weight MeHg as
MeHgCl have not been observed [S14]. However, the depu-
ration of ingested MeHg into growing feathers may have
protected loon chicks from more overt effects during the present
study [S15]. Field studies assessing survival of juvenile loons
are rare, but Meyer et al. [12] reported a negative association
between chick survival beyond eight weeks of age and chick
blood Hg concentrations in northern Wisconsin lakes, suggest-
ing that in the wild, chick survival may be impaired when Hg
exposure is elevated. Although other factors could not be ruled
out, reduced survival of chicks associated with increased MeHg
exposure is not inconsistent with observations in other species
[42], but logistical and resource challenges continue to com-
plicate assessment of juvenile survival in wild birds.

Studies considered for growth and development endpoints

The difficulties of keeping adult loons in captivity make
assessment of adverse effects on growth or development diffi-
cult; therefore, most research has been conducted on wild
adults. Evers et al. [S6] documented an increase in flight feather
asymmetry in adults with very high levels of Hg in feathers
(>40pgg "' wet wt) and suggested that such developmental
abnormalities may negatively affect individual fitness through
increased energy expenditure. Barr [S1] reported that the mean
weight of male loons from Hg-polluted territories (4.23 kg) was
lower than that in control territories (4.62kg) and found one
severely emaciated male loon on Ball Lake, Ontario, Canada
between 1975 and 1976, although the weight of female loons
did not show a similar pattern. Concentrations of Hg in yellow
perch (14.4+£1.7 to 16.6+3.1cm) ranged from 0.04 to
1.53 ngg™" wet weight in these territories, but water level
fluctuations and associated turbidity may have also contributed
to lower weights by reducing foraging success; therefore,
attribution of lower body mass in male loons to MeHg exposure
is not strongly supported. Emaciation is also encountered during
necropsies of loons found dead or moribund, and some of these
loons have high Hg burdens in liver and kidney tissues [43,44],
but wasting of body tissues will increase the Hg burden in the
remaining carcass [44].

Available evidence is insufficient to determine what, if any,
effects MeHg exposure may have on the growth and develop-
ment of juvenile common loons at dietary MeHg concentrations
up to 1.2 pg g’1 wet weight [S14]. Stronger effects on body
mass at hatch and asymptotic mass were related to the lake of
origin of the collected eggs (see synopsis below). As discussed
by Kenow et al. [S14], the lack of adverse effects on growth
must be cautiously interpreted, because the results are appli-
cable only to chicks up to 105 d of age and because of the
potential protection provided by excretion of MeHg into feath-
ers. Free-ranging loon chicks are known to have relatively high
energetic demands [45], and the possibility exists that labora-
tory conditions designed to optimize chick survival may mask
potential impacts on growth that are more likely to occur in the
wild. For example, feeding studies of captive great egret chicks
documented a reduction in weight gain resulting from reduced
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Table 2. Summary of studies on the common loon used in this review"

Endpoint Life stage Region NOAEL LOAEL EC20 EC50 Initial measurement Reference
Survival

Survival Adult WI/NE 0.45° (3) ND ND ND 75th percentile 3 and [S18]

@ blood Hg (NE only)
0.58" ()

Mortality Juvenile® WI >1.2 ND ND ND Dietary MeHgCl [S14]
Growth

Body mass Juvenile® WI >1.2 ND ND ND Dietary MeHgCl [S14]
Reproduction

Maximum productivity Adult WI/Mar ND ND 0.07¢  02¢ Measured prey fish Hg [S5]

Productivity Adult NW ONT 0.03¢ 0.17" ND ND Measured prey fish Hg [S1]

Productivity Adult NH/ME 0.03¢ 0.16 ND ND Measured prey fish Hg [S6,S7]

Productivity Adult QC 0.15 ND ND ND Measured prey fish Hg [S10]

Productivity Adult Hanson Lake, SK 0.08° ND ND ND  Max. egg Hg concentration [S12]

Hatch success Egg WI 0.03%# 0.18" 0.13'  0.23' Egg Hg (injected MeHgCl) [S16]

Hatch success Egg NH/ME ND >0.3 ND ND Measured prey fish Hg [S6]
Behavioral )

Reduced time back riding Juvenile’ Mar 0.05° 0.27° ND ND Chick blood Hg [S11]

Impaired motor control Juvenile® WI 0.08 0.40 ND ND Dietary MeHgCl [S2]

(righting reflex)
Time foraging for self Adult NH/ME 0.02° 0.10% ND ND Measured prey fish Hg [S6]
(nesting phase)

Increased time resting Adult & NH/ME 0.02° 0.10F ND ND Measured prey fish Hg [S6]

Aberrant incubation behavior Adult NH/ME 0.02° 0.10" ND ND Measured prey fish Hg [S6,S7]

Reduced chick feeding Adult NH/ME 0.05° >0.3 ND ND Measured prey fish Hg [S6]

Reduced time incubating eggs Adult NH/ME 0.02° 0.10 ND ND Measured prey fish Hg [S6]

Increased dive frequency Adult NH/ME 0.05¢ 0.25% ND ND Adult loon blood Hg [S20]
Biochemical/immunological

Increased corticosterone Adult ME ND 0.05 ND ND Loon blood Hg [S6]

Bursal lymphoid depletion Juvenile® WI 0.08 0.4' ND ND Dietary MeHgCl [S4]

Antibody suppression

Oxidative stress Juvenile® WI 0.08 0.4 ND ND Dietary MeHgCl [S3]

Glutathione metabolism

Neurochemical receptors Adult NA/Lake Erie 0.01° 0.05-0.08" ND ND Brain THg [S9,523]

#Included in the summary are the ecological endpoints assessed (endpoint), life stage of test subjects (life stage), geographic region within North America where
the study was conducted or applicable (region), screening benchmarks derived from each study (adult no observed adverse effects level (NOAEL), low
observed adverse effects level (LOAEL), effective concentration for 20% (EC20) and effective concentration for 50%; reported as concentration of Hg in prey
fish, expressed as wet wt, wg g~ '), initial measurement matrix reported in each study with screening benchmarks (Initial measurement matrix; see Materials
and Methods section), and source document (Reference) to identify the threshold.

" Derivation following the steps outlined in the Materials and Methods section.

¢ Chicks raised from egg to 105 d posthatch.

4 Calculated using the model presented by Burgess and Meyer [S5].

®NOAEL calculated following the Canadian Council of Ministers of the Environment (CCME) [41].

"Mean Hg content of fish from territories with minimal water level fluctuations.

£ Control eggs determined to contain ~0.3 ppm MeHg.

T’Determined to be significantly different from controls.

'Estimated from model developed by Kenow et al. [S16].

I Chicks <12 d old.

¥Midrange value of prey fish Hg concentrations associated with the LOAEL.

'True LOAEL may be <0.4 based on magnitude of change in measured endpoints (immunoglobulin G titer).

NE =New England; WI=Wisconsin; ME =Maine; QC = Quebec; SK = Saskatchewan; Mar = Atlantic Canada; NW ONT =northwestern Ontario;

NA =North America.

fish consumption [46], and lower weights were observed in wild
egret chicks but at lower cumulative doses of MeHg than their
captive counterparts (G.E. Williams, 1997, MSc thesis, Uni-
versity of Florida, Gainesville, FL, USA) [46], lending some
indirect support for this hypothesis.

Studies considered for reproductive endpoints

In general, laboratory and field studies have demonstrated
that, for many avian species, adverse effects on reproduction
occur at dietary MeHg exposures one to two orders of magni-
tude below those that cause overt mortality or neurological
symptoms [27]. The greater sensitivity of reproduction may be
partially related to the many potential pathways by which MeHg
can affect the reproductive process. MeHg may alter the mate
selection and pairing behavior, incubation, and chick-rearing
behavior of breeding adults [47,S6,S7], whereas deposition

of MeHg into developing eggs may induce teratogenic effects
in embryos [48], increase embryo mortality [49], reduce
hatching success [50,S16], or affect the behavior of surviving
offspring [3].

In an MeHg egg-injection experiment, Kenow et al. [S16]
documented a dose-dependent decrease in hatching success and
an increase in incubation time for common loon eggs and
estimated the EC50 (median lethal concentration [LC50]) for
hatching success to be 1.78 ugg™' wet weight. The lone
reported death of a chick (at hatch) in the wild (Ball Lake
[S1]) was associated with a whole-body residue of 2.44 pg g™
wet weight. Using the carcass-to-egg conversion equation pro-
vided by Kenow et al. [S16], (log Eggy, = [log[Carcassy,] -
0.323]/0.905, *=0.85) provides an estimate of 1.79 pgg ™"
wet weight in the Ball Lake egg, which coincides with the
experimentally determined EC50 [S16]. The EC20 (1.1 g g_l
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Fig. 1. Plot of relevant endpoints for deriving screening benchmarks for the common loon. Endpoints are sorted by category and displayed as follows: adult no
observed adverse effects level (NOAEL; []), adult low observed adverse effects level (LOAEL; W), adult EC20 (%), adult EC50 (@), juvenile NOAEL (A),
juvenile LOAEL (A), juvenile effective concentration for 20% (EC20; W) and juvenile effective concentration for 50% (EC50; @), 4 Represents the estimated
upper and lower ranges of dietary exposure associated with relevant endpoints, and X represents the effective concentration for 100% (EC100). The solid line
indicates the proposed behavioral benchmark (0.1 pg g~"), the line with longer dashes represents the reproductive impairment benchmark (0.18 wg g~"), and the
line with shorter dashes represents the reproductive failure benchmark (0.4 wg g ). Supplemental References for selected endpoints are as follows: 1, [S18]; 2,
[S14]; 3, [S1]; 4, [S5]; 5, [S6]; 6, [S10]; 7, [S12]; 8, [S16]; 9, [S2]; 10, [S11]; 11, [S20]; 12, [S3]; 13, [S4]; 14, [S9]; and 15, [S23].

wet wt) and EC50 correspond to an estimated concentration of
0.13and 0.23 g gfl wet weight, respectively, in maternal diets
(Table 2 and Fig. 1). Although it has not been directly dem-
onstrated with common loon eggs, it appears that, in general,
when MeHgCl is injected into eggs, it is more toxic than
maternally deposited MeHg [49]. However, the EC20 and
EC50 from the egg injection study bracket the threshold level
of 1.3 ugg™" wet weight indicative of loons from territories
where prey fish Hg typically exceeds 0.3 pgg ' wet weight
[S1,S8].

Productivity is arguably the most ecologically relevant
reproductive endpoint because overall productivity integrates
potential adverse effects of MeHg on adult behavior, egg
production and incubation, embryonic development and hatch-
ing success, posthatch parental care, and chick survival. How-
ever, productivity may also be affected by prey availability
[31,S13] and anthropogenic disturbances such as water level
regulation [S1] and recreational activity [51]. These confound-
ing effects undoubtedly vary spatially and temporally and may
not be readily separable from effects related to MeHg exposure.
For example, although Merrill et al. [S13] found that loon chick
survival was unrelated to lake pH and cumulative Hg exposure
in Wisconsin lakes, nearly 75% of the lakes studied were
classified as “seepage” (i.e., no inlets or outlets; see Meyer
et al. [12]). Such lakes can have low fish diversity and abun-
dance because of barriers to fish migration and frequent winter-
time anoxia [52]. In addition, heightened sensitivity to acid-
related reductions in invertebrate and fish abundance [53] may
also affect prey availability [S13].

Despite the potential for confounding stressors to complicate
the assessment of MeHg exposure on productivity, studies
published to date share a number of consistencies. On highly
contaminated Ball Lake, breeding adult female loons laid

fewer eggs, and productivity and hatching success declined
by 82 and 42%, respectively, relative to upstream reference
territories [S1]. These reductions in reproductive success
occurred in territories unaffected by water level fluctuations
but accessible to fish with high MeHg concentrations (mean
0.174+0.09 pgg ', range 0.05-035pgg ' wet wt [S1]).
Reproduction ceased completely in territories where concen-
trations of MeHg in prey fish were >0.4 pg g’1 wet weight,
although these territories were also affected by water level
manipulation and high turbidity [S1]. Evers et al. [S6,S7]
documented a 13% reduction in egg laying and a 30% reduction
in hatching success on lakes in the northeastern United States
where prey fish Hg was >0.3 pg g~ ' wet weight. Productivity in
these territories was reduced by 40% where fish Hg levels were
between 0.15 and 0.3 pg g~ ' wet weight, prompting Evers et al.
[S7] to suggest a threshold level (LOAEL) of 0.16 pgg ™" wet
weight in prey fish for significant impacts on loon productivity.
Burgess et al. [S19] observed a reduced tendency for breeding
adult loons to nest, accompanied by a decline in productivity as
blood Hg levels increased in Kejimkujik National Park, Nova
Scotia, Canada. A recent reanalysis of data from Atlantic
Canada and Wisconsin indicated that reductions in maximum
productivity are likely related to MeHg exposure, and a 50%
reduction is predicted to occur at prey fish MeHg levels of
~021pgg " wet weight, and successful reproduction is
predicted to cease completely at prey fish MeHg levels of
>0.4pngg " wet weight [S5].

Unlike the above-mentioned studies, the study of Champoux
et al. [S10] did not find strong evidence that loon productivity in
selected lakes was affected by MeHg levels in prey fish in
Quebec. Although somewhat contradictory at first glance, the
majority of lakes examined in this study had mean prey fish
MeHg levels of <0.15ugg ' wet weight, and extraneous



2404 Environ. Toxicol. Chem. 31, 2012

stressors such as human disturbances were not explicitly con-
trolled. Impacts on productivity might have been less pro-
nounced compared to those in other regions where MeHg
levels in prey fish more frequently exceed 0.15pgg™"' wet
weight. Similarly, Fox et al. [S12] were unable to find evidence
of contaminant-related declines in productivity in loon terri-
tories on Hanson Lake, Saskatchewan, Canada. However,
MeHg exposure in loons on Hanson Lake was low; based on
the maximum recorded egg Hg, the estimated maximum MeHg
in prey fish was 0.08 g g’1 wet weight (Table 2 and Fig. 1).
Although all confounding factors that influence productivity
cannot be completely eliminated, the consistency between
studies in differing regions of North America [S1,S5-
S7,510,S12] provides strong evidence that loon productivity
is sensitive to MeHg exposure and that moderate concentrations
of MeHg in prey fish (e.g., 0.1-0.2 ng g~ " wet wt) may sig-
nificantly reduce productivity (i.e., >40%).

Summary of studies considered for behavioral endpoints

The potent neurotoxicity of MeHg is well known, and at
sufficient concentrations (>5pgg ' wet weight) MeHg can
elicit overt neurological symptoms, including ataxia and gross
motor impairment in birds [26,27]. However, for birds exposed
to lower MeHg concentrations, behavioral abnormalities may
be considerably more subtle and thus difficult to link to apical
outcomes of survival or reproduction [10].

Increased Hg exposure has been correlated with an increased
frequency of lethargic behaviors in breeding adult loons. In
breeding territories where Hg concentrations in prey fish are
between 0.05 and 0.15pgg ' wet weight, adults spent more
time preening and resting and less time foraging for themselves
and significantly reduced amounts of time spent incubating eggs
(~10%) compared with breeding adults on territories where
prey fish Hg concentrations were <0.05 pg g’1 wet weight
[S6,S7]. In territories where prey fish Hg concentrations
exceeded 0.3 wg g~ ' wet weight, food provisioning for chicks
was reduced by 42% relative to that in territories where prey fish
Hg concentrations were <0.05 pg g~ ' wet weight [S6], and dive
frequencies of adults were observed to increase substantially
[S20], although a plausible link to MeHg exposure remains
equivocal [S21] (Table 2 and Fig. 1).

Field studies have documented subtle behavioral alterations
in loon chicks at different stages of development. Loon chicks
<12 d-old spent less time back-riding, potentially increasing
unnecessary energy expenditures and increasing vulnerability
to predation and exposure [S11]. The concentration of MeHg in
prey associated with a complete cessation in back riding was
estimated to be ~0.3 pgg~ ' wet weight (Table 2 and Fig. 1).
Counard [S22] observed a negative relationship between the
frequency of wing flaps and diving, and a corresponding
increase in swimming, peering, and begging as blood Hg
concentrations increased in >40-d-old chicks. These behaviors
were not observed by Kenow et al. [S2] in their captive chick
study, but they did report impaired motor coordination (meas-
ured by righting reflex) in >37-d-old chicks fed 0.4 ugg ' wet
weight MeHgCL

The behavioral effects discussed above appear to manifest
when prey MeHg concentrations are between 0.05 and
0.4ngg ' wet weight (Table 2 and Fig. 1) and generally
suggest a shift toward less energetic behaviors in adults
[S6,S7], but the response of chicks is often more ambiguous
[S2,S11,516,S22]. Overall, observed behavioral aberrations are
comparable to those associated with MeHg exposure in other
piscivorous species [5]. Some of the behavioral impairments
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exhibited by adult loons may adversely affect productivity. A
reduction in time spent incubating eggs will increase the risk of
egg loss to nest predation and chilling [S7] and may be linked to
increased incidences of embryo malposition resulting from
improper turning of the eggs during incubation [54]. Reductions
in chick feeding effort may directly impair the growth and
survival of loon chicks, insofar as underprovisioning is linked to
failure of chicks to fledge or to abandonment [55]. Bridging the
gap between observed behavioral impairments and changes in
individual fitness, survival, or reproductive success remains a
worthwhile albeit difficult approach for assessing the impacts of
MeHg exposure in loons and other wildlife.

Summary of studies considered for subclinical endpoints

In recent years, the volume of data detailing mechanistic
responses to MeHg exposure in wildlife at the molecular,
biochemical, and cellular levels has expanded considerably
[56]. Dietary exposure trials with mallard ducks (Anas platyr-
hynchos) [8] developed a suite of biochemical and physiolog-
ical endpoints that responded to MeHg exposure in the
laboratory, and these have been validated in wild birds from
various locations [57-59]. Some of these biochemical endpoints
have been observed in common loons. At dietary exposure
concentrations of 0.4 and 1.2 pgg ' wet weight, evidence of
oxidative stress and altered glutathione metabolism was
observed in brain tissues of captive loon chicks [S3]. At dietary
exposures of 0.4ugg ' wet weight, atrophy and lymphoid
depletion of the thymus and bursa and a reduction in T-cell-
mediated immune response (~40%) were observed in captive
loon chicks, and the declines in antibody titer (immunoglobulin
G) in the 0.08 wgg™" wet weight exposure group were com-
parable to those in the 0.4 pgg ™' wet weight exposure group
(54 vs 58%), although this difference was deemed not signifi-
cant [S4] (Table 2 and Fig. 1).

Comparable data for adult loons is not available primarily
because of the difficulty in acquiring samples for analysis.
However, significant elevations in blood corticosterone con-
centrations in wild adult loons were observed in loon territories
where prey fish Hg concentrations were >0.05pgg™ ' wet
weight [S6], and significant correlations were found between
brain Hg concentrations (in which Hg concentrations ranged
from 0.2-68 wgg ™' dry wt) and the densities of muscarinic
cholinergic receptors and N-methyl-D-aspartic acid receptors in
wild loons collected opportunistically across Canada [S9].
Changes in these neurochemical receptor densities are known
to elicit deleterious effects on motor function, memory, and
learning in mammals [60,61] but have been rarely studied in
birds. Based on the data presented by Scheuhammer et al. and
Hamilton et al. [S9,S23], a brain Hg concentration of approx-
imately 3 wgg ' dry weight (~0.75 pgg™ " wet wt, assuming
75% moisture content) may represent a threshold below which
significant changes in neurochemical receptor densities do not
occur in loons [S23]. This corresponds to an estimated mini-
mum dietary MeHg concentration of 0.05-0.08 pgg ' wet
weight (Table 2 and Fig. 1). Although potentially biased by
the use of a model constructed for juvenile loons (see Materials
and Methods), this level of MeHg exposure is comparable to
dietary exposure concentrations associated with similar changes
observed in brains of mink (Mustela vision;(0.1 pgg ™" wet wt
[62]).

Although these biomarkers are demonstrably sensitive to
low-level MeHg exposure, linking the measured response to
individual or population-level effects remains difficult. For
example, loon chicks fed 0.4 and 1.2pg g’l wet weight
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MeHgCl1 were less likely to right themselves when placed on
their backs [S2], and evidence of oxidative stress and altered
glutathione metabolism was present in brain tissue [S3]. In great
egret chicks fed 0.5 pg g’1 wet weight MeHg, behavioral
aberrations were observed [5], but evidence of oxidative stress
in brain tissue was not apparent until dietary exposure reached
Spg g’1 wet weight [63] and chicks displayed significant
overt neurological dysfunction [6]. Immune system suppression
related to MeHg exposure appears to be generally universal in
avian species tested to date [6,58], and high MeHg exposure has
previously been linked to chronic disease occurrence in free-
ranging aquatic birds [44,64]. The reduced T-cell-mediated
immunity observed in loon chicks (~40% reduction), although
not statistically significant, may nonetheless be indicative of
significant immune system suppression [S4] that may not only
impair the ability of birds to resist infectious diseases or para-
sites but also may impair overall population fitness, leading to
population-level impacts [37]. Although these more recent
studies are providing sensitive tools and approaches with which
to evaluate MeHg exposure in birds, their integration into
ecological risk assessment approaches remains limited at
present.

Synopsis, remaining uncertainties, and screening benchmarks

We propose, based on our review of the literature, three
screening benchmarks based on three categories of relevant
endpoints using a weight-of-evidence approach (Table 3). How-
ever, we refrain from proposing benchmark thresholds for loon
chicks or for lethal effects in both chicks and adult loons
because of the residual uncertainty surrounding the assessment
of long-term survival.

For loon chicks, several factors contribute to greater uncer-
tainty in the development of appropriate screening benchmarks.
One aspect is related to the variable exposure profile observed
for common loon chicks [S15] and chicks of other piscivorous
species [65]. The highest MeHg exposures occur immediately
after hatching (from maternal transfer of MeHg) and again
when feather growth ceases and a key depuration pathway is no
longer available, suggesting that risk may be highest during
these time periods [65]. Because the captive feeding studies
with loon chicks were terminated at 15 weeks of age and blood
Hg levels were on an upward trajectory at that time, negative
effects on chicks beyond this time frame are unknown, but are
potentially significant [S14]. The presence of adverse behav-
ioral effects in loon chicks <12 d-old [S11] and >37 d-old
[S2,S22] is not inconsistent with the hypothesized pattern of
risk, but more data are required to help reduce uncertainty in
deriving a screening benchmark for loon chicks.

A second aspect related to uncertainty surrounding loon
chicks is that in ovo exposure appears to be more important
than dietary exposure to the susceptibility of juveniles. This is
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highlighted by the strong and consistent lake-source effect
observed by Kenow et al. [S2-4,514,S16] in their series of
captive loon chick experiments. Chicks hatched from eggs
collected on low-pH lakes, where exposure to Hg is known
to be higher compared with neutral-pH lakes [11,12] weighed
3.8% less at hatch, had 7% lower asymptotic mass [S14], were
less responsive to parental calls [S2] and to frightening stimuli
[S16], had more severe physiological effects [S3], and had more
depressed immune function [S4] compared with chicks hatched
from eggs on neutral-pH lakes.

We did not propose a benchmark dose for survival because
survival is difficult to assess outside of acute lethality. The lack
of acute lethality in captive fed loon chicks or obvious impair-
ment of adult survival inferred from field studies is perhaps not
overly surprising, because the lethal dietary threshold for non-
marine avian species reported by Shore et al. [27]is >6pgg ™"
(range, 1040 pgg™"; 11 species), and this far exceeds con-
centrations of Hg provided to loon chicks in captivity [S14] or
preferred prey fish species typically consumed by adult loons in
North America [25,66,67]. However, evidence suggests that
some recaptured wild adult loons in northeastern North America
exhibit annual increases in feather Hg (~5-10% year ') [S7].
This may indicate either an increase in Hg exposure or perhaps
incomplete depuration on wintering grounds [S7]. Mortality of
adult loons is rarely reported on summer breeding grounds and
likely is more common during migration and over winter,
making assessment of survival in the wild difficult without
substantial data inventories [S18]. Necropsies of dead or mor-
ibund loons [43,44] have frequently documented high Hg
burdens in various tissues (especially in emaciated individuals),
but causes of death are often related to lead toxicity, trauma, or
respiratory infection and aspergillosis [68]. Although the pos-
sibility exists that MeHg exposure contributes to some extent to
loon mortalities, a lack of compelling evidence and the paucity
of data pertaining to survival rates of juvenile and nonbreeding
loons hinders assessment of Hg impacts on long-term survival
and population dynamics.

Proposed benchmark dietary concentrations

A screening benchmark of 0.1 pg g’1 wet weight is proposed

to be associated with alterations to normal adult loon behaviors
(Table 3 and Fig. 1). The level of uncertainty surrounding this
benchmark concentration is relatively high because this essen-
tially represents the midpoint of a range of values (0.05—
0.15pgg ' wet wt) over which behavioral aberrations have
been observed. That this midrange value closely corresponds to
an estimated dietary level at which neurochemical changes are
observed in loon brain tissue (Table 2 and Fig. 1) may simply be
coincidental but certainly merits further study. Importantly, the
degree to which these adult behavioral changes will affect adult
or chick survival in the wild or population dynamics is presently

Table 3. Summary of proposed screening benchmarks for common loon exposure to MeHg"

Proposed screening
benchmark threshold

Category (ngg ") wet weight Endpoints considered Primary sources

Adult behavioral abnormalities 0.1 Midpoint of range for adverse adult behavior LOAELSs [S6]

Significant reproductive impairment 0.18 Geometric mean of productivity LOAEL [S1,S5-S7,S16]
and EC50, hatch success EC50

Reproductive failure 0.4 Productivity reduced to zero [S1,S5]

Screening benchmarks are expressed as Hg concentrations in prey fish (ugg™" wet wt).
LOAELSs =1low observed adverse effects level; EC50 = effective concentration for 50%.
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unknown; therefore, the suitability of this benchmark for eco-
logical risk assessment remains limited.

The remaining screening benchmarks (0.18 wgg™" and
0.4 pg g’l, wet wt) are proposed to be indicative of significant
reproductive impairment and reproductive failure, respectively,
in breeding adult common loons. These benchmarks for the
common loon bracket the dietary value proposed by Shore et al.
[27] to be indicative of reproductive impairment in nonmarine
birds (0.25 wg g~ '; one-fifth of the geometric mean of LOAEL
for seven species). We consider these screening benchmarks to
have a lower level of uncertainty than the behavioral bench-
mark, because strong associations with significant (40-50%)
declines in productivity have been documented in Ontario,
Wisconsin, Atlantic Canada, and the northeastern United States
(Table 3 and Fig. 1). The consistency of these effects across
regions and the direct assessment of loons in a natural environ-
ment strongly suggest that these screening benchmarks are
reasonably well defined. Moreover, although demographic
models suggest a low sensitivity of population stability to
changes in productivity [S17], declines in productivity on the
order of 40% have been associated with negative population
growth rates in Maine from 1982 to 1999 [S6], and a complete
failure of reproduction will obviously impair population stabil-
ity. These benchmarks are clearly relevant to the assessment of
ecological risk to the common loon based on dietary exposure
to MeHg.

1

CONCLUSIONS

The common loon is clearly vulnerable to dietary MeHg
exposure in the range of 0.1 to 0.4 pgg ' wet weight. These
concentrations are found in preferred prey fish species within
their breeding lakes across North America. The three screening
benchmarks developed here use directly applicable data for
common loons and will allow for a tiered assessment of risk in
ecological risk assessment. Continued refinement and enhance-
ment of population models and further understanding of link-
ages between highly sensitive biochemical endpoints and
individual- or population-level responses will further enhance
the ability to define adverse effect thresholds related to MeHg in
the common loon as well as other species of avian piscivores.
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