Astronomy 602. Galactic Astronomy

1. Historical Landmarks

The proper study of the Milky Way galaxy probably begins in 1610, when Galileo first
discovered that the Milky Way consists of "innumerable” faint stars. Halley provided a significant
contribution in 1718 when he discovered the proper motions of Arcturus, Sirivs, and Aldebaran by
comparing their positions with those given by Hipparchos in the Almagest. By 1760 Mayer had
published proper motions for some 80 stars based upon comparisons of their recorded positions.
These results established that the sun and stars were not at rest relative to one another in the
- Galaxy. In 1785 William Herschel derived the first schematic picture of the Galaxy from optical
"star gauging” in 700 separate regions of the sky. He did this by making star counts to the visual
limit of his 20 ft. (72-inch diameter) telescope. He assumed that r ~ N1/3 (i.e. N ~ 3), and
obtained relative thicknesses for the galactic disk in the various directions sampled. No absolute
dimensions were established. By 1817 Hershel had adopted a new picture of the Galaxy as a
flattened disk of nearly infinite extension (similar to the modern picture). In 1837 Argelander of
the Bonn Observatory, and the orginator of the BD catalogue, was able to derived an apex for the
solar motion from studying stellar proper motions. His result is very similar to that recognized
today. Also in 1837, Frederick Struve found evidence for interstellar extinction in star count data,
which was considered necessary at that time to resolve Herschel's "“infinite universe” with Olber’s
paradox (which had been published in 1823).

By the turn of the century many astronomers felt that a concerted, detailed effort should be
made to establish reliable dimensions for the Milky Way. The task was initiated by Kapteyn in

1905 with his plan to study in a systematic fashion 206 special areas, each 1° square, covering
most of the sky — the well known "Selected Areas” for galactic research. By this time, separately-
pursued research programs into the nature of the Milky Way system often produced distinctly
different results. In 1918, for example, Shapley noted the asymmetric location of the centre of the
globular cluster system with respect to the sun, and suggested that it coincided with the centre of
the Galaxy. The 1920 publication of Kapteyn and van Rhijn’s initial results from star counts in
their selected areas yielded a distinctly different Galaxy model which had a radius of ~4.5 kpc
along its major plane and a radius of ~0.8 kpc at the poles. It was not until 1922 that Kapteyn
published an alternate model of the Galaxy in which the sun was displaced slightly from the centre,
although still by an amount far less than the distance to the centre of the globular cluster system
established by Shapley.

The issue reached a turning point, of sorts, in 1920 with the well known Shapley-Curtis

debate on the extent of the galactic system. The merits of the arguments presented on both sides of
this debate have been the subject of considerable study over the years, but it was years later before
the true extragalactic nature of the spiral nebulae was recognized. A big step was Hubble's 1924
derivation of the distance to the Andromeda Nebula using Cepheid variables. Somewhat less well-
known is Lindblad's 1926 development of a mathematical model for galactic rotation. Lindblad's
model underwent further development in- 1927-28 by Oort, who was able to demonstrate its
applicability to the radial velocity data for stars. Finally, in 1930 Trumpler was able to provide
sound evidence for the existence of interstellar extinction from an extremely detailed study of the
distances and diameters of open clusters.
' The modern era orginated in 1944 when Baade published his ideas on different stellar
populations. In 1940 during World War I, Grote Reber had discovered the radio radiation from
the galactic centre, but it was not until after the end of the war that this discovery was pursued by
research groups in The Netherlands (Miiller and Oort), the U.S. (Ewen and Purcell), and Australia
(Christiansen), often making use of radio dishes left behind by German occupation forces. The
prediction and confirmation of the 21-cm transition of neutral hydrogen in the galactic disk intiated
the new specialty of radio astronomy, and led to a boom era in the study of our Galaxy. Although
less popular now than it was 30 years ago, galactic astronomy is still an important area of study.
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2. Current Model of the Galaxy

GhiacTle
CENTRE -

~ 8 koe To DA LimiT

Sun . <

HKpo L bisK
Ro &~ 91! k?o ‘

A

" HAke

A

The best current estimates for the distance of the sun from the galactic centre give values
which tend to cluster around ~9 +1 kpc = R,,, although this is not well-established. Estimates as
low as ~7 kpe and as high as ~10.5 kpc have been published. The main components of the Galaxy
are the bulge, the disk (which contains the spiral arms), and the halo, with some debate about the
exact number of subgroups of these. There is considerable evidence for a metallicity gradient in
the disk with stars of higher metallicity lying towards the galactic centre. The metal enrichment of
the disk is attributed to evolutionary processes in stars, which end their lives by adding a rich
supply of heavy elements to the interstellar medium. When the mean metallicity of disk stars is
studied as a function of the ages of these stars, there appears to be a net metallicity growth with age
amounting to: : . ,

A<[Fe/H]> = 0.5-0.7/101C years, i.e. an increase of Fe/H by 4 £1 every 101 years.

This relation is not zeroed to the sun, since solar metallicity is calculated to have been reached at an
age of ~2.5 x 10% years. The parameter [Fe/H] = log[(Fe/H)/(F/H)o], ic. 2 x the solar
metallicity is equivalent to [Fe/H] = +0.30.

A suggested division of the main components of the Galaxy iggiven on a class handout,
although this should not be considered definitive. There are at least two components of the halo
currently recognized, as well as some argument about the number of disk components which can
be identified (thin disk, thick disk, etc.). The components of spiral arms appear to differ only
slightly in age, and many astronomers would identify these as a single young Population 1 _
component,

3. Stellar Reference Frames and Proper Motions

. If we define the equatorial coordinates of a star to be o and 8; at epoch Ty, and a;énd 8 at
epoch Ty, then: ‘
az=-0a; = (m+ nsing tan § + R )x{TF3 - Ty)

and 8, -8; = (n cos o + ps)x(T3 - Ty} , where m and n are the terms for general
precession. , '
As determined by Newcomb with respect to observations of planets and asteroids, with known (or
estimated) masses of solar system objects used to establish a dynamical rest frame, the "constant”

of luni-solar precession is given by: = .
' p = 50".2910 + 0".0222'T per year (where T is the number of elapsed centuries since
12000.0), i.e. p = 50".2688 per year for the year 71900.0.
Thus, p(1985.0) = 50".2910 — 0".0222 (85.0/100) per year = 50".27213 per year.




General precession consists of two terms — p1 = luni-solar precession, and 3 = planetary
precession (a function of « only).
Thus, m = p;cose—-i = 3.07496 + 0s.001867T /year,
and 0 = p; sine = 133621 -~ 0-.00057T /year = 20".0431 — 0".0085T /year,
where ¢ is the obliquity of the ecliptic. :
The parameters uq and ps are the proper motions in right ascension and declination, respectively.
Le. fg = %-% ~{(m+nsinotans), pg = di% —{n cos o) , and the net proper motion
of an object is given by p = [(1q cos 8)2 + ug2]V2.  Accurate proper motions for stars
therefore require small internal errors of observation as well as a detailed knowledge of the inertial
. teference frame and the resulting precession constants (which are not well determined).

The steps usually taken to determine reliable proper motions for stars are:
(i) Meridian telescopes and accurate clocks are used to establish reliable position measurements for
bright stars, with stellar observations also being used (if possible) to establish the location of the
celestial pole for the epoch of the observations.
(ii) The current right ascensions and declinations for afl program stars are obtained from repeated
measurements of each star's meridian crossing times as well as its culmination points measured on
the telescope’s large altitude circle.
(iif) Published precession and nutation constants are used to reduce the observations to a common
nearby epoch in time, and the results are published as a Catalogue of Stellar Positions.
(iv) Several such catalogues are reduced to a common epoch to establish the proper motions,
systematic observatory errors, systematic precession constant errors, etc. for a common set of
stars. The resulting collection of positions and proper motions is a Compilation Catalogue.
(v) When several such catalogues are combined with a new set of planetary observations used to
redefine the inertial reference frame for the precessional corrections, the resulting compilation of
positions and motions tied to the inertial reference frame is known as a Fundamental Catalogue,
e.g. the FK4 and FK35.
(vi) Proper motion data for stars in Position Catalogues but not in a Fundamental Catalogue are
obtained by establishing Catalogue corrections tied to the Fundamental Catalogue reference frame.
Several such "non-fundamental” catalogues exist, of which the SAO Catalogue and AGK3 are two
examples. '

A simple way of assessing the problem of deriving reliable proper motions for stars is to
consider the various sources of error involved:
The proper motion of a star in a fundamental catalogue, ug, is given by:

LF=P+8 + G + (1 + oF +ef) , where:

P = the effect due to an error in precession,
S = the effect due to the solar motion,
G = the effect due to galactic rotation,
i = the residual motion of the star after removal of P, S & G (i.e. the star's space motion),
- of = the systematic error of the fundamental system (always a possibility!), and
ep = the accidental error for a particular star.

Usually, catalogued ur values are used for as many stars as possible, distributed at random
- in position and magnitude, to remove p, o, and e from discussion. Any subsequent analyses of
HF values to derive S and G may therefore contain an error cansed by P. In fact, evidence for a
residual error in precession for the FK4 system (ie. P > 0) was the primary motivation behind the
studies leading to the production of the FK5 Catalogue. ‘

A possible alternate route is to use galaxies as reference objects for the positions of stars,
which is possible for images measured on photographic plates. In this case, the proper motion of a
star, uG, measured in this fashion relative to galaxies, is given by:

HG = S+ G+ (u + og +eg), with the symbols as above.
Proper motions obtained in this fashion do not involve uncertainties in the precession corrections.
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The resulting differences in proper motion are: g — puG =P + (6F — 6G + ep— eG). Thus,
analyses of large numbers of stars measured by both techniques can be used to establish P,
provided that the terms in brackets are completely randomized.

The potential advantages of measuring stars relative to galaxies was realized in the 1950s
and 1960s, and led to the development of two observatory programs to carry these through. The
Lick Observatory program (Vasilevskis) used the 0.5-m astrograph with 6° x 6° plates, and
typically ~60 (faint) galaxies per field (to ~19th magnitude). The galaxies (which were usualty
faint and fuzzy) were used to establish the plate constants, their correct orientations, etc., with
limited success. The Pulkovo Observatory program (Fatchikin) used the normal astrograph
with 2° x 2° plates, and typically only 1 or 2 bright (nearby) galaxies (to ~9th magnitude) per field,
These galaxies were used to standardize the plates, with stars on the plates used to establish the
- reference system, plate constants, etc. The Pulkovo program results are clearly based on a
different standardization from that used in the Lick program. The Yale-Columbia program was
a southern replication of the Lick program using an 0.5-m astrograph with 6° x 6° plates, but also
with superior optics to the Lick and Carmegie astrographs.

Hanson (AJ], 80, 379, 1975: IAU Symp., 85, 71, 1980) used some of the Lick program
plates for the central (and later outer) regions of the Hyades cluster field for his Ph.D. thesis study
of the Hyades cluster distance based upon proper motions. This study has been heavily criticized
by Luyten (Publ.Univ.Minnesota, XLI, 1975), who has argued that the technique suffers from the
non-stellar nature of the galaxy images — which assures that the stars and galaxies in these fields
are measured in completely different ways. He has suggested an alternative method of tying the
measurements to quasar images, although this may not be practical for fields like the Hyades.

Uncertainties in proper motion measurements are typically on the order of +0".005 /year to
+0".010 /year, although this will change with the results from the HIPPARCOS satellite. Proper
-motion studies are also made for open clusters, where they are used to study membership
probabilities for cluster stars. In this case, membership discrimination is based upon the analysis
of proper motions relative to some inferred field star distribution.

. a . ClLusieR
te. Py = (m)x_l()()%, A / v A CLusTeER
N | N
P5 = (C + d)X 00%, F;ELB FlELb
[ s A A
b
end P = (Pg? + Pg2)il2, S Ms =

Recent variations of the general method sometimes make use of each star's position in the cluster,
in addition to its proper motion, to specify membership probability.

4, Stellar Parallaxes

_ Stellar parallax is the displacement in a star's position in the sky with respect to the stellar
background arising from the orbital motion of the Earth about the sun. Denoted by the angle =, it
is defined to be the angle subtended by 1 A.U. (the semi-major axis of the Earth's orbit) at the
distance of the star. In the skinny triangle approximation, 1 A.U. is the chord length subtended at
the star by the angle =, measured in radians. In this case, the chord length =~ the arc length
subtended at the star = d x n, where d is the distance to the star. Since = < 1" for all stars, the

equation can be written as an equality, i.e. I AU. =d .
d = 1 AU.

, once the parallax of the star is known.




In order to take advantage of trigonometric stellar parallaxes, which are measured in units of
arcseconds, it is useful to define a unit of distance which corresponds to this angle. Thus, the
parsec is defined to be the distance of an object at which 1 astronomical unit (A.U.) subtends an
angle of 1 arcsecond, '

1

. 1
ie. d (parsecs) = = (arcseconds) [d = - for short].

Since 1 radian = 206264".80625 ~ 206265", it should be clear that:
_ 1AU
1 parsec” = 17206265 = 206265 A.U.

Since 1 A.U. = 1.496 x 108 km,

1 parsec = 206265 x 1.496 x 108 km = 3.086 x 1013 km (= 3.26 light years),

In general practice, parallax images at an observatory are taken ~6 months apart during
evening and morning twilight when the program stars lie close to the meridian. This assures that
the parallax factor has been maximized (the star lies closest to the extremes of the parallactic ellipse)
while the effects of atmospheric refraction are kept to @ minimum. Image series (mainly plate
series) are continued for several years to allow removal of proper motion from the observed
displacements. Other effects, aberration, refraction, etc., are common to all stars in the same field,
and are usually negligible. However, all stars in the same field will show the effects of parallax,
depending upon how distant they are from the Earth. Since the effects of parallax for the star of
interest will also be mimicked to a certain extent by the other stars in the field, it is necessary to
take this into account when measuring the parallax of the program star. All parallactic
displacements for program stars are therefore measured with respect to the grid of suitably faint
(and, hence, distant) field stars in their vicinity. This measured parallax is referred to as the
relative parallax, n;o;. The true, or absolute, parallax of the star, nypg, must be obtained by
adding a correction for the mean parallax of the reference stars,

i.e. Tabs = Typel + AT . ‘ : .

Typical corrections depend upon the apparent brightness of the reference stars, as well as their
luminosities, and are generally of order 0".003. Such corrections are typical of the older plate
series made with refracting telescopes, where typical short exposures reached only stars of about
- 10th or 11th magnitude. Newer plate and imaging series use longer exposures, and reach fainter
reference stars, in some cases of 15th and 16th magnitude. The HIPPARCOS satellite is measuring
absolute parallaxes directly using twin skewed telescopes to measure angular displacements relative
to an absolute reference frame. It has yet to be determined how successful this program will be,

The large proportion of measured trigonometric parallaxes for stars were obtained
photographically using long focal length refractors. Modern photographic parallax programs
originated with Schlesinger in 1903 with the Yerkes 40-inch refractor. Schlesinger later started the
parallax programs at the Allegheny Observatory (1914) and at the Yale Southern Station in
Johannesburg, South Africa (1925). Colleagues of Schlesinger were responsible for continuing
the program at Yerkes, and for developing the programs at the Van Vleck and Leander McCormick
. 'Observatories. Programs at the Greenwich Observatory, Cape Observatory, and Sproul
Observatory were intiated in the same mode as Schlesinger's precepts. Van Maanen's parallax
program on the 60-inch reflector at Mount Wilson Observatory used different techniques. Since
the era of the 1960's, the U.S. Naval Observatory (USNO) has used a 60-inch reflector at
Flagstaff to take parallax plates for relatively faint stars. All of the plates in this series have been
- measured automatically using the Strand Semi-Automatic Measuring Machine (SAMM) in
Washington, D.C. A new series makes use of a CCD detector to record even fainter stars.

The standard sources of older trigonometric parallax data are Jenkins' General
Catalogue of Trigonometric Parallaxes (1952) and its Supplement (1963), published by
the Yale Observatory. These catalogues contain ~7000 stars with older measured parallaxes, all
reduced to a common system using a detailed intercomparison of internal and external Observatory
errors known as the Yale precepts. A new, updated, version of this catalogue which incorporates
newer results has been promised by Art Upgren of the Yale Observatory since ~1983, but has not
yet appeared. '
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Errors in trigonometric parallaxes arise from several different sources, including optical
instabilities in the telescopes (particularly severe for the old refractors), errors in measurement, and
the problems of establishing a proper reference frame of field stars. The main sources of error are:
(i) internal errors (hopefully random) due to all of the above problems, and (ii) external
errors (systematic) arising from various sources, such as the use of variable-width sectors at
Allegheny for measuring bright stars, and corrections from relative to absolute parailax. According
to recent studies into such problems: (i) the USNO parallaxes appear to be free of external errors,
so that their internal error estimates represent the true parallax errors, and (ii) the old Allegheny
parallaxes for bright stars contain a magnitude dependent error. Thus, ) (Allegheny) = 1)
(published) + 0".003 (7 - B), for blue magnitude B such that 3<B < 7. :

The systematic error in the Allegheny paraliaxes is unfortunate, since all other tests indicate
- that the Allegheny parallaxes have the smallest internal and external errors of all published refractor
parallaxes. The McCormick parallaxes have the largest errors, and their internal error estimates
appear to be unrelated to the true parallax errors for their stars. Cuirently, the USNO parallaxes
are the most accurate available. The total parallax errors, Ax, for trigonometric parallaxes
measured at various observatories (old and new) have been estimated to be:

Allegheny +0".009 Cambridge +0".023
McCormick 0".018 Van Vieck +0".010
Yale +0".015 Herstmonceux +0".008
Cape +0".017 Lick +0".008
Greenwich +0".018 USNO (average) +0".004
Mt. Wilson +0".020 . USNO (fine-grained emulsions)  +0".002
HIPPARCOS +0".001 USNO (CCD detector) +0".001
Since d = i— it follows that %@ = i—“ » where Ad is the uncertainty in distance, and Ax

is the uncertainty in the measured parallax. Weights are assigned to measured parallaxes from
different sources based upon their estimated errors, Thus,

: . 1
(Am)? = (Aminternal)® + (Amexternal)® , and Weight, W; =

(am)? .
The mean trigonometric parallax resulting from the combination of several estimates 18 found
using:

an> = =TV s = Ly,
W; YW

It has long been recognized that there are problems with the older parallaxes collected in the
GCTSP, since its = values are all =) reduced to the system of the Allegheny Observatory with a
correction of +0."003 added to bring them to absolute. The complicated Yale precepts end up
making all Observatory corrections negative except those for the Allegheny Observatory. Some of
the published mye; values depend on the order of publication for various imaging series. For
example, remeasured McCormick parallaxes at one period were in better agreement with Allegheny
- parallaxes published after the publication of their preliminary value than with their own original
estimate! This appears to be a case of trying to match the results from a recognized higher quality
institution. Also complicating the issue is the impossibility of retaining a refractor's imaging
- characteristics after it has been disassembled for cleaning. The advent of computers has allowed
new parallax series to be reduced using much larger reference frames (12-16 stars or so) than the
original 3-4 star reference frame used in Schlesinger's era. This has reduced the random errors in
parallax measurements considerably, although uncertain external Observatory errors remain. The
parallaxes generated using the U.S. Naval Observatory reflector are currently the best available,
since tests indicate that they seem to be free of any external error. Since they also make use of
fairly faint stars for their reference frames, their estimated internal errors of £0".002 to +0".004 are
actually smaller than the corrections to absolute. Their recent initiation of parallax measurements
using CCD detectors has already (1990) generated parallaxes with quoted uncertainties of only
10".001, which is probably comparable to those being produced by the HIPPARCOS satellite.
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Calibration of Luminosities Using Parallax Data.

A variety of problems are encountered when using parallax medsurements to calibrate the
luminosities of different objects. One of these is the tendency for any survey to sample
preferentially the most luminous objects of its type when it is limited by apparent magnitude, for
example, the determination of My for BS V stars. This is known as Malmquist bias, for which
suitable corrections exist. The presence of measuring errors in trigonometric parallaxes also makes
their use in luminosity calibrations susceptible to bias. Lutz and Kelker (PASP, 85, 573, 1973)
first drew attention to this problem by noting the difference between the observed absolute parallax
for a star, ng, and its true absolute parallax, maps. The observed parallax has an associated
uncertainty, o, such that no—c < mahs < mo+o. This means that the true distance to the star, d=,
lies somewhere in the spherical-volume shell defined by d*Ad, where d = 1/xy. For a uniform
-~ distribution of stars in space, there will be more stars lying outside this volume which are scattered
into the volume than there are stars lying inside of the volume which are scattered into it. In other
words, the distance to the observed star is statistically likely to be larger than d given by the value
of 1/m. Corrections can be estimated for the amount of this bias based upon the known values for
mo and *o. A significant improvement upon the general Lutz/Kelker corrections has been
made by Hanson (MNRAS, 186, 875, 1979). This technique makes use of proper motion data for
the sample of parallax stars in order to estimate their actual space distribution. Typical samples of
parallax stars lack the degree of completeness necessary to consider them to be drawn from a
uniformly distributed spatial selection of stars. As demonstrated by Hanson, different bias
corrections are required for non-uniform statistical samples than is the case for the uniform-density
samples considered by Lutz and Kelker. Further studies of this type of bias have been published
by Lutz (MNRAS, 189, 273, 1979; IAU Collog., 76, 41, 1983) and Smith (A&A, 188, 233,
1987). '

5. Stellar Radial Velocities

Radial velocities of stars are determined from a comparison of the observed wavelengths,
A, for their identified spectral lines with the corresponding rest wavelengths, 4o, expected for

them, i.e. Vg = ;Olo ¢ , where ¢ = the velocity of light.

Note that there is no need for relativistic corrections for most stellar velocities, although observed
velocities do need to be corrected for the rotation (0.47 km/s at the equator) and orbital motion
(29.8 kn/s) of the Earth in order that they are heliocentric (or, more properly, barycentric).

In photographic stellar spectroscopy, the stellar spectrum is exposed on a photographic .

emulsion along with a suitable bracketing emission spectrum from a comparison source, normally
an Fe arc, hollow cathode Fe comparison source, He Ar lamp, or Ne lamp, depending upon the
wavelength region of interest (Fe lines are most plentiful in the blue-green spectral region). The
rest wavelengths of these comparison lines are well known from laboratory measurements. The
velocity of the star is determined by first establishing a relationship between plate position and
wavelength from measurements of the comparison arc lines on a measuring engine, and then
comparing the similarly-measured positions of the stellar lines (converted to wavelengths) with
their rest positions using the above equation. Each spectral line measured gives an estimate of Vg
for the star, and the individual values for the "best" lines are normally averaged to obtain a more
accurate mean value. It should be obvious that the procedure is subject to some uncertaintics,
Early-type stars, for example, have very few spectral lines, and those that are found in their spectra
are often quite broad and therefore difficult to measure accurately. The prominent lines are
frequently also blends of several separate lines, and their "effective wavelengths” may need to be
calibrated using observations of stars of known velocity. The typical uncertainties in radial
velocity measurements for these stars are about +2 to +3 km/s. Late-type stars exhibit many more
spectral lines, most of which are quite sharp and easy to measure. In this case, the effects of line
blending are usually better understood. The typical uncertainties in radial velocity measurements
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for these stars are about +1 km/s or less. In general, the uncertainties in radial velocity
measurements vary as the inverse of the spectrograph dispersion, i.e. o ~ 1/dispersion.

Currently, most measurements of radial velocities for late-type stars are being done vsing
radial velocity spectrometers (or speedometers) which use a comparison star mask (typically a
spectrum of Arcturus or an artificially-generated spectrum) to scan repeatedly across the spectrum
of the program star. The stellar spectrum signal transmitted through the mask is recorded as a
function of scanning x-position of the mask using a photomultiplier tube, and the position of
minimum throughput is used to specify the star's velocity. The spectrometer is calibrated in
various ways using a reference source, the sky spectrum (during twilight hours), and the solar
spectrum reflected from planetary satellites. These devices are somewhat limited in their spectral
coverage by the mask employed (usually they are restricted to spectral types F or later), but are
- nevertheless easier to use and faster than photographic plates, reach fainter stars, and have high
internal accuracy. Typical uncertainties in single radial velocity measurements with these devices
(Griffin-type Radial Velocity Scanners, CORAVEL, etc.) are about £0.5 km/s. The measurements
for early-type stars can often be obtained using CCD detectors, with cross-correlation techniques
and synthetically-generated comparison spectra used to optimize the results.

The major difficulties encountered in determining reliable radial velocities for stars are:

(i) Variability. Stellar pulsation and orbital motion about an unseen companion produce temporal
variations in the observed radial velocities for some types of stars.

(i) Blending. Double-lined spectroscopic binaries can have blended spectral lines at some or all
phases which make it difficult to derive accurate radial velocities for the systems.

(iii) Rapid Rotation. Rapidly-rotating stars viewed nearly equator-on have very broad and diffuse
spectral lines which are extremely difficult to measure for radial velocities. Line profile fitting
software is extremely valuable in such instances.

(iv) Emigsion Lines. Emission components of spectral lines usually distort the line profiles in
such a manner as to make it impossible to obtain the true radial velocities of the stars. The
emission produced by a diffuse shell surrounding a star typically produces a P Cygni-type of
profile consisting of a sharp blue absorption feature on an broad emission line. The determination
of realistic systemic velocities for such stars is an ongoing problem in astronomy.

In general, the accuracy of radial velocity measurements depends mainly upon the
spectroscopic dispersion used to obatin the stellar spectra. The greater the dispersion (10 A/mm
rather than 50 A/mm), the more accurate the resulting VR. Spectrographs mounted on telescopes
are also susceptible to problems due to flexure, bad optics, and thermal effects, which can produce
systematic effects on the derived radial velocities. Radial velocity spectrometers are therefore
normally mounted at the Coudé focus of telescopes, where such problems do not arise. This is
why they are recognized to produce more reliable results than those obtained from Cassegrain-
mounted spectrographs.

6. Spectral Classification

Stellar spectra were observed and recorded long before the field of spectroscopy had fully
developed. Prior to the laboratory identification of spectral lines at specific wavelengths with
certain elements, some method of classifying stellar spectra was desirable, The hydrogen Balmer
line sequence was recognized from the earliest such studies, and so the earliest classification
scheme of any duration was a Harvard scheme based upon photographically-recorded blue-green
spectra in the A3900--5000A region which designated stars according to a letter sequence A, B, C,
D.... based upon the increasing degree of complexity of the spectrum relative to the simple Balmer
- line spectrum (type A being the least complicated). Pickering, at the Harvard Observatory, was
able to revise the scheme in 1890 based upon the growing knowledge of atomic physics, which
indicated both the element identification and degree of excitation or jonization for specific spectral

-lines. From this knowledge it became clear that the original scheme needed revision in order to
eliminate certain redundant types as well as to order the types in a logical sequence. The revised
sequence of types O, B, A, F, G, K, and M was a sequence in order of decreasing surface
temperature, and has remained in use ever since. :




The arrangement of spectral types in the Harvard scheme was subdivided numerically into
finer temperature subtypes, such as B0, B2, B3, B5...A0, A2, A3, A5..etc. Note that not all
spectral subtypes were used in this scheme; types B1 and B4, among others, simply did not exist.
The O-type stars were subdivided differently, i.e. Oa, Ob, Oc, Od, and Oe, in order to avoid
confusion with an alternate classification scheme of that era. Special designations were also
developed for stars having peculiar spectral properties, namely:

¢ = narrow lines (typical of supergiant stars)

g = giant spectrum

d = dwarf (main-sequence) spectrum

pec = peculiar spectrum (also abbreviated to p)

k = interstellar (sharp) Ca IT K-line present

pq = nova-like spectram (broad emission blends) .

€ = emission lines present (the letter "f" was used to designate emission for O stars)

ev = variable emission

v = variable spectrum (as, for example, in a pulsating star)

n = wide and diffuse (nebulous) spectral lines (now recognized as due to rapid rotation)

nn = very diffuse spectral lines (for very rapid rotation)

s = sharp lines (generally due to a very low projected rotational velocity)

The MK classification scheme is a refinement to the original Harvard system of stellar
classification which includes a designation for the star's luminosity as well as its temperature. This
scheme went through an initial stage with a paper by Morgan, Keenan, and Kellerman (called the
MKK scheme), but was later revised by Morgan and Keenan to the present MK scheme. Later
modifications include more recent MK dagger typers, denoted MK+, and spectral subtypes and
designations added by Nolan Walborn, a student of Morgan's (his last!).

The MK scheme includes the basic temperature subtypes of the Harvard scheme, with
additions to fill out the temperature subclasses that can be distinguished at the dispersion (~100
A/mm) used for MK classification, e.g. B0, B0.5, B1,... B9, B9.5, AQ, Al...etc. The O-type
stars were reclassified numerically, and the original temperature ordering went 06, 07, 08, 09,
09.5, BO. Luminosity classes were added on the basis of the Saha ionization law, although the
scheme was originally established as an empirical system based upon the observable spectral
features of similar-temperature stars having known absolute magnitudes (stars with measurable
parallaxes and stars in clusters and associations). In all cases, temperature subtypes and
luminosity classes are established on the basis of specific line ratios which can be determined from
stellar spectra. The luminosity types used are:

Ia = luminous supergiants (class 0 is used for supersupergiants = hypergiants)

Ib = less luminous supergiants :

I = bright giants

Il = giants

IV = subgiants _

V = dwarfs (main-sequence stars)

Interpolated luminosity classes are also possible, such as IV-V, II-ITI, etc. Provisions were also
made in the original scheme for subdwarfs (= VI) and white dwarfs (= VIII), but these classes
never became popular. _

Subdwarfs are now recognized as metal-poor stars which are difficult to classify in any
case, and white dwarfs are degenerate stars (D) which have since been given their own

- claasification scheme for two recognized sequences — the hydrogen sequence (DO = He Il strong,
He I or H present, DA = only Balmer lines, no He I or metals present, and DA-F) and the helium-
- carbon (He-C) sequence (DC = continuous spectrum, no lines deeper than 5%, DB = He I lines,
no H or metals present, DZ = metal lines only, no H or He, and DQ = carbon features, molecular
~or atomic). No luminosity classification is possible for white dwarfs which all have similar surface
gravities (log g = 8), but their surface temperatures vary from ~5000°K to ~100,000°K, which is
specified in a temperature index = 10 x e = 50,400/ Togr fe.g. Tegr = 15,000°K, index = 3, Tegr <
3500°K, index = 9 (can be increased if lots of cool degenerates are found), Tegr = 30,000 °K, index
=1, and Tegr > 100,000°K, index = (]. Additional designations are used for: P = polarized
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magnetic stars, H = magnetic stars with no polarization, Z = peculiar or unclassifiable spectra, and
V = optional for VV Ceti variables (pulsating DA’s). In this new scheme (Sion et al. 1983, ApJ,
269, 253), D = degenerate star, A,B,C,0,Z & Q = dominant spectroscopic type, A,B,C,0,Z & Q
= secondary spectroscopic type (if needed), and 0,1,2,3,...9 = number designating Tesr (from
colour). The complete designations for white dwarfs can therefore be relatively simple or
moderately complex, ¢.g. DAI, DB3, DBZ4, DXH3, DOZ1.

The original MK scheme has been improved upon by the work of Morgan's students, such
as Nolan Walbarn, and by students of their students (e.g. Richard Gray). The result has been the
extension of the temperature sequence for O stars to subtypes O3, O4, and OS5, and a luminosity
classification for O-type stars which is based upon their degree of "Of-ness", 1.e. type f are class I,
type (f) are class III, and type ((f)) are classes IV and V. Abt has done a lot of work classifying
* the Ap stars (A stars showing anomalous intensities of Mg, Si, Bu, and the rare earths Sr, Cr, etc.)
and Am stars (metallic line strong for the strength of Ca K), and these stars are now recognized as
being representative of the need for a third parameter in the system, such as chemical composition,

Spectral classification has always been recognized as an essential means of identifying
important properties of stars such as: (i) temperature, (ii) Iuminosity, (iii) chemical composition,
(iv) rotation rate, (v) companions, etc. Spectral classification itself is typically performed with the
aid of photographic spectrograms (originally prism plates were used, but now grating plates are
used exclusively) of stars. Classical MK dispersion is around 100-120 A/mm, although some
classifications are done at dispersions near ~60 A/mm. The classification of hot (early-type) stars
is done exclusively using blue spectra covering the interval 3900-4900 A, but redder spectral
regions are often used in the classification of red M-type stars and other cool (late-type) objects.
Standard practice is to widen the spectra by ~1/3 of the separation of Hy and H3. Since this
corresponds to 4340A — 4101A = 2394, at a dispersion of ~100 A/mm the required widening is
~1/3 x (239/100) mm = 0.8 mm.

The characteristics of stars of different temperature and luminosity classes can be explained
with atomic physics using the Boltzmann and Saha equations. These specify the energy level
populations for atoms and ions, as well as the population of different ionization states for different
species of the same element. The principal temperature sensitive criteria are:

O stars: the He II/He I ratio is extremely sensitive to T.

B stars: the ratios of Si III/Si IV and Si II/He I are quite sensitive to T. He I lines peak in
strength at B2-B3, the H lines strengthen towards AD, as do Mg I 24481 and Ca IT K 23933 later
than B5.

A stars: all metal lines increase in strength and H lines decrease in strength as T decreases.
Balmer lines reach maximum strength at A0-A2,

F stars: the G band (of CH) increases in strength, the H lines decrease in strength, and Ca II
H&K increase in strength as T decreases.

G stars: Ca Il H&K, the G band, Ca I A4226, etc. all increase in strength as T decreases.

K stars: Ca I increases in strength with decreasing T, and the lines of Fe I reach maximum
strength. _ _

- Mstars: molecular bands (such as Ti0) overwhelm the blue part of the spectrum.

The anomalies are of different types, The most important represent stars in which the
products of nuclear energy generation at the stellar core are seen at the stellar surface. These
include the Wolf-Rayet stars (WR), which were first discovered by Wolf and Rayet in 1867.
~In these stars the products of H-burning in the CNO cycle (excess N and He — the WN stars),

He-burning (excess C and He — the WC stars), and C-buming (excess 0 — the WO stars) are
seen at the surface of OB stars (of ~20 Mg) which apparently have very high mass loss rates, or to
-a minor degree in the spectra of the central stars of some planetary nebulae, which are evolved
Population II or old disk stars (of ~1 Mg) in which the outer layers have been stripped away by
envelope helium flash events prior to the planetary nebula stage (all such objects are WC or W0
types). ' _

Also exhibiting compositional anomalies are carbon stars, which are late-type stars
exhibiting excessive amounts of C in their spectra. The older types R, N, the carbon star
equivalents of types K and M have now been replaced by the newer designation C#.#, where the
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first number is the temperature type and the second is the abundance excess e.g. C1,0; C7.4; ete.
(see Keenan's chapter in Basic Astronomical Data). These stars are all giants which have lost their
outer layers, or stars in which deep convective eddies have dredged up nuclear-processed material -

-from their cores. The S stars are equivalent to M-type stars, but the monoxides Ti0, V0, Sc0,
AlQ, etc. of light metals have been replaced by oxides of heavy metals, e.g. ZrQ, La0, YO, etc.
Comparable objects are the barium stars. The $ stars represent objects in which nuclear-processed
material by the S (slow) process has been brought to the stellar surface. They therefore represent
advanced evolutionary stages of low mass stars.

The peculiar A stars, designated Ap, are stars which have anomalously intense lines of
rare earth elements (La, Ce, Sm, Eu, Yb, etc.) and Mn, S8i, Cr, and Sr, of differing intensity.
They are subdivided into different subtypes (Mn, Si, Cr-Eu, Sr groups) on the basis of which
spectral lines dominate. These represent different temperature subclasses in the B5 to FO spectral
interval. They appear to be slowly-rotating stars in which gravitational settling and magnetic
effects have stratified and enhanced the surface compositions of some elements in the outer layers.
The metallic-lined stars, designated Am, are otherwise normal A dwarfs in which the metallic
lines appear anomalously strong in comparison with the lines of Ca I H&K. Generally of spectral
types Al-A6 on the basis of their H&K lines, their metallic line strengths are typically those of
cooler objects. The present notation is to estimate their temperature class using the strength of Ca
IT H&K, with a separate designation preceded by "m" to denote their temperature class based on
the metal line strengths, e.g. AlmAS6,

Low metallicity can make normal spectral classification particularly difficult, as is the case
for Population I stars of all metallicities (see Keenan's chapter in Basic Astronomical Data). The
need for a third dimension (metallicity) in the classification of these stars has made reliAble
classification of such stars a daunting task.

Luminosity Effects.
' Since L ~ R?T4, then L ~ R2 for T constant. The surface gravity, g = GM

RZ
vl
GMT* ~ % for T constant,

L ~

Even in the extreme case of M-type stars, g changes are greater than mass differences for stars of
similar spectral type, and act to strengthen the L ratio between stars of different luminosity classes.
A typical M supergiant has a mass of ~10-25 Mg and g = 1-10, while a typical M dwarf as a mass
of ~0.1 Mg and g = 10°-10s, '
Lisupergiant) - (10-25) (104-105) 3 i

Ldwarh ~ (0.0 * (i=igy =~ 10°orso.
Typically, log g ~ 0-1 for extreme supergiants, =~ 4-5 for dwarfs (it is 4.44 for the sun), and ~ 8§
for white dwarfs. :

Hydrogen Lines. -
: The strength of the hydrogen lines in stellar spectra is governed by the abundance of
hydrogen, by the effects of Stark broadening on the H.spectral lines (caused by the charge effects
of passing electrons), and by the continuous opacity source in the stellar atmosphere. The normal
method of expressing line strength is to write it as:
oy
, LY
where /) is the line opacity function, and x; is the continuous opacity function. For hydrogen, one
. can express the line opacity function in fairly simple terms:
h(H) = f(,,T) Ng N, where Ny is the number of hydrogen atoms, Ng is the number of
electrons, and f(A,T) is the function goveming the profile of the hydrogen line.
' For hot O-type stars, the dominant continuous opacity source in stellar atmospheres is

electron scattering, for which x;, ~ Ne. In this situation,
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_ f,T) Ng N

; ; : : .
n = ;}x Ne ~ Np , which is a dependence independent of gravity (which

governs Ng). Hot O-type stars are therefore not expected to exhibit much gravity (or luminosity)
dependence in their hydrogen lines, a prediction well substantiated by observations of stellar
spectra, '

For B and A-type stars, the dominant continuous opacity source in stellar atmospheres is
atomic hydrogen, for which %, ~ Npy. In this situation,

I sy .
= Ki; = f(—;”%lgﬁ ~ Ne , which is a dependence very dependent on gravity

(which governs Ng). The B and A-type stars are therefore expected to exhibit quite dramatic
© variations in the strengths of their hydrogen lines as a function of surface gravity, or luminosity
class, which is also a prediction well substantiated by observation.

For cool F, G, and K-type stars, the dominant continuous opacity source in stellar
atmospheres is the negative hydrogen ion (H-), for which i, ~ NyNe. In this situation,

[y f(A,T) Ng N, o . .

n. = e = Ng Ne ~ f(,T) , which is a dependence independent of gravity,
similar to what was predicted for the hot O-type stars. Cool F, G, and K-type stars are therefore
not expected to exhibit much gravity (or luminosity) dependence in their hydrogen lines, and this
prediction is likewise well substantiated by observation.

The Balmer lines of hydrogen so prominent in stellar spectra are produced by hydrogen
atoms in the n = 2 level (the ground state is n = 1), and this abundance is governed by the
temperature T. As T increases, the population of the n = 2 level also increases, according to the
predictions of the Boltzmann equation. However, as T increases, increasing ionization predicted
by the Saha equation leads to a gradual depletion in the number of neutral atoms capable of
producing Balmer lines. For hydrogen, Ny = Nn + Nj [there are no other states for the singly
charged H nucleus], where Ny is the total number of hydrogen atoms, Ny, is the total number of
neutral hydrogen atoms, and N; is the total number of hydrogen ions. The strength of the
hydrogen Balmer lines can be determined from the ratio of the number of atoms N, inthe n =2
level to the total number of hydrogen atoms, i.c. by: '

N’) N2 Nn

Ng = Np + N

Np

- The top term of this relation can be calculated from the Boltzmann equation, and the bottom term
from the Saha equation, and both combined lead to a function which reaches a maximum at T =~
10,000°K. The hydrogen Balmer lines in stellar spectra are observed to reach their greatest
strength for dwarf stars of spectral type A0. This implies that the effective temperature Tor of a

typical AQ 'V class star must be very close to 10,000°K, which is one of many conclusions used to

- establish a correspondence between spectral type and Tegr for normal stars,

Gravity Dependence of Metal Line Ratios.

- In standard MK spectral classification, it is line ratios, rather than just line strengths, which
- are important. The method of examining this type of dependence is to consider the following
different cases: '
Case 1. The lines of an element in one ionization state, where most of the atoms of that element
are in the next higher ionization state, ‘
“Case 2. The lines of an element in one ionization state, where most of the atoms of that element
are in the same ionization state, and , '
Case 3. The lines of an element in one ionization state, where most of the atoms of that element
are in the next lower ionization state. '
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Ionic broadening plays only a minor role in the strength of metal lines; the strength of most
is governed primarily by the abundance of the species responsible for the lines. Recall the simple
form of the Saha equation:

Nn+1
[Nn :,Pe = (I)(T).
For Case 1, the line opacity coefficient is 75 ~ N®, while the abundance of the element can be
approximated by N = No+1, '

) N+l P. N Pe
h, o~ Nn = ~ ~ .

- AN =T ~em P -
For Case 2, the line opacity coefficient is f, ~ N2 = N (the abundance of the element).
+ For Case 3, the line opacity coefficient is 3, ~ N"+1, while the abundance of the element can be
approximated by N = Nn,

Nto(T)  No(T) !

b~ No+l = —
Pe Pe Pe -
Recall that, for early-type stars, 1, ~ Ng (the abundance of hydrogen).
I

N = o Pe (for Case 1),
~ constant terms (for Case 2), and
~ % (for Case 3) .
[

The obvious conclusion from this analysis is that luminosity-sensitive (P.—dependent) metal lines
for early-type stars are those arising from elements in ionization states other than those where the
element is most abundant. Good examples are the O 11 lines and N II (e.g. 23995)lines in early B
stars, where most of the species are O III and N I11, respectively.

For late-type stars, 1) ~ Ny Ng =~ Ny P, (the abundance of H- ions depends upon both Ny
and Ng). '

~ constant terms (for Case 1) ,

K
~ PL (for Case 2) , and
e

- 151—2 (for Case 3) .
[+

In this case, it appears that highly-ionized species are very sensitive luminosity indicators in late-
type stars, where most of the species is either neutral or in a lower ionization state. Some specific
examples can be found in the spectra of late-type stars. In F, G, and K-type stars, for instance, the
lines of Fe T (neutral iron, e.g. 24045) are not gravity dependent, whereas the lines of Fe 11 (singly
“ionized iron, e.g. 14233) are gravity dependent. In G and K-type stars, the lines of Sr II (singly
- lonized strontium, e.g. A4213) are also gravity dependent. Actually, the specific luminosity
indicators in MK classification are kne ratios. Thus, for late-type stars, the ratio of line strengths

for-m——fzz‘% 18 an cxgellent indicator of luminosity class for these stars (most Sr and Fe is

neutral), and is relatively independent of any variations in the abundance of strontium or iron.

: The main problems with spectral classification are inexperience and the use of observational
data of questionable quality. Novices invariably attempt to match the overall appearance of stellar
-spectra with those of established spectroscopic standards, and it takes some practice to develop the
techniques of using observable line ratios to classify stellar spectra. The best spectral classifiers
were invariably taught by Morgan or his students. - Automated techniques are somewhat poorly
designed for the examination of spectral line ratios in comparison with eye estimates, although
these techniques are gradually being introduced successfully. High signal-to-noise ratio spectra (as

obtained, for example, using CCD' detectors) are also highly desirable.
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7. Photometric Systems

The primary purpose of photometry is to obtain information equivalent to spectroscopic
-data in a smaller amount of observing time. It is also a highly efficient method of studying variable
stars. Stellar continua vary with spectral type, and different photometric systems are designed to
sample selected portions of these continua which are of use either for the equivalent of spectral
classification or for estimating third dimensions for stars, e.g. metallicity, etc. Basically any
photometric system must be capable of determining a star's spectral class, corrected for interstellar
extinction, without serious problems due to luminosity differences, or population effects. Systems
are classified on the basis of the widths of the wavelength-bands used to define them. Broad band
systems make use of passbands which are anywhere from 300 to 1000A wide (e.g. the UBV
~ system), intermediate band systems make use of passbands which are anywhere from 100 to 300A
wide (e.g. the Stromgren uvby system), and narrow band systems make use of passbands which
are less than 100A wide (e.g. HB photometry). Systems are usually classified on the basis of the
narrowest passband used, although this convention varies, e.g. Strémgren photometry (uvby) is
still intermediate band photometry, even though it is normally done in conjunction with Hp
photometry.

For early-type stars, the Balmer jump (A3647) and Paschen jump (A8206) result from the
opacity due to neutral H, and these features are modified by electron scattering in hot O-type stars
and H- (negative hydrogen ion) opacity in cool G and K-type stars. The Balmer jump is very
sensitive to both temperature and gravity, and so many photometric systems employ filter sets
which attempt to isolate the stellar continuum on either side of the discontinuity.

Johnson's UBV System.
The UBV system is designed to give magnitudes which are similar to those on the old

International photographic and photovisual system, with a magnitude added on the short
wavelength side of the Balmer discontinuity in order to give luminosity discrimination,

Filter  JAeff A} (half-width)

U 3500A 700A (faintest magnitude)
B 4350A 970A (brightest magnitude)
% 5550A 850A

The UBV system was defined by Johnson using: (i) an RCA 1P21 photomultiplier with U
(Corning no. 9863 filter), B (Corning no. 5030 filter + 2 mm Schott GG13 filter), and V (Corning
no. 3384 filter) standard filter sets, (ii) a reflecting telescope with aluminized mirrors, (iii) standard
reduction procedures (later), and (iv) an altitude for observations of ~7000 feet. The standard
colour indices in this system were defined to be U--B = B~V = 0.00 for unreddened AO V stars in
the North Polar Sequence. The major problem with UBV photometry has always been that there is
a small red leak in the U filter which can result in contamination by red light from stars for later

- production runs of the RCA 1P21. Also, transformation difficulties are notorious for other

photometer types e.g. EMI tubes with their greater red-light sensitivity. The system is therefore
not easily adapted to other photometers or filter sets, particularly since the rule of reducing (U-B)
colours by ignoring second order terms is often misunderstood.” The effective wavelengths of the
filters are determined both by the shape of the incident stellar continuum and the amount of
interstellar and atmospheric reddening, which theorists find difficult to model. The redward shift
in Aegr caused by atmospheric extinction or large reddening is less of a problem for interference
filters with their square wavelength sensitivity patterns, so other systems are often preferred by
many astronomers. UBYV observations can also be difficult to reduce (and interpret) when they are
made at non-standard altitudes, such as sea level or the high altitudes of Mauna Kea. Tt should also
be kept in mind that UBV photometry is not defined for refracting telescopes, or for reflectors with
deteriorated aluminized mirrors. Transformation problems often appear most significantly in U-B
colours, which are sensitive to how the Balmer discontinuity is sampled. Finally, corrections for
dead-time are always a problem for bright stars with photon-counting techniques.
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Extinction Corrections.

In order to properly understand an important
source of random and systematic error in stellar
-photometry, it is informative to review how
astronomers correct their observations for
atmospheric extinction. In the simple case where
observations are made at small zenith distances, z,
one can approximate the atmosphere using a flat slab
model. In this case, the air mass, X, along the line-
of-sight to a star at zenith distance z is given by (see

figure):
. XO

X =
COS Z
where ¢ is the observer's latitude, § is the declination of the star, and H is the hour angle of the star
= sidereal time ~ a (the right ascension of the star). This simple formula breaks down for large air
masses, X, due to the Earth’s curvature and the initial approximations.

= Xosecz = Xq [sin ¢ sin 8 + cos ¢ cos § cos H],

e.g. z ‘ sec z X
¥ 1.000 1,000
e 1.155 1.154
& 2.000 1.995
0° 2924 2.904
79° " 5241 5.120

Hardie, in Astronomical Techniques, p.178, gives a complicated general formula for air mass:
X = sec z—0.0018167 (sec z — 1) — etc., with terms in (sec z—1)2 and (sec z— 1)3 .
Young, in Methods in Experimental Physics, 12A, 123, 1974, gives a simpler and more
accurate formula, namely:
X = secz (1 -0.0012 tan2z) . Ka Ka
Air molecules decrease the light intensity of a star by the amount dI = -Igdx, where Tdx
is the fraction of light lost through extinction over the distance dx, and ﬁ%& is the absorption
coefficient per unit distance at wavelength .

da , magnitude outside a.'i'm.o;p}mw,
L, ey 3
I X y 3

and f% e T’%SX . HL"@: v ‘/Obs'uwa'i'naml
b0 ATV .,  data

no legl-logTe = 45X, o - -

Coor logI = log ;- S T ! L :
10,

Magnitudes vary as —2.5 16g [ , ] o p 2 3
m:m0+2.51fX’=m0+k){§(.- X -

The extinction coefficient k varies nightly due to changes in moisture, air pressure, dust content of
the air, etc. Extinction is largest in the ultraviolet region and smallest in the infrared. Therefore, k-
values increase exponentially with decreasing wavelength.

K
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Mean values for the extinction coefficients will generally apply to a particular observing run at a
good site. However, the best determinations of k require a range of 2 or 3 in X, which means that
standard stars must be observed to within only ~15° of the horizon. Photometer drift (due to
changing sensitivity of the photocathode) is a moderately common problem in actual observations,
and results in extinction coefficients which change during the course of a night's observations,

| g

“ 18 14 *
Model loops for B {exiinetion 0.27) for instrumental zero-point L&
drifts 0.005, 9.01, 0.02. The centre line is for constant extinetion wih
ne drift.

One must be careful following extinction stars since they can give anamalously different k-values
on different sides of the meridian due to changing phototube sensitivity.

There are also problems with the reduction of UBV photometry according to the outline
provided by Johnson. Since the U-fiiter includes the Balmer discontinuity, the derived value of
kyg =k'u-p + k"y_p will depend upon the spectral types of the standard stars (see diagram).
Thus, a combination of O and M standards will vield a negative second order term for ky_p (i.e.
k"u_p < 0) while a combination of A and K standards will yield a positive second order term for
ky_B (i.e. k"u_g > 0). Johnson decided that the best solution was simply to ignore the second
order extinction coefficient for ky_g (i.e. k"y_p =0, by definition) and to put up with larger-than-
usual errors in photoelectric U-B values. The result is that typical uncertainties in U--B are of
order £0.02, while those in V and B-V are usually better than.+ 0.01, Popper (PASP, 94, 204,
1982} provides a very readable article on the many overlooked problems of UBV photometry.

Resuits for the UBV System: -
The system was calibrated and the colours normalized relative to stars in the North Polar

Sequence, so that U-B = B~V = 0.00 for AQ V stars. The nature of the system is such that the B
and V filters are located on the Paschen continuum of stellar spectra, while the U filter straddles the
Balmer discontinuity at 23647A. The slope of the Paschen continuum in stars is reasonably similar
to the slope of a black body continuum, and is therefore temperature sensitive, making B-V very
useful for measuring stellar temperatures. The Balmer discontinuity, particularly for stars hotter
than the sun, is gravity (or luminesity) sensitive, so that U-B is useful as a luminosity indicator.
For cool stars, both B~V and U--B are sensitive to chemical composition differences, since the U
and B bands, in particular, are susceptible to the effects of line blocking and line blanketing on
stellar continua (see diagram below). Photometric ultraviolet excesses measured relative to
standard metallicity colours are therefore useful for segregating stars according to their metallicity.
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The diagram on the previous page is the standard two-colour (or colour-colour) diagram for
the UBV system. Plotted here are the observed intrinsic relation for main-sequence stars of the
indicated spectral types, the intrinsic locus for black bodies radiating at temperatures of 4000°K,
5000°K, 6000°K, 8000°K, etc., and the general direction imposed upon star colours due to the
effects of interstellar reddening. The primary opacity source in the atmospheres of B and A-type
stars is atomic hydrogen, which makes its presence obvious in the flux distributions of such stars
with discrete discontinuities in the stellar continua at A912A (the Lyman discontinuity, due to
ionization from the n = 1 level of hydrogen), A3647A (the Balmer discontinuity, due to ionization
of hydrogen atoms from the n = 2 level), and A8206A (the Paschen discontinuity, due to ionization
from the n = 3 level of hydrogen). The primary opacity source in the atmospheres of F, G, and K-
type stars is the negative hydrogen ion (H-), which does not produce any discrete breaks in the
- flux output as a function of wavelength. For the very hottest O-type stars, the primary opacity
source is scattering by free electrons, which also does not produce any breaks in the stellar
continua. The intrinsic relation for main-sequence stars in the two-colour diagram therefore falls
close to the black body curve for very hot stars and stars of solar temperature. It deviates
noticeably from the black body curve for B and A-type stars due to the atomic hydrogen opacity
source, and for K and M-type stars mainly due to the effects that the many spectral lines in the blue
region of their spectra have on blocking the stellar flux in the B and U photometric bands, In the
very cool M-type stars, in particular, molecular bands appear in the spectra which can make the
UBYV photometric indices virtually useless as temperature indicators for these stars,

Other Broad Band Systems:

Several other broad band systems have been established over the years, generally with
some specific purpose in mind. Some of these are listed below, and many others exist:
UBVRI. This extension of standard UBV photometry to red wavelengths has different effective
wavelength filters for either Johnson system or Kron-Cousins system RI photometry.
UBVRIJKLMNO. This system was designed for the study of interstellar reddening, and makes
use of a lead sulfide photocell with special filters to take advantage of spectral windows in the
infrared. The particulars of this system are:

Band Aefp(pam ) 1/ st
U 0.36 2.78
B 044 2.27
v 0.55 1.82
R (.70 1.43
I 0.88 1.14
) 1.25 0.80
K 2.2 0.45
L 3.4 0.29
M 5.0 0.20
N 10.2 0.10
O ~11.5 0.09

UVBGRI. This is the Lick six-colour system of Kron and Stebbins, which has found
considerable use in the study of Cepheid reddenings. :

Washington System. The broad band Washington sysiem was established at the University of
Washington for detailed studies of G and K giants (Canterna, AJ, 81, 228, 1976), and has found
considerable use in the study of Cepheid reddenings (Harris, AJ, 86, 707 & 719, 1981). The
filters were chosen to sample both the stellar continaum (2 T index once corrected for reddening)
- and to provide both metallicity (G-band sensitive) and laminosity (CN sensitive) indices.

Filter Aeff Ak (half-width)
c 3910A 1100A  (Corning CS-7-59 + CuSOy) |
M 5085A 1050A  (Schott GG 455 + Corning CS-4-96)
T; - 6330A 800A  (Schott BG 38 + Schott OG 590)

T, 7885A 1400A  (Schott RGN 9)
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UGR (or RGU). This is a photographic system deisgned by Becker for the study of open
clusters and galactic structure. The R filter matches the E-plates of the Palomar Observatory Sky
Survey, and the G filter is a close match to the sensitivity of the POSS O-plates. The system finds
little use outside of Switzerland.

Intermediate Band Systems:

The characterization of various photometric systems as broad band, intermediate band, or
narrow band systems is specified by the half widths of the filters which define the system, with the
smallest value usually taking precedent. In this manner, broad band systems are defined by filters
with half-widths of the order of 500A to 1000A, intermediate band systems are defined by filters
with half-widths of 100A to 500A, and narrow band systems are defined by filters with half-
widths of less than 100A. The most important intermediate band systems are listed below:

Walvaren System.

This system, established by Walraven in the Netherlands, uses a quartz prism spectrograph
and quartz filters (except for the L filter which is isolated by Schott UG2 (2mm) plus Schott WG2
(2 mm) glass filters) in combination with a 1P21 photomuitiplier tube to isolate the spectral bands,
which, by definition, generally have sharp wavelength cutoffs. The system is used extensively by
Dutch astronomers, and has proven to be useful for Cepheid studies (Pel, Lub), and some galactic
astronomy (recent cluster studies). The magnitudes are defined by W = log;g I, rather than the
usual method of W = -2.5 log;o Iy, and this makes comparisons with other systems rather
difficult. The system also has a different zero-point from the UBV system. The nature of
interstellar reddening in this system has not been studied in detail, although the filters are not
susceptible to the same problems as are the broad band UBV filters. Unfortunately, narrower
filters place brighter limits on useful photometric studies which can be accomplished with this
equipment, so standard UBV photometry still advantageous for many types of observational
studies,

Filter Aeff A (half-width)
W . 3270A 150A
U 3670A 260A
L 3900A ' 300A
B 42954 420A
\Y% 5450A 850A

Stromgren System (Four Colour System).

As a consequence of possible ambiguities in the interpretation of intrinsic stellar parameters
which arise when using UBV colours, Bengt Strémgren developed an intermediate band system
which also uses the RCA 1P21 photomultiplier, but with narrow passband interference filters to
isolate all but the ultraviolet wavelength bands (a glass filter was used for the latter). The
parameters of the wavelength bands for the uvby, or Strémgren, system are:

Filter Aeft A% (half-width)
u (ultraviolet) 3500A 380A
v (violet) 4100A 200A
b (blue) 4700A - 100A
y (yellow) 5500A 200A

Since the u-filter in the Strémgren system does not extend to the wavelength cutoff for the
Earth's atmosphere near 30004, it proves to be less susceptible to the problems generated by the
U-filter in the Johnson system (these were mainly problems in obtaining reliable observations —

Johnson specifies a reflecting telescope with aluminized mirrors and an observing altitude of 7000
~ feet above sea level for UBV photometry). The use of interference filters also reduces some of the
problems generated by the effects of atmospheric-and interstellar extinction on the effective
wavelengths for the various filters. ‘
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The effective wavelengths for the Strémgren system were purposely selected to provide as
much information of astrophysical interest for stars as possible. Thus, the b and y bands are
located in relatively line-free portions of the Paschen continuum, so that the b-y index is
- temperature sensitive. The v band is located on the long wavelength side of the Balmer
discontinuity, where the overlapping of lines from metallic atoms and ions, as well as from
hydrogen Balmer series members, is noticeable, particularly for A, F, G, and K-type stars.
Stromgren designed a specific index to measure the depression of the stellar continuum in the v
band. This is called:

my = (v-b) - (b-y), and is known as the "metallicity” index (m for metallicity).

The v band is located on the short wavelength side of the Balmer discontinuity, and can be
combined with the v and b filters to give an index which is sensitive to the size of the Balmer jump,
which is gravity dependent for hot O, B, and A-type stars. Strémgren designed another index to
measure the size of the Balmer discontinuity from the depression of the stellar continuum in the u
band. This is called:

€1 = {u-v) - (v=b), and is known as the gravity index (¢ for the supergiant ¢
designation). This index has very similar properties to the U-B index in the Johnson System, but
is not uniquely related to it. The Stromgren system therefore has several colour-colour diagrams of
interest. The (¢1, b-y) diagram is similar to the UBV two-colour diagram, while the (m;, b—y)
diagram is fairly unique. The various Stromgren indices are designed to give more precise
information about intrinsic stellar parameters than is possible using UBV photometry. However, it
is not totally clear that they are suitable for this task.

Reddening-free indices can be formed, once the reddening relations are known:

e.g. [e1] = ¢;-0.20 (b-y), since E(¢;) = 0.20 E(b—y), typically.

[m;] = m; + 0.35 (b—y), since E(m;) = -0.35 E(b—y) [but note that a factor of 0.18 was
adopted initially by Strémgren!]. '

, See the series of calibration papers by Crawford (AJ, 80, 955, 1975 — F-star calibration;
Al, 83, 48, 1978 — B-star calibration; AJ, 84, 1858, 1979 - A-star calibration) for more details.

DDO Five-Colour System.

The DDO photometric system was introduced by McClure and van den Bergh (AJ, 73,
313, 1968) in an effort to supplement UBV photoelectric photometry to obtain more information
on temperatures, luminosities, metallicities, etc. for late-type stars. The passbands are defined by
the following filter sets, in conjunction with a standard 1P21 photoelectric photometer:

Filter heff Ak (half-width)
35 3460A 360A  (Schott UG11 Filter + WG3)
38 3800A " 172A  (Thin Films Filter)
41 4166A 83A  (Baird Atomic Filter)
42 4257A 73A  (Baird Atomic Filter)
45 4517A 76A  (Baird Atomic Filter)

The system is actually a narrow band system, but is usually referred to as intermediate band. It
proves to be extremely useful for the study of late-type stars since:
C(41-42) brackets the CN break at 44216A and blueward, so is luminosity sensitive.
C(42-45) brackets and measures the CH absorption in the G-band at A43004A, so is quite
- sensitive to temperature.
C(38-41) measures the line blanketing in late-type stars.
C(35-38) measures the Balmer jump, so is sensitive to temperature and gravity.

- Narrow Band Systems:

Narrow band photometric systems are so-named because they employ very narrow
- passband filters to isolate specific wavelength regions of interest. The most frequently cited is the
the HB photometric system, which uses two narrow-band filters (a wide filter of half-width
150A and a narrow filter of half-width 30A — see Crawford & Mander, AJ, 71, 114, 1966) to
provide an index which measures the strength of the hydrogen Balmer HB line at 248614 in stellar
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spectra. This feature proves to be gravity sensitive for stars hotter than spectral type ~A2, and
temperature sensitive for cooler stars. It is defined by:

B = 2.5 log I{wide HB filter) — 2.5 log I(narrow Hp filter).
Since both filters are centred on the same wavelength, the index is insensitive to both atmospheric
and interstellar reddening (i.e. observations can be made on partly cloudy nightsf). Although
defined to be insensitive to extinction, practical problems arise with actual filter sets in which the
effective wavelengths of the two filters prove not to be identical. As discussed by Kilkenny (AJ,
80, 134. 1975), Muzzio (AJ, 83, 1643, 1978) and Schmidt & Taylor (AJ, 83, 1192, 1979),
colour terms miay be necessary in the reduction of Hp photometry when this problem arises. The
system is almost always used in conjunction with intermediate band Strémgren system
photometry, and often results in the combined observations being erroneously referred to as
"narrow band" data.

A narrow band K-line photometric system has been employed by Heary (Ap], 152,
L87, 1968; ApJS, 18, 47, 1969) to proyide a measure of the Fraunhofer K-line strength due to
singly-ionized calcium (Ca II 23933A) in stellar spectra. This index is useful as a both a
temperature and metallicity indicator, and has been combined with Strémgren system photometry
to obtain a metallicity index for A, F, and G-type stars. It proves to be particularly successful at
identifying Am and Ap stars photometrically. A similar intermediate band system has been
separately established by Maitzen (A&A, 100, 3, 1981) with interference filters of half-width 120A
centred on 50204 (the g filter) and 5240A (the g, filter) to measure the depression at 152004 in
Ap stars. It is also a successful predictor of stellar spectral types. '

The astronomers at Brigham Young University have also developed a KHG photometric
system, which uses narrow band filters centred on the Ca II K-line (239334), the hydrogen
Balmer Hs line (#4100A), and the Fraunhofer G-band (due to the CH molecule at 24305A) to
produce an index which is essentially independent of atmospheric or interstellar reddening, but is
very sensituve 10 the temperatures and metallicities of stars. As described by McNamara et al.
(PASP, 82, 293, 1970) and Feltz (PASP, 84, 497, 1972), the appropriate index is:

j P(4100)
khg = 2.5log [1(3933)1(4305)} :

The index has proven to be ideally suited to the study of Cepheid reddenings (Turner et al., AJ,
93, 368, 1987) as well as for Baade-Wesselink analyses of these variables. :

8. Interstellar Reddening

The wavelength dependence of interstellar extinction is obtained by comparing the
monochromatic magnitudes of two stars, one of which is more heavily reddened by interstellar
matter than the other. Itis assumed that the extinction coefficient is a function of wavelength, i.e.
is described by the term Aj, and that Ay = 0 when A — . Extinction curves are derived as a
function of 1/, and are usnally normalized to unity for Ag ~ Ay = Eg_y = 1.00, and Ay = 0.00.
This makes Ag = 1.00 for normalized extinction curves. The absolute normalization must be
obtained from. the value of Ay, for 1/4 = 0.00, and for this one needs observations in the infrared
portion of the spectrum.

_ The extinction in the ultraviolet portion of the spectrum tends to be relatively constant for A
< 1250 A, although there is a marked extinction dip at 22200 A (I/A = 4.5 um~1) which is variable
in strength and probably originates from the presence of various amounts of small graphite
particles in the interstellar dust. In the visible and near infrared, A; varies almost linearly with 1/A.
There is a bit of a break at A = 4430 A (1/4 = 2.26 um-1) due to one specific component of
intersteltar dust not yet identified There are various other recognized interstellar bands for which
the source .is not known with certainty. The actual shape of the extinction curve at these
wavelengths reflects the nature of the dust grains, in particular the size distribution of the grains,
most of which have approximately the same diameters as the wavelengths of visible light. Large
particles produce relatively neutral extinction at visible wavelengths, while small particles produce
strong increases in A; as one observes to shorter wavelengths. The ultraviolet extinction curve




21

provides further information about the size distribution of interstellar dust particles, and their
ranges for a typical galaxy.

In the UBV system, we define the colour excesses:
o Ez-v = (B-V)observed — (B—Vinwinsic = B-V) = (B-V),,

and  Eyp = (U-Blobserved — (U-Bintrinsic = (U-B) — (U-B), , and their ratio:

E—IBJ:B = X + Y Ep_vy (as expressed in its general form).
The parameter X is the slope of the UBV reddening relation, and Y is the curvature term, which
depends upon the amount of reddening. For typical galactic conditions in the plane of the Galaxy,
the slope X = (.75, but with observed variations from as little as 0.65 in Upper Scorpius to as
much as 0.85 in Cygnus and other regions. This parameter has a strong spectral type dependence
due to the effects of reddening on the effective wavelengths of the UBV passbands, and increases
for later spectral types, becoming ~1.0 for KO stars and larger for M-type stars. The curvature
term. Y, is generally small, and appears to average Y ~ 0.02 for most regions of the Galaxy. It
can often be ignored in reddening investigations.

The ratio:
Ay

R =+
Ep.y

is called the ratio of total to selective extinction, and generally is ~3.1 0.1 for most regions of the
Galaxy. The mean value of R seems to be slightly above the average value (~3.2) towards the
anticentre and centre regions of the Galaxy (i.e. looking across spiral arms) and slightly below the
average value (~3.0) looking along spiral arms (i.e. in Cygnus, etc.). This can be explained by the
preferential alignment (by the Davis-Greenstein mechanism) of dust grains by the magnetic fields
associated with spiral arms. Certain localized regions are characterized by values of R of ~5-6,
which is the signature of dust pockets containing lots of particles of above-average size. These
regions are rare, and their existence is still a matter of debate in some cases (examples are Orion,
Caring, etc.). The parameter is important for distance determinations, since:

Vo—-My = Slogd - 5.
In the presence of interstellar extinction,

V=V5+Ay=Vy+ R xEp_vy).
o V-My =Vyp-My+REp y=5logd-5+REp.y,
or Vo-My =V-My -R Ep_v,
i.e. an extinction correction is needed to find the true distance to an object in the presence of
interstellar reddening. Note the simplification possible for a group of stars of common distance,
namely:

V-My =(Vo-My) + REp_y =constant + REg v .
Clearly, a plot (called a variable-extinction diagram) of apparent distance modulus, V-My,
versus colour excess, Ep_y, for such a group should produce a linear relationship which has a
slope R = the ratio of total to selective extinction. In fact, it has been possible to use clusters and
associations of stars in which differential (variable) reddening is present to derive some of the best
estimates for the parameter R for galactic regions (see Tumer, AJ, 81, 97 & 1125, 1976).

Reddening-Free Indices: -
- If one supposes that the extinction law is invariant throughout the Galaxy and has no

gg_\? = X, a constant. Johnson and Morgan (ApJ, 117, 313, 1953)
introduced a Q parameter for the UBV system which took advantage of this invariance property,
namely: Q = (U-B) - X (B-V) = (U-B)o + EU-B - X [(B-V)o + EB_v]
- = (U-B)o ~ X(B-V)o + EU-B ~ XEB-V
o ~ Eyu-B
= (U-B)o - X (B-V)o + EU-B — g5~y EB-V

(U-B)o - X (B-V)o + EU-B - EU-B = (U-B)o ~ X (B-V)o.
(U-B) - X (B-V) = (U-B)g - X (B-V)o.

curvature terin, then

ie. Q
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Any parameter which has the same value when it is written in terms of either the reddened or
intrinsic colours of an object is referred to as a reddening-free parameter. Clearly, the UBV
parameter Q satisfies this property, provided that the interstellar extinction law is invariant, Its
- advantage becomes immediately clear, since it is straightforward to correlate the value of Q with the
spectral type or intrinsic colour of a star. As used by Johnson and Morgan, Q was constructed
using X = 0.72, the best value available in 1953. However, note that it is the opinion of your
instructor that the interstellar extinction law is not invariant, in which case Q-parameters serve no
useful purpose.

Reddening-free indices have also been constructed for the Strémgren system, where they
are used frequently (and erroneously). The parameters used, and the reddening relations upon
which they have been developed, are: :

[c1] = ¢1 — 0.20 (b-y) from E(c;) = 0.20 E(b—y),

[0-b] = (u-b) — 1.50 (b-y) from E(u-b) = 1.50 E(b-y),

and  [m] = m; + 0.18 (b-~y) from E(m;) = —0.18 E(b—y).
But more recent calculations indicate that E(m;) = —0.35 E(b—y) on average, so the use of older
definitions for {m ] is particularly open to question. Note also that [c;] # (c1)o, and [my] = (my),.
As long as the properties of interstellar extinction are known reliably for the region containing a
star of interest, then it is always possible to make reddening corrections without reliance on
reddening-free indices. Given the dubious validity of reddening-free indices, the use of a
reddening relation valid for the field of interest is certainly the correct way of making reddening
corrections for stars in that field.

9. Absolute Magnitude Calibrations

Tables of absolute magnitudes for stars as a function of spectral type and luminosity class
are constructed in a variety of ways. It is not unusual for several different techniques to be used in
the compilation of one table. The three most commonly used techniques for establishing absolute
magnitudes of stars are listed below:

i. Statistical Parallaxes.
Recall the relation for tangential velocity,

4.74
v (km/s) :_;E——u’

for the proper motion p in "/yr and the parallax = in arcseconds. This can be rewritten as:
4,74 u
vt
There is a statistical means of establishing the mean parallax for a group of stars having common
properties by making use of the data for their positions in the sky, for their proper motions, and for
their radial velocities. The resulting statistical parallax for the group is:
4.74 <pu>

<E> = T where <> denotes mean values. 7
In general, a randomly distributed group of stars should have <vr> = <vg>, i.e. one component
of space velocity should be similar to another. Thus,
4.74 <p>
. <VR> .
Actually this is a simplification of the true method. In practice, the true situation is complicated by
‘the sun's peculiar motion relative to the group, as described later in the course notes Denote
(upsilon) v = the u-component in the direction of the solar antapex (i.e. the u-component due toythe

sun’s motion), (tau) T = the p-component perpendicular to the direction of the solar antapex (i.e.
the p-component due to the star's peculiar velocity), and (lamda) & = the angular separation of the
star from the solar apex. Then: ' _

<> =
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4.74 <v sin A>
vp <sini>
from the sun's space motion), where vg is the solar motion relative to the LSR, and:

<n> = 4.74 <lr> is referred to as the statistical parallax (ie. the parallax
<IVR + vpCcos A>

inferred from the statistical properties of stellar space velocities).

Upsilon components work best when the solar motion dominates the group random
velocities, while tau components work best when group motions dominate. Both techniques have
been applied to B stars and RR Lyrae variables, which are too distant for direct measurement of
their distances by many standard techniques. Both classes of object are also relatively uncommon
in terms of their local space densities, yet luminous enough that they can be seen to large distances.
Due to the general pertarbations from smooth galactic orbits predicted in density-wave theories of
spiral structure, the assumptions used in the methods of statistical and secular parallax may not be
strictly satisfied for many statistical samples of stars. '

ii. Trigonometric Parallaxes. .
Parallax data, such as those contained in the General Catalogue of Trigonometric SteHar

Parallaxes, have been used to establish luminosities for the various types of stars which are
relatively common in the solar neighbourhood, i.e. white dwarfs and late-type dwarf stars of
various metallicities. Some examples are Crawford's (Al, 80, 955, 1975) use of trigonometric
parallaxes for F-type stars (with partial inclusion of Lutz-Kelker corrections) to calibrate absolute
magnitudes derived from Sumgren photometry (the B-star and A-star calibrations were later tied
to the F-star calibration), and Sandage's (ApJ, 162, 841, 1970) use of General Catalogue
parallaxes to calibrate the 8(U-B) versus AMy relation for G subdwarfs (this was used to establish
a main-sequence calibration for deriving distances to globular clusters). It should be evident from
the comments of Hanson (MNRAS, 186, 875, 1979), however, that calibrations of this type are
subject to possible systematic errors arising from random errors in stellar parallaxes and the
incompleteness of parallax catalogues.

i1i. Moving Cluster Parallax and ZAMS Fitting.

Open clusters are ideally suited to the calibration of stellar luminosities since they contain
such a wide variety of stars of different spectral types and luminosity classes. The general method
of using a calibrated zero-age main-sequence (ZAMS) to derive cluster distances is outlined by
Blaauw in Basic Astronomical Data. However, the necessary zero-point calibration involves the
independent determination of the distance to a nearby cluster whose unevolved main-sequence stars
serve to establish the My versus (B-V), (or spectral type) relation over a limited portion of the
ZAMS. The distance to this zero-point cluster must.be derived using the moving cluster method,
or one of its many variants.

The requirements for use of the moving cluster method are a sizable motion of the cluster
both across the line-of-sight and in the line-of-sight. The technique is most frequently discussed
for the case of the Hyades star cluster, which is the standard cluster used for the construction of the
empirical stellar ZAMS. However, Ursa Major and Scorpius also contain moving clusters, and
recently the Pleiades has attracted renewed attention as a moving cluster. In general, all stars in a
moving cluster move together through space with essentially identical space velocities (their
peculiar velocities are invariably much smaller by comparison). Once the direction to the cluster
convergent point (divergent points are equivalent!) is established on the celestial sphere, the
geometry of the situation is established. In particular, the angle 8 between the star's space velocity
and radial velocity is fixed.

A star's space velocity is given by: V2 = V12 + VR2, and VT = 4.74 pd.
But, VR = Vcos8, and VT = Vsin 0, Thus, the distance to the star, d=, is given by:
V1 V sin 8 Vg sin 6 Vg tan 6

d:k - = = =
4,74 u 4.74 4.74 | cos 0 4.74 1

<> = is referred to as the secular parallax (i.e. the parallax inferred
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Once the radial velocity, VR (in km/s), of a moving cluster star, its proper motion, u (in "/yr), and
angular distance from the cluster convergent point, §, are known, its distance (in pc) can be
obtained from the above equation. The dispersion in radial velocity for stars in an open cluster is
typically quite small, no larger than +1 to +2 km/s. Therefore, for a cluster of stars of common
tan 8

distance, the ratio must remain essentially constant across the face of the cluster. This

means that those stars lying closest to the cluster convergent point will have the smallest proper
motions, while those lying furthest from the convergent point will have the largest proper motions.
For nearby clusters this feature allows one to determine the relative distances to stars in the cluster
by comparing the individual stellar proper motions, p+, with the mean cluster proper motion, i, at
that value of @, i.e. %S = i—i . This technique has been used extensively for stars in the Hyades
cluster, which has a line-of-sight distance spread on the order of 10% or more of its mean distance.

The moving cluster method can also be pictured in a more general manner, as noted by
Upton (AJ, 75, 1097, 1970). In this case, the motion of a cluster like the Hyades away from the
sun results in an apparent decrease in the cluster's angular dimensions, even though its actual
dimensions are unchanged. By geometry and the assumption that the cluster's actual diameter, D,
is relatively constant, we have:

D =~ rx6, where 6 is the cluster's angular diameter. We have used r to denote the cluster's
distance in this instance in order to avoid confusion with the derivative notation.

_D d6 _ Ddr _ erdr _ 8<Vg> &
8 = T and X - Z&C fa S , since <Vg> for the cluster = I
The term él- % can be determined from the proper motion gradients across the face of the cluster.
d
ie. 1de = d—L-LE = R . Therefore, the cluster distance is obtained from:
8 dt da dd

r = —<VR>/(%) or r = —<VR>/(%

Since proper motion gradients are easier to measure accurately than is the location of the
convergent point, the method is somewhat superior to the convergent point method. The cluster
convergent point is not lost by this method, since it is located by the points where the proper
motion gradients become zero. Upton noted, however, that it was necessary to transform the o, §
motions of cluster stars on the celestial sphere into their cartesian (flat surface) equivalents in order
to obtain meaningful proper motion gradients. For the Hyades cluster, he also found it necessary
to account for line-of-sight distance spread. '

A further modification to the general method can be made using the original equations given
previously, namely:

_ _ Vytane
VR = VCOS@, and dc = 47411 .
d_d\g_li =-Vsind = -Vgtanp = ~4.74F1dc,
ad  dg = ~dVg/do ,
4.74 p

i.e. given the mean proper motion of a moving cluster, one can find its distance from the gradient
in radial velocities across the face of the cluster. This technique is very difficult to apply, since it
requires extremely accurate radial velocities for cluster members which are not biased by the
systematic effects of binary companions. The method has been applied in a very sophisticated
fashion to the Hyades cluster by Gunn et al. (AJ, 96, 198, 1988), with fairly good results.
Current estimates for the distance modulus of the Hyades cluster by all of the various methods
used (including trigonometric parallaxes) lie in the range 3.15 to 3.40, or 42.7 pc to 47.9 pc.
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The construction of the ZAMS with its zero-point established by Hyades stars is
accomplished by overlapping the unreddened (actually dereddened) and unevolved main-sequences
of successively younger clusters to that of the Hyades. The general technique described by
Blaauw is actually somewhat flawed since it ignores differential reddening in some of the clusters
(such as the Pleiades and o Persei clusters) and the presence of serious systematic errors in the
photometry for one (NGC 6611). It also assumes that metallicity differences between one cluster
and another are unimportant. This assumption is probably safe for the early-type stars in young
clusters, since metallicity differences are unlikely to be very important and typically only result in
absolute magnitude differences between stars, not colour differences. However, for late-type stars
both the absolute magnitude and colour are affected, so it is necessary to properly account for this
when establishing a calibrated ZAMS. Turner (PASP, 91, 642, 1979) discusses the case of the
Pleiades cluster, which has a metallicity close to that of the sun as well as to that of the average star
in the solar neighbourhood, and demonstrates how the Hyades zero-point needs to be adjusted to
account for the higher metallicity of Hyades members.

The fitting of open cluster main-sequences from one to another invariably makes
allowances for reddening differences as well as the effects of stellar duplicity, evolution away from
the main-sequence, and rotational displacements from the ZAMS. Independently-derived ZAMS
ridge lines are surprisingly similar from one author to another, and are also in fairly food
agreement with the predictions from stellar models. A different approach has been adopted by
Garrison (IAU Symp., 80, 147, 1978), who uses MK spectral type rather than unreddened colour
as the ordinate for his ZAMS relation. The use of this relationship is clearly predicated upon the
availability of good quality spectral classifications for cluster stars, and is consequently fairly
limited at the present time.

Open cluster distances obtained by ZAMS fitting have often been used as a means of testing
stellar luminosities derived in independent fashion. The hydrogen Balmer Hp and Hy line width
indicators — the narrow band p-index and Hy equivalent width — can also be calibrated using
trigonometric parallax data (as has been done by Crawford and Millward & Walker, for example),
and generally give absolute magnitudes for stars in open clusters which are close to those obtained
from ZAMS fitting. Systematic differences have been commented upon at times, but are probably
due to the contaminating effects which are produced on the Balmer line profiles by rapid stellar
rotatton. A proper detailed study of this problem has never been done.

Another method of determining distances S : : :
for late-type stars is by means of the Wilson- l}.*_w,—l-l ! | I
Bappu effect, namely that the width of the central e Fwst
emission component of the Ca IT X line in G and = .y
K-type stars is directly related to the absolute W
magnitude of the star — the broader the emission o=
line width, denoted W», the more luminous the 3
star. The original calibration of this relationship
was based upon optically-measured half-widths
of Wo for the Ca H K line by Olin Wilson using Mo
photographic spectra, and was tied to parallaxes
from the General Catalogue. The parallax
calibration has been reworked a number of times = |
in order to eliminate the effects of catalogue bias
on the parallaxes, and has been tested using the .
derived distances to Hyades K giants. Much -
effort has also been expended in understanding el
the theoretical basis for the effect, although it is
still regarded as an empirical relationship.
Similar relationships have been looked for in the 1ob—
resonance lines of other singly-ionized alkaline - L
metals. 1.0 12 1.4 16 18 20
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10. Open Clﬁsters, Globular Clusters, and Associations

Major Phases of Stcllér Evolution.

Pre-Main-Sequence Evolution

The early stages of star formation tend to be hidden by obscuring clouds of gas and dust
(Larson, MNRAS, 145,271, 1969). In the later stages one detects stars which shine through light
produced during gravitational contraction; half of the energy of a star lost through gravitational
contraction escapes as radiation, the other haif contributes to an increase in the kinetic energy of the
gas. The Hayashi Track is the evolutionary path in the H-R diagram followed by a confracting
star (Hayashi, ARA&A, 4, 171, 1966). The Hayashi forbidden region is a region at the cool
edge of the H-R diagram where no stable stars can exist. Contracting stars therefore follow
evolutionary paths on the hot side of this region. '

During the Hayashi track phases newly-formed stars .are thoroughly mixed, since
convection is the most efficient way of releasing energy from the object. At some stage (earlier for
massive stars) the contracting star slows its contraction as the mode of energy escape changes from
convective transport to predominantly radiative transport. Studies of polytropes, stellar models
described by a single equation of state, show that radiative tracks have quite different slopes
from convective tracks. The individual evolutionary tracks for stars of different mass change
slope as the dominant method of energy escape for the star changes. The evolutionary tracks for
massive stars quickly become radiative, following which they trace out tracks of rapidly increasing
stellar temperature in the H-R diagram. Low mass stars contract without much change in sorface
temperature, until these stars become radiative as well. Since high mass stars reach the ZAMS at
the fastest rate, young clusters can contain many pre-main-sequence stars of low mass. This
shows up in the H-R diagrams for young clusters as a lower main-sequence turnon point.
Many, but not all, pre-main-sequence stars are still associated with the material from which they
formed. Often such stars are found to be losing mass and to have emission lines in their spectra
originating from circumstellar gas; most are light variable. Pre-main-sequence variable stars are
referred to as Orion Population variables. B and A-type pre-main-sequence stars are often found to
be Herbig Ae and Be stars. F, G, and K-type pre-main-sequence stars are usually T Tauri
variables. Some M dwarfs also show emission lines in their spectra; they are believed to be low-
mass stars (M < 0.5 M) which have only recently reached the main-sequence stage (characterized
by hydrogen burning). :

Several important nuclear reactions involving light elements take place in stars durin g their
pre-main-sequence phases. These are summarized below:

D2 +H! - He? Critical Temperature = 5.4 x 105 °K
Li® + H! — He?+ Het Critical Temperature = 2.0 x 106 °K
Li7 + H - He3 + He4 ' Critical Temperature = 2.4 x 106 °K
Be? + 2H! — He3 + 2Hed Critical Temperature = 3.2 x 106 °K
B10 + 2H! — 3He# Critical Temperature = 4.9 x 106 °K
Bl +Hl 5 3He? Critical Temperature = 4.7 x 106 °K
Hed + He3 — He# +2H! - Critical Temperature = 5.0 x 106 °K

During the pre-main-sequence phases, deuterium (D2) is converted to He? during the convective
stages of the Hayashi tracks (Ostriker & Bodenheimer, AplJ, 184, L15, 1973) and the light
elements lithium (Li), beryllium (Be}, and boron (B) are destroyed during the early stages of the
‘radiative tracks. These reactions add to the He3 abundance, so that when He? is converted to He?
and H! (protons) during the final stages just prior to reaching the main-sequence (Ulrich, AplJ,
165, L95, 1971; Apl, 168, 57, 1971) the stage can have a significantly long duration. An
abundance of N(He3)/N(He? + He#) ~ 0.005 is sufficient to be seen inthe H-R diagrams of young
clusters as a gap where the pre-main-sequence connects to the ZAMS (see Turner, AJ, 86, 231,
1981). An abundance ratio of N(He3)/N(He? + He4) ~ 0.001 appears to be more typical of open
cluster stars. .
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Post-Main-Seﬁuence Evolution _
The post-main-sequence evolution depends critically upon the initial mass of the star.

M > 1.1 M, (stars with convective cores and radiative envelopes)
: The major phases of evolution for these stars are described many standard references (e.g.
Iben, ARA&A, 5, 571, 1967). These can be summarized briefly as: H burning, core shrinkage,
H shell burning, core shrinkage, He burning in core, core shrinkage, He shell burning, exhaustion
of H shell burning, etc. .., carbon burning, oxygen burning etc., depending upon the stellar mass
(advanced nuclear reactions are mass dependent, and only occur if the mass is large enough). The
Schionberg-Chandrasekhar limit is defined as follows. If the isothermal core of a massive
star exceeds 10--15% of the total mass of the star, then the contraction of the core following the
exhaustion of H burning in the core results in rapid contraction of the core, since the pressure
gradient is insufficient to support the star’s outer layers. This limit occurs at roughly 1.7 to 2.25
Me. Stars with M > 1.7 to 2.25Mg undergo rapid evolution to the right in the H-R diagram at core
H exhaustion. Less massive stars undergo less rapid evolution at this stage. Rapid evolution at
core contraction results in a scarcity of such stars in the H-R diagram (A-G supergiants), referred
to as the Hertzsprung Gap. Convective cores seem to be ~50% larger than predicted from
simple theoretical considerations (according to the evidence from open cluster colour-magnitude
diagrams), so recent models generally include core overshooting (convetion beyond the standard
core region of the star) which increases the core H burning lifetime and affects age estimates for
open clusters). The inclusion of realistic amounts of rotation in stellar evolutionary models is still
very much in its infancy.

Metallicity can affect the values of Tegr reached during core He burning, with lower
metallicities resulting in higher Tefr during He burning. Classical Cepheids are yellow supergiants
which are unstable to radial pulsation (driven by the opacity of He and H in their outer layers).
Normal massive stars pass through this region of pulsational instability during the H shell source
phase (most rapid) and core He burning and shell He burning stages (slower). Most Cepheids
should be burning He in the core or in a thin shell. The standard critical masses for the most
important stages of nuclear burning are:

H-buming.  ~0.1 M,

He-burning ~0.35 M,

C-burning ~0.8 Mg .

The major stages of main-sequence nuclear reactions are:

Proton-Proton Reactions Critical Temperature = 10 x 106 °K
H! +H! -5 D2 + positron

D? + H! » He3

He3 + He3 —» He# + 2H!

CNO Bi-Cycle Critical Temperature = 16 x 106 °K

Clz + Ht - NI3

NB 5 C13 + positron

CIB3+H! - N4

N4+ HE & Qb3

-~ OB - NI3 4+ positron

N3 +H! » Ci2 + Het . _
The various isotopes of carbon, nitrogen, and oxygen are not destroyed in these reactions, but act
as catalysts which make the conversion of hydrogen to helium more efficient. Their relatives
abundances tend towards equilibrium values which have nitrogen enhanced at the expense of
- carbon and oxygen. ,
The major stages of post-main-sequence nuclear reactions are:

He# + He? — Be8* (unstable)
He4 + Be®* ., C12 Critical Temperature
Cl2 + Het - 0Ol Critical Temperature

100 x 106 °K
200 x 106 °K

Hol
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Ol 4+ Het — Ne20 etc.

Ne20 + He* —» Mg24, etc. etc.
Cl2+ Cl2 5 Mg Critical Temperature = 1000 x 106 °K
016 4+ Q16 5 8§32 etc. Critical Temperature = 2000 x 106 °K

: The various possible exothermic nuclear reactions continue in massive stars until an iron
core is produced. Thereafter, only endothermic reactions are possible, and these probably occur
spontaneously during the implosion of the iron core during a supernova explosion, in which
inverse beta decay converts the stellar core to a rich neutron mass, and the release of high neutrino
fluxes helps to eject the remaining stellar envelope into space as an expanding (and mass-
collecting) supernova remnant. The remaining stellar remnant is likely to be a neutron star,
possibly detected as a pulsar; black holes may also be produced.

- M < L1 M, (stars with radiative cores and convective envelopes)

The post-main-sequence stages of these stars reflect the gradual depletion of H at the star’s
centre followed by contraction and heating of the core as H burning moves away from the centre of
the star. When He ignites at the centre of a red giant star of this mass, it does so in a degenerate
gas. The onset of He burning therefore has no effect on the pressure of the gas, only its
temperature, which increases exponentially. Since the rate of He burning is sensitive to
temperature, the energy generation rate also increases exponentially as T increases producing a
short-lived helium flash as the available He in the star’s centre is converted to carbon. This stage is
only terminated when the gas temperature becomes high enough to remove the conditions for
degeneracy. Massive stars do not develop degenerate gas in their isothermal cores, so their He
ignition (and C ignition) is less dramatic. The post He-flash evolution of a red giant star unto the
asymptotic giant branch is believed to be associated with a superwind which, along with shell
helium flashes, induces the formation of planetary nebulae. Stars of 1.5 to 2 Mg pass through a
carbon flash phase which may also assist the production of planetary nebulae. The end fate of
planetary nebulae (originally stars of up to ~6 M) are white dwarfs (M < 1.4 M) located in
dispersed nebular shells.

M < 0.4 M, (stars completely convective) : :

These stars slowly change into He stars as their H content is converted by nuclear
reactions. Since the time scale for these reactions is much larger than the age of the universe, the
evolution of these stars is of academic interest only. Below M = 0.08 Mg, no thermonuclear
reactions can occur because the gas never reaches a high enough temperature.

Open Clusters.
Open, or galactic, clusters are symmetrical groups of stars found along the major plane of

the Galaxy. Globular clusters are richer and older groups of stars populating the halo of the
Galaxy. Associations are loose groups of stars in the galactic plane which may be the dispersed
remains of young open clusters. There are three different types of associations recognized: OB
~ associations consisting of hot O and B-type stars, R associations consisting mainty of hot B-type
stars illuminating reflection nebulosity in the dust clouds with. which they are associated, and T
associations which are loose groupings of T Tauri variables associated with young dust
complexes. The important properties of these various types of stellar groups can be summarized as
follows:

Open Clusters = Globular Clusters Associations
‘Number known in Galaxy... > 1000 130-150 ~100 -
Stars Contained... 50-5000 1000-1,000,000 10-100
- Diameters... - 10-25 pe 20--100 pc 25-250 pc
Appearance... loose concentrations  rich concentrations open
Shapes... , more-or-less spherical ~ spherical irregular
Population Type... Disk and Pop. I Pop. I extreme Pop. 1
Ages... 106109 yrs ~12-16 x 109 yrs 106-107 yrs

Location in Galaxy... disk and spiral arms halo spiral arms
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The formal reference catalogue for star clusters (including globular clusters, associations,
and moving groups — which may be the physical remains of dispersed open clusters) is the
Catalogue of Star Clusters and Associations (Ruprecht et al. 1970, 1981), published in
. Czechoslovakia. This source is badly in need of updating. Currently the best available source of
information on known clusters is the database of the Stellar Data Centre (CDS) at Strasbourg, and
the personal database of J.—C. Mermilliod, both of which are accessible electronically.

Trumpler initiated a visual scheme for describing open clusters from their appearance on
photographic plates, and this is occasionally used today. The designations in this scheme are:

I Detached clasters with a strong central concentration of stars.

. Detached clusters with little central concentration of stars.

HII. Detached clusters with no noticeable concentration of stars, but rather a more or less uniformly
scattered distribution.

IV. Clusters not well detached from the general star field, which appear more like a small
concentration than a true cluster. :

1. Most cluster stars are of the same apparent brightness.

2. The brightness of cluster stars covers a medium range.

3. Clusters composed of bright and faint stars, generally only a few very bright stars, but many
faint stars.

p. A poor cluster of less than 50 stars.

m. A moderately rich cluster of 50-100 stars.

r. A rich cluster with more than 100 stars.

N. Designates nebulosity involved in the cluster,

U. Identifies the cluster as being unsymmetiical.

E. Designates the cluster as being elongated.

An example of the scheme is the Pleiades cluster, which is designated by Trumpler as II3rN, ie. a

detached cluster of more than 100 stars exhibiting only a mild central concentration, a large range

of star brightnesses, and which is associated with nebulosity. Does this match the description of

the cluster which you can recall from photographs in introductory textbooks?

A series of papers by your instructor (Turner, A, 86, 222, 1981: AJ, 86,.231, 1981; AJ,
98, 2300, 1989) outline the general method used to analyze photometric and spectroscopic data for
open cluster stars. The basic problems that are encountered are: (i) the proper separation of cluster
stars from field stars in the same line of sight, (ii) making reasonable corrections for the effects of
interstellar reddening upon the stellar photometry, and (iii) using the resulting data for cluster stars
to determine all of the interesting parameters of the cluster — its age, its distance, chemical
composition, peculiarities of member stars, etc. The membership problem is usually tackled using
proper motion and/or radial velocity data for cluster stars, but most clusters can also be studied in a
reliable manner even without such information. :

Reddening corrections require a knowledge of the interstellar reddening law appropriate for
the region under study. MK spectral types for stars in cluster fields prove to be invaluable for
determining the reddening slopes necessary for making reddening corrections to the colour data of
- cluster stars. In many cases, this reddening slope will be close to a value of Ey_g/Ep_v = 0.75.
Once the correct reddening slope is established, the next step is to apply reddening corrections to
the colours of all cluster stars. Field stars which lie well foreground to the cluster are generally
less heavily reddened than cluster members, while background stars may be more heavily
reddened. Most dust clouds responsible for the reddening in any star field are relatively nearby,
and only the closest stars in any field will be found to be unreddened. The more typical case will
find both cluster and most field stars reddened by some minimum amount, which can be
determined from a two-colour diagram. Two cases are encountered in practice: (i) homogeneous
- reddening, where all stars have the same colour excess, Eg_v. except for a small temperature-
dependent term, and (ii) differential reddening, where the colour excesses vary across the field
from one star to another. In the latter case, one normally finds that there is a correlation of the
reddening, as measured by the colour excess, with spatial location; in most cases one can actually
map the reddening across the face of the star cluster - quite frequently these maps bear a one-to-
one relationship to the optical dustiness of the same field, as determined from a visual inspection of
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images of the field. Where differential reddening exists, as for example in the fields of many
young clusters, it may not always be obvious using photometry alone what the true unreddened
colours of a star may be. In certain regions of the UBV two-colour diagram, reddening lines from
~ a star intersect the intrinsic relation more than once. However, even in these instances, one can
usually deduce the correct choice of intrinsic colours by referring to a reddening map established
using those stars with unique dereddening solutions, or by trying all possible solutions to see
which one produces the most reasonable result in the cluster's colour-magnitude diagram.

The practical method of dereddening is to follow the reddening vector for a star from its
observed colours to the colours applicable to a star on the main-sequence (or giant and supergiant
relations where appropriate) in order to find (B—V),. The colour excess Ep.v follows
immediately. The colour excess of a star is one ingredient necessary to correct the star's observed
visual magnitude V for the effects of interstellar extinction. The other ingredient is the ratio of total
to selective extinction, R. This can often be adopted from the results of Turner (A7, 81, 1125,
1976), i.e. R = 3.1, with possible variations from 3.0 to 3.2 depending upon the field. Where
differential reddening exists in the field, it may even be possible to derive R from a variable-
extinction analysis, as described earlier. ,

The next step is to plot the reddening-corrected colour-magnitude diagram for the
cluster, which is a plot of V, versus (B—V),. Cluster members usually stand out in this diagram
by the manner in which they fall along the evolved and unevolved portions of the main-sequence,
or on the red giant or red supergiant branches. Field stars will be found randomly scattered
throughout the diagram, although there is a tendency for their numbers to increase with magnitude
as well as with increasing colour index. Experience plays a prominent role at this stage of the
analysis, although inexperienced researchers generally do not have too much difficulty in
determining which stars are cluster members. In sophisticated analyses, star counts are sometimes
used to place the membership selection on a more quantitative basis. Most humans have a
tendency to be rather conservative with regard to cluster member candidate selection.

The distance of the cluster can be found from ZAMS fitting, which involves fitting a
standard ZAMS to the unevolved cluster main-sequence, either by eye or by the preferred
mathematical method of averaging the dereddened distance moduli, Vo—My, of true ZAMS stars.
These objects are the least-luminous stars on the ZAMS. Since close binaries are typically
unresolved at the distance of the cluster, these stars, evolved cluster members, and rapidly-rotating
stars fall above the ZAMS in the colour-magnitude diagram. Such objects must be taken into
account for the proper placement of the ZAMS on the cluster main-sequence.

The age of the cluster is usually determined from the main-sequence turnoff point, the
location of which, in terms of unreddened colour (B—V), or luminosity My, can be readily
calibrated using stellar evolutionary models. Stellar models are constantly being improved, so
estimates of cluster ages do change with time as the models produce different values for the age of
stars at the same cluster turnoff location. A true absolute scale of ages for open clusters is a goal
currently unreachable due to the present state of evolutionary models.

Globular Clysters. _

One of the most difficult parameters 1o derive for a globular cluster is its space reddening.
This is because the most luminous stars in a globular cluster are its red giants, the intrinsic colours
of which are generally rather uncertain and are very sensitive to the metallicity of the stars. New
CCD detectors are capable of obtaining photometry for main-sequence stars in these clusters.e also
However, the intrinsic colours of these G dwarfs depend upon their metallicity. Older studies of
globular clusters made use of reddening estimates obtained from a comparison of the integrated
colours of the clusters with their integrated spectral types, from colour excesses derived for
- member RR Lyrae variables in the clusters (when they were present!), and from the galactic
cosecant law. .

Since most globular clusters are located in the galactic halo where there are no interstellar
dust clouds to produce obscuration along the line of sight, their reddening arises locally in the
galactic plane. If the galactic plane is considered to be a plane parallel sheet of uniform absorbing
material, then the reddening of a globular cluster lying outside the galactic plane should depend
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upon its aalacuc latitude. In particular, if X is the thickness of the galactic disk above the sun's
location, then the reddening of a cluster located away from the plane at galactic latitude b must be
given by Eg_v = X/sin b = X csc b. Harris (A, 81, 1095, 1976) quotes a slightly different
relation, Ep_y = 0.06 (csc 1bl — 1) as a better fit to the observed reddening of Eg..y = 0.00 at the
galactic poles. Current practice is to make use of cosecant law reddenings in conjunction with
reddening estimates based upon the observed column densities of neutral hydrogen towards the
clusters (from the work of Burstein). Neither method is particularly reliable, although this is not
very important since most globulars tend to have rather small colour excesses.

Main-sequence fitting for globular clusters is very difficult, since it requires reliable
magnitudes and colours for cluster main-sequence stars. The severe crowding suffered by stars in
most globular cluster fields has important effects upon the derivation of such data, although Peter
Stetson feels that current versions of his DAOPHOT routines are sufficient for the task. More
importantly, the observed data must be compared with main-sequences for stars of similar
metallicity. Observationally such sequences are subdwarf sequences, which are poorly calibrated
in luminosity (they depend upon older trigonometric parallaxes). Theoretical sequences can also be
constructed (see Hesser et al., PASP, 99, 739, 1987; Hesser, ASP Conf. Series, 1, 161, 1988:
Stetson et al., AJ, 97, 1360, 1989), but these rely heavily upon the validity of the models. This
field is still progressing.

Distances to globular clusters are derived in several different ways, as summarized by
Harris (AJ, 81, 1095, 1976). Current studies aim to establish a distance scale for globular clusters
which relies entirely upon fits to synthetic main-sequences. This may be dangerous given the
current state of modelling for low-mass stars.

No two globular clusters seem to have identical colour-magnitude diagrams, mainly
because of the differences in metallicity from one cluster to another. In most clusters it appears that
the horizontal branch lies a "fixed" distance of 3™.5 above the main-sequence turnoff. Some
general characteristics have been noted which seem to depend upon metallicity, One is the slope of
the giant branch, which is steepest for metal-poor clusters. The quantity used to measure this
parameter is AV = the difference in magnitude between the horizontal branch (at the RR Lyrae gap)
and the red giant branch at (B—V), = 1.40. Another parameter is the population of the horizontal
branch as measured using the ratio (B—-«R)/(B+V+R) where B 1s the number of stars on the blue
portion of the horizontal branch, R is the number on the red portion, and V is the number of RR
variable stars in the RR Lyrae gap. In general it is found that mostly blue stars populate the
horizontal branch in metal-poor clusters, while mostly red stars populate the horizontal branch in
metal-rich clusters. The relative population of the horizontal branch also dictates whether or not
there will be any stars located in the region of the instability strip. Globular clusters with the
richest populations of RR Lyrae variables tend to be intermediate-metallicity clusters. This
parameterization can be summarized as follows:

Metatlicity Type AV HB Stars ~ RR Lyraes Example
Metal-Rich ~2.1 mostly red few : 47 Tuc
Intermediate ~2.5 red and blue moderately rich M3
Metal-Poor ~3.0 ~mostly blue moderate M15

The HR diagrams of globular clusters differ from those of old open clusters mainly due to
the effects of lower metallicity and smaller average stellar masses, although other effects may also
be important. There are only ~150 globular clusters known in the Galaxy, compared with ~300 in
M31, a difference presumably related to the overall more massive nature of M31. The luminosity
distribution of globular clusters in the Galaxy (and in other galaxies) has a Gaussian-like shape,
- and ranges from <Mp> = -9 to -5, with a peak near <Mp> = —7.5. The high-luminosity cutoff is
probably affected by an upper mass limit to clusters, as well as to the evaporation of cluster stars
~ during their lifetimes. The low-luminosity cutoff may be due to the evaporation of any previously-
existing low-mass clusters. Most galactic clusters have evaporated by the time they reach ages of
~107 years. Only very rich globulars could survive to the ages of ~1010 or more years which are
found for them.
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Associations. :

OB associations are extremely loose groupings of stars, with all stars of similar age,
distance, and origin, which locally may be spread over 5° to 10° of sky, or more. They have
diameters of up to 200 pc, beyond which they seem to lose their identify as a coeval group.
Blaauw's (ARA&A, 2, 213, 1964) classic study of OB associations pointed out that they seem to
consist of subgroups of different ages, with the youngest subgroups being the most compact and
the oldest subgroups (with ages of ~2.5 x 107 years) being the most dispersed. OB associations
are unstable to galactic tidal effects and do not last long. They appear to be the dispersed remains
of young open clusters which are no longer bound together by gravitational forces, a property well
supported by proper motion and radial velocity studies of these groups. The relationship of one
subgroup to another has been explained by Elmegreen & Lada (AplJ, 214, 725, 1977), who
envision a progression of star formation through a giant molecular cloud induced by the expanding
shock fronts of stellar winds and expanding H I regions from previously-created clusters. Most
associations seem to fit this pattern, although there are many details-which remain unexplained.

The term "association” was introduced by Ambartsumian in 1947, but subsequent
catalogues often varied in their nomenclature of the groups. Such variations as I Ori and Cyg II
represent two older schemes developed in the 1950's by Morgan and others. Following the
designations introduced by Ruprecht in 1966 for the IAU, OB associations are now named for the
constellation in which they (or most of their stars) are found, with an Arabic numeral (not Roman
numeral) appended, e.g. Ori OB1, Per OB2, etc. The older schemes are no longer in use, except
perhaps by radio astronomers who seem to be unaware of the current literature.

R associations, as noted by van den Bergh (AJ, 71, 990, 1966), are loose groups of
stars of common age and distance which are associated with dust complexes. They get their names
from the reflection nebulosity which each star illuminates — blue refelection nebulosity for B-type
stars, yellow reflection nebulosity for G and K supergiants. R associations rarely contain O-type
stars, and seem to be low-mass groups of newly-formed stars. Herbst and Assousa (ApJ, 217,
473, 1977) and Herbst (IAU Symp., 85, 33, 1980) present evidence that a few R associations
were formed from the accumulated material marking the expanding shock fronts of supernova
remnants. Their designations are similar to those of OB associations, e.g. Vul R1.-

T associations are loose associations of T Tauri variables all associated with dark
clouds, Since T Tauri variables seem to be pre-main-sequence objects of low mass, T associations
represent low-mass groups of stars located in the dust clouds associated with star-forming
complexes. They are not well studied. Their designations are as above, e.g. Tau T1.

Stellar rings (Isserstedt, Vistas, 19, 123, 1975) are a now-discredited concept, although
in the early 1970's there was considerable debate about their existence. In hindsight it appears that
most are simple illusions created by the eye's tendency to form geometrical patterns from random
stellar distributions. Actually, a few may be real. The Orion Ring, fro example, is the stellar
asterism formed by the stars lying around e Orionis, the central star in Orion's Belt. Not only is
this a real physical group of stars located in the Ori OB1b association, but it also has the
appearance of a cluster caught in the final stages of dissolution into the general field. Perhaps other
stellar rings are of similar nature. . -

Moving groups (Eggen, Galactic Structure, Chapter 6, 1965) are believed to be the
actual dissolved remains of open clusters located in close proximity to the sun. Eggen has been
fanatical in finding and studying stellar groups using the available proper motion, trigonometric
parallax, and radial velocity data for nearby stars. Unfortunately, detailed chemical composition
stndies of group members tend to find that their compositions vary greatly from those found for
members of open clusters. It therefore seems that the membership in moving groups is much less
well-established than Eggen believes. However, the concept upon which moving groups are based
is sound enough, and many such dispersed star clusters are undoubtably real enough, even if
group membership is not firmly established for all potential members, A recent paper discussing
the membership of the nearby Ursa Major moving group has been published by Soderblom &
Mayor (AJ, 105, 226, 1993), with results for other clusters to follow.
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11. Star Count Analysis (see Mihalas & Routly, Galactic Astronomy)

Define, for a particular area of sky: . i Gty s GG e an
N(m) = the total number of stars brighter than magnitude m per_squa;'er%e-gfee-@f-sky, and

A(m) = the total number of stars of apparent'magnitude m iéAm in the same area.

[Usually Am steps of 1 magnitude are used, which is why A(m) is defined in this manner.]
Clearly, N(m) increases by the amount A(m)Am for each increase Am in magnitude m.
: dN(m) = A(m) dm, 7,

or A(m) = %ﬁ . & Ofﬂ,ug

Star counts in restricted magnitude intervals are usually made over a area of sky which
subtends a solid angle = w. The entire sky is contained in a solid angle of 4= steradians = 4n
(radian)? = 4z (57.2957795)2 square degrees = 41,252.96 square degrees = 41,253 square
degrees. Thus, 1 steradian = 41,253/4x square degrees = 3283 square degrees.

In order to consider the density of stars per unit distance interval of space in the same
direction, it is necessary to consider the star counts as functions of distance, i.e. N(r), A(r). If the
space density distribution is D(r) = number of stars per cubic parsec at the distance r in the line of
sight, then:

N = [or2D{r)dr. . /ﬁi)f )

—7 P s Phen T WO

_ L

! I : (. ﬂ/\slh&g& = c:f?"‘

N{r) = J wr?Ddr = @D j r2dr = ;—wDr3. %% o

0 0 ’

Therefore, cumulative star counts in a particular area of sky should increase as 13 for the case of a
uniform density of stars as a function of distance. Recall that, for no absorption:

m-M = 5Slogr — 5.

02m-M)+1 = logr, or r = 10[02m-M)+1]

Thus, N(m) = 31 wD10[0.2(m - M) + 1] x 3
= (") aD10(066 M)

- (@) @D 10-06M 1(0.6m

= 1006m+C_if M and D are constant.
ie. log N@m) = 0.6m + C.

‘J

0
If D(r) = constant = D, then:

Am) = B - L [ygc goom] = (0.6)(109)(oge10)1006m = Cr1g06m.
Denote I = the light received from a star with m = 0. , ,
(ﬁ I(m) = lp10-04m [Recall that mi-my =-2.5 log 1:/15]. Sﬁ"}?‘mfm Cao
. — I(m) . e 3t PG ;
of -0.4m = log I - S‘Gj jo%a

The total light received from stars of magnitude m is therefore given by: ,;”ﬂ
L(m) = I{m) A(m) (per unit interval of sky) /

_ - IOC'IO-»OAm +0.6m — IOC'IOO.Zm .

The total Light received by all stars brighter than magnitude m is givenj)_z’:/_/

m m -
Lipm) = [L(m)dm' = 1,C' [1092m'dm' = K 1002m, where K is a constant.

Thus, Ligt(m) diverges exponentially as m increases (Olber's Paradox).
The results from actual star counts in various galactic fields are:
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1. Bright stars are nearly uniformly distributed between the pole and the plane of the Galaxy, but
faint stars are clearly concentrated towards the galactic plane.
ii. Most of the light from the region of the galactic poles comes from stars brighter than m = 10,
~while most of the light from the galactic plane comes from fainter stars (maximum at m = 13),
iii. Increments in log A(m) are less than the value predicted for a uniform star density, no
interstellar qﬁzjﬁnction, and all stars of the same intrinsic brightness. This implies that D(r) could
decrease with increasing distance (a feature of the local star cloud which could very well be true
according to the work of Bok and Herbst), or interstellar extinction could be present (or both!).
Recall the true relation for distance modulus in the presence of interste]lar extinction:
m-M = 5logr — 5 + a(®) . & 9W,\?2,_, AR AN ho’fm@;éw%‘fvw
o logr + 02a() = 02(m-M)+1.
- Define the apparent distance of a star, p, in such a way that:

logp = 02(m-M)+1 = logr + 0.2a(r).

logp — logr = 0.2a@), or p = r1002a®
Thus, for example, if a(r) = 11,5, then p =r 1093 = 2r, so that the dlstance is overestimated by a
factor of two. Since the volume varies as 13, star densities derived from star counts should
decrease strongly in the presence of interstellar extinction, as they are observed to do. However,
Bok pointed out in 1937 that even reasonable allowances for interstellar extinction still produced an
apparent density decrease with distance from the sun for star counts in the solar neighbourhood.
This local star density enhancement is referred to as the "local system” (Herbst & Sawyer, ApJ,
243, 935, 1981).

McCuskey (Galactic Structure, Chapter 1, 1965) summarizes the results for studies of the
distribution of common stars in the galactic plane, and Mihalas provides information on the galactic
latitude dependernce for these stars. The noteworthy features are the marked concentration of O, B,
and A-typé stars towards the galactic plane, and the weaker concentration of K-type stars to the
plane. F, G, and M-type stars exhibit a more-or-less random distibution, with no concentration
towards the plane or poles. Bright O and B-type stars are not aligned with the galactic plane, but
concentrate towards a great circle inclined to the plane by ~16°. This feature is known as Gould's
Belt, and is interpreted as a Venetian blind effect due to the tilt of the local spiral feature to the
galactic plane, with the tilt being below the plane in the direction of the anticentre and above the
plane in the direction of the galactic centre. Investigations of the distribution of dark clouds by
- Lynds (ApJS, 7, 1, 1962) for the northern hemisphere sky survey (POSS) and by Feitzinger &
Stuwe (AAS, 58, 365, 1984) for the southern hemisphere sky survey (ESO-UK Schmidt) indicate
that there is a distinct clumpiness in their distribution, which imples that the run of interstellar
extinction with distance is also unlikely to be smooth. This is confirmed by the study of Neckel &
Klare (AAS, 42, 251, 1980) on the distribution of interstellar reddening material.

Fundamental Equation of Star Count Analysis.
Define the general luminosity function as follows:

$(M) = the number of stars per cubic parsec in the solar neighbourhood of absolute
magnitude M.

o(M,S) = the number of stars per cubic parsec in the solar nmghbourhood of absolute
magnitude M and spectral class S.

ie. oM = E ®(M,S) , over all spectral classes.

Define D(r) = the star density as a function of r relatlve to that at the sun's location, and Dg(r) = the
star density as a function of r for stars of spectral class 8, relative to the sun’s location,
ie. D@ —-landDs() — lasr-=0.

- Recall the definition of A(m) = the number of stars per square degree of sky of magnitude m. This
number can be obtained for any direction by considering the contiibutions from all stars of
different absolute magnitude M at different distances r along the line of sight.

e.g. A(m) = ¥ oM) D@) AV(r) where AV{(r) is the volume element at distance r.
In differential notation,
AV() = eoridr.
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A(m) = [o(M)D@erdr = o [o(MDE)I2r .

0 0
If the counts are made over a specific surface area Q, they must be reduced to equivalent counts per

square degree using the factor 4n0/41,253. Now,M = m+5-5logr—a(m) = m+5-5logp.

A{m) = o j?oq;[m +5-5logr-a(r)]D(r)ridr , which is the fundamental
0
equation of star counts.

or AmS) = of¢[m+5-5logr-a(r),SID(r)r2dr .
4 0
For stars of one specific spectral type and luminosity class, Malmgquist demonstrated in
1925 and 1936 that the luminosity function could be assumed to be Gaussian,
ie.  oMS) = —— FM-MoF/20%
oV2n
where M, is the average absolute magnitude for the group and o is the dispersion of M about M,
Under such conditions, it is sometimes possible to obtain an analytical solution for D(r) using star
count data of the type A(m,S) — see Reed (A& A, 118, 229, 1983) and references therein.
When absorption is clearly present in the star counts, as occurs for most directions of the
galactic plane, the fundamental equation can be rewritten in terms of the apparent distance p.

Am) = o [¢[m+5- Sldg pla(p)p?dp, where A(p) is the density distribution as
0
a function of aDDarcnt distance. Clearly, D()r?dr = A(p)p2dp.

D@) = A(p)p— dp .
Since p = r 100 23@ ,
%e = 100220 + 0.2r x lbgel() d_a@ 100-2a(m) |

da( )
dr

D() = Alp) 1006a(r>[1 +0.2r x loge10 ] logel0 = 2.3025851...

D(r) = A(p)|:1 +0.4605r d_%ﬁ;_)} 100-6a(n),
If, as an example, a(r) = kr, where k is known (e.g. k = 1™/kpc = 0™.001/pc),
then D(r) = Alp)[1 + 0.00046 r] 100:0006r (see Mihalas).
12. Stellar Density Functions

It is possible to derive stellar density variations in cértain regiéns of the sky using a
knowledge of the luminosity function and information on the reddening dependence, a(r).
(m, log =) Tables.
Rewrite the integral equation for the magnitude function as a summation over finite shells:
A@) = 3 o[m+5-5logpilatoi)aVi,

where AVy is the volume of the kth shell.
Shells can be selected for ease of computation such that their rmdpomts have apparent
distances given by:

logpx = —logm, = % , Le. midpoints lie at log n = 0.2, -0.4, 0.6, ...
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The correspondiﬁg edges of the shells lie at:
Shell 1: Inner edge = the sun. Outer edge, log n =-0.3.
Shell 2: Inner edge, log = = —0.3. Outer edge, log n =-0.5.
Shell 3: Inner edge, log # = -0.5. Outer edge, log n =-0.7.
. etc.
The volume element AVy refers to the volume of the shell for an angle of 1 square degree
subtended on the sky. Recall that the volume of a sphere is given by 4nr3/3, and 4r steradians =
41,253 square degrees
1
AYk = 41253 253 3 (Pk o Pk,iB) X

A
eg. AVg = m@kua - Pi-1723) .

For the kth shell, log py = % and M =m+5-5logpy = m+5-5&/5 = m+5-~k One

can now construct an (m, log =) table using the luminosity function, where the entries in the table
are o[m + 5 — k] AVy.

(m, log 7) Table Ven . Rivign's  Luminesity Funchion
Values of m
logm = —logps . T log Vv
8 9 100 11 12 13 14 15 16 17 18 19
~1.0 :‘_:ﬁ\o "o : ~0.69
-1.2 -0
—14 Mg T ogx\crm%mm N m-+n 0.38
—1.6 A gy 0.03 3\004 008 009 010 012 013 0.98
—-18 05 008 012 . \016 25 .. 034 042 049 054 1.58
-20 14 021 U324 \063- {)1)\1 48 135 166 195 218
~2.2 26 058 085 1.26.. s 132 28 U472 538 660 2.78
—24 58 10S 229 340 S.Q\ 725 ‘314\109 158, 188 214 3.38
~26 66 229 418 913 135 (09— 351 289 324 "‘3941\ 630 748 3.98
-28 60 263 914 166 363 538 794~ _J00~__ TIS~ 129 158 T 251 4.58
-3.0 60 240 . 105 364 660 144 214 36~ 8. a8 SI3_ T630. 518
~3.2 76 240 955 417 145 262 575 853 1260~ . 1580 _ 1820 2040 578
—34 96 302 955 380 166 575 1040 2290  34B0  S000-. 6300 7250 6.38
~36 60 380 120 380 151 660 2290 4170 9130 13544 1.99-+4 25144 6.98
—38 30 240 151 478 151 604 2630 9140 16644 3.63+44 53844 79444 7.58
—4.0 T15 120 955 604 190 604 2400  LOS+4 36444 6.6044 14545 2.1445° 8.18
—42 0 060 478 37.9 240 760 2400 9550 41744 14545 26245 57545 8.78
—44 0 0 24 15 151 955 3020 9550  3.8044 1.6645 S75+5 1.05+6 9.38

—4.6 0 0 0 9.6 76 600 3800 12044 38044 1.5145 6.66+5 22946 9.98

Note: 1.35+4 = 1.35X10%, etc.

TetaLe._ . 5.69 237 -0 e -

For each value of m, the entries reach a maximum at some value of log m,. The summation of the
entries for each column gives the values for:

Ao(m) Z o[m +5-5log Pk]A(Pk)AVk

These values can be compared with the actual counts in a particular area, and will usually be too
high. They miust be reduced by the values for the apparent density function A(py) for each shell. It
is therefore necessary to reconstruct the (m, log =) table including an estimated A(py) function. A
solution for the observed counts generally requires a number of iterations with a variable A(py)
function until a best match is obtained. Experience is particularly helpful here. Once a solution for
Afpy) 1s obtained, one still needs to know a(r) to obtain D{(r) from the results. Such a(r) estimates
can come from various sources, e.g. Neckel & Klare (A&AS, 42, 251, 1980).



37

Wolf Diagrams and Dark Cloud Distances

Wolf diagrams are used to analyze the extinction in dark clouds which are transparent
enough to transmit the light of background stars. The technique is to use (m, log n) tables to
deduce the A(py) function for a nearby reference region which is relatively free of dust extinction,
‘and then to determine where in the table one can hang a "dimming" curtain of dust — ie. Am
magnitudes of extinction — to reproduce the A(m) values for the region of the dark cloud. The
extinction curtain in the (m, log =) table will produce a shift of m + Am for all the entries in the
table beyond log me = —0.2x + 0.1. Thus, the cloud's inner edge lies at log px = 0.2x — 0.1, or at
log r + 0.2a(r) = 0.2x — 0.1. If the run of general extinction with distance, a(r), can be established
for the region under investigation, it is possible to solve for the distance r of the cloud.

Problems:
1. The comparison region must be as close as possible to the cloud region.

2. The comparison region must be relatively unobscured.
3. The cloud region should only have a single cloud in the line-of-sight.
4. The general luminosity function (GLF) gives very little magnitude resolution, since slight
changes in A(py) can produce equally valid A(m) curves. The preferred technique is to obtain
spectroscopic information so that one can use A(m,S) data in the analysis. This generally provides
much better distance resolution for the dust curtain.
5. The a(r) dependence must be known extremely well.

Wolf diagrams, when carefully analyzed, can also be used to study the ratio of total-to-
selective extinction, R, in dark clouds. Blue light counts give AB for each cloud, while red light
counts give AV. Thus,

R = Ay Ay _ AV

Epv (Ap-Ay) ~ (aB-aAV)®
Schalén (A&A, 42, 251, 1975) has made such an analysis for several nearby dark clouds, and has
obtained a mean value of R = 3.1 0.1 for the dust in these clouds.

Recent Improvements

Herbst & Sawyer (Apl, 243, 935, 1981) present an interesting technique based upon star
counts in epaque dust clouds. associated with clusters and associations of known distance to
obtain a function dependence of Ny with distance r. They used CO observations to identify clouds
likely to be totally opaque to blue light on the Palomar Observatory Sky Survey (POSS), then
- normalized their counts in only the opaque regions of these clouds to the equivalent value of N,
the number of foreground stars per square degree of sky. They found a resulting functional
dependence for their counts of the form:

r = 320 Ng0>7 (pc) , from their calibrating clouds of known distance.
A careful analysis of the variations in star density as a function of distance for these clouds has
confirmed a result noted much earlier by Bok and later by McCuskey (Galactic Structure), namely
that the sun appears to be located in a region of local density maximum in the Galaxy. The results
of McCuskey suggest that this density maximum may be the local Cygnus spiral arm.

“Density Variations Perpendicular to the Galactic Plane
In the direction perpendicular to the plane, the GLF may not apply (see Bok's lecture notes
presented below). However, the results with regard to density variations are almost independent
of any variations in this function. Typically the density function Dg(z) for stars of a specific
spectral type S exhibits an exponential decline with increasing distance z away from the galactic
plane, :

ie. Ds() = D5 ¢, or log Ds@) = log DO~ -

~where Bg represents the scale height of the stellar distribution. Fits of this type of dependence to
the observed density variations for different types of stars can be used to obtain their scale heights
relative to the galactic plane. The results for stars of different spectral types can be used to analyze
the different population types for each group. Specific results are summarized by Mihalas, and are
reproduced below: :
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Object Population Type p(pec)

O stars H 50

B stars I 60

A stars I 115

F stars Mixed 180

dG stars Mixed 340

dK stars Mixed 350

dM stars Mixed 350

oG stars Mixed 400

gK stars Mixed 270

Dust and Gas I 175

Classical Cepheids I 45

Open clusters I 80

Novae Disk 11 200 _
Planetary Nebuiae Digk 11 190-250  Zijlstra & Pottasch, A& A, 243, 478, 1991
‘RR Lyraes (P <0d.5) Diskli 200

RR Lyraes (P> 04.5) Halo O 3000

Type II Cepheids Halo T 2000

Extreme Subdwarfs Halo II 3000

Globutar Clusters Halo I 4000

13. The Luminosity Function

The General' Luminosity Function
Notes Prepared by Bart J. Bok for a Lecture delivered at the University of Toronto, April, 1979.

Luminosity Functions

Every astronomer deals almost daily with luminosity functions of some sort. In a way the
most basic of these functions is the general luminosity function (GLF), which gives us the
distribution function of absolute magnitude, M, for the average unit volume in the vicinity of the
sun. We require this basic distribution function to describe not only the stellar distribution in our
immediate galactic surroundings, but also to serve as a basis from which we explore how it varies
from one point in our galaxy to another. We can trace it back into time, and, on the basis of some
simple assumptions about evolutionary trends, figure out how it inust have appeared in earlier
phases of galactic evolution. Again, with our local GLF as a firm basis, we can explore its
variations in the galactic plane and especially at right angles to the galactic plane, where we are led
gently into the largely yet unknown luminosity functions that prevail in our elusive galactic halo, or
in the central regions of the Galaxy. We can break our GLF into its component parts and derive
luminosity functions for separate spectral or colour subdivisions, or for groups of stars; Cepheid
variables or RR Lyrae stars may serve as examples. Or, we may compare luminosity functions for
comparable groups of stars with differing metallicities. With proper care, we can make
comparative studies of the brighter ends of luminosity functions in our vicinity and in nearby
galaxies, starting with the Star Clouds of Magellan. There are many practicable problems which,
for their solution, require a good background knowledge of luminosity functions. For example, if
we wish to study the space distribution of stars of separate spectral subdivisions, then we can only
hope to construct the basic (m, log =) table required for such an analysis after we possess solid
information on the luminosity function of the stars under investigation. When we study dark
nebulae, such as the great complexes in Ophiuchus and in Taurus, or the Souther Coalsack, we can
find their distances and photographic extinctions best from analyses in which the basic (i, log =)

" tables play key roles.

In a couple of lectures in a "mini course”, one cannot hope to cover fully the details of how
we have obtained our present knowledge of the GLF and of the luminosity functions for special
groups or classes of stars. But I can — in a short time — outline in broad terms the different
approaches that have been vsed and provide a key to some of the basic literature in the field.
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1. The Road to Groningen Publications 30, 34, 38, and 47 .

J. C. Kapteyn, the first director of the famous Laboratory of Statistical Astronomy in
Groningen, Holland, amd his successor, P. J. van Rhijn, gave us through their work in the first
third of the twentieth century the basic GLF that still serves us at the present time. For the range of
observable absolute magnitudes, -4 < M < +16, for Mp and My, the curve shows, for successive
values of M—1/2 to M+1/2, the logarithm of the number of stars per cubic parsec in successive
intervals of absolute magnitude. We have one curve for blue magnitudes, another for visual
magnitudes. Kapteyn and van Rhijn saw from the start two basic approaches to the problem of
determining the luminfpity function. The first approach follows the path of statistical analysis
based principally upon proper motions and radial velocities, making effective use of mean
parallaxes and the distribution of derived parallaxes about their means. In the second approach —
developed beautifully by van Rhijn after Kapteyn's death — full use is made of the growing body
of trigonometric parallaxes of high precision. The study, which was assiduously pursued between
1902 and 1925, culminated in the publication by van Rhijn (1925) of Groningen Publication 38.
Every young astronomer today should take the time to read van Rhijn's treatment. I shall describe
briefly the methods used for deriving the GLF of Grningen Publication 38.

Method 1. This is the method that Kapteyn saw as the best one to obtain the GLF.

a) In Gréningen Publication 30, a great effort had been made to obtain values of Np, 4, the
numbers of stars per 10,000 square degrees in the sky between set limits of apparent magnitude
m-1/2 to m+1/2, and set limits of total annual proper motion 0".000 to 0".020, 0".020 to 0".040,
v, 0100 to 0".150, 0".150 to 0™.200, ... , etc.

b) In Gréningen Publication 34, there are two types of useful basic tabulations. The first of
these lists values of the mean parallaxes, <mm >, for stars within relatively small ranges of
apparent magnitude m and total proper motion u. These mean parallaxes had been obtained in
various ways, especially through the use of secular parallaxes, which were found by
combining radial velocity data — which yielded the reflex of the solar motion in km/s — and
proper motions — which yielded the same reflex of the solar motion in seconds of arc per year,
The second type of tabulation gave the probable distribution of true parallaxes about the mean
values <mm > Tables I and 2 of Groningen Publication 38 show samples of the tables prepared
by van Rhijn. '

TABLE 1. NUMBERS OF STARS PER 10000 SQUARE DEGREES AND MEAN PARALLAXES
OF THE APPARENT MAGNITUDE §.45 TO 6.44; GALACTIC ZONE — 20° TO -} 20°.

Limits p. Numbers ' T Limits p Numbers 2
" ” i »? " " r
000 to .020 648 0.0048 400 to  .500 7 0.0466
020 to  .040 486 ".0078 .500 to 60O 8 0539
040 to  .060 248 0105 600 to .700 2.6 .0609
060 to  .080 103 .0129 700 to  .800 1.9 . 0675
.080 to .100 74 L0151 .800 to 90O 1.9 ©.0739
100 to L1350 112 0182 900 to 1.00 1.5 0801
150 to 200 45 L0230 1.00 to 1.50 4.3 004
.200 to ,300 40 L0304 1.50- to 2.00 0.4 . 120
.300 to  ,400 17 0388 > 2.00 1.1 .180

Yy Grom. Publ 30 table 1g, 1920,
%) Gron. Publ. 34, table 19. 1923,
3) . Op. cif, Formulae (42) and {43) on page 43, where » =o0.19 a =o0.22.



Please note that, in Groningen Publications 30, 34, and 38, the absolute magnitudes listed are:

TABLE 2,

40

M=m+ S5log=.
fn Groningen Publication 47, van Rhijn adopted the presently used:
M=m+35+ 5logr.

Limits = Number
"
> 251

251 to .158

158  to .100

100 to .0B631

0631  to .0398

.0368 to .0251 1

0251 to 0158 4

0158 to .0l100 25

0100  to .00631- 95

00631 to .00398 ! 207

00398 to 00251 i 229

.00251 to .00Ig8 % 84

00158 to 00100 : 3
648

— INTERMEZZ0O —

DISTRIBUTION OF THE TRUE PARALLAXES OF THE 648 STARS
== 5.45 TO 6.44 p=—".000 TO “.020.

TABLE 3. NUMBER OF STARS PER 10000 SQUARE DEGREES BETWEEN THE MAGNITUDES
5.45 TO 6.44, AND GALACTIC LATITUDES — 20° TO - 20°
: i !

Limits = o158 | o".100 | 0".0631] 0".0398 O'.O?Slio’.olSSéo’.oIoo o”.00b31 o’.oo_‘;gsgo'.oozst o*.00158 { 0".0o100
Limits u M: +z.72 | +1.42 {+ 043 |—o0.53 | —I1.53 | —2.52 i —3.50 | —4.50 | —85.48 | —6.46 | —7.45 | —8.44
1" H I
.000 to 020 0.6 4. 26. 95. | 207. | 220, 84. 3-
020 ,, 040 0.5 3.4 | 21. 76. | 159. 168. 56. I.

.040 ,, 060 1.0 5.9 | 27. G6. 93. 51, 4.
.060 ,, .080 o.1 0.9 5.4 | 18. 36. 34. 0.
086 ,, .100 0.1 1.3 6.0 | 17. 27. 10, 3.
.100 ,, .150 O.1 0.6 3.8 | 15.2 | 35. 39. 17. 1 8
150 ,, .200 o.1 0.7 3.3 | 10,0 | 17. 2. 2.

200 ,, .300 0.2 1.6 6.0 | 12. | 14. g.

.300 ,, .400 0.4 1.5 4,2 6.4 4. 1.

400 ,, 500 0.1 0.3 1.0 2.2 2.5 I.

.500 , .600 0.1 0.5 1.5 2.8 2.5 1. ;

£Loo ,, 700 0.1 0.2 0.7 1.0 0.6, :

yoo ,, .800 0.1 | 0.2 0.5 0.8 0.4 .

Boo , .00 0.1 0.3 0.6 0.7 03, :

.gco , 1.00 0.1 Q.2 0.5 0.5 0.1 :

.00 ,, 1.50 0.4 1.0 1.6 | 1.1 0,2

1,50 , 2.00 o1 ! o1 0.1 0.0 0.0 :

~> 2.00 0.4 i 0.4 0.2 o0 | 00
Sum 1.5 4.0 | 11.3 {301 | 72.2 | 159. | 288. ! 410. 439. 289. 83. 3.
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For each range of apparent magnitude (see Table 3 of Groningen Publication 38 as a
sample), the data from tables such as Table 1 and Table 2 are combined in a master table (see Table
3) listing the numbers for successive intervals of total proper motion p. The sum line at the bottom

of Table 3 shows how the stars for the given range of apparent magnitude are distributed over )

successive parallax "bins", which are strictly "bins" of narrow intervals in absolute magnitude.

In the final tabulation, Table 4 of Gréningen Publication 38, the summations in the bottom .

line: of each Table 3 are combined. Table 4 is really a (M, =) tabulation in which each series of
numbers for a given range of aparent magnitude contributes a diagonal line.

TABLE 4. LOGAKITHM OF Ty- HivuEER OF STARS TER CURIC PARSEC
The weights are Motween parentheses.

f

T P S U i ! : . :
=24 i 648 538 i #56 51 53 —as; regr iy | 140 +339 ,  +a37 +3536 +633
: i : :
i

Log. Vol
{10.000
squaredegr)

famns . |

oted

00138

o035+
o368 v

00531
Lioo
o141
o337
o398
o35
BI--]

10 00135
» oazgr

-caygs

» o108
s ozl

P T
v ooy !
. ooy
FRNT S

o631 3465 09 | 36i3.031) 4371(L5} som0(n ! 5sb3{izal. G101 {15} < 6553 (39) § .98y (03] | 2393 5.1 m'ﬂb {o.5)

CGalactic latitude o° to & -
| [ : | 1 | . .
£ 5476 43 | Garadr) | Batrind | . I
4468594 | 5a85(z30 5Be0 (16]) ‘ baos B) | 6Ba0f9} | 7225 lan j 4 .
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Table 4 yields for each shell of distance the derived GLF for that shell. Please note that the
GLF derived from Table 4 is reasonably well fixed for the range in absolute magnitude -2 <M <
+10. In other words, the analysis based upon proper motions and radial velocities yields no
information about the faint end of the GLF, M > +10!

Method 2.
Van Rhijn wished very much to obtain information about the faint end of the GLF, +10 <

M < +16. The proper analysis indicated that the function might possibly have a maximum near M
= +8, and that it would turn over after that. Van Rhijn decided to make what use he could (in the
early 1920's!) of the growing body of measured trigonometric parallaxes, correcting statistically
for the known biases of astronomers engaged in the measurement of trigonometric parallaxes.
Parallax observers all use a uniform technique of measurement and reduction established (about
1904) by Frank Schlesinger. How did they select the stars to be placed on their parallax
programs? They naturally chose the stars most likely to have large trigonometric parallaxes. Large
total proper motion may indicate that the star is a nearby one. So van Rhijn decided that there was
in parallax work a strong selection effect favouring the placing of stars of largest proper motion on
parallax observing lists. So few stars of small total proper motion are on the lists of selected
parallax stars that van Rhijn decided to consider in his statistics only stars with u = 0".200.

Van Rhijn knew from his counts in proper motion catalogues the number of stars with
proper motions in, say, the range 0".200 < p < 0".400 for successive intervals of apparent
magnitude. He also knew what fraction of these stars had their trigonometric parallaxes measured.
Since the program selection had been based only upon total proper motion, every stars with a
measured trigonometric parallax had to count as representative for f stars, where f is defined as the
ratio of the number Ny, (from Table 1 of Gréningen Publication 39) divided by the number of

stars in the (m, 1) bin for which a trigonometric parallax had been obtained. Hence,

f o Nmy
N ’
LI . . . . .
where Ny iy, is the number of stars with measured trigonometric parallax in "bin" (m, n). Table

15 of Groningen Publication 38 shows how every star with a measured parallax in the proper
motion interval 0".200 < u < 0".400 and with 6.45 <m < 7.45 has to count for 13 stars (f = 13)
in the statistical tabulations for the GLFE.

£4r,
Laye
679
7.079
6439
5879
5219
1679
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TABLE I15. DERIVATION OF THE PLENITUDES OF THE PARALLAX STARS
GALACTIC LATITUDE o- 40° =4 Q0°; MAGNITUDE 6.45 TO 7.44.

. Number
Limits of , =
# Flen. Blon, — 7
n stars G.P. 30
144 L/s
0.200 to .400 8 102 0.078 13
400 to .800 9 33 .273 3.7
800 to 2.00 7 7.2 .97 1.0
™ 2.00 3 1.0 3.0 0.3

A second correction factor must be applied to correct for the omission of the stars with p <
(".200, which van Rhijn deliberately omitted. The correction factor K is defined as:

K = Total number in parallax group = to mp
~ Number in same group with p > 0".200 -

If we assume that all stars in thé group =) to m have the mean parallax of the group,

<> = ; "2 then the linear velocity corresponding to p > 0".200 is Vi >if;i_;t><_>0_.ggg km/s.
Van Rhijn did possess tabulations (based upon radial velocities of faint stars) to show what
fraction of the stars had Hnear velocities in excess of this velocity, so the factors of X could be
derived with reasonable accuracy. With the factors f and K firmly fixed, van Rhijn could correct
his statistics for "missing" stars, and the faint end of the GLF could be obtained in a manner very
similar to the procedure used to obtain Table 4.

Van Rhijn went further on the problem between 1925 and 1936, when — in Groningen
Publication 47, Table 6 — he published his final impressions of the GLF, side by side for
photographic and visual magnitudes. There are in the literature many accounts of the work of
Kapteyn and van Rhijn. The one I like best is by S. W. McCuskey in Vistas, 7, 141, 1966. The
van Rhijn curves are shown in Figures 2 and 3 of McCuskey's paper. It is amazing to see how
nicely the early van Rhijn values agree with more recent determinations of the GLF.

TABLE 6. ADOPTED LUMINOSITY CURVE FOR PHOTOGRAPHIC AND' VISUAL
MAGNITUDES IN THE GALAXY.

(M) == number of stars per cubic parseé near the sun -between the absolute
' magnitudes M — } and M + &

logp(M) log g (M) logy (M)
M photogr. visual] M photogr. visual M photogr. visual

— 6.0 210  1.63 | + 2.0 6.77 6.71 | + 10.0 7.64 7.84

' — 5.0 3.07 277 | + 3.0 6.86 6.98 | + 11.0 781 ©  7.99

— 4.0 3.65 358 | +40 719 . 7.20 | + 12.0 7.97 8.02

— 3.0 - 4.25 412 | + 5.0 7.35 7.40 | -+ 13.0 8.01 ~ 8.05
— 2.0 4.75 471 | + 6.0 7-49 7.45 | 4 14.0 8.06

— 10 5.07 5.32 | + 7.0 7-53 7-45

0.0 5.68 5.98 | 4- 8.0 7.46 7.55.

+ 1.0 6.34 ~ 6.59 | + g.0 7-49 7-75
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2. Luyten's Studies of the Faint End of the GLF

To Willem J. Luyten, now a Professor Emeritus of the University of Minnesota, goes the
credit of having given the astronomical world the most precise information on the faint end of the
GLE. There is an excellent summary of Luyten's work in McCuskey's (1966) article. Luyten has
summarized his work in two more recent papers (MNRAS, 139, 221, 1968; IAU Symp., 80, 63,
1978).
As a basis for his work, Luyten completed two gigantic surveys leading to the discovery of
thousands of stars with total annual proper motions in excess of 0".500. The first of these was
based on early-epoch and more recent photographs taken with Harvard Observatory's 24-inch
Bruce refractor in South Africa. The first survey was begun in the late 1920's, and continued into
the early 1940's. In 1962 a program was initiated to repeat the early red survey plates
photographed with the Palomar 48-inch Schmidt telescope, a survey which —- for the areas
covered — yields proper motions for 50,000 or more stars, including, by 1968, 4,000 stars with
total annual proper motions in excess of p = 0".500. The limit of the Palomar survey is about
photographic apparent magnitude 19.

Since no radial velocities or parallaxes are available for these stars, Luyten sorted them
statistically according to absolute magnitude by the quantity:

H =m + 5 + 5logu, which can be written as:

H=m+ 5+ 510gT,
where T is the tangential velocity expressed in A.U. per year (i.e. units of 4.74 km/s).
Information on the distribution of the tangential velocities, T, must be obtained from data for
brighter stars. .

In his 1968 paper, Luyten could announce that the GLF continues to increase to
photographic absolute magnitude Mpg = +135, but that a maximum in the frequency function is
reached at Mpg = +15.7. Since the Luyten survey (based now upon proper motions for 115,000
stars brighter than 21st photographic magnitude) reaches well beyond the value Mpg = +15.7, the
maximum in the frequency function of absolute magnitude seems well established. %?igures 2 and
3 and Table 3 of McCuskey's paper show how nicely the Luyten data extend the van Rhijn GLF.
However, many uncertainties remain. In this connection, reference should be made to a recent
paper by J. F. Wanner (MNRAS, 155, 463, 1972).

The Bruce and Palomar proper motion surveys, carried out almost single handed by
Luyten, followed by his analysis leading to the firm establishment of the faint end of the GLF, will
continue to be recognized as one of the great achievements of twentieth century astronomy. The
name of W. J. Luyten is firmly established in the annals of astronomy.

TasLE 3.

PHOTOGRAPHIC MaeXITTDES [Solar Neighborhood] PHOTOGRAPHIC MAGNITCDES

TAHE STELLAR LOMINOSITY FUNCTION FOR

M | log (M) | log p{Mp,) M log o(M) | log o{Mpg) - log 2{3Mpg) + 10 log w(M g} + 10
- Mgy Hpg

—8 2:23: — + 6 i-66 47 van Rhiin Luyten van Rhijn Luyten
—3 2-97: — + 7 7-48 755
—4 3-60 3-63 + 8 7-58 7-65 —6 2:10: — -+ 5 735 734
—3 4-10 427 + 9 772 772 —5 3-07: — + 6 T8 746
-2 4-50 4-83 +10 7-88 7-80 —4 3-65: — + 7 753 757
—1 554 5-36 +11 797 7-88 -3 I 425 — + 8 746 768

0 616 5-88 112 8-00 705 -2 +73 — +9 719 76
+1 - 6-60 6-35 +13 8-05 7-98 ~1 307 — +10 7-64 751
+2 6-83 670 +14 8-03 - 8-00 0 3-65 .- +11 7-51 o1 .
+3 i 700 +15 | . 802 796 41 6-34 — +12 e 706
-4 723 721 L 16 96 790 +2 677 6-89 +13 S-01 $-01
+3 7-56 736 - _— —_ +3 6-86 704 -+ 14 5-06 8-04

+1 18 -8 +135 8-54 —
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3. Spectral Colour-Magnitude Surveys and the GLF

In Section 4 of McCuskey's (1966) paper, there is an excellent summary of the
contributions to our knowledge of the GLF for intermediate absolute magnitudes (-2 < Mpg < +7)
that has been made via surveys of selected Milky Way fields. These studies are based on spectral
classification plus data on colours and magnitudes for the stars under investigation. The most
significant investigations in this area are those made at the Warner and Swasey Observatory under
the direction of S. W. McCuskey for selected fields along the northern and the southern Milky
Way. The availability of colour indices, magnitudes, and spectral-luminosity classes for the stars
in each field permit an evaluation of the galactic extinction characteristics for each field, which
makes it possible to correct for galactic extinction effects in each field. The analysis for each group
of stars proceeds on the basis of assumed mean values for the absolute magnitudes of the stars in
each subdivision. Table 6 of McCuskey's paper lists the mean absolute magnitudes (per unti
volume) for each spectral group, and the dispersions in absolute magnitude about these means. By
combining the results from the separate groups, a GLF can be obtained for all stars within 100 (or
200) parsecs of the sun for each field, and these can be compared with van Rhijn's standard
function. Figures 2 and 3 of McCuskey's paper show nicely how the various spectral surveys
complement the information contained in the curves by van Rhijn and by Luyten.

4. Epilogue

Table 8 of McCuskey's paper summarizes nicely our present-day knowledge of the GLF.
Figures 2 and 3 give the much-needed pictorial representation.

We indicated earlier that a sound knowledge of the GLF serves as a basis for many related
studtes. Sections 5, 6, and 7 of McCuslkey's paper, and the references for these sections,
describe the more important of these related studies; I shall devote a brief paragraph to each or
some of these.

a) Initial Luminosity Function. Salpeter (1955) was the first to derive the Initial General
Luminosity Function, or ILF (now known as the Salpeter Function) on the basis of a few simple
assumptions formulated following well-established evolutionary trends. The book by
Schwarzschild (1958) has a good discussion of the ILF. See also the recent treatment by V. C.
Reddish in his book Stellar Formation (Pergamon Press, Oxford, 1978, Chapter 3).

b) Variations in the Galactic Plane. McCuskey and his associates have analyzed their
material on spectra, colours, and magnitudes for selected Milky Way fields to obtain GLF's at
various distances from the sun for each field under investigation. Figure 5 and Table 9 of
McCuskey's paper show the sort of variations that occur in, or very near to, the central galactic

plane.

log o (M)
M
b =0° 4 20° == 20° 4 40° + 40° 4 9o° o° 4~ go°

— 8.0 4.56 4.140
— 7.0 5.25 4.73 4.56 _ 4.860
— 6.0 5.662 5.471 ' 5.400 5.511
— 5.0 ' 5-982 5.745 5.972 5 goo
— 4.0 6.486 6.276 6.365 : 6.376
— 3.0 : 6.775 6.620 _ 6.781 6.73%
—_— 2.0 - 7-230 6.802 7.075% 7.037
— Lo 7-385 7.152 - 7273 7.270

. 0.0 : 7-417 7.283 7-505 7.402
+ 1.0 7.523 7.285% 7.609 7472
+ 2.0 7-314 7.123 7-503 7-313
+30 7.672 7.110 7670 7.484
+40 7.719 7.923 . 7.692 .7-778
+ 5.0 7-382 ' 7382
-+ 6.0 7.922 ' ‘ ! 7.922

H
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¢) Variations Perpendicular to the Galactic Plane. In 1941, Bok and MacRae (Annals of
the N.Y. Academy of Sciences, 42, 219, 1941) made a careful analysis of density distributions
and luminosity functions at positions well above or below the central galactic plane. The derived
GLF's at high z—values (z is the height above or below the galactic plane) are very different from
the function in the plane, since the more luminous stars show decreases in space density with z that
are far steeper than those found for the less luminous stars. The Joint Discussion on High Latitude
Problems held (in 1976) at the IAU General Assembly in Grenoble shows clearly that the GLF in
the galactic halo is quite different depending upon the height z above or below the galactic plane.

d) Central Regions of our Galaxy. For the present, we must admit that we have essentially
no information on the GLF that prevails within 5,000 parsecs of the centre of our Galaxy.

Much of the original work on the study of star densities in the Galaxy used Kapteyn's
luminosity function of 1920, which was a simple Gaussian function with My = +7.69 and ¢ =
+2m 5 Later work made use of van Rhijn's luminosity function (described above), and later
modifications of it (van Rhijn, Galactic Structure, Chapt. 2, 1963, McCuskcy, Vistas, 7, 141,
1966; Mihalas, Galactic Astronomy).

As noted in Bok's lecture, the procedure used to derive the GLF is rather involved, and
requires a detailed statistical approach. The various parameters used in deriving the GLF are:

i. Mean Parallaxes, <ny >, for groups of common m +0.5 and p +0".01/annum. - In this case
radial velocity data and proper motions are used to establish secular parallaxes for the stars. In
addition, the results can sometimes be supplemented by measured trigonometric parallaxes, after
corrections for the effects of bias in the samples of parallax stars (see Mihalas).

ii. Trigonometric Parallaxes, once adjusted for statistical effects due to errors in parallax
measurements, and for the effects of incompleteness in parallax catalogues, provide useful
information on the frequency of stars of different absolute magnitudes.

iii. Spectroscopic Parallaxes, which are derived from spectroscopic surveys of Milky Way
fields, form the basis for the establishment of absolute magnitudes for primarily distant, luminous
stars. These data are most useful for establishing the ¢(M,S) functions, but also provide
supplementary information for the GLE.

iv. Mean Absolute Magnitudes, as defined by Luyten {(see Bok's notes), are derived using
the following relationships:

m-M = -5logn -5, vy = "L,

M=m+5+51ogn=m+5+51og474”

Define T = 4 5 4 (i.e. the tangential velocity in A.U./annum).

Then, H=m + 5 + Slogp =M + S5logT.

Luyten found, using stars of measured trigonometric parallax, that the absolute magnitudes of stars
were related to the parameter H in linear fashion,

ie. <MH)> = a + bH, if <T> is roughly constant for the group.

Luyten assumed that this type of relationship could be extended to faint stars for which no radial
velocity or trigonometric parallax data were available, namely for the stars with m > 15 for which
he obtained proper motions using POSS and Bruce survey plates. In this manner, the GLF which
was defined to Mpg = +14 in the Griningen Publications was extended t0 Mpg = +20 by Luyten.
The resulting Gf% ¢(M) appears to reach a maximum near Mpg = +15p % although this is
questioned by Wanner (MNRAS, 155, 463, 1972), who finds a peak in $(M) at Mpg = +12.

Variations in the GLF

Population IT stars are mainly old stars of relatively low metallicity, so their laminosity
function should differ in a straightforward fashion from the GLF derived for stars in the disk of the
Galaxy. In particular, ¢(M) is steeper at the bright end due to the lack of high luminosity, massive
stars, and exhibits a local maximum associated with the luminosity of giants and horizontal branch
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stars. Studies of the Population II GLF have been made from investigations at the galactic poles,
where stars of this type are preferentially encountered. Studies have also been made of ¢(M) for
other nearby galaxies, in particular for the Magellanic Clouds and M31. Differences are apparent
which are population dependent.

Initial Luminosity Function (Salpeter Function)
The main-sequence lifetime of a star is proportional to the mass of the star and its
luminosity,

. M ..
i.e. tms ~ I° where M is its mass.

It is possible to use $(M), the general luminosity function, to obtain ¢mg(M), the main-sequence

luminosity function, by calculating the fraction of stars at each luminosity which lie on the main-

sequence, or in the main-sequence band (which includes subgiant and giant stars lying just above

the zero-age main-sequence). The function defined in this manner is the initial luminosity function,

denoted w(M). It should be clear that:

yM) = oms(M), for tms > the age of the Galaxy,

and  yM) ~ oms(M)/tms, for tng < the age of the Galaxy.

One can also investigate w(M) using stars in open clusters, and also derive the Initial Mass

Function, IMF, from a knowledge of the masses and luminosities of main-sequence stars. 3¢
~7,3%

i.e.  Mpg = f(Mps) . . ‘ ; =

ms = f(Mmg) mw%mm f@m) = C.OM/%@) _
Problems: buboypinay
i. Open clusters are subject to the preferential evaporation of low-mass stars through the energy cﬁ’ -2 ov
exchange which occurs in stellar encounters. Thus, y(M) for most clusters should be biased
towards the brighter, more massive stars, and will underrepresent the low-mass stars.
ii. High-mass stars in open clusters seem to be very dispersed over the fields of some clusters,  Comgnon
often lying in cluster coronal regions. This feature may result in their being undersampled in some
cluster studies, which tend to concentrate on the denser cluster nuclear regions. This effect may 2L
also result in bias for y(M). 2o prass
iii. The IMF may differ from region to region in the Galaxy, since the creation of high-mass stars e
requires larger amounts of material than does the creation of low-mass stars. Whether or not there  —32 -2
is any dependence of w(M) on location in the Galaxy, or possibly on cluster initial mass, are e
questions which have never been thoroughly investigated. (v 2’2‘
iv. The initial conditions in clusters — things like high or low metallicity, high or low rotation vrass 7
rates, and high or low binary frequencies — may combine to influence the magnitude distribution
of stars on cluster main-sequences, invariably in ways which will lead to spurious results for

y(M).
14. The Chemical Composition of the Galaxy

—! e

Halo

The study of peculiarities in the chemical composition of globular clusters as a function of
location in the Galaxy seems to be an ongoing process without a final resolution. It is recognized
that the metal-rich globulars are located close to the galactic centre, while the metal-poor globulars
are more evenly distributed throughout the halo. Captured extragalactic globulars may even be
included in the Milky Way sample. It is recognized that there may be subtle effects in
spectroscopic studies of the metallicity of globular cluster stars arising from the fact that these
studies invariably sample cluster red giants, for which the original surface composition has been
altered by deep convective mixing of core heavy element-enriched material to the surface. The
alternate use of CMD's for determining globular cluster metallicities invariably runs up against the
problem of fitting model isochrons for differing cluster metallicity and age as two dependent
parameters, neither of which may be uniquely determined. The overall metallicity and age of
Population Il stars in the halo clearly differ from those of old disk stars. Population II stars are
typically metal-poor (lower by as much as a few orders of magnitude from the solar metallicity)



47

and old (> 1010 years, with current estimates lying in the range 12-15 x 10° years) in comparison
with the oldest known disk stars. There are some globular clusters, however, where the
metallicities are more comparable to the solar values.

Bulge

The spectroscopic studies by Morgan (AJ, 64, 432, 1959) using the integrated spectra of
stars in the galactic bulge region established that the dominant stars in the galactic bulge are K
giants of solar or above-solar metallicity. It has also been noted that RR Lyrae variables are
common in the bulge, but much less so than M giants and Mira variables, which are more typical
of the red giant evolution of metal-rich stars. The observational CMD of the galactic bulge region
appears to resemble that for the old open cluster NGC 188 rather than those of globulars. It is
therefore inferred that bulge stars are both old and metal-rich.

Disk

There is considerable evidence available that there is an abundance gradient apparent in the
disk, with proportionately more objects of high metallicity being found closer to the galactic centre
than the solar circle. An increase in the overall metallicity of stars and gas towards the galactic
centre is the expected result of increasing star densities towards the galactic centre, since the overall
metallicity of the Galaxy is gradually increasing through the dispersion of nuclear-processed
material from stellar cores and nuclear-generated R-process elements by supernovae. Nebular
studies appear to show this result most clearly (Shaver et al., MNRAS, 204, 53, 1983), although
not without some criticism. Evidence for such a gradient in the stellar component has also been
found in open cluster studies, although there are many difficuities which exist in the interpretation
of such data. Chemical composition studies of open clusters are really only in their infancy, and
much work has yet to be done. However, detailed studies of nearby stars, using ultraviolet
excesses to supplement curve-of-growth studies, do confirm the existence of a disk metallicity
gradient.

15. The Solar Motion

The Fundamental Standard of Rest

The galactic centre defines the fundamental reference point for the Galaxy. Its distance is
not known precisely, but its direction is very well established from both radio and optical (IR)
studies. The velocities of objects in the solar neighbourhood are usnally defined in terms of their
components relative to the galactic plane and the direction of the galactic centre, in particular:

* Tlis the velocity measured in a positive sense towards the galactic anticentre, i.e. towards (I, b)
= (180°, 0°). In some sources this is des1gnated as -U.

. 6 is the velocity which is measured in a positive sense in the direction of the sun' 's orbital
motion about the galactic centre, i.e. towards (1, b) = (90°, 0°). In some sources this is
designated as V.

» 7 1is the velocity which is measured in a positive sense towards the north galactic pole (NGP),
ie. towards (1, b) = (any, +90°). In some sources this is designated W.
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The Local Standard of Rest )

In the gravitational field of the Galaxy, the stars near the sun orbit the galactic centre with
velocities which are close to that of the local circular velocity €. In other words, a star at the sun's
location in the Galaxy which describes a circular orbit about the galactic centre has velocity
components:

(1, e,7Z) = (0, 0, 0) km/s.

A velocity system which is centred on such a fictitious object is used to define the local standard
of rest or LSR. That is, the LSR is defined by an axial system aligned with the I1, ©, and Z
axes and with an origin which describes a circular orbit about the galactic centre with a velocity €.

ie. (11, 0,Z)ysr = (0,9 0) km/s.

Nearby stars have peculiar velocities relative to the L.SR described by:

u=IM-Msr = M,

V=0-0LsR = ©-0,

w=Z-71spR = Z.
The peculiar velocity of the sun is therefore given by:

(ug, Vo, Wo) = (Ilo, Og—0¢, Zp) .
The velocity of any star with respect to the sun must have three components:
i. a peculiar velocity relative to the star's LSR (which differs from the sun's LSR),
ii. the peculiar velocity of the sun with respect to the sun's LSR, and
iii. the differential velocity of the LSR at the star with respect to the solar LSR due to differential
galactic rotation (this is usually negligible). Under the assumption that compenent (ii1) is indeed
negligible (which is typically valid for d < 100 pc), the observed velocity of a star relative to the
sun is given by the velocity vector (U=, V=, W), where:

Us = ux~ug = Mx—Tg,

Vi = ve— vy =0 —Qy,

Ws = ws —Wg = Zs—Zg .

The Solar Motion '
For any particular group of stars belonging to the disk and having nearly identical
kinematical properties, one can define a kinematic centroid of their velocities by:
N
<us> = L U=y,
1

<vE> = V|,

1

- 2= 2z
z LMz I

<WiE> = ﬁ.z Wiy .
1=1

For disk stars which are not drifting either perpendicular to the galactic plane or in the direction of
the galactic centre, it is reasonable to expect that:

<us> = 0 and <ws> = 0.
However, <v+> # 0, since a typical group of stars selected observationally will always tend to lag
behind the solar LSR. The reason for this is fairly straightforward. A group of stars chosen
spectroscopically will include objects of various origins, unless the group is so young that the stars
have not had time to travel far from their places of formation. The increasing density gradient in
the disk of the Galaxy towards the galactic centre implies that the majority of stars in the sun's
neighbourhood originated at points which e on average somewhat closer to the galactic centre than
the sun, i.e. most of them are currently near apogalacticon. Since the apogalacticon velocity
of stars in elliptical orbits is less than the local circular velocity @, any mix of elliptical orbits for
nearby stars will find the majority travelling at less than @, in the direction of the sun's orbital
motion. It follows that locally-defined kinematic groups of stars should, in general, tend to lag
behind the LSR motion. This asymmetric drift is well-observed in such groups, and must be
taken into account in any determination of the sun's LSR velocity.
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The lag of a kinematic group of stars relative to the solar LSR, namely its asymmetric drift,
is defined by:

<vs> = <@+>— 0, = —X, where x is the lag velocity.

Thus, 8 = <ux>—<Us> = —<Us>, AE
Vo = <vi> —<Vi> = —x —<V=> AN
Wo = <wi> — <Wi> = —<Wi>, 1N
Define v'g = —<Vs> for a particular kinematic \\
group, i.e. v'g = Vg + X. The sun's velocity with AN
respect to such a group is therefore given by: S STAR

So = (We? + vie? +We?)1/2,

with its direction of motion determined by the inverse
of the motion of the centroid of the group.

Mathematical Solutions (seec Mihalas)

Define a system of
coordinates identical to the .
equatorial system, ie. yelotvee ¥ LS
X = rcosdcosa, R e i
y =rcosdsina,

z =718ind. X

The velocity components of a star with respect to the sun are X+-Xg, Y+—Yq, and Z+—Zg, which
can be dertved from the temporal derivatives of these basic equations.

i XX . 3 dr in & ¢os @—ICOSESs' da wee X2
ie. +Xo = F = c0s8cos oy ~ rsindcos oy inog vepriantiatohy
Y+Yq = 9 _ cosssinall — rsinssina + rcos5cos o do , velghie e LS,
dt dt dt dt :
Lty = 51% = sinS% + rcosa%?— .

Clearly, the terms in % are equivalent to the radial velocities Vg, while the terms in%% and Ccll_i are

equivalent to the proper motions pg and us. The above equations can therefore be simplified and
inverted by matrix algebra to the following form:

VR dx/dtijfcos dcoso cos & sina  sin &
T us = |dy/dt{j—sin 8 cos o ~sin § sin o cCOS &
I'fg COS D dz/dt ~sin o cos o 0

Mihalas demonstrates how the equations can be rearranged to permit least squares solutions for
X, Yo, and Zg from radial velocities as well as similar solutions for Xo/K, Yo/K, and Zy/K from
proper motions. The solutions involve the fact that the velocity components X«, Y, and Z+ for a
group of stars must average to zero because they are measured relative to the LSR. Therefore, the
components X+, Y#, and Z= of dx/dt, dy/dt, and dz/dt in the above equations can be eliminated
from the equations when averaged over a large enongh group of stars which are randomly
distributed across the celestial sphere. Likewise, any averages of terms which involve the
components Xx, Yx, and Z» must be equated with zero. This greatly simplifies the resulting series
of equations involving the various terms for the equatorial positions, radial velocities, proper
motions, and distances of stars in a typical kinematic group. The resulting series of equations to
obtain a least squares solution for the solar motion relative to a kinematic stellar group uses radial
velocities and positions only, and is given by:
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I N _ N _ ]
¥ c08%8; cos?ay Y cos28cosa;sina; Y cosd;sind;cos o;
Xo i=1 i=1 i=1
N . N . N | .
Yo ¥ c0s28;,cos o5 sin oy Y cos2§; sino; ¥ sin §; cos & sin o
i=1 i=1 i=1
Zo N . N . . N |
¥ c0osd;sind;cosa; Y COSS;sind; sin oy ¥ sin?§;
— = ki=] =] i=1 -
- _
-3 VRi C0$8;COS o5

1=1

N .
= | =X Vr;cosd;sino; | | which can be solved for Xo, Ye,, and Zo.
i=1

- g VRi sin§;

bhurver: '1=1 wed

The equations involving the proper motions are somewhat more complicated, since they involve
the unknown distances to the stars in the group. A solution in this case yields the values Xg/K,
Yo/K, and Zg/K, which are also of considerable value (see Mihalas for details).

In the case of a radial velocity solution or a proper motion solution for the solar motion, the
apex of the solar motion (direction of motion of the sun relative to the group) is given by:

Y Yo/K
tan oapex = j{’% = XJK
Zo Zo/K

fan Sypox = - ,
P Ko + Yo))? T [(Xo/K)? + (Yo/K)2]2

and the velocity of the solar motion is given by:

So = (K2 + Yo +Z6)'? = Kx [(Xo/K)? + (Yo/K)2 + (Zo/K)2] .

Note that the velocity of the sun relative to a group cannot be determined using only proper motion
data unless the distances to the stars in the group are also known so that K is specified.

All results for the solar motion which make use of least squares solutions for these
equations are kinematic estimates for the solar motion. The problem of deriving the
dynamical motion of the sun relative to the LSR makes use of such kinematic results in
conjunction with mathematical expectations for the rotation of the galactic disk.

From strictly qualitative arguments it is expected that the asymmetric drift for any group of
stars must depend directly upon the nature of the orbits for the stars in the group. For stars in
nearly circular orbits no asymmetric drift is expected, while for stars having a mix of
very eccentric orbits the asymmetric drift should be fairly significant. A group of stars having the
latter properties will also exhibit a fairly large dispersion in the component of their orbital motions
directed along the line-of-sight to the galactic centre, the IT velocities, whereas stars in strictly
circular orbits have no such component of their orbital motion. This correlation of
asymmetric drift with the dispersion in T velocities, opy2, for various kinematic groups
is also predicted from quantitative arguments, and proves to be a valuable tool for determining the
exact parameters for the sun's LSR velocity.
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X

FiG. 5-5. Equatorial rectangular coordinate system,

x=dcosdcosa
y=dcosésina (5-2)
z=dsiné

Differentiating equations (5-2) gives the components of the velocity of the
star relative to the sun:

X=X, — Xo =dcosdcosa — édsinscos a — ad cos 5 sin a
y=Y,— Yo =cfcosésin_a—édsinasina+c3¢dcoséc03a (5-3)
i=Z,—Zg=dsind+ ddcoss

where X, Y, and Z_ and X, Y, and Z are the velocity components of
the star and the sun, respectively, relative to the LSR. The quantity d stands
for the radial velocity in kilometers per second, and éd and &d cos o are
transverse velocities in kilometers per second, if & and & are expressed in
radians per second and d is expressed in kilometers.

Equations (5-3) can easily be solved for d, &, and § by direct inversion
of the matrix of coefficients, which is orthogonal, so that the inverse of the
matrix equals its transpose. We thus find

Xcosdcosa+ yeosdsine + Zsing=d (5-4a)
—X%sin 6 cos o ~ psindsina + 7cosé = dé (5-4b)
—Xsina + ycos a = dicos « (5-4¢)

SOLAR MOTION FROM RADIAL-VELOCITY DATA

We shall now see how equation (5-4a) can be used to derive the solar
motion from radial-velocity data alone. The velocity components X, Y,,
and Z, of the stars must average to zero, since they are referred to the LSR.
Thus, when averages are taken in equation (5-4a) over a large number of
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stars, the terms in X,, Y,, and Z, on the lefi-hand side drop out, leaving
only the terms in Xy, Yq, and Z. Suppose we observe V stars and have
N equations of the form (5-4a). We can then use these equations to deter-
mine Xo, Yo, and Zg by the method of least squares. This method requires
that we multiply each equation by the coefficient of X and then sum over
all N. In this way we obtain

N N N
3 %;cos?é;cos?a; + 2. Jicos?8;CoS a;sina; + 2 Z;C08 8;81n 8;COS a;
t=1 i=1 i=1
N
= ¥ d;C088;COSc;
i=1
Now consider the term
N N N
> %;cos?;costa; = Y. Xyuic0s?d;cos?a; — Xo 2. cos®§;cos® ay
i=1 i=1 i=1
By hypothesis, all averages over X, are zero; hence the first sum on the
right-hand side of the equation directly above is zero, and we have

N N
3 X%;cos?d;cos?a; = —Xg 2. COS*8;co8? a;

i=1 i=1

In a similar manner we can show that

N ¥
S pocostéicos o sina; = —Yg )0 08t d; COS e SIN @y
i=1 i=1
and
N X : uy .
S 7,c088;8ind;cos a; = —Z 2, COSJ;8in d; COS

{=1 i=1
Therefore the net effect of multiplying equation (5-4a) by the coefficient of X
and summing over all N stars is

N N
Xo X cos?é;cos?a; + Yo 2. cos?é; cos a;sina;
i =1

i=1 i=
N ) N
+ 753 cosd;sind;cosa; = — 3 d;€osd;cos oy (5-5)
i=1 i=1
We can now repeat this entire procedure using the coefficients of y and 2
in equation (5-4a) to obtain
N Kl N *
Xo X cos?é.cosassina; + Yo 2, cos?d,;sin® o
i=1 ¢=1

N N
+Z5 Y sing;cosdisine; = — 3 dicosd;sine; (35-6)
i=1 =1

1=

N N
Xo 3 cosé;sind;cos a; + Yo 2 €088, sin §; sin oy
i=1 i=1

N N
-+ Z@ Z sin?§; = — : d; sin 8 (5'7)
i=1 =1
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We end up with three linear equations, which may be solved directly for
Xo, Yo, and Z, since d,, a,, and §; are presumed known for each star. This
kind of an analysis can be carried out for different spectral classes, and the
detailed results are given in Table 5-3; typically, we find v =& 20 km/sec
in the direction a &~ 18" and & ~ 30°.

SOLAR MOTION FROM PROPER MOTIONS ALONE

Consider now equations (5-4b) and (5-4¢). Let us first convert d, &, and §
to the usual observational units: ¢, normally measured in parsecs, equals
1/x", where ='’ is the parallax in seconds of arc. Thus d = (I/7") X
206,265 X 1.497 X 10® km. The proper motions us; and u. cos 8 are normally
expressed in seconds of arc per year. Thus, for example, § in radians per
second is p}’/(206,265 X 3.156 X 107), so that éd = 4.74u}/z"". A similar
expression holds for &, namely, ad = 4.74ua’ cos 8/%"'. Therefore, after sub-
stituting in equations (5-46) and (5-4¢), we have

.. .. . . 474y
—X8NéCcOsa— ysindsina -+ ZCO86 = o

(5-8)

4.74u," cos §
Rl el (5-9)

—Xsina + ycosd =
Let us now proceed to find the solar motion. Consider a small area of sky,
so that all stars in the area have essentially the same a and the same é. Again
we argue that all averages over terms in X,, Y, and Z, will be zero, since
the motions of the stars are assumed random relative to the LSR. Therefore,
averaging over the stars in the chosen region we obtain

N o
X sin é cos o + Y@sinasina—zocosﬁ=iﬂ o
N =1 Ty

N 1
Xosina— Ygcosa = 4}3,4 2 cos?f‘“‘
i=1 :

T

T

The parallaxes r;’ of the individual stars are in general unknown. If we
assume the stars to liec at some mean distance d,, however, we can replace
m; by my, the parallax corresponding to db. In practice, to assure the valid-
ity of this assumption, we would initially choose stars of a given spectral
type which lie within a narrow apparent-magnitude range. Now, writing

o = 2 uo/N and @ = 3 us/N, we have
4.74ﬁ5
T

4743, cos b
o

Xosindcosa+ Ypsinssine — Zg cosd = = Kz

Xosinae — Ypcosa = = Ki,co8é

If there are R regions, we have R sets of such equations, which we again can
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solve by the least-squares method by taking moments as.described previously.
We thus obtain

R R
Xo ¥ sin?é;cos?a; + Yo >~ sin? §; sin a; cOS a;

i=1 i=1

R R
—Zg Y sing;cosd;cosa; = K 3, 8in &; cos a; (5-10)
i=1

i=1
R . - R . .
Xo 3 sin?é;sin a;cos o + Yo 2. sin® §; sin? a;
=1 i=1
B - . R . .
—Zg Y sinéd;cosd;sing; = K S @ sind;sina;  (5-11)

i=1 g=1

R B
Xo > sind;cosd.cosa:+ Yo >~ sin §; cos §; sin a;

1=1 i=1

R R
—Zo S costé; = K Y g cosd; (5-12)
=1

je=1

=

R R
Xo S sin?a; — Yo 2 sina;cosa; = K 3. A, sin a; €08 §; (5-13)

=1 i=1 i

I
—

R B
Xo Y sina;cosa; — Yo 2, cos?a; = K 3 4, COS a; COS ; (5-14)

i=1 i=1 i=1

Finally, if we add equations (53-10) to (5-13) and (5-11) to (5-14) to utilize
the proper-motion information as fully as possible, we obtain three equations
of the form

alX@ + b1Y@ + C1Z@ = Kgl

azX@ '+' ng@ —l-‘ CQZO = ng (5'15)

agX@ + bsYO + CaZG) = Kgg
which we may solve for X /K, Yo/K, and Zg/K. Then, ciearly,

o () )

and
(%)
K
tan 6o = oy NG (5-16)
() + (%))
giving the direction of the solar motion. Note that we get only the direction
of the solar motion, but not its magnitude.

SOLAR MOTION FROM SPACE MOTIGNS

If we know the distances to the stars under consideration, we can convert
their observed proper motions to transverse velocities, which, coupled with
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their radial velocities, yield the complete space motions of the stars with
respect to the sun. We may resolve each derived space velocity along the
axes of the standard coordinate system defined in Figure 5-1. We thus obtain

Hobs == H* —_ H@
Zobs - Z* - Z@
Z?obs = e* - e@

It should be emphasized at this stage that the direct observations give us no
information on I, Z,, 6,, Ilg, Z¢, or 85 themselves, but only on their
differences. Moreover, we should recall that 6, and 0 contain dominant
terms due to the overall rotation of the Galaxy. Reserving © as a general
symbol for any tangential velocity about the Galactic center, we shall use ¢
to denote differences in 0. Thus it follows that .. is independent of Galactic
rotation.
If we now average over a large number of stars, we obtain

(Mobsy = (I — [ _
(Zob3> = (Z*> - Z(D (5'17)
<ﬁ0b5> = (e*> — 6o

It is reasonable to suppose that both (II) and (Z,) are zero. This simply
asserts that we expect no net radial expansion or contraction of the Galaxy
near the sun, nor do we expect any systematic drift of stars away from the
Galactic plane. Therefore, from equation (5-17), we have directly

e = ""(Hobs}
Ly = "'(Zoba>

The situation with respect to the 6 components is considerably more com-
plicated and requires further clarification. Let us write 8, = 6, - ¢, and
8o = O 1+ J o, where O, represents the rotation velocity of the LSR around
the Galactic center. If we insert these terms into equation (5-17), we have

<"?ob-ﬁ:> = (ﬁ*> —dp

If we now use the kinematical definition of the LSR, the stars have no net
motions relative to it, so that (#,) = 0 and we can write

Fo = —(Dors) = (5-18)

This value of ¢ depends solely upon observations and is unambiguously
determined. However, as mentioned before, in dynamical studies it is con-
venient to define the LSR as moving on a circular orbit around the Galactic
center. With this dynamical definition of the LSR there is no longer a guaran-
tee that (d,) = 0; it will be zero if and only if all stars in the group are
moving precisely on circular orbits. In fact this is not true, and the dynamical
treatment given in Chapter 12 will show that, on the average, stars tend to
lag slightly behind the circular velocity, and (8} is really a small negative
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quantity. If we wish to use the dynamical definition of the LSR, we must
write

do = ) — {Fobs) = (5-19)

The reasons for introducing the special symbols & and @ in equations (5-18)
and (5-19) should now be obvious. We shall discuss in Section 5-6 how the
actual value of (#,) is determined.

5-5. Summary of Results

A large number of determinations of the solar motion have been made using
a wide variety of stellar types. The results are summarized in Table 5-3, which

TaBLE 5-3. Solar Motion and Velocity Dispersions

Solar motion (km/ sec) Velocity dispersions (km/sec)
Srellar type
1) S Zo (T2 (gBuz (Zwer (g /(122
Supergiants
O-B3 —90 134 37 12 11 9 0.92
F-M -79 117 6.5 13 9 7 0.69
Giants
A ~134 11.6 103 22 13 9 0.59
F -197 18.3 9.5 28 15 9 0.54
G - 72 111 6.9 26 18 15 0.69
KO —106 18,6 6.5 31 21 16 0.68
K3 — 90 176 6.4 31 21 17 0.638
M — 45 183 6.2 3 23 16 0.74
Main sequence
BO - 9.6 145 6.7 i0 9 6 0.90
A0 - 73 137 7.2 15 9 9 0.60
AS - 8.3 7.8 7.4 20 9 9 0.45
F3 ~101 123 6.2 27 17 17 0.63
GO —~145 2L1 6.4 26 18 20 0.69
G35 — 81 221 4.3 32 17 15 0.53
Ko —108 149 7.4 28 16 11 0.57
K5 — 95 224 5.8 35 20 16 0.57
MO — 61 146 6.9 32 21 19 0.65
M5 — 98 193 8.6 31 23 16 0.74

Source: Adapted from J. Delhaye, in A. Blaauw and M. Schmidt (eds.), Galactic
Structure, Chicago: University of Chicago Press, 1965, p. 71, by permission.

gives both the solar motions and the dispersions of the stars’ individual
velocity components (the significance of these dispersions will be explained
in Chapter 7). The plots in Figure 5-6 show the observed velocity components
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M. Schmidt (eds.), Galactic Structure, Chicago: University of Chicago Press, 1965, chap. 4,

by permission. ]

for A, gK, and dM stars, and their adopted mean values, which are the
negatives of 11, Z, and &,.
The means of all spectral types in Table 5-3 yields
IIg = —9.2 4+ 0.3 km/sec
Lo = 469 =+ 0.2 km/sec

(5-20)
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A mean for ¢ is not physically significant over so large a range in spectral i
types, as will be discussed in Section 5-6.

STANDARD SOLAR MOTION

The standard solar motion is defined to be the solar motion relative
to the majority of stars in general catalogs of radial velocity and proper
motion (types A through G, including dwarfs, giants, and supergiants). We
find

I = —10.4 km/sec
Jatg = 14.8 km/sec (5-21)
Zaya = 1.3 km/sec

These values lead to 1o = 19.5 km/sec in the direction ffa = 56°, bila = 23°.

BASIC SOLAR MOTION

The basic solar motion is defined by the velocities occurring most fre-
quently among the stars in the solar neighborhood. It is in good agreement
with the solar motion derived from A, gK, and dM stars. These three groups
give almost the same results, namely,

Masie Phasic Zbaaic
A —94 + 9.9 +5.6
gK —93 +10.7 +6.7
dM —3 +10 +6

Thus we adopt
Iasic = -9 krn/sec
Fpesic = 11 km/sec (5-22)
Zasic = 6 km/sec
which corresponds to vg = 15.4 km/sec in the direction /pase = 51° and
bgasic = 23°,

5-6. Determination of the Drift
between the Kinematical and Dynamical LSR

As mentioned previously, while we can determine I o, Z o, and &, we cannot
find ¢, directly. The difference between & and ¥, arises because the stars we
observe may have a systematic drift relative to the dynamical LSR. Dynamical
theory allows us to untangle the effects of this drift. We shall see later,

in Chapter 12, that

(©) — Oy =t — I = z(fi_z) 5) l:a };;” + Rl'(,( — %)} (5-23)
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Fig. 5-7. Correlation of % with (I1?). We see that the observed value of & is a linear
function of (II?) as predicted by equation (5-23). Extrapolating to (I} = 0, we estimate
& = 12 km/sec. [From J. Delhaye, in A. Blaauw and M. Schmidt (eds.), Galacric Structure,
Chicago: University of Chicago Press, 1965, by permission.]

so that «#, has essentially the form, 8, = & + C{II2), where (II? represents
the velocity dispersion in the II direction for stars of different spectral
classes. Thus, if we were to plot #, against (I12}, we should find a linear rela-
tion, with the intercept on the (II?) = 0 axis equal to #. When such a plot
is carried through, say with the data of Table 5-3, we obtain a diagram such
as that shown in Figure 5-7. A linear fit to the points gives & = 12 km/sec.
Thus, with the adopted means in the II and Z directions given in equa-
tion (5-20), we have
IIg = —9.2 km/sec % = 12 km/sec Zo = 6.9 km/sec

It must be emphasized that these velocity components represent the magni-
tude and direction of the solar motion relative to the dynamical LSR, in
contrast to the kinematical LSR. The values agree with the basic solar motion
to within the observational accuracies. (For further details see Ref. 3, chap. 4.)

5-7. Motion of the LSR
around the Center of the Galaxy

We would very much like to estimate 6,, the tangential velocity of the LSR
due to Galactic rotation. The difference between the kinematical and dynam-
ical LSR’s is negligible compared to the observational errors involved in
the determination of this rotational velocity, and we shall not distinguish
here between the two definitions. Basically, we must determine the velocity
of the sun relative to some inertial frame in the Galaxy. Two attempts have
thus far been made to define such an inertial frame.

GLOBULAR CLUSTERS

If we assume that the system of globular clusters does not rotate, on the
average, relative to an inertial frame in the Galaxy, then by measuring the
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radial velocities of the individual clusters (corrected for the solar motion),
we may determine 8,. Such radial velocities were obtained by N. U. Mayall
(Astrophys., J., 104, 291, 1946) for fifty globular clusters with the following
result:

0y = 200 £ 25 km/sec

in the direction (/T = §7°, bII = 0°). Additional data were later obtained
By T. D. Kinman (M.N., 119, 559, 1959) who, from a discussion of veloc-
ities for seventy clusters, obtained

9y = 167 £ 30 km/sec
in the direction perpendicular to the direction to the Galactic center.

LOCAL GROUP OF GALAXIES

If the galaxies in the Local Group (see Ref. 1, chap. 31) move at random
relative to our own Galaxy, then they also can be used to define an inertial
frame. Again, if we observe the radial velocities of these galaxies, we can
derive the velocity of the LSR due to galactic rotation. In this way Mayall
found

6, = 300 =+ 25 km/sec

in the direction (I = 87°, 6 = 0°). A more recent study by M. L. Hu-
mason and H. D, Wahlquist (Astron. J., 60, 254, 1955} yielded

6y = 292 4 32 km/sec

in the direction approximately (/I = 106°, ! = —6°).

Thus we infer that the rotation velocity of the LSR is about 250 km/sec
in the direction (/I = 90°, 5! = 0°); that is, the local standard of rest
appears to be executing a pure motion of revolution around the Galactic
center in the Galactic plane. This result is in agreement with our previous
qualitative arguments that an overall rotation of the Galaxy might be ex-
pected. We shall discuss the detailed properties of Galactic rotation in
Chapter 8. The velocity estimates given above should be regarded as only
qualitative indicators of 8, since there may actually be systematic motions
present in both globular clusters and the Local Group. In the first case, for
example, there is no a priori reason why the globular-cluster system must be
at rest relative to the Galaxy and might not possess some net rotation about
the Galactic center. Indeed, if we adopt the figure 6, = 250 km/sec, then
Kinman’s measures imply that the globular-cluster system has, in fact, a
rotation of about 80 km/sec with respect to the Galactic center. Alternatively,
our own Galaxy may have a characteristic motion relative to other Local
Group members, which could also affect the derived value of 6.
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Standard Solar Motion

The solar motion relative to stars forming the majority of objects in general catalogues of
radial velocity and proper motion is referred to as the standard solar motion. It is based upon
the derived space velocities of A to G-type dwarfs, giants, and supergiants, which yield:

ugid = —10.4 km/s , [Gomez et al. (1990) find —10.9 £0.5 km/s]
Vigtg = +14.8 km/s, [= viLsR + %]
wed = +7.3 km/s, [Gomez et al. (1990) find +7.1 £0.3 km/s]

corresponding to S = 19.5 kim/s towards I = 56°, bgg = +23°. It not identical to the sun's motion
relative to the LSR, but is neverthelesss an interesting parameter. Many radio astronomers have
erroneously adopted it as the LSR motion of the sun, and many studies of galactic structure have
subsequently been based upon this value. The inhomogeneity of the stars defining this motion for
the sun is evident in their large velocity dispersions. They do not represent a sample of stars which
is in circular motion about the galactic centre.

Basic Solar Motion

A more representative value for the sun's motion relative to nearby stars is defined by the
most frequently occurring velocities among stars in the solar neighbourhood. The appropriate
values are those found for A stars, K giants, and M dwarfs, namely:

Type 1PN Ve We
A gtars -9.4 0.5 km/s +9.9 km/s +5.6 0.2 km/s
K giants -9.3 0.9 km/s +10.7 km/s +6.7 £0.5 km/s
M dwatfs +12.6 km/s
M dwarfs —& +2 kan/s +10 km/s +6 £2 km/s
The resulting basic solar motion is given by the components:
ubsc = *'9 kn].I!S -
Vhse = +11 km/s,
Whse = +6 kln/S »

corresponding to S = 15.4 km/s towards Ipsc = 51°, bpge = +23°. This value is closer to the solar
motion relative to the dynamical L.SR, but is not identical to it.

Solar Motion Relative to the Dynamical LSR

As pointed out previously, the asymmetric drift of local groups of stars relative to the LSR
results in values for v'e which are larger than vg. Dynamical theory can be used to relate the drift
of a group with respect to the local circular velocity to the local galactic rotation constants A and B,
the distance Ry, to the galactic centre, the local density gradient of stars p(Ro), and the measured

dispersions ory, 6e , and oz in the I1, ©, and Z velocities. As derived in Mahalas: Lo KOH 7 Do

2 2 2
= v = ___on 2lnp dlnop 1 56 1 o2
”"‘<V'>“<@*>‘®°“2<A—B)[ a * o TR (1 ) on2) " Ro (1 . 0n2)]

In other words, <v=> ~ o2, so that a plot of <Vs> (= <vs> — vg) versus op? for various
kinematical groups in the disk should be linear with an intercept for op3? = 0 given by —ve. The
actual situation is somewhat more complicated than this owing to the spiral density wave of the
Galaxy, and ideally only well-mixed groups which have orbited the galactic centre at least once
appear to yield an uncontaminated value for ve. Evidence for the distinct nature of older stars from
those which have not travelled far from their places of birth can be found in Parenego's
discontinuity, which marks a distinct increase in the velocity dispersions of main-sequence stars
of speciral types F5 and later relative to hotter stars. A similar break is evident for giant stars of
spectral types G and later. The best results for the components of the solar motion relative to the
dynamical LSR found from a proper consideration of all factors are (from Turner): -
ue = —8.2 £0.6 km/s

7
kygxé‘(‘

Ve = +5.1 £0.5 km/s
we = +7.0+0.2 km/s
corresponding to S = 11.9 km/s towards ljg = 32°, bygr = +36°. C de wjzﬂfsfa?ﬁ%g °€
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Methods of Calculating 0,

The parameter 8, = O, is the circular velocity at the sun's distance Ry from the galactic
centre, Most current estimates for it concentrate between values of 220 km/s and 250 km/s. There
are several methods available for deriving 0, namely:

i. by determining the peculiar motion of the L.SR with respect to the halo population. Since
even halo stars are in orbit about the galactic centre, however, the value of ©y derived in this
manner may be a lower limit. The result of such an analysis yield a value of 8 2 220 km/s.

ii. by extrapolating the <V=> versus o2 curve 1o its extreme values for globular clusters.
This technique also has uncertainties owing to the unknown rate of rotation for the globular
cluster system about the galactic centre, as well as to the possible existence of two distinct
groups of globulars. An analysis of this type gives a value of 8y = 230 km/s.

iii. by examining the orbits of high velocity stars. High velocity stars are halo stars in
the solar neighbourhood which have high apparent velocities relative to the sun owing to the fact
that most of their orbital motion is along the direction to the galactic centre. The results of such an
analysis depend upon the assumption that afl such stars are bound to the Galaxy, and that their
orbits are governed by the mass of the Galaxy concentrated inside of the solar circle. The implied
value of @ is between 275 and 300 km/s with this last assumption, but may be ~50 km/s smaller
(i.e. ©y between 225 and 250 km/s) if one allows for a flat rotation curve.

iv. by searching for the gap in the distribution of @4-velocities for high velocity stars
caused by plunging disk stars. Such stars have plunging orbits about the galactic centre, so
that they are perturbed into much different orbits (possible even gaining escape velocity from the
Galaxy) during their perigalacticon passage. Such a gap is observed in the distribution of ©¢-
velocities for nearby stars (Carlberg & Innanen, AJ, 94, 666, 1987), and corresponds to @5 = 245
+10 km/s.

v. by determining the peculiar velocity of the sun relative to nearby galaxies in the
Local Group. This is not as simple a task as it might seem, owing to the intrinsic velocities of
other galaxies in the system. A recent estimate of the local circular velocity from such an analysis
is that of Arp (A&A, 156, 207, 1986 ), who finds ©, = 246 17 kim/s.

vi. by using the best estimates for the Oort constants A and B, since @, = (A — B)R,.
Clearly, an analysis of this type depends upon a concurrent best estimate for Ry, and assumes that
both A and B are well-determined. Most current estimates for Ry, lie in the range 7--10 kpc, while
Oort's A and B constants appear to lie in the range 10 km/s/kpc < A < 20 km/s/kpc and —15
km/s/kpc < B < -7 km/s/kpc, 1.e. 119 km/s < 6, < 350 km/s. With the more recent best estimates
of A =12.32-14.22 km/s/kpc and B = -11.85 km/s/kpc derived by Schwan (A&A, 198, 116,
1988), this range 1s further reduced to 169 km/s < 0, < 261 km/s.

16. Statistical Parallaxes and Secular Parallaxes

Trigonometric parallaxes are derived from the observable annual parallactic displacements
of stars in the sky resulting from the Earth's orbital motion about the sun. The systematic motion
of the sun with respect to the local system of stars results in secular displacements in the sky of the
observed positions of nearby stars, namely a large part of their observable proper motions. The
proper motion of any star therefore has two components — one which is a reflection of the sun's
motion relative to it, and the other which is due to its own peculiar motion. Nep

Denote a star's coordinates (right ascension
and declination) by o and 8, and the coordinates of
the solar apex by A and D. Denote the angular
distance of a star from the solar apex by A, and let
y represent the angle between the great circles
joining the star to the north celestial pole (NCP)
and the solar apex, where the angle is positive if
measured from north through west (see diagram).
According to the relations for a spherical triangle:
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cosh = cos(90°-8) cos (90°-D) + sin (90°-8) sin (90°~-D)cos (t—A) [Cosine Law],

or cosi = sindsinD + cosdcosD cos (a-A) .
sin(o—-A)  siny .

Also, _sin % = Sn0°D) [Sine Law],

or siny sinA = cosDsin (a—A) .

By the Four-Parts equation:
sinicosy = cos (90°-D) sin (90°-8) — sin (90°-D) cos (90°-5) cos (0—A) ,
or cosysind = cosésinD - sindcos D cos (a-A) .

These three equations can be used to establish values for A and values and quadrants for v from a
knowledge of the direction of the solar apex in combination with a star's coordinates.

The components of a star's proper motion
which are normally given in position catalogues are
Lgcos b and ug. It 1s more useful to consider the
different components v (upsilon) and t (tau), where
v is the component of the star's proper motion which
reflects the sun's motion through space (it is
measured along A towards the solar antapex) and 1is
the component perpendicular to this (it is measured
perpendicular to A northwards). The situation can be
envisaged on the celestial sphere, as shown at right.
Clearly,

v = Hg CO86C0s(90°—y) —ugcosy,
or V = Py COSdSsiny —ugcosy ,
and 1 = pycosdcosy + ussiny .

The upsilon components of proper motion clearly depend upon the distances to stars and the sun's
motion relative to them, while the tau components depend mostly upon the random space motions
of stars.

Secular Parallax (The Use of Upsilon Components)

Consider the situation described in the figure
at right. Denote the peculiar velocity of the sun
relative to a group of stars by ve. Recall the relation
for stellar tangential velocity:

v (kiv/s) = 4'14 =
for p in "/yr and the parallax = in arcseconds. This
can be rewritten as:

- BVT

B=474
For any star the » proper motion component is composed of two terms, one which is purely a
reflection of the solar motion, and the other which results from the star's peculiar velocity in that
direction, i.e.

To APgy

?

v o= v +T§V95in7\,

_ 474 -
If we consider a homogeneous group of stars distributed at random around the sky, it is possible to
derive a mean parallax <r> for the stars in the group through careful use of the above equation. A
proper statistical analysis of a homogeneous sample of stars would assign statistical weights to
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each star in the sample dependent upon the star's distance from the solar antapex, i.e. wj=sin A
Thus, the equation for v given above can also be rewritten:

N N N
. . n}v .

_Z‘l’uism A= _%U*i sink; + §4‘74O lzl'smz?ul .

1= 1= 1=
If the group of stars is truly randomly distributed in space, then we expect that:

N
S vsgsindy = 0.
i=t
N
4.74 Y visinij
kmp = ——%
ve 3 sinZij
i=1

A solation for <> in this instance requires only a knowledge of the proper motions and positions
of stars and the direction of the apex of motion (A, D) and velocity of the sun ve relative to the
stars in the group. It is somewhat easier to use the terminology:

N

<> = Yxi/N.
i=1
The equation for secular parallax with this terminology is therefore:

b = 4.74 <v sin >
# _gﬁ; Ve <sin?i>

This relationship can be used to estimate the mean absolute magnitudes of stars in such a group
using the standard equation for distance modulus:

ie. <Vg>—<My> = -Slog<n>-35,
) <Mvy> = <Vyo> + Slog<n> + 5.

Statistical Parallax (The Use of Tau Components}

The tau components of proper motion contain no component due to the sun's motion
relative to the group, only the single component due to the star's random space motion projected in
that direction. The component of the star's tangential velocity originating from this component of
its peculiar velocity is therefore given by:

4.74 14

vyl = - s

where absolute values have been used to isolate the magnitude of this component of the tangential
velocity. Note that the total space velocity of a star also contains a component in the direction of
the solar antapffex.

Stellar radial velocities vR also contain two components, one due to the star's peculiar
space velocity vsg, and one due to the solar motion, namely v cos .
i,e. VR = V#R— VgCOSA,Or V¥R = VR + VpCOshA (see figure on previous page).
A solution for the mean parallax of a group of stars using their tau components can be derived from
the equation in the previous paragraph,
. _ A4T4 <>
ie. ¥} = il
On average, however, <Ivpl> = <lvsgl> = <IVR + v COS AI>, if the stellar peculiar velocities are
randomly distributed.

: 4.74 <lztl>
%g&_ <lvp + vgCOSAI> °
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A solution for the mean parallax of a group of stars using the method of statistical parallax requires
a knowledge of the positions, proper motions, and radial velocities of the stars in the sample, as
well as a knowledge of the apex of motion (A, D) and velocity of the sun ve relative to the stars in
the group.
: Which method works best for any particular group of stars depends upon the particulars of
the group. Upsilon components appear to work best when the solar motion dominates the group
random velocities (i.e. v > <lv+r|>), while tau components work best when group motions
dominate (<lv«gl>> ve). Both techniques have been applied to B stars and, in particular, to RR
Lyrae variables (e.g. Clube & Jones, MNRAS, 190, 591, 1980; Heck & Lakaye, MNRAS, 184,
17, 1978; see review by Stothers, ApJ, 274, 20, 1983), which are too distant for direct
measurement of their distances by standard techniques. Both classes of object are also relatively
uncommon in terms of their local space densities, yet luminous enough that they can be seen to
large distances. Due to the general perturbations from smooth galactic orbits predicted in density-
wave theories of spiral structure, the assumptions used in the methods of statistical and secular
parallax may not be strictly satisfied by many statistical samples of stars. A knowledge of the
sun's motion relative to stars in the group is an important ingredient of statistical analyses of this
type, and should clearly be determined beforehand as accurately as possible. Differential galactic
rotation for distant stars may also be an important complicating factor.

17. Kinematic Groups

Once the LSR velocity of the sun is established, it is possible to plot the space motions of
various types of stars relative to the LSR. The corresponding u, v, and w velocities always exhibit
scatter, ie. the velocities have associated dispersions oy, oy, and oy, typically such that oy > oy
and o, > 6. The resulting distribution of LSR velocities describes an ellipsoidal cloud with the
w-axis (Z-axis) directed towards the galactic poles. This observed distribution of space velocities
relative to the LSR is referred to as the velocity ellipsoid.

The standard method of examining the velocity ellipsoid of nearby stars is to plot the space
velocities as projected on the galactic plane. The resulting distribution of u and v velocities is
expected to display an elliptical form with 6y > oy and with the principal axis directed towards the
galactic centre. The actual distibution of velocities is elliptical, but with its principal axis gencrally
skewed towards 1 = 30°-45°, instead of towards 1 = 0°. This skew angle is referred to as the
vertex deviation, and its cause is not fully known, although Eggen believes that it may be partly
due to the contamination of the nearby star sample by members of moving groups.

Moving groups, or superclusters, are collections of stars which apparently share
common galactic orbits with open clusters. They are therefore believed to represent the extended
clouds of stars which are associated with star cluster evaporation, or the dispersed remains of
previously-existing open (or, in one case, globular) clusters. In order for these stars to be still
identified with open clusters within the region of space including the solar neighbourhood, it is
necessary that all group members have common v-velocities (to within +1 km/s for older groups,
+2 km/s for younger groups) and similar u-velocities (to within £10 km/s, generally — this
representing the original dispersion of velocities in the parent cluster), with no restriction on w-
velocities (which are decoupled from the other components due to the gravitational attraction of the
galactiic plane). Details are given by Wooley (1965) and Eggen (1965) in Galactic Structure.

Since the derivation of the space velocity components u, v, and w for a star requires a
knowledge of the exact distance to the star, it is clearly necessary to have distance information
available for a group of stars before searching for common space velocities of some of them.
Many of Eggen's moving groups were delineated by allowing the unknown distance of each star to
be a floating variable. Usually, trigonometric parallaxes are available for enough stars with
measured proper motions and radial velocities that any potential moving groups can be detected by
their common v-velocities and similar u-velocities. Eggen proceeded to add candidate members to
these recognized groups, as well as to his newly delineated groups, by inferring distances for the
candidates in the first instance so that they fit well into a common colour-magnitude diagram for the
"oroup”, then adjusting the distance within standard constraints so that the u and v-velocities for all
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stars are "suitably close". Most of his moving group members have therefore not been selected on
the basis of exact distance data, and it should not be surprising to learn that follow-up studies of
some of them have not confirmed the expected chemical compositon homogeneity of group stars.
It appears that many field stars are collected in Eggen's tables of moving group "members”. The
reality of some of Eggen's moving groups may therefore be open to question, although the general
concept of moving groups being composed of escaped members of open clusters is quite valid.

High-velocity stars are stars in the solar neighbourhood which have high space
velocities relative to the LSR (see Roman, Galactic Structure, 1965). They are identified by their
large u, v, and w velocities with respect to the LSR, generally space velocities >> 50 km/s. Such
stars actually lag behind the LSR in 1ts orbital motion about the galactic centre, and have rather low
v-components of their orbital velocitics relative to the galactic centre. Their peculiar space motions
therefore originate in the unuosual nature of their galactic orbits, which is due to population
differences. High-velocity stars are all metal-poor, ultraviolet excess objects generally categorized
as being of intermediate Population II age and composition. They appear to be relatively old F, G,
K, and M subdwarfs and K giants somewhat more metal-rich than typical globular cluster stars,
which dynamically represent objects in highly elliptical orbits about the galactic centre. None have
orbital velocities which lag behind the LSR velocity by more than ~365 km/s, which is used to
constrain the local escape velocity, and no high-velocity stars are found moving ahead of the LSR
in the direction of galactic rotation (their velocity vectors trail behind the local galactic rotation),
Their proportion among nearby stars is listed in the following table:

Object Proportion of High-Velocity Members
Globular Clusters 100%
RR Lyrae Variables 2%
M Dwarfs 47%
K Dwarfs 18%
G Dwarfs 16%
K Giants 0%
G Giants 4%
F Dwarfs 3%
M Giants 2%

Note that stars have to be relatively metal-rich to reach the low effective temperatures typical of M
giants, so very few stars of this type are metal-poor high-velocity objects.

18. Galactic Rotation

The flatness of the Milky Way system, as evidenced for example by the narrow band of the
Milky Way visible from Earth, suggests that the Galaxy has been influenced by general rotation
about an axis perpendicular to the galactic plane. The expected rotation of the Galaxy should be
similar to what is found for any central force law (e.g. the solar system), namely differential
rotation. That is, the angular velocity of rotation, @ = v/1, should depend upon r, the distance
from the centre of the Galaxy. In some galaxies and in the innermost regions of our own Galaxy,
solid body rotation occurs; here w = constant = X, and v = Xr, i.e. v increases linearly with

increasing r. For Keplerian motion, v ~ 1A, ie. o ~ 1/r32,

Assume simple circular orbits about the centre of the Galaxy in the galactic plane, and
define © = the circular velocity at some distance R from the centre of the Galaxy, @, = the circular
velocity at Ry = the sun’s distance from the centre of the Galaxy, and 1 = the galactic longitude of
any object of interest in the galactic plane. The coordinates used here are defined so that the
velocities in the direction of the sun's motion, away from the galactic centre, and towards the north
galactic pole are @, T1, and Z, respectively. The observed radial velocity of the object at 1 relative to
the local standard of rest (LSR = the reference frame centred on the sun and orbiting the
galactic centre in the galactic plane at the local circular velocity) is given by (see diagram):
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VR = ©¢0s o — 0, 08 (90°-1) LSR
= O@cosa~@psinl. o
According to the Sine Law: (B
sinl _ sin (90°a) _ cos a
R™™ R =Ry
cos o = % sinl.

@Ro

VR = sinl — @y sinl

= R“{R R0:| sinl.

Since% = g and W,
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VR = RO (0)—030)81111.
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. Bo et bt
YR = Ry (0 — wo) sin 1 cos b. £on Y doving .

The observed tangential velocity of this object relative to the LSR is given by:
VT = @sina — 8y cosl (where v is measured positively in the direction of galactic rotation).
But Rsina = Rpcosl — d, where d is the distance to the object.

. _Ro d
sing = Rcosl—R.

Outside the galactic plane this becomes:

VT = B Rocos1~d) - eo(g)cosl— 2- %{Jcosl— d=Rg (®- o) cos 1 —ad .

LsRO >0,

ie. vy = Ry (w—=wmg) cosl~ad.

These equations are the general equations of
galactic rotation. If @ decreases with increasing
* distance from the galactic centre, then for any given
value of 1in the first (0° <1< 90°) and fourth (270° < -
1 < 360°) quadrants, the maximum value of © occurs Rs
at the tangent point along the line-of-sight, i.e. at
Ruin = Rp sin 1. This is evident from the diagram at OBJE<T
right, where: ) :
d = Rycosl. ~_ &
Ruin = Rp cos (90°-1) = Rysinl. Rwmin
vr{max) = ORuin) - O sinl. e &

Some approximations to the general formulae are possible for the situation where d << R,
If one expands the term (o — o) in a Taylor series expansion and omits higher order terms then:

(©—wg) = (R ~Re) [%]RO + LR =Ry [g_g]’-Ro +.. =~ R-Ry) [ﬁ—g]Ro

and wd = d{mo + (R - Rp) [g—g:lR } m mod (to a first approximation).
4]

t@_i[@]_Ld_@ e . [do] _ 1T7de B0
dR 7 dR LR RdR ~ R2’ dRIr, = RoldRig ~ Ry?
Also, for d << Rg, Rgp—R=dcos 1.

Thus, for relatively nearby objects in the galactic plane:
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ie. vR =-Adsin2l, or vr
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vr = d(Acos2] + B), ) =

4.74

(proper motion in galactic longitude).

The two constants A and B are referred to as Qort's constants.

Thus, A = —%Ro[g‘ﬁ] and B = A-qy.
{¢]

dR

Also, @ = go = A—B, and [gg]

; = 1[8 _ [de = _1[% _ [d®
e, A = 5 {Ro - [dR]RO} and B = -3 {Ro + [dR}RO} .

=-(A+B).

Recall that, for a given line of sight within the solar circle, a maximum valuc for w is

reached at the tangent point, where:

d = Rycosl, Rpin = Rpsinl.
i.e.  vp(max) = ©(Rpyin) — Oy sinl.

For d << Rg, we have:

(0-o0) ~ ®-Ro) |G|

= ®-Ro - [®]; 22 By

vrR(max) = Ry (omax — mé) sinl = R, FR: (Ro — Rpin) sin 1,

or vr(max} = 2AR, (1 -sin])sinl.

The actual relationship is a series, with the second order term generally being ~10% the magnitude

of the first order term:

€.g. VR{max) =

dle

2A Roe(1 - sml)sml + w(dRz

R, 3(1 - sinl)2sinl .

Studies of the radial velocities of stars in the first and fourth quadrants in order to determme
vR(max) generally yield values of AR lying in the range 135150 km/s.
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0pt1mum Values for the Galactic Rotation Constants

A summary of various studies of the galactic rotation constants {to 1986) is gwen by Kerr
& Lynden-Bell (MNRAS, 221, 1023, 1986). Note that, despite the paper's title ("Review of
Galactic Constants"), the varlous estimates are summarized, not reviewed. Here we try to review
the various estimates with a view to obtaining the optimum current values.

Oort's A & B

The predicted effects of galactic rotation on the radial velocities and proper motions of
nearby stars appear as a double sine wave dependence of the radial velocities with galactic
longitude and a double cosine wave dependence of the proper motions with galactic longitude, the
latter offset from zero by the Oort B term. Both effects are clearly seen in the available radial
velocity and proper motion data, but different studies have obtained values for A ranging from
11.6 km/s/kpe to 20.0 km/s/kpc, and values for B ranging from —7.0 km/s/kpc to —18 km/s/kpc.
A recent proper motion study from the Lick Northern Proper Motion Program (Hanson AlJ, 94,
409, 1987) yielded estimates of A = +11.31 £1.06 km/s/kpc and B = —13.91 +0.92 km/s/kpc,
while a study by Schwan (A&A, 198, 116, 1988) using FK5 system proper motions yielded
estimates of A = +12.32 (or 14.22) km/s/kpc and B = —11.85 km/s/kpc (no quoted uncertainties).
Radial velocity studies tend to give larger estimates for A, but this is possibly because they sample
a larger region of space where the approximations leading to Oort's equations break down. Best
estimates for A and B based only upon recent proper motion work are:

A = +12.5 +1.0 km/s/kpc , and

B = -12.5 #1.0 km/s/kpc .
This result has implications for the nature of the local galactic rotation. For the case of solid- -body
rotation with o = constant, one predicts that:

= Ry (w—-wmp) sinl = 0, and
VT = Rg(w—-wg)cosl—awd = —od = 474 4, orpy = Mﬁ = constant.
Neither of these predictions satisfy the observations, which means that differential rotation is
confirmed. Alternatively, it is possible that © is constant, at least locally. In this case,

de
[H-E]RO— 0, sothat A =-B.

The currently available data do appear to indicate that A = -B, so a constant circular velocity does
appear to exist locally The case for ©(R) = constant = 8o 1s referred to as a flat rotation curve, and
seems to be appropriate for nearly all spiral galaxies, not just the Milky Way. Available data from
radio studies indicate that the rotation curve of our Galaxy is fairly simple. It seems to obey solid
body rotation close to the galactic centre, and turns into a flat rotation curve in the outermost
regions, including the region at the sun's distance from the galactic centre.

Dynamical theory suggests that A and B should also be related through the parameters of
the velocity ellipsoid, namely that: '

B_ o _ 1
A T on2-0e?  op? ’
, (—-—2) -1
ce
o2 . B 1 . :
or (GH) =B _A=3 for a flat rotation curve.

In fact, as noted by Kerr & Lynden-Bell, many studies of this ratio do give values for the ratio

2 - ' .
(gn@) which are very close to 0.5, with typical values ranging from 0.36 to 0.50, and with late-

type giants (which presumably represent a dynamically relaxed system) giving values of 0.49 to
0.50, closest to the result predicted for a flat rotation curve.
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In section 15 we showed that the best value of @, resulting from the study of plunging disk
stars and the velocities of nearby members of the Local Group was & = 245 10 km/s, and
there seems to be no valid reason to modify this. Past studies have suggested values for 8,
ranging from 184 km/s to 275 km/s. The value of 250 km/s adopted by the JAU in 1964 was
recently adjusted downward to 222.2 kmy/s by Kerr & Lynden-Bell, but again there appears to be
no compelling reason to accept this. A value of 8, this small cannot be reconciled with the
velocities of nearby galaxies nor with the data for high-velocity stars.

Ro

Recent estimates for Ry, listed by Kerr & Lynden-Bell range from 6.8 kpc to 10.5 kpe. The
direct methods may actually not be capable of yielding a reliable value, given the current
uncertainties in the distance scale, so it is important to examine what the indirect methods produce.
A value for Ry can be derived using Oort's constants A and B with 6, since:

__® 245 (£10) km/s a

Ro = 7B = [i35@1.0) + 12.5 (XL.0)[km/s/kpe — 0-80 +0.89 kpe,
using the values quoted earlier. If one is willing to accept values of A = -B = 14.0 £1.0 km/s/kpc,
the resulting value of R, is 8.75 0.72 kpc.

One can also make use of the relationship for the maximum radial velocity along a line of
sight in the first and fourth quadrants, namely:

2
vr(max) = 2ARy(1 —sinl)sinl +2

26—}-{92 Re?(1 - sin)2sinl,
which, as noted, yields estimates of AR, = 135 to 150 km/s, although Kerr & Lynden-Bell list
values ranging from 103 to 156 km/s. Most of these estimates are susceptible to the adopted
values for the sun's LSR velocity, and may contain systematic errors. Recent studies (those since
1974) yield values of AR = 118 £15 km/s, which corresponds to Ry = 9.44 £1.42 kpc.
Another method of obtaining Ry is

through the use of zero-velocity stars, as LsR
illustrated in the diagram at right. Such
objects have no net radial velocity with
respect to the LSR, which means that they

share the same galactic orbital velocity as the Ro/?
sun, i.e. ®y. Their distances are therefore
given by:
d = 2Rpcosly,
_d . dsecly
S0 Ro = 2cosly — 2 Ge

The method is clearly susceptible to distance scale errors, to any local deviations from circular
motion, to any errors in the adopted LSR velocity of the sun, and even to slight errors in lo.
Crampton et al. (MNRAS, 176, 683, 1976) nevertheless obtained a value of Rq = 8.4 +1.0 kpe
using this method for B stars, and this is not a totally unreasonable result.

Some interesting new results have been derived using radio interferometry of the motion of
HO masers in the region of the galactic centre (Reid et al. ApJ, 330, 809, 1988). A value of Ry
= 7.1 +1.5 kpe was obtained using Sgr B2(N), while a value of Ry = 10.8 4.8 kpc is quoted
from the use of W51. Unfortunately, the exact results are susceptible to the adopted LSR velocity
of the sun, as well as to the particulars of the model. Perhaps.estimates based upon the detection
of planetary nebulae or Mira variables in the nuclear bulge should be given more credence. A value
of Rg = 8.1 kpc was obtained by Pottasch (A& A, 236, 231, 1990) using the planetary nebula
luminosity function, although it is not clear how susceptible this value is to reddening corrections.
Whitelock et al. (MNRAS, 248, 276, 1991) obtained a value of Ry = 8.6 £0.5 kpc using Mira’
variables, noting, however, that the uncertainty in their result might be larger than the quoted
value. Racine & Harris (AJ, 98, 1609, 1989) obtained Ry = 7.5 £0.9 kpe using globular
clusters in the nuclear bulge. It would appear that recent estimates of Rq fall in the range from 7.1
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to 8.6 kpc. All estimates appear to be susceptible to various problems. Ideally, however, any
adopted value must be consistent with the values obtained for Oort's constants, as emphasized by
Kerr & Lynden-Bell.

The best current estimates for the galactic rotation constants according to your instructor are
those summarized in the table below:

Parameter IAU (1964) IAU (1985) Turner
Ro 10 kpe 8.54 kpc 9.8 kpc
A +15 km/s/kpc +14.45 km/s/kpc +12.5 km/s/kpe
B -10 km/s/kpc -12.0 km/s/kpc -12.5 km/s/kpe
0o 250 km/s 222.2 km/s 245 km/s

19. Galactic Structure Studies

21-cm Radiation of . Hydrogen
The 21-cm radiation of neutral hydrogen gas is used to locate hydrogen clouds in the
galactic plane using information on their Doppler shifts in conjunction with the relationship for the
LSR-corrected radial velocity of an object in an orbit about the galactic centre, i.e. '
VR = Ro{w—-mp)sinl.
It is reasonable to assume that w(R) decreases with increasing 1, so that the maximum radial
motions of hydrogen clouds along the line of sight for 0° <1 < 90° (the 15t quadrant), and the
minimum radial motions of hydrogen clouds along the line of sight for 270° < | < 360° (the 4t
quadrant) occur at Rmip = Rp sin [, i.e. the tangent point, where:

VR = RO[R—O?in [~ %%] sinl =@-0sinl.

The maximurn and/or minimum observed radial velocities of hydrogen clouds along such lines of
sight in the 15t and 4% quadrants, respectively, must originate from gas located at the tangent
points, if there is any. In general terms there will always be some hydrogen gas at the tangent
points, but their maximum and/or minimum radial motions will be the vector sum of their orbital
motion about the galactic centre and their random space motions, which typically average 15-20
km/s. If ®¢ is known, it is possible to construct a relationship for ©(R sin 1) = vg(max) + @ sin 1
for 270° <1 < 90°. This relationship can be extrapolated to R > R, using mainly theoretical
expectations (see Blitz, Apl, 231, L115, 1979), and the resulting ©(R) relationship can then be
used with 21-cm observations of neutral hydrogen cloud velocity peaks to determine the R-
distribution of the higher density regions of hydrogen gas in the galactic plane. The velocities must
first be adjusted to the LSR, which is probably the most uncertain step.

The method works reasonably well in the 15t and 4t quadrants, where the @(R)
relationship is well established, and also gives fairly consistent results for the 2#d and 3rd
quadrants, For any line of sight there are always ambiguities in distance for clouds of any specific
radial velocity, since simple mathematical analysis indicates that clouds at two different distances
symmetric about Rpyjn must have identical radial motions. Such ambiguities can be resolved by
mapping the clouds in galactic latiitude b, since nearby clouds should subtend a larger angular
extent than distant clouds. The method also breaks down at 1 = 0° (towards the galactic centre) and
1 = 180° (towards the anticentre), since there are no predicted radial motions of material arising
from galactic rotation in these directions. Within these constraints, however, 21-cm maps exhibit a
distinct spiral arm picture which appears to be in fairly good agreement with the maps of other
spiral arm indicators, at least in the solar neighbourhood. Evidence for a warp in the distribution
of neutral hydrogen is also fairly obvious, with the galactic plane being warped north of b = 0°
towards 1 = 90° and south of b = 0° towards I = 270°, by perhaps 0.8 kpc at 1.5 R,. This is
usually explained as being due to an interaction of the Galaxy with the Large Magellanic Cloud, the
Small Magellanic Cloud, and the other objects in the Magellanic Stream. This feature should not
be confused with-Gould's Belt, which appears as a local tilting of the nearby spiral arm — below
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the galactic plane in the direction of the anticentre and above the plane towards the galactic centre.
It is also noteworthy that the hydrogen abundance decreases beyond the solar circle, a feature also
detected in the radio continuum data and seen in the decreased numbers of H 11 regions and massive
stars outside of the solar circle.

Molecular Lines

Radiation from the ubiquitous CO molecule can also be used to trace spiral features,
although most of the early studies concentrated upon the northern hemisphere. CO originates
mainly in large molecular clouds as does most neutral hydrogen, so the different maps from CO
and 21-cm radiation should complement each other. Radio molecular radiation is also generated at
the frequencies of OH and H2O in regions of star formation, so studies at these frequencies usually
yield different information about galactic structure than do 21-cm or CO maps.

Radio Continuum _

Inferences about the spiral structure of the Galaxy also come from detectable "steps” in the
continuous radiation from the galactic plane, which mostly originates from non-thermal
(synchrotron) radiation from interstellar gas which is spiralling along magnetic field lines.
Secondary sources of continuous radiation from the galactic plane include individual thermal
sources associated with H 11 regions. Radio continuum observations exhibit "steps” —
discontinuous changes in continuum intensity — as a function of galactic longitude, whenever the
line of sight becomes tangent to a spiral arm. Such "steps" have been detected in 21-cm maps,
optical light, and CO maps, as well as in radio continuum studies. In both CO and 21-cm maps,
the "steps” show up as distinct S-waves in the Vg distributions, and result from opposite
streaming motions of material on different sides of spiral arm features. Generally, such streaming
motions are in the same sense as galactic rotation on the outer edges of spiral arms, and opposite
the sense of galactic rotation on the inner edges of spiral arms. This behaviour is predicted in
density wave theory.

The prominent observable "steps” in the continuum radiation occur at the following
locations, with origins as indicated:

Step Associated Spiral Arm
13° Gatactic Nucleus?
31° ?

M° 1T Arm
52° Sagittaring-Carina Arm
& Cygnus Arm
263° Local (Cygnus) Arm?
286° Sagittarius-Carina Arm
~310° Scutum-Norma Arm
332° ?
337° ?

The detection of line radiation (mostly large n series members of neutral hydrogen — radio
recombination lines) from H 1I regions at radio frequencies can be used with the previous kinematic
predictions to map the distribution of H It regions in the galactic plane, similar to that done with 21-
cm data. The Georgelins, in particular, have published several papers in this area. Several nearby
H 11 regions have been studied using their optical Ho emission, while distant, obscured regions are
studied by first detecting them as thermal sources at radio wavelengths, and then searching for

_either radio continuum radiation from the sources or 21-¢m radiation from the neutral hydrogen
shells which inevitably surround H 1T regions. In some cases there has been confusion between
whether or not the sources are supernova remnants or H 11 regions, and this has often led to further
observational studies aimed at resolving the uncertainty.

Optical Tracers
Suitable optical tracers can also be used to map the spiral features, at least within about 4
kpc or so of the sun. The best tracers are always extremely young objects, namely H II regions,
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young clusters, OB associations, OB stars, R associations, type Ia supergiants (M or B-type),
Wolf-Rayet stars, and dust clouds (dark nebulae). Long period Cepheids were once touted as
potential spiral arm indicators, but it is not clear if they are truly suitable for this purpose. Most
long period Cepheids have ages comparable to those of open clusters with upper main-sequence
turnoffs of spectral type B2 or later, which corresponds to an age of several tens of millions of
years (>2 x 107 yrs) at least. Finally, star counts can often reveal local concentrations of stars
which might not be detected in any other way.

Several spiral arm features have been detected optically, although it is not exactly clear how
they fit together. Up to six main arms seem to be present in spatial plots of spiral arm indicators.
These are:

Outer Perseus Arm (+1I) roughly 4 kpc from the sun running from 1 = 150° to the

anticentre (I = 180°).

Perseus Arm (+]) roughly 2 kpc from the sun in the directions 1 = 100° to 150°.

Cygnus Arm (0) running from Cygnus (1 = 80°) possibly into a spur in Orion (1 = 200°)

just outside the sun's location in the Galaxy.

Carina-Sagittarius Arm (~I) roughly 1.5 kpc from the sun running from I = 30°to 1 =

280° through the direction of the galactic centre.

Norma-Scutum Arm (-If) roughly 3 kpc from the sun towards Norma (1 = 325°) and

Scutum (1 = 20°) through the direction of the galactic centre.
Norma Internal Arm (-III) roughly 5-6 kpc from the sun towards Norma (1 = 340°)?

The type of galaxy we inhabit can be determined from various parameters, namely the size
of the galactic bulge (visible optically}, the local orbital speed of disk stars, the separations of spiral
arms seen locally, and the value of Rq. It seems clear that the Milky Way is a supergiant spiral-
type galaxy, and its exact classification in the Hubble scheme would be Sb. The mass of the
Galaxy can be estimated from the local rotation constants using Kepler's Third Law, i.e.

(M1 + Mp) = a3/P2, _
where Mj and My are in Mg, a is in A.U., and P is in years. Adopting values of @o 245 km/s
and Ry = 9.5 kpc, and assuming the sun's mass to be neghglblc in comparison with the mass of
the Galaxy, Mg, we find:

a = 9.5 kpc x 1000 pe/kpe x 206265 AU/pc = 1.96x 10% AU.
circumference _ 2ma _ 27 x 1.96 x 109 A.U. x 1.5 x 108 km/A.U.

P = Orbital velocity = @ 545 km/s
 1.54x 10155 .
= 316 x 107 syr = 299 X 10° years.
8 (1.96x 109 AU) .
MG = P2 =239 x 108 yrs)z 132X 107 Mo

Since this must be an underestimate as a consequence of the manner of its derivation (it assumes
that all of the mass of the Galaxy is concentrated at its centre), the true mass of the Galaxy must be
in excess of 101 My, possibly 2--3 x 1011 Mg to account for the flat rotation curve. M31 has an
extimated mass of ~3 x 1011 M, presumably slightly greater than that of the Milky Way.

20. Propagation of Spiral Arm Patterns

Spiral Density Wave Theory
The gravitational density wave theory for generating splral arm patterns in disk galaxies is
~ essentially a theoretical-empirical scheme developed to explain the main features of spiral galaxies
like our own. The major developments came in a paper by Lin & Shu (ApJ, 140, 646, 1964),
although somewhat more readable summaries can be found in the review by Wielen (PASP, 86,
341, 1974) and in Shu's textbook The Physical Universe.
Many of the concepts of density wave theory are easier to grasp if one considers the simple
model for local stellar dynamics as developed in the first half of this century by Lindblad and Oort.
The basic characteristics of stellar velocity dispersions suggest that the observed small deviations
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from purely circular orbits about the galactic centre can be described to a good approximation using
elliptical epicycles whose centres describe circular motion in the direction of galactic rotation. The
mathematical implication of using epicycles is that each star makes harmonic oscillations about its
mean circular orbit position with a frequency given by x(R), where R is the distance from the
galactic centre. This epicyclic frequency x can be derived from the dynamical angular velocity w of

w(R) :
jfﬂ"

galactic rotation using the relationship:
R de
2 = 42 N de
x? = 4@ [1 t 354 dR]'
The axis ratio of the epicycle is given by the ratio x/2w,

so that, locally, we have: T
0o =YA~—B, hote bom W3 = cned

dof _ 24 Cimve gaﬁ&iﬂ) %7
[dR:[R TRy é,‘&'}:@-‘,”{c P
0 A DR Galactic
so that kg2 = 4(AMB)2{1 — mj] = —4B(A-B), cenier
Ko AN [-BT2 172
and 209 [1 - AWB} - [A—B] = 0.5

Thus, the tangential component of stellar orbital motion
is greater than the radial component.

Consider now a density wave of fixed spiral form described by the density law:

o(R,6,t) = o* ek,
where y = Popt ~ mé + &(R),
using a circular coordinate system (R,8) centred on the galactic centre and a phase function ®(R)
which is normally described by a logarithmic spiral,
ie. O® = ZiN m®RY, ok
where m is the number of components of the density wave (normally m = 2), op is the fixed
angular velocity of the density wave pattern, t is the time parameter, and k is the wavenumber of
- the density pattern, normally given by: c&@ . v

2 — 7 — .

Lk m(o - ay)] = < 2T ﬁms%/ %’

M= e [remeel] = g7 o ’5‘)9

vt

=

The pitch angle y of the spiral density pattern is given by:
m .

@y = R :

Although any number of arms are permitted in standard density wave theory, since m can
be any integer, it turns out that any value of m other than m = 2 is rather impractical. Single-armed
spirals (m = 1) do not appear to be very common, and do not appear to be stable configurations,
while m > 2 configurations severely limit the region of a galaxy where spiral arms can occur,
which also appears to be unrealistic. Thus, one expects that two-armed spirals (m = 2) are the
norm. There are certain locations in a spiral galaxy, however, where resonances occur between the
circular frequency ® of orbital motion, the epicyclic frequency x describing deviations from
smooth circular flow, and the pattern rotational frequency mp. These resonances occur when the
ratio (w - wp)/x takes on specific rational values. - The most important resonances are the
following: ’
i. Corotation. wp = o

ii. Inner Lindblad Resonance. wp = @

e
+
o R A

iii. Outer Lindblad Resonance. o =
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The resonance points correspond to locations in the galaxy where wave structures cannot exist, so
spiral wave patterns can only be produced between the regions of the inner and outer Lindblad
resonances. For galaxies with flat rotation curves,

K= \/E @,
and the inner and outer Lindblad resonances occur at:

R = (1++2/m)R,,
namely 0.293 Ry and 1.707 R, for m = 2. Note that the inner and outer Lindblad resonances for
m =4 occur at 0.646 R, and 1.354 R, respectively. Since the detected spiral arms in the Milky
Way are observed over a region of perhaps 8 kpc or more, it seems clear that m # 4 for our own
Galaxy, although m = 2 is permitted.

The response of various components of a typical galaxy to a passing density wave depends
directly upon the dispersion in their epicyclic frequences, i.e. upon op2. Interstellar gas and dust
has a fairly small dispersion in epicyclic frequencies, and responds much more nonlinearly to a
spiral density wave than do typical disk stars of larger dispersion. Halo objects have a very large
dispersion in their epicyclic frequencies, and do not respond at all to spiral density waves. Thus,
one predicts that interstellar gas and dust should exhibit a very pronounced spiral structure due to a
density wave distiibance, that disk stars should exhibit only a weak spiral structure, and that halo
stars should be unperturbed from their smooth spherical density distribution. The nonlinear shock
effects of gas and dust perturbed by a spiral density wave should trigger star formation as local gas
densities are pushed over the limit for Jeans' instability. The theory therefore predicts many of the
observable features of well-studied spiral galaxies like our own, namely:

1. dust clouds and gas clouds should lie along the inside edges of spiral arms defined optically,
since newly-formed stars will appear after the crest of the density wave has passed.
ii, the spiral pattern should disappear for the innermost and outermost regions of galaxies at the
~ location of the Lindblad resonances.
iii. there should be velocity discontinuities at the wave edges due to the response of the gas and
dust to the passing density wave.
iv. most spiral galaxies should be two-armed spirals.

Some of these features are indeed observed. The radial velocity discontinuities observed
on alternate sides of radio spiral arms and the streaming motions of stars on alternate sides of spiral
arms (Humphreys, A&A, 20, 29, 1972 — for Carina Arm) bear out the predictions from density
wave theory. However, the origin of density waves is another matter. Wielen lists several
potential generating mechanisms, including the gravitational influence of neighbouring galaxies, a
central asymmetry in the galactic nucleus, local gravitational instabilities in the disk, angular
momentum transfer from the inner to the outer parts of spiral galaxies, two-stream instabilities
between the different components of disk galaxies, and eruptive activity of galactic nuclei (as
originally suggested by Ambartsumian in 1958). All may play some role in driving the observed
spiral density waves of grand-design spirals.

Stochastic Self-Propagating Star Formation

Gerola & Seiden (Apl, 223, 129, 1978) and Seiden & Gerola (ApJ, 233, 56, 1979) have
used models to explore the possibility that star formation may be a continuous sequence which
evolves through the mechanics of H 1l region development and/or supernova remnant expansion
into nearby molecular clouds. In this way, the differential nature of galactic rotation assures that
newly-created clumps of stars generated by such a mechanism will be rapidly sheared into a spiral
form much like that observed in disk galaxies. The resulting models of spiral galaxies which are
produced through the continuous process of star formation and stellar evolution influencing nearby
regions have a rather feathery structure in comparison with the prominent structure of density wave
models. Such a mechanism is therefore unlikely to be the dominant mechanism for generating
spiral galaxies. It does, however, provide a means for producing offshoots from major spiral arms
like the Orion spur and Vulpecula features seen locally. Presumably such features are not part of
the main spiral density pattern in our Galaxy, and should not be used to trace the main spiral
pattern.
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21. Galactic Dynamics ¥

Force Law Perpendicular to the Galactic Plane (Mihalas 12-3)
Define the force exerted by the Galaxy in the z-direction to be K, which is measured ina
_Dbositive sense for positive values of z. The potenual energy of an object a distance z from the
¢~ 7 galagic plane is therefore given by: CUV‘M\M(

d(z) = — sz' dz',

0
where ®(z) and K,7are defined per unit stellar mass. If an object leaves the vicinity of the galactic
plane perpendicularly with a velocity Z, and reaches a height z above the plane with a velocity Z,
then: ,

%Zz +@(z) = %ZOZ from the relation for conservation of energy.

FA
%zz—ng'dz' =172,

In order to evaluate K;, it is useful to
consider a ring of material of radius x located a
distance z from the galactic plane. The force exerted
by this ring on a star located a distance z' above the
galactic plane contributes the amount 8(8K;") = 82K’
to Kz, and can be evaluated as follows. To the star it
appears that all of the mass of the shell is
concentrated at the centre of the shell, so the direction
of the force is towards this point. With the density
of the matter in the shell given by p(z), the
gravitational ferce exerﬁfi by the shell per unit stellar
mass is given by :

G2rxp(z)dxcosh

SZKz' SZ dZ
= 2nGp(z)dz§cose.
(zj— z#) ;
‘7""’3 But cose = =, and 2 = x2+(z —-2)?.
8Kz = 2nGp(z)dz (- #xdx

[x2 + (z' — 2)2)32 "
The contribution to K; of all such shells is found by integrating over all possible x-values, i.e.

X

ZnGp(z)dz(z Zj) J[xz T (Xd )2]3/2.

‘-F‘“) 81(11

. -1 =
2 Gp(2) dz (2 Zﬂf)[[x2 + (z' - z)2]1/2 }0

, I
— - 2’*"?(;(? ‘zi)zzgzl ~B _ 2Gpdz.

K, can now be found by integration over all shells dz:

Kz = 2zG l: {p(z)dz - jp(z) dz— ji)(z) dz]

By symmetry, p(-z) = p(z).
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-z' 0 z'

[p@dz = [p@dz, and Jpz)dz = [p(z)dz.

.
Ky = —4nG [p(z)dz.
For smali values of z ’ (z) (constant) / g }f‘ri\/) _ / _
s P =Po . / {" . | = Y o
g4 5}“: 204 -8 )
=

: Ky = 4nGppz', and —&f = AxGpo . /(
At large values of z one expects K, to have more of471/22 dependence, since the Galaxy begins to
look more like a massive slab at large distances-from the plane. The complete equation for K is

described by Poisson's equation, nam
1 %I% l =L ,g}}%ﬁ K 1s the radial dependence of the galactic force law.
For small z, the terms inK; are sfall and unimportant. The general relationship is therefore
usually written as:

VZo(z) = 4aGp .

Finding K; From Observations

The standard method used to derive K is to make use of stars as tracers of the z-potential
because their numbers and velocities can be derived. The standard techniques were developed by
Hill (BAN, 15, 1, 1960) and Oort (BAN, 15, 45, 1960) using K giants, as described by Mihalas.
The resulting force law is approximated by:

K, = <Zg2> din [\é(zz)/vo] ,
where v(z) is the relative number density of stars at z. The results by Hill and Oort indicate that
stars with the following Z-velocities will reach distances above the plane of:

oK,

ZO (kID/S) Zmax (pC) K. x 10% cm/sec?
9 —
9 100 o
37 500 .
60 1000 6
These results are obtained from the relationship given earlier: 5
z 4
1 r 1
522~({Kz-dz 25202, 3
2
which, with Z = 0 kim/s at z = zj4x, becomes: ]
Zmax | ] ] L L I 1 1 11
Zo2 = 2 [-Kpdz' . o 200 400 600 80D 1000
o z(pc)

According to the results of Hill and Qort, Kz = ~1.4 x 10~1* km/s? at z = 50 pc. Thus, with the
stellar units summarized by Mihalas (Chapter 9):

1 dKp . 232M, 1.4x 10-1¥4 km/s? 206265 x 1.496 x 108 km
PO = "4aG "dz T 4n(pox(km/s)d) 50pc pc
= 0.16 Mg/pc3.

Correction of this estimate for the terms in K still leaves a local mass density for the galactic plane
of pg = 0.15Mg/pc3. Best estimates for the local space densities of stars and gas are ~0.05 My/pc3
and ~0.03 Mg/pc3, respectively. This means that roughly half of the local density of matter must
be in some unobserved form, perhaps molecular clouds, black dwarfs, etc. This minor
discrepancy is an ongoing problem to be resolved, and is often investigated along with flat galactic
rotation curves. An interesting new insight into this problem has recently been provided by Soares

6 ~ 0,976 £ 0,08 Iﬂ@/?c}
From %;%QWJ (Z% 39
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(Rev.Mex. Astron.Astrofis., 24, 3, 1992), who demonstrates how a buoyancy force in the galactic
disk produces flat rotation curves without the need for introducing any missing matter.

Runaway Stars

Blaguw (ARA&A, 2, 213, 1964) describes runaway stars from OB associations as stars
characterized by similar ages and distances to the stars in particular OB associations, but with space
velocities of up to ~200 km/s relative to their parent associations. They appear to be reasonably
isotropically distributed about OB associations, and are mainly massive stars with masses in excess
of ~10Mp. They also appear to be mostly single systems, a fact which some researchers have
used to argue for their origin via slingshot ejections from massive binary systems during
supernovae explosions. The circular velocity in a typical massive binary system with M; + M, =
20Mg and a = 0.5 AU, for example, is v¢j; = 189 km/s [Recall that vy 2 = G(Mi1+Mjy)/a =298
km/s for objects in the solar system.]. In other words, the orbital velocities of stars in massive
binary systems are typically close to ~200 km/s, which must therefore be close to the ejection
velocities of stars from systems undergoing rapid mass loss via a supernova explosion. An
attractive alternate possibility is that OB runaways originate from interactions between stars in their
original OB clusters. Note that stars need only ~60 km/s of ejection velocity perpendicular to the
galactic plane to reach distances of 1 kpc above the plane. This may be important for explaining
the large numbers of early-type stars which have been found well away from the galactic plane
(Tobin & Kilkenny, MNRAS, 194, 937, 1981; Keenan & Dufton, MNRAS, 205, 435, 1983).




