
Computational Methods

in Astrophysics

Dr Rob Thacker (AT319E)

thacker@ap.smu.ca

Things to think about

◼ The investment in google data centres outstrip the largest

academic computing centres by orders of magnitude

◼ Several million square feet, several million cores, exabytes of disk,

running enormous (millions?) numbers of jobs

◼ Supposedly, Google processed 24 Petabytes of data *a day* in

2009!

◼ At that scale:

◼ Things break

◼ Programming for fault tolerance is an “If…then” PITA

◼ You can’t synchronize easily

◼ Amdahl’s Law is waiting to bite

History

◼ MapReduce was developed
at Google, key paper:

◼ “MapReduce: Simplified Data
Processing on Large Clusters”,
by Jeff Dean and Sanjay
Ghemawat, 2004

◼ It’s quite readable – take a look

◼ The implementation relies on
master/worker model

◼ Not seen at the user code level

◼ Allows fault tolerance to be
handled in multiple ways

A note: nothing ever stands still,

except MPI ;)
◼ Apache Mahout is a project to encapsulate a number of machine

learning algorithms in a resilient distributed environment
◼ Some of them are implemented using Hadoop but Mahout is now more

focused on Apache Spark implementations

◼ Mahout has adopted an R-like syntax for doing linear algebra
(“Samsara”)
◼ Runs on top of Spark (which of course has SparkR!)

◼ In short, the more people work in this area the more new tools
you can expect to see
◼ Compare to HPC where APIs were static on 2-3 year timescales

◼ That said, all new tools won’t be good, and if the web is anything to go
by, people will “reinvent the wheel”

◼ Hopefully you can pick a platform that works for you!

MapReduce and Hadoop

◼ Let’s make a distinction between the environment –
Hadoop – and the algorithm, MapReduce

◼ In essence Hadoop is a storage system combined with an
environment that supports certain types of (customizable)
batch processing

◼ There are a number of assumptions about the environment
and problem to be addressed
◼ The data is too large to be stored in the memory of a single

machine

◼ You are working on a distributed memory cluster with a distributed
file system that is so big failures are inevitable (Hadoop provides
the file system)
◼ Consequently, you can’t rely on specific machine stability! In other words

communication must be implicit not explicit

Hadoop – some history

◼ In 2002 Cutting and Cafarella set out to build a
new open source search engine, known as Nutch

◼ Progress is made, but the system is somewhat
limited

◼ Publication of the Google file system (2003) and
MapReduce (2004) give new approaches

◼ They implement in Java compared to C++ at
Google

◼ 2006 Cutting goes to work for Yahoo, the project
goes open source

◼ Project scales out to thousands of nodes &
petabytes over 3 years
◼ Version 1.0 in 2012, now at 3.3

Doug Cutting

All you need is MPI? Nope.

◼ We’ve discussed this a bit before, but really, take some time
to read
◼ http://www.dursi.ca/hpc-is-dying-and-mpi-is-killing-it/

◼ It’s deliberately polemic and provocative

◼ MPI has enormous flexibility, but with that comes great
responsibility
◼ It’s the parallel programming equivalent of machine code

◼ If you get everything right, it flies

◼ But there are many potential pitfalls

◼ MPI does teach you an enormous amount about the
complexities of parallelism
◼ But could you have spent that time more productively learning

other things? That’s is an interesting Q.

http://www.dursi.ca/hpc-is-dying-and-mpi-is-killing-it/

Simplifying

◼ In the paradigm we’ve been exploring, the parallel calculation
involves
◼ Domain decomposition of data

◼ In MPI this is incredibly explicit – different domain decompositions require
different codes

◼ Distribution of the computation
◼ This is somewhat less problematic and many programs are naturally written in an

SPMD-like form in MPI (but MPMD is possible too)

◼ Searching, ordering and counting are key steps in many aspects
of data analysis
◼ So how about creating a framework that can handle algorithms of a

certain type?
◼ Specifically: ones that involve a mapping (permutation step) and ones that involve

a summing (reduction) step

◼ It is limiting, but you can work within those limits

◼ All the detailed decomposition, node addressing, error checking etc can
be handled separately

The canonical example

◼ Counting the number of appearances of words in a text file

◼ Steps:

◼ 1) Distribute the data

◼ 2) Assign keys to the words (mapping step)

◼ 3) Count the keys locally

◼ 4) Sum the keys globally (usually involves some kind of
rearrangement and then a sum)

◼ 5) output the answer

◼ Important point: data come as keys (words) with a total
count that corresponds to the sum of appearances

◼ So associate a count with each key: pairs {key, count}

Algorithm diagram

cat in the cat

cat came back

the cat book

{back, 1}

{book, 1}

{came, 1}

{cat, 2}

{cat, 1}

{cat, 1}

{in, 1}

{the, 1}

{the, 1}

cat in the cat

cat came back

the cat book

{cat, 1}

{in, 1}

{the, 1}

{cat, 1}

{cat, 1}

{came, 1}

{back, 1}

{the, 1}

{cat, 1}

{book, 1}

{cat, 2}

{in, 1}

{the, 1}

{cat, 1}

{came, 1}

{back, 1}

{the, 1}

{cat, 1}

{book, 1}

{back, 1}

{book, 1}

{came, 1}

{cat, 4}

{in, 1}

{the, 2}

{back, 1}

{book, 1}

{came, 1}

{cat, 4}

{in, 1}

{the, 2}

Input distribute map (combine) shutffle/sort reduce output

{key, value} pairs define

the problem.

What else can be done in

MapReduce framework?
◼ From Dean and Ghemawat 2004:

◼ Distributed grep

◼ Count’s of URL access frequency

◼ Reverse web-link graph

◼ i.e. who links to me rather than who do I link to

◼ Plenty of others…

What can’t be done in

MapReduce
◼ A lot, but that’s unfair – it’s designed for a specific

approach, i.e. problems that can be partitioned and
distributed

◼ Iterative problems (e.g. calculate Fibonacci sequence)
obviously won’t map

◼ That’s a general problem for parallelism though

◼ Algorithms requiring shared global states – there’s only
one barrier in MapReduce

◼ Some Monte Carlo methods fit this

◼ This is again an efficiency problem for many parallel APIs

Area of the square:

As = (2r)2 or 4r2

Area of the circle, denoted

Ac= 𝞹 r2

◼ 𝞹 = 4 * Ac / As

◼ 𝞹 = 4 * count of pts
in the circle / count
of points in the square

Monte Carlo 𝞹

◼ Randomly generate points on [0,1] then scale to be

inside square

◼ Every task generates P points in square, check

which points fall inside circle, count those

◼ MAP (find ra = No of pts in circle)

◼ Need to gather all ra the count of all pts inside

circle

◼ REDUCE 4*(sum all ra)/(P * # of tasks)

Parallelised calculation of points on the circle (MAP)

Sum reduction of points then enables calculation of 𝞹

Monte Carlo 𝞹 - algorithm

Fault tolerance strategy

◼ In a master/worker model you can

◼ Monitor whether workers complete

◼ If not spawn the task that failed

◼ If master fails you just need to ensure you were storing its

state repeatedly

◼ Rare but happens

◼ Reported that google has lost 1600 machines in the

process of one job but still had it complete

◼ That is *mind blowing* - a single failure will take down most

MPI jobs!

Repeated execution vs redundant

execution
◼ How does the system know when something has failed?

◼ Maybe one node will take longer than another…

◼ Can check that nodes are still up – but that doesn’t tell you if there has
been a computational kernel crash or something similar

◼ What about having multiple versions running at the same time?
◼ Means you need to increase the size of the computational resources and

you will waste cycles

◼ But avoids the situation where one node delays the calculation because it
takes a long time due to external factors

◼ Try repeatedly running a problem that depends on a queue – you’ll get different
times…

◼ Additionally – sometimes the inputs are corrupt!
◼ If at least two calculations of the same value work go down, you can have

the computation continue without them

Coding

◼ User needs to code the mapper and reducer

◼ Within Hadoop these can be written in Java, Python,

C++

◼ We’ll consider Python examples which are remarkably

simple for the word count example

◼ These Python examples use a little trick

◼ Read from stdin and write to stdout

◼ Hadoop streaming takes care of ensuring these get piped to

the right places

Map & Reduce

◼ See http://www.michael-noll.com/tutorials/writing-

an-hadoop-mapreduce-program-in-python/

◼ There is some confusion over whether a Java jar file

needs to be created before running (e.g. using Jython)

◼ That is not the case

◼ As noted, Hadoop streaming API ensures inputs and outputs

are read correctly

◼ Note this example doesn’t have a local sum of words

before the sort stage

http://www.michael-noll.com/tutorials/writing-an-hadoop-mapreduce-program-in-python/

mapper.py

#!/usr/bin/env python

import sys

input comes from STDIN (standard input)

for line in sys.stdin:

remove leading and trailing whitespace

line = line.strip()

split the line into words

words = line.split()

increase counters

for word in words:

write the results to STDOUT (standard output);

what we output here will be the input for the

Reduce step, i.e. the input for reducer.py

#

tab-delimited; the trivial word count is 1

print '%s\t%s' % (word, 1)

This code needs to be made executable with chmod as well

reducer.py

This code needs to be made executable with chmod as well

#!/usr/bin/env python

from operator import itemgetter

import sys

current_word = None

current_count = 0

word = None

input comes from STDIN

for line in sys.stdin:

remove leading and trailing whitespace

line = line.strip()

parse the input we got from mapper.py

word, count = line.split('\t', 1)

convert count (currently a string) to int

try:

count = int(count)

except ValueError:

count was not a number, so silently

ignore/discard this line

continue

this IF-switch only works because Hadoop sorts map output

by key (here: word) before it is passed to the reducer

if current_word == word:

current_count += count

else:

if current_word:

write result to STDOUT

print '%s\t%s' % (current_word, current_count)

current_count = count

current_word = word

do not forget to output the last word if needed!

if current_word == word:

print '%s\t%s' % (current_word, current_count)

Steps to running

◼ The web tutorial discusses staging data to disk – no
need for us to do that here

◼ That’s the execution code!

◼ Number of tasks is usually determined by the number
of file blocks

◼ This can be optimized depending upon the nature of the
problem

hduser@ubuntu:/usr/local/hadoop$ bin/hadoop jar contrib/streaming/hadoop-*streaming*.jar \

-file /home/hduser/mapper.py -mapper /home/hduser/mapper.py \

-file /home/hduser/reducer.py -reducer /home/hduser/reducer.py \

-input /user/hduser/gutenberg/* -output /user/hduser/gutenberg-output

Example output

hduser@ubuntu:/usr/local/hadoop$ bin/hadoop jar contrib/streaming/hadoop-*streaming*.jar \

-mapper /home/hduser/mapper.py -reducer /home/hduser/reducer.py -input /user/hduser/gutenberg/* \

-output /user/hduser/gutenberg-output

additionalConfSpec_:null

null=@@@userJobConfProps_.get(stream.shipped.hadoopstreaming

packageJobJar: [/app/hadoop/tmp/hadoop-unjar54543/]

[] /tmp/streamjob54544.jar tmpDir=null

[...] INFO mapred.FileInputFormat: Total input paths to process : 7

[...] INFO streaming.StreamJob: getLocalDirs(): [/app/hadoop/tmp/mapred/local]

[...] INFO streaming.StreamJob: Running job: job_200803031615_0021

[...]

[...] INFO streaming.StreamJob: map 0% reduce 0%

[...] INFO streaming.StreamJob: map 43% reduce 0%

[...] INFO streaming.StreamJob: map 86% reduce 0%

[...] INFO streaming.StreamJob: map 100% reduce 0%

[...] INFO streaming.StreamJob: map 100% reduce 33%

[...] INFO streaming.StreamJob: map 100% reduce 70%

[...] INFO streaming.StreamJob: map 100% reduce 77%

[...] INFO streaming.StreamJob: map 100% reduce 100%

[...] INFO streaming.StreamJob: Job complete: job_200803031615_0021

[...] INFO streaming.StreamJob: Output: /user/hduser/gutenberg-output

hduser@ubuntu:/usr/local/hadoop$

Hadoop Distributed File System

(HDFS)
◼ Appears as a single disk system

◼ Runs on top of whatever the native disk system is e.g. ext3

◼ Daemon based system

◼ Key part: Namenode

◼ Manages file system namespace, metadata and file blocks

◼ Often described as running on one machine, but might be several

◼ Secondary Namenode

◼ Augments primary Namenode by doing an enormous amount of work on
the file system edit logs

◼ This can be transmitted back to primary Namenode to make restarts
easier

◼ Some people call the secondary Namenode the “checkpointing node”

Hadoop Distributed File System

(HDFS)
◼ The NameNode addresses the file which is split into 64

MB blocks and spread (+ replicated) across the

DataNodes

◼ Files are stored in the regular OS filesystem

◼ In practice data is written once and usually read many times

◼ Note 64MB is way larger than typical fs blocksizes (e.g. 4k)

◼ 1000s of DataNodes are anticipated

◼ DataNodes regularly inform the NameNode they are

operating – “heartbeats”, default is every 3 seconds

◼ If nothing is received for 10 mins – node is assumed dead

Slide by Hairong Kuang,

Yahoo!

HDFS Data Model

NameNode(Filename, replicationFactor, block-ids, …)

/users/user1/data/part-0, copies:2, {1,3}, …

/users/user1/data/part-1, copies:3, {2,4,5}, …

Datanodes

1 1

3
3

2

2
2

4

4

4

55

5

Astro computing goes to the

cloud
◼ While HPC remains wedded to large single machines,

Big Data most definitely isn’t

◼ “Infrastructure as a Service” i.e. cloud-based

commodity computing is now an industry standard

◼ can be used to provision infrastructure on-demand in the

cloud on a ‘pay as you go’ basis

◼ This is breaking the previous relationship of storing

data in a dedicated science archive data centre

◼ Although not all projects will choose this kind of abstraction

Astro computing goes to the

cloud - benefits
◼ The key idea is that off-loading management should

allow scientists to focus on science

◼ Data management techniques can effectively be shared

◼ Smaller projects should be able to re-use methodology

from larger ones

◼ Scaling of compute requirements should be easier

◼ In an era of PB data this is a big deal

◼ One query might need 1000s of processors

◼ The next one tens…

◼ Number of “white papers” on this for Astro2020

Astro computing goes to the

cloud - challenges
◼ Not all algorithms map well to the cloud

◼ Most think true “HPC” facilities will always be needed

◼ Storage and data movement costs

◼ Commercial cloud can be expensive to move data

◼ Possibilities for reducing costs via networking platforms

though

◼ Platform “lock-in” and reliance on commercial entities

◼ Vendors support specific platforms

◼ May not be as big a deal as once thought – rely on easily

deployable technologies e.g. Kubernetes

Summary

◼ MapReduce is conceptually simple in terms of the
operations

◼ You may have to jump through hoops to make your desired
algorithm fit that model (if it can)

◼ The complexity in Hadoop comes from scaling out to
1000s of machines

◼ Fault tolerance through replication, continued updates and a
master/worker model

◼ Problem sizes are naturally closely linked to the overall size of the
input file

◼ The space of parallel platforms is changing rapidly!

◼ And we didn’t even really talk about Spark!

