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Intro to machine learning

◼ Excellent & useful text: Introduction to Statistical Learning by 
James et al (6th edition, 2015)
◼ Many examples in R (book built around it)

◼ Highly recommend purchasing a copy

◼ Most of these notes are taken from it

◼ Key point – machine learning and statistical learning are very 
similar, but the latter is often more formal
◼ Being good at either (lot of overlap!) requires both a detailed knowledge 

of stats and algorithms

◼ Machine learning community generally more interested in new techniques 
rather than validation, tends to come from more CS angle

◼ Also suggestion that ML more interested in prediction, SL more 
interested in inference

◼ With “Big Data” such a hot topic both communities are 
extensively interested in it



Statistical learning

◼ Formally began in 1960s

◼ But one can legitimately argue least squares going all the way back 
to Gauss/Legendre is where things started (~1805)

◼ Note: neural networks predate – 1940s, 50s

◼ Original focus on function estimation based on data

◼ Blossomed in 1990s

◼ i.e. Support vector machine algorithms spurred interest in 
multidimensional fitting and algorithm development

◼ Papers are formal, lots of concerns about proof and model 
validity

◼ Evolution from math community is clear



Data & notation

◼ Helpful to formalize things just a little bit

◼ Denote all data by X, p variables, n samples so xij are 

components of the matrix X:

◼ Remember: row vector is ith sample (left example)

◼ Column vector: subsample of a given variable (right)



Data II

◼ The bolding of the subsample leads to the following 

notation with bold x (i.e. column vector of 

variables):

◼ Or equivalently (T=transpose) and x are not bolded, so 

representing a single sample vector but transposed into 

row



Nomenclature warnings

◼ Note it’s  more important that you understand the data 

representations than the precise definitions

◼ Different sub-fields may have different representations

◼ So don’t get wedded to one particular formalism

◼ In particular – capitals are often used to denote the set 

of all values of a given variable

◼ If you’re not sure what’s being represented don’t carry on 

reading - figure it out first!



Example

◼ Consider a situation where sales volume is to be 

predicted on the basis of marketing budgets (TV, radio, 

newspaper)

◼ Sales is the output variable denoted Y

◼ Marketing budgets are the input variables denoted X1,X2,X3



Example II

◼ Nomenclature (used interchangeably): 

◼ output variable = “response” = “dependent variable”

◼ Input variables = “indep. Variables” = “predictors” = 

“features”

◼ Y values obviously pair with values of X1,X2,X3 and we assume 

there is some relationship X=(combination of X values)

◼ Epsilon represents a random error term (indep of X) of mean 

zero

◼ f encompasses the systematic information X provides about Y

◼ The previous plots are not considering f’s that depend on more than one 

predictor



Inference vs prediction

◼



Prediction: Reducible errors

◼



Inference

◼ Suppose rather than knowing Y we want to know how it 
changes or is impacted by the various X

◼ Which predictors are associated with the response?

◼ Hopefully only a small number are

◼ What is the precise relationship between predictors and response?

◼ Could we consider linear? Do we need more complex?

◼ Consider the advertising example. Inference allows you to 
ask:

◼ Which variables are most important?

◼ Which sales medium produces biggest boost in sales?

◼ Caution: there is a somewhat blurry line once you start 
using inference to make predictions.



Supervised learning

◼ Thus far we’ve considered situations with (Y,X) pairs
◼ Every predictor has an associated response

◼ Frequently called the training data

◼ This is known as supervised learning
◼ Whether or not you are doing inference or prediction

◼ Linear regression is a good example of supervised learning
◼ More complicated algorithms like support vector machines are also 

examples of supervised learning

◼ But what if we don’t know what the response function is –
can we learn anything?

◼ Can also have semi-supervised learning where only some Y 
are known



Unsupervised learning

◼ Without response variable you can’t fit to anything –
regression is not possible, for example

◼ But we can learn about 

◼ Relationships between variables

◼ Relationships between observations (samples)

Clustering is a good 

example.

Do variables fall into 

distinct ranges, and how do 

these relate to the 

underlying data? 

Quite what the separate 

clusters may mean is not 

clear.

This is a discovery process.



Stats recap: Para vs non-para

◼



Non-Parametric

◼ What if we fit models that can change their functional 
form as we add more samples?

◼ Sounds great – except remember the “over-fitting” concern

◼ Simple example: Fit an n-point moving average

◼ Drawbacks: need ordered data, wiggly, poorly defined at end 
points (need equally spaced data too)

◼ Function is defined by all the samples, gets progressively 
larger with increase in sample space

◼ Can make more complicated using different weights 

◼ Weight more distant points less (`kernel smoothers’)

◼ Splines can be used as well lots of choices



How can we not have Dilbert?

◼ A little “bit” of humour



Non-parametric – a note

◼ Many people associate “non parametric” with ranked tests
◼ e.g. Spearman’s rank correlation

◼ Or with ordinal data, that while having a distinct order, doesn’t 
have an obvious measure between categories
◼ e.g. stress scale in patients

◼ Parametric models require data to be specified on an interval, or 
at least have defined intervals between data

◼ Non parametric methods also have advantages in smaller 
samples
◼ Not a concern here

◼ My take away is that “non parametric” in the machine/statistical 
learning sense, often means a non parametric model



Regression vs classification

◼ Data can be quantitative or categorical (qualitative)

◼ Quantitative: height, mass

◼ Categorical: gender, eye colour (often called “classes”)

◼ If data is quantitative we usually talk about regression

◼ Least squares is a simple example

◼ For categorical data, the task is classification

◼ Frustratingly, some approaches are still called regressions 
(consider yourselves warned)

◼ e.g. “logistic regression” uses categorical data
◼ The subtlety arises from estimating class probabilities – that allows 

you to define continuous functions that sample to discrete outcomes



Accuracy

◼ “No free lunch”

◼ No single statistical test or method is “best”
◼ Inevitably we tend to use what we know!

◼ Of course we need measures of quality of fit: e.g. Mean square 
error:

◼ This is easily evaluated for the training data – but who cares?
◼ We want to know about non-training data denoted y0,x0 (need sample)

◼ The test MSE rather than training MSE is what matters! 
◼ You may have test data available to use

◼ If you don’t just minimizing the MSE on training data may not be a good 
idea? Why? 



Beautiful example from ISL

◼ True data = 
black+rando
m

◼ Orange = 
least squares 
linear

◼ Blue, green 
progressively 
higher order 
smoothing 
splines

To much flexibility is not good – too much movement, too little is not either… 

Training MSE declines

monotonically

Test MSE is U-shaped

Blue spline

Appears best

Visual fit too



Huh!? Don’t try too hard!

◼ Lesson #1: The training MSE will be (except for freak 
situations) lower than the test MSE

◼ Lesson #2: The U-shape is a general feature of the 
MSE on test vs training data

◼ Lesson #3: Overfitting is a problem – noise is 
interpreted as signal

◼ How can we estimate the test MSE from the training 
MSE? 

◼ Tough question – so-called “cross validation” is one 
approach
◼ Idea is to sub-divide training set into training and test set



Linear model example



Strongly non-linear example

◼ This example also has smaller random component



Bias/variance tradeoffs

◼ “Beyond the scope of the book” to show that the MSE on 
repeated test data, x0, can be decomposed as follows:

◼ Where

◼ Variance determines how much things would change if we 
choose a different training set

◼ Bias reflects the accuracy of the underlying model 
assumptions
◼ e.g. A highly non-linear problem isn’t well fit by a linear model 



Bias vs variance

High Bias

High variance

High Bias

Low variance

Low Bias

Low variance

Low Bias

High variance



Bias/variance tradeoffs II

◼ As a general rule:

◼ The more flexibility in the method the more the variance will 

increase

◼ The bias will decrease

◼ From a low amount of flexibility, bias decreases faster 

than variance increases

◼ Initially, as flexibility is increased, MSE usually declines

◼ Beyond a certain point bias improvements “stop” and 

variance takes over

◼ Produces a U-shaped distribution



Bias/variance tradeoffs III

◼ Here are graphs of bias & variance for the “sine-like”, 

linear and non-linear examples considered earlier 

Highlights the 

challenges of  fitting 

well:

Easy to find low bias 

– just choose very 

flexible solution.

Finding lowest 

variance is harder.

Excellent way to think 

about the general 

problem of  fitting!

Here’s the kicker – in general we don’t have f  so we can’t do this explicitly anyway! 



Categorical variables

◼ For categorically variables we can test the number of 

times a class is predicted correctly – training error rate

◼ Define the indicator I to be 0 if training data matches

predicted, 1 if it fails

◼ Once we use the test data, test error rate is

◼ Clearly a good classifier is one for which the test error 

rate is close to minimal



Bayes Classifier

◼ The test error rate is minimized by a simple idea:
◼ Assign each observation to the most likely class given its predictor values

◼ i.e. we put a test observation in the class j for which

is largest 

◼ i.e. the conditional probability that Y=j given X=x0

◼ This is the “Bayes Classifier”

◼ For 2 classes P=0.5 into one class, P=0.5 into another defines 
the Bayes Decision Boundary

◼ For simulated data we know how they were generated, and thus 
can evaluate conditional probabilities

◼ For real data we cannot know the distributions, and so we must 
approximate



Fully computed Bayes Classifier



K-nearest neighbour

◼ Goal: estimate the conditional distribution of Y given 

X, then classify observation to class with highest 

estimated probability

◼ Consider an estimator that uses K nearest samples to a 

point

◼ Consider example



K-nearest neighbour II

◼ Point X has 2 blue and 1 

orange nearest

◼ 2/3 prob for blue, 1/3 for 

orange

◼ Assign X to blue!

◼ Can vary number of points 

as well



Comparison KNN vs BC



KNN is sensitive to K choice



KNN sensitive to K choice

◼ K=1 is “too flexible” finds structure that is not present 

in the true BDB

◼ High variance, low bias 

◼ Increasing to K=10 showed good agreement

◼ K=100 is the opposite to K=1, low variance, high bias

◼ The error rates follow a similar pattern to what we saw 

for MSE

◼ K=1 is 0.1695, K=100 is 0.1925

◼ BUT! K=10 is 0.1363 – lower than both



Test and training errors



Summary

◼ SL/ML have a lot in common – one more formal than the 
other

◼ SL methods focusing on improving the reducible error –
the irreducible error is beyond our means to change

◼ Most problems we consider are supervised learning – we 
have a training set of values to learn from
◼ Unsupervised learning is about discovering relationships

◼ Model fitting breaks down into bias and variance
◼ Increasing flexibility increases variance, but reduces bias producing 

U shaped curve

◼ For categorical variables, where the form of f is unknown, 
we can use KNN methods to explore parameter space


