PHYS4390 - Assignment 1

Due in Class on Wed, Feb 1, 2012 (Time allowed=two weeks)

Show all working.

(1) Cosmic rays hitting the top of the atmosphere (say 10 km up) generate showers of very short-lived particles. Typically the proper decay rate of these particles is less than 1 microsecond ($10^{-6} \mathrm{~s}$), yet many of them reach ground level. Estimate the difference between their speed and the speed of light.
(2) S and S^{\prime} are two inertial frames connected by a boost along the x-axis. At time $t=0$ photons are seen by an observer in S to pass through the origin with velocity $\mathbf{c}=\left(c_{x}, c_{y}, 0\right)$. Show from first principles (not simply using formulae for the transformation of velocities) that in frame S ' the photons have velocity $\mathbf{c}^{\prime}=\left(c_{x}^{\prime}, c_{y}^{\prime}, c_{z}^{\prime}\right)$ where

$$
\begin{gathered}
c_{x}^{\prime}=\left(c_{x}-v\right) L_{1}, \\
c_{y}^{\prime}=c_{y} L_{2}, \\
c_{z}^{\prime}=0
\end{gathered}
$$

where for a Galilean boost $L_{1}=L_{2}=1$, while for a Lorentz boost,

$$
\begin{gathered}
L_{1}=\left(1-\frac{c_{x} v}{c^{2}}\right)^{-1} \\
L_{2}=\frac{L_{1}}{\gamma} \\
\gamma=\left(1-\frac{v^{2}}{c^{2}}\right)^{-1 / 2}
\end{gathered}
$$

Check that in the case of a Lorentz boost $|\mathbf{c}|=\left|\mathbf{c}^{\prime}\right|$.
Next consider the Earth orbiting the Sun. Relative to a distant star (sufficiently distant that we can ignore the size of the Earth's orbit), at one point of the orbit the velocity will be $\mathbf{v}_{\text {Earth }}$ towards the star, while a half period later the velocity will be $-\mathbf{v}_{\text {Earth }}$ (away) from the star. The star also makes an angle θ relative to the xy-plane of the system:

This corresponds to the same physical situation as described in the first part of the question with $v \simeq 2 v_{\text {Earth }}$. Firstly, resolve the velocity vector cassociated with the light from the star that reaches Earth into its components which can be labelled c_{x}, c_{y}, c_{z} (which will be functions of θ) in the frame S . Given these components, derive expressions for $\tan \theta^{\prime}$ in the frame S^{\prime} as a function of $\sin \theta, \cos \theta, v$ and c, for both the Galilean and Lorentz transformations. Give a general formula for $\tan \theta^{\prime}$ (similar to that used in the earlier part of the question where L_{1} could take different values) where a factor A incorporates whether a Galilean or Lorentz transformation is used.
(3) Show that if $\left(x_{A}^{0}, x_{A}^{1}, x_{A}^{2}, x_{A}^{3}\right)$ and $\left(x_{B}^{0}, x_{B}^{1}, x_{B}^{2}, x_{B}^{3}\right)$ are any two points in 4D spacetime, then

$$
\eta_{\nu \mu}\left(x_{B}^{\mu}-x_{A}^{\mu}\right)\left(x_{B}^{\nu}-x_{A}^{\nu}\right)
$$

which can be written in matrix-vector form ($T=$ transpose)

$$
\left(\mathbf{x}_{B}-\mathbf{x}_{A}\right)^{T} \eta\left(\mathbf{x}_{B}-\mathbf{x}_{A}\right),
$$

is invariant under the inhomogeneous Lorentz Transformation

$$
x^{\prime \mu}=\Lambda_{\nu}^{\mu} x^{\nu}+b^{\mu}, \quad b^{\mu} \text { are constant, equivalently } \mathbf{x}^{\prime}=\Lambda \mathbf{x}+\mathbf{b},
$$

where the matrix for $\Lambda^{\mu}{ }_{\nu}$ is given by $\Lambda=R_{2} \Lambda_{B} R_{1}$ where R_{1}, R_{2} are spatial rotations, and Λ_{B} is a Lorentz boost in the x direction (we mentioned this point briefly in the lectures). (HINT: Use the matrix notation and think about how the 4×4 matrices corresponding to the spatial rotations will be constructed, for rotation matrices what does $R^{T} R$ equal?)
Deduce that the speed of light is invariant under this transformation.
(4) The equation of a straight line in a 4D spacetime can be written in the form

$$
\begin{equation*}
\frac{d^{2} x^{\mu}}{d s^{2}}=0 \tag{1}
\end{equation*}
$$

where $d s^{2}=\eta_{\mu \nu} d x^{\mu} d x^{\nu}$.
(a) What is the equation of this line in terms of the parameter s ?
(b) Show that for this equation in 4D space, the particle moves with uniform three-velocity in 3D space.
(c) If the line determined by equation 1 passes through the point with coordinates x_{i}^{μ} when $s=s_{i}$ and $\mathrm{i}=1$ or 2 , show that

$$
s_{21}=s_{2}-s_{1}=\left(\eta_{\mu \nu} \Delta x^{\mu} \Delta x^{\nu}\right)^{1 / 2}
$$

where $\Delta x^{\mu}=x_{2}^{\mu}-x_{1}^{\mu}$.
(5) Consider the following coordinate transformation from cartesian coordinates (x, y) to a new set of coordinates (μ, ν) :

$$
x=\mu \nu \quad y=\frac{1}{2}\left(\mu^{2}-\nu^{2}\right)
$$

(a) Sketch curves of constant μ and constant ν in the x, y plane.
(b) Transform the line element $d s^{2}=d x^{2}+d y^{2}$ into (μ, ν) coordinates.
(c) Do the curves of constant μ and constant ν intersect at right angles?
(d) Find the equation of a circle of radius R centered at the origin in terms of μ and ν.
(e) Calculate the ratio of the circumference to the diameter of the circle using (μ, ν) coordinates. Do you get the correct answer?

