
DBX PRIMER

David Clarke

March, 2003

I. Overview

DBX is an interactive debugging environment that allows run-time interaction with your
program for the purpose of uncovering programming bugs. DBX is generic in the sense that
some version or other is available on all UNIX platforms. In addition, most platforms offer a
window-based debugger based on DBX in which one can have separate portals to the source
code, values of various variables being monitored, the “break-points”, etc. As these window-
based debuggers are different for every system and change with the whim of the vendor, this
Primer will introduce DBX only.

II. Compiling your program for DBX

Under SOLARIS, the command

f77 -g -C -ftrap=common program

prepares your program for the debugger (-g option), flags all overflows, divides by zero, and
invalid operations (

√
x < 0) (-ftrap=common option), and checks to make sure all arrays

stay in bounds (i.e., that you don’t try to access arr(11) when arr is declared with only
ten elements) (-C option).

Once compiled, type

dbx a.out

to put you into the DBX environment. After a header of about 30 or so relatively useless
messages, you will find a ridiculously long prompt after which you are to enter your DBX
commands.

III. DBX syntax

1. list n,m

Lists lines n, m in the current module, i.e., the module in which execution has paused. When
DBX is first fired up, you are paused just before the first line of the main program. You
need to know line numbers for setting breakpoints , namely locations in the program where
you wish to pause execution so you can probe the values of various variables, and these line
numbers appear on the far left of the list listing.

1



2. stop in modulename

Sets a breakpoint right at the top of module modulename.

3. stop at n

Sets a break point at line n, where n is the left-most number of the listing generated by
list. If line n is not an executable line (e.g., a comment), the breakpoint is set to the first
executable line following.

4. stop at n -if expression

This is a conditional breakpoint, and applies equally well to the stop in command. Execu-
tion is stopped at line n only if the expression indicated is true. This is particularly useful
for stopping inside a long do-loop. For example, if I wanted to probe the value for d(i,j)

when j = 67 and i = 33 in the following coding snippet:

210 do j=1,jmax

211 do i=1,imax

212 d(i,j) = d(i,j) - (mflx(i+1) - mflx(i)) * dt / vol(i)

213 e(i,j) = e(i,j) - (eflx(i+1) - eflx(i)) * dt / vol(i)

214 enddo

215 enddo

I would issue the following commands:

stop at 211 -if j==67

cont

stop at 212 -if i==33

cont

The minus sign in front of the if and double equals sign (both absent in the original DBX)
are examples of what happens when computer scientists get their hands on perfectly good
software.

5. status

Lists all current breakpoints. If you are currently stopped at a breakpoint, it will have an
asterisk to the far left of the status listing. The breakpoint numbers appearing on the left
of the list are how you refer to breakpoints when you want to, for example, delete them (next
paragraph).

6. delete n m

Deletes breakpoints n and m, where n and m are the breakpoint numbers on the list generated
by status.

7. run

Begins execution of the program from the very beginning, and continues until the first
breakpoint is reached. Execution is stopped just before the line of the breakpoint is executed.

2



8. cont

Continues execution from the current location, and up to but not including the next break-
point.

9. next

Executes the next line of the current module, then stops. If the next line is a call to
a subroutine, that entire subroutine is executed so that execution is paused in the same
module.

10. step

Executes the next line encountered. If the next line is a subroutine call, then execution is
broken at the first line of the subroutine, and you are now paused inside the subroutine,
rather than the calling module.

11. where

If you lose track of where you are. . .

12. print variablename

Prints the value of the variable on the screen. If variablename is an array, all elements of
the array are printed (or perhaps the first hundred values, I forget). To print just a portion
of variablename if it is an array, type

print variablename(m1:m2,n1:n2,...)

where a specific range is specified for every dimension of the array.

13. assign expression

Sometimes, you want to see what would happen if the value of a variable were to change.
The assign statement allows you to do this. For example, if iter were the variable keeping
track of the number of iterations, and you wanted to test your escape trap for when iter

exceeds the maximum allowed value (say 100), then you might type:

assign iter=101

cont

14. Control-C

Control-C is captured by DBX, and stops the execution of your program without exiting
DBX. In fact, it gives you a DBX prompt, which you can use to find out where you are, set
more breakpoints, probe variable values, or quit.

15. quit

Exits from DBX.

3


