
PHYS 3437: Computational Methods in Physics, Assignment 2

Set January 27th due Feb 26th

NOTE: This assignment is potentially quite lengthy if you are currently developing your
programming skills. If so, I strongly advise you to make a start on the assignment as soon as
possible. While you have a significant amount of time to get this assignment done, I strongly
recommend you don’t leave it until reading week. I have posted a code to get you started
on the website (see notes below).

Write a computer program (in the language of your choice, but so long as I can run it on
CRUX from the unix prompt) which will find the roots of a given function. Design the
program so the user has the following options:

1. root brackets

• user can specify specific brackets between which a single root is sought, or

• user can ask that a “global bracket finder” (pseudo-code appended) be used.

2. root-finding algorithm

• hybrid bisection/Newton-Raphson

• hybrid bisection/Secant

• Müller-Brent (i.e., hybrid bisection/Müller)

3. function specification

• The user should be able to add or replace two FORTRAN functions to your
program, where the first function describes the function whose roots are to be
found, and the second function describes the derivative.

To get you started, the listing of a fully debugged program called rootnr has been added
at the end of this assignment (you may download and use the copy from the website).
This program performs only the hybrid bisection/Newton-Raphson method, and requires
the user to enter specific brackets surrounding each root to be found. You will have to
modify this program to add the global bracket finder and the other two root-finding methods.
Alternatively, you may start your own program from scratch.

To put your new root-finder and global bracket finder to work, use the Müller-Brent method
to find all the energy levels of an electron, me = 9.1093897× 10−31 kg, in a potential square
well of depth V0 = 100 eV (1 eV = 1.6021774× 10−19 J) and half-width a = 2 Å (2× 10−10

m) using the transcendental expressions given in class, namely:

ξ tan ξ −
√

η2 − ξ2 = 0, Class I, even

ξ cot ξ +
√

η2 − ξ2 = 0, Class II, odd
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where
ξ =

√
2mE

a

h̄
and η =

√
2mV0

a

h̄
.

where h̄ = 1.0545727 × 10−34 Js. Report your roots accurate to eight significant figures.
Thus, you must use the constants (e.g., me, etc.) with all eight significant figures given,
and your code must be double precision (all reals declared as real*8). Note that obtaining
numerical values for ξ will allow you to compute values for E from the above expression.
Note also that 0 < E < V0 = 100 eV, and thus this problem places natural global limits on
ξ for the purposes of your global bracket finder.

To be supplied as part of your solution:

1. Send an email with your name, class and assignment number in the subject header,
i.e. Smith: 3437 Assignment 2 and attach your program to this email.

2. On paper, hand in a list each of the energy levels found in the square well problem
(expressed in eV) to eight significant figures. Submit also a single graph with each of
the four functions

f(ξ) = ξ tan ξ, g(ξ) = ξ cot ξ, h(ξ) = ±
√

η2 − ξ2

plotted (e.g., gnuplot) and identify each of the roots found by circling the relevant
points where two of these functions intersect.

3. I will insert a function into your code to test your root finder on a challenging function.
In your paper submission tell me the name of the function whose roots are sought in
the version of your code submitted for examination (so I can modify it to link up my
function).

4. If your program is not in FORTRAN, give a complete description on how to compile
your program and link FORTRAN functions to your program (so I can link my test
functions to it). While I have some experience of linking FORTRAN functions to other
languages I will not put significant effort into this. Pleasure ensure your instructions
are clear, simple, and do not require any significant effort on my part. I simply don’t
have time to debug, or look up anything in manuals.

A third of your grade will be based on the solution to the square well problem.

I shall use your root-finder and global bracket finder to find the multiple roots of a rather
bouncy transcendental equation, and a third of your grade will be based on how well your
program performs on this function. Does it find all the roots? Does it erroneously identify
odd-poles (where the function leaves the graph at ±∞ and returns from ∓∞) as roots?
If so, can you think of a way to modify the algorithm to distinguish between
odd-poles and roots? Do all three root-finding methods work?

The last third of your grade will be based on how well documented and structured your
code is, how readable it is, how free it is from programming sloppiness (e.g., mixed type
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arithmetic), and how efficient it is (thus, leave the cpu timing statements from the program
I gave you in your program). The program attached would get full points in this regard.

Finally, each program should be an individual effort; no “group programs” please. You may
consult with each other and share ideas, but I want each program to be unique (other than
rootnr, should you decide to start with it).

program rootnr
c
c written by: A Busy Code Developer, January 2003
c modified 1:
c
c PURPOSE: This program finds the root of a given function that
c lies between the input bounds using the hybrid Newton-Raphson/
c bisection method.
c
c-----------------------------------------------------------------------
c

implicit none
c

integer niter
real*8 xl , xr , root , maxerr , err
real*8 fofx , dfdx
real cputot , etime

c
real tdummy ( 2)

c
external binrph , fofx , dfdx

c
data maxerr

1 / 5.0d-9 /
c
c-----------------------------------------------------------------------
c
c Start up CPU time counter.
c

cputot = etime ( tdummy )
c
c Ask for initial limits/guesses.
c

write(6, 2010)
read (5, *) xl, xr

c
c Compute and report root, if any. "niter" is returned as zero if
c no root is found. Otherwise, it is the number of iterations taken to
c converge on the root.
c

call binrph ( xl, xr, root, fofx, dfdx, maxerr, err, niter )
c

if (niter .gt. 0) then
write(6, 2020) root, err, niter

else
write(6, 2030) xl, xr

endif
c
c End CPU time counter, and report cpu time used.

3



c
cputot = etime ( tdummy ) - cputot
write(6, 2040) cputot

c
stop

c
2010 format(’ROOTNR : Enter xL and xR such that f(xL)*f(xR) < 0.’

1 ,’ Thus, xL < root < xR.’)
2020 format(’ROOTNR : Root = ’,1pg22.15,’ +/- ’,g9.2

1 ,’ after ’,i3,’ iterations.’)
2030 format(’ROOTNR : No root found in domain (’,1pg12.5

1 ,’, ’,g12.5,’).’)
2040 format(’ROOTNR : Total cpu usage for this run is ’,1pg12.5

1 ,’ seconds.’)
c

end
c
c=======================================================================
c

subroutine binrph ( xl, xr, xn, f, fprime, maxerr, err, iter )
c
c written by: A Busy Code Developer, January 2003
c modified 1:
c
c PURPOSE: This routine performs the hybrid bisection/Newton-Raphson
c method to find the root of a function.
c
c-----------------------------------------------------------------------
c

implicit none
c

integer iter , maxiter
real*8 xl , xr , xn , xnp1 , fxl

1 , fxr , fxn , dfxn , err , ferr
2 , maxerr , small

real*8 f , fprime
c

data maxiter , small
1 / 30 , 1.0d-99 /

c
c-----------------------------------------------------------------------
c
c Initialise variables.
c

iter = 0
fxl = f(xl)
fxr = f(xr)

c
c Data validation: Make sure root lies in between the left- and
c right-hand value. If not, return iter=0 to the calling routine.
c

if (fxl*fxr .gt. 0.0d0) then
write (6, 2010) xl, xr
return

endif
c
c Starting values for "xn", "fxn", and "dfxn".
c

if (abs(fxl) .lt. abs(fxr)) then
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xn = xl
fxn = fxl

else
xn = xr
fxn = fxr

endif
dfxn = fprime(xn)

c
c-----------------------------------------------------------------------
c----- Top of hybrid loop. ---------------------------------------------
c-----------------------------------------------------------------------
c
10 continue

iter = iter + 1
c
c Evaluate the next Newton-Raphson guess.
c

xnp1 = xn - fxn / ( dfxn + small )
c
c If NR step is not justified, take a bisection step instead.
c

if ( (xl .lt. xnp1) .and. (xnp1 .lt. xr) ) then
write (6, 2020) iter, xnp1

else
xnp1 = 0.5d0 * ( xl + xr )
write (6, 2030) iter, xnp1

endif
c
c Evaluate error estimate and set new guess.
c

err = abs ( xnp1 - xn )
xn = xnp1

c
c If the fractional error of "xn" is less than "maxerr", the root
c has been found---execution is returned to calling routine.
c

ferr = err / ( abs (xn) + small )
if ( ferr .le. maxerr ) go to 20

c
c If the maximum number of iterations has been reached, abort.
c

if ( iter .ge. maxiter ) then
write (6, 2040) maxiter, xn, err
stop

endif
c
c Prepare for next iteration.
c

fxn = f (xn)
dfxn = fprime(xn)

c
c Determine which half of the interval (xl,xr) the root is in, and
c reset either xr or xl as appropriate.
c

if ( fxl * fxn .le. 0.0d0 ) then
xr = xn
fxr = fxn

else
xl = xn
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fxl = fxn
endif
go to 10

20 continue
c
c-----------------------------------------------------------------------
c----- Bottom of hybrid loop. ------------------------------------------
c-----------------------------------------------------------------------
c
2010 format(’BINRPH : No unique root lies between the specified’

1 ,’ limits:’,/
2 ,’BINRPH : xl = ’, 1pg12.5,’, and xr = ’,g12.5)

2020 format(’BINRPH : Iteration: ’,i3,’ - NEWTON/RAPHSON: root =’
1 ,1pg22.15)

2030 format(’BINRPH : Iteration: ’,i3,’ - BISECTION : root =’
1 ,1pg22.15)

2040 format(’BINRPH : Maximum number of iterations ’,i9
1 ,’ exceeded.’,/
2 ,’BINRPH : Best guess at root is ’,1pg22.15
3 ,’ +/- ’,g9.2,’. Abort!’)

c
return
end

c
c=======================================================================
c

function fofx ( x )
c
c written by: A Busy Code Developer, January 2003
c modified 1:
c
c PURPOSE: This routine returns the value of cos(x) - x.
c
c-----------------------------------------------------------------------
c

implicit none
c

real*8 x , fofx
c
c-----------------------------------------------------------------------
c

fofx = cos(x) - x
c

return
end

c
c=======================================================================
c

function dfdx ( x )
c
c written by: A Busy Code Developer, January 2003
c modified 1:
c
c PURPOSE: This routine returns the value of the derivative of fofx
c evaluated at x.
c
c-----------------------------------------------------------------------
c

implicit none
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c
real*8 x , dfdx

c
c-----------------------------------------------------------------------
c

dfdx =-sin(x) - 1.0d0
c

return
end

Pseudo-Code for the Global Bracket Finder

All variables (xmax, xmin, n, etc.) have the same meaning as used in class.

dx = (xmax - xmin) / n (Set the initial value of dx.)
dxmin = 0.01 * dx (dx will not be allowed to fall below dxmin.)

(The parameter n is the dimension of the arrays x and f and is chosen large enough
so that important features (roots and extrema) of f(x) are no closer together than
dx=(xmax-xmin)/n. However, without a priori knowledge of where these features are,
we cannot know what optimal value of n to use. So we just pick a big value (e.g., 10,000)
and hope for the best.

With n chosen sufficiently large, the initial value of dx will be much smaller than needed,
and the algorithm will increase dx quickly and safely to a more optimal value. Conversely,
should features of the function become closer together than dx can resolve, the algorithm
will decrease dx with the proviso that dx shall not be allowed to fall below some preset
minimum value (e.g., dxmin = 1% of the initial value of dx). Without such a safeguard,
the diminution of dx could proceed indefinitely. Should dx ever be set to dxmin, a
warning message should be issued to the user as this is indicative that the algorithm
is having difficulty resolving the function, or that n needs to be larger. If n is already
considered too large, further analysis of the function and/or algorithm may be needed.)

i = 1 (start index for x and f at 1.)
x(i) = xmin

f(i) = fofx(xmin) (function call)
xleft = x(i)

fleft = f(i)

1

i = i + 1 (increment index i by 1.)
escape if i > n

dx = min ( dx, xmax - xleft ) (xleft+dx mustn’t be bigger than xmax.)
xright = xleft + dx

fright = fofx(xright) (function call)
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scale = max (1.0, |xleft|) / max (|fleft|, |fright|)

(The scaling factor scale ensures a unitless derivative. The numerator was derived from
trial and error, and minimises unnecessary function calls near x=0. Dividing by max

(|fleft|, |fright|) instead of fleft alone prevents the denominator from blowing
up should xleft happen to be very close to a root.)

dfdx = scale * (fright - fleft) / dx (scale renders dfdx unitless.)
dldx = sign ( 1.0, dfdx ) * sqrt ( 1.0 + dfdx**2 )

(The sign function transfers the sign of dfdx to dldx, and is necessary to ensure sensi-
tivity of the algorithm to local extrema, where the sign of the derivative changes.)

2 (Now, halve dx, evaluate dldxh, and compare it to dldx.)

dxh = 0.5 * dx

xmid = xleft + dxh

fmid = fofx(xmid) (function call)
dfdxh = scale * (fmid - fleft) / dxh (use the same value scale as before.)
dldxh = sign ( 1.0, dfdxh ) * sqrt ( 1.0 + dfdxh**2 )

Perform tests

if dldx and dldxh are within 10% of each other, then
dx = 1.5 * dx (increase dx for use next step)
goto 3

if dldx and dldxh are between 10% and 50% of each other, then dx is fine as it is.
goto 3

if dldx and dldxh differ by more than 50% and dxh < dxmin, dx is set to dxmin and a
warning message is issued.

dx = dxmin
xright = xleft + dx
fright = fofx(xright) (function call)
issue warning message
goto 3

if dldx and dldxh differ by more than 50% and dxh > dxmin, dx is halved and we try again.
dx = dxh
xright = xmid
fright = fmid
dldx = dldxh
goto 2

3 For execution to have arrived here means that dx is a suitable step to take. Store present
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values of xright and fright in x(i) and f(i) respectively, and then return to line 1
to find the next step dx.

x(i) = xright
f(i) = fright
if (xright .ge. xmax) done.
else

xleft = xright
fleft = fright
goto 1
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