

PO Box 430, STA "A" Sydney, NS B1P 6H2

REQUEST FOR PROPOSALS

NSLAND97

Former Gold Mine Sites Montague and Goldenville

Nova Scotia Lands Inc.

Department Contact: Donnie Burke Phone Number: (902) 567-2715

Closing Date: Ocotober 4, 2018

Closing Time: 2:00 pm

NS Lands Address: Harbourside Place

Harbourside Commercial Park

45 Wabana Court Sydney, Nova Scotia

B1P 0B9

NOTE: Fax submissions will NOT be accepted

NOVA SCOTIA LANDS

FORMER GOLD MINE SITES MONTAGUE AND GOLDENVILLE

REQUEST FOR PROPOSAL FOR CLOSURE CONCEPTS AND COSTS

Prepared by:

NS Lands

September 18, 2018

NSLAND97

TABLE OF CONTENTS

		PAG	jΕ		
1.0	INTRODUCTION1				
	1.1	INSTRUCTION TO BIDDERS			
		1.1.1 Time and Date of Bid Closing			
		1.1.2 Submission of Bids			
	1.2	BID DOCUMENTS	. 2		
		1.2.1 List of Bid Documents	. 2		
		1.2.2 Terminology	. 2		
	1.3	BID REQUIREMENTS	. 2		
	1.4	INQUIRIES	. 3		
		1.4.1 Prospective Bidders	. 3		
	1.5	ADDENDA	. 3		
		1.5.1 Interpretations or Clarifications	. 3		
		1.5.2 Acknowledgment			
	1.6	BID VALIDITY PERIOD	. 4		
		1.6.1 Bid Irrevocable	. 4		
		1.6.2 Withdrawal			
	1.7	SECURITY			
		1.7.1 Bid Bond			
	1.8	SIGNING BIDS			
		1.8.1 11.1 Submitted by Corporation			
		1.8.2 Submitted by Partnership			
		1.8.3 Submitted by Joint Venture			
		1.8.4 Submitted by Limited Liability Company			
		1.8.5 Submitted by an Individual			
		1.8.6 Evidence of Authority to do Business			
	1.9	BID PRICE			
		1.9.1 Schedule of Prices			
	1.10	NOTICE OF AWARD			
		1.10.1 Signing Contract and Delivery of Documentation			
		1.10.2 Failure to Sign Contract			
	1.11	NOTICE TO PROCEED			
		1.11.1 Commencement of Contract Times	. 7		
2.0	DES	SCRIPTION OF THE SITES	7		
	2.1	MONTAGUE			
		GOLDENVILLE			
3 በ	OVF	RALL PLAN FOR CLOSURE OF THE SITES	16		

4.0	OBJECTIVE OF STUDY	16
5.0	ASSIGNMENT AND SCOPE OF WORK 5.1 TASK 1 – KICKOFF MEETING	. 17 . 17 . 17 . 18 . 18 . 19 . 19 . 19 . 20 . 20
6.0	QUALIFICATIONS OF THE STUDY TEAM	21
7.0	PROPOSAL CONTENT	22
8.0	DELIVERABLES:	22
	LIST OF TABLES	
Tabl	e 5.1 Study Project Meetings	. 21
	LIST OF FIGURES	
Figu Figu Figu	re 2.1 Location of Montague and Goldenville Sites	. 12 . 13 . 14

LIST OF ATTACHMENTS

ATTACHMENT A CCDC
ATTACHMENT B Bid Form

ATTACHMENT C Evaluation Form

ATTACHMENT D Resources

ATTACHMENT E NSLI Contractors Health and Safety Plan

1.0 INTRODUCTION

This request for proposal (RFP) is to develop conceptual closure plans and cost estimates for two historical gold mine sites in Nova Scotia:

- Montague Gold Mines, near Dartmouth, NS
- Goldenville, near Goldsboro, NS

The client for this project will be Nova Scotia Lands (NS Lands) who is working on behalf of the Nova Scotia Department of Natural Resources.

This project will proceed in two stages, with the first stage to develop conceptual closure plans for each of the sites that will provide NS Lands with an indication of the liability cost that should be carried for each site and the second stage that will develop a detailed closure plan for implementation. This RFP is for the first stage.

1.1 INSTRUCTION TO BIDDERS

1.1.1 Time and Date of Bid Closing

- A Nova Scotia Lands Inc. (herein called "OWNER"), requests bids as specified in the bid documents for environmental site assessment and conceptual closure plan costing for *Former Gold Mines Request for Proposal for Conceptual Closure Plan and Cost Estimate.*
- Bids shall be enclosed in two separate sealed envelopes (Technical and Cost) marked "SEALED BID" and identified as to the Project title, and name and address of bidder. Bids shall be delivered on or before 2 p.m. local time, Oct 4, 2018, to Nova Scotia Lands Inc., 45 Wabana Court, Sydney NS, B1P 0B9.

Such bids delivered via courier service will be deemed to have been received on time if received at Nova Scotia Lands Sydney office before 2 p.m. as noted above and per time shown on NS Lands official clock.

Electronic submissions sent by facsimile transmission or email will not be accepted.

No extension of time will be granted.

Nova Scotia Lands reserves the right to reject any or all bids.

1.1.2 Submission of Bids

A. Bidders shall submit their technical bids in accordance with Section 1.4 completed in

every respect. Clearly label the document as "Technical Proposal". Bids shall consist of an original bid marked "Original" and two (2) exact copies each marked "Copy", which includes an exact copy of every attachment to the original bid.

A digital copy of the Technical Proposal is to be included in the Technical Envelope.

Financial information is not to be included in the technical proposal. Bidders shall submit in a separate envelope three (3) copies of their Cost of Services bids on the form furnished in the bid documents (Form of Bid) which form shall be completed in every respect. Clearly label the document as "Cost of Services Proposal". Bids shall consist of an original bid marked "Original" and exact copies marked "Copy", which includes an exact copy of every attachment to the original bid.

- A Bids shall be submitted without any connection, comparison of figures, or arrangement with or knowledge of any other person or persons submitting a bid for the same work and shall be in all respects fair and without collusion or fraud.
- B Unless specifically requested in the Form of Bid, bids shall not contain recapitulations of the work to be done.

1.2 BID DOCUMENTS

1.2.1 List of Bid Documents

- A The bid documents consist of the following:
 - 1. Instructions to Bidders;
 - 2. Form of Agreement (CCDC2);
 - 3. General Conditions (CCDC2);
 - 4. Project Specifications;
 - 5. Drawings listed in the Project Specifications:
 - 6. All appendices, attachments, and exhibits to any of the foregoing; and
 - 7. Any Addenda.

1.2.2 Terminology

A. Terms used in these Instructions to Bidders and the Form of Bid, which are defined in Definitions of the Contract (CCDC2), have the meanings assigned to them therein.

1.3 BID REQUIREMENTS

Bidders proposals must be submitted in the format, including heading descriptions, of the Evaluation Ratings Table presented below. The proposal must be presented in a clear and concise manner and respond to all requirements in this RFP and meet the goals and expectations of the project.

The Consultant, if they so wish, can offer an additional or alternate proposal, providing proven experience and/or advanced technical knowledge is clearly demonstrated.

Each proposal must consist of two (2) separately sealed submittals – Envelope A: Technical Submission covering items in Attachment C Evaluation Criteria Table; and Envelope B: Costs of Services Submittal covering items in Attachment C Evaluation Criteria Table. Please note: under no circumstance will any cost information appear in the technical submittal.

1.4 INQUIRIES

1.4.1 Prospective Bidders

- A Inquiries shall be submitted only by prospective bidders and not by prospective Subcontractors, Suppliers, or others.
- B For the purpose of procurement all inquiries shall be submitted to: Donnie Burke (donnie.burke@novascotia.ca).

All email inquiries must state the tender number in the subject line.

1.5 ADDENDA

1.5.1 Interpretations or Clarifications

- All questions about the meaning or intent of the bid documents shall be submitted in writing. Interpretations or clarifications of the bid documents prior to the date of bid closing and considered necessary by OWNER in response to such questions, will be made only by written Addenda issued via the Government of Nova Scotia Tender Web Site. Addenda shall become part of the bid documents. Questions received less than 5 days prior to the date of bid closing will not be answered. Only responses set forth in formal written Addenda will be binding. Oral and other interpretations or clarifications will be without legal effect and shall not be valid or relied upon by prospective bidders.
- B If questions are of such nature that require substantial changes in the bid documents such as quantities or prices, or both, the time and date of bid closing may be postponed by OWNER by such period of time as will enable bidders to properly revise their bids. In such cases, an Addendum will be issued setting a new time and date for submitting bids.
- C Addenda may be issued to clarify, correct, or modify the bid documents as deemed advisable by OWNER.

1.5.2 Acknowledgment

A Bidders shall acknowledge receipt of each and every Addendum in the space provided in the Form of Bid. Failure to acknowledge each and every Addendum may constitute grounds for rejection of the bid.

1.6 BID VALIDITY PERIOD

1.6.1 Bid Irrevocable

A Bids shall be irrevocable, and OWNER shall have the right to accept any bid at any time before the expiration of 60 days from the time and date of bid closing whether or not any other bid has been previously accepted.

1.6.2 Withdrawal

Any bidder may withdraw its bid before the time and date of bid closing by providing written notice thereof to the address specified for submission of bids in 1.1. Such withdrawal by the bidder will not prejudice the right of the bidder to resubmit a bid, if it is delivered to the place where bids are to be submitted at any time prior to the time and date of bid closing. However, after the time and date of bid closing has expired, no bid may be withdrawn within the specified bid validity period.

1.7 SECURITY

1.7.1 Bid Bond

- A Bidders shall furnish with their bid a Bid Bond on the form prescribed in the bid documents executed by the bidder as Principal and having as surety thereon a surety company lawfully doing business in the Province of Nova Scotia. Such Bid Bond shall be issued by a surety company meeting the requirements of Sc.03 of the Special Conditions and shall be in an amount not less than 10 percent of the total maximum amount of the bid price listed in the Form of Bid. The Bid Bond shall name Nova Scotia Lands Inc. as Obligee.
- B The bid security of the successful bidder will be retained by OWNER until such bidder has satisfied the requirements of lb.14, whereupon the bid security will be returned. The bid security of the other bidders will be returned, upon request, at the end of the specified bid validity period or when the required Contract bonds are received from the successful bidder, whichever occurs first.
- C If any bidder shall withdraw or attempt to withdraw its bid at any time within the specified bid validity period, the bidder's bid security shall be forfeited and such bid security shall become the property of OWNER.

1.8 SIGNING BIDS

1.8.1 11.1 Submitted by Corporation

A If the bid is submitted by a corporation, the bid shall be signed (under seal if required to make the bid a valid and binding obligation of the corporation) in its corporate name and on its behalf by the president or a vice-president (or other duly authorized corporate officer) accompanied by evidence of authority to sign. Such evidence shall be in the form of a valid resolution passed by the bidder's Board of Directors identifying the officer(s) signing the bid and authorizing the officer(s) to do so on behalf of the bidder. The corporate address and province of incorporation shall be shown below the signature.

1.8.2 Submitted by Partnership

A If the bid is submitted by a partnership, the bid shall be executed in the partnership name and signed by a partner (whose title must appear under the signature), accompanied by evidence of authority to sign. The official address of the partnership shall be shown below the signature.

1.8.3 Submitted by Joint Venture

A If the bid is submitted by two or more contractors as partners in a joint venture, an authorized representative of each partner of the joint venture shall sign the bid, and by signing undertakes that if the bid is accepted each partner of the joint venture will be jointly and severally bound to discharge the duties, obligations and responsibilities of the Contract. Additionally, the bid shall include a copy of the resolution or agreement empowering each representative to sign the bid and bind the firm to the joint venture. The official address of the joint venture shall be shown below the signature.

1.8.4 Submitted by Limited Liability Company

A If the bid is submitted by a limited liability company, the bid shall be signed in the name of the firm by a member and accompanied by evidence of authority to sign. The province of formation of the firm and the official address of the firm shall be shown below the signature.

1.8.5 Submitted by an Individual

A bid by an individual shall show the bidder's name and official address.

1.8.6 Evidence of Authority to do Business

A Bidders shall submit evidence of authority and qualification to do business in the province where the Project is located or covenant to obtain such qualification prior to Notice of Award and shall show their provincial contractor license number for the province of the Project, if any, in the space provided in the Form of Bid.

1.9 BID PRICE

1.9.1 Schedule of Prices

- A In accordance the General Conditions, the prices in the Schedule of Prices forming part of the Form of Bid shall be the full inclusive value of the Works described including all costs, expenses, overhead, profit, and taxes (as provided in Article A-4 of the Form of Agreement) which may be required in and for the performance of the Works described, together with all general risks, liabilities, and obligations set forth or implied in the documents on which the bid is to be based.
- B The Schedule of Prices forming part of the Form of Bid is to be used as a basis of payment only and shall not be used as a description of the full extent of the Works to be completed. Any work required to properly complete the Works, but not specifically listed as a separate pay item, must be provided for and the cost of such work included in the appropriate items listed in the Schedule of Prices.
- C Bidders shall quote separate lump sum prices for furnishing Contract bonds and insurance and shall enter the quoted prices in the Schedule of Prices.
- D. Bidders shall enter a price against each item of the Schedule of Prices. Items against which no price is entered will be considered as "no charge" items, the cost for which is covered by the other prices in the Schedule of Prices.
- E The quantities stated in the bid are to be considered approximate only and the unit prices entered in the Schedule of Prices shall apply only to the actual quantities measured by ENGINEER, in the completed Works, in accordance with Article A-4 of the Form of Agreement.
- F Where individual breakdowns in quantities for any one item are given in the Schedule of Prices, they shall be deemed given for information only and separate prices shall not be quoted for such individual quantities not entered in the quantity column.
- G Where individual "Lump Sum (LS) Prices" are specified in the bid, it shall represent payment in full for the completion of the work specified.
- H All prices shall be firm prices, quoted in Canadian dollars.
- I Each item in the Schedule of Prices shall be reasonably priced.

1.10 NOTICE OF AWARD

1.10.1 Signing Contract and Delivery of Documentation

- A Acceptance of a bid will be evidenced by a written Notice of Award issued by OWNER, delivered by email. No other act of OWNER shall constitute acceptance of a bid.
- B The Notice of Award shall obligate the bidder whose bid is accepted to sign and deliver two copies of the Contract Documents and to furnish and deliver the required insurance documentation all within 7 days after the date of the Notice of Award. After signing by OWNER, one fully signed copy shall be returned to CONTRACTOR.
- C If the Contract Documents prepared for signature by the successful bidder do not accompany the Notice of Award but are sent the next day or later, the successful bidder's obligation to deliver signed Contract Documents and to furnish and deliver insurance documentation within 7 days after the date of the Notice of Award shall be extended for a time equal to the delay in sending the Contract Documents to the successful bidder.

1.10.2 Failure to Sign Contract

A If the bidder whose bid is accepted refuses or fails to sign and deliver the Contract Documents and furnish and deliver the required insurance documentation within 7 days after the date of the Notice of Award, it will be considered that the bidder has abandoned all rights and interests in the award in which case OWNER may annul the Notice of Award and the bid security of that bidder will be forfeited and shall become the property of OWNER.

1.11 NOTICE TO PROCEED

1.11.1 Commencement of Contract Times

A Upon signing of the Contract by OWNER or at any time on or after the effective date of the Contract (date of the Notice of Award), ENGINEER on behalf of OWNER will issue to CONTRACTOR a written Notice to Proceed. The issuance of the Notice to Proceed by ENGINEER will fix the date on which the Contract Times (or Milestones) will commence to run. A Notice to Proceed may be given on, or at any time within 30 days after, the date of the Notice of

2.0 DESCRIPTION OF THE SITES

The two sites were mined in the late 1800's and early 1900's and have been dormant since the 1940's. The Montague Mine produced over 120,000 ounces of gold and Goldenville Mine

produced over 540,000 ounces. Both operations generated significant quantities of tailings. As both of these sites were mined long before environmental regulations were in place, the tailings from these sites were discharged into streams and wetlands downstream of the mine site areas without environmental controls. These tailings contain high levels of arsenic and mercury, due to natural enrichment (in the case of arsenic), and mercury added during processing to extract the gold from the ore.

Both properties are now owned by the Government of Nova Scotia, with tailings deposits occurring within Crown land boundaries, as well as outside of Crown lands. There have been numerous environmental studies of these two sites, as well as some studies on several other historical gold mining districts in Nova Scotia (which total 64), since the 1970s (Drage, 2015). In 2005, an inter-departmental Historic Gold Mines Advisory Committee was formed, which included experts from 10 provincial and federal departments, to evaluate the potential ecological and human health risks associated with tailings from historic gold mines in Nova Scotia (Drage, 2015). The Goldenville and Montague Mines sites were identified as sites requiring risk management, due to the elevated levels of arsenic at these two sites, the proximity of these sites to communities (public accessibility), and the types of activities occurring at these sites at the time (involving a truck rally, and dirt biking activities). While some risk management has been in place since 2005/2006 (e.g., increasing public awareness of the issues; reducing human interaction with the tailings), appropriate closure of these two sites is desired to reduce residual or on-going risks to either human or ecological health with respect to arsenic from the tailings in the soil and ground water at the sites. Therefore, the Government of Nova Scotia wishes to have a closure plan and cost estimate developed so that they can suitably close the sites. While the focus of risk management has been on arsenic and human health, this project must also consider mercury, and the ecological implications of both substances.

2.1 MONTAGUE

The Montague gold district is located in the community of Montague Gold Mines, within the Regional Municipality of Halifax. Figure 2.1 shows the location of the Montague Gold Mines and Figure 2.2 is a photo of the tailings at the site, taken in May 2018.

Parsons et al (2012) provide a summary of historic gold mining activities at this site, which included the discovery of gold in 1862, with mining being carried out continuously from 1865 to 1928, and then intermittently until 1940. Ore was milled on-site, using a variety of stamp mills with mercury amalgamation. The tailings were discharged into nearby Mitchell Brook, which originates from Loon Lake, and discharges further downstream into Lake Charles. The area now appears as an open wetland, with tailings distributed throughout the wetland. The wetland is largely submerged in high flow periods, but also has open dry areas which can generate dust. Government warning signs are present indicating high levels of arsenic, but there continues to be evidence of trail biking activities at this site.

There has been considerable geochemical characterization of the tailings and surrounding soils present at this site, with arsenic concentrations ranging up to 4.1 wt. %, and mercury in tailings

ranging up to 8.4 mg/kg (Parsons et al, 2012; DeSisto et al, 2011). Some characterization of tailings pore water also exists (Desisto et al, 2017), as well as additional soils characterization and preliminary groundwater characterization (Maritime Testing (1985) Ltd., 2009). A list of pertinent studies is provided below for reference.

2.2 GOLDENVILLE

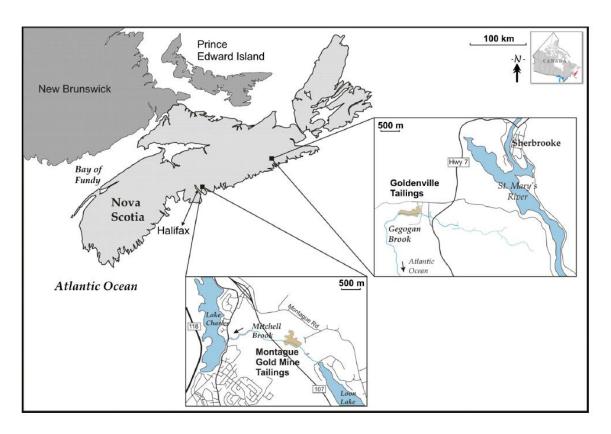
Figure 2.1 shows the location of the Goldenville Mine and Figure 2.3 shows a view of the tailings at Goldenville. With respect to the tailings site at Goldenville, this site was one of the more productive gold bearing districts in Nova Scotia (Parsons et al, 2012). This site involved up to 19 different gold mining companies, with mining starting in 1861 and ending in 1942 (see Parsons et al, 2012).

Tailings from the various mills are found at several locations around Goldenville, with the majority deposited in Geogogan Brook and visible on the floodplain for at least 6 km downstream (Wong et al. 1999). Since that time, there has been intermittent exploration conducted, to evaluate the potential of mining the tailings areas for gold, due to the advancements of current mining technologies, relative to that used in the previous operating periods. From 2004 to 2010, considerable research was conducted by NRCan in conjunction with Queen's University, and the Royal Military College. Both Nova Scotia Environment and Health Canada were also involved with these research groups to evaluate potential human health risks associated with the tailings at Goldenville, particularly related to the Goldenville Rally (a trucking rally which was held annually on the tailings site). This rally was cancelled in 2006, due to the high arsenic concentrations at this site, and potential exposures which could be occurring as a result of the rally.

As per the Montague Mines site, there has been considerable geochemical characterization of the tailings solids (Parsons et al, 2012), preliminary groundwater characterization, and soil characterization of areas adjacent to the tailings (C.J. McLellan and Associates Inc., 2009), as well as some characterization of tailings pore waters (DeSisto et al, 2017). Concentrations of arsenic in the percent range have been recorded in tailings at this site, with mercury also being detected at up to 28 mg/kg in tailings samples (Parsons et al, 2012). The study area drains to Geogogan Brook, which flows downstream to Geogogan Lake. The water table appears to be near the surface of the tailings, in the western end of the tailings.

Figure 2.4 (Montague Mines) and Figure 2.5 (Goldenville) present consolidated tailings and soils data from Parsons et al (2012); Parsons and Little (2015) and either Maritime Testing Limited (2009; Montague Mines) or C. J. McLellan & Associates (2009; Goldenville).

Attachment A contains information on the two sites of interest as provided by the Geological Survey of Canada including sediment chemistry in Open File 7150 entitled "Environmental geochemistry of tailings, sediments and surface waters collected from 14 historical gold mining districts in Nova Scotia" issued in 2012 (Parsons et al, 2012). This document contains an extensive reference list related to the issue. Additional supplementary information can be found in:


- Drage, J. 2015. Review of the Environmental Impacts of Historic Gold Mine Tailings in Nova Scotia. Open File Report ME 2015-004.
- https://novascotia.ca/natr/meb/data/pubs/15ofr04/ofr_me_2015-004.pdf
- Parsons, M. and M. Little, 2015. Establishing geochemical baselines in forest soils for environmental risk assessment in the Montague and Goldenville gold districts, Nova Scotia, Canada. Atlantic Geology 51, 364-386 (2015)
- C. J. McLellan & Associates Inc. 2009. Phase II Environmental Site Assessment. Nova Scotia Department of Transportation and Infrastructure Renewal. Former Gold Mine Site, Goldenville, Guysborough County, Nova Scotia.
- Maritime Testing Consulting Engineering & Environmental Services. 2009. Modified Phase II Environmental Site Assessment. Former Gold Mine Site, Montague Mines, Nova Scotia. Final Report. Prepared for Nova Scotia Department of Transportation and Infrastructure Renewal.
- DeSisto, S.L., H. Jameson, and M. Parsons. 2011. Influence of hardpan layers on arsenic mobility in historical gold mine tailings. Applied Geochemistry 26(2011) 2004-2018.
- DeSisto, S.L. H. Jamieson, and M.Parsons. 2017. Arsenic mobility in weathered gold mine tailings under low-organic soil cover. Environmental Earth Sciences (2017) 76:773.
- Parsons, M., H. Jamieson, S. DeSisto, and J. Kavalench. Optimizing Remediation of Gold Mine Tailings in Nova Scotia. https://novascotia.ca/natr/meb/data/pubs/10re02/10re02_26.pdf
- Meunier, L, S. Walker, J. Wragg, M. Parsons, I Koch, H. Jamieson and K. Reimer. 2010. Effectsof Soil composition and Minerology on the bioaccessibility of arsenic from tailings and soil in gold mine districts of Nova Scotia. Environ. Sci Technol. 2010. 44(2) pp 2667-2674.

The closure plans for these sites require careful attention, due to the high concentrations of arsenic, and the fact that over 70 years of weathering of the tailings has taken place. The weathering process can lead to a wide range of As-bearing secondary minerals, which may dissolve under some types of soil cover, resulting in increasing concentrations of arsenic in down gradient surface waters, the complexities of which are discussed in DeSisto et al, 2017. Closure plans for these sites, therefore, must carefully consider the geochemistry, and ensure the proposed closure solution will not exacerbate the situation. Therefore, considerable expertise related to arsenic geochemistry, and mine closure, are required for this project. The scope of the project is not calling for a risk assessment, but a risk-based approach is inherent in the Nova Scotia Contaminated Site Regulations.

Note that both sites have mine shafts remaining from historical mining activities. These shafts represent physical hazards, and there are signs located at both sites warning of the presence of these shafts. The conceptual closure plans that are to be developed as part of this project are to focus on the tailings. The closure of the mine shafts are to be addressed by NS Lands separately.

Figure 2.1 Location of Montague and Goldenville Sites

From: DeSisto, S.L. H. Jamieson, and M.Parsons. 2017. Arsenic mobility in weathered gold mine tailings under low-organic soil cover. Environmental Earth Sciences (2017) 76:773.

Figure 2.2 Tailings at the Montague Site

Figure 2.3 Tailings at the Goldenville Site

Figure 2.4 Montague Mines – Existing Geochemistry Data

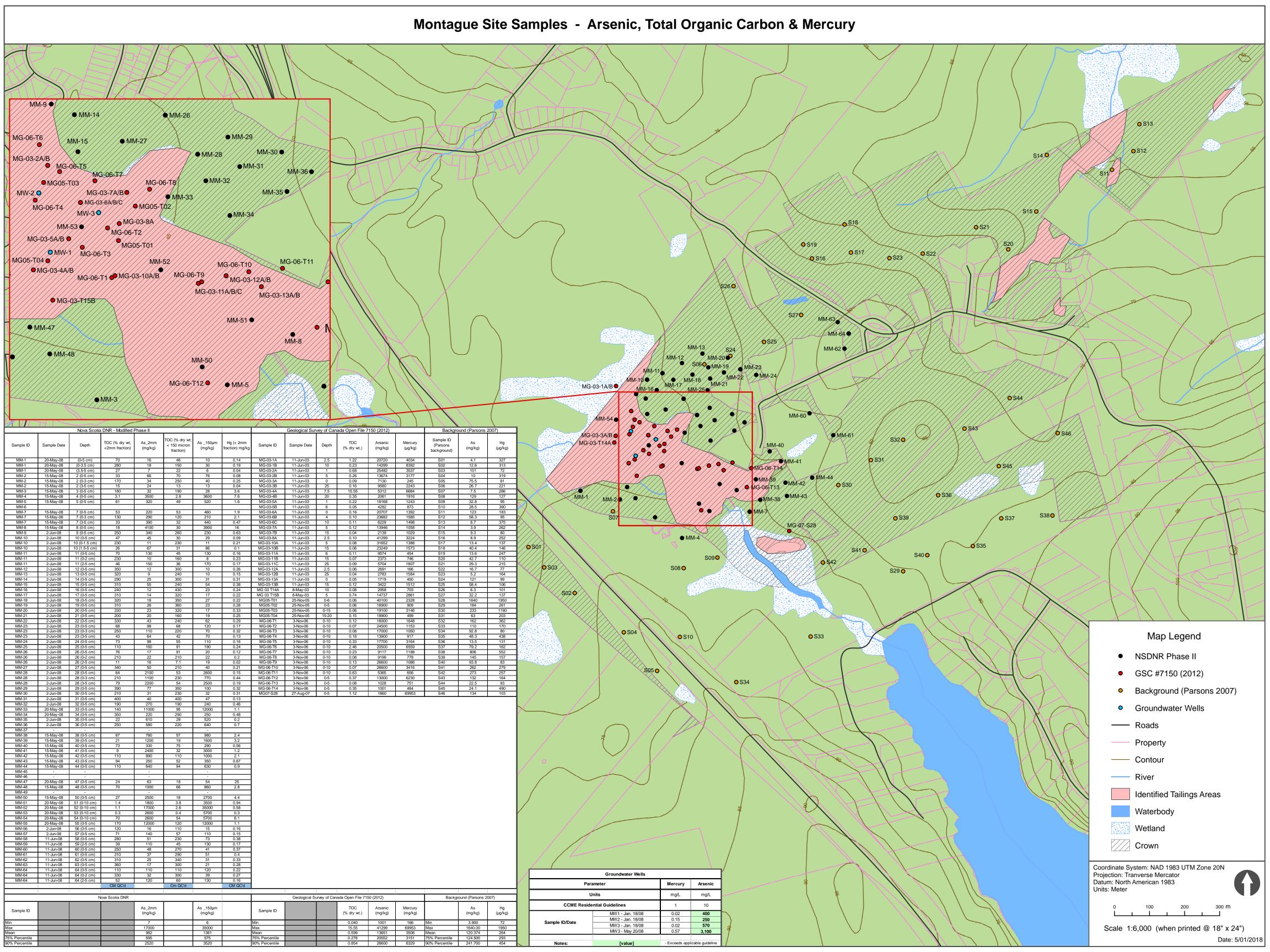
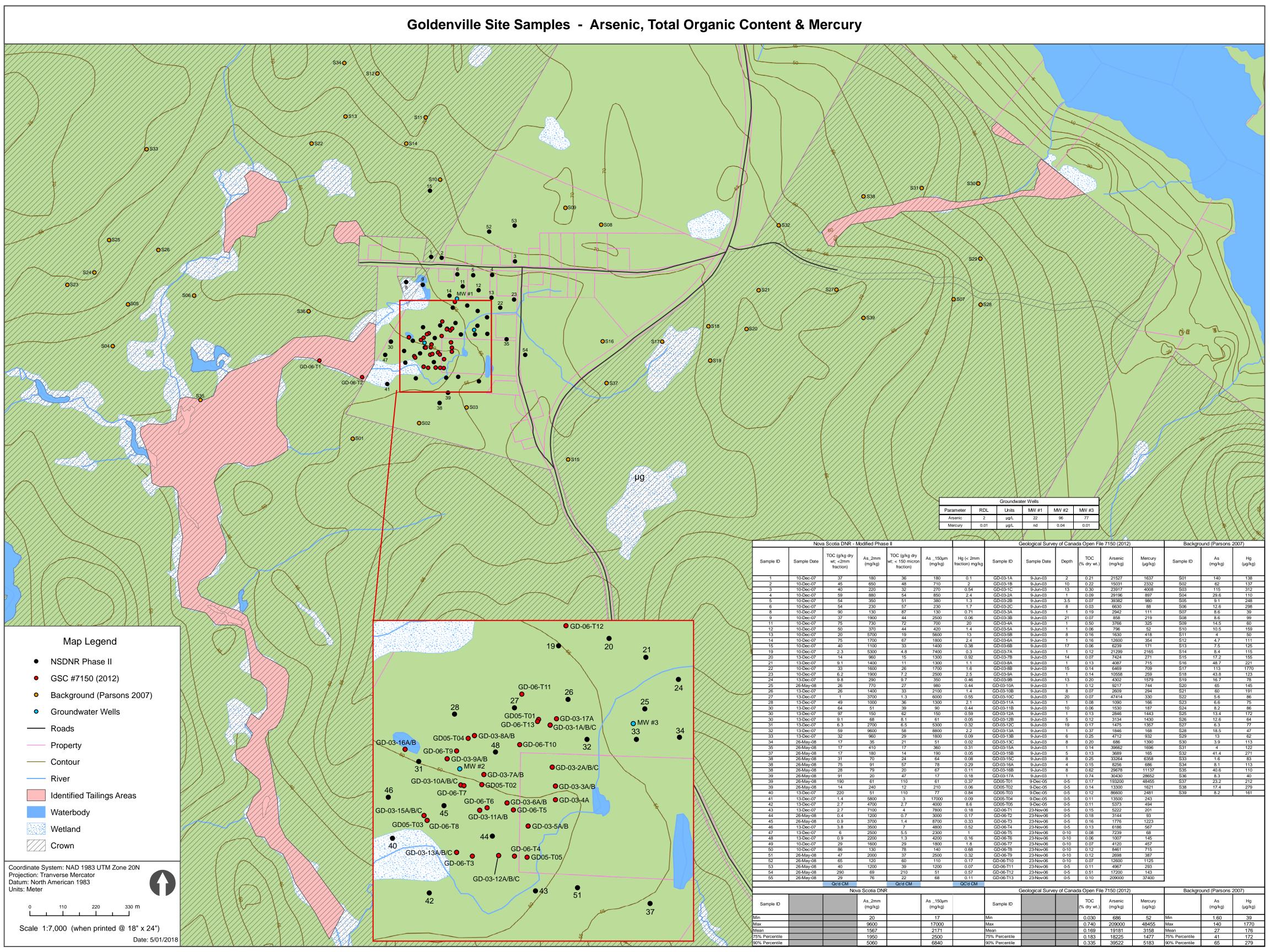



Figure 2.5 Goldenville - Existing Geochemistry Data

3.0 OVERALL PLAN FOR CLOSURE OF THE SITES

The sites are now owned by Nova Scotia Department of Natural Resources (NSDNR). NSDNR have contracted with NS Lands, a Crown Corporation whose mandate is to assess and, where required, remediate and redevelop crown-owned properties. NS Lands will be the client for this project. NSTIR/NSDNR and NS Lands wish to develop closure plans for the tailings faculties at the sites by proceeding in two stages:

- Stage 1 Develop conceptual closure plan(s) and approximate costs to help chart a path forward as to what a complete closure plan could be. This Stage would involve limited site investigation.
- Stage 2 Develop a complete closure plan with detailed costs and implementation plan.

Stage 1 is to be done in Fiscal 2018/19 and Stage 2 at a later time (note, Stage 2 is not included as part of the current bid). Closure of other infrastructure and mine openings (existing mine shafts from historic activities) on the site is being dealt with separately.

4.0 OBJECTIVE OF STUDY

The objective of this RFP is to complete Stage 1, which involves the development of a conceptual closure plan(s) for each of the site with an associated cost estimate and schedule. The cost estimate is to be to a Class D Cost level. The schedule is to be at a Level 1 (further defined in Section 5.9). This study is to focus on the tailings. It is recognized that some of the tailings are on property owned by the Crown and some on privately owned property. The closure plan(s) is to address the entire tailings facility (whether on crown land or on private property).

The consultant is to work with NS Lands to develop appropriate closure criteria for the site and consider a variety of closure options that will meet the criteria. A recommendation as to the preferred closure option(s) for the sites is to be provided. It is understood that a single closure option may not be possible and the Stage 1 may generate more than one viable closure option for each site.

At the completion of Stage 1, a scope of work is to be developed for Stage 2, as part of the current project. NS Lands reserves the right to sole source the Stage 2 work to the incumbent consultant from Stage 1 or issue a new RFP for Stage 2.

5.0 ASSIGNMENT AND SCOPE OF WORK

The Consultant shall provide the services on a time plus disbursements basis to meet the objectives of the project. The following tasks are expected, and the proposal must outline approaches which will be taken to fulfill these tasks, as well as costs associated with each task, based on time requirements for selected staff and rate levels:

- 1. Kickoff meeting
- 2. Background information review

- 3. Development of Health and Safety Plan, Site visit and Meeting with NS Lands
- 4. Gap Analysis
- 5. Field program
- 6. Criteria development
- 7. Option development and assessment
- 8. Option selection
- 9. Closure Cost estimate and scheduling
- 10. Stakeholder engagement strategy
- 11. Reporting
- 12. Scope of work for Stage 2
- 13. Meetings and Communications

The Consultant may wish to provide a different sequence or series of tasks that will meet the objectives of Stage 1. If the Consultant wishes to do so, then that should be offered as an alternative proposal, the base proposal should be prepared in accordance with the task listing noted above.

The tasks described below are common to both sites.

5.1 TASK 1 – KICKOFF MEETING

Within one week of project award, the Consultant will convene a kickoff meeting (by conference call and/or in person) to review the scope of the project and the schedule. Information that is required by the consultant to undertake the study is to be identified by the consultant and reviewed with NS Lands. NS Lands is to provide such information that is available and identify which information is not available.

5.2 TASK 2 – BACKGROUND INFORMATION REVIEW

The Consultant will review the available information related to the two sites and prepare a document that summarizes the available information that will be used to support the conceptual closure plan.

5.3 TASK 3 – DEVELOPMENT OF HEALTH AND SAFETY PLAN, SITE VISIT AND MEETING WITH NS LANDS

The Consultant will coordinate with NS Lands to conduct a site visit at a time that is mutually acceptable. Section 5.13 presents information on the schedule. The Montague and Goldenville sites will be visited and it is expected that key personnel from the Consultant's team will participate in the site visits. The consultant will be expected to prepare a Health and Safety Plan for these site visits, and costs for preparation of this plan should be accounted for in the proposal submission. For budgeting purposes, allow 2 full days for the site visits from Halifax (departing Halifax one morning and returning to Halifax the next evening). A memo will be issued by the Consultant after the site visit summarizing the key information points that were gathered.

Health and safety is a top priority of NS Lands on the Project. The Consultant is responsible for preparing and regularly updating a health and safety plan for the Assignment. The Assignment H&SP will meet the minimum requirements of the site NS Lands Contractors Master Health and Safety Plan and will include, but not be limited to, details with regard to assignment hazard assessments, required safe work practices and procedures, personal protective equipment, training, decontamination procedures, safety meetings, and emergency response plans. A copy of the Consultant's Clearance letter from the Workers Compensation Board will be appended to the Assignment H&SP. A copy of the NS Lands Master Contractors Health and Safety Plan is provided in Attachment B.

5.4 TASK 4 – GAP ANALYSIS

Based on the completion of Task 2 (background information review) and Task 3 (site visit), the Consultant is to conduct an analysis that identifies the gaps that should be filled to develop a complete closure plan for the sites (Stages 1 and Stage 2) and indicate the highest priority gaps that would prevent meeting the objectives of Stage 1. The results of the gap analysis are to be discussed with NS Lands and those gaps that should be filled as part of Stage 1 are to be identified.

A separate memo describing the results of the gap analysis is to be issued for each site.

5.5 TASK 5 – FIELD PROGRAM

For Stage 1, a field program is to be conducted at both sites to gain information that addresses the high priority gaps identified in Task 4. It is recognized that there could be a range of approaches and methodologies proposed with an associated range of pricing. For budgeting purposes, the Consultant is to provide a field program that does not exceed \$150,000 (excluding taxes) for both sites (e.g., 75,000 per site, or any split of costs totaling a maximum of \$150,000 for the two sites). The conceptual field program to be provided in the proposal is to be based on the Consultant's review of the information that is provided with this RFP, and is to include travel and expenses, sampling locations and anticipated sampling numbers and rationale, analytical costs, and field time (reporting costs should be included in Task 10, Section 5.11). It is recognized that after the site visit and gap analysis, modifications may be made to the conceptual field program provided in the proposal submission. The budget for the field program should be sufficiently itemized to allow NS Lands to make a determination of the changes to the budget that may be required as a result of changes to the field program. The focus of the conceptual field program is to be within Crown lands, and can include downstream environments at both sites. Off site (outside of Crown lands) sampling may be required during the course of this project, but that will be determined at a later date, following contract award, and costs associated with this would be captured under a separate budget.

Prior to conducting the field program, a detailed work plan describing the objectives of the field program, methodology, locations, testing, Health and Safety plan, etc. is to be provided for review and approval by NS Lands. The Health and Safety Plan from the Site Visit task will require updating to account for additional tasks associated with the field work, and therefore budgeting should account for this.

5.6 TASK 6 – CRITERIA DEVELOPMENT

The Consultant will work with NS Lands to develop criteria that are to be met by the closure options that will be considered. The criteria are to consider human health, terrestrial, wildlife, surface water, aquatic, and ground water.

5.7 TASK 7 – OPTION DEVELOPMENT AND ASSESSMENT

The Consultant is to identify possible options for closure of the sites that could be considered and undertake an evaluation of the options to select a preferred closure option for each site. The options are to be developed to a level sufficient to support a decision.

5.8 TASK 8 – OPTION SELECTION

The Consultant will work with NS Lands to select a preferred option for each site. It is recognized that it may not be possible to select a single closure option for each site. The outcome may be a short list of viable options that may require additional studies to determine a preferred option, or a site may have differing options to address different aspects or part of the site.

5.9 TASK 9 – CLOSURE COST ESTIMATE AND SCHEDULING

For the preferred option, a Class D cost estimate is to be developed. A Class D cost estimate is defined as follows (adapted from PWGSC Minimum Requirements for Construction Estimate Preparation – Checklist):

- Project plan detailing the project function, purpose and characteristics including information relating to the tailings facility and the planned closure measures.
- General information related to the size and dimensions of the planned closure measures.
- Geographical location, site configuration, planning limitations, known soil and rock information, known geochemical information, environmental setting; availability of utility services; borrow sources; etc.
- Procurement methodology and notional timing.
- Cost limitations and allowances.

A Level 1 schedule is to be prepared in accordance with the following requirements:

- Highlights major project activities, milestones, and key deliverables for the whole project.
- Usually on one page.
- Lists major tasks and associated timelines.
- Shows interdependencies of tasks.
- Starts at the start of an undefined government fiscal year

With the cost and schedule developed, a cost per half year is to be provided.

If there is more than one preferred option identified, then one of the options is to be selected for the Class D cost estimate and Level 1 schedule and comments offered about how the other options compare.

5.10 TASK 10 - STAKEHOLDER ENGAGEMENT PLAN

The stakeholders that could be affected by the current site conditions and the potential closure plan(s) should be identified and a plan developed that would indicate at what point in the closure planning process these stakeholders should be involved, to what degree, and what the expected outcome of such engagement should be. The approach for developing the stakeholder engagement plan should be outlined in the proposal. Costs for the implementation of the stakeholder engagement are not to be included at this time; however, costs associated with the development of the engagement plan should be included in the proposal.

5.11 TASK 11 - REPORTING

A report is to be prepared that summarizes the work, including the field program (methods, mapping, interpretation of the data); development and outcomes of criteria to be met for closure planning purposes; development of closure options and selection of final option(s); closure costing and schedule; stakeholder engagement plan.

COPIES, TRANSMISSION, FORMAT

A table of contents for the study report is to be provided to NS Lands for review and approval prior to issuing the report. Note: field program methods and outcomes should be reported shortly following completion of the field work, to enable consideration of the data in the closure planning process.

5.12 TASK 12 - SCOPE OF WORK FOR STAGE 2

After the report has been issued, a scope of work Stage 2 should be developed. This will include describing the objectives of Stage 2 and the tasks that are to be undertaken to meet those objectives, including additional field work and testing as required.

5.13 TASK 13 – SCHEDULE, PROJECT MEETINGS, AND COMMUNICATION

It is expected that this project will commence in October 2018. Table 5.1 indicates the general outline for project meetings. The field work is expected to be completed in Fall 2018 with the closure criteria developed in early Winter 2018, followed by the option development and selection to be completed by late Winter 2019. Reporting and the scope of work for Stage 2 is to be completed by the March 1, 2019 (Note: reporting for the field program is anticipated to be required shortly after the completion of that program).

Table 5.1 presents the anticipated project meetings in support of the study.

Table 5.1 Study Project Meetings

Project Meeting	Location	Schedule
Anticipated award date	Not applicable	
Kickoff meeting	Conference call and/or Halifax	Within 1 week of Contract award
Site Visits	At Both Sites	Within 3 weeks of contract award
Option Selection	Halifax	January 2019
Presentation of study findings	Halifax	March 2019

Over the course of the study, progress conference calls will be held every two weeks with the Consultant and NS Lands with minutes prepared after each meeting and issued within one week after the meeting.

Costs associated with these meetings, and the development of materials/memos, etc., (communications) should be included in Task 13 (Note: Kick off meeting costs should be included in Task 1, and not in this task).

The bidder should provide a schedule of activities that illustrate the dates and duration of each of the tasks. Bidders will be evaluated on the overall content of their plan. The schedule will be sufficiently detailed, so NS Lands may fully understand the Assignment schedule including field work, analytical time requirements, report delivery dates, meeting times and comment periods allocated for NS Lands.

6.0 QUALIFICATIONS OF THE STUDY TEAM

Due to the complexities of these sites, NS Lands requires the services of senior level expertise for this project, with specific expertise related to mine closure, arsenic geochemistry, human health and ecological toxicology and risk assessment related to arsenic and, to a lesser extent, mercury.

Specific senior level expertise and experience for this project includes individuals with:

- Over 15 years of experience with the development of closure plans for mine sites;
- Over 15 years of experience in arsenic geochemistry, associated with tailings sites
- Over 15 years of experience in human health toxicology and risk assessment with specific expertise related to arsenic and mercury
- Over 15 years of experience in ecological toxicology and risk assessment expertise –with specific expertise related to arsenic and mercury

For each individual, the following must be provided:

- 2 page CV with education, relative years of experience, and pertinent project experience
- Biography describing the expert's qualifications, relative to this project (limited to ¾ of a page in length)
- For each named expert, 2 projects related to their areas of expertise must be provided, highlighting their role in the project; the project scope/requirements (relative to the area of expertise), year(s) project was conducted, client, and budget. Each project description should be no longer than 1 page. Projects involving arsenic and/or mercury are of greatest interest, and will be scored higher. Recent projects will be given greater consideration (e.g., those in last 8 years). One reference for each expert should be provided, from one of the submitted project examples.

The specifics related to scoring of study qualifications are provided in Evaluation Table Attachment C.

In addition to these experts, additional experience is also required on the study team. These individuals will include the project manager, and remaining team members, including field technicians, etc. Two-page CVs for each proposed team member must be provided, as well as biographies describing their qualifications.

Corporate experience, relative to the RFP, should also be provided, highlighting the firm's experience in the area of interest.

7.0 PROPOSAL CONTENT

Offerors' proposals must be submitted in the format, including heading descriptions, of the Evaluation Ratings Table attached. The proposal must be presented in a clear and concise manner and respond to all requirements in this RFP and meet the goals and expectations of the project.

The Consultant, if they so wish, can offer an additional or alternate proposal, providing proven experience and/or advanced technical knowledge is clearly demonstrated.

Each proposal must consist of two (2) separately sealed submittals – Envelope A: Technical Submission; and Envelope B: Costs of Services Submittal - **See Attachment C – Evaluation Creiteria.**

8.0 DELIVERABLES:

The following deliverables will be required for the project:

- Site visit memo
- Three (3) hard copies, and one electronic copy of the final study report.

- All developed drawings and geo-tagged photographs, in their native formats (CAD, MicroStation, JPEG, GeoTIFF, etc.)
- Meeting minutes
- Closeout presentations
- Biweekly status updates (updates every two weeks)

ATTACHMENT A CCDC

CCDC 2

stipulated price contract

2008

NSLAND97 FORMER GOLD MINE SITES MONTAGUE AND GOLDENVILLE

Apply a CCDC 2 copyright seal here. The application of the seal demonstrates the intention of the party proposing the use of this document that it be an accurate and unamended form of CCDC 2 – 2008 except to the extent that any alterations, additions or modifications are set forth in supplementary conditions.

CANADIAN CONSTRUCTION DOCUMENTS COMMITTEE CANADIAN CONSTRUCTION DOCUMENTS COMMITTEE CANADIAN CONSTRUCTION DOCUMENTS COMMITTEE

TABLE OF CONTENTS

AGREEMENT BETWEEN OWNER AND CONTRACTOR

- A-1 The Work
- A-2 Agreements and Amendments
- A-3 Contract Documents
- A-4 Contract Price
- A-5 Payment
- A-6 Receipt of and Addresses for Notices in Writing
- A-7 Language of the Contract
- A-8 Succession

DEFINITIONS

- 1. Change Directive
- 2. Change Order
- 3. Construction Equipment
- 4. Consultant
- Contract
- 6. Contract Documents
- 7. Contract Price
- 8. Contract Time
- 9. Contractor
- 10. Drawings
- 11. Notice in Writing
- 12. Owner
- 13. Place of the Work
- 14. Product
- 15. Project
- 16. Provide
- 17. Shop Drawings
- 18. Specifications
- 19. Subcontractor
- 20. Substantial Performance of the Work
- 21. Supplemental Instruction
- 22. Supplier
- 23. Temporary Work
- 24. Value Added Taxes
- 25. Work
- 26. Working Day

GENERAL CONDITIONS OF THE STIPULATED PRICE CONTRACT

PART 1 GENERAL PROVISIONS

- GC 1.1 Contract Documents
- GC 1.2 Law of the Contract
- GC 1.3 Rights and Remedies
- GC 1.4 Assignment

PART 2 ADMINISTRATION OF THE CONTRACT

- GC 2.1 Authority of the Consultant
- GC 2.2 Role of the Consultant
- GC 2.3 Review and Inspection of the Work
- GC 2.4 Defective Work

PART 3 EXECUTION OF THE WORK

- GC 3.1 Control of the Work
- GC 3.2 Construction by Owner or Other Contractors
- GC 3.3 Temporary Work
- GC 3.4 Document Review
- GC 3.5 Construction Schedule
- GC 3.6 Supervision
- GC 3.7 Subcontractors and Suppliers
- GC 3.8 Labour and Products
- GC 3.9 Documents at the Site
- GC 3.10 Shop Drawings GC 3.11 Use of the Work
- GC 3.12 Cutting and Remedial Work
- GC 3.13 Cleanup

PART 4 ALLOWANCES

- GC 4.1 Cash Allowances
- GC 4.2 Contingency Allowance

PART 5 PAYMENT

- GC 5.1 Financing Information Required of the Owner
- GC 5.2 Applications for Progress Payment
- GC 5.3 Progress Payment
- GC 5.4 Substantial Performance of the Work
- GC 5.5 Payment of Holdback upon Substantial Performance of the Work
- GC 5.6 Progressive Release of Holdback
- GC 5.7 Final Payment
- GC 5.8 Withholding of Payment
- GC 5.9 Non-conforming Work

PART 6 CHANGES IN THE WORK

- GC 6.1 Owner's Right to Make Changes
- GC 6.2 Change Order
- GC 6.3 Change Directive
- GC 6.4 Concealed or Unknown Conditions
- GC 6.5 Delays
- GC 6.6 Claims for a Change in Contract Price

PART 7 DEFAULT NOTICE

- GC 7.1 Owner's Right to Perform the Work, Terminate the Contractor's Right to Continue with the Work or Terminate the Contract
- GC 7.2 Contractor's Right to Suspend the Work or Terminate the Contract

PART 8 DISPUTE RESOLUTION

- GC 8.1 Authority of the Consultant
- GC 8.2 Negotiation, Mediation and Arbitration
- GC 8.3 Retention of Rights

PART 9 PROTECTION OF PERSONS AND PROPERTY

- GC 9.1 Protection of Work and Property
- GC 9.2 Toxic and Hazardous Substances
- GC 9.3 Artifacts and Fossils
- GC 9.4 Construction Safety
- GC 9.5 Mould

PART 10 GOVERNING REGULATIONS

- GC 10.1 Taxes and Duties
- GC 10.2 Laws, Notices, Permits, and Fees
- GC 10.3 Patent Fees
- GC 10.4 Workers' Compensation

PART 11 INSURANCE AND CONTRACT SECURITY

- GC 11.1 Insurance
- GC 11.2 Contract Security

PART 12 INDEMNIFICATION, WAIVER OF CLAIMS AND WARRANTY

- GC 12.1 Indemnification
- GC 12.2 Waiver of Claims
- GC 12.3 Warranty

The Canadian Construction Documents Committee (CCDC) is a national joint committee responsible for the development, production and review of standard Canadian construction contracts, forms and guides. Formed in 1974 the CCDC is made up of volunteer representatives from:

Public Sector Owners

Private Sector Owners

Canadian Bar Association (Ex-Officio)

- * The Association of Canadian Engineering Companies
- * The Canadian Construction Association
- * Construction Specifications Canada
- * The Royal Architectural Institute of Canada
- *Committee policy and procedures are directed and approved by the four constituent national organizations.
- CCDC 2 is the product of a consensus-building process aimed at balancing the interests of all parties on the construction project. It reflects recommended industry practices. CCDC 2 can have important consequences. The CCDC and its constituent member organizations do not accept any responsibility or liability for loss or damage which may be suffered as a result of the use or interpretation of CCDC 2.

CCDC Copyright 2008

Must not be copied in whole or in part without the written permission of the CCDC.

AGREEMENT BETWEEN OWNER AND CONTRACTOR

CCDC 2 - 2008 File 005213

For use when a stipulated price is the basis of payment. This Agreement made on the _____ day of ____ in the year . by and between the parties hereinafter called the "Owner" and hereinafter called the "Contractor" The Owner and the Contractor agree as follows: ARTICLE A-1 THE WORK The Contractor shall: 1.1 perform the Work required by the Contract Documents for insert above the name of the Work located at insert above the Place of the Work for which the Agreement has been signed by the parties, and for which insert above the name of the Consultant is acting as and is hereinafter called the "Consultant" and 1.2 do and fulfill everything indicated by the Contract Documents, and commence the Work by the _____ day of _____ in the year ____ and, subject to adjustment in Contract 1.3 Time as provided for in the Contract Documents, attain Substantial Performance of the Work, by the of in the year . ARTICLE A-2 AGREEMENTS AND AMENDMENTS 2.1 The Contract supersedes all prior negotiations, representations or agreements, either written or oral, relating in any manner to the Work, including the bidding documents that are not expressly listed in Article A-3 of the Agreement - CONTRACT DOCUMENTS. The Contract may be amended only as provided in the Contract Documents. 2.2

Note: This contract is protected by copyright. Use of a CCDC 2 document not containing a CCDC 2 copyright seal constitutes an infringement of copyright. Only sign this contract if the document cover page bears a CCDC 2 copyright seal to demonstrate that it is intended by the parties to be an accurate and unamended version of CCDC 2 – 2008 except to the extent that any alterations, additions or modifications are set forth in supplementary conditions.

ARTICLE A-3 CONTRACT DOCUMENTS

- 3.1 The following are the *Contract Documents* referred to in Article A-1 of the Agreement THE WORK:
 - Agreement between Owner and Contractor
 - Definitions
 - The General Conditions of the Stipulated Price Contract
 - Instruction to Bidders
 - Attachment B Bid Form
 - Attachment C Evaluation Form
 - Attachment D Resource Information
 - Attachment E NSLI Contractors Health and Safety Plan

^{* (}Insert here, attaching additional pages if required, a list identifying all other Contract Documents e.g. supplementary conditions; information documents; specifications, giving a list of contents with section numbers and titles, number of pages and date; material finishing schedules; drawings, giving drawing number, title, date, revision date or mark; addenda, giving title, number, date)

ARTICLE A-4 CONTRACT PRICE

l. I	The Contract Price, which excludes Value Added Tax	xes, is:			
		/100 dollars	\$		
1.2	Value Added Taxes (of%) payable by the	e Owner to the Contractor are:			
		/100 dollars	\$		
.3	Total amount payable by the Owner to the Contractor	r for the construction of the Work is:			
		/100 dollars	\$		
.4	These amounts shall be subject to adjustments as provided in the Contract Documents.				
.5	All amounts are in Canadian funds.				
DTI/	CLE A-5 PAYMENT				
.1	Subject to the provisions of the Contract Documents, and in accordance with legislation and statutory regulations respective holdback percentages and, where such legislation or regulations do not exist or apply, subject to a holdback percent (
.3	 Interest Should either party fail to make payments as they become due under the terms of the Contract or in an award arbitration or court, interest at the following rates on such unpaid amounts shall also become due and payable unpayment: 2% per annum above the prime rate for the first 60 days. 4% per annum above the prime rate after the first 60 days. amounts shall be the rate of interest quoted by Such interest shall be compounded on a monthly basis. The prime rate shall be the rate of interest quoted by 				
	for prime business loans as it may change from tin.2 Interest shall apply at the rate and in the manner of any claim in dispute that is resolved either pur or otherwise, from the date the amount would have until the date it is paid.	prescribed by paragraph 5.3.1 of this Art rsuant to Part 8 of the General Conditions	icle on the settlement amount S – DISPUTE RESOLUTION		

CCDC 2 - 2008 File 005213

ARTICLE A-6 RECEIPT OF AND ADDRESSES FOR NOTICES IN WRITING

Notices in Writing will be addressed to the recipient at the address set out below. The delivery of a Notice in Writing will be by hand, by courier, by prepaid first class mail, or by facsimile or other form of electronic communication during the transmission of which no indication of failure of receipt is communicated to the sender. A Notice in Writing delivered by one party in accordance with this Contract will be deemed to have been received by the other party on the date of delivery if delivered by hand or courier, or if sent by mail it shall be deemed to have been received five calendar days after the date on which it was mailed, provided that if either such day is not a Working Day, then the Notice in Writing shall be deemed to have been received on the Working Day next following such day. A Notice in Writing sent by facsimile or other form of electronic communication shall be deemed to have been received on the date of its transmission provided that if such day is not a Working Day or if it is received after the end of normal business hours on the date of its transmission at the place of receipt, then it shall be deemed to have been received at the opening of business at the place of receipt on the first Working Day next following the transmission thereof. An address for a party may be changed by Notice in Writing to the other party setting out the new address in accordance with this Article.

	name of Owner*	
	PO Box 430, Station A, Sydney	y, Nova Scotia B1P 6H2
	address	
	facsimile number	email address
	Jacomino manioci	emai adares
Contractor		
	name of Contractor*	
	address	
	facsimile number	
		email address
Consultant		
	name of Consultant*	
	• •	
	address	
	facsimile number	email address
	iucsimile number	emai address

* If it is intended that the notice must be received by a specific individual, that individual's name shall be indicated.

ARTICLE A-7 LANGUAGE OF THE CONTRACT

- When the Contract Documents are prepared in both the English and French languages, it is agreed that in the event of any apparent discrepancy between the English and French versions, the English / French # language shall prevail. # Complete this statement by striking out inapplicable term.
- 7.2 This Agreement is drawn in English at the request of the parties hereto. La présente convention est rédigée en anglais à la demande des parties.

CCDC 2 - 2008 File 005213

Owner

4

Note: This contract is protected by copyright. Use of a CCDC 2 document not containing a CCDC 2 copyright seal constitutes an infringement of copyright. Only sign this contract if the document cover page bears a CCDC 2 copyright seal to demonstrate that it is intended by the parties to be an accurate and unamended version of CCDC 2 – 2008 except to the extent that any alterations, additions or modifications are set forth in supplementary conditions.

ARTICLE A-8 SUCCESSION

8.1 The *Contract* shall enure to the benefit of and be binding upon the parties hereto, their respective heirs, legal representatives, successors, and assigns.

In witness whereof the parties hereto have executed this Agreement by the hands of their duly authorized representatives.

SIGNED AND DELIVERED in the presence of:

WITNESS	OWNER
	Nova Scotia Lands Inc.
	name of owner
signature	signature
name of person signing	name and title of person signing
signature	signature
	Signature
name of person signing	name and title of person signing
WITNESS	CONTRACTOR
	name of Contractor
signature	signature
name of person signing	name and title of person signing
signature	signature
name of person signing	name and title of person signing

N.B. Where legal jurisdiction, local practice or Owner or Contractor requirement calls for:

- (a) proof of authority to execute this document, attach such proof of authority in the form of a certified copy of a resolution naming the representative(s) authorized to sign the Agreement for and on behalf of the corporation or partnership; or
- (b) the affixing of a corporate seal, this Agreement should be properly sealed.

DEFINITIONS

The following Definitions shall apply to all Contract Documents.

1. Change Directive

A Change Directive is a written instruction prepared by the Consultant and signed by the Owner directing the Contractor to proceed with a change in the Work within the general scope of the Contract Documents prior to the Owner and the Contractor agreeing upon adjustments in the Contract Price and the Contract Time.

2. Change Order

A Change Order is a written amendment to the Contract prepared by the Consultant and signed by the Owner and the Contractor stating their agreement upon:

- a change in the Work;
- the method of adjustment or the amount of the adjustment in the Contract Price, if any; and
- the extent of the adjustment in the Contract Time, if any.

3. Construction Equipment

Construction Equipment means all machinery and equipment, either operated or not operated, that is required for preparing, fabricating, conveying, erecting, or otherwise performing the Work but is not incorporated into the Work.

4. Consultant

The Consultant is the person or entity engaged by the Owner and identified as such in the Agreement. The Consultant is the Architect, the Engineer or entity licensed to practise in the province or territory of the Place of the Work. The term Consultant means the Consultant or the Consultant's authorized representative.

5. Contract

The Contract is the undertaking by the parties to perform their respective duties, responsibilities and obligations as prescribed in the Contract Documents and represents the entire agreement between the parties.

6. Contract Documents

The Contract Documents consist of those documents listed in Article A-3 of the Agreement - CONTRACT DOCUMENTS and amendments agreed upon between the parties.

7. Contract Price

The Contract Price is the amount stipulated in Article A-4 of the Agreement - CONTRACT PRICE.

8. Contract Time

The Contract Time is the time stipulated in paragraph 1.3 of Article A-1 of the Agreement - THE WORK from commencement of the Work to Substantial Performance of the Work.

9. Contractor

The Contractor is the person or entity identified as such in the Agreement. The term Contractor means the Contractor or the Contractor's authorized representative as designated to the Owner in writing.

10. Drawings

The *Drawings* are the graphic and pictorial portions of the *Contract Documents*, wherever located and whenever issued, showing the design, location and dimensions of the *Work*, generally including plans, elevations, sections, details, and diagrams.

11. Notice in Writing

A *Notice in Writing*, where identified in the *Contract Documents*, is a written communication between the parties or between them and the *Consultant* that is transmitted in accordance with the provisions of Article A-6 of the Agreement – RECEIPT OF AND ADDRESSES FOR NOTICES IN WRITING.

12. Owner

The Owner is the person or entity identified as such in the Agreement. The term Owner means the Owner or the Owner's authorized agent or representative as designated to the Contractor in writing, but does not include the Consultant.

13. Place of the Work

The Place of the Work is the designated site or location of the Work identified in the Contract Documents.

14. Product

Product or Products means material, machinery, equipment, and fixtures forming the Work, but does not include Construction Equipment.

15. Project

The Project means the total construction contemplated of which the Work may be the whole or a part.

16. Provide

Provide means to supply and install.

17. Shop Drawings

Shop Drawings are drawings, diagrams, illustrations, schedules, performance charts, brochures, *Product* data, and other data which the *Contractor* provides to illustrate details of portions of the *Work*.

18. Specifications

The Specifications are that portion of the Contract Documents, wherever located and whenever issued, consisting of the written requirements and standards for Products, systems, workmanship, quality, and the services necessary for the performance of the Work.

19. Subcontractor

A Subcontractor is a person or entity having a direct contract with the Contractor to perform a part or parts of the Work at the Place of the Work.

20. Substantial Performance of the Work

Substantial Performance of the Work is as defined in the lien legislation applicable to the Place of the Work. If such legislation is not in force or does not contain such definition, or if the Work is governed by the Civil Code of Quebec, Substantial Performance of the Work shall have been reached when the Work is ready for use or is being used for the purpose intended and is so certified by the Consultant.

21. Supplemental Instruction

A Supplemental Instruction is an instruction, not involving adjustment in the Contract Price or Contract Time, in the form of Specifications, Drawings, schedules, samples, models or written instructions, consistent with the intent of the Contract Documents. It is to be issued by the Consultant to supplement the Contract Documents as required for the performance of the Work.

22. Supplier

A Supplier is a person or entity having a direct contract with the Contractor to supply Products.

23. Temporary Work

Temporary Work means temporary supports, structures, facilities, services, and other temporary items, excluding Construction Equipment, required for the execution of the Work but not incorporated into the Work.

24. Value Added Taxes

Value Added Taxes means such sum as shall be levied upon the Contract Price by the Federal or any Provincial or Territorial Government and is computed as a percentage of the Contract Price and includes the Goods and Services Tax, the Quebec Sales Tax, the Harmonized Sales Tax, and any similar tax, the collection and payment of which have been imposed on the Contractor by the tax legislation.

25. Work

The Work means the total construction and related services required by the Contract Documents.

26. Working Day

Working Day means a day other than a Saturday, Sunday, statutory holiday, or statutory vacation day that is observed by the construction industry in the area of the Place of the Work.

CCDC 2 - 2008 File 007100 7

GENERAL CONDITIONS OF THE STIPULATED PRICE CONTRACT

PART 1 GENERAL PROVISIONS

GC 1.1 CONTRACT DOCUMENTS

- 1.1.1 The intent of the *Contract Documents* is to include the labour, *Products* and services necessary for the performance of the *Work* by the *Contractor* in accordance with these documents. It is not intended, however, that the *Contractor* shall supply products or perform work not consistent with, not covered by, or not properly inferable from the *Contract Documents*.
- 1.1.2 Nothing contained in the Contract Documents shall create any contractual relationship between:
 - .1 the Owner and a Subcontractor, a Supplier, or their agent, employee, or other person performing any portion of the Work.
 - .2 the Consultant and the Contractor, a Subcontractor, a Supplier, or their agent, employee, or other person performing any portion of the Work.
- 1.1.3 The Contract Documents are complementary, and what is required by any one shall be as binding as if required by all.
- 1.1.4 Words and abbreviations which have well known technical or trade meanings are used in the *Contract Documents* in accordance with such recognized meanings.
- 1.1.5 References in the Contract Documents to the singular shall be considered to include the plural as the context requires.
- 1.1.6 Neither the organization of the *Specifications* nor the arrangement of *Drawings* shall control the *Contractor* in dividing the work among *Subcontractors* and *Suppliers*.
- 1.1.7 If there is a conflict within the Contract Documents:
 - .1 the order of priority of documents, from highest to lowest, shall be
 - the Agreement between the Owner and the Contractor,
 - the Definitions.
 - Supplementary Conditions,
 - the General Conditions,
 - Division 1 of the Specifications,
 - technical Specifications,
 - material and finishing schedules,
 - the Drawings.
 - .2 Drawings of larger scale shall govern over those of smaller scale of the same date.
 - .3 dimensions shown on *Drawings* shall govern over dimensions scaled from *Drawings*.
 - .4 later dated documents shall govern over earlier documents of the same type.
- 1.1.8 The Owner shall provide the Contractor, without charge, sufficient copies of the Contract Documents to perform the Work.
- 1.1.9 Specifications, Drawings, models, and copies thereof furnished by the Consultant are and shall remain the Consultant's property, with the exception of the signed Contract sets, which shall belong to each party to the Contract. All Specifications, Drawings and models furnished by the Consultant are to be used only with respect to the Work and are not to be used on other work. These Specifications, Drawings and models are not to be copied or altered in any manner without the written authorization of the Consultant.
- 1.1.10 Models furnished by the *Contractor* at the *Owner*'s expense are the property of the *Owner*.

GC 1.2 LAW OF THE CONTRACT

1.2.1 The law of the *Place of the Work* shall govern the interpretation of the *Contract*.

GC 1.3 RIGHTS AND REMEDIES

- 1.3.1 Except as expressly provided in the *Contract Documents*, the duties and obligations imposed by the *Contract Documents* and the rights and remedies available thereunder shall be in addition to and not a limitation of any duties, obligations, rights, and remedies otherwise imposed or available by law.
- 1.3.2 No action or failure to act by the *Owner*, *Consultant* or *Contractor* shall constitute a waiver of any right or duty afforded any of them under the *Contract*, nor shall any such action or failure to act constitute an approval of or acquiescence in any breach thereunder, except as may be specifically agreed in writing.

GC 1.4 ASSIGNMENT

1.4.1 Neither party to the *Contract* shall assign the *Contract* or a portion thereof without the written consent of the other, which consent shall not be unreasonably withheld.

PART 2 ADMINISTRATION OF THE CONTRACT

GC 2.1 AUTHORITY OF THE CONSULTANT

- 2.1.1 The Consultant will have authority to act on behalf of the Owner only to the extent provided in the Contract Documents, unless otherwise modified by written agreement as provided in paragraph 2.1.2.
- 2.1.2 The duties, responsibilities and limitations of authority of the *Consultant* as set forth in the *Contract Documents* shall be modified or extended only with the written consent of the *Owner*, the *Contractor* and the *Consultant*.
- 2.1.3 If the *Consultant*'s employment is terminated, the *Owner* shall immediately appoint or reappoint a *Consultant* against whom the *Contractor* makes no reasonable objection and whose status under the *Contract Documents* shall be that of the former *Consultant*.

GC 2.2 ROLE OF THE CONSULTANT

- 2.2.1 The Consultant will provide administration of the Contract as described in the Contract Documents.
- 2.2.2 The *Consultant* will visit the *Place of the Work* at intervals appropriate to the progress of construction to become familiar with the progress and quality of the work and to determine if the *Work* is proceeding in general conformity with the *Contract Documents*.
- 2.2.3 If the *Owner* and the *Consultant* agree, the *Consultant* will provide at the *Place of the Work*, one or more project representatives to assist in carrying out the *Consultant's* responsibilities. The duties, responsibilities and limitations of authority of such project representatives shall be as set forth in writing to the *Contractor*.
- 2.2.4 The *Consultant* will promptly inform the *Owner* of the date of receipt of the *Contractor*'s applications for payment as provided in paragraph 5.3.1.1 of GC 5.3 PROGRESS PAYMENT.
- 2.2.5 Based on the *Consultant*'s observations and evaluation of the *Contractor*'s applications for payment, the *Consultant* will determine the amounts owing to the *Contractor* under the *Contract* and will issue certificates for payment as provided in Article A-5 of the Agreement PAYMENT, GC 5.3 PROGRESS PAYMENT and GC 5.7 FINAL PAYMENT.
- 2.2.6 The Consultant will not be responsible for and will not have control, charge or supervision of construction means, methods, techniques, sequences, or procedures, or for safety precautions and programs required in connection with the Work in accordance with the applicable construction safety legislation, other regulations or general construction practice. The Consultant will not be responsible for the Contractor's failure to carry out the Work in accordance with the Contract Documents. The Consultant will not have control over, charge of or be responsible for the acts or omissions of the Contractor, Subcontractors, Suppliers, or their agents, employees, or any other persons performing portions of the Work.
- 2.2.7 Except with respect to GC 5.1 FINANCING INFORMATION REQUIRED OF THE OWNER, the *Consultant* will be, in the first instance, the interpreter of the requirements of the *Contract Documents*.
- 2.2.8 Matters in question relating to the performance of the *Work* or the interpretation of the *Contract Documents* shall be initially referred in writing to the *Consultant* by the party raising the question for interpretations and findings and copied to the other party.
- 2.2.9 Interpretations and findings of the *Consultant* shall be consistent with the intent of the *Contract Documents*. In making such interpretations and findings the *Consultant* will not show partiality to either the *Owner* or the *Contractor*.
- 2.2.10 The Consultant's interpretations and findings will be given in writing to the parties within a reasonable time.
- 2.2.11 With respect to claims for a change in *Contract Price*, the *Consultant* will make findings as set out in GC 6.6 CLAIMS FOR A CHANGE IN CONTRACT PRICE.
- 2.2.12 The Consultant will have authority to reject work which in the Consultant's opinion does not conform to the requirements of the Contract Documents. Whenever the Consultant considers it necessary or advisable, the Consultant will have authority to require inspection or testing of work, whether or not such work is fabricated, installed or completed. However, neither the authority of the Consultant to act nor any decision either to exercise or not to exercise such authority shall give rise to any duty or responsibility of the Consultant to the Contractor, Subcontractors, Suppliers, or their agents, employees, or other persons performing any of the Work.

- 2.2.13 During the progress of the *Work* the *Consultant* will furnish *Supplemental Instructions* to the *Contractor* with reasonable promptness or in accordance with a schedule for such instructions agreed to by the *Consultant* and the *Contractor*.
- 2.2.14 The Consultant will review and take appropriate action upon Shop Drawings, samples and other Contractor's submittals, in accordance with the Contract Documents.
- 2.2.15 The Consultant will prepare Change Orders and Change Directives as provided in GC 6.2 CHANGE ORDER and GC 6.3 CHANGE DIRECTIVE.
- 2.2.16 The Consultant will conduct reviews of the Work to determine the date of Substantial Performance of the Work as provided in GC 5.4 SUBSTANTIAL PERFORMANCE OF THE WORK.
- 2.2.17 All certificates issued by the *Consultant* will be to the best of the *Consultant*'s knowledge, information and belief. By issuing any certificate, the *Consultant* does not guarantee the *Work* is correct or complete.
- 2.2.18 The *Consultant* will receive and review written warranties and related documents required by the *Contract* and provided by the *Contractor* and will forward such warranties and documents to the *Owner* for the *Owner*'s acceptance.

GC 2.3 REVIEW AND INSPECTION OF THE WORK

- 2.3.1 The Owner and the Consultant shall have access to the Work at all times. The Contractor shall provide sufficient, safe and proper facilities at all times for the review of the Work by the Consultant and the inspection of the Work by authorized agencies. If parts of the Work are in preparation at locations other than the Place of the Work, the Owner and the Consultant shall be given access to such work whenever it is in progress.
- 2.3.2 If work is designated for tests, inspections or approvals in the *Contract Documents*, or by the *Consultant*'s instructions, or by the laws or ordinances of the *Place of the Work*, the *Contractor* shall give the *Consultant* reasonable notification of when the work will be ready for review and inspection. The *Contractor* shall arrange for and shall give the *Consultant* reasonable notification of the date and time of inspections by other authorities.
- 2.3.3 The Contractor shall furnish promptly to the Consultant two copies of certificates and inspection reports relating to the Work.
- 2.3.4 If the *Contractor* covers, or permits to be covered, work that has been designated for special tests, inspections or approvals before such special tests, inspections or approvals are made, given or completed, the *Contractor* shall, if so directed, uncover such work, have the inspections or tests satisfactorily completed, and make good covering work at the *Contractor*'s expense.
- 2.3.5 The Consultant may order any portion or portions of the Work to be examined to confirm that such work is in accordance with the requirements of the Contract Documents. If the work is not in accordance with the requirements of the Contract Documents, the Contractor shall correct the work and pay the cost of examination and correction. If the work is in accordance with the requirements of the Contract Documents, the Owner shall pay the cost of examination and restoration.
- 2.3.6 The *Contractor* shall pay the cost of making any test or inspection, including the cost of samples required for such test or inspection, if such test or inspection is designated in the *Contract Documents* to be performed by the *Contractor* or is designated by the laws or ordinances applicable to the *Place of the Work*.
- 2.3.7 The *Contractor* shall pay the cost of samples required for any test or inspection to be performed by the *Consultant* or the *Owner* if such test or inspection is designated in the *Contract Documents*.

GC 2.4 DEFECTIVE WORK

- 2.4.1 The Contractor shall promptly correct defective work that has been rejected by the Consultant as failing to conform to the Contract Documents whether or not the defective work has been incorporated in the Work and whether or not the defect is the result of poor workmanship, use of defective products or damage through carelessness or other act or omission of the Contractor.
- 2.4.2 The *Contractor* shall make good promptly other contractors' work destroyed or damaged by such corrections at the *Contractor*'s expense.
- 2.4.3 If in the opinion of the *Consultant* it is not expedient to correct defective work or work not performed as provided in the *Contract Documents*, the *Owner* may deduct from the amount otherwise due to the *Contractor* the difference in value between the work as performed and that called for by the *Contract Documents*. If the *Owner* and the *Contractor* do not agree on the difference in value, they shall refer the matter to the *Consultant* for a determination.

PART 3 EXECUTION OF THE WORK

GC 3.1 CONTROL OF THE WORK

- 3.1.1 The *Contractor* shall have total control of the *Work* and shall effectively direct and supervise the *Work* so as to ensure conformity with the *Contract Documents*.
- 3.1.2 The *Contractor* shall be solely responsible for construction means, methods, techniques, sequences, and procedures and for co-ordinating the various parts of the *Work* under the *Contract*.

GC 3.2 CONSTRUCTION BY OWNER OR OTHER CONTRACTORS

- 3.2.1 The *Owner* reserves the right to award separate contracts in connection with other parts of the *Project* to other contractors and to perform work with own forces.
- 3.2.2 When separate contracts are awarded for other parts of the *Project*, or when work is performed by the *Owner's* own forces, the *Owner* shall:
 - .1 provide for the co-ordination of the activities and work of other contractors and Owner's own forces with the Work of the Contract;
 - .2 assume overall responsibility for compliance with the applicable health and construction safety legislation at the *Place of the Work*;
 - .3 enter into separate contracts with other contractors under conditions of contract which are compatible with the conditions of the *Contract*;
 - .4 ensure that insurance coverage is provided to the same requirements as are called for in GC 11.1 INSURANCE and coordinate such insurance with the insurance coverage of the *Contractor* as it affects the *Work*; and
 - .5 take all reasonable precautions to avoid labour disputes or other disputes on the *Project* arising from the work of other contractors or the *Owner*'s own forces.
- 3.2.3 When separate contracts are awarded for other parts of the *Project*, or when work is performed by the *Owner's* own forces, the *Contractor* shall:
 - .1 afford the Owner and other contractors reasonable opportunity to store their products and execute their work;
 - .2 cooperate with other contractors and the Owner in reviewing their construction schedules; and
 - .3 promptly report to the *Consultant* in writing any apparent deficiencies in the work of other contractors or of the *Owner's* own forces, where such work affects the proper execution of any portion of the *Work*, prior to proceeding with that portion of the *Work*.
- 3.2.4 Where the Contract Documents identify work to be performed by other contractors or the Owner's own forces, the Contractor shall co-ordinate and schedule the Work with the work of other contractors and the Owner's own forces as specified in the Contract Documents.
- 3.2.5 Where a change in the *Work* is required as a result of the co-ordination and integration of the work of other contractors or *Owner*'s own forces with the *Work*, the changes shall be authorized and valued as provided in GC 6.1 OWNER'S RIGHT TO MAKE CHANGES, GC 6.2 CHANGE ORDER and GC 6.3 CHANGE DIRECTIVE.
- 3.2.6 Disputes and other matters in question between the *Contractor* and other contractors shall be dealt with as provided in Part 8 of the General Conditions DISPUTE RESOLUTION provided the other contractors have reciprocal obligations. The *Contractor* shall be deemed to have consented to arbitration of any dispute with any other contractor whose contract with the *Owner* contains a similar agreement to arbitrate.

GC 3.3 TEMPORARY WORK

- 3.3.1 The *Contractor* shall have the sole responsibility for the design, erection, operation, maintenance, and removal of *Temporary Work*.
- 3.3.2 The Contractor shall engage and pay for registered professional engineering personnel skilled in the appropriate disciplines to perform those functions referred to in paragraph 3.3.1 where required by law or by the Contract Documents and in all cases where such Temporary Work is of such a nature that professional engineering skill is required to produce safe and satisfactory results.

3.3.3 Notwithstanding the provisions of GC 3.1 - CONTROL OF THE WORK, paragraphs 3.3.1 and 3.3.2 or provisions to the contrary elsewhere in the *Contract Documents* where such *Contract Documents* include designs for *Temporary Work* or specify a method of construction in whole or in part, such designs or methods of construction shall be considered to be part of the design of the *Work* and the *Contractor* shall not be held responsible for that part of the design or the specified method of construction. The *Contractor* shall, however, be responsible for the execution of such design or specified method of construction in the same manner as for the execution of the *Work*.

GC 3.4 DOCUMENT REVIEW

3.4.1 The Contractor shall review the Contract Documents and shall report promptly to the Consultant any error, inconsistency or omission the Contractor may discover. Such review by the Contractor shall be to the best of the Contractor's knowledge, information and belief and in making such review the Contractor does not assume any responsibility to the Owner or the Consultant for the accuracy of the review. The Contractor shall not be liable for damage or costs resulting from such errors, inconsistencies or omissions in the Contract Documents, which the Contractor did not discover. If the Contractor does discover any error, inconsistency or omission in the Contract Documents, the Contractor shall not proceed with the work affected until the Contractor has received corrected or missing information from the Consultant.

GC 3.5 CONSTRUCTION SCHEDULE

- 3.5.1 The *Contractor* shall:
 - .1 prepare and submit to the *Owner* and the *Consultant* prior to the first application for payment, a construction schedule that indicates the timing of the major activities of the *Work* and provides sufficient detail of the critical events and their inter-relationship to demonstrate the *Work* will be performed in conformity with the *Contract Time*;
 - .2 monitor the progress of the *Work* relative to the construction schedule and update the schedule on a monthly basis or as stipulated by the *Contract Documents*; and
 - .3 advise the *Consultant* of any revisions required to the schedule as the result of extensions of the *Contract Time* as provided in Part 6 of the General Conditions CHANGES IN THE WORK.

GC 3.6 SUPERVISION

- 3.6.1 The *Contractor* shall provide all necessary supervision and appoint a competent representative who shall be in attendance at the *Place of the Work* while work is being performed. The appointed representative shall not be changed except for valid reason.
- 3.6.2 The appointed representative shall represent the *Contractor* at the *Place of the Work*. Information and instructions provided by the *Consultant* to the *Contractor*'s appointed representative shall be deemed to have been received by the *Contractor*, except with respect to Article A-6 of the Agreement RECEIPT OF AND ADDRESSES FOR NOTICES IN WRITING.

GC 3.7 SUBCONTRACTORS AND SUPPLIERS

- 3.7.1 The *Contractor* shall preserve and protect the rights of the parties under the *Contract* with respect to work to be performed under subcontract, and shall:
 - .1 enter into contracts or written agreements with *Subcontractors* and *Suppliers* to require them to perform their work as provided in the *Contract Documents*;
 - .2 incorporate the terms and conditions of the Contract Documents into all contracts or written agreements with Subcontractors and Suppliers; and
 - .3 be as fully responsible to the *Owner* for acts and omissions of *Subcontractors*, *Suppliers* and of persons directly or indirectly employed by them as for acts and omissions of persons directly employed by the *Contractor*.
- 3.7.2 The Contractor shall indicate in writing, if requested by the Owner, those Subcontractors or Suppliers whose bids have been received by the Contractor which the Contractor would be prepared to accept for the performance of a portion of the Work. Should the Owner not object before signing the Contract, the Contractor shall employ those Subcontractors or Suppliers so identified by the Contractor in writing for the performance of that portion of the Work to which their bid applies.
- 3.7.3 The Owner may, for reasonable cause, at any time before the Owner has signed the Contract, object to the use of a proposed Subcontractor or Supplier and require the Contractor to employ one of the other subcontract bidders.
- 3.7.4 If the *Owner* requires the *Contractor* to change a proposed *Subcontractor* or *Supplier*, the *Contract Price* and *Contract Time* shall be adjusted by the differences occasioned by such required change.

- 3.7.5 The *Contractor* shall not be required to employ as a *Subcontractor* or *Supplier*, a person or firm to which the *Contractor* may reasonably object.
- 3.7.6 The Owner, through the Consultant, may provide to a Subcontractor or Supplier information as to the percentage of the Subcontractor's or Supplier's work which has been certified for payment.

GC 3.8 LABOUR AND PRODUCTS

- 3.8.1 The *Contractor* shall provide and pay for labour, *Products*, tools, *Construction Equipment*, water, heat, light, power, transportation, and other facilities and services necessary for the performance of the *Work* in accordance with the *Contract*.
- 3.8.2 Unless otherwise specified in the *Contract Documents*, *Products* provided shall be new. *Products* which are not specified shall be of a quality consistent with those specified and their use acceptable to the *Consultant*.
- 3.8.3 The *Contractor* shall maintain good order and discipline among the *Contractor*'s employees engaged on the *Work* and shall not employ on the *Work* anyone not skilled in the tasks assigned.

GC 3.9 DOCUMENTS AT THE SITE

3.9.1 The Contractor shall keep one copy of current Contract Documents, submittals, reports, and records of meetings at the Place of the Work, in good order and available to the Owner and the Consultant.

GC 3.10 SHOP DRAWINGS

- 3.10.1 The Contractor shall provide Shop Drawings as required in the Contract Documents.
- 3.10.2 The *Contractor* shall provide *Shop Drawings* to the *Consultant* to review in orderly sequence and sufficiently in advance so as to cause no delay in the *Work* or in the work of other contractors.
- 3.10.3 Upon request of the *Contractor* or the *Consultant*, they shall jointly prepare a schedule of the dates for provision, review and return of *Shop Drawings*.
- 3.10.4 The Contractor shall provide Shop Drawings in the form specified, or if not specified, as directed by the Consultant.
- 3.10.5 Shop Drawings provided by the Contractor to the Consultant shall indicate by stamp, date and signature of the person responsible for the review that the Contractor has reviewed each one of them.
- 3.10.6 The Consultant's review is for conformity to the design concept and for general arrangement only.
- 3.10.7 Shop Drawings which require approval of any legally constituted authority having jurisdiction shall be provided to such authority by the Contractor for approval.
- 3.10.8 The *Contractor* shall review all *Shop Drawings* before providing them to the *Consultant*. The *Contractor* represents by this review that:
 - .1 the Contractor has determined and verified all applicable field measurements, field construction conditions, Product requirements, catalogue numbers and similar data, or will do so, and
 - .2 the Contractor has checked and co-ordinated each Shop Drawing with the requirements of the Work and of the Contract Documents.
- 3.10.9 At the time of providing *Shop Drawings*, the *Contractor* shall expressly advise the *Consultant* in writing of any deviations in a *Shop Drawing* from the requirements of the *Contract Documents*. The *Consultant* shall indicate the acceptance or rejection of such deviation expressly in writing.
- 3.10.10 The Consultant's review shall not relieve the Contractor of responsibility for errors or omissions in the Shop Drawings or for meeting all requirements of the Contract Documents.
- 3.10.11 The Contractor shall provide revised Shop Drawings to correct those which the Consultant rejects as inconsistent with the Contract Documents, unless otherwise directed by the Consultant. The Contractor shall notify the Consultant in writing of any revisions to the Shop Drawings other than those requested by the Consultant.
- 3.10.12 The *Consultant* will review and return *Shop Drawings* in accordance with the schedule agreed upon, or, in the absence of such schedule, with reasonable promptness so as to cause no delay in the performance of the *Work*.

GC 3.11 USE OF THE WORK

- 3.11.1 The Contractor shall confine Construction Equipment, Temporary Work, storage of Products, waste products and debris, and operations of employees and Subcontractors to limits indicated by laws, ordinances, permits, or the Contract Documents and shall not unreasonably encumber the Place of the Work.
- 3.11.2 The *Contractor* shall not load or permit to be loaded any part of the *Work* with a weight or force that will endanger the safety of the *Work*.

GC 3.12 CUTTING AND REMEDIAL WORK

- 3.12.1 The *Contractor* shall perform the cutting and remedial work required to make the affected parts of the *Work* come together properly.
- 3.12.2 The Contractor shall co-ordinate the Work to ensure that the cutting and remedial work is kept to a minimum.
- 3.12.3 Should the *Owner*, the *Consultant*, other contractors or anyone employed by them be responsible for ill-timed work necessitating cutting or remedial work to be performed, the cost of such cutting or remedial work shall be valued as provided in GC 6.1 OWNER'S RIGHT TO MAKE CHANGES, GC 6.2 CHANGE ORDER and GC 6.3 CHANGE DIRECTIVE.
- 3.12.4 Cutting and remedial work shall be performed by specialists familiar with the *Products* affected and shall be performed in a manner to neither damage nor endanger the *Work*.

GC 3.13 CLEANUP

- 3.13.1 The *Contractor* shall maintain the *Work* in a safe and tidy condition and free from the accumulation of waste products and debris, other than that caused by the *Owner*, other contractors or their employees.
- 3.13.2 Before applying for Substantial Performance of the Work as provided in GC 5.4 SUBSTANTIAL PERFORMANCE OF THE WORK, the Contractor shall remove waste products and debris, other than that resulting from the work of the Owner, other contractors or their employees, and shall leave the Place of the Work clean and suitable for use or occupancy by the Owner. The Contractor shall remove products, tools, Construction Equipment, and Temporary Work not required for the performance of the remaining work.
- 3.13.3 Prior to application for the final payment, the *Contractor* shall remove any remaining products, tools, *Construction Equipment*, *Temporary Work*, and waste products and debris, other than those resulting from the work of the *Owner*, other contractors or their employees.

PART 4 ALLOWANCES

GC 4.1 CASH ALLOWANCES

- 4.1.1 The Contract Price includes the cash allowances, if any, stated in the Contract Documents. The scope of work or costs included in such cash allowances shall be as described in the Contract Documents.
- 4.1.2 The *Contract Price*, and not the cash allowances, includes the *Contractor*'s overhead and profit in connection with such cash allowances.
- 4.1.3 Expenditures under cash allowances shall be authorized by the Owner through the Consultant.
- 4.1.4 Where the actual cost of the *Work* under any cash allowance exceeds the amount of the allowance, the *Contractor* shall be compensated for the excess incurred and substantiated plus an amount for overhead and profit on the excess as set out in the *Contract Documents*. Where the actual cost of the *Work* under any cash allowance is less than the amount of the allowance, the *Owner* shall be credited for the unexpended portion of the cash allowance, but not for the *Contractor*'s overhead and profit on such amount. Multiple cash allowances shall not be combined for the purpose of calculating the foregoing.
- 4.1.5 The Contract Price shall be adjusted by Change Order to provide for any difference between the amount of each cash allowance and the actual cost of the work under that cash allowance.
- 4.1.6 The value of the work performed under a cash allowance is eligible to be included in progress payments.
- 4.1.7 The Contractor and the Consultant shall jointly prepare a schedule that shows when the Consultant and Owner must authorize ordering of items called for under cash allowances to avoid delaying the progress of the Work.

GC 4.2 CONTINGENCY ALLOWANCE

- 4.2.1 The Contract Price includes the contingency allowance, if any, stated in the Contract Documents.
- 4.2.2 The contingency allowance includes the *Contractor's* overhead and profit in connection with such contingency allowance.
- 4.2.3 Expenditures under the contingency allowance shall be authorized and valued as provided in GC 6.1 OWNER'S RIGHT TO MAKE CHANGES, GC 6.2 CHANGE ORDER and GC 6.3 CHANGE DIRECTIVE.
- 4.2.4 The *Contract Price* shall be adjusted by *Change Order* to provide for any difference between the expenditures authorized under paragraph 4.2.3 and the contingency allowance.

PART 5 PAYMENT

GC 5.1 FINANCING INFORMATION REQUIRED OF THE OWNER

- 5.1.1 The *Owner* shall, at the request of the *Contractor*, before signing the *Contract*, and promptly from time to time thereafter, furnish to the *Contractor* reasonable evidence that financial arrangements have been made to fulfill the *Owner's* obligations under the *Contract*.
- 5.1.2 The Owner shall give the Contractor Notice in Writing of any material change in the Owner's financial arrangements to fulfill the Owner's obligations under the Contract during the performance of the Contract.

GC 5.2 APPLICATIONS FOR PROGRESS PAYMENT

- 5.2.1 Applications for payment on account as provided in Article A-5 of the Agreement PAYMENT may be made monthly as the *Work* progresses.
- 5.2.2 Applications for payment shall be dated the last day of each payment period, which is the last day of the month or an alternative day of the month agreed in writing by the parties.
- 5.2.3 The amount claimed shall be for the value, proportionate to the amount of the *Contract*, of *Work* performed and *Products* delivered to the *Place of the Work* as of the last day of the payment period.
- 5.2.4 The Contractor shall submit to the Consultant, at least 15 calendar days before the first application for payment, a schedule of values for the parts of the Work, aggregating the total amount of the Contract Price, so as to facilitate evaluation of applications for payment.
- 5.2.5 The schedule of values shall be made out in such form and supported by such evidence as the *Consultant* may reasonably direct and when accepted by the *Consultant*, shall be used as the basis for applications for payment, unless it is found to be in error.
- 5.2.6 The *Contractor* shall include a statement based on the schedule of values with each application for payment.
- 5.2.7 Applications for payment for *Products* delivered to the *Place of the Work* but not yet incorporated into the *Work* shall be supported by such evidence as the *Consultant* may reasonably require to establish the value and delivery of the *Products*.

GC 5.3 PROGRESS PAYMENT

- 5.3.1 After receipt by the *Consultant* of an application for payment submitted by the *Contractor* in accordance with GC 5.2 APPLICATIONS FOR PROGRESS PAYMENT:
 - .1 the Consultant will promptly inform the Owner of the date of receipt of the Contractor's application for payment,
 - .2 the Consultant will issue to the Owner and copy to the Contractor, no later than 10 calendar days after the receipt of the application for payment, a certificate for payment in the amount applied for, or in such other amount as the Consultant determines to be properly due. If the Consultant amends the application, the Consultant will promptly advise the Contractor in writing giving reasons for the amendment,
 - .3 the *Owner* shall make payment to the *Contractor* on account as provided in Article A-5 of the Agreement PAYMENT on or before 20 calendar days after the later of:
 - receipt by the Consultant of the application for payment, or
 - the last day of the monthly payment period for which the application for payment is made.

GC 5.4 SUBSTANTIAL PERFORMANCE OF THE WORK

- 5.4.1 When the Contractor considers that the Work is substantially performed, or if permitted by the lien legislation applicable to the Place of the Work a designated portion thereof which the Owner agrees to accept separately is substantially performed, the Contractor shall, within one Working Day, deliver to the Consultant and to the Owner a comprehensive list of items to be completed or corrected, together with a written application for a review by the Consultant to establish Substantial Performance of the Work or substantial performance of the designated portion of the Work. Failure to include an item on the list does not alter the responsibility of the Contractor to complete the Contract.
- 5.4.2 The *Consultant* will review the *Work* to verify the validity of the application and shall promptly, and in any event, no later than 20 calendar days after receipt of the *Contractor*'s list and application:
 - .1 advise the *Contractor* in writing that the *Work* or the designated portion of the *Work* is not substantially performed and give reasons why, or
 - .2 state the date of Substantial Performance of the Work or a designated portion of the Work in a certificate and issue a copy of that certificate to each of the Owner and the Contractor.
- 5.4.3 Immediately following the issuance of the certificate of Substantial Performance of the Work, the Contractor, in consultation with the Consultant, shall establish a reasonable date for finishing the Work.

GC 5.5 PAYMENT OF HOLDBACK UPON SUBSTANTIAL PERFORMANCE OF THE WORK

- 5.5.1 After the issuance of the certificate of Substantial Performance of the Work, the Contractor shall:
 - .1 submit an application for payment of the holdback amount,
 - .2 submit CCDC 9A 'Statutory Declaration' to state that all accounts for labour, subcontracts, *Products*, *Construction Equipment*, and other indebtedness which may have been incurred by the *Contractor* in the *Substantial Performance of the Work* and for which the *Owner* might in any way be held responsible have been paid in full, except for amounts properly retained as a holdback or as an identified amount in dispute.
- 5.5.2 After the receipt of an application for payment from the *Contractor* and the statement as provided in paragraph 5.5.1, the *Consultant* will issue a certificate for payment of the holdback amount.
- 5.5.3 Where the holdback amount required by the applicable lien legislation has not been placed in a separate holdback account, the *Owner* shall, 10 calendar days prior to the expiry of the holdback period stipulated in the lien legislation applicable to the *Place of the Work*, place the holdback amount in a bank account in the joint names of the *Owner* and the *Contractor*.
- 5.5.4 In the common law jurisdictions, the holdback amount authorized by the certificate for payment of the holdback amount is due and payable on the first calendar day following the expiration of the holdback period stipulated in the lien legislation applicable to the *Place of the Work*. Where lien legislation does not exist or apply, the holdback amount shall be due and payable in accordance with other legislation, industry practice or provisions which may be agreed to between the parties. The *Owner* may retain out of the holdback amount any sums required by law to satisfy any liens against the *Work* or, if permitted by the lien legislation applicable to the *Place of the Work*, other third party monetary claims against the *Contractor* which are enforceable against the *Owner*.
- 5.5.5 In the Province of Quebec, the holdback amount authorized by the certificate for payment of the holdback amount is due and payable 30 calendar days after the issuance of the certificate. The *Owner* may retain out of the holdback amount any sums required to satisfy any legal hypothecs that have been taken, or could be taken, against the *Work* or other third party monetary claims against the *Contractor* which are enforceable against the *Owner*.

GC 5.6 PROGRESSIVE RELEASE OF HOLDBACK

In the common law jurisdictions, where legislation permits and where, upon application by the Contractor, the Consultant has certified that the work of a Subcontractor or Supplier has been performed prior to Substantial Performance of the Work, the Owner shall pay the Contractor the holdback amount retained for such subcontract work, or the Products supplied by such Supplier, on the first calendar day following the expiration of the holdback period for such work stipulated in the lien legislation applicable to the Place of the Work. The Owner may retain out of the holdback amount any sums required by law to satisfy any liens against the Work or, if permitted by the lien legislation applicable to the Place of the Work, other third party monetary claims against the Contractor which are enforceable against the Owner.

- 5.6.2 In the Province of Quebec, where, upon application by the Contractor, the Consultant has certified that the work of a Subcontractor or Supplier has been performed prior to Substantial Performance of the Work, the Owner shall pay the Contractor the holdback amount retained for such subcontract work, or the Products supplied by such Supplier, no later than 30 calendar days after such certification by the Consultant. The Owner may retain out of the holdback amount any sums required to satisfy any legal hypothecs that have been taken, or could be taken, against the Work or other third party monetary claims against the Contractor which are enforceable against the Owner.
- Notwithstanding the provisions of the preceding paragraphs, and notwithstanding the wording of such certificates, the *Contractor* shall ensure that such subcontract work or *Products* are protected pending the issuance of a final certificate for payment and be responsible for the correction of defects or work not performed regardless of whether or not such was apparent when such certificates were issued.

GC 5.7 FINAL PAYMENT

- 5.7.1 When the *Contractor* considers that the *Work* is completed, the *Contractor* shall submit an application for final payment.
- 5.7.2 The Consultant will, no later than 10 calendar days after the receipt of an application from the Contractor for final payment, review the Work to verify the validity of the application and advise the Contractor in writing that the application is valid or give reasons why it is not valid.
- 5.7.3 When the *Consultant* finds the *Contractor's* application for final payment valid, the *Consultant* will promptly issue a final certificate for payment.
- 5.7.4 Subject to the provision of paragraph 10.4.1 of GC 10.4 WORKERS' COMPENSATION, and any lien legislation applicable to the *Place of the Work*, the *Owner* shall, no later than 5 calendar days after the issuance of a final certificate for payment, pay the *Contractor* as provided in Article A-5 of the Agreement PAYMENT.

GC 5.8 WITHHOLDING OF PAYMENT

5.8.1 If because of climatic or other conditions reasonably beyond the control of the *Contractor*, there are items of work that cannot be performed, payment in full for that portion of the *Work* which has been performed as certified by the *Consultant* shall not be withheld or delayed by the *Owner* on account thereof, but the *Owner* may withhold, until the remaining portion of the *Work* is finished, only such an amount that the *Consultant* determines is sufficient and reasonable to cover the cost of performing such remaining work.

GC 5.9 NON-CONFORMING WORK

5.9.1 No payment by the *Owner* under the *Contract* nor partial or entire use or occupancy of the *Work* by the *Owner* shall constitute an acceptance of any portion of the *Work* or *Products* which are not in accordance with the requirements of the *Contract Documents*.

PART 6 CHANGES IN THE WORK

GC 6.1 OWNER'S RIGHT TO MAKE CHANGES

- 6.1.1 The *Owner*, through the *Consultant*, without invalidating the *Contract*, may make:
 - .1 changes in the Work consisting of additions, deletions or other revisions to the Work by Change Order or Change Directive, and
 - .2 changes to the Contract Time for the Work, or any part thereof, by Change Order.
- 6.1.2 The Contractor shall not perform a change in the Work without a Change Order or a Change Directive.

GC 6.2 CHANGE ORDER

- 6.2.1 When a change in the *Work* is proposed or required, the *Consultant* will provide the *Contractor* with a written description of the proposed change in the *Work*. The *Contractor* shall promptly present, in a form acceptable to the *Consultant*, a method of adjustment or an amount of adjustment for the *Contract Price*, if any, and the adjustment in the *Contract Time*, if any, for the proposed change in the *Work*.
- 6.2.2 When the Owner and Contractor agree to the adjustments in the Contract Price and Contract Time or to the method to be used to determine the adjustments, such agreement shall be effective immediately and shall be recorded in a Change Order. The value of the work performed as the result of a Change Order shall be included in the application for progress payment.

GC 6.3 CHANGE DIRECTIVE

- 6.3.1 If the Owner requires the Contractor to proceed with a change in the Work prior to the Owner and the Contractor agreeing upon the corresponding adjustment in Contract Price and Contract Time, the Owner, through the Consultant, shall issue a Change Directive.
- 6.3.2 A Change Directive shall only be used to direct a change in the Work which is within the general scope of the Contract Documents.
- 6.3.3 A Change Directive shall not be used to direct a change in the Contract Time only.
- 6.3.4 Upon receipt of a Change Directive, the Contractor shall proceed promptly with the change in the Work.
- 6.3.5 For the purpose of valuing *Change Directives*, changes in the *Work* that are not substitutions or otherwise related to each other shall not be grouped together in the same *Change Directive*.
- 6.3.6 The adjustment in the *Contract Price* for a change carried out by way of a *Change Directive* shall be determined on the basis of the cost of the *Contractor*'s actual expenditures and savings attributable to the *Change Directive*, valued in accordance with paragraph 6.3.7 and as follows:
 - .1 If the change results in a net increase in the *Contractor*'s cost, the *Contract Price* shall be increased by the amount of the net increase in the *Contractor*'s cost, plus the *Contractor*'s percentage fee on such net increase.
 - .2 If the change results in a net decrease in the *Contractor*'s cost, the *Contract Price* shall be decreased by the amount of the net decrease in the *Contractor*'s cost, without adjustment for the *Contractor*'s percentage fee.
 - .3 The Contractor's fee shall be as specified in the Contract Documents or as otherwise agreed by the parties.
- 6.3.7 The cost of performing the work attributable to the *Change Directive* shall be limited to the actual cost of the following:
 - .1 salaries, wages and benefits paid to personnel in the direct employ of the *Contractor* under a salary or wage schedule agreed upon by the *Owner* and the *Contractor*, or in the absence of such a schedule, actual salaries, wages and benefits paid under applicable bargaining agreement, and in the absence of a salary or wage schedule and bargaining agreement, actual salaries, wages and benefits paid by the *Contractor*, for personnel
 - (1) stationed at the Contractor's field office, in whatever capacity employed;
 - (2) engaged in expediting the production or transportation of material or equipment, at shops or on the road;
 - (3) engaged in the preparation or review of Shop Drawings, fabrication drawings, and coordination drawings; or
 - (4) engaged in the processing of changes in the Work.
 - .2 contributions, assessments or taxes incurred for such items as employment insurance, provincial or territorial health insurance, workers' compensation, and Canada or Quebec Pension Plan, insofar as such cost is based on wages, salaries or other remuneration paid to employees of the *Contractor* and included in the cost of the *Work* as provided in paragraph 6.3.7.1:
 - .3 travel and subsistence expenses of the *Contractor's* personnel described in paragraph 6.3.7.1;
 - .4 all *Products* including cost of transportation thereof;
 - .5 materials, supplies, Construction Equipment, Temporary Work, and hand tools not owned by the workers, including transportation and maintenance thereof, which are consumed in the performance of the Work; and cost less salvage value on such items used but not consumed, which remain the property of the Contractor;
 - .6 all tools and Construction Equipment, exclusive of hand tools used in the performance of the Work, whether rented from or provided by the Contractor or others, including installation, minor repairs and replacements, dismantling, removal, transportation, and delivery cost thereof;
 - .7 all equipment and services required for the Contractor's field office;
 - .8 deposits lost;
 - .9 the amounts of all subcontracts;
 - .10 quality assurance such as independent inspection and testing services;
 - .11 charges levied by authorities having jurisdiction at the *Place of the Work*;
 - .12 royalties, patent licence fees and damages for infringement of patents and cost of defending suits therefor subject always to the *Contractor*'s obligations to indemnify the *Owner* as provided in paragraph 10.3.1 of GC 10.3 PATENT FEES;
 - .13 any adjustment in premiums for all bonds and insurance which the *Contractor* is required, by the *Contract Documents*, to purchase and maintain;
 - .14 any adjustment in taxes, other than Value Added Taxes, and duties for which the Contractor is liable;
 - .15 charges for long distance telephone and facsimile communications, courier services, expressage, and petty cash items incurred in relation to the performance of the *Work*;
 - .16 removal and disposal of waste products and debris; and
 - .17 safety measures and requirements.

- 6.3.8 Notwithstanding any other provisions contained in the General Conditions of the Contract, it is the intention of the parties that the cost of any item under any cost element referred to in paragraph 6.3.7 shall cover and include any and all costs or liabilities attributable to the Change Directive other than those which are the result of or occasioned by any failure on the part of the Contractor to exercise reasonable care and diligence in the Contractor's attention to the Work. Any cost due to failure on the part of the Contractor to exercise reasonable care and diligence in the Contractor's attention to the Work shall be borne by the Contractor.
- 6.3.9 The *Contractor* shall keep full and detailed accounts and records necessary for the documentation of the cost of performing the *Work* attributable to the *Change Directive* and shall provide the *Consultant* with copies thereof when requested.
- 6.3.10 For the purpose of valuing *Change Directives*, the *Owner* shall be afforded reasonable access to all of the *Contractor*'s pertinent documents related to the cost of performing the *Work* attributable to the *Change Directive*.
- 6.3.11 Pending determination of the final amount of a *Change Directive*, the undisputed value of the *Work* performed as the result of a *Change Directive* is eligible to be included in progress payments.
- 6.3.12 If the *Owner* and the *Contractor* do not agree on the proposed adjustment in the *Contract Time* attributable to the change in the *Work*, or the method of determining it, the adjustment shall be referred to the *Consultant* for determination.
- 6.3.13 When the *Owner* and the *Contractor* reach agreement on the adjustment to the *Contract Price* and to the *Contract Time*, this agreement shall be recorded in a *Change Order*.

GC 6.4 CONCEALED OR UNKNOWN CONDITIONS

- 6.4.1 If the Owner or the Contractor discover conditions at the Place of the Work which are:
 - .1 subsurface or otherwise concealed physical conditions which existed before the commencement of the Work which differ materially from those indicated in the Contract Documents; or
 - .2 physical conditions, other than conditions due to weather, that are of a nature which differ materially from those ordinarily found to exist and generally recognized as inherent in construction activities of the character provided for in the *Contract Documents*,
 - then the observing party shall give *Notice in Writing* to the other party of such conditions before they are disturbed and in no event later than 5 *Working Days* after first observance of the conditions.
- 6.4.2 The Consultant will promptly investigate such conditions and make a finding. If the finding is that the conditions differ materially and this would cause an increase or decrease in the Contractor's cost or time to perform the Work, the Consultant, with the Owner's approval, will issue appropriate instructions for a change in the Work as provided in GC 6.2 CHANGE ORDER or GC 6.3 CHANGE DIRECTIVE.
- 6.4.3 If the Consultant finds that the conditions at the Place of the Work are not materially different or that no change in the Contract Price or the Contract Time is justified, the Consultant will report the reasons for this finding to the Owner and the Contractor in writing.
- 6.4.4 If such concealed or unknown conditions relate to toxic and hazardous substances and materials, artifacts and fossils, or mould, the parties will be governed by the provisions of GC 9.2 TOXIC AND HAZARDOUS SUBSTANCES, GC 9.3 ARTIFACTS AND FOSSILS and GC 9.5 MOULD.

GC 6.5 DELAYS

- 6.5.1 If the Contractor is delayed in the performance of the Work by an action or omission of the Owner, Consultant or anyone employed or engaged by them directly or indirectly, contrary to the provisions of the Contract Documents, then the Contract Time shall be extended for such reasonable time as the Consultant may recommend in consultation with the Contractor. The Contractor shall be reimbursed by the Owner for reasonable costs incurred by the Contractor as the result of such delay.
- 6.5.2 If the Contractor is delayed in the performance of the Work by a stop work order issued by a court or other public authority and providing that such order was not issued as the result of an act or fault of the Contractor or any person employed or engaged by the Contractor directly or indirectly, then the Contract Time shall be extended for such reasonable time as the Consultant may recommend in consultation with the Contractor. The Contractor shall be reimbursed by the Owner for reasonable costs incurred by the Contractor as the result of such delay.

- 6.5.3 If the *Contractor* is delayed in the performance of the *Work* by:
 - .1 labour disputes, strikes, lock-outs (including lock-outs decreed or recommended for its members by a recognized contractors' association, of which the *Contractor* is a member or to which the *Contractor* is otherwise bound),
 - .2 fire, unusual delay by common carriers or unavoidable casualties,
 - .3 abnormally adverse weather conditions, or
 - .4 any cause beyond the *Contractor's* control other than one resulting from a default or breach of *Contract* by the *Contractor*,

then the Contract Time shall be extended for such reasonable time as the Consultant may recommend in consultation with the Contractor. The extension of time shall not be less than the time lost as the result of the event causing the delay, unless the Contractor agrees to a shorter extension. The Contractor shall not be entitled to payment for costs incurred by such delays unless such delays result from actions by the Owner, Consultant or anyone employed or engaged by them directly or indirectly.

- 6.5.4 No extension shall be made for delay unless *Notice in Writing* of the cause of delay is given to the *Consultant* not later than 10 *Working Days* after the commencement of the delay. In the case of a continuing cause of delay only one *Notice in Writing* shall be necessary.
- 6.5.5 If no schedule is made under paragraph 2.2.13 of GC 2.2 ROLE OF THE CONSULTANT, then no request for extension shall be made because of failure of the *Consultant* to furnish instructions until 10 *Working Days* after demand for such instructions has been made.

GC 6.6 CLAIMS FOR A CHANGE IN CONTRACT PRICE

- 6.6.1 If the Contractor intends to make a claim for an increase to the Contract Price, or if the Owner intends to make a claim against the Contractor for a credit to the Contract Price, the party that intends to make the claim shall give timely Notice in Writing of intent to claim to the other party and to the Consultant.
- 6.6.2 Upon commencement of the event or series of events giving rise to a claim, the party intending to make the claim shall:
 - .1 take all reasonable measures to mitigate any loss or expense which may be incurred as a result of such event or series of events, and
 - .2 keep such records as may be necessary to support the claim.
- 6.6.3 The party making the claim shall submit within a reasonable time to the *Consultant* a detailed account of the amount claimed and the grounds upon which the claim is based.
- 6.6.4 Where the event or series of events giving rise to the claim has a continuing effect, the detailed account submitted under paragraph 6.6.3 shall be considered to be an interim account and the party making the claim shall, at such intervals as the Consultant may reasonably require, submit further interim accounts giving the accumulated amount of the claim and any further grounds upon which it is based. The party making the claim shall submit a final account after the end of the effects resulting from the event or series of events.
- 6.6.5 The Consultant's findings, with respect to a claim made by either party, will be given by Notice in Writing to both parties within 30 Working Days after receipt of the claim by the Consultant, or within such other time period as may be agreed by the parties.
- 6.6.6 If such finding is not acceptable to either party, the claim shall be settled in accordance with Part 8 of the General Conditions DISPUTE RESOLUTION.

PART 7 DEFAULT NOTICE

GC 7.1 OWNER'S RIGHT TO PERFORM THE WORK, TERMINATE THE CONTRACTOR'S RIGHT TO CONTINUE WITH THE WORK OR TERMINATE THE CONTRACT

- 7.1.1 If the Contractor is adjudged bankrupt, or makes a general assignment for the benefit of creditors because of the Contractor's insolvency, or if a receiver is appointed because of the Contractor's insolvency, the Owner may, without prejudice to any other right or remedy the Owner may have, terminate the Contractor's right to continue with the Work, by giving the Contractor or receiver or trustee in bankruptcy Notice in Writing to that effect.
- 7.1.2 If the Contractor neglects to prosecute the Work properly or otherwise fails to comply with the requirements of the Contract to a substantial degree and if the Consultant has given a written statement to the Owner and Contractor that sufficient cause exists to justify such action, the Owner may, without prejudice to any other right or remedy the Owner may have, give the Contractor Notice in Writing that the Contractor is in default of the Contractor's contractual obligations and instruct the Contractor to correct the default in the 5 Working Days immediately following the receipt of such Notice in Writing.

- 7.1.3 If the default cannot be corrected in the 5 Working Days specified or in such other time period as may be subsequently agreed in writing by the parties, the Contractor shall be in compliance with the Owner's instructions if the Contractor:
 - .1 commences the correction of the default within the specified time, and
 - .2 provides the Owner with an acceptable schedule for such correction, and
 - 3 corrects the default in accordance with the Contract terms and with such schedule.
- 7.1.4 If the *Contractor* fails to correct the default in the time specified or in such other time period as may be subsequently agreed in writing by the parties, without prejudice to any other right or remedy the *Owner* may have, the *Owner* may:
 - .1 correct such default and deduct the cost thereof from any payment then or thereafter due the *Contractor* provided the *Consultant* has certified such cost to the *Owner* and the *Contractor*, or
 - .2 terminate the Contractor's right to continue with the Work in whole or in part or terminate the Contract.
- 7.1.5 If the Owner terminates the Contractor's right to continue with the Work as provided in paragraphs 7.1.1 and 7.1.4, the Owner shall be entitled to:
 - .1 take possession of the Work and Products at the Place of the Work; subject to the rights of third parties, utilize the Construction Equipment at the Place of the Work; finish the Work by whatever method the Owner may consider expedient, but without undue delay or expense, and
 - .2 withhold further payment to the Contractor until a final certificate for payment is issued, and
 - .3 charge the Contractor the amount by which the full cost of finishing the Work as certified by the Consultant, including compensation to the Consultant for the Consultant's additional services and a reasonable allowance as determined by the Consultant to cover the cost of corrections to work performed by the Contractor that may be required under GC 12.3 WARRANTY, exceeds the unpaid balance of the Contract Price; however, if such cost of finishing the Work is less than the unpaid balance of the Contract Price, the Owner shall pay the Contractor the difference, and
 - .4 on expiry of the warranty period, charge the *Contractor* the amount by which the cost of corrections to the *Contractor*'s work under GC 12.3 WARRANTY exceeds the allowance provided for such corrections, or if the cost of such corrections is less than the allowance, pay the *Contractor* the difference.
- 7.1.6 The Contractor's obligation under the Contract as to quality, correction and warranty of the work performed by the Contractor up to the time of termination shall continue after such termination of the Contract.

GC 7.2 CONTRACTOR'S RIGHT TO SUSPEND THE WORK OR TERMINATE THE CONTRACT

- 7.2.1 If the *Owner* is adjudged bankrupt, or makes a general assignment for the benefit of creditors because of the *Owner*'s insolvency, or if a receiver is appointed because of the *Owner*'s insolvency, the *Contractor* may, without prejudice to any other right or remedy the *Contractor* may have, terminate the *Contract* by giving the *Owner* or receiver or trustee in bankruptcy *Notice in Writing* to that effect.
- 7.2.2 If the Work is suspended or otherwise delayed for a period of 20 Working Days or more under an order of a court or other public authority and providing that such order was not issued as the result of an act or fault of the Contractor or of anyone directly or indirectly employed or engaged by the Contractor, the Contractor may, without prejudice to any other right or remedy the Contractor may have, terminate the Contract by giving the Owner Notice in Writing to that effect.
- 7.2.3 The Contractor may give Notice in Writing to the Owner, with a copy to the Consultant, that the Owner is in default of the Owner's contractual obligations if:
 - the *Owner* fails to furnish, when so requested by the *Contractor*, reasonable evidence that financial arrangements have been made to fulfill the *Owner*'s obligations under the *Contract*, or
 - .2 the Consultant fails to issue a certificate as provided in GC 5.3 PROGRESS PAYMENT, or
 - .3 the Owner fails to pay the Contractor when due the amounts certified by the Consultant or awarded by arbitration or court, or
 - .4 the Owner violates the requirements of the Contract to a substantial degree and the Consultant, except for GC 5.1 FINANCING INFORMATION REQUIRED OF THE OWNER, confirms by written statement to the Contractor that sufficient cause exists.
- 7.2.4 The Contractor's Notice in Writing to the Owner provided under paragraph 7.2.3 shall advise that if the default is not corrected within 5 Working Days following the receipt of the Notice in Writing, the Contractor may, without prejudice to any other right or remedy the Contractor may have, suspend the Work or terminate the Contract.
- 7.2.5 If the Contractor terminates the Contract under the conditions set out above, the Contractor shall be entitled to be paid for all work performed including reasonable profit, for loss sustained upon Products and Construction Equipment, and such other damages as the Contractor may have sustained as a result of the termination of the Contract.

PART 8 DISPUTE RESOLUTION

GC 8.1 AUTHORITY OF THE CONSULTANT

- 8.1.1 Differences between the parties to the *Contract* as to the interpretation, application or administration of the *Contract* or any failure to agree where agreement between the parties is called for, herein collectively called disputes, which are not resolved in the first instance by findings of the *Consultant* as provided in GC 2.2 ROLE OF THE CONSULTANT, shall be settled in accordance with the requirements of Part 8 of the General Conditions DISPUTE RESOLUTION.
- 8.1.2 If a dispute arises under the *Contract* in respect of a matter in which the *Consultant* has no authority under the *Contract* to make a finding, the procedures set out in paragraph 8.1.3 and paragraphs 8.2.3 to 8.2.8 of GC 8.2 NEGOTIATION, MEDIATION AND ARBITRATION, and in GC 8.3 RETENTION OF RIGHTS apply to that dispute with the necessary changes to detail as may be required.
- 8.1.3 If a dispute is not resolved promptly, the Consultant will give such instructions as in the Consultant's opinion are necessary for the proper performance of the Work and to prevent delays pending settlement of the dispute. The parties shall act immediately according to such instructions, it being understood that by so doing neither party will jeopardize any claim the party may have. If it is subsequently determined that such instructions were in error or at variance with the Contract Documents, the Owner shall pay the Contractor costs incurred by the Contractor in carrying out such instructions which the Contractor was required to do beyond what the Contract Documents correctly understood and interpreted would have required, including costs resulting from interruption of the Work.

GC 8.2 NEGOTIATION, MEDIATION AND ARBITRATION

- 8.2.1 In accordance with the Rules for Mediation of Construction Disputes as provided in CCDC 40 in effect at the time of bid closing, the parties shall appoint a Project Mediator
 - .1 within 20 Working Days after the Contract was awarded, or
 - .2 if the parties neglected to make an appointment within the 20 Working Days, within 10 Working Days after either party by Notice in Writing requests that the Project Mediator be appointed.
- 8.2.2 A party shall be conclusively deemed to have accepted a finding of the Consultant under GC 2.2 ROLE OF THE CONSULTANT and to have expressly waived and released the other party from any claims in respect of the particular matter dealt with in that finding unless, within 15 Working Days after receipt of that finding, the party sends a Notice in Writing of dispute to the other party and to the Consultant, which contains the particulars of the matter in dispute and the relevant provisions of the Contract Documents. The responding party shall send a Notice in Writing of reply to the dispute within 10 Working Days after receipt of such Notice in Writing setting out particulars of this response and any relevant provisions of the Contract Documents.
- 8.2.3 The parties shall make all reasonable efforts to resolve their dispute by amicable negotiations and agree to provide, without prejudice, frank, candid and timely disclosure of relevant facts, information and documents to facilitate these negotiations.
- 8.2.4 After a period of 10 Working Days following receipt of a responding party's Notice in Writing of reply under paragraph 8.2.2, the parties shall request the Project Mediator to assist the parties to reach agreement on any unresolved dispute. The mediated negotiations shall be conducted in accordance with the Rules for Mediation of Construction Disputes as provided in CCDC 40 in effect at the time of bid closing.
- 8.2.5 If the dispute has not been resolved within 10 *Working Days* after the Project Mediator was requested under paragraph 8.2.4 or within such further period agreed by the parties, the Project Mediator shall terminate the mediated negotiations by giving *Notice in Writing* to the *Owner*, the *Contractor* and the *Consultant*.
- 8.2.6 By giving a *Notice in Writing* to the other party and the *Consultant*, not later than 10 *Working Days* after the date of termination of the mediated negotiations under paragraph 8.2.5, either party may refer the dispute to be finally resolved by arbitration under the Rules for Arbitration of Construction Disputes as provided in CCDC 40 in effect at the time of bid closing. The arbitration shall be conducted in the jurisdiction of the *Place of the Work*.
- 8.2.7 On expiration of the 10 *Working Days*, the arbitration agreement under paragraph 8.2.6 is not binding on the parties and, if a *Notice in Writing* is not given under paragraph 8.2.6 within the required time, the parties may refer the unresolved dispute to the courts or to any other form of dispute resolution, including arbitration, which they have agreed to use.

- 8.2.8 If neither party, by *Notice in Writing*, given within 10 *Working Days* of the date of *Notice in Writing* requesting arbitration in paragraph 8.2.6, requires that a dispute be arbitrated immediately, all disputes referred to arbitration as provided in paragraph 8.2.6 shall be
 - .1 held in abeyance until
 - (1) Substantial Performance of the Work,
 - (2) the Contract has been terminated, or
 - (3) the *Contractor* has abandoned the *Work*, whichever is earlier; and
 - .2 consolidated into a single arbitration under the rules governing the arbitration under paragraph 8.2.6.

GC 8.3 RETENTION OF RIGHTS

- 8.3.1 It is agreed that no act by either party shall be construed as a renunciation or waiver of any rights or recourses, provided the party has given the *Notice in Writing* required under Part 8 of the General Conditions DISPUTE RESOLUTION and has carried out the instructions as provided in paragraph 8.1.3 of GC 8.1 AUTHORITY OF THE CONSULTANT.
- 8.3.2 Nothing in Part 8 of the General Conditions DISPUTE RESOLUTION shall be construed in any way to limit a party from asserting any statutory right to a lien under applicable lien legislation of the jurisdiction of the *Place of the Work* and the assertion of such right by initiating judicial proceedings is not to be construed as a waiver of any right that party may have under paragraph 8.2.6 of GC 8.2 NEGOTIATION, MEDIATION AND ARBITRATION to proceed by way of arbitration to adjudicate the merits of the claim upon which such a lien is based.

PART 9 PROTECTION OF PERSONS AND PROPERTY

GC 9.1 PROTECTION OF WORK AND PROPERTY

- 9.1.1 The *Contractor* shall protect the *Work* and the *Owner*'s property and property adjacent to the *Place of the Work* from damage which may arise as the result of the *Contractor*'s operations under the *Contract*, and shall be responsible for such damage, except damage which occurs as the result of:
 - .1 errors in the Contract Documents;
 - .2 acts or omissions by the Owner, the Consultant, other contractors, their agents and employees.
- 9.1.2 Before commencing any work, the *Contractor* shall determine the location of all underground utilities and structures indicated in the *Contract Documents* or that are reasonably apparent in an inspection of the *Place of the Work*.
- 9.1.3 Should the *Contractor* in the performance of the *Contract* damage the *Work*, the *Owner*'s property or property adjacent to the *Place of the Work*, the *Contractor* shall be responsible for making good such damage at the *Contractor*'s expense.
- 9.1.4 Should damage occur to the *Work* or *Owner's* property for which the *Contractor* is not responsible, as provided in paragraph 9.1.1, the *Contractor* shall make good such damage to the *Work* and, if the *Owner* so directs, to the *Owner's* property. The *Contract Price* and *Contract Time* shall be adjusted as provided in GC 6.1 OWNER'S RIGHT TO MAKE CHANGES, GC 6.2 CHANGE ORDER and GC 6.3 CHANGE DIRECTIVE.

GC 9.2 TOXIC AND HAZARDOUS SUBSTANCES

- 9.2.1 For the purposes of applicable legislation related to toxic and hazardous substances, the *Owner* shall be deemed to have control and management of the *Place of the Work* with respect to existing conditions.
- 9.2.2 Prior to the Contractor commencing the Work, the Owner shall.
 - .1 take all reasonable steps to determine whether any toxic or hazardous substances are present at the Place of the Work, and
 - .2 provide the *Consultant* and the *Contractor* with a written list of any such substances that are known to exist and their locations.
- 9.2.3 The Owner shall take all reasonable steps to ensure that no person's exposure to any toxic or hazardous substances exceeds the time weighted levels prescribed by applicable legislation at the Place of the Work and that no property is damaged or destroyed as a result of exposure to, or the presence of, toxic or hazardous substances which were at the Place of the Work prior to the Contractor commencing the Work.
- 9.2.4 Unless the *Contract* expressly provides otherwise, the *Owner* shall be responsible for taking all necessary steps, in accordance with applicable legislation in force at the *Place of the Work*, to dispose of, store or otherwise render harmless toxic or hazardous substances which were present at the *Place of the Work* prior to the *Contractor* commencing the *Work*.

9.2.5 If the Contractor

- .1 encounters toxic or hazardous substances at the Place of the Work, or
- .2 has reasonable grounds to believe that toxic or hazardous substances are present at the *Place of the Work*, which were not brought to the *Place of the Work* by the *Contractor* or anyone for whom the *Contractor* is responsible and which were not disclosed by the *Owner* or which were disclosed but have not been dealt with as required under paragraph 9.2.4, the *Contractor* shall
- .3 take all reasonable steps, including stopping the *Work*, to ensure that no person's exposure to any toxic or hazardous substances exceeds any applicable time weighted levels prescribed by applicable legislation at the *Place of the Work*, and
- .4 immediately report the circumstances to the Consultant and the Owner in writing.
- 9.2.6 If the *Owner* and *Contractor* do not agree on the existence, significance of, or whether the toxic or hazardous substances were brought onto the *Place of the Work* by the *Contractor* or anyone for whom the *Contractor* is responsible, the *Owner* shall retain and pay for an independent qualified expert to investigate and determine such matters. The expert's report shall be delivered to the *Owner* and the *Contractor*.
- 9.2.7 If the *Owner* and *Contractor* agree or if the expert referred to in paragraph 9.2.6 determines that the toxic or hazardous substances were not brought onto the place of the *Work* by the *Contractor* or anyone for whom the *Contractor* is responsible, the *Owner* shall promptly at the *Owner's* own expense:
 - .1 take all steps as required under paragraph 9.2.4;
 - .2 reimburse the Contractor for the costs of all steps taken pursuant to paragraph 9.2.5;
 - .3 extend the *Contract* time for such reasonable time as the *Consultant* may recommend in consultation with the *Contractor* and the expert referred to in 9.2.6 and reimburse the *Contractor* for reasonable costs incurred as a result of the delay; and
 - .4 indemnify the *Contractor* as required by GC 12.1 INDEMNIFICATION.
- 9.2.8 If the *Owner* and *Contractor* agree or if the expert referred to in paragraph 9.2.6 determines that the toxic or hazardous substances were brought onto the place of the *Work* by the *Contractor* or anyone for whom the *Contractor* is responsible, the *Contractor* shall promptly at the *Contractor*'s own expense:
 - .1 take all necessary steps, in accordance with applicable legislation in force at the *Place of the Work*, to safely remove and dispose the toxic or hazardous substances;
 - .2 make good any damage to the *Work*, the *Owner*'s property or property adjacent to the place of the *Work* as provided in paragraph 9.1.3 of GC 9.1 PROTECTION OF WORK AND PROPERTY;
 - .3 reimburse the Owner for reasonable costs incurred under paragraph 9.2.6; and
 - .4 indemnify the Owner as required by GC 12.1 INDEMNIFICATION.
- 9.2.9 If either party does not accept the expert's findings under paragraph 9.2.6, the disagreement shall be settled in accordance with Part 8 of the General Conditions Dispute Resolution. If such disagreement is not resolved promptly, the parties shall act immediately in accordance with the expert's determination and take the steps required by paragraph 9.2.7 or 9.2.8 it being understood that by so doing, neither party will jeopardize any claim that party may have to be reimbursed as provided by GC 9.2 TOXIC AND HAZARDOUS SUBSTANCES.

GC 9.3 ARTIFACTS AND FOSSILS

- 9.3.1 Fossils, coins, articles of value or antiquity, structures and other remains or things of scientific or historic interest discovered at the *Place or Work* shall, as between the *Owner* and the *Contractor*, be deemed to be the absolute property of the *Owner*.
- 9.3.2 The *Contractor* shall take all reasonable precautions to prevent removal or damage to discoveries as identified in paragraph 9.3.1, and shall advise the *Consultant* upon discovery of such items.
- 9.3.3 The Consultant will investigate the impact on the Work of the discoveries identified in paragraph 9.3.1. If conditions are found that would cause an increase or decrease in the Contractor's cost or time to perform the Work, the Consultant, with the Owner's approval, will issue appropriate instructions for a change in the Work as provided in GC 6.2 CHANGE ORDER or GC 6.3 CHANGE DIRECTIVE.

GC 9.4 CONSTRUCTION SAFETY

9.4.1 Subject to paragraph 3.2.2.2 of GC 3.2 - CONSTRUCTION BY OWNER OR OTHER CONTRACTORS, the *Contractor* shall be solely responsible for construction safety at the *Place of the Work* and for compliance with the rules, regulations and practices required by the applicable construction health and safety legislation and shall be responsible for initiating, maintaining and supervising all safety precautions and programs in connection with the performance of the *Work*.

GC 9.5 MOULD

- 9.5.1 If the *Contractor* or *Owner* observes or reasonably suspects the presence of mould at the *Place of the Work*, the remediation of which is not expressly part of the *Work*,
 - .1 the observing party shall promptly report the circumstances to the other party in writing, and
 - .2 the *Contractor* shall promptly take all reasonable steps, including stopping the *Work* if necessary, to ensure that no person suffers injury, sickness or death and that no property is damaged as a result of exposure to or the presence of the mould, and
 - .3 if the *Owner* and *Contractor* do not agree on the existence, significance or cause of the mould or as to what steps need be taken to deal with it, the *Owner* shall retain and pay for an independent qualified expert to investigate and determine such matters. The expert's report shall be delivered to the *Owner* and *Contractor*.
- 9.5.2 If the *Owner* and *Contractor* agree, or if the expert referred to in paragraph 9.5.1.3 determines that the presence of mould was caused by the *Contractor*'s operations under the *Contract*, the *Contractor* shall promptly, at the *Contractor*'s own expense:
 - .1 take all reasonable and necessary steps to safely remediate or dispose of the mould, and
 - .2 make good any damage to the *Work*, the *Owner*'s property or property adjacent to the *Place of the Work* as provided in paragraph 9.1.3 of GC 9.1 PROTECTION OF WORK AND PROPERTY, and
 - .3 reimburse the Owner for reasonable costs incurred under paragraph 9.5.1.3, and
 - .4 indemnify the *Owner* as required by GC 12.1 INDEMNIFICATION.
- 9.5.3 If the *Owner* and *Contractor* agree, or if the expert referred to in paragraph 9.5.1.3 determines that the presence of mould was not caused by the *Contractor*'s operations under the *Contract*, the *Owner* shall promptly, at the *Owner*'s own expense:
 - .1 take all reasonable and necessary steps to safely remediate or dispose of the mould, and
 - .2 reimburse the *Contractor* for the cost of taking the steps under paragraph 9.5.1.2 and making good any damage to the *Work* as provided in paragraph 9.1.4 of GC 9.1 PROTECTION OF WORK AND PROPERTY, and
 - .3 extend the Contract Time for such reasonable time as the Consultant may recommend in consultation with the Contractor and the expert referred to in paragraph 9.5.1.3 and reimburse the Contractor for reasonable costs incurred as a result of the delay, and
 - .4 indemnify the Contractor as required by GC 12.1 INDEMNIFICATION.
- 9.5.4 If either party does not accept the expert's finding under paragraph 9.5.1.3, the disagreement shall be settled in accordance with Part 8 of the General Conditions DISPUTE RESOLUTION. If such desagreement is not resolved promptly, the parties shall act immediately in accordance with the expert's determination and take the steps required by paragraphs 9.5.2 or 9.5.3, it being understood that by so doing neither party will jeopardize any claim the party may have to be reimbursed as provided by GC 9.5 MOULD.

PART 10 GOVERNING REGULATIONS

GC 10.1 TAXES AND DUTIES

- 10.1.1 The Contract Price shall include all taxes and customs duties in effect at the time of the bid closing except for Value Added Taxes payable by the Owner to the Contractor as stipulated in Article A-4 of the Agreement CONTRACT PRICE.
- 10.1.2 Any increase or decrease in costs to the *Contractor* due to changes in such included taxes and duties after the time of the bid closing shall increase or decrease the *Contract Price* accordingly.

GC 10.2 LAWS, NOTICES, PERMITS, AND FEES

- 10.2.1 The laws of the *Place of the Work* shall govern the *Work*.
- 10.2.2 The *Owner* shall obtain and pay for development approvals, building permit, permanent easements, rights of servitude, and all other necessary approvals and permits, except for the permits and fees referred to in paragraph 10.2.3 or for which the *Contract Documents* specify as the responsibility of the *Contractor*.
- 10.2.3 The *Contractor* shall be responsible for the procurement of permits, licences, inspections, and certificates, which are necessary for the performance of the *Work* and customarily obtained by contractors in the jurisdiction of the *Place of the Work* after the issuance of the building permit. The *Contract Price* includes the cost of these permits, licences, inspections, and certificates, and their procurement.
- 10.2.4 The *Contractor* shall give the required notices and comply with the laws, ordinances, rules, regulations, or codes which are or become in force during the performance of the *Work* and which relate to the *Work*, to the preservation of the public health, and to construction safety.

- 10.2.5 The Contractor shall not be responsible for verifying that the Contract Documents are in compliance with the applicable laws, ordinances, rules, regulations, or codes relating to the Work. If the Contract Documents are at variance therewith, or if, subsequent to the time of bid closing, changes are made to the applicable laws, ordinances, rules, regulations, or codes which require modification to the Contract Documents, the Contractor shall advise the Consultant in writing requesting direction immediately upon such variance or change becoming known. The Consultant will make the changes required to the Contract Documents as provided in GC 6.1 OWNER'S RIGHT TO MAKE CHANGES, GC 6.2 CHANGE ORDER and GC 6.3 CHANGE DIRECTIVE.
- 10.2.6 If the Contractor fails to advise the Consultant in writing; and fails to obtain direction as required in paragraph 10.2.5; and performs work knowing it to be contrary to any laws, ordinances, rules, regulations, or codes; the Contractor shall be responsible for and shall correct the violations thereof; and shall bear the costs, expenses and damages attributable to the failure to comply with the provisions of such laws, ordinances, rules, regulations, or codes.
- 10.2.7 If, subsequent to the time of bid closing, changes are made to applicable laws, ordinances, rules, regulations, or codes of authorities having jurisdiction which affect the cost of the *Work*, either party may submit a claim in accordance with the requirements of GC 6.6 CLAIMS FOR A CHANGE IN CONTRACT PRICE.

GC 10.3 PATENT FEES

- 10.3.1 The Contractor shall pay the royalties and patent licence fees required for the performance of the Contract. The Contractor shall hold the Owner harmless from and against claims, demands, losses, costs, damages, actions, suits, or proceedings arising out of the Contractor's performance of the Contract which are attributable to an infringement or an alleged infringement of a patent of invention by the Contractor or anyone for whose acts the Contractor may be liable.
- 10.3.2 The Owner shall hold the Contractor harmless against claims, demands, losses, costs, damages, actions, suits, or proceedings arising out of the Contractor's performance of the Contract which are attributable to an infringement or an alleged infringement of a patent of invention in executing anything for the purpose of the Contract, the model, plan or design of which was supplied to the Contractor as part of the Contract Documents.

GC 10.4 WORKERS' COMPENSATION

- 10.4.1 Prior to commencing the Work, again with the Contractor's application for payment of the holdback amount following Substantial Performance of the Work and again with the Contractor's application for final payment, the Contractor shall provide evidence of compliance with workers' compensation legislation at the Place of the Work, including payments due thereunder.
- 10.4.2 At any time during the term of the *Contract*, when requested by the *Owner*, the *Contractor* shall provide such evidence of compliance by the *Contractor* and *Subcontractors*.

PART 11 INSURANCE AND CONTRACT SECURITY

GC 11.1 INSURANCE

- 11.1.1 Without restricting the generality of GC 12.1 INDEMNIFICATION, the *Contractor* shall provide, maintain and pay for the following insurance coverages, the minimum requirements of which are specified in CCDC 41 CCDC Insurance Requirements in effect at the time of bid closing except as hereinafter provided:
 - .1 General liability insurance in the name of the *Contractor* and include, or in the case of a single, blanket policy, be endorsed to name, the *Owner* and the *Consultant* as insureds but only with respect to liability, other than legal liability arising out of their sole negligence, arising out of the operations of the *Contractor* with regard to the *Work*. General liability insurance shall be maintained from the date of commencement of the *Work* until one year from the date of *Substantial Performance of the Work*. Liability coverage shall be provided for completed operations hazards from the date of *Substantial Performance of the Work*, on an ongoing basis for a period of 6 years following *Substantial Performance of the Work*.
 - .2 Automobile Liability Insurance from the date of commencement of the *Work* until one year after the date of *Substantial Performance of the Work*.
 - .3 Aircraft or Watercraft Liability Insurance when owned or non-owned aircraft or watercraft are used directly or indirectly in the performance of the *Work*
 - "Broad form" property insurance in the joint names of the Contractor, the Owner and the Consultant. The policy shall include as insureds all Subcontractors. The "Broad form" property insurance shall be provided from the date of commencement of the Work until the earliest of:
 - (1) 10 calendar days after the date of Substantial Performance of the Work;

- (2) on the commencement of use or occupancy of any part or section of the *Work* unless such use or occupancy is for construction purposes, habitational, office, banking, convenience store under 465 square metres in area, or parking purposes, or for the installation, testing and commissioning of equipment forming part of the *Work*;
- (3) when left unattended for more than 30 consecutive calendar days or when construction activity has ceased for more than 30 consecutive calendar days.
- .5 Boiler and machinery insurance in the joint names of the Contractor, the Owner and the Consultant. The policy shall include as insureds all Subcontractors. The coverage shall be maintained continuously from commencement of use or operation of the boiler and machinery objects insured by the policy and until 10 calendar days after the date of Substantial Performance of the Work.
- .6 The "Broad form" property and boiler and machinery policies shall provide that, in the case of a loss or damage, payment shall be made to the *Owner* and the *Contractor* as their respective interests may appear. In the event of loss or damage:
 - (1) the Contractor shall act on behalf of the Owner for the purpose of adjusting the amount of such loss or damage payment with the insurers. When the extent of the loss or damage is determined, the Contractor shall proceed to restore the Work. Loss or damage shall not affect the rights and obligations of either party under the Contract except that the Contractor shall be entitled to such reasonable extension of Contract Time relative to the extent of the loss or damage as the Consultant may recommend in consultation with the Contractor;
 - (2) the Contractor shall be entitled to receive from the Owner, in addition to the amount due under the Contract, the amount which the Owner's interest in restoration of the Work has been appraised, such amount to be paid as the restoration of the Work proceeds in accordance with the progress payment provisions. In addition the Contractor shall be entitled to receive from the payments made by the insurer the amount of the Contractor's interest in the restoration of the Work; and
 - (3) to the *Work* arising from the work of the *Owner*, the *Owner*'s own forces or another contractor, the *Owner* shall, in accordance with the *Owner*'s obligations under the provisions relating to construction by *Owner* or other contractors, pay the *Contractor* the cost of restoring the *Work* as the restoration of the *Work* proceeds and as in accordance with the progress payment provisions.
- .7 Contractors' Equipment Insurance from the date of commencement of the Work until one year after the date of Substantial Performance of the Work.
- 11.1.2 Prior to commencement of the *Work* and upon the placement, renewal, amendment, or extension of all or any part of the insurance, the *Contractor* shall promptly provide the *Owner* with confirmation of coverage and, if required, a certified true copy of the policies certified by an authorized representative of the insurer together with copies of any amending endorsements applicable to the *Work*.
- 11.1.3 The parties shall pay their share of the deductible amounts in direct proportion to their responsibility in regards to any loss for which the above policies are required to pay, except where such amounts may be excluded by the terms of the *Contract*.
- If the Contractor fails to provide or maintain insurance as required by the Contract Documents, then the Owner shall have the right to provide and maintain such insurance and give evidence to the Contractor and the Consultant. The Contractor shall pay the cost thereof to the Owner on demand or the Owner may deduct the cost from the amount which is due or may become due to the Contractor.
- 11.1.5 All required insurance policies shall be with insurers licensed to underwrite insurance in the jurisdiction of the *Place of the Work*.
- 11.1.6 If a revised version of CCDC 41 INSURANCE REQUIREMENTS is published, which specifies reduced insurance requirements, the parties shall address such reduction, prior to the *Contractor*'s insurance policy becoming due for renewal, and record any agreement in a *Change Order*.
- 11.1.7 If a revised version of CCDC 41 INSURANCE REQUIREMENTS is published, which specifies increased insurance requirements, the *Owner* may request the increased coverage from the Contractor by way of a *Change Order*.
- 11.1.8 A Change Directive shall not be used to direct a change in the insurance requirements in response to the revision of CCDC 41 INSURANCE REQUIREMENTS.

GC 11.2 CONTRACT SECURITY

11.2.1 The *Contractor* shall, prior to commencement of the *Work* or within the specified time, provide to the *Owner* any *Contract* security specified in the *Contract Documents*.

11.2.2 If the *Contract Documents* require surety bonds to be provided, such bonds shall be issued by a duly licensed surety company authorized to transact the business of suretyship in the province or territory of the *Place of the Work* and shall be maintained in good standing until the fulfillment of the *Contract*. The form of such bonds shall be in accordance with the latest edition of the CCDC approved bond forms.

PART 12 INDEMNIFICATION, WAIVER OF CLAIMS AND WARRANTY

GC 12.1 INDEMNIFICATION

- 12.1.1 Without restricting the parties' obligation to indemnify as described in paragraphs 12.1.4 and 12.1.5, the *Owner* and the *Contractor* shall each indemnify and hold harmless the other from and against all claims, demands, losses, costs, damages, actions, suits, or proceedings whether in respect to losses suffered by them or in respect to claims by third parties that arise out of, or are attributable in any respect to their involvement as parties to this *Contract*, provided such claims are:
 - .1 caused by:
 - (1) the negligent acts or omissions of the party from whom indemnification is sought or anyone for whose acts or omissions that party is liable, or
 - (2) a failure of the party to the Contract from whom indemnification is sought to fulfill its terms or conditions; and
 - .2 made by Notice in Writing within a period of 6 years from the date of Substantial Performance of the Work as set out in the certificate of Substantial Performance of the Work issued pursuant to paragraph 5.4.2.2 of GC 5.4 SUBSTANTIAL PERFORMANCE OF THE WORK or within such shorter period as may be prescribed by any limitation statute of the province or territory of the Place of the Work.

The parties expressly waive the right to indemnity for claims other than those provided for in this Contract.

- 12.1.2 The obligation of either party to indemnify as set forth in paragraph 12.1.1 shall be limited as follows:
 - .1 In respect to losses suffered by the *Owner* and the *Contractor* for which insurance is to be provided by either party pursuant to GC 11.1 INSURANCE, the general liability insurance limit for one occurrence as referred to in CCDC 41 in effect at the time of bid closing.
 - .2 In respect to losses suffered by the *Owner* and the *Contractor* for which insurance is not required to be provided by either party in accordance with GC 11.1 INSURANCE, the greater of the *Contract Price* as recorded in Article A-4 CONTRACT PRICE or \$2,000,000, but in no event shall the sum be greater than \$20,000,000.
 - .3 In respect to claims by third parties for direct loss resulting from bodily injury, sickness, disease or death, or to injury to or destruction of tangible property, the obligation to indemnify is without limit. In respect to all other claims for indemnity as a result of claims advanced by third parties, the limits of indemnity set forth in paragraphs 12.1.2.1 and 12.1.2.2 shall apply.
- 12.1.3 The obligation of either party to indemnify the other as set forth in paragraphs 12.1.1 and 12.1.2 shall be inclusive of interest and all legal costs.
- 12.1.4 The Owner and the Contractor shall indemnify and hold harmless the other from and against all claims, demands, losses, costs, damages, actions, suits, or proceedings arising out of their obligations described in GC 9.2 TOXIC AND HAZARDOUS SUBSTANCES.
- 12.1.5 The *Owner* shall indemnify and hold harmless the *Contractor* from and against all claims, demands, losses, costs, damages, actions, suits, or proceedings:
 - .1 as described in paragraph 10.3.2 of GC 10.3 PATENT FEES, and
 - .2 arising out of the *Contractor*'s performance of the *Contract* which are attributable to a lack of or defect in title or an alleged lack of or defect in title to the *Place of the Work*.
- 12.1.6 In respect to any claim for indemnity or to be held harmless by the Owner or the Contractor:
 - .1 Notice in Writing of such claim shall be given within a reasonable time after the facts upon which such claim is based became known;
 - .2 should any party be required as a result of its obligation to indemnify another to pay or satisfy a final order, judgment or award made against the party entitled by this contract to be indemnified, then the indemnifying party upon assuming all liability for any costs that might result shall have the right to appeal in the name of the party against whom such final order or judgment has been made until such rights of appeal have been exhausted.

GC 12.2 WAIVER OF CLAIMS

- 12.2.1 Subject to any lien legislation applicable to the *Place of the Work*, as of the fifth calendar day before the expiry of the lien period provided by the lien legislation applicable at the *Place of the Work*, the *Contractor* waives and releases the *Owner* from all claims which the *Contractor* has or reasonably ought to have knowledge of that could be advanced by the *Contractor* against the *Owner* arising from the *Contractor*'s involvement in the *Work*, including, without limitation, those arising from negligence or breach of contract in respect to which the cause of action is based upon acts or omissions which occurred prior to or on the date of *Substantial Performance of the Work*, except as follows:
 - .1 claims arising prior to or on the date of Substantial Performance of the Work for which Notice in Writing of claim has been received by the Owner from the Contractor no later than the sixth calendar day before the expiry of the lien period provided by the lien legislation applicable at the Place of the Work;
 - .2 indemnification for claims advanced against the *Contractor* by third parties for which a right of indemnification may be asserted by the *Contractor* against the *Owner* pursuant to the provisions of this *Contract*;
 - .3 claims for which a right of indemnity could be asserted by the *Contractor* pursuant to the provisions of paragraphs 12.1.4 or 12.1.5 of GC 12.1 INDEMNIFICATION; and
 - .4 claims resulting from acts or omissions which occur after the date of Substantial Performance of the Work.
- 12.2.2 The Contractor waives and releases the Owner from all claims referenced in paragraph 12.2.1.4 except for those referred in paragraphs 12.2.1.2 and 12.2.1.3 and claims for which Notice in Writing of claim has been received by the Owner from the Contractor within 395 calendar days following the date of Substantial Performance of the Work.
- 12.2.3 Subject to any lien legislation applicable to the *Place of the Work*, as of the fifth calendar day before the expiry of the lien period provided by the lien legislation applicable at the *Place of the Work*, the *Owner* waives and releases the *Contractor* from all claims which the *Owner* has or reasonably ought to have knowledge of that could be advanced by the *Owner* against the *Contractor* arising from the *Owner*'s involvement in the *Work*, including, without limitation, those arising from negligence or breach of contract in respect to which the cause of action is based upon acts or omissions which occurred prior to or on the date of *Substantial Performance of the Work*, except as follows:
 - .1 claims arising prior to or on the date of Substantial Performance of the Work for which Notice in Writing of claim has been received by the Contractor from the Owner no later than the sixth calendar day before the expiry of the lien period provided by the lien legislation applicable at the Place of the Work;
 - .2 indemnification for claims advanced against the *Owner* by third parties for which a right of indemnification may be asserted by the *Owner* against the *Contractor* pursuant to the provisions of this *Contract*;
 - .3 claims for which a right of indemnity could be asserted by the *Owner* against the *Contractor* pursuant to the provisions of paragraph 12.1.4 of GC 12.1 INDEMNIFICATION;
 - .4 damages arising from the *Contractor*'s actions which result in substantial defects or deficiencies in the *Work*. "Substantial defects or deficiencies" mean those defects or deficiencies in the *Work* which affect the *Work* to such an extent or in such a manner that a significant part or the whole of the *Work* is unfit for the purpose intended by the *Contract Documents*;
 - .5 claims arising pursuant to GC 12.3 WARRANTY; and
 - .6 claims arising from acts or omissions which occur after the date of Substantial Performance of the Work.
- 12.2.4 The Owner waives and releases the Contractor from all claims referred to in paragraph 12.2.3.4 except claims for which Notice in Writing of claim has been received by the Contractor from the Owner within a period of six years from the date of Substantial Performance of the Work should any limitation statute of the Province or Territory of the Place of the Work permit such agreement. If the applicable limitation statute does not permit such agreement, within such shorter period as may be prescribed by:
 - .1 any limitation statute of the Province or Territory of the Place of the Work; or
 - 2 if the Place of the Work is the Province of Quebec, then Article 2118 of the Civil Code of Quebec.
- 12.2.5 The Owner waives and releases the Contractor from all claims referenced in paragraph 12.2.3.6 except for those referred in paragraph 12.2.3.2, 12.2.3.3 and those arising under GC 12.3 WARRANTY and claims for which Notice in Writing has been received by the Contractor from the Owner within 395 calendar days following the date of Substantial Performance of the Work.
- 12.2.6 "Notice in Writing of claim" as provided for in GC 12.2 WAIVER OF CLAIMS to preserve a claim or right of action which would otherwise, by the provisions of GC 12.2 WAIVER OF CLAIMS, be deemed to be waived, must include the following:
 - .1 a clear and unequivocal statement of the intention to claim;
 - .2 a statement as to the nature of the claim and the grounds upon which the claim is based; and
 - .3 a statement of the estimated quantum of the claim.
- 12.2.7 The party giving "Notice in Writing of claim" as provided for in GC 12.2 WAIVER OF CLAIMS shall submit within a reasonable time a detailed account of the amount claimed.

- 12.2.8 Where the event or series of events giving rise to a claim made under paragraphs 12.2.1 or 12.2.3 has a continuing effect, the detailed account submitted under paragraph 12.2.7 shall be considered to be an interim account and the party making the claim shall submit further interim accounts, at reasonable intervals, giving the accumulated amount of the claim and any further grounds upon which it is based. The party making the claim shall submit a final account after the end of the effects resulting from the event or series of events.
- 12.2.9 If a *Notice in Writing* of claim pursuant to paragraph 12.2.1.1 is received on the seventh or sixth calendar day before the expiry of the lien period provided by the lien legislation applicable at the *Place of the Work*, the period within which *Notice in Writing* of claim shall be received pursuant to paragraph 12.2.3.1 shall be extended to two calendar days before the expiry of the lien period provided by the lien legislation applicable at the *Place of the Work*.
- 12.2.10 If a *Notice in Writing* of claim pursuant to paragraph 12.2.3.1 is received on the seventh or sixth calendar day before the expiry of the lien period provided by the lien legislation applicable at the *Place of the Work*, the period within which *Notice in Writing* of claim shall be received pursuant to paragraph12.2.1.1 shall be extended to two calendar days before the expiry of the lien period provided by the lien legislation applicable at the *Place of the Work*.

GC 12.3 WARRANTY

- 12.3.1 Except for extended warranties as described in paragraph 12.3.6, the warranty period under the *Contract* is one year from the date of *Substantial Performance of the Work*.
- 12.3.2 The *Contractor* shall be responsible for the proper performance of the *Work* to the extent that the design and *Contract Documents* permit such performance.
- 12.3.3 The Owner, through the Consultant, shall promptly give the Contractor Notice in Writing of observed defects and deficiencies which occur during the one year warranty period.
- 12.3.4 Subject to paragraph 12.3.2, the *Contractor* shall correct promptly, at the *Contractor*'s expense, defects or deficiencies in the *Work* which appear prior to and during the one year warranty period.
- 12.3.5 The Contractor shall correct or pay for damage resulting from corrections made under the requirements of paragraph 12.3.4.
- 12.3.6 Any extended warranties required beyond the one year warranty period as described in paragraph 12.3.1, shall be as specified in the *Contract Documents*. Extended warranties shall be issued by the warrantor to the benefit of the *Owner*. The *Contractor*'s responsibility with respect to extended warranties shall be limited to obtaining any such extended warranties from the warrantor. The obligations under such extended warranties are solely the responsibilities of the warrantor.

75 Albert Street Suite 400 Ottawa, Ont. K1P 5E7

Tel: (613) 236-9455 Fax: (613) 236-9526 info@ccdc.org

CANADIAN CONSTRUCTION DOCUMENTS COMMITTEE CANADIAN CONSTRUCTION DOCUMENTS COMMITTEE

CCDC 41 CCDC INSURANCE REQUIREMENTS

PUBLICATION DATE: JANUARY 21, 2008

- 1. General liability insurance shall be with limits of not less than \$5,000,000 per occurrence, an aggregate limit of not less than \$5,000,000 within any policy year with respect to completed operations, and a deductible not exceeding \$5,000. The insurance coverage shall not be less than the insurance provided by IBC Form 2100 (including an extension for a standard provincial and territorial form of non-owned automobile liability policy) and IBC Form 2320. To achieve the desired limit, umbrella or excess liability insurance may be used. Subject to satisfactory proof of financial capability by the *Contractor*, the *Owner* may agree to increase the deductible amounts.
- 2. Automobile liability insurance in respect of vehicles that are required by law to be insured under a contract by a Motor Vehicle Liability Policy, shall have limits of not less than \$5,000,000 inclusive per occurrence for bodily injury, death and damage to property, covering all vehicles owned or leased by the *Contractor*. Where the policy has been issued pursuant to a government-operated automobile insurance system, the *Contractor* shall provide the *Owner* with confirmation of automobile insurance coverage for all automobiles registered in the name of the *Contractor*.
- 3. Aircraft and watercraft liability insurance with respect to owned or non-owned aircraft and watercraft (if used directly or indirectly in the performance of the *Work*), including use of additional premises, shall have limits of not less than \$5,000,000 inclusive per occurrence for bodily injury, death and damage to property including loss of use thereof and limits of not less than \$5,000,000 for aircraft passenger hazard. Such insurance shall be in a form acceptable to the *Owner*.
- 4. "Broad form" property insurance shall have limits of not less than the sum of 1.1 times Contract Price and the full value, as stated in the Contract, of Products and design services that are specified to be provided by the Owner for incorporation into the Work, with a deductible not exceeding \$5,000. The insurance coverage shall not be less than the insurance provided by IBC Forms 4042 and 4047 (excluding flood and earthquake) or their equivalent replacement. Subject to satisfactory proof of financial capability by the Contractor, the Owner may agree to increase the deductible amounts.
- 5. Boiler and machinery insurance shall have limits of not less than the replacement value of the permanent or temporary boilers and pressure vessels, and other insurable objects forming part of the *Work*. The insurance coverage shall not be less than the insurance provided by a comprehensive boiler and machinery policy.
- 6. "Broad form" contractors' equipment insurance coverage covering Construction Equipment used by the Contractor for the performance of the Work, shall be in a form acceptable to the Owner and shall not allow subrogation claims by the insurer against the Owner. Subject to satisfactory proof of financial capability by the Contractor for self-insurance, the Owner may agree to waive the equipment insurance requirement.
- 7. Standard Exclusions
 - 7.1 In addition to the broad form property exclusions identified in IBC forms 4042(1995), and 4047(2000), the *Contractor* is not required to provide the following insurance coverage:
 - Asbestos
 - Cyber Risk
 - Mould
 - Terrorism

Association of Canadian Engineering Companies

Canadian Construction Association

Construction Specifications Canada

The Royal Architectural Institute of Canada

ATTACHMENT B BID FORM

NS Government
Former Gold Mines
Request for Proposal for
Conceptual Closure Plan and Cost Estimate
September 2018

BID FORM

TASK	COMPONENT	LABOUR	EXPENSES	TOTAL
Task 1.	Kickoff meeting			
Task 2.	Background information review			
Task 3.	Development of Health and Safety Plan, Site visit and Meeting with NS Lands			
Task 4.	Gap Analysis			
Task 5.	Field program			
Task 6.	Criteria development		/ 	
Task 7.	Option development and assessment			
Task 8.	Option selection			
Task 9.	Closure Cost estimate and scheduling			
Task 10.	Stakeholder engagement strategy			
Task 11.	Reporting			
Task 12.	Scope of work for Stage 2			
Task 13.	Meetings and Communications			

TOTAL (NET OF HST)

ATTACHMENT C EVALUATION CRITERIA

NS Government
Former Gold Mines
Request for Proposal for
Conceptual Closure Plan and Cost Estimate
September 2018

EVALUATION CRITERIA

Item	Description	Maximum Points	Minimum Pass Mark Required	Notes/Reference (page number in proposal where information can be found)
	Understanding the Assignment The bidder must demonstrate a clear understanding of the assignment, and the complexities of the assignment and potential for additional circumstances that may arise, relative to site closure for these two sites. In addition, discussion of special considerations associated with these sites, based on knowledge of the sites specifically, or personal experience with other similar sites. O – 3 points = Unacceptable, did not submit sufficient information which could be evaluated. Lacks complete or almost complete understanding of the requirements 3 - 5 points = Has some understanding of the requirements but lacks adequate understanding in some areas of the contract 7 points = Demonstrates a good understanding of the requirements 10 points = Demonstrates an excellent understanding of the requirements	10	7	

II	Proposed Approach for Completing the Scope of Work	25	15	
	Initiation (3.5 pts)			
	Kickoff meeting Background information review			
	Development of Health and Safety Plan,			
	Site visit and Meeting with NS Lands Gap Analysis			
	Execution (16.0 pts) Field program			
	Criteria development			
	Option development and assessment Option selection			
	Closure Cost estimate and scheduling			
	Communications/Closeout (5.5 pts)			
	Stakeholder engagement strategy Reporting			
	Scope of work for Stage 2 Meetings and Communications			
	Meetings and Communications			
Ш	Project Schedule	5	3	
	The bidder should provide a schedule of			
	activities that Illustrate the dates and duration of each of the tasks. Bidders will			
	be evaluated on the overall content of their			
	plan. The schedule will be sufficiently detailed, so NS Lands may fully			
	understand the Assignment schedule			
	including field work, analytical time requirements, report delivery dates,			
	meeting times and comment periods			
	allocated for NS Lands			
	(0 to 5 points)			
	0 to 2 points = Unsatisfactory			
	3 points = Fair: Just acceptable and should meet minimum performance requirements			
	4 points=Very Good: Above average and more than adequate for effective performance.			

				nova scotia lands
	5 points = Excellent: Exceptional.			
IV	Qualifications of Senior Experts on Study Team	25	15	
	Relevant years of Experience:			
	0 – 14 years: 1 15 – 20 years: 2 21- 25 years: 3			
	Education:			
	Bachelor's degree in related field: 1 Master's Degree in related field: 2 PhD in related field (geochemistry; mine closure; toxicology/risk assessment): 3			
	CV/Biography:			
	Up to 2 points as determined by the evaluators. Specific expertise related to mining and site closure should be demonstrated. Supplementary credentials will be considered.			
	O points = Expertise has limited to no applicability to current project			
	0.5 point = Expertise has some applicability to the current project.			
	1 point = Expertise has reasonable applicability to current project;			
	2 points = Expertise has direct applicability to the current project, and considerable relevant experience.			
	Project Expertise Provided: For each named expert, 2 projects related to their areas of expertise must be provided, highlighting their role in the project; the project scope/requirements (relative to the area of expertise), year(s) project was conducted, client, and budget. Projects involving arsenic and/or mercury are of greatest interest, and will score higher.			

		I	I .	
IV Cont	Up to 2 points for 2 projects as determined by the evaluators.			
	<i>0 points</i> = Has limited to no applicability to current project			
	<pre>0.5 point = Has some applicability to the current project.</pre>			
	1 point = Has direct applicability to the current project.			
V	Qualifications of Remaining Team Members, including Project Manager.	10	7	
	Team members must demonstrate experience in the project scope, and additional issues which could come up in the course of the project;			
	0-2 points = Unacceptable, did not submit sufficient information which could be evaluated. Team lacks experience in the requirements of the project;			
	3 - 5 points = Team has some experience related to the requirements but lacks adequate experience in some areas of the contract;			
	7 points = Team has considerable experience in the required project areas;			
	10 points = Team has exceptional experience in the required project areas.			
VI	Corporate Experience	5	3	
	Corporate experience must demonstrate experience with mine closure, tailings geochemistry, ecological and human health risk assessment of mining or metals sites			
	0 - 1 points = Unacceptable, corporate experience is not in keeping with project scope.			
	2-3 points = Has limited corporate experience within the project scope;			

VII Cont 4 points — Has moderate corporate experience within the project scope; 5 points = Demonstrates strong focus in project scope area, and considerable depth of project understanding VII Cost of Services (Separate Submission) For 'Cost' Points, the lowest acceptable bid and all bidders within 5% will receive 20 point; next lowest priced bidder and all subsequent bidders will receive points based on the following formula: (20 x (low bid/bid)). Costs must be submitted under separate envelope, and need to include rates for each team member, and time for each task. Costs for each of the 12 tasks outlined above must be provided, including time and disbursements and shall include administration and management, overhead, salaries, vacation and statutory holidays, payroll burden, office supplies, communications, CAD and GIS services, overtime and any other expense associated with the provision of services. Evaluation will be based on bid form attached. In addition to fees for the services outlined in this RFP, fees for additional services for all individuals on the assignment project team, and any other start the consultant may believe it would be advantageous to include, shall be included. Unit prices quoted for Additional Services will be hourly rates for the Consultant's personnel. The hourly rates will include administration and management, overhead, salaries, vacation and statutory holidays, payroll burden, office supplies, communications, CAD and GIS services, overtime and any other expense associated with the provision of services on an hourly rate basis
For 'Cost' Points, the lowest acceptable bid and all bidders within 5% will receive 20 point; next lowest priced bidder and all subsequent bidders will receive points based on the following formula: (20 x (low bid/bid)). Costs must be submitted under separate envelope, and need to include rates for each team member, and time for each task. Costs for each of the 12 tasks outlined above must be provided, including time and disbursements and shall include administration and management, overhead, salaries, vacation and statutory holidays, payroll burden, office supplies, communications, CAD and GIS services, overtime and any other expense associated with the provision of services. Evaluation will be based on bid form attached. In addition to fees for the services outlined in this RFP, fees for additional services for all individuals on the assignment project team, and any others that the consultant may believe it would be advantageous to include, shall be included. Unit prices quoted for Additional Services will be hourly rates will include administration and management, overhead, salaries, vacation and statutory holidays, payroll burden, office supplies, communications, CAD and GIS services, overtime and any other expense associated with the provision of services
on an nourly rate basis

ATTACHMENT D RESOURCES

Goldenville Phase II ESA Report (CJ MacLellan 2009)

Montaque Phase II ESA (Maritime Testing 2009)

Toxicological Advice for Montaque and Goldenville (Intrinsik 2009)

Geological Survey of Canada Open File (M.B. Parsons, et al. 2012)

PHASE II ENVIRONMENTAL SITE ASSESSMENT (FINAL)

NOVA SCOTIA DEPARTMENT OF TRANSPORTATION AND INFRASTRUCTURE RENEWAL

FORMER GOLD MINE SITE, GOLDENVILLE GUYSBOROUGH COUNTY, NOVA SCOTIA

January 2009

Prepared for:

Nova Scotia Department of Transportation and Infrastructure Renewal Environmental Services Group

Attention: Ian MacCallum 1st Floor Johnston Building 1672 Granville Street Halifax, NS B3J 2N2

Prepared by:

C.J. MacLellan & Associates Inc. 65 Beech Hill Road, Suite 2 Antigonish, NS B2G 2P9

File No. 6096-21A

C.J. MacLellan & Associates Inc.

Highland Professional Centre, Suite 2 65 Beech Hill Road , Antigonish, Nova Scotia, B2G 2P9

TEL: 902-863-1220 FAX: 902-863-3225

Email: hdunnewold@cjmac.ns.ca Website: www.cjmac.ns.ca

January 16, 2009

Our File No.: 6906-21A

Nova Scotia Department of Transportation and Public Works Environmental Services Group **Attention: Mr. Ian MacCallum** 1st Floor Johnston Building 1672 Granville Street Halifax, NS B3J 2N2

Dear Mr. MacCallum:

RE: Phase II Environmental Site Assessment Report (Final) for the Nova Scotia Department of Transportation and Infrastructure Renewal, Former Gold Mine Site in Goldenville, Guysborough County, Nova Scotia

C.J. MacLellan & Associates Inc. is pleased to provide our *Final* Phase II Environmental Site Assessment Report completed for the Former Gold Mine Site located in Goldenville, Guysborough County, Nova Scotia.

Should you have any questions, or if you require any clarification, please do not hesitate to contact me at (902) 863-1220.

Sincerely,

C.J. MacLellan & Associates Inc.

Hilda Dunnewold, P.Eng. Environmental Engineer

HD/

TABLE OF CONTENTS

1.0	INTE	Pag RODUCTION	
1.0			
2.0	OBJI	ECTIVES	2
3.0	MET	HODOLOGY	3
•••	3.1	Startup Meetings	
	3.2	Soil Sampling Protocol - Information Session	
	3.3	Soil Sampling	
	3.4	Groundwater Assessment	
4.0	FIEL	D INVESTIGATION	5
	4.1	Soil Sampling	5
	4.2	Monitoring Well Installation	
	4.3	Groundwater Sampling	
	4.4	GPS Survey	
	4.5	Photographs	
5.0	ANA	LYTICAL PROGRAM	6
	5.1	Soil	6
	5.2	Groundwater	6
6.0	LAN	D USE & RECEPTOR CHARACTERIZATION	7
LIST	OF AI	PPENDICES	
Apper	ndix A	- Drawings	
		- Field data Sheets	
		- Monitoring Well Details	
		- Photographs	
		- Data Table 1 - Groundwater Elevations	
rr		Table 2 - Soil Sample Analysis (TOC, As)	
		Table 3 - Soil Sample Analysis (Hg)	
		Table 4 - Metals Scan	
		Table 5 - Metals in Water (December 13, 2007 sample)	
		Table 6 - General Chemistry (May 26, 2008 sample)	
		Table 7 - Metals in Water (May 26, 2008 sample)	
Apper	ndix F -	- Laboratory Reports	

1.0 INTRODUCTION

C.J. MacLellan & Associates Inc. (CJMac) were retained by the Nova Scotia Department of Transportation and Infrastructure Renewal (NSDTIR) to conduct a Phase II Environmental Site Assessment (ESA) of a former gold mine property located in Goldenville, Guysborough, NS. The subject site is located in Goldenville and consists of a single property identified by PID 37535655. The site the location of a former gold mine which has not operated since 1961. There are gold mine tailings on the property and past analysis of the tailings have found that total arsenic concentrations exceed the CCME soil quality guidelines. Mercury concentrations are also elevated. There is limited information on the arsenic and mercury concentrations in nearby soils and residential properties adjacent to the site may be impacted by soil contamination related to offsite migration of arsenic and mercury from the tailings. Human health risk assessment has determined that remediation and/or risk management measures are necessary.

2.0 OBJECTIVES

The objectives of the Environmental Site Assessment (ESA) are as follows:

- delineate the full extent of arsenic contamination, both on unsampled tailings and adjacent surface soils, to establish potential boundaries for remediation or risk management;.
- determine the vertical extent of arsenic in undisturbed soils to assess whether the tailings
 related impacts can be distinguished from naturally occurring, localized arsenic "hotspots"
 associated with the site's geology
- determine whether groundwater migrating through the tailings could be impacting neighboring wells

3.0 METHODOLOGY

3.1 Start-up Meetings

Two start-up meetings, were held with the client. The meetings were held on November 14 and 22, 2007 at NSDTIR offices in Halifax. The purpose of the meetings was to:

- to transfer existing information and site data from the client;
- to clarify communications plans and responsibilities between client and consultant;
- to finalize project planning to ensure that site assessments will provide all data essential for possible future health risk assessments and that sampling design is appropriate for the project requirements.

3.2 Soil Sampling Protocol - Information Session

Non-routine soil sampling protocols were required for any soils with distinct soil horizons. Specific sampling protocols were required for these samples to fulfil requirements of a study which NSDTIR was undertaking as a sub-component of the site assessment. To ensure protocols used are consistent with study requirements, at two of the lead field personnel participated in an information session prior to commencement of field work. The information session was held on November 16, 2007. All soil sampling for the contract was supervised by personnel who had participated in the information session. The information session was delivered by geochemists from NS Natural Resources and /or Natural Resources Canada.

3.3 Soil Sampling

The proposed sampling patterns and coordinates of the sample locations was provided to CJMac. Areas of tailings for which no previous data was available was to be sampled. In areas of tailings for which data are already available, three samples were to be taken for confirmation and comparison purposes. In tailings, the top 0-10 cm were to be sampled. In soils (surrounding tailings), the top 0-5 cm were to be sampled at all sampling points. At all sampling points on orphan lands which occur in undisturbed soils (if any), distinct soil horizons within the top 5 cm were also to be sampled individually, if present.

The soil sampling was undertaken as per the non-routine protocol described during the information session described in 3.2. The sample points were to be located in well-drained areas that are free

of any obvious sources of anthropogenic contamination (e.g. garbage, metal scraps, waste rock, etc.). At each location, the samplers were to remove the undecomposed organic litter from the soil surface, then use a shovel to expose a cross-section of the soil to a depth of at least 10 cm to determine whether there are distinct soil horizons present in the top 5 cm. For the purposes of sampling, the bottom of any accumulations of undecomposed leaves or needles, and/or the bottom of the moss layer, will define the top of the soil interval (i.e., 0 cm). All equipment (e.g. trowels, spoons, sample containers, etc.) that comes into contact with the soil samples must be free of metal (i.e. no stainless steel implements – use only plastic or equivalent). A sample of the full 0-5 cm soil interval was to be taken at each soil sampling site. At least 500-1000 g of soil was to be collected from each site to provide sufficient material for sieving. If there are visually distinct soil horizons, separate samples were also to be taken from each horizon. If distinct layers were very thin, a large enough area of the top of the horizon was to be exposed to enable collection of sufficient sample (500-1000 g). If present, humus (i.e. decomposed organic material – original plant structures should not be discernable) is considered part of the soil profile and must be collected. Pebbles, roots, and any living plant matter should be removed from the soil prior to placement into the sampling container. If present, samples of additional visually distinct soil horizons will then be collected, to a maximum depth of 5 cm.

At each sampling point, observations were to be made on location co-ordinates (NAD 83), ground cover, vegetation, slope, drainage, thickness of organic material removed before sampling, and a soil description including Munsell colour, thicknesses of individual soil horizons within the 0-5 cm interval, presence/ absence of rock fragments in the soil, etc. Field observations were also to be made about factors that may contribute to interpretation of soil arsenic concentrations, such as proximity to waste rock or historical mine openings, possible use of waste rock or fill for roads or driveways, or proximity of preservative-treated wooden structures. All observations and samples taken were to be recorded on the standardized field observation sheet / sampling form provided. A digital colour photograph was to be taken of the 0-5 cm soil profile, with a scale for reference, at each sampling point, with sufficient clarity and resolution to show individual horizons if present.

3.4 Groundwater Assessment

The groundwater assessment was to consist of the installation of three groundwater monitoring wells to confirm the apparent hydraulic gradient. The wells were to be constructed in unconsolidated materials and water samples from each well were to be collated and analyzed for mercury and arsenic. The locations of the monitoring wells were to be selected at suitable positions to determine representative ground conditions, but were also to be selected so that the wells can be protected.

4.0 FIELD INVESTIGATION

4.1 Soil Sampling

On December 10, 2007, sixteen (16) of the pre-determined soil sample locations were sampled. On December 13, 2007, seventeen (17) of the pre-determined soil sample locations were sampled. On May 26, 2008, twelve (12) of the pre-determined soil sample locations were sampled. All of the sampling as carried out as per the protocol described in 3.3. The soil sample locations are shown on Drawing 6906-21-1, Appendix A. The field data sheets were completed and are found in Appendix B.

4.2 Monitoring Well Installation

On December 13, 2007, three (3) monitoring wells were constructed on the subject site. The test holes were drilled to total depths between 4.5 m to 6.1 m using a track mounted geotechnical drilling machine operated by Logan Drilling and Geotechnical Services of Stewiacke, Nova Scotia. W. G. Shaw & Associates Ltd. provided site supervision for the drilling program. The monitoring well locations are shown on Drawing 6906-21-1, Appendix A. Details of each of the monitoring well installations are provided in the logs presented in Appendix C.

The three monitoring wells were developed on December 13, 2007 to remove any sediment in the well and surrounding annulus. Well development consisted of purging the three wells of three well volumes of water, or alternatively until the well was bailed dry. The well development was completed using disposable bailer well sampling devices.

4.3 Groundwater Sampling

Groundwater samples were collected on December 13, 2007 from the three monitoring wells using disposable bailer well sampling devices and placed into sample containers supplied by the laboratory. All groundwater samples were submitted to Maxxam Analytics Inc. in Bedford, Nova Scotia following property chain-of-custody procedures and within acceptable hold times.

Groundwater levels were measured on December 13, 2007 using a Dipper T water level.

Groundwater samples were collected on May 26, 2008 from the three monitoring wells using disposable bailer well sampling devices and placed into sample containers supplied by the laboratory. All groundwater samples were submitted to Maxxam Analytics Inc. in Bedford, Nova Scotia following property chain-of-custody procedures and within acceptable hold times.

4.4 GPS Survey

A level survey of each of the three site monitoring wells was completed on December 13, 2007 using a sub-centimeter GPS instrument. The survey was carried out using a GPS instrument and elevations are relative to the published values established by the Nova Scotia Coordinate Monument System. The ground elevations for each of the three monitoring wells are provided in Table 1 in Appendix C.

4.5 Photographs

A digital colour photograph was taken at each sample site of the following subjects:

- General photo of sample location showing setting
- Closeup photo with scale reference of soil profile
- Photo of sample site facing north
- Photo of sample site facing east
- Photo of sample site facing south
- Photo of sample site facing west

The photos are provided in electronic format in Appendix D

5.0 ANALYTICAL PROGRAM

5.1 Soil

A total of thirty five (35) soil samples were submitted for laboratory analysis to Maxxam Analytics Inc. located in Bedford, NS. All soil samples were analyzed for the following:

- total organic carbon (<150 μm fraction)
- arsenic (<150 µm fraction)
- total organic carbon (<2 mm fraction)
- arsenic (<2 mm fraction)
- mercury (<2 mm fraction)

In addition, three tailing samples were submitted for laboratory analysis to ACME Analytical Laboratories located in Vancouver, BC (subcontracted through Maxxam). These samples were analyzed for available metals using the aqua regia digestion.

The results of the analyses are summarized in Tables 2, 3, and 4 found in Appendix E. The analytical results are also graphically shown on the following drawings in Appendix A:

```
Drawing 6906-21-1 (TOC & As <2 mm)

Drawing 6906-21-2 (TOC & As <150 um)

Drawing 6906-21-3 (Hg <2 mm)
```

Copies of the analytical reports are presented in Appendix F.

5.2 Groundwater

A total of three (3) groundwater samples (one sample from each of the newly installed groundwater monitoring wells) were submitted for laboratory analysis to Maxxam Analytics Inc.. All water samples collected on December 13, 2007 were analyzed for arsenic and mercury. The results are found in Table 5 in Appendix E. All water samples collected on May 26, 2008 were analyzed for general chemistry and metals scan. The results are found in Table 6 and Table 7 in Appendix E.

January 2009

6.0 LAND USE AND RECEPTOR CHARACTERISTICS

The subject site appears to have some intermittent recreational traffic although there are no organized events being held at the site. The traffic is in the form of both off-road vehicles (ATVs) and snowmobiles. Other active uses of the site were not apparent.

In the local area, there are some residential properties. Many of these properties appear to be either abandoned or seasonal. The residential properties generally lie upslope of the subject site. Most of the properties obtain water from shallow dug wells which were also located upslope of the subject site. A great majority of the surrounding lands are undeveloped, forested areas.

Due to the proximity of the subject site to the residential properties and the exposed, open nature of the site, it is possible that dust migration to the surrounding properties is occurring and therefore creating a potential route of exposure.

Respectfully Submitted,

C.J. MacLellan & Associates Inc.

Duneund

Hilda Dunnewold, P.Eng.

Environmental Engineer

Appendix A

Drawings

Appendix B

Field Data Sheets

Site GOLDENVILLE		Date 1 0 1 2 0 7 :	Time 13:34
Northing (20TNAD83) Easting (20TNAD83) 4997291 577292			Type - Horizon
Names of Samplers		RepStat	Sampling Depth
Hilda Dunnewold? Jack Gillis	- · · · · · · · · · · · · · · · · · · ·	Resampled Site No X Yes Previous Stall	0-5 cm

Samples Collected	
0 - 5 cm	
Depth sample (all horizons)	×
Horizon Sample A - horizon B - horizon	
Other:	

Type of Surface Materia	1
Mineral Soil	×
Non-Soil Urban	

<u>Local S</u>	Local Surface Expression											
				i								
Maneral	Su	rface	e Forr	m l								
Blanket				··· 🗖								
	•			_								
Dissected	-											
Fan												
Hummock	٠ V	,		👿								
Inclined												
Pitted				🗂								
Level ····				_								
Rolling -	· · · · · · •			···· 🗀								
Ridged -			.,									
		.		🗖								
remade												
Undulatin	g			🔲								
Veneer -				🔲								

Vegetation Cover	
Agricultural Crops	
Coniferous Forest	$\overline{\Box}$
Deciduous Forest	$\overline{\Box}$
Mixed Forest	$\overline{\Box}$
Meadow, Wet	$\overline{\Box}$
Field	ă
Parkland	Ħ
Shrubland	¥
Unvegetated Surface	7

<u>Drainage</u>	
Very rapidly drained Rapidly drained Well drained Moderately well drai Imperfectly drained Poorly drained Very poorly drained	ned X

Contamination
None Possible Probable Definite Farming Housing Industry Logging Miching Road Garbage Other

Overc	asi	t							
Rain									
Sleet	٠,								
Snow									

Weather

(E.g., Presence of waste rock, berms, pits, trenches or other mining activity)

- rockpiles to northwest - stream/wetanea to the north s. west

Horizons D: Lithological discontinuity Ma: Master horizons (Humus, A, B, C) Suffix: Suffixes M: Modifier (B1, B2, B3)	Colour Munsell colour u		descriptive 1		Redoxi (RM) Y: Visible N: Not vis		: Featur
Horizon Boundary (HB) S: Smooth W: Wavy I: Irregular B: Broken					L	<u> </u>	
Loss cover of this organics medium bran sandy loom (disturbed, no horizon)		Horizo	ons			prizon [Descri HB
Sandyloam	# D	Ma	Suffix	М	Up	Low	
(disturbed,	1 2	_A_			0	5	

Codes for Horizon Description

Coarse Fragments (CF) Estimated value in %

Field Texture
Clay, Sandy Clay, Sandy Clay Loam
Silt, Silty Sand, Silt Loam, Silty Clay Loam
Loam, Sandy Loam, Loamy Sand
Sand, Very Fine Sand, Fine Sand, Medium
Sand, Coarse Sand, Very Coarse Sand

		_
Photos	<u>l</u>	
Pit with Samples		
Looking North		
Looking East		
Looking South		
Looking West	9	
Others -Setting -profile	: '	

zon Description

	Horizons				De	Depth		HB Colour		RM	CF	Field	
#	D	Ma	Suffix	М	Up	Low					%	Texture	
1		A			0	5		2.54	3/1		10-20	Sandy loan	
2	ĺ												
3										ļ		ĺ	
4						1							
5	1 !]		
6	· —												
7		· . <u></u>								Ì			
8				:									
9	į												
10	-		Ţ										

G	old Mine District	Soil Sampling Field I	Data Sheet				
Site GOLDENUILL		Date	Time 13:20				
Northing (20TNAD83)	Easting (20TNAD83)		nple Type - Horizon				
Names of San	plers	RepStat	Sampling Depth 0 - 5 cm				
Hilda Dunnewoll	1 . Tack Gillis	Resampled Site No X Yes → Previous Site D					
Samples Collected 0 - 5 cm		Contamination	Comments: (E.g., Presence of waste rock, berms, pits, trenches or				
Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other:	Vegetation Cover Agricultural Crops	Possible Probable Definite - Definite - Housing - Housing - Logging - Mining - Road - Garbage - Other	other mining activity) Cut area to northwest				
Type of Surface Material Mineral Soil Organic Soil Non-Soil Urban Local Surface Expression	Shrubland	Weather Sunny/Clear Partly cloudy Overcast Rain Steet					

Very rapidly drained
Rapidly drained
Welf drained
Moderately well drained
Imperfectly drained
Poorly drained
Very poorly drained
Very poorly drained

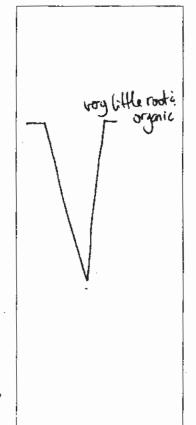
Moderately well drained
Imperfectly drained
Poorly drained
Very poorly drained

Mineral Surface Form

Snow

Air Temp.

2	34	12.5		
1.				


Horizons

D: Lithological discontinuity
Ma: Master horizons (Hurnus, A, B, C)
Suffix: Suffixes
M: Modifier (B1, B2, B3)

Horizon Boundary (HB)

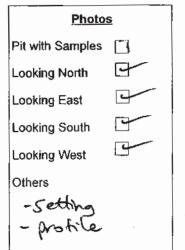
S: Smooth W: Wavy I: Irregular B: Broken

Soil Profile Diagram

Codes for Horizon Description

Colour

Munsell colour or descriptive colour using table 1


Redoximorphic Features (RM)

Y: Visible N: Not visible

Coarse Fragments (CF) Estimated value in %

Field Texture

Clay, Sandy Clay, Sandy Clay Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

Horizon Description

		Horizo	ons		Dej	pth	HB	Colo	Colour	RM	CF	Field	
#	Đ	Ma	Suffix	М	Up	Low					%	Texture	
1		A			0	5	, 55-38	IOYR	2/2		10-15	Sandylean	
2		•						ļ L					
3													
4						-							
5													
6]		
7			T - 1			[.]							
8			Ţ <u> </u>										
9			T - i										
o				ļ				1					

· G	old Mine District So	il Sampling Field [Data Sheet					
Site	Easting (20TNAD83)	Date Time						
Names of Samp	elers	RepStat	Sampling Depth					
Hilda Dunnewold?	Jack Gillis	Resampled Site No X Yes → Previous	0 - 5 cm					
Samples Collected								
O - 5 cm Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other:	Vegetation Cover Agricultural Crops	Contamination None Possible Probable Definite I farming I housing I housin	Comments: (E.g., Presence of waste rock, berms, pits, trenches or other mining activity) Wooded area; Yesidence to west					
Organic Soil Non-Soil Urban Local Surface Expression Mineral Surface Form Blanket Dissected Fan Hummocky Inclined Pitted Level Rofling Ridged Steep	Very rapidly drained	Sunny/Clear						
Terrace	•		i i					

Horizons D: Lithological discontinuity Ma: Master horizons (Humus, A, B, C) Suffix: Suffixes M: Modifier (B1, B2, B3) Horizon Boundary (HB) S: Smooth W: Wavy I: Irregular B: Broken Soil Profile Diagram	Mur	tour nsell colour or our using table		Redox (RM) Y: Visible N: Not vi	2	Features	Coarse Fragm Estimated value in Field Texture Clay, Sandy Clay, Sar Silt, Sitty Sand, Silt Lo Loam, Sandy Loam, I Sand, Very Fine Sand Sand, Coarse Sand, V	ndy Clay Loam bam, Slity Clay i coamy Sand f, Fine Sand, Mo	Locam Local	Photos with Samples oking North oking East oking South oking West hers - Setting - Profile
				Н	orizon [Descriptio	n			
	. # 5	Horizo			pth	НВ	Colour	RM	CF	Field Texture
	# D 1 2 3 4 5 6 7 8 9 10	Ma A	Suffix N	I Up	S		2.57 2.5/1		% 0-15	Siltyloan

Codes for Horizon Description

Ath ID

Gold Mine District Soil Sampling Field Data Sheet										
	Fin.	RepStat OO Resampled Site	Time 12:42 Imple Type - Horizon No X Yes Sampling Depth 0 - 5 cm							
Horizon Sample A - horizon B - horizon Ci Other: Mineral Soil Mineral Mineral Soil Mine	gricultural Crops gricultural	Contamination None	Comments: (E.g., Presence of waste rock, berms, pits, trenches or other mining activity) - Mue Shafts to weat and north weat - Cesidence to south east - alders! Marns							

Horizons D: Lithological discontinuity Ma: Master horizons (Humus, A, B, C) Suffix: Suffixes M: Modifier (B1, B2, B3) Horizon Boundary (HB) S: Smooth W: Wavy I: Irregular B: Broken Soil Profile Diagram	Mur	lour iself colour of our using table	r descriptive e 1		Redoxi (RM) Y: Visible N: Not vi	• •	Features	Fi Ci Sii	oarse Fragm timated value in ield Texture ay, Sandy Clay, Sa t, Silty Sand, Silt tam, Sandy Loam, and, Very Fine San and, Coarse Sand,	% ndy Clay Loam cam, Silty Clay Loamy Sand	Loam Lor Lor Lor Lor Lor Lor	Photos with Samples oking North oking East oking South oking West hers
					Но	orizon l	Descript	ion				
		Horizo				pth	НВ	С	olour	RM	CF	Field Texture
	# D	Ma A	Suffix	M	Up	Low		CV	2.5/1		%	
	2	<u> </u>		<u> </u>	0	5		31	2.5/1		0-10	Sandy clayloam
	3											
	4		<u> </u>							ļ		
	5					— [-					
	6	-]	-			
	7											
	8]	
	9				L		ļ	L				
	10							i		1		i

Codes for Horizon Description

Site ID

Gold Mine District Soil Sampling Field Data Sheet											
Site GOLDENUILL Northing (20TNAD83) U9977230 Names of Sam	Easting (20TNAD83) 577432 plers	Date 101207 Site ID Sar	Time								
Hilda Dunnewol	d? Jack Gillis	Resampled Site No X Yes → Prevous	SH D								
Samples Collected 0 - 5 cm Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other:	Vegetation Cover Agricultural Crops	Contamination None	Comments: (E.g., Presence of waste rock, berms, pits, trenches or other mining activity) -access road to west -public road to north -residence to east								
Local Surface Expression Mineral Surface Form Blanket	Drainage Very rapidly drained □ Rapidly drained □ Well drained □ Moderately well drained □ Imperfectly drained □ Poorly drained □ Very poorly drained □	Rain Sleet Show Show Show Show Show Show Show Show									

Horizons D. Lithological discontinuity Ma: Master horizons (Humus, A. B. C) Suffix: Suffixes M: Modifier (B1, B2, B3) Horizon Boundary (HB) S: Smooth W: Wavy I: Irregular B: Broken Soil Profile Diagram	_ N	Colour Munsell colour o colour using tabl			Redoxi (RM) Y: Visible N: Not vis		c Features	Estimated value in Field Texture Clay, Sandy Clay, Sait, Silty Sand, Silt L Loam, Sandy Loam, Sand, Very Fine Sand, Sand, Coarse Sand,	%	Loam Lo Lo Lo Ct	Photos with Samples oking North oking East oking South oking West hers - cutting
					Но	rizon l	Descriptio	n			
		Horizo				pth	НВ	Colour	RM	CF	Field
	#	D Ma	Suffix	M	Up	Low		~~\\ 2 ~\\		%	Texture
	2	M	 		0	5		54 2.5/1		0-10	sandy day
	3		 						-··	 	
	4										
·	5			—							
	6										
	7		ļ								
	8							[
	9		ļ i				ļ				
	10		L] []	1	ii		<u> </u>		
					- 4:51		 -				

Codes for Horizon Description

G	old Mine District Sc	oil Sampling Field	Data Sheet
Site GOLDENVILL		Date	Time
Northing (20TNAD83) 4997233 Names of Samp Hilda Dunnewold?		RepStat ○ ○ Resampled Sin	Sample Type - Horizon No X Yes Sampling Depth 0 - 5
Samples Collected 0 - 5 cm Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other: Type of Surface Material Mineral Soil Organic Soil Urban	Vegetation Cover Agricultural Crops	Contamination None Possible Probable Definite Farming Housing Industry Logging Wanning Road Garbage Other Weather Sunny/Clear Partly doudy	Comments: (E.g., Presence of waste rock, berms, pits, trenches or other mining activity) - Tresidence to west - publicroad to north - adjacent to what appear to be rockepiles
Local Surface Expression	Drainage Very rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained Very poorly drained Imperfect Imperfec	Overcast Rain Sleet Snow Air Temp. 1 °C	

Horizons D: Lithological discontinuity Ma: Master horizons (Humus, A, B, C) Suffix: Suffixes M: Modifier (B1, B2, B3) Horizon Boundary (HB) S: Smooth W: Wavy I: Irregular B: Broken Soil Profile Diagram	Mu	plour inself colour or our using table	(RM) Y: Vis)	c Features	Field 7 Clay, San Silt, Silty	e Fragments Id value in % Fexture dy Clay, Sandy Cl Sand, Silt Loam, Indy Loam, Loamy ry Fine Sand, Fine arse Sand, Very C	lay Loam Silty Clay Loam	Photo Pit with Sample Looking North Looking East Looking South Looking West Others Setting	
			1	Horizon i	Descripti	on				
	ļ	Horizo D Ma	M	Depth Up Low	HB	Colo		RM C	Tex	eld ture
	1 2 3 4 5 6 7 8 9	A .				IOYR 2	-/2		10 siltyda	7100m

Codes for Horizon Description

Gold Mine Dis	trict Sc	oil Sampling Fi	eld Data Sheet
Site		Date 101207	Time : 1 4 : 2 0
Northing (20TNAD83) Easting (20TNAD83) 4997207 577209		Site ID	Sample Type - Horizon No X Yes
Names of Samplers		RepStat	Sampling Depth
Hilda Dunnewdd ? Jack Gillis	14 (1) 1884 (1) 1844 (1)	O O Resampl No X Yes →	ed Site Previous Site ID
Samples Collected 0 - 5 cm Depth sample (all horizons) Horizon Sample A - horizon B - horizon Coniferous Forest		Contamination None Possible Probable Definite Housing	

Type of Surface	<u>Material</u>
Organic Soil Non-Soil Urban	<u>6</u>

Other:

Local Surface Expression														
Mineral Surface Form Blanket Dissected Fan	000													
Hummocky Indined														
Level Rolling Ridged														
Steep														
Veneer														

Vegetation Cover	
Agricultural Crops Conliferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Unvegetated Surface	egge of

	Drainage	
	1 ———	
l	Very rapidly drained	o
	Rapidly drained	a
	Well drained	
	Moderately well drained	
	Imperfectly drained	
	Very poorly drained	X
	Very poorly drained	8

_ Non	e 💥
- Pos	sible
- Proi	able
- Defi	nite
-	Farming[
1	-Housing
1	Industry
L	Logging
	-Mining
	-Road (
	Other

Weather

	Air	Ter	mn
	~"	1 51	пþ
-	1	1	°C

Comments:
(E.g., Presence of waste rock, berms, pits, trenches or other mining activity)
-wellands to south
-road to north
- surface pockmorked unth holes
MITH NOODS

Horizons D: Lithological discontinuity Ma: Master horizons (Humus, A, B, C) Suffix: Suffixes M: Modifier (B1, B2, B3) Horizon Boundary (HB) S: Smooth W: Wavy I: Irregular B: Broken Soil Profile Diagram		Color Munse colour		r descriptive e 1		(RM) Y: Visi	-	c Features	Coarse Fragi Estimated value Field Texture Clay, Sandy Clay, S Silt, Silty Sand, Silt Loam, Sandy Loam Sand, Very Fine Sa Sand, Coarse Sand	in % Sandy Clay Loam Loam, Silty Clay In, Loamy Sand	Loam Loam Loadium Load	Photos It with Samples Doking North Doking East Doking South Doking West There - Suthers - Profile
						ŀ	Horizon	Descriptio	on			
	#	D	Horizo Ma	ons Suffix	м		Depth Jp Low	НВ	Colour	RM	CF %	Field Texture
	1 2 3 4 5 6 7 8 9											Sandy day

Codes for Horizon Description

Horizons

G	old Mine District	Soil Sampling Field	Data Sheet
Site GOLDENVILL Northing (20TNAD83) 4997198 Names of Sam Hilda Durrewdd 3.	Easting (20TNAD83) 577264 plers	Date 1 0 1 2 0 7 Site ID Sa 9	Time I 3 : 5 8 ample Type - Horizon No X Yes Sampling Depth 0 - 5 cm
		No X Yes →	Mark Sitte ID
Samples Collected 0 - 5 cm Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other: Type of Surface Material Mineral Soil Organic Soil Non-Soil		Sunny/Clear Deartly cloudy Overcast	Comments: (E.g., Presence of waste rock, berms, pits, trenches or other mining activity) Surrounded by wet
Mineral Surface Expression Mineral Surface Form Blanket	Drainage Very rapidly drained □ Rapidly drained □ Well drained □ Moderately well drained □ Imperfectly drained □ Poorly drained □ Very poorly drained □	Rain Sleet Snow Air Temp.	

Horizons D: Lithological discontinuity Ma: Master horizons (Humus, A, B, C) Suffix: Suffixes M: Modifier (B1, B2, B3) Horizon Boundary (HB) S: Smooth W: Wavy I: Irregular B: Broken Soil Profile Diagram	Mur	lour sell colour or our using table			(RM) Y: Visible N: Not vi	•	Features	Estin	rse Fragminated value in the sandy Clay, Sandy Clay, Sandy Loam, L. Very Fine Sand, Voarse Sand,	<u> </u>	Local	Photo with Samples oking North oking East oking South oking West hers - Setti	
					Н	orizon i	Descripti	on					
	# 0	Horizo Ma	ns Suffix	м	De Up	pth Low	нв	Со	lour	RM	CF %	Fiel Text	
	1 2 3 4 5 6 7 8 9	A			0	5		IOYR	3/2		26-30	silt loc	*

Codes for Horizon Description

·		
Gold Mine Dis	trict Soil Sampling Fiel	d Data Sheet
Site GOLDENVILLE Northing (20TNAD83) Easting (20TNAD83)	Date 101207 Site ID	Time
Names of Samplers Hilda Dunnewold & Tack Glus	RepStat OO Resampled :	
Samples Collected 0 - 5 cm Depth sample (all horizons) Horizon Sample A - horizon B - horizon Coniferous Forest	Contamination None Possible Probable Definite Farming	Comments: (E.g., Presence of waste rock, berms, pits, trenches or other mining activity)

Type of Su	IJ	1	i	?	ľ	Ç	Ś	2		ļ	V	l	a	l	t	e	1	r	i	á	ì	
Mineral Soil																						
Organic Soil																			-			X
Non-Soil	٠.						-		- ,													
Urban			٠,																			П

Other:

Local Surface Expression						
Mineral Surface Form Blanket Dissected Fan Hummocky Inclined Level						
Rolling	١					
Steep Terrace						
Undulating Veneer						

Vegetation Cover	
Agricultural Crops	
Coniferous Forest	ă
Deciduous Forest	ŏ
Mixed Forest	ă
Meadow, Wet	ñ
Field	×
Parkland	\Box
Shrubland	H
Unvegetated Surface	5

	<u>Drainage</u>	
	Very rapidly drained	
ı	Rapidly drained	
ı	Well drained	
ı	Moderately well drained	×
	Imperfectly drained	
١	Poorly drained	
ı	Very poorly drained	
ı		

None Possible Probable Definite Housing Housing Housing Graming Grami

Sunny Partly									Н
Overc	ast								V
Rain		٠.							a
Sleet			٠.			-			
Snow					٠.				

Weather

	Air	Ter	mp.
-	1	١	°C

- west of entrance - north of open mine shaft

D: Lithological discontinuity Ma: Master horizons (Humus, A, B, C) Suffix: Suffixes M: Modifier (B1, B2, B3) Horizon Boundary (HB) S: Smooth W: Wavy I: Irregular B: Broken Soil Profile Diagram	l N	Colour funsell colour o clour using tab	or descriptive ble 1	Redoxi (RM) Y: Visible N: Not vis	•	Features	Coarse Fragme Estimated value in Field Texture Clay, Sandy Clay, Sar Silt, Silty Sand, Sart L Loam, Sandy Loam, S Sand, Very Fine Sand Sand, Coarse Sand, V	%	Look	Photos with Samples king North king East king South king West ers
				Ho	orizon [escriptic	on			
	#	Horiz D Ma			pth Low	HB	Colour	RM	CF %	Field Texture
	1 2 3 4 5 6 7 8 9	H			5		7.5 YR 25/		0	stll loam

Coarse Fragments (CF)
Estimated value in %

Photos

Codes for Horizon Description

Colour

SILID

Horizons

Go	ld Mine Disti	rict Soil Sampling	Field Data Sheet	
Site GOLDENVILLE		Date	Time 1 S :	26
	Easting (20TNAD83)	Site ID	Sample Type - Horizon No X Yes	
Hilda Dunnewold?		RepStat		Sampling Depth 0 - 5 cm
th (aa Dunneword;	Sade Gigues	Res No X Yes →	Sampled Site Previous Site ID	
Samples Collected		Contamination	Comments	•

0 - 5 cm	
Depth sample (all horizons)······ 🛱
	•
Other:	

Type of Surface Materia	Ī
Mineral Soil	M
Mineral Soil Organic Soil Non-Soil Urban	
Urban	□

Local Surface Expression					
Mineral Surface					
Fan Hummocky					
Inclined	<u> </u>				
Rolling					
Steep Tenace Undulating					
Veneer					

Vegetation Cover	
Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Univegetated Surface	

<u>Drainage</u>						
Very rapidly drained		 	 			
						$\bar{\Box}$
Well drained		 		 		
Moderately well drain	ned ·	 	 	 		
Imperfectly drained		 	 			X
Poorly drained	.	 ٠.	 		, .	
Very poorly drained		 			٠.	

None	Contamination
Housing	- Possible

Sunny Partly								-			
Overc			•							-	×
Rain											
Steet											
Snow											

Weather

	Air	Te	mp
-	1	١	°C

Com	ments	3:

(E.g., Presence of waste rock, berms, pits, trenches or other mining activity)

- south of residence - alders!, then bushes - rune tailings to south

D: Lithological discontinuity Ma: Master horizons (Humus, A, B, C) Suffix: Suffixes M: Modifier (B1, B2, B3) Horizon Boundary (HB) S: Smooth W: Wavy I: Irregular B: Broken Soil Profile Diagram	Munsi coloui	ell colour or descriptive r using table 1	Redoximorphic (RM) Y: Visible N: Not visible	Features	Estimated value in Field Texture Clay, Sandy Clay, S; Silt, Silty Sand, Silt Loam, Sandy Loam, Sand, Very Fine Sar Sand, Coarse Sand,	1 %	Lo Lo Lo	with Samples
		<u> </u>	Horizon D	escriptio	on			
	# D	Horizons Ma Suffix N	Depth I Up Low	НВ	Colour	RM	CF %	Field Texture
	1 2 3 4 5 6 7 8 9 10	A	0 5		IOYR 2/1		0-5	Siltyclayloam

Codes for Horizon Description

Gold Mine District S	oil Sampling Field	Data Sheet
Site	Date 101207	Time
Northing (20TNAD83) Easting (20TNAD83) 4997155 577493	Site ID s	No X Yes
Names of Samplers	RepStat	Sampling Depth
Holda Dunnewdd? Jack Gillis	Resampled Site	0 - 5 cm
Samples Collected 0 - 5 cm Depth sample (all horizons) Horizon Sample A - horizon B - horizon Coniferous Forest Deciduous Forest Deciduous Forest Deciduous Forest	Contamination None	Comments: (E.g., Presence of waste rock, berms, pits, trenches or other mining activity) -South of ferced area

Type of St	urface Material
	· 🗦
	[<u>[</u>
Urban	
	_

Local Surface Expression				
Mineral Surface Form Blanket Dissected	000			
Hummocky Inclined Pitted				
Level Rolling Ridged Steep				
Terrace Undulating Veneer				

Vegetation Cover	
Agricultural Crops	
Coniferous Forest	$\overline{\Box}$
Deciduous Forest	$\overline{\Box}$
Mixed Forest	Ħ
Meadow, Wet	ŏ.
Field	অ
Parkland	Fr.
Shrubland	ŏ
Unvegetated Surface	П

<u>Drainage</u>	
Very rapidly drained	ı <u> </u>
Rapidly drained	
Well drained	
Moderately well drai	ined 🔲
Imperfectly drained	
Poorly drained	···· <u>·</u>
Very poorly drained	

Contamination
None Possible Probable Definite Housing Industry Logging Mining Garbage Other

Sunny Partly				٠							
Overc						,	,				Ē
Rain	 							-			
Sleet	 ٠.		-						-		
Snow	 				,						

	Air	Te	mp
_	1	J.	°C

Comments:
(E.g., Presence of waste rock, berms, pits, trenches or other mining activity)
-South of ferued area
-blat onea
- there are east-west
ruts to the west of
Sample location

Horizons D: Lithological discontinuity Ma: Master horizons (Humus, A, B, C) Suffix: Suffixes M: Modifier (B1, B2, B3) Horizon Boundary (HB) S: Smooth W: Wavy I: Irregular B: Broken Soil Profile Diagram	Mur	lour nsell colour or ur using table] [Redoxin (RM) Y: Visible N: Nat visit	Ť	Features	Field Texture Clay, Sandy Clay, S Silt, Silty Sand, Silt Loam, Sandy Loam Sand, Very Fine Sa Sand, Coarse Sand	andy Clay Loam Loam, Silly Clay L	Looam Looam Loo Loo Loo Loo Loo Loo Loo Loo Loo Lo	Photos It with Samples Dooking North Dooking East Dooking South Dooking West There The Profile The
				Hor	izon [Descript	ion			
	# 0	Horizo Ma	M	Dep	oth Low	НВ	Colour	RM	CF %	Field Texture
	1 2 3 4 5 6 7 8 9 10	A		0	5		10YR 3/2			Sandy clay

Codes for Horizon Description

14 (

Gold Mine Distr	ict Soil Sampling Field Data Sheet
Site GOLDENVILLE	Date Time 1 0 1 2 0 7 : 1 1 : 4 3
Northing (20TNAD83) Easting (20TNAD83) 4997162 577353	Site ID Sample Type - Horizon
Names of Samplers	RepStat Sampling Depth
Hilda Dunnewold? Tack Gillis	Resampled Site No X Yes Provens Site IO
Samples Collected 0 - 5 cm Depth sample (all horizons) Horizon Sample A - horizon B - horizon A - horizon	Contamination None

Type of Su	I	f	2	ļ	Ç	ē	!	ı	٧	1	2	ı	t	е	•	r	i	2	ij
Mineral Soil						 													· j
Organic Soil						 													- 1
Non-Soil																			- (
Urban	-																		- 1

Other:

Local	Su	ηſ	ac	:6		E	(D)	ess	ion
Minera Bianket Dissecte	ed								00
Fan Hummod Inclined	cky						٠.	 	X
Pitted Level Rolling					• · · ·				
Ridged							 		
Terrace Undutati Veneer									

<u>/egetation Cover</u>	
gricultural Crops Coniferous Forest Indicate Forest Ideadow, Wet Ideadow, Wet Ideadow Ideadow Ideadow Ideadow Ideadow Ideadow Idea	alders

<u>Drainage</u>						
Very rapidly drained						
Rapidly drained		 	 	-	 	-
Well drained		 	 			- [
Moderately well drain	ned		 		 	.
Imperfectly drained					 	i
Poorly drained		 				- 1
Very poorly drained					٠	٠ (

Weather

Sunny/Clear
Partly cloudy
Overcast · ···· 🔀
Rain ····
Sleet
Snow
Air Temp.
- [1 °C

rock pole and tailings atea to south

la I	U	Salan			
16 1	Ч.	CHAMP HO			
			 	L	

D: Lithological discontinuity
Ma: Master horizons (Humus, A, B, C)
Suffix: Suffixes
M: Modifier (B1, B2, B3)

Horizon Boundary (HB)

S: Smooth W: Wavy I: Irregular B: Broken

Soil Profile Diagram

Codes for Horizon Description

Colour

Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM)

Y: Visible N: Not visible

Coarse Fragments (CF) Estimated value in %

Field Texture

Clay, Sandy Clay, Sandy Clay Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

Photos
Pit with Samples
Looking North
Looking East
Looking South
Looking West
Others
- getting
-61040

		Horizo	ons		De	pth	HB	Colour	RM	CF	_Field
#	D	Ma	Suffix	M	Up	Low				%	Texture
. 1		A			0	5		104R 2/1		0-10	Sandyloam
. 2		•)
3											
4										1	
5]	
6								[
7				i							
8								,			
9			ļ				:				·
10	-	-	1							į	

Gold Mine Distric	t Soi	il Sampling Field	d Data Sheet
Site GOLDENVILLE Northing (20TNAD83) Easting (20TNAD83) (4997155 577288		Date 1 0 1 2 0 7 Site ID	Time IIIIZZ Sample Type - Horizon No X Yes
Names of Samplers Hilda Dunnewold ? Tack Gillis	dia	RepStat O O Resampled S No X Yes →	Sampling Depth 0 - 5 cm
Samples Collected 0 - 5 cm Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other: Other: Type of Surface Material Sample (all horizons) Vegetation Cover Agricultural Crops Coniferous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland		Contamination None	Comments: (E.g., Presence of waste rock, berms, pits, trenches or other mining activity) -location is an alwayed, treed area between two wet

Type of Su	rface Material	
Mineral Soit		ĺ
Organic Soil		Ì
Non-Soil		J
Urban	····· È)

<u>Local</u>	Surface Express	<u>ion</u>
Blanket Dissecte	al Surface Form	
Hummod Inclined Pitted		
Rolling Ridged		
Steep Terrace Undulati Veneer	ing	

Vegetation Cover	
Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland	
Shrubland Unvegetated Surface	

<u>rainage</u>		
apidly drained Vell drained loderately well drai nperfectly drained oorly drained	ained 5	
	lapidly drained Vell drained Moderately well dra Inperfectly drained Coorly drained	ery rapidly drained

Sunny	/Cle	ar	r				-	ľ
Partly		ıd	y					Ē
Overca	3St			٠.	 			į
Rain								Έ
Sleet				 	 			Ē
Snow				 				Ē

	Air	Te	np
_	1	}	°C

oneas

Horizons D: Lithological discontinuity Ma: Master horizons (Humus, A. B. C) Suffix: Suffixes M: Modifier (B1, B2, B3) Horizon Boundary (HB) S: Smooth W: Wavy I: Irregular B: Broken Soil Profile Diagram	Colo	ur	descriptive	on De		imorphi e	c Features	Coarse Fragme Estimated value in S Field Texture Clay, Sandy Clay, San Silt, Silty Sand, Silt Lo Loam, Sandy Loam, L Sand, Very Fine Sand, Sand, Coarse Sand, V	% dy Clay Loam am, Sity Clay oamy Sand . Fine Sand. N	Loam Aedium And Lo	Photos It with Samples Dooking North Dooking East Dooking South Dooking West There The Profile
4cmof frosk	# D	Horizo Ma	ns Suffix			epth	Descripti HB	on Colour	RM	CF %	Field Texture
frost	1 2 3 4 5 6 7 8 9 10	A			0	5		2.5y 3/1 (greybrown)		0-10	Sondy clay

Gold Mine District S	Soil Sampling Field Data Sheet
Site	Date Time 101207 : 10:55
Northing (20TNAD83) Easting (20TNAD83) [4997122 577364]	Site ID Sample Type - Horizon No X Yes
Names of Samplers	RepStat Sampling Depth
Hilda Dunnewold ? Jack Gillis	Resampled Site No X Yes Previous Site ID
Samples Collected 0 - 5 cm Depth sample {all horizons} Horizon Sample A - horizon B - horizon Conleterous Forest	Contamination None Possible Probable Definite Farming Housing Comments: (E.g., Presence of waste rock, berms, pits, trenches or other mining activity)

m
sample (all horizons)····· 🕱
n Sample zon

Type of Surface Materia	Ī
Mineral Soil	×
Organic Soil	
Non-Soil	
Urban	

Local Surface Expression	on
Mineral Surface Form	
Dissected	9
Hummocky	3
Pitted	3/
Level	×
Ridged	
Тептасе	5
Undulating [3

Vegetation Cover	
Agricultural Crops	
Coniferous Forest	
Deciduous Forest	<u> </u>
Mixed Forest	<u> </u>
Meadow, Wet	<u>~</u>
Field	······
Parkland	
Shrubland	
Unvegetated Surface	

<u>Drainage</u>				
Very rapidly d	Irained		 	
Rapidly drain	ed		 	 $\bar{\Box}$
Well drained				
Moderately w	ell draii	ned -	 	 Έ
Imperfectly dr				
Poorly draine				
Very poorly de				

Contamination
None Identification Identification

Sunny. Partiv	/Clear ··········cloudy ·········
Overca	ast
Rain	
Sleet	
Snow	

	Air	Tei	mp.
_[Į	1	°C

Comments:
(E.g., Presence of waste rock, berms, pits, trenches or other mining activity)
-adjacent (east) of
concrete structure
- South of access road

	19.45
li	Horizons D: Lithological discontinuity
þ	Ma: Master horizons (Humus, A, B, C)
ŀ	Suffix: Suffixes
þ	W: Modifier (B1, B2, B3)

Horizon Boundary (HB) S: Smooth W: Wavy I: Irregular B: Broken

Soil Profile Diagram

Scm	frost

Codes for Horizon Description

Colour Munsell colour or descriptive colour using table 1

Redoximorphic	Features
(RM)	
Y: Visible	
N: Not visible	

Coarse Fragments (CF) Estimated value in %

Field Texture Clay, Sandy Clay, Sandy Clay Loam
Silt, Silty Sand, Silt Loam, Silty Clay Loam
Loam, Sandy Loam, Loamy Sand
Sand, Very Fine Sand, Fine Sand, Medium
Sand, Coarse Sand, Very Coarse Sand

Photos				
Pit with Samples				
Looking North	9			
Looking East				
Looking South				
Looking West				
others -setting -profile	5			

		Horizo	ons		De	pth	HB	Col	our	RM	CF	_Field
#	D	Ma	Suffix	M	Up	Low					%	Texture
1	ļ	A			0	5		2,54	3/3		30	Medium Sand
2										7.72		
3												
4												
5												
6												
7										ĺ		
8			<u> </u>			L j						
9												
0	,											

Gold Mine District Soil Sampling Field Data Sheet					
Site GOLDENVIL	LE	Date	Time : 3 7		
Northing (20TNAD83)	Easting (20TNAD83)		mple Type - Horizon		
Names of S	amplers	RepStat	Sampling Depth 0 - 5 cm		
Hilda Dunnewold ?	Jack Gillis	Resampled Site No X Yes →	os Site ID		
Samples Collected		Contamination	Comments:		

0 - 5 cm	
Depth sample (all horizons)	X
Horizon Sample A - horizon B - horizon	
Other:	
	· ·———

Type of Surface	<u>Material</u>
Rillieral Cox	X

Local Surface Expressi	on
Mineral Surface Form Blanket Unisected	00
Fan	
Inclined Pitted	
Levet Rolling Ridged	
Steep Terrace	
Undulating Veneer	

Vegetation Cover	
Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Shrubland Unvegetated Surface	anixed

Drainage		
Very rapidly drained		
Rapidly drained		
Well drained		×
Moderately well drai	ned	 Ĺ
Imperfectly drained		
Poorly drained		
Very poorly drained		
Very poorly drained		

Contamination
None Manager Control of the Control

Rain · · · · Sleet · · ·	
Snow	

	Air	Te	np
[1	1	°C

Horizons D: Lithological discontinuity Ma: Master horizons (Humus, A. B. C) Suffix: Suffixes M: Modifier (B1, B2, B3) Horizon Boundary (HB) S: Smooth W: Wavy I: Irregular B: Broken Soil Profile Diagram	Mu	Nour nsell colour or our using table	descriptive	Redox (RM) Y: Visible N: Not vi		c Features	Field To	Fragments (CF value in % Exture y Clay, Sandy Clay Loa and, Silt Loam, Silty Cla dy Loam, Loamy Sand Fine Sand, Fine Sand, se Sand, Very Coarse 9	Pit Medium Sand Lo Lo	Photos with Samples oking North oking East oking South oking West hers - suth s
				Но	orizon [Descripti	on			
	# 0	Horizo	ons Suffix M	De Up	pth Low	НВ	Colou	r RM	CF %	Field Texture
	1 2 3 4 5 6 7 8 9 10	A		0	5		2.5Y 3		36-50	Coarse graveling Staly Sond

Codes for Horizon Description

20 811 10

Site GOLDENVILLE	Date Time 131207 : 15:32
Northing (20TNAD83) Easting (20TNAD83) [4	Site ID Sample Type - Horizon No X Yes
Names of Samplers	RepStat Sampling Dept
HildaDunnewold ? Jack Gillis	Resampled Site No X Yes Previous Site IC

Samples Collected	
0 - 5 cm	
Depth sample (all horizons)	
Horizon Sample A - horizon B - horizon	
Other:	

Type of Surface Mate	erial
Minerat Soil Organic Soil Non-Soil	X
Urban	<u> </u>

Mineral Surface Form
Blanket
Dissected
Fan
Hummocky
Inclined
Pitted
Rolling
_
Ridged
Steep
Terrace
Undulating
Veneer

<u>Vegetation</u>	Cover
Agricultural Cro	ps
Coniferous Fore	
Deciduous Fore	
Mixed Forest	
Meadow, Wet .	
Field	· · · · · · · · · · · · · · · · ·
Parkland	····· 2
Shrubland	
Unvegetated So	

<u>Drainage</u>	
Very rapidly drained	
	·····
Well drained	
Moderately well drain	ned 🕱
Imperfectly drained	
1 doily diamida	
Very poorly drained	······ ·· · · · · · · · · · · · · · ·
	_

Overca Rain									
Sleet									
Snow									

^	
Comm	·~nta:
1 11 11 11 1	11111
	ICI ILG.

(E.g., Presence of waste rock, berms, pits, trenches or other mining activity)

-northwest of large shaft -northeast of large hole -south of access road

- disturbed area
- frost beyond 5cm

Horizons D: Lithological discontinuity Ma: Master horizons (Humus, A, B, C) Suffix: Suffixes M: Modifier (B1, B2, B3) Horizon Boundary (HB) S: Smooth W: Wavy I: Irregular B: Broken Soil Profile Diagram	l N	Colour Junsell colour of colour using table	descriptive e 1	(I	Redoxii RM) ': Visible I: Nat visi		Features	Estimated v			Loo Loo	Photos with Samples king North king East king South king West ers - setting
					Но	rizon D	escriptio	on				
	#	Horizo D Ma		M	De _l Up	pth Low	НВ	Colour	R	_	F %	Field Texture
	1 2 3 4 5 6 7 8 9	A			0	5		2.54 4/			0-30	siety sand

Codes for Horizon Description

	Gold Mine Distric	t Soil Sampling Field	Data Sheet
Site GOLDENVIL	LE	Date 1 0 1 2 0 7	Time : [16:00
Northing (20TNAD83)	Easting (20TNAD83)	Site ID	Sample Type - Horizon No X Yes
Names of S	amplers	RepStat	Sampling Depth
Hilda Dunnewdo	1 & Jack Gilles	No X Yes → Pre	0 - 5 cm
Samples Collected		Contamination	Comments:

Sam	ples Collected
0-5c	m
Depth s	ample (all horizons)
Horizon A - horiz 8 - horiz	
Other:	

Type of Si	ш	1	í	<u> </u>	ì	Ç	X	8	1		Ì	1	ŀ	9	1	ζ	9	ri	į	a	ĵ
																					X
Organic Soil										٠					••						Έ
Organic Soil Non-Soil Urban																					뷥

Local S	u	rf	<u>a</u>	C	<u>e</u>	!	E	X	4)	ŗ	e	Ş	5	lon
Mineral Blanket Dissected															
Fan Hummock Inclined	y			٠.											
Pitted															
Ridged Steep															
Terrace Undulating Veneer	9														

Vegetation Cover	
Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland	
Unvegetated Surface	

<u>Drainage</u>		
Very rapidly drained		2
		j
Well drained		כ
Moderately well drain	ned ()	X
Imperfectly drained	[
Poorly drained		ם
Very poorly drained	[3

Contamination
None

Overca	ast			-			-	-	
Rain		•					-		
Sleet			 						
Snow		٠.,							

		•
Cor	nments	-

(E.g., Presence of waste rock, berms, pits, trenches or other mining activity)

-flat area - south of road

228 10	С
Horizons D: Lithological discontinuity Ma: Master horizons (Humus, A, B, C) Suffix: Suffixes M: Modifier (B1, B2, B3)	Colo Munse colour
M: Modifier (B1, B2, B3)	
Horizon Boundary (HB) S: Smooth	
W: Wavy I: frregular	

B: Broken		
Soil Profile	e Diagram	

Codes for Horizon Description

Diour Insell colour or descriptive our using table 1	Redoximorphic Features (RM) Y: Visible N: Not visible

Coarse Fragments (CF) Estimated value in %	Photos		
	Pit with Samples		
Field Texture Clay, Sandy Clay Loam	Looking North		
Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium	Looking East		
Sand, Coarse Sand, Very Coarse Sand	Looking South		
	Looking West		
	Others		
	- setting		

	Horizo			De	pth	HB	Colour	RM	CF	Field
# D	Ma	Suffix	M	Up	Low				%	Texture
1	A			0	5		7.54R3/1		3040	Sandyloan
2										3
3										
4	· · · · · · · · · · · · · · · · · · ·							1		
5						<u> </u>				
6	 	 · 		-						
7	†	 								
8										
9	1								·	
10		 								
L	<u>-</u>	i!				L —		L		

Site	Date Time
GOLDENVILLE	1011207 1151:146
Northing (20TNAD83) Easting (20TNAD83) [4997149 577568	Site ID Sample Type - Horizon No X Yes
Names of Samplers	RepStat Sampling Depth
Hilda Durnewold & Jack Gillis	Resampled Site No X Yes Precipus Site ID

Sam	ples Collected
0 - 5 c	m
Depth s	sample (all horizons)
Horizon A - horiz B - horiz	
Other:	

Type of Surface Materia	l
Mineral Soil Organic Soil Non-Soil	X CO
Urban	

Local Surface Express	ion
Mineral Surface Form	
Blanket	DS I
Dissected	8
Fan	Ū١
Hummocky	
Inclined	Ξĺ
Pitted	ā١
Level	
R:+ng	
Riuged	
Sieap	ŌΙ
Terrace	Ξl
Undulating	ā
Veneer	ōΙ

Vegetation Cover	
Agricultural Crops	
Coniferous Forest	ă
Deciduous Forest	ŏ
Mixed Forest	Ħ
Meadow, Wet	=
Field	
Parkland	合
Shrubland	н
Unvegetated Surface	7

Drainage
Very rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorty drained Very poorty drained

Contamination
None

Overc Rain	ast								
Sleet		 			-,				
Snow			-				-		

	Air	Tei	mp
_		1	°C

Comments:
(E.g., Presence of waste rock, berms, pits, trenches or other mining activity)
-South of south east corner of fem and area
- hest of public access

Horizons D: Lithological discontinuity Ma: Master horizons (Humus, A, B, C) Suffix: Suffixes M: Modifier (B1, B2, B3) Horizon Boundary (HB) S: Smooth W: Wavy I: Irregular B: Broken Soil Profile Diagram		Colour Munsell colour of colour using tab	or descriptive sle 1		Redox (RM) Y: Visible N: Not vi	e	Features	Coarse Fragm Estimated value in Field Texture Clay, Sandy Clay, S Silt, Silty Sand, Silt Loam, Sandy Loam, Sand, Very Fine San Sand, Coarse Sand	andy Clay Loam Loam, Silty Clay	Loam Local	Photos with Samples oking North oking East oking South oking West ers - setting - profite
				_	Н	orizon l	Descripti	ion			
	#	Horiz D Ma		М	De Up	epth Low	НВ	Colour	RM	CF %	Field Texture
	1 2 3 4 5 6 7 8 9	A			0	5		2.54 3/2		5-10	sioty sand

Codes for Horizon Description

Gold Mine District S	Soil Sampling Field Data Sheet	
Site	Date Time 131207 : 15:19	
Northing (20TNAD83) Easting (20TNAD83) [4] 9 9 7 0 9 0 5 7 7 4 7 8	Site ID Sample Type - Horizon No X Yes	
Names of Samplers	RepStat Sampling Dep	
Hilda Dunnewold ? Tack billis	Resampled Site No X Yes Prevents Site 10	1
Samples Collected 0 - 5 cm	Contamination Comments:	

Samples Collected
0 - 5 cm
Depth sample (all horizons)
Horizon Sample A - horizon B - horizon
Other:

Type of Surface	ce Material
Mineral Soil	···· ×
Organic Soil	······ <u>f</u> ī
Non-Soil	
Urban	

Mineral Surface Form Blanket	Local Surface Expression						
Fan	Blanket						
Inclined	Fan						
Rolling Steep Stee	Inclined Pitted						
Steep П	Rolling						
Medulating	Steep						
Veneer	Undulating						

Vegetation Cover	
Agricultural Crops	
Coniferous Forest	ō
Deciduous Forest	Б
Mixed Forest	$\overline{\Box}$
Meadow, Wet	П
Field	ī
Parkland	Ħ
Shrubland	×
Unvegetated Surface	

<u>Drainage</u>	
Very rapidly drained	
Well drained	<u></u>
Imperfectly drained	
Very poorly drained	Õ

Contamination
None X Possible
—Olitei

Sunny	Cle	aı	-					
Partly (clou	ď	y					×
Overca	ıst					-		
Rain								
Sleet								
Snow								\Box

	Air	Te	mp
_		0	°(

C	om	m	ents:	

(E.g., Presence of waste rock, berms, pits, trenches or other mining activity)

-north of ferced mine

shaft
- 2 cm = f arganic
remainder is disturbed

crizons Lithological discontinuity E Master horizons (Humus, A, B, C) His: Suffixes Modifier (B1, B2, B3) crizon Boundary (HB) Smooth Wavy Irregular Broken cil Profile Diagram	М	Colour Junsell colour or colour using table	r descriptive e 1	Redoxim (RM) Y: Visible N: Not visib	orphic Feature	Field Texture Clay, Sandy Clay, St. Sill, Silly Sand, Silt Loam, Sandy Loam, Sand, Coarse Sand, Coarse Sand,	andy Clay Loam	Loam Loo Loo Oth	Photos with Samples king North king East king South king West ers - Setting
		Horizo		Hori	zon Descrip	tion	RM		Field
i	#	D Ma	Suffix M	•	Low NB	Colour	LZIAI	CF %	Texture
	1	A			5 -	2.54 4/2		5-10	fine sand
	2	,						1 1	
	3]	
	4								
	5								
	6								-
	7								
	8				- F			1	
	9								
	10					<u> </u>		i i	

Codes for Horizon Description

Gold Mine Dis	trict Soil Sampling Field Data Sheet
Site	Date Time 131207 : 15:51
Northing (20TNAD83) Easting (20TNAD83) 4997071 577373	Site ID Sample Type - Horizon No X Yes
Names of Samplers	RepStat Sampling Depth
Hilda Dunnewold & Jack Gillis	O O O Resampled Site No X Yes → Previous Site ID
Samples Collected 0 - 5 cm	Contamination Comments:

Samples Collected	
0 - 5 cm	
Depth sample (all horizons)	×
Horizon Sample A - horizon B - horizon	
Other:	. 🗖

Type of Surface Material	į
Mineral Soil	各
Non-Soil Urban	

Local Surface Expres	sion
Mineral Surface Form	
Dissected	- <u>-</u>
Fan	
Inclined Pitted	8
	· [
Rolling	
Ridged	
Steep Terrace	
Undulating	
Veneer	

Vegetation Cover	
Agricultural Crops	
Coniferous Forest	ō
Deciduous Forest	Ħ
Mixed Forest	ā
Meadow, Wet	ñ
Field	Ħ
Parkland	合
Shrubland	$\bar{\Box}$
Unvegetated Surface	$\overline{}$

<u>Drainage</u>	
Very rapidly drained	ıc
Rapidly drained	
Well drained	
Moderately well dra	ined
Imperfectly drained	·····
Poorly drained	
Very poorly drained	

Contamination
None

Sunny	CK	3	31							-
Partly (do	1	ď	ŕ						
Overca	est							,		
Rain										
Sleet	,									
Snow				-				,		

Air	Ter	пр
 1	5	°C

(E.g., Presence of waste rock, berms, pits, trenches or other mining activity)

- disturbed soil - gravelly; frost - 2 cm of roots and organic mat

Drizons Lithological discontinuity : Master horizons (Humus, A. B, C) ffix: Suffixes Modifier (B1, B2, B3)	Colour Munsell colour or descript colour using table 1	tive	Redoxim (RM) Y: Visible N: Not visib	orphic Features	Coarse Fragm Estimated value in Field Texture Clay, Sandy Clay, Se Salf, Sandy Clay, Se	1 %		Photos t with Samples ooking North
Prizon Boundary (HB) Smooth Wavy regular Broken				J	Clay, Sandy Clay, Sa Silt, Silty Sand, Silt L Loam, Sandy Loam, Sand, Very Fine San Sand, Coarse Sand,	Coamy Sand d, Fine Sand, M Very Coarse Sa	Lo	ooking East ooking South ooking West thers - Sutting - profito
				izon Descriptio		DM		Siald
	Horizons # D Ma Suff	ix M	Hor Dep	<u> </u>	on Colour	RM	CF %	Field Texture
		ix M	Dep	th HB		RM		

G	old Mine District So	oil Sampling Field	Data Sheet
GOLDENVILL		Date 131207	Time
Northing (20TNAD83)	Easting (20TNAD83)	Site ID s	ample Type - Horizon
Names of Samp	blers	RepStat	Sampling Depth 0 - 5 cm
Atilda Dunnewold?	Jack Gillis	Resampled Site	Title Site (i)
Samples Collected 0 - 5 cm Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other: Type of Surface Material Mineral Soil Organic Soil Urban	Vegetation Cover Agricultural Crops	Contamination None Possible Probable Probable Promite Farming Housing Housing Garbage Other Weather Sunny/Clear Partly cloudy	Comments: (E.g., Presence of waste rock, berms, pits, trenches or other mining activity) -west of stamp mill - oppears to be tailings
Local Surface Expression Mineral Surface Form Blanket	Very rapidly drained	Overcast	

		511			Ι		_
Ma∷i Suffi	tholo Mast ix: Si	gical e er hor effixes	discons	(Hum	y nus, A	, В,	С

Horizon Boundary (HB) S: Smooth W: Wavy I: Irregular B: Broken

Soil Profile Diagram

-4cmof frost
- tailings

Codes for Horizon Description

Colour Munsell colour or descriptive colour using table 1

Redoximorphic Features
(RM)
Y: Visible
N: Not visible

Coarse Fragments (CF) Estimated value in %

Field Texture Clay, Sandy Clay. Sandy Clay Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

Photos						
Pit with Samples						
Looking North						
Looking East						
Looking South						
Looking West						
Others						
- settire	,					
-setting -profit	e					

Field	CF	RM	Colour	HB	pth	De		ns	Horizo	1	
Texture	%				Low	Up	M	Suffix	Ma	D	#
very fine son	0		2.54 3/3		5	0			A		1
J											2
											3
											4
										·	5
										-	6
		,									7
			}					T		-	8
]							T T			9
											10
			[<u> </u>			10

Gold Mine Di	strict Soil Samp	ling Field Data Sh	reet
Site GOLDENVILLE	Date 1 3 1 2	7 ime	1:22
Northing (20TNAD83) Easting (20TNAD83) 4997057 577265	Site 28	ID Sample Type - Ho	orizon
Hilda Dunnewold? Jack Gillis	RepStat OO No X Yes	Resampled Site	Sampling Depth 0 - 5 cm
Samples Collected 0 - 5 cm Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other: Other: Samples Collected Vegetation Cover Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet	Probable - Definite - Definite - Housing - Housing - Houging - Mining	(E.g., Prese other mining	ence of waste rock, berms, pits, trenches or

Type of St	urface Material	
Mineral Soil Organic Soil Non-Soil Urban		

Local Surface Express	ion
Mineral Surface Form	
Dissected Fan	빎
Hummocky	削
Pitted Level	N
Rolling Ringed	빔
Steep	8
Undulating	

Vegetation Cover	
Agricultural Crops	
Coniferous Forest	$\ddot{\Box}$
Deciduous Forest	ŏ
Mixed Forest	ŏ
Meadow, Wet	$\overline{\Box}$
Field	Ħ
Parkland	ă
Shrubland	Ĭ
Unvegetated Surface	~

ined 🔲
📉
······ <u>f</u>

None M	Contamination
Pefinite	Possible

Sunny, Partily									 1
Overca									 Ē
Rain	 		-						 C
Sleet	 						-		 Ē
Snow	 	-		 -	•	•			

Comments.
(E.g., Presence of waste rock, berms, pits, trenches or other mining activity)
-north i west of tailings in wooded area
- lowlying area but no standing water

7 0	130	
140		

D: Lithological discontinuity
Ma: Master horizons (Humus, A, B, C)
Suffix: Suffixes
M: Modifier (B1, B2, B3)

Horizon Boundary (HB)

S: Smooth

W: Wavy I: Irregular

B: Broken

Soil Profile Diagram

3 cm abroods 3 Leaves remainder is A horsen

Codes for Horizon Description

Colour

Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM) Y: Visible

N: Not visible

Coarse Fragments (CF) Estimated value in %

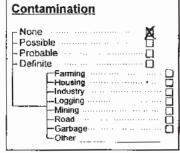
Field Texture

Clay, Sandy Clay, Sandy Clay Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

Photos	<u> </u>
Pit with Samples	
Looking North	
Looking East	-
Looking South	=
Looking West	
Others - settly - profi	9

		Horizo			De	pth	HB	Colour	RM	CF	Field Texture
#	D	Ma	Suffix	M	Up	Low				%	rexture
1		A		Ĺ	0	5		2.54 3/3		0-5	loomyson
2											3
3											
4											
5											
6			-1-								
7						[]					
8			T- · · ·	9							
9]	
10]	

Gold Mine District S	Soil Sampling Field	d Data Sheet
Site	Date	Time : 4 4
Northing (20TNAD83) Easting (20TNAD83)	Site ID	Sample Type - Horizon No X Yes
Names of Samplers	RepStat	Sampling Depth 0 - 5 cm
Hilda Dunnewold? Jack Gilles	Resampled S No X Yes →	ite
Samples Collected 0 - 5 cm	Contamination	Comments:


Samples Collected
0 - 5 cm
Depth sample (all horizons)
Horizon Sample A - horizon
B - horizon
Other:

Type of Su	rface Material	
	<u>I</u> S	1
Organic Soil	·····)\$	1
Non-Soil	······································	Ī
Urban	·····]

Local Surface Expression							
Mineral Surface Form							
Blanket							
Dissected	··· 📭						
Fan	🗀 🗎						
Hummocky							
Inclined	(17)						
Pitted	□						
Level	□ I						
Rolling	o I						
Ridged	🗀						
Steep							
Теггасе							
Undulating	<u> </u>						
Veneer ····							

Vegetation Cover	
Agriculturat Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Univegetated Surface	

<u>Drainage</u>	
Very rapidly drained Rapidly drained Well drained Moderately well drai Imperfectly drained Poorly drained Very poorly drained	

Sunny. Partly		 	×
Overca	٠	 	Ē
Rain			
Steet	 	 	
Snow	 		Е

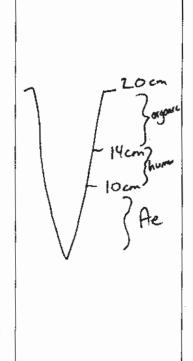
Air Temp.

(E.g., Presence of waste rock, berms, pits, trenches or other mining activity)

beyond western bern in alder? wooded area - burn layer present

3) 34¢ 10	

Horizons
D: Lithological discontinuity
Ma: Master horizons (Humus, A, B, C)
Suffix: Suffixes


M: Modifier (B1, B2, B3)

Horizon Boundary (HB)

S: Smooth W: Wavy

I: Irregular B: Broken

Soil Profile Diagram

Codes for Horizon Description

Colour

Munsell colour or descriptive cofour using table 1

Redoximorphic Features (RM)

Y: Visible

N: Not visible

Coarse Fragments (CF) Estimated value in %

Field Texture

Clay, Sandy Clay, Sandy Clay Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

<u>Photos</u>							
Pit with Samples							
Looking North							
Looking East							
Looking South							
Looking West	3						
Others - settly - profi	9						

	Horizons		orizons Depth			pth	HB Colour	RM	CF	Field		
#	D	Ма	Suffix	M	Up	Low				%	Texture	
1		H			0	4	I			0	humus	
2		Ae			4	5	I	2.54 2.5/1		0-5	Sandyloan	
3					-						3	
4							——] [
5]		1 1		
6			T									
7	_		T									
8												
9												
0		-										

	Gold Mine District S	Soil Sampling Field	Data Sheet
Site		Date	Time
GOLDENVIL	LE	131207	12:10
Northing (20TNAD83)	Easting (20TNAD83) 577231	Site ID S	ample Type - Horizon No X Yes
Names of S	Samplers	RepStat	Sampling Depth
		00	0 - 5 cm
Holda Du nnews	old). Jack Gillis	Resampled Site No X Yes → Previ	Dus Site ID
Samples Collected			
0 - 5 cm		Contamination	Comments:
Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other:	Vegetation Cover Agricultural Crops	None	(E.g., Presence of waste rock, berms, pits, trenches or other mining activity) - Maybe impacted by tarlings
Local Surface Expression Mineral Surface Form Eket Dissected Fan	Very rapidly drained	Overcast Rain Sleet Snow	
Hummocky	Poorly drained Very poorly drained	Air Temp. — [O °C	ì

3 Site 10	Co	des for Horizon	Descrip	tion					
Horizons D: Lithological discontinuity Ma: Master horizons (Humus, A, B, C) Suffix: Suffixes M: Modifier (B1, B2, B3) Horizon Boundary (HB) S: Smooth W: Wavy I: Irregular B: Broken Soil Profile Diagram	Colour Munsell o colour us	colour or descriptive sing table 1	Redo (RM) Y: Visit N: Not		Features	Coarse Fragm Estimated value in Field Texture Clay, Sandy Clay, Sa Sitt, Sitty Sand, Sitt L Loam, Sandy Loam, Sand, Very Fine San Sand, Coarse Sand,	ndy Clay Loam oam, Silty Clay	Locarn Lo	Photos with Samples bking North oking East oking South oking West ners setting
			н	lorizon D	escription	1			
	# D	lorizons Ma Suffix	D M ⊍	epth	НВ	Colour	RM	CF %	Field Texture
	1 2 3 4 5 6 7 8 9 10	A		5)		04R 3/4		0-5	loomysand

Gold Mine District Soil Sampling Field Data Sheet Site Date Time GOLDENVI LLE 131207 14:53 Site ID Sample Type - Horizon Northing (20TNAD83) Easting (20TNAD83) 32 4997033 No X Yes Sampling Depth **Names of Samplers** RepStat 00 0 - 5 cm Resampled Site Hilda Durnewold! Jack Gillis No X Yes Samples Collected Comments: 0 - 5 cm (E.g., Presence of waste rock, berms, pits, trenches or other mining activity) Depth sample (all horizons)

Type of Su	face Material	
INTERIOR CONT		X
		6
I TOTAL COM		
Urban		

A - horizon
B - horizon

Horizon Sample

Local Surface Expressi	<u>on</u>
Hummocky	
Pitted	8
Level	
Rici-ed	╗
=F	- -
] [
Veneer	ᄓ

Vegetation Cover	
Agriculturat Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Unvegetated Surface	

<u>Drainage</u>							
Very rapidly drained	,		 			٠,	
Rapidly drained							
Well drained			 	-	 		
Moderately well drain	ined		 		 		
Imperfectly drained		٠,					M
Poorly drained ····			 				Ð
Very poorly drained			 				

Contamination
None Miles Definite Definit

Overc	as	t									1
Rain			-								
Steet								-			i
Snow										,	

Weather

	Air	Te	np
_	(0	°C

32	 T	
, ,		

D: Lithological discontinuity

Ma: Master horizons (Humus, A, B, C) Suffix: Suffixes M: Modifier (B1, B2, B3)

Horizon Boundary (HB) S: Smooth W: Wavy I: Irregular B: Broken

Soil Profile Diagram

Codes for Horizon Description

Colour

Munsell colour or descriptive colour using table 1

Redoximorphic Features
(RM)
Y: Visible
N: Not visible

Coarse Fragments (CF) Estimated value in %

Field Texture

Clay, Sandy Clay, Sandy Clay Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

Photos	<u> </u>						
Pit with Samples							
Looking North							
Looking East	3						
Looking South							
Looking West							
Others							
-setting							
-profit	2						

		Horizo	ons		Dej	oth	HB	Colour	RM	CF	Field
#	D	Ma	Suffix	М	Up	Low				%	Texture
1		А	T		0	5	- 1	10YR 2/1		0-5	Sandy clay loan
2		,	1								3 1
3											
4			T								
5] [
6			T" "								
7			T			-				[[· · · · · ·]	
8											
9]	
0			T. I								

Gold Mine District So	oil Sampling Field Data Sheet
GOLDENVILLE	Date Time 131207 : 15:04
Northing (20TNAD83) Easting (20TNAD83) [577438]	Site ID Sample Type - Horizon No X Yes
Names of Samplers	RepStat Sampling Depth
Holda Dunnewold & Jack Gillis	Resampled Site No X Yes Previous Site ID
Samples Collected 0 - 5 cm Depth sample (all horizons): A Horizon Sample A - horizon	Contamination None Possible Probable Probable Definite Housing Housing Housing Garbage Other Comments: (E.g., Presence of waste rock, berms, pits, trenches or other mining activity) Loss of trail - lots of rock in Sail - Much not mat, dense - weather Sunny/Clear Partly cloudy
Drainage	Overcast

33	JC (1)	

D. Lithological discontinuity
Ma. Master horizons (Humus, A, B, C)
Suffix: Suffixes
M. Modifier (B1, B2, B3)

Horizon Boundary (HB) S: Smooth W: Wavy I: Irregular B: Broken

Soil Profile Diagram

Codes for Horizon Description

Colour

Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM) Y: Visible N: Not visible

Coarse Fragments (CF) Estimated value in %

Field Texture

Clay, Sandy Clay, Sandy Clay Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

Photo	<u>s</u>
Pit with Samples	
Looking North	
Looking East	
Looking South	3
Looking West	
Others - Setting - profile	3

		Horizo				pth 🕺	HB	Colour	RM	CF	Field Texture
#	D	Ma	Suffix	М	Up	Low				%	rexture
1		A			0	5		543/2		2050	silly sond
2											with coarse
3											silly sond with coorse
4											
5]						
6											
7											
8			T]	
9											
10											

G	old Mine District So	oil Sampling Field [Data Sheet
GOLDENVILL	E	Date [131207]	Time 1 3 : 2 7
Northing (20TNAD83)	Easting (20TNAD83)		nple Type - Horizon
Names of Samp	plers	RepStat	Sampling Depth 0 - 5 cm
Hilds Durnewold	d. Jack Gillis	Resampled Site No X Yes → Previous	Site ID
Samples Collected 0 - 5 cm Depth sample (all horizons) Horizon Sample A - horizon B - horizon	Vegetation Cover Agricultural Crops	Contamination None Possible Probable Probable Farming Housins	Comments: (E.g., Presence of waste rock, berms, pits, trenches or other mining activity)
Type of Surface Material Mineral Soil	Deciduous Forest	Industry	in wooded area
Organic Soil Sal Non-Soil Urban		Sunny/Clear	
Mineral Surface Expression Mineral Surface Form Blanket Dissected Fan	Very rapidly drained	Sleet	
Hummocky	Imperfectly drained	Air Temp.	
Terrace Undulating Veneer Undulating	•		

40	216	Ю		

D: Lithological discontinuity
Ma: Master horizons (Humus, A, B, C)
Suffix: Suffixes
M: Modifier (B1, B2, B3)

Horizon Boundary (HB)

S: Smooth W: Wavy I: Irregular B: Broken

Soil Profile Diagram

Codes for Horizon Description

Colour

Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM)

Y: Visible N: Not visible

Coarse Fragments (CF) Estimated value in %

Field Texture

Clay, Sandy Clay, Sandy Clay Loam
Silt, Silty Sand, Silt Loam, Silty Clay Loam
Loam, Sandy Loam, Loamy Sand
Sand, Very Fine Sand, Fine Sand, Medium
Sand, Coarse Sand, Very Coarse Sand

<u>Photos</u>						
Pit with Samples						
Looking North						
Looking East						
Looking South						
Looking West						
Others - setting - profile						

Horizons			Depth		HB	Col		RM	CF	Field		
#	D	Ma	Suffix	M	Up	Low		(h.	ecte)		%	Texture
1		H			0	5		IOYR			0-5	loam
2		Ae			5	+		grey				
3								1				
4			† · · · · · · · · · · · · · · · · ·					1				
5												
6												
7				ļ						l e		
В												
9						Ţ					<u> </u>	
) 	_							[

G	old Mine District S	oil Sampling Field I	Data Sheet
Site GOLDENULL Northing (20TNAD83)	Easting (20TNAD83)	Date 131207	Time 13:43 mple Type - Horizon
4996868	577146		No X Yes
Holda Dunnewold 4	plers	RepStat O O Resampled Site No X Yes →	Sampling Depth 0 - 5 cm
Samples Collected 0 - 5 cm Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other:	Vegetation Cover Agricultural Crops	Contamination None Possible Probable Definite Farming Housing Housing Housing Online Weather Sunny/Clear Partly doudy Overcast	Comments: (E.g., Presence of waste rock, berms, pits, trenches or other mining activity) - appears to be tailings - located in Hat, wet area - water @ 20cm dapth
Local Surface Expression Mineral Surface Form Blanket	Drainage Very rapidly drained Rapidly drained Welt drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained Very poorly drained	Rain Sleet Snow	

Horizons D: Lithological discontinuity Ma: Master horizons (Humus, A, B, C) Suffix: Suffixes M: Modifier (B1, B2, B3) Horizon Boundary (HB) S: Smooth W: Wavy I: Irregular B: Broken Soil Profile Diagram	Colo Munsu colour		descriptive 1		Redox (RM) Y: Visible N: Not vi		Features	Estimated value in Field Texture Clay, Sandy Clay, Sa Silt, Sifty Sand, Silt L Loam, Sandy Loam, Sand, Very Fine San Sand, Coarse Sand,	% Indy Clay Loam oam, Silty Clay Lo Loamy Sand d, Fine Sand, Med	isium LC	Photos It with Samples Docking North Docking East Docking South Docking West There - Setting - Profile
					Н	orizon [Descripti	on			
tailings.	# D	Horizo Ma	ons Suffix	M	De Up	pth Low	НВ	Colour	RM	CF %	Field Texture
	1 2 3 4 5 6 7 8 9 10	<u>A</u>			0	10		2.54 3/2		0.5	ray he sand

Codes for Horizon Description

Gold Wine Distric	t Soil Sampling Fleid Data Sneet
GOLDENVILLE	Date Time 131207 : 13:04
Northing (20TNAD83) Easting (20TNAD83) [4 9 9 6 8 7 5 7 2 4 1	Site ID Sample Type - Horizon No X Yes
Names of Samplers	RepStat Sampling Depth O O cm
Holda Dunnewold & Jack Gillis	Resampled Site No X Yes → Previous Site ID
Samples Collected	Comments

Samples Collected	
0 - 5 cm	
Depth sample (all horizons)	×
Horizon Sample A - horizon B - horizon	
Other: ,	

Type of Su	ırface Material	
Organic Soil Non-Soil		

Local Surface Expression						
Mineral Surface Form Blanket Dissected Fan	П					
Hummocky	i					
Pitted	П					
Ridged Steep	П					
Terrace Undulating						
Veneer ···· □						

Vegetation Cover	
Agricultural Crops	
Coniferous Forest	ă
Deciduous Forest	Ĭ
Mixed Forest	õ
Meadow, Wet	ŏ
Field	ŏ
Parkland	Ħ
Shrubland	П
Unvegetated Surface	V

Drainage	
Very rapidly drained	
Rapidly drained · · ·	
Well drained	
Moderately well drai	ned 🗖
Imperfectly drained	
Poorly drained	··· ··································
Very poorly drained	🖸

Contamination	
None	

Sunny/ Partly o											ì
Overca	st										1
Rain	٠.			-							Į
Sleet											[
Snow							-				

Weather

	
Com	ments:
	mento.

(E.g., Presence of waste rock, berms, pits, trenches or other mining activity)

-tailings -no vegetation

4	2	Sit	Œ	1		

D: Lithological discontinuity
Ma: Master horizons (Humus, A, B, C)
Sufflx: Suffixes
M: Modifier (B1, B2, B3)

Horizon Boundary (HB) S: Smooth W: Wavy I: Irregular B: Broken

Soil Profile Diagram

_	tarling	۶

Codes for Horizon Description

Colour

Munsell colour or descriptive colour using table 1

Redoximorphic	Features
(RM)	
Y: Visible	
N: Not visible	

Coarse Fragments (CF) Estimated value in %

Field Texture

Clay, Sandy Clay, Sandy Clay Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

Photos	<u>5</u>
Pit with Samples	
Looking North	
Looking East	9
Looking South	
Looking West	
Others	
- settin	9
-profile	2

		Horizo	ons		De	pth	HB	Colour	RM	CF	Field
#	D	Ma	Suffix	М	Uр	Low				%	Texture
1		A			0	10		5Y 3/1		0-5	51et
2											
3											
4											
5			-				•				
6				·i							
7			†-· - i					·			
8											
9			T · ·								76
0			·					,	.		
l	L		1			1				,	

Site	Date Time 131207 : 12:34
Northing (20TNAD83) Easting (20TNAD83)	Site ID Sample Type - Horizon No X Yes
Names of Samplers	RepStat Sampling Depth OOO 0-5 cm
Hilda Dunnewold & Jack Gill's	Resampled Site No X Yes → Previous Site iD

Samples Collected	
0 - 5 cm	
Depth sample (all horizons)	×
Horizon Sample A - horizon B - horizon	
Other:	

Type of Surface Materia	ď
Mineral Soil	M
Organic Soil	6
Non-Soil	
Urban	

Local Surface Expression							
Blanket	al Surface Form	0					
Hummo	cky						
Level -							
Rolling Ridged							
Terrace	ing						
Veneer	<u>.</u>	ă					

Vegetation Cover	
Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Unvegetated Surface	

Drainage	
Very rapidly drained	3
Well drained	Ž,
Imperfectly drained [5
Very poorly drained	S

Contamination
None

Partly Overc					-	 			ł
Rain						 	-		ĺ
Sfeet	 ٠.	,					-		į
Snow	 	 							ĺ

Weather

	Air	Ten	np
_	_	0	°C

Comments:
(E.g., Presence of waste rock, berms, pits, trenches or other mining activity)
-is low one a south.
of brook
- locm to water
-tackys

43	31). (1)		
Horizons	3	_	

D: Lithological discontinuity
Ma: Master horizons (Humus, A, B, C)
Suffix: Suffixes
M: Modifier (B1, B2, B3)

Horizon Boundary (HB) S: Smooth W: Wavy I: Irregular B: Broken

Soil Profile Diagram

Codes for Horizon D	escription
---------------------	------------

Colour

Munsell colour or descriptive colour using table 1

Redoximorphic Features
(RM)
Y: Visible
N. Not visible

Coarse Fragments (CF) Estimated value in %

Field Texture

Clay, Sandy Clay, Sandy Clay Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

<u>Photos</u>								
Pit with Samples								
Looking North								
Looking East								
Looking South								
Looking West								
Others								
- Setting	i							
- profile	,							

Horizons		Horizons Depth I					HB	Colour	RM	CF	Field				
#	D	Ma	Sufflx	M	Up	Low				%	Texture				
1		A			0	10		2.54 3/1		05	si'lty sand				
2											3				
3			1 - 1				·								
4															
5]												
6						<u> </u>									
7			T		-				 						
8					ļ										
9			ĺ												
o			Ī												

Gold Mine District Soil Sampling Field Data Sheet Site Date 1207 14:07 GOLDENVIL LE Site ID Sample Type - Horizon Northing (20TNAD83) Easting (20TNAD83) No X Yes 4996978 577202 Sampling Depth RepStat **Names of Samplers** 00 0 - 5 cm **Resampled Site** Hilda Dunnewold ! Tack Gillis No X Yes Samples Collected 0 - 5 cm

Type of Su	11	f	a	(;	g	2	1	¥	ì	<u>a</u>	t	Ç	9	I	1	a
Mineral Soil																	
Mineral Soil Organic Soil																	
Non-Soil	٠,		٠.	. ,													
Urban																	

Horizon Sample

Local Surface Expression										
Mineral Surface Form										
Dissected										
Fan Hummocky										
Inclined										
Level	K									
Rolling Ridged										
Steep Terrace										
Undulating	╗									
Veneer										

Vegetation Cover	
Agricultural Crops	O
Coniferous Forest	ñ
Deciduous Forest	ö
Mixed Forest	ō
Meadow, Wet	ā
Field	¥
Parkland	行
Shrubland	Ħ
Unvegetated Surface	_

Drainage	
	ined

Contamination
None

Weather

Partly		ud	y				
Overc	ast						
Rain							
Sleet							
Snow							
				_	_	-	

Sunny/Clear

	Air	Ter	mp.
_	1	0	°C

Comments:
(E.g., Presence of waste rock, berms, pits, trenches or other mining activity)
-tackys - on or near race track

M: Modifier (B1, B2, B3) Horizon Boundary (HB) S: Smooth W: Wavy I: Irregular B: Broken						N: Not vis	ble .		Field Texture Clay, Sandy Clay, San Silt, Silty Sand, Silt L Loam, Sandy Loam, Sand, Very Fine Sand Sand, Coarse Sand,	ndy Clay Loam pam, Silty Clay I Loamy Sand 1, Fine Sand, Me Very Coarse Sai	Loam L L
Soil Profile Diagram											
, to						Но	rizon C	Descript	ion		
tailings to	-		Horizo			De		НВ	Colour	RM	CF
200m	1	D	Ma	Suffix	M	Up	Low		2.54 3/2		% 0-5
Joe	2								2.01		0 3
r -	3										
	4										
	5										
	6					-					
	7 8						ļ ļ				
	9										
	10			<u> </u>				- · ·	75		
	'			<u> </u>			`		, <u></u>		1-

Codes for Horizon Description

Redoximorphic Features

(RM)

Y: Visible N: Not visible Coarse Fragments (CF)
Estimated value in %

Photos

Field Texture

Pit with Samples

Looking North

Looking East

Looking South

Looking West

Others

Colour

Munsell colour or descriptive

colour using table 1

4650

D. Lithological discontinuity
Ma: Master horizons (Humus, A. B, C)
Suffix: Suffixes
M: Modifier (B1, B2, B3)

Horizons

Gold Mine Dist	rict Soil Sampling Fie	eld Data Sheet
Site	Date	Time
GOLDEMVILLE	131207	13:57
Northing (20TNAD83) Easting (20TNAD83)	Site ID	Sample Type - Horizon
4996965 577139	417	No X Yes
Names of Samplers	RepStat	Sampling Depth
	00	0-5 cm
Hilda Dunnewdd ? Jack Gillis	Resample	d Site
Fried Durineward . Jack Gillis	No X Yes →	Previous Site ID
Samples Collected		
0 - 5 cm	<u>Contamination</u>	Comments:

Samples Collected
0 - 5 cm
Depth sample (all horizons)
Horizon Sample A - horizon B - horizon
Other:

Type of Surface Materia	I
Minerat Soil Organic Soil Non-Soil Urban	2000 R

Local Surface Expression					
Mineral Surface Form					
Blanket					
Dissected					
Fan 🗖 i					
Hummocky					
Inclined					
Pitted					
Levei					
Rol⊮ng 1 1					
Ridged					
Steep					
Terrace					
Undulating					
Veneer					
_					

Vegetation Cover	
Agricultural Crops	
Coniferous Forest	ă
Deciduous Forest	Ħ
Mixed Forest	<u></u>
Meadow, Wet	ā
Field	
Parkland	ō
Shrubland	Н
Unvegetated Surface	7

<u>Drainage</u>	
Very rapidly drained	
Well drained	· 🗀
Moderately well drai	ned 🗆
Imperfectly drained	
Poorly drained	
Very poorly drained	

Contamination
None Possible Probable Definite Farming Housing Industry Logging Mining Road Garbage Other

Weather

Sunny/Clear Partly cloudy			
Overcast Rain		• •	
Sleet	 		
Snow			
Air To			

	Air	Tei	πp
_	(0	°C

Comments:
(E.g., Presence of waste rock, berms, pits, trenches or other mining activity)
- south of wooded area
- in tackings

47	Sile ID	
•		

D. Lithological discontinuity
Ma: Master horizons (Humus, A, B, C)
Suffix: Suffixes
M: Modifier (B1, B2, B3)

Horizon Boundary (HB) S: Smooth W: Wavy I: Irregular B: Broken

Soil	Profile	Diagran	r
OUL	1 101116	Diagran	ı

Codes for Horizon Description

Colour

Munsell colour or descriptive colour using table 1

Redoximorphic	Features
(RM)	
Y: Visible	
N: Not visible	
•	

Coarse Fragments (CF) Estimated value in %

Field Texture

Clay, Sandy Clay, Sandy Clay Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse, Sand

Photos							
Pit with Samples							
Looking North							
Looking East							
Looking South							
Looking West							
Others - Setting - profile	<u>.</u> .						

	١	Horizons			Depth		HB Colour	RM	CF	Field	
#	D	Ма	Suffix	M	Up	Low				%	Texture
1	Ţ	A			0	10		254 4/1		0-5	Sondy clau
2											
3											
4								-	<u> </u>		
5											
6											
7											
8											
9											
0								ļ	_]		[

Gold Mine District Soil Sampling Field Data Sheet Site Time Date 131207 14:34 GOLDENVILLE Site ID Sample Type - Horizon Easting (20TNAD83) Northing (20TNAD83) 48 No X Yes 4997021 577304 Sampling Depth **Names of Samplers** RepStat 0-5 cm 00 Resampled Site Hilda Dunnewold? Jack Gillis No X Yes

Samples Collected		
0 - 5 cm		
Depth sample (all horizons)	X	
Horizon Sample A - horizon B - horizon	<u> </u>	
Other: [

Local Surface Expression				
Mineral Surface Form Blanket Dissected	000			
Fan Hummocky Inclined				
Pitted				
Ridged Steep				
Undulating Veneer				

Vegetation Cover	
Agricultural Crops	
Coniferous Forest	Ĭ
Deciduous Forest	Π̈́
Mixed Forest	Ħ
Meadow, Wet	H
Field	滋
Parkland	台
Shrubland	Ħ
Unvegetated Surface	

Drainage		
Very rapidly drained Rapidly drained Well drained Moderately well drai Imperfectly drained Poorly drained Very poorly drained	ained	

Contamination	
None	

Sunny/ Partly o									X
Overca	ıst								ŧ,
Rain									
Sleet						-			
Snow							-		

Weather

Comments:
(E.g., Presence of waste rock, berms, pits, trenches or other mining activity)

- tailhas

4 8 St. 11	
Hörizons D: Lithological discontinuity Ma: Master horizons (Humus, A, Suffix: Suffixes M: Modifier (B1, B2, B3)	B, C

Horizon	Bounda	агу	(HB)

S: Smooth W: Wavy I: hrregular B: Broken

Soil	Profile	Diagram
------	----------------	---------

Codes for Horizon Description

Colour	
Nunsell colour or descriptive	
colour using table 1	

Redoximorphic	Features
(RM)	
Y: Visible	
N: Not visible	

	Coarse Fragments Estimated value in %	(CF)
ı	Estimated value in %	

Field Texture
Clay, Sandy Clay, Sandy Clay Loam
Silt, Silty Sand, Silt Loam, Silty Clay Loam
Loam, Sandy Loam, Loamy Sand
Sand, Very Fine Sand, Fine Sand, Medium
Sand, Coarse Sand, Very Coarse Sand

Photos	<u>₹</u>
Pit with Samples	
Looking North	
Looking East	9
Looking South	
Looking West	
Others	
-setting	
- profile	

	Horizons				Depth F	HB	HB Colour	RM	CF	Field	
#	D	Ma	Suffix	M	Up	Low				%	Texture
1		A			0	10		2.54 3/1		0-5	fine sond
2											
3								1		1	
4											
5			1								
6											
7											
8											
9] [1	
0	_										

Gold Mine Dis	trict Soil Sampling Field Data Sheet
Site GOLDENVILLE	Date Time 080526 : 14:55
Northing (20TNAD83) Easting (20TNAD83) [4 9 9 7 0 6 2 5 7 7 4 4 6	Site ID Sample Type - Horizon No X Yes
Names of Samplers	RepStat Sampling Depth
Holdo Dunnewold Alphanse Peters	Resampled Site No X Yes Previous Site ID
Samples Collected 0 - 5 cm Depth sample (all horizons)	Contamination Comments: (E.g., Presence of waste rock, berms, pits, trenches or

	Type of Surface Material	
İ	Mineral Soil Organic Soil Non-Soil Urban	M
	Organic Soil	a
i	Non-Soil	
i	Urban	П

A - horizon

Horizon Sample

Local Surface Expression													
Mineral Surface Form													
Dissected													
Hummocky	밁												
Pitted	밁												
Rolling	씸												
Sleep													
Terrace Undulating													
Veneer ····	다												

Vegetation Cover	
Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Unvegetated Surface	

<u>Drainage</u>	
Very rapidly dra	ined
Rapidly drained	
Moderately well	drained 53
	ned
Poorly drained	
	ned

<u>Contamination</u>
None Possible Probable Definite Industry Logging Mining Road Garbage Other

Sunny	//(le	•	31	r						,			[
Partly.	c	k	ι	K	d	y	r			-					Š
Overc							-	-					-		ί
Rain					-										Ē
Sleet															Ī
Snow															Č

Air	Ter	mp
		°C

	Preser r mining		rock, berms,	pits, trenche
2		,	n	

- 20m cost of proposed original location (reflected in coordinate location)

Horizons D: Lithological discontinuity Ma: Master horizons (Humus, A, B, C)	Mu	olour insell colour or lour using table	r descriptive e 1		Redoxii (RM) Y: Visible	•	Features	Coarse Frag Estimated value	ments (I in %
Suffix: Suffixes M: Modifier (B1, B2, B3) Horizon Boundary (HB) S: Smooth W: Wavy I: Irregular B: Broken	_	,			Y: VISIDIE N: Not vis			Field Texture Clay, Sandy Clay, Silt, Silty Sand, Silt Loam, Sandy Loan Sand, Very Fine St Sand, Coarse Sand	Sandy Clay i Loam, Silty n, Loamy Sa and, Fine Sa
Soil Profile Diagram					Но	rizon C) Descriptio	•	
7 6 1	<u> </u>	Horiza				pth	НВ	Colour	RN
	# [D Ma	Suffix	М	. Up	Low			• • • • • • • • • • • • • • • • • • • •
	1	A			0	5		104R 3/2	
	2								
	3								
	4								
	5								
\/	6								
١ ١	7								
	8								
1 1	9		1						
ļ ļ	ļ		-				<u> </u>	· ·	

Codes for Horizon Description

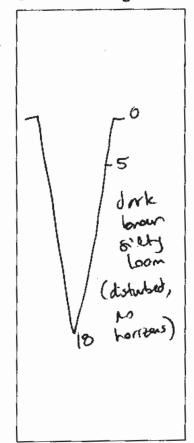
Coarse Fragments (CF)

Loam y Clay Loam and and, Medium arse Sand

<u>Photos</u>							
Pit with Samples	X						
Looking North	X						
Looking East							
Looking South	X						
Looking West	X						
Others							

	1	Horizo				pth	HB	Colour	RM	CF	Field Texture
#	D	Ma	Suffix	M	Up	Low				%	lexture
1		A			0	5		104R 3/2		30%	sondy loan
2											
3											
4											
5											
6											
7		- -									
8		· · · · · · · · · · · · · · · · · · ·	<u> </u>				. <u>.</u>				
9											
0								·			

	Cold Mina District C		
	Gold Mine District S	oil Sampling Field	Data Sheet
GOLDENVILI	E	080526	Time :
Northing (20TNAD83)	Easting (20TNAD83)		mple Type - Horizon
Names of Sa	mplers	RepStat	Sampling Depth
Holdo Dun	inewold	00	0 - 5 cm
Plphonse	Peters	Resampled Site No	a Site ID
Samples Collected		<u></u>	
0 - 5 cm		Contamination	Comments:
Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other: Type of Surface Material Mineral Soil Organic Soil Non-Soil	Vegetation Cover Agricultural Crops	None Possible Probable Probable Definite Housing Housing Housing Housing Grandustry Cogging Mining Homing Housing Hou	(E.g., Presence of waste rock, berms, pits, trenches or other mining activity) - adjacent to a trench to the east - 10m west of original location (reflected in coordinate location)
Local Surface Expression Mineral Surface Form Blanket	Drainage Very rapidly drained	Partly cloudy Market Covercast Main Steet Main Steet Market Market Covercast Main Steet Market Covercast Main Market Covercast Main Market Mar	(reflected in coordinate location)


3	4	311)		

D: Lithological discontinuity
Ma: Master horizons (Humus, A, B, C)
Suffix: Suffixes
M: Modifier (B1, B2, B3)

Horizon Boundary (HB)

S: Smooth W: Wavy I: Irregular B: Broken

Soil Profile Diagram

Codes for Horizon Description

Colour

Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM)

Y: Visible N: Not visible

Coarse Fragments (CF)

Estimated value in %

Field Texture

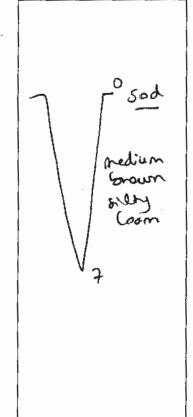
Clay, Sandy Clay, Sandy Clay Loam Silt, Sifty Sand, Sill Loam, Sifty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

Photos Pit with Samples Looking North Looking East Looking South Looking West Others

		Horizo	ons :		De	pth	HB	Colour	RM	CF	Field Texture
#	D	Ma	Suffix	M	Up	Low				%	Texture
1		A			0	5		2.54 413		10%	Siltyloom
2											
3											
4											
5											
6			·				,				
7											
8											
9											
0			<u> </u>								

Gold Mine District Sc	oil Sampling Field Data Sheet
Site	Date Time 080526 : 13:56
Northing (20TNAD83) Easting (20TNAD83) 4997017 577543	Site ID Sample Type - Horizon No X Yes
Hilda Dunnewold Alphase Peters	RepStat O O Resampled Site No X Yes → Previous Site ID
Samples Collected 0 - 5 cm Depth sample (all horizons) X Horizon Sample A - horizon Depth sample A - horizon Depth sample A - horizon Deciduous Forest Deciduous	Contamination None

				 	_	
3	5	Sile	10			


D: Lithological discontinuity
Ma: Master horizons (Humus, A, B, C)
Suffix: Suffixes
M: Modifier (B1, B2, B3)

Horizon Boundary (HB)

S: Smooth W: Wavy

f: Irregular B: Broken

Soil Profile Diagram

Codes for Horizon Description

Colour

Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM)

Y: Visible N: Not visible

Coarse Fragments (CF) Estimated value in %

Field Texture

Clay, Sandy Clay, Sandy Clay Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

Photos Pit with Samples Looking North Looking East Looking South Looking West Others

Horizons				Horizons Depth HB				Colour	RM	CF	Field
#	D	Ма	Suffix	M	Up	Low				%	Texture
1		A			0	5		104R 3/2		10-207	Sillyloan
2											
3											
4											
5											
6											·
7									_		
8											
9											
0											L

	Gold Mine District S	oil Sampling Field	Data Sheet
GOUDENVI U		Date 080526	Time
Northing (20TNAD83)	Easting (20TNAD83)	Site ID s	ample Type - Hortzon No X Yes
Names of Sa	mplers	RepStat	Sampling Depth
Holda Du	newold	00	0 - 5 cm
Alphonse	Peters	Resampled Site	POUS SITE ID
Samples Collected 0 - 5 cm Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other: Type of Surface Material Mineral Soil Organic Soil Urban Local Surface Expression Mineral Surface Form Blanket Dissected Fan Hummocky Inclined Pitted Level Rolling	Vegetation Cover Agricultural Crops	Contamination None Possible Probable Definite Farming Housing Housing Housing Genbage Other Weather Sunny/Clear Partly cloudy Overcast Rain Sleet Snow Air Temp. Contamination Weather	Comments: (E.g., Presence of waste rock, berms, pits, trenches of other mining activity)
Ridged Steep Terrace Undulating Veneer			

37	3.4.1.155	
3 7	514 10	

D. Lithological discontinuity
Ma. Master horizons (Humus, A, B, C)
Suffix: Suffixes
M: Modifier (B1, B2, B3)

Horizon Boundary (HB)

S: Smooth W: Wavy I: Irregular B: Broken

Soil Profile Diagram

Codes for Horizon Description

Colour

Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM)

Y: Visible N: Not visible

Coarse Fragments (CF) Estimated value in %

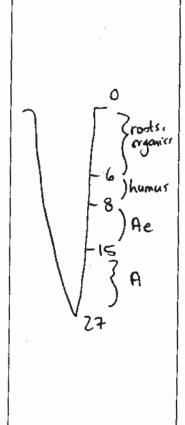
Field Texture

Clay, Sandy Clay, Sandy Clay Loam
Silt, Silty Sand, Silt Loam, Silty Clay Loam
Loam, Sandy Loam, Loamy Sand
Sand, Very Fine Sand, Fine Sand, Medium
Sand, Coarse Sand, Very Coarse Sand

Photos										
Pit with Samples	X									
Looking North	X									
Looking East	X									
Looking South										
Looking West	X									
Others										

Ù.	1	Horizo	ons		De	pth	HB	Colour	RM	CF	Field
#	D	Ma	Suffix	M	Up	Low				%	Texture
1		A			0	5		SY 3/		20:30%	silty loon
2									-	2030	
3								- ·			
4			1								
5							·· -				
6											
7			· · · -								
8											
9								"		-	
10											
											

	Salal Miras Di di		
	sold Wilne Distric	t Soil Sampling Field	Data Sheet
GOLDENVILL	E	Date 080526	Time
Northing (20TNAD83)	Easting (20TNAD83)	Site ID s	ample Type - Horizon
Names of Sar	nplers	RepStat	Sampling Depth
Hilda Dunne	blow	00	0-5 cm
Alphore P.	ekrs	Resampled Site No X Yes →	ous Srie ID
Samples Collected			
0 - 5 cm		Contamination	Comments:
Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other: Type of Surface Material Mineral Soil	Vegetation Cover Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Unvegetated Surface	None Possible Probable Definite - Definite - Housing - Industry - Logging - Mining - Road - Garbage - Other	(E.g., Presence of waste rock, berms, pits, trenches or other mining activity) (A wooded area
Organic Soil	Very rapidly drained	Sunny/Clear	
Level	Very poorly drained	*C	


38	:.Lin	
S	उपयुज्ज	ليلل

D: Lithological discontinuity
Ma: Master horizons (Humus, A, B, C)
Suffix: Suffixes
M: Modifier (B1, B2, B3)

Horizon Boundary (HB)

S: Smooth W: Wavy I: Irregular B: Broken

Soil Profile Diagram

Codes for Horizon Description

Colour

Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM)

Y: Visible N: Not visible

Coarse Fragments (CF) Estimated value in %

Field Texture

Clay, Sandy Clay, Sandy Clay Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

Photos Pit with Samples Looking North Looking East Looking South

X

Others

Looking West

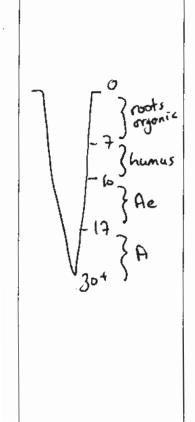
#	D	Horizo Ma	ns Suffix	M	Dej Up	pth Low	НВ	Colour	RM	CF %	Field Texture
1		H					I	5Y 3/2			hungs
2		Ae					I	grey		0.5	humas Filty daylan
3								7-3			3-3
4						-	-				
5											
6											
7				_							
8			-								
9											
10											
			·				<u>-</u> ,	· · · · · · · · · · · · · · · · · · ·			·

G	old Mine District S	oil Sampling Field	Data Sheet
Site GOLDENUILL Northing (20TNAD83) Names of Sam Hilda Dunn Alphanse P	Easting (20TNAD83) plers ewold	Date	Time Imple Type - Horizon No Yes X Sampling Depth 0 - 5 Cm
Samples Collected 0 - 5 cm Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other: Type of Surface Material Mineral Soil Organic Soil Non-Soil	Vegetation Cover Agricultural Crops	Contamination None	Comments: (E.g., Presence of waste rock, berms, pits, trenches or other mining activity) - Woole rock piles - an east facing slape
Local Surface Expression Mineral Surface Form Blanket	Drainage Very rapidly drained	Partly cloudy	

70	1	i
1.514		
1 - 1.2	 	

D: Lithological discontinuity

Ma: Master horizons (Humus, A, B, C)


Suffix: Suffixes

M: Modifier (B1, B2, B3)

Horizon Boundary (HB)

S: Smooth W: Wavy I: Irregular B: Broken

Soil Profile Diagram

Codes for Horizon Description

Colour

Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM)

Y: Visible N: Not visible

Coarse Fragments (CF) Estimated value in %

Field Texture

Clay, Sandy Clay, Sandy Clay Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loarry Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

Photos Pit with Samples Looking North Looking East Looking South Looking West Others

		Horizo	ns		De	pth	HB	Colour	RM	CF	Field
#	D	Ma	Suffix	M	Up	Low				%	Texture
1		H			0	3	1	3 104R 2/1		0	
2		Ae			3	5	I	} 104R 2/1		0-57	5: ly clay load
3					i						
4				!							
5					ļ						
6											
7											
8				Ì							
9											
0]		,

	Sold Mine District So	oil Sampling Field	Data Sheet
GOLD ENVILL	<u> </u>	Date	Time :
Northing (20TNAD83)	Easting (20TNAD83)		ample Type - Horizon No X Yes
Names of San	plers	RepStat	Sampling Depth
Hilda Dunn	ewold	00	0 - 5 cm
Hilda Dunn Alphase	Peters	Resampled Site No X Yes → Previo	us Site ID
Samples Collected	-		
0 - 5 cm		Contamination	Comments:
Depth sample (all horizons) Horizon Sample A - horizon B - horizon	Vegetation Cover Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field	None	(E.g., Presence of waste rock, berms, pits, trenches or other mining activity)
Mineral Soit (Soit	Parkland	Weather Sunny/Clear Partly cloudy Overcast	-in flat tailings onea

Rain

Snow

Air Temp.

Local Surface Expression

Mineral Surface Form Blanket

Rolling D Ridged D Steep D Terrace D Undulating D Veneer D **Drainage**

Very rapidly drained Rapidly drained Mell drained Moderately well drained Deprivation of the Poorly drained

4	4	94	16)			

D: Lithological discontinuity
Ma: Master horizons (Humus, A, B, C)
Suffix: Suffixes
M: Modifier (B1, B2, B3)

Horizon Boundary (HB)

S: Smooth W: Wavy I: Irregular B: Broken

Soil Profile Diagram

throught the sail of the

Codes for Horizon Description

Colour

Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM)

Y: Visible N: Not visible

Coarse Fragments (CF) Estimated value in %

Field Texture

Clay, Sandy Clay, Sandy Clay Loam Sift, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

Photo:	<u>\$</u>	
Pit with Samples	X	
Looking North	X	•
Looking East	X	
Looking South	X	
Looking West	X	
Others		

Field

Texture

fine sand

CF

%

Horizon Description

G	old Mine Disti	rict So	il Sampling F	ield Data Sheet	
GOLDENVILL GOLDENVILL	E		Date 080526	Time	
Northing (20TNAD83)	Easting (20TNAD83)		Site ID	Sample Type - Horizon No X Yes	
Holda Duna Alplanse	reword		RepStat O O Resamp No X Yes →	pled Site	
Samples Collected 0 - 5 cm Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other: Type of Surface Material Mineral Soil Organic Soil Urban	Vegetation Cover Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Universal Crops Univ		Probable Definite Farming Housing Industry Logging Mining Road Garbage Other Weather Sunny/Clear Partly cloudy	other mining activity) - in flat tailings area	inches or
Local Surface Expression Mineral Surface Form Blanket	Drainage Very rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained	X	Overcast		

|--|

D: Lithological discontinuity Ma: Master horizons (Humus, A, B, C) Suffix: Suffixes M: Modifier (B1, B2, B3)

Horizon Boundary (HB)

S: Smooth W: Wavy I: Irregular B: Broken

Soil Profile Diagram

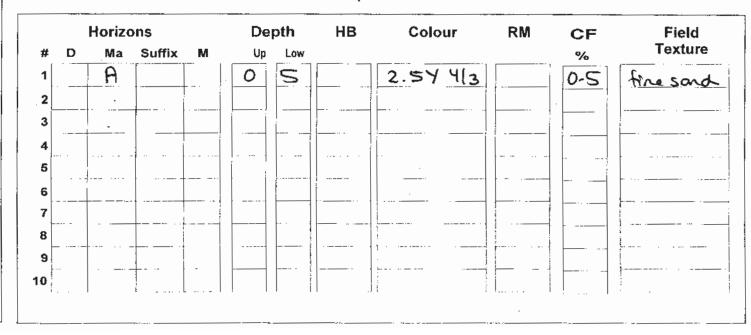
tailings throughout Japh

Codes for Horizon Description

Colour

Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM)


Y: Visible N: Not visible

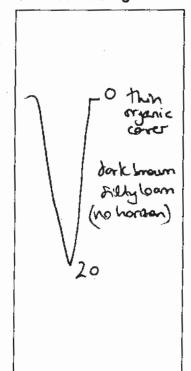
Coarse Fragments (CF) Estimated value in %

Field Texture

Clay, Sandy Clay, Sandy Clay Loam Sit, Sity Sand, Sitt Loam, Sity Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

Photos							
Pit with Samples	$ ot\!\!\!/$						
Looking North	X						
Looking East	X						
Looking South	X						
Looking West	×						
Others							

Gold Mir	ne District So	oil Sampling Field	Data Sheet
Site		Date 260508	Time 13:00
Northing (20TNAD83) Easting (20T		Site ID S	Sample Type - Horizon No X Yes
Hildo Dunnewold Alphanse leters	· · ·	RepStat Resampled Site No X Yes Pre-	Sampling Depth 0 - 5 cm e
Coniferous Form Coniferous	afned Garned Garney Gar	Contamination None Possible Probable Probable Pofinite Farming Housing Housing Housing Other Weather Sunny/Clear Partly cloudy Overcast Rain Sleet Snow Air Temp. **C	Comments: (E.g., Presence of waste rock, berms, pits, trenches or other mining activity) En a stoped area adjacent to the tailings area


D: Lithological discontinuity
Ma: Master horizons (Humus, A, B, C)
Suffix: Suffixes
M: Modifier (B1, B2, B3)

Horizon Boundary (HB)

S: Smooth W: Wavy I: Irregular

B: Broken

Soil Profile Diagram

Codes for Horizon Description

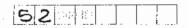
Colour

Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM)

Y: Visible N: Not visible

Coarse Fragments (CF) Estimated value in %


Field Texture

Clay, Sandy Clay, Sandy Clay Loam Silt, Silty Sand, Silt Loam, Silty Cfay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

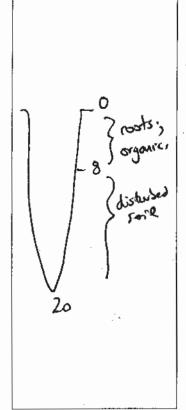
Photos Pit with Samples Looking North Looking East Looking South Looking West Others

• • •		Horizo			De	pth	НВ	Colour	RM	CF	Field
#	D	Ma	Sufflx	М	Up	Low				%	Texture
1		A			0	5		2.5Y 3/3		10%	Silyloan
2											
3											
4											
5											
6											
7											
8											
9											
10											
										<u> </u>	

	· · · · · · · · · · · · · · · · · · ·		
G	Sold Mine District S	oil Sampling Field	d Data Sheet
Site		Date	Time
GOLDENVILL	E	080526	16:20
Northing (20TNAD83)	Easting (20TNAD83)	Site ID	Sample Type - Horizon No X Yes
Names of San	plers	RepStat	Sampling Depth
_	ounnewold	O O Resampled S	0-5 cm
Alplanse	Peters	No X Yes →	Previous Ste ID
Samples Collected			_
0 - 5 cm		Contamination	Comments:
Depth sample (all horizons) Horizon Sample A - horizon	Vegetation Cover Agricultural Crops	None Possible Probable Definite Housing Housing Housing Housing Housing Horisty Cogning Wining Road Garbage Other Weather Sunny/Clear Partly cloudy	(E.g., Presence of waste rock, berms, pits, trenches or other mining activity) - adjacent to pits and transles - adjacent to trail
Local Surface Expression Mineral Surface Form Blanket	Very rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained	Overcast	

D: Lithological discontinuity

Ma: Master horizons (Humus, A, B, C)


Suffix: Suffixes

M: Modifier (B1, B2, B3)

Horizon Boundary (HB)

S: Smooth
W: Wavy
I: Irregular
B: Broken

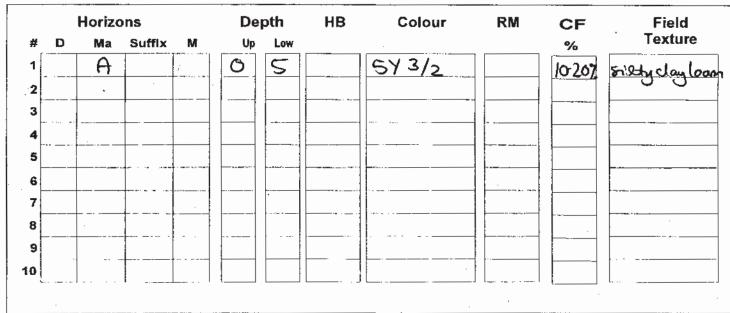
Soil Profile Diagram

Codes for Horizon Description

Colour

Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM)


Y: Visible N: Not visible

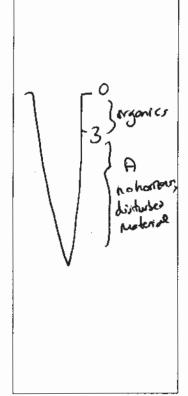
Coarse Fragments (CF) Estimated value in %

Field Texture

Clay. Sandy Clay. Sandy Clay Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand. Very Fine Sand, Fine Sand, Medium Sand. Coarse Sand, Very Coarse Sand

Photos Pit with Samples Looking North Looking East Looking South Looking West Others

	Gold Mine District S	Soil Sampling Field	Data Sheet		
GOLDENUILI		Date Time 080526 : 16:30			
Northing (20TNAD83)	Easting (20TNAD83)		mple Type - Horizon No X Yes		
Names of Sa	amplers	RepStat	Sampling Depth		
Hilda D	unnewold	0 0	0 - 5 cm		
	e Peders	Resampled Site No X Yes → Process	is Cita (D		
Samples Collected	· ·	Contamination	Commente		
0 - 5 cm		□None ······□	Comments:		
Oepth sample (all horizons) Horizon Sample A - horizon B - horizon Other Type of Surface Material	Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Unvegetated Surface	Possible Probable Probable Definite Housing Housing Housing Graphic Graphic Farming Housing Graphic Home of the company of	(E.g., Presence of waste rock, berms, pits, trenches or other mining activity) - adjacent to pits and trenches - adjacent to trail		
Mineral Soil Organic Soil Non-Soil		Weather Sunny/Clear Partly cloudy ▼	- adjocent to trail		
Mineral Surface Expression Mineral Surface Form Blanket Dissected Fan	Drainage Very rapidly drained Rapidly drained Well drained Moderately well drained	Overcast			
Hummocky	Moderately well drained	Air Temp.			


C 3)]	i	
ر سرای	II. II.	.i (,	📖	

D: Lithological discontinuity
Ma: Master horizons (Humus, A, B, C)
Suffix: Suffixes
M: Modifier (B1, B2, B3)

Horizon Boundary (HB)

S: Smooth W: Wavy I: Irregular B: Broken

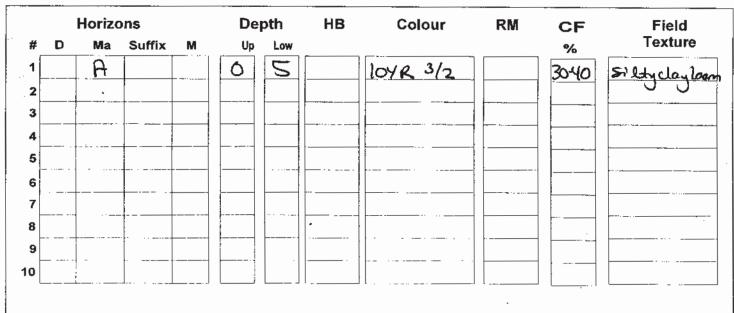
Soil Profile Diagram

Codes for Horizon Description

Colour

Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM)


Y: Visible N: Not visible

Coarse Fragments (CF) Estimated value in %

Field Texture
Clay, Sandy Clay, Sandy Clay Loam
Silt, Silty Sand, Silt Loam, Silty Clay Loam
Loam, Sandy Loam, Loamy Sand

Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

Photos Pit with Samples Looking North Looking East Looking South Looking West Others

	Gold Mine Dis	trict S	oil Sampling Fi	ield Data Sheet	
Site GOLDENVILL			Date 080526	Time	:
Northing (20TNAD83)	Easting (20TNAD83)		Site ID	Sample Type - Horizon No X Yes	
Names of Sa Hilda Du			RepStat Resamp	Sampling Depth 0 - 5 cm	
Hilda Du	se Peters		No X Yes →	Previous Site ID	
Samples Collected 0 - 5 cm Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other: Type of Surface Material Mineral Soil Organic Soil Non-Soil	Vegetation Cover Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Unvegetated Surface		Contamination None Possible Probable Definite Farming Housing Industry Logging Wining Road Garbage Other Sunny/Clear Partly cloudy Overcast	other mining activity) adjacent to posic road -lacated in wet	
Local Surface Expression Mineral Surface Form Blanket	Very rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained		Overcast		

Level

54	Sali	1(1)		

D: Lithological discontinuity
Ma: Master horizons (Humus, A, B, C)
Suffix: Suffixes
M: Modifier (B1, B2, B3)

Horizon Boundary (HB)

S: Smooth W: Wavy f: Irregutar B: Broken

Soil Profile Diagram

Codes for Horizon Description

Colour

Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM)

Y: Visible N: Not visible

Coarse Fragments (CF) Estimated value in %

Field Texture
Clay, Sandy Clay, Sandy Clay Loam
Sift, Silty Sand, Sift Loam, Silty Clay Loam
Loam, Sandy Loam, Loamy Sand
Sand, Very Fine Sand, Fine Sand, Medium
Sand, Coarse Sand, Very Coarse Sand

Photo	<u>\$</u>
Pit with Samples	\bowtie
Looking North	X
Looking East	Ø
Looking South	K
Looking West	X
Others	

Horizons		Depth !		НВ	HB Colour	RM	CF	Field				
#	D	Ma	Suffix	M	Up	Up Low					%	Texture
1		A			0	5		IOYR	2/1		5-10	
2											3,0	
3												
4												
5					-							
6							_					
7												
8								ļ -				
9			 - 									
0												
Į.,			<u> </u>			ا لــــــا		[ł		

Appendix C

Groundwater Monitoring Well Details

Goldenville Mine Site - MW No.2007-01 W.G. Shaw & Associates Ltd. Consulting Geoscientists Nova Scotia Department of Transportation and Public Works Client: 4546 Highway No.7 Goldenville, Guysborough County, Nova Scotia Antigonish, Nova Scotia Location: Canada B2G 2L3 December 13, 2007 December 13, 2007 Date Started: Date Completed: Well Lithologic o Depth (m) Boundary Construction Notes Description well cap datum = ground surface -50 mm casing and screens Silty Sand (fine mill tailings) medium grey colour -120 mm bit diameter 01 02 bentonite plug 2.70m03 Slate (Bedrock) dark grey to black colour 04 05 06 6.10mBottom of Well @ 6.10 metres 08 10 12 14 16

Goldenville Mine Site - MW No.2007-03 W.G. Shaw & Associates Ltd. Consulting Geoscientists Nova Scotia Department of Transportation and Public Works Client: 4546 Highway No.7 Goldenville, Guysborough County, Nova Scotia Antigonish, Nova Scotia Location: Canada B2G 2L3 December 13, 2007 December 13, 2007 Date Started: Date Completed: Well o Depth (m) Lithologic Boundary Construction Notes Description well cap datum = ground surface -50 mm casing and screens Silty Sand (fine mill tailings) medium grey colour -120 mm bit diameter bentonite plug 01 02 03 20 slot well screen (1.4-4.4m) 4.00m 04 Slate (Bedrock) 4.50m dark grey to black colour Bottom of Well @ 4.50 metres 05 06 08 10 12 14

16

Goldenville Mine Site - MW No.2007-01 W.G. Shaw & Associates Ltd. Consulting Geoscientists Nova Scotia Department of Transportation and Public Works Client: 4546 Highway No.7 Goldenville, Guysborough County, Nova Scotia Antigonish, Nova Scotia Location: Canada B2G 2L3 December 13, 2007 Date Started: December 13, 2007 Date Completed: Well o Depth (m) Lithologic Boundary Construction Notes Description well cap datum = ground surface -50 mm casing and screens Silty Sand (fine mill tailings) medium grey colour -120 mm bit diameter 01 ∇ 02 bentonite plug 2.70m03 Slate (Bedrock) dark grey to black colour 04 20 slot well screen (3.0-6.0m) 05 06 6.10mBottom of Well @ 6.10 metres 08 10 12 14 16

Appendix D

Photographs

(provided electronically)

Appendix E

Data Tables

Table 1 - Groundwater Elevations

Nova Scotia Department of Transportation and Infrastructure Renewal

Phase II ESA Former Gold Mine Site, Goldenville, NS

	Date	Elev	ation	Total	PVC Sc	reen	St	atic Wate	r Level
Well	Completed	Ground	Top of	Depth	Depth	Diameter	Level	Elevation	Date
V C11		Surface	PVC Casing			I.D.	metres	metres	
	y/m/d	(m)	(m)	(m)	(m)	(cm)		a.s.l.	y/m/d
MW#1	20087-12-13	55.95	55.75	6.10	3.0 - 6.0	5.0	2.85	52.90	2007-12-13
MW#2	20087-12-13	50.16	50.05	4.50	1.4 - 4.4	5.0	1.85	48.20	2007-12-13
MW#3	20087-12-13	53.64	53.52	4.50	1.4 - 4.4	5.0	2.10	51.42	2007-12-13
MW#1							2.05	53.70	2008-05-26
MW#2							0.34	49.71	2008-05-26
MW#3							0.60	52.92	2008-05-26

Sample Site	1	[2	2	3	3	4	1	5	5
Site Description										
Northing (20T, NAD 83)	4997291		4997	7288	4997	7276	4997	7231	4997	7230
Easting (20T, NAD 83)	577	292	577327		577571		577495		577	432
Date	12/10	/2007	12/10	/2007	12/10/2007		12/10	/2007	12/10	/2007
Depth or Horizon Sample	Ι)	I)	I)	I)	Ι)
Subsample ID	1	L	2	2	3	3	4	1	5	5
Top Sample Interval (cm)	()	()	()	()	0	
Bottom Sample Interval (cm)	4	5	4	5	4	5	4	5	5	
Sample Wet Weight (g)	23.4	733			23.7897				25.0	088
Sample Dry Weight (g)	16.1	966			16.6	5528			14.7	552
Water Content (%)	3	1			30				4	1
Original Weight (g)	-	-			-				-	
<150 μm (g)	6.2	35			2.5	466			4.55	536
<150 μm (%)	3	8			1	5			31	
Soil Description	sandy loam		sandy	loam	silty	loam	sandy cl	ay loam	sandy	/ clay
Size Fraction	<150µm	<2mm	<150µm	<2mm	<150µm	<2mm	<150µm	<2mm	<150µm	<2mm
Total Carbon (g/kg)	36 37		48	45	32	40	54	59	51	54
As (mg/kg)	180 180		710	650	270	220	850	880	380	350

Sample Site	(5	8	3	9)	1	1	1	2
Site Description	4007222									
Northing (20T, NAD 83)	4997233		4997	7207	4997	7198	499′	7193	4997	7180
Easting (20T, NAD 83)	577	379	577209		577264		577397		577450	
Date	12/10	/2007	12/10	/2007	12/10/2007		12/10	/2007	12/10	/2007
Depth or Horizon Sample	Ι)	I)	D		I)	Ι)
Subsample ID	(5		3	9)	1	1	1	2
Top Sample Interval (cm)	()	()	()	()	0	
Bottom Sample Interval (cm)	4	5	4	5	4	5	4	5	5	
Sample Wet Weight (g)	16.5	839							24.4	205
Sample Dry Weight (g)	10.6	5137							15.3	849
Water Content (%)	3	6							3	7
Original Weight (g)	-	-							-	
<150 μm (g)	1.9	88							6.33	521
<150 μm (%)	1	9							41	
Soil Description	silty clay loam		sandy	/ clay	silty	loam	silt l	oam	silty cla	ıy loam
Size Fraction	<150µm	<2mm	<150µm	<2mm	<150µm	<2mm	<150µm	<2mm	<150µm	<2mm
Total Carbon (g/kg)	57 54		87	90	44	37	72	75	44	50
As (mg/kg)	230 230		130	130	2500	1900	700	730	420	370

Sample Site	13		1	4	1	5	1	9	2	0
Site Description										
Northing (20T, NAD 83)	4997155		4997	7162	4997	7155	4997	7122	4997	7129
Easting (20T, NAD 83)	577	493	577353		577288		577364		577412	
Date	12/10	/2007	12/10	/2007	12/10	/2007	12/10	/2007	12/13	/2007
Depth or Horizon Sample	Ι)	I)	I)	I)	Ι)
Subsample ID	1	3	1	4	1	5	1	9	2	0
Top Sample Interval (cm)	()	()	()	()	()
Bottom Sample Interval (cm)	4	5	4	5	4	5	4	5	4	5
Sample Wet Weight (g)	24.3	3372								
Sample Dry Weight (g)	17.2	2794								
Water Content (%)	2	9								
Original Weight (g)	-	-								
<150 μm (g)	8.50	633								
<150 μm (%)	5	0								
Soil Description	sandy loam		sandy	loam	sandy	/ clay	mediu	m sand	silty	sand
Size Fraction	<150µm	<2mm	<150µm	<2mm	<150µm	<2mm	<150µm	<2mm	<150µm	<2mm
Total Carbon (g/kg)	19	20	67	75	33	40	4.8	2.3	15	14
As (mg/kg)	5600 5700		1800	1700	1400	1100	7400	5300	1300	960

Sample Site	2	1	2	2	2	3	2	4	2	5
Site Description										
Northing (20T, NAD 83)	4997111		4997	7122	4997	7149	4997	7090	4997	7062
Easting (20T, NAD 83)	577	447	577522		577	568	577	478	577446	
Date	12/13	/2007	12/10	/2007	12/10/2007		12/13/2007		5/26/	2008
Depth or Horizon Sample	D		I)	D		D		Ι)
Subsample ID	2	1	2	2	2	3	2	4	2	5
Top Sample Interval (cm)	()	()	()	0		0	
Bottom Sample Interval (cm)	4	5	4	5	4	5	4	5	5	
Sample Wet Weight (g)							29.4094		5.510	
Sample Dry Weight (g)							24.7	7039	4.1	90
Water Content (%)							1	6	2	4
Original Weight (g)								-	-	
<150 μm (g)							12.9	195	5.:	56
<150 μm (%)							52		4	1
Soil Description	silty sand		sandy	loam	silty	sand	fine	sand	sandy	loam
Size Fraction	<150µm	<2mm	<150µm	<2mm	<150µm	<2mm	<150µm	<2mm	<150µm	<2mm
Total Carbon (g/kg)	11	9.1	26	33	7.2	6.2	9.7	9.8	27	26
As (mg/kg)	1300 1400		1700	1600	2500	1900	350	290	980	770

Sample Site	2	6	2	7	2	8	3	0	3	0
Site Description										
Northing (20T, NAD 83)	4997	7071	4997	7063	4997	7057	499′	7009	4997	7009
Easting (20T, NAD 83)	577373		577322		577	265	577	158	577158	
Date	12/13	/2007	12/13	/2007	12/13/2007		12/13/2007		12/13	/2007
Depth or Horizon Sample	D		I)	D		D		I	H
Subsample ID	2	6	2	7	2	8	30-	PH	30-	0/4
Top Sample Interval (cm)	()	()	()	()	0	
Bottom Sample Interval (cm)	4	5	4	5	4	5	4	5	4	
Sample Wet Weight (g)							21.0744		23.7	907
Sample Dry Weight (g)							13.4	1876	13.7	986
Water Content (%)							3	6	4	2
Original Weight (g)								-	-	
<150 μm (g)							4.5	249	3.62	293
<150 μm (%)							3	4	26	
Soil Description	sandy loam		very fir	ne sand	loamy	sand		-	hun	nus
Size Fraction	<150µm	<2mm	<150µm	<2mm	<150µm	<2mm	<150µm	<2mm	<150µm	<2mm
Total Carbon (g/kg)	33	26	1.3	1	36	49	39	64	62	97
As (mg/kg)	2100 1400		6000	3700	1300	1000	90	51	150	150

Sample Site	3	0	3	1	3	2	3	3	3	4
Site Description										
Northing (20T, NAD 83)	4997009		4997	7012	4997	7033	499′	7033	4997	7035
Easting (20T, NAD 83)	577	158	577231		577	391	577	438	577479	
Date	12/13	/2007	12/13	/2007	12/13/2007		12/13/2007		5/26/2008	
Depth or Horizon Sample	I	H	Ι)	D		I)	Ι)
Subsample ID	30-	4/5	3	1	3	2	3	3	3	4
Top Sample Interval (cm)	4	1	()	()	()	0	
Bottom Sample Interval (cm)	4	5	4	5	4	5	4	5	5	
Sample Wet Weight (g)	36.9	389							3.5	90
Sample Dry Weight (g)	29.9	205							2.7	60
Water Content (%)	1	9							2	3
Original Weight (g)	-	-							-	
<150 μm (g)	22.2	2229							3.8	35
<150 μm (%)	7	4							24	
Soil Description	sandy loam		loamy	sand	sandy cl	ay loam	silty	sand	silty	loam
Size Fraction	<150µm	<2mm	<150µm	<2mm	<150µm	<2mm	<150µm	<2mm	<150µm	<2mm
Total Carbon (g/kg)	8.1 9.1		6.5	6.3	58	59	29	32	21	17
As (mg/kg)	61 68		5300	2700	8800	9600	1800	960	51	35

Sample Site	3	5	3	7	3	8	3	8	38	3
Site Description	1005015									
Northing (20T, NAD 83)	4997017		4996	5877	4996	5805	4996	5805	4996	805
Easting (20T, NAD 83)	577	543	577451		577320		577320		5773	320
Date	5/26/	2008	5/26/	2008	5/26/2008		5/26/2008		5/26/2	2008
Depth or Horizon Sample	Ι)	I)	D		Н		Н	
Subsample ID	3	5	3	7	38-	PH	38-	0/2	38-2	2/5
Top Sample Interval (cm)	()	()	()	()	2	,
Bottom Sample Interval (cm)	4	5	4	5	4	5	2		5	
Sample Wet Weight (g)	4.4	20	2.980		5.0	080	3.310		4.5	60
Sample Dry Weight (g)	3.4	10	2.420		3.7	00	1.7	10	3.1	20
Water Content (%)	2	3	19		27		48		32	2
Original Weight (g)	-		-	-	-		-		-	
<150 μm (g)	4.0	06	3.8	85	4.3	89	4.3	30	7.8	80
<150 μm (%)	2	5	2	5	2	9	4	6	43	
Soil Description	silty loam		silty	loam	silty cla	ay loam	-		-	
Size Fraction	<150μm <2mm		<150µm	<2mm	<150µm	<2mm	<150µm	<2mm	<150µm	<2mm
Total Carbon (g/kg)	17	17	14	17	24	31	57	75	20	28
As (mg/kg)	360 410		190	180	64	70	78	91	67	79

Sample Site	3	9	39	9	3	9	4	0	4	1
Site Description										
Northing (20T, NAD 83)	4996839		4996	839	4996	5839	4990	5839	4996	5868
Easting (20T, NAD 83)	577	348	577348		577348		577206		577	146
Date	5/26/	2008	5/26/2	2008	5/26/2008		12/13/2007		12/13	/2007
Depth or Horizon Sample	Ι)	H	I	Н		I)	Ι)
Subsample ID	39-	PH	39-0	0/3	39-	3/5	40		41	
Top Sample Interval (cm)	0		0		3	3	0		0	
Bottom Sample Interval (cm)	4	5	3		5	5	5		5	
Sample Wet Weight (g)	3.4	-10	3.160		4.700		22.2283		34.0	491
Sample Dry Weight (g)	2.1	50	1.560		3.5	50	6.4	462	26.2	178
Water Content (%)	3	7	51		24		71		2	3
Original Weight (g)	-	-	-		-			-	-	
<150 μm (g)	4.	19	1.4	10	5.5	57	2.0)32	5.68	826
<150 μm (%)	4	1	2	1	30	6	3	2	2	2
Soil Description	silty clay loam		-		-	•	loa	am	very fii	ne sand
Size Fraction	<150μm <2mm		<150µm	<2mm	<150µm	<2mm	<150µm	<2mm	<150µm	<2mm
Total Carbon (g/kg)	47	91	110	190	12	14	110	220	3	1.4
As (mg/kg)	17 20		61	61	210	240	77	51	17000	5800

Sample Site	4	2	4	3	4	4	4	5	4	6
Site Description										
Northing (20T, NAD 83)	4996	5887	4996	5889	4996	5941	4996	5970	4996	5978
Easting (20T, NAD 83)	577241		577342		577	301	577255		577202	
Date	12/13	/2007	12/13	/2007	5/26/2008		5/26/2008		12/13	/2007
Depth or Horizon Sample	D		Ι)	D		D		Ι)
Subsample ID	4	2	4	3	4	4	4	5	4	6
Top Sample Interval (cm)	0		()	()	0		0	
Bottom Sample Interval (cm)	5	5	4	5	4	5	4	5	5	
Sample Wet Weight (g)					4.610		5.390		21.5683	
Sample Dry Weight (g)					3.7	'50	4.6	590	17.4	703
Water Content (%)					19		13		1	9
Original Weight (g)					-		-		-	
<150 μm (g)					2.	11	1.3	21	7.9	162
<150 μm (%)					7.	.7	6.0		45	
Soil Description	silt		silty	sand	fine	sand	fine	sand	silty	sand
Size Fraction	<150μm <2mm		<150µm	<2mm	<150µm	<2mm	<150µm	<2mm	<150µm	<2mm
Total Carbon (g/kg)	2.7	2.7	4	2.7	0.7	0.4	1.4	0.9	7	3.8
As (mg/kg)	4000	4700	7800	7100	3000	1200	8700	3700	4800	3500

Sample Site	4	7	4	8	4	9	50	0	5	1
Site Description										
Northing (20T, NAD 83)	4996	5965	4997	7021	4997	7122	4997	207	4996	5892
Easting (20T, NAD 83)	577139		577304		577	522	5772	209	577	382
Date	12/13	/2007	12/13	/2007	12/10/2007		12/10/2007		5/26/	2008
Depth or Horizon Sample	D		Ι)	D		Г)	Ι)
Subsample ID	4	7	4	8	4	9	50	0	5	1
Top Sample Interval (cm)	0		()	()	0)	()
Bottom Sample Interval (cm)	4	5	4	5	4	5	5	;	4	5
Sample Wet Weight (g)			38.2158				20.7	461	3.0	70
Sample Dry Weight (g)			31.7191				9.54	132	1.9	40
Water Content (%)			17				54		3	7
Original Weight (g)			-	-			-		-	
<150 μm (g)			15.0	102			2.75	587	3.0	54
<150 μm (%)			4	7			29		3	0
Soil Description	sandy clay		fine	sand	sandy	loam	sandy clay		silty	loam
Size Fraction	<150µm	<2mm	<150µm	<2mm	<150µm	<2mm	<150µm	<2mm	<150µm	<2mm
Total Carbon (g/kg)	5.5	6	1.3	0.9	29	29	78	86	37	47
As (mg/kg)	2300 2500		4200	2200	1800	1600	140	130	2500	2000

Sample Site	52		5	3	5	4	5	5
Site Description	4007077							
Northing (20T, NAD 83)	4997375		4997	7395	4996	5965	4996	5805
Easting (20T, NAD 83)	577	485	577570		577	605	577	320
Date	5/26/	2008	5/26/	2008	5/26/	2008	5/26/	2008
Depth or Horizon Sample	Ι)	Ι)	Ι)	Ι)
Subsample ID	5	2	5	3	5	4	5	5
Top Sample Interval (cm)	()	()	()	()
Bottom Sample Interval (cm)	4	5	4	5	4	5	4	5
Sample Wet Weight (g)	4.5	590	2.840		3.5	540	4.5	00
Sample Dry Weight (g)	2.9	20	2.030		0.670		3.0	080
Water Content (%)	3	6	2	9	81		3	2
Original Weight (g)	-	-		-	-	-	-	-
<150 μm (g)	2.0	08	3.	32	0.9	91	6.2	26
<150 μm (%)	2	8	3	4	1	6	4	3
Soil Description	silty clay loam		silty cla	ay loam	-	-	silty cla	ay loam
Size Fraction	<150μm <2mm		<150µm	<2mm	<150µm	<2mm	<150µm	<2mm
Total Carbon (g/kg)	60 65		39	40	210	290	22	29
As (mg/kg)	110 120		1200	1200	51	69	68	76

Sample Site	1		2	2	3	3		1	4	5
Site Description										
Northing (20T, NAD 83)	4997	7291	4997288		4997276		4997231		4997	7230
Easting (20T, NAD 83)	577	292	577	327	577571		577	495	577	432
Date	12/10	/2007	12/10	/2007	12/10	/2007	12/10	/2007	12/10	/2007
Depth or Horizon Sample	Ι)	I)	I)	D		Ι)
Subsample ID	1	l	2		3	3	4	1	5	5
Top Sample Interval (cm)	()	0		0		()	()
Bottom Sample Interval (cm)	4	5	4	5	5		4	5	4	5
Soil Description	sandy	loam	sandy	loam	silty	loam	sandy cl	ay loam	sandy	y clay
Size Fraction	<150µm	<2mm	<150µm	<2mm	<150µm	<2mm	<150µm	<2mm	<150µm	<2mm
Hg (mg/kg)	-	0.1	-	2	-	0.54	-	2.4	-	1.3

Sample Site	(5	8	3	9)	11		1	2
Site Description										
Northing (20T, NAD 83)	4997	7233	4997207		4997198		4997193		4997180	
Easting (20T, NAD 83)	577	379	577	209	577264		577397		577	450
Date	12/10	/2007	12/10	/2007	12/10	/2007	12/10	/2007	12/10	/2007
Depth or Horizon Sample	Ι)	Ι)	Ι)	D		Ι)
Subsample ID	(5	8		9)	1	1	1	2
Top Sample Interval (cm)	()	0		0		()	()
Bottom Sample Interval (cm)	5	5	4	5	5		5		4	5
Soil Description	silty cla	ay loam	sandy	y clay	silty	loam	silt l	oam	silty cla	ay loam
Size Fraction	<150µm	<2mm	<150µm	<2mm	<150µm	<2mm	<150µm	<2mm	<150µm	<2mm
Hg (mg/kg)	-	1.7	-	0.71	-	0.06	-	20	-	1.4

Sample Site	1	13		4	1	5	1	9	2	0
Site Description										
Northing (20T, NAD 83)	4997	7155	4997	7162	4997155		4997122		4997129	
Easting (20T, NAD 83)	577493		577	353	577288		577364		577	412
Date	12/10	/2007	12/10	/2007	12/10	/2007	12/10	/2007	12/13	/2007
Depth or Horizon Sample	Ι)	I)	I)	I)	Ι)
Subsample ID	1	3	1	4	1	5	1	9	2	0
Top Sample Interval (cm)	()	()	0 0		()		
Bottom Sample Interval (cm)	4	5	4	5	5		5		5	
Soil Description	sandy	loam	sandy loam sand		sandy	y clay	mediu	m sand	silty	sand
Size Fraction	<150µm	<2mm	<150µm	<2mm	<150µm	<2mm	<150µm	<2mm	<150µm	<2mm
Hg (mg/kg)	-	13	-	2.4	-	0.38	-	0.3	-	0.92

Sample Site	2	1	2	2	2	23		24		5
Site Description										
Northing (20T, NAD 83)	4997	7111	4997122		4997149		4997090		4997062	
Easting (20T, NAD 83)	577	447	577	522	577	568	577478		577	446
Date	12/13	/2007	12/10	/2007	12/10	/2007	12/13	/2007	5/26/	2008
Depth or Horizon Sample	Ι)	I)	Ι)	D		I)
Subsample ID	2	1	2	2	2	3	2	4	2	5
Top Sample Interval (cm)	()	()	()	()	()
Bottom Sample Interval (cm)	4	5	5		5		4	5	4	5
Soil Description	silty	sand	sandy loam		silty	sand	fine	sand	sandy	loam
Size Fraction	<150µm	<2mm	<150µm	<2mm	<150µm	<2mm	<150µm	<2mm	<150µm	<2mm
Hg (mg/kg)	-	1.1	-	1.6	-	2.5	-	0.46	-	0.44

Sample Site	2	6	2	7	2	8	30		30	
Site Description										
Northing (20T, NAD 83)	4997	7071	4997	7063	4997057		4997009		4997009	
Easting (20T, NAD 83)	577	373	577	322	577	265	577	158	577	158
Date	12/13	/2007	12/13	/2007	12/13	/2007	12/13	/2007	12/13	/2007
Depth or Horizon Sample	Ι)	I)	Ι)	D		I	H
Subsample ID	2	6	2	7	2	8	30-	PH	30-	0/4
Top Sample Interval (cm)	()	()	(0 0		()	
Bottom Sample Interval (cm)	4	5	4	5	4	5	5		4	1
Soil Description	sandy	loam	very fi	very fine sand loamy sand		-	-	hur	nus	
Size Fraction	<150µm	<2mm	<150µm	<2mm	<150µm	<2mm	<150µm	<2mm	<150µm	<2mm
Hg (mg/kg)	-	1.4	-	0.55	-	2.1	-	0.44	-	0.59

Sample Site	3	0	3	1	3	2	33		3	4
Site Description										
Northing (20T, NAD 83)	4997	4997009		4997012		4997033		7033	4997035	
Easting (20T, NAD 83)	577158		577	231	577391		577	438	577	479
Date	12/13	/2007	12/13	/2007	12/13	/2007	12/13	/2007	5/26/	2008
Depth or Horizon Sample	ŀ	Ŧ	I)	Ι)	D		Ι)
Subsample ID	30-	4/5	3	1	3	2	3	3	3	4
Top Sample Interval (cm)		1	0		0		()	()
Bottom Sample Interval (cm)	4	5	5		5		5		4	5
Soil Description	sandy	loam	loamy sand		sandy cl	ay loam	silty	sand	silty	loam
Size Fraction	<150µm	<2mm	<150µm	<2mm	<150µm	<2mm	<150µm	<2mm	<150µm	<2mm
Hg (mg/kg)	-	0.05	-	0.32	-	2.2	-	0.09	-	0.02

Sample Site	3	5	5 37 38		8	3	8	3	8	
Site Description										
Northing (20T, NAD 83)	4997017		4996	5877	4996	4996805		5805	4996	5805
Easting (20T, NAD 83)	577	543	577	451	577	320	577	320	577	320
Date	5/26/	2008	5/26/	2008	5/26/	2008	5/26/	2008	5/26/	2008
Depth or Horizon Sample	Ι)	I)	Ι)	I	Н		I
Subsample ID	3	5	3	7	38-	PH	38-	0/2	38-	2/5
Top Sample Interval (cm)	()	()	()	()	2	2
Bottom Sample Interval (cm)	4	5	4	5	4	5	2		4	5
Soil Description	silty	loam	silty	silty loam silty clay loam		-	-	-	-	
Size Fraction	<150µm	<2mm	<150µm	<2mm	<150µm	<2mm	<150µm	<2mm	<150µm	<2mm
Hg (mg/kg)	-	0.31	-	0.05	-	0.08	-	0.29	-	0.11

Sample Site	3	9	3	9	3	39		0	4	1
Site Description										
Northing (20T, NAD 83)	4996839		4996	5839	4996839		4996839		4996868	
Easting (20T, NAD 83)	577	348	577	348	577348		577206		577	146
Date	5/26/	2008	5/26/	2008	5/26/	2008	12/13	/2007	12/13	/2007
Depth or Horizon Sample	Ι)	I	H	F	Ŧ	Ι)	Ι)
Subsample ID	39-	PH	39-	0/3	39-	3/5	4	0	4	1
Top Sample Interval (cm)	()	(0 3		()	()	
Bottom Sample Interval (cm)	4	5	3	3	5		5		5	
Soil Description	silty cla	clay loam -		-	-	-	loa	am	very fin	ne sand
Size Fraction	<150µm	<2mm	<150µm	<2mm	<150µm	<2mm	<150µm	<2mm	<150µm	<2mm
Hg (mg/kg)	-	0.18	-	0.37	-	0.06	-	0.84	-	0.09

Sample Site	4	2	4	3	4	44		5	4	6
Site Description										
Northing (20T, NAD 83)	4996	4996887		4996889		4996941		5970	4996978	
Easting (20T, NAD 83)	577	241	577	342	577301		577	255	577	202
Date	12/13	/2007	12/13	/2007	5/26/	2008	5/26/	2008	12/13	/2007
Depth or Horizon Sample	Ι)	I)			D		Ι)
Subsample ID	4	2	43		4	4	4	5	4	6
Top Sample Interval (cm)	()	0		0		()	()
Bottom Sample Interval (cm)	4	5	4	5	4	5	4	5	4	5
Soil Description	si	lt	silty	sand	fine	sand	fine	sand	silty	sand
Size Fraction	<150µm	<2mm	<150µm	<2mm	<150µm	<2mm	<150µm	<2mm	<150µm	<2mm
Hg (mg/kg)	-	8.6	-	0.18	-	0.17	-	0.33	-	0.52

Sample Site	47		4	8	49		50		51	
Site Description										
Northing (20T, NAD 83)	4996	4996965		4997021		4997122		207	4996	5892
Easting (20T, NAD 83)	577139		577304		577522		5772	209	577	382
Date	12/13	/2007	12/13	/2007	12/10	/2007	12/10/	2007	5/26/	2008
Depth or Horizon Sample	I)	I)	I)	D))
Subsample ID	4	7	4	8	4	9	50	0	5	1
Top Sample Interval (cm)	()	0		0		0		()
Bottom Sample Interval (cm)	4	5		5	5		5		5	
Soil Description	sandy	clay	fine	sand	sandy	loam	sandy	clay	silty	loam
Size Fraction	<150µm	<2mm	<150µm	<2mm	<150µm	<2mm	<150µm	<2mm	<150µm	<2mm
Hg (mg/kg)	-	1	-	0.16	-	1.8	-	0.68	-	0.32

Sample Site	5	2	5	3	5	4	5	5
Site Description								
Northing (20T, NAD 83)	499	7375	4997	7395	4990	5965	4996	5805
Easting (20T, NAD 83)	577	577485 577570		570	577605		577	320
Date	5/26/	2008	5/26/	5/26/2008		2008	5/26/	2008
Depth or Horizon Sample	I)	Ι)	I)	Ι)
Subsample ID	5	52		3	5	4	5	5
Top Sample Interval (cm)	()	0		()	()
Bottom Sample Interval (cm)	4	5	5		5		4	5
Soil Description	silty cla	ay loam	silty cla	ay loam	silty clay loam		silty cla	ay loam
Size Fraction	<150µm	<2mm	<150µm	<2mm	<150μm <2mm		<150µm	<2mm
Hg (mg/kg)	-	0.17	-	0.07	- 0.57		-	0.11

Parameter	MDL	Units	41	46	48
Aluminium	0.01	%	0.75	1.14	1.01
Antimony	0.02	mg/kg	9.09	5.17	4.70
Arsenic	0.1	mg/kg	>10000	5172	4657
Barium	0.5	mg/kg	24.7	23.3	26.5
Bismuth	0.02	mg/kg	0.70	0.54	0.49
Boron	20	mg/kg	<20	<20	<20
Cadmium	0.01	mg/kg	0.77	0.21	0.25
Calcium	0.01	%	0.15	0.11	0.18
Chromium	0.5	mg/kg	10.1	13.7	13.9
Cobalt	0.1	mg/kg	18.7	8.7	13.0
Copper	0.01	mg/kg	35.31	21.19	38.79
Galium	0.1	mg/kg	2.1	3.0	2.7
Gold	0.2	µg/kg	458.5	129.9	223.6
Iron	0.01	%	3.21	2.44	2.78
Lanthanum	0.5	mg/kg	28.8	17.9	26.6
Lead	0.01	mg/kg	53.49	44.43	39.88
Magnesium	0.01	%	0.46	0.48	0.66
Manganese	1	mg/kg	471	377	500
Mercury	5	µg/kg	323	692	407
Molybdenum	2	mg/kg	0.69	0.64	1.15
Phosphorus	0.001	%	0.068	0.061	0.085
Potassium	0.01	%	0.13	0.11	0.17
Nickel	0.1	mg/kg	21.8	14.8	26.8
Selenium	0.1	mg/kg	0.3	0.6	0.4
Scandium	0.1	mg/kg	0.9	1.3	1.2
Silver	2	µg/kg	209	145	160
Sodium	0.001	%	0.003	0.002	0.002
Strontium	0.5	mg/kg	18.2	15.9	22.9
Sulfur	0.02	%	0.03	0.04	< 0.02
Tellurium	0.02	mg/kg	0.36	0.15	0.14
Thallium	0.0	mg/kg	0.10	0.09	0.11
Thorium	0.1	mg/kg	3.9	4.0	6.3
Titanium	0.0	%	0.028	0.026	0.034
Tungsten	0.1	mg/kg	10.4	2.0	2.4
Uranium	0.1	mg/kg	0.4	0.5	0.6
Vanadium	2	mg/kg	7	13	11
Zinc	0.1	mg/kg	45.6	50.6	57.3

Table 5 - Metals in Water - December 13, 2007 Sample Event Nova Scotia Department of Transportation and Infrastructure Renewal Phase II ESA Former Gold Mine Site, Goldenville, NS

Parameter	RDL	Units	MW#1	MW#2	MW#3
Arsenic	2	μg/L	22	96	77
Mercury	0.01	μg/L	nd	0.04	0.01

Table 6 - General Chemistry- May 26, 2008 Sample Event Nova Scotia Department of Transportation and Infrastructure Renewal Phase II ESA Former Gold Mine Site, Goldenville, NS

			CCME	Monitoring Well No.		ll No.
Parameter	Units	RDL	$\mathbf{DWQG}^{(1)}$	MW#1	MW#2	MW#3
INORGANICS						
Total Alkalinity (Total as CaCO3)	mg/L	30		nd	110	77
Dissolved Chloride (Cl)	mg/L	10	250 (AO)	5	7	5
Colour	TCU	5	15 (AO)	nd	nd	nd
Hardness (CaCO3)	mg/L	1		11	180	83
Nitrate + Nitrite	mg/L	0.05		0.05	0.17	0.06
Nitrite (N)	mg/L	0.01	3.2 (MAC)	nd	nd	nd
Nitrogen (Ammonia Nitrogen)	mg/L	0.05		nd	nd	nd
Total Organic Carbon (C)	mg/L	0.5		nd	nd	nd
Orthophosphate (P)	mg/L	0.01		nd	0.12	0.01
pН	рН	N/A	6.5 - 8.5 (AO)	4.76	7.36	7.7
Reactive Silica (SiO2)	mg/L	0.5		5.5	12	7.7
Dissolved Sulphate (SO4)	mg/L	2	500 (AO)	10	83	8
Turbidity	NTU	10	1 (MAC)	230	>1000	>1000
Conductivity	uS/cm	1		57	410	190
RCAP CALCULATIONS						
Anion Sum	me/L	N/A		0.38	4.17	1.84
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	1		nd	112	76
Calculated TDS	mg/L	1	500 (AO)	30	253	108
Carb. Alkalinity (calc. as CaCO3)	mg/L	1		nd	nd	nd
Cation Sum	me/L	N/A		0.38	4.03	1.9
Ion Balance (% Difference)	%	N/A		0	1.71	1.6
Langelier Index (@ 20C)	N/A	N/A		NC	-0.265	-0.294
Langelier Index (@ 4C)	N/A	N/A		NC	-0.514	-0.545
Nitrate (N)	mg/L	0.05	45 (MAC)	0.05	0.17	0.06
Saturation pH (@ 20C)	N/A	N/A		NC	7.63	7.99
Saturation pH (@ 4C)	N/A	N/A		NC	7.87	8.25
Elements (ICP-OES)						
Dissolved Calcium (Ca)	mg/L	1		3.4	54	29
Dissolved Magnesium (Mg)	mg/L	1		0.5	12	2.4
Dissolved Phosphorus (P)	mg/L	1		nd	nd	ND
Dissolved Potassium (K)	mg/L	1		0.8	6.8	4
Dissolved Sodium (Na)	mg/L	1	200 (AO)	3.1	4.8	3.1
Dissolved Sulphur (S)				3.4	27	2.6

Notes:

Highlighted cells (if any) indicate parameter exceeds the CCME DWQG

⁽¹⁾ CCME DWQG refers to the Canadian Council of Ministers of the Environment <u>Canadian Environmental Quality Guidelines</u> (November 2006 Update), Chapter 2 - Community Water; IMAC - health-related "interim maximum acceptable concentration", MAC - health-related "maximum acceptable concentration", AO - "aesthetic objective"

nd - indicates parameter below laboratory detection limit;

⁻⁻ indicates no guideline available for parameter;

Table 7 - Metals in Water -May 26, 2008 Sample Event Nova Scotia Department of Transportation and Infrastructure Renewal Phase II ESA Former Gold Mine Site, Goldenville, NS

			CCME	Monitoring Well No.		
Parameter	Units	RDL	$\mathbf{DWQG}^{(1)}$	MW#1	MW#2	MW#3
Aluminium	µg/L	10	100 (OGV)	230	54	16
Antimony	µg/L	2	6 (IMAC)	nd	9	nd
Arsenic	µg/L	2	25 (IMAC)	nd	450	54
Barium	µg/L	5	1000 (MAC)	15	20	6
Beryllium	µg/L	2		nd	nd	nd
Bismuth	µg/L	2		nd	nd	nd
Boron	µg/L	5	5000 (IMAC)	5	11	nd
Cadmium	µg/L	0.3	5 (MAC)	0.9	nd	nd
Chromium	µg/L	2	50 (MAC)	nd	nd	nd
Cobalt	µg/L	1		11	19	1
Copper	µg/L	2	1000 (AO)	6	nd	nd
Iron	µg/L	50	300 (AO)	nd	nd	nd
Lead	µg/L	0.5	10 (MAC)	nd	nd	nd
Manganese	µg/L	2	50 (AO)	220	4800	1900
Molybdenum	µg/L	2		nd	3	nd
Nickel	µg/L	2		14	21	6
Selenium	µg/L	2	10 (MAC)	nd	nd	nd
Silver	µg/L	0.5		nd	nd	nd
Strontium	µg/L	5		16	310	83
Thallium	µg/L	0.1		nd	nd	nd
Tin	µg/L	2		nd	nd	nd
Titanium	µg/L	2		nd	4	nd
Uranium	µg/L	0.1	20 (IMAC)	nd	0.2	0.3
Vanadium	µg/L	2		nd	nd	nd
Zinc	µg/L	5	5000 (AO)	98	6	nd

Notes:

Bracketed values indicate increased method detection limits due to matrix interference;

Highlighted cells (if any) indicate parameter exceeds the CCME DWQG

⁽¹⁾ CCME DWQG refers to the Canadian Council of Ministers of the Environment <u>Canadian Environmental Quality</u> nd - indicates parameter below laboratory detection limit;

⁻⁻ indicates no guideline available for parameter;

Appendix F

Laboratory Reports

Your C.O.C. #: S 11525

Attention: BILLY SHAW
CJ MacLellan & Associates
65 Beech Hill Rd
Antigonish, NS
B2G 2P9

Report Date: 2008/01/04

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A7E2336 Received: 2007/12/27, 8:03

Sample Matrix: Water # Samples Received: 3

		Date	Date	Method
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Reference
Mercury - Total (CVAA,LL)	3	N/A	2008/01/03 ATL SOP 00026 R2	Based on EPA245.1
Metals Water Total MS	3	N/A	2007/12/27 ATL SOP 00024 R3	Based on EPA6020A

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

ALAN STEWART, Email: alan.stewart.reports@maxxamanalytics.com Phone# (902) 420-0203

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

Total cover pages: 1

Maxxam Job #: A7E2336 Report Date: 2008/01/04 CJ MacLellan & Associates Client Project #: Project name: Sampler Initials:

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

_	Units	GOLDENVILLE MW NO1	GOLDENVILLE MW NO2	RDL	QC Batch
Registration #					
COC Number		S 11525	S 11525		
Sampling Date		2007/12/27	2007/12/27		
Maxxam ID		W57380	W57381		

ELEMENTS					
Total Mercury (Hg)	ug/L	ND	0.04	0.01	1435485
Elements (ICP-MS)					
Total Arsenic (As)	ug/L	22	96	2	1433233

ND = Not detected

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Maxxam ID		W57382	W57382		
Sampling Date		2007/12/27	2007/12/27		
COC Number		S 11525	S 11525		
Registration #					
	Units	GOLDENVILLE	GOLDENVILLE	RDL	QC Batch
		MW NO3	MW		
			NO3 Lab-Dup		

ELEMENTS					
Total Mercury (Hg)	ug/L	0.01	0.01	0.01	1435485
Elements (ICP-MS)					
Total Arsenic (As)	ug/L	77		2	1433233

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam Job #: A7E2336 Report Date: 2008/01/04 CJ MacLellan & Associates Client Project #: Project name: Sampler Initials:

GEN	IFR /	١ı	COM	MEN	TS.

Results relate only to the items tested.

CJ MacLellan & Associates Attention: BILLY SHAW Client Project #: P.O. #:

P.O. #: Project name:

Quality Assurance Report Maxxam Job Number: DA7E2336

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
1433233 DLB	MATRIX SPIKE	Total Arsenic (As)	2007/12/27		101	%	80 - 120
	QC STANDARD	Total Arsenic (As)	2007/12/27		103	%	80 - 120
	Spiked Blank	Total Arsenic (As)	2007/12/27		94	%	80 - 120
	Method Blank	Total Arsenic (As)	2007/12/27	ND, R	RDL=2	ug/L	
	RPD	Total Arsenic (As)	2007/12/27	NC		%	25
1435485 AMC	MATRIX SPIKE						
	[W57381-01]	Total Mercury (Hg)	2008/01/03		100	%	N/A
	QC STANDARD	Total Mercury (Hg)	2008/01/03		93	%	80 - 120
	Spiked Blank	Total Mercury (Hg)	2008/01/03		100	%	80 - 120
	Method Blank	Total Mercury (Hg)	2008/01/03	ND, R	RDL=0.013	ug/L	
	RPD [W57382-01]	Total Mercury (Hg)	2008/01/03	NC		%	25

ND = Not detected N/A = Not Applicable

NC = Non-calculable

RPD = Relative Percent Difference QC Standard = Quality Control Standard

SPIKE = Fortified sample

Your Project #: 6906-21 Your C.O.C. #: B 33527

Attention: Hilda Dunnewold
CJ MacLellan & Associates
65 Beech Hill Rd
Antigonish, NS
B2G 2P9

Report Date: 2008/01/11

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A7E2184 Received: 2007/12/24, 9:30

Sample Matrix: Soil # Samples Received: 74

		Date	Date	Method
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Reference
Mercury (CVAA)	1	N/A	2008/01/02 ATL SOP 00026 R2	Based on EPA245.5
Mercury (CVAA)	35	N/A	2008/01/07 ATL SOP 00026 R2	Based on EPA245.5
Mercury (CVAA)	1	N/A	2008/01/09 ATL SOP 00026 R2	Based on EPA245.5
Metals Solid Avail. MS - N-per	25	N/A	2008/01/02 ATL SOP 00024 R3	Based on EPA6020A
Metals Solid Avail. MS - N-per	49	N/A	2008/01/03 ATL SOP 00024 R3	Based on EPA6020A
Total Organic Carbon in Soil	10	N/A	2008/01/07 ATL SOP 00044 R2	LECO 203-601-224
Total Organic Carbon in Soil	17	N/A	2008/01/08 ATL SOP 00044 R2	LECO 203-601-224
Total Organic Carbon in Soil	20	N/A	2008/01/09 ATL SOP 00044 R2	LECO 203-601-224
Total Organic Carbon in Soil	27	N/A	2008/01/10 ATL SOP 00044 R2	LECO 203-601-224

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Sara Nicholson

11 Jan 2008 14:46:00 -04:00

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

ALAN STEWART, Project Manager Email: alan.stewart.reports@maxxamanalytics.com

Phone# (902) 420-0203 Ext:247

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

Total cover pages: 1

CJ MacLellan & Associates Client Project #: 6906-21 Project name: Sampler Initials:

RESULTS OF ANALYSES OF SOIL

Maxxam ID		W57864			W57888	W57889		
Sampling Date		2007/12/10			2007/12/10	2007/12/10		
COC Number		B 33527			B 33527	B 33527		
Registration #								
	Units	#1 <2mm	RDL	QC Batch	#1 <150MM	#2 <2mm	RDL	QC Batch

INORGANICS								
Organic Carbon (TOC)	g/kg	37	1	1436867	36	45	0.3	1436247

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID		W57890		W57891		W57892		
Sampling Date		2007/12/10		2007/12/10		2007/12/10		
COC Number		B 33527		B 33527		B 33527		
Registration #								
	Units	#2 <150MM	RDL	#3 <2mm	RDL	#3 <150MM	RDL	QC Batch

INORGANICS								
Organic Carbon (TOC)	g/kg	48	0.4	40	0.5	32	0.4	1436247

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID		W57893	W57894		W57895		
Sampling Date		2007/12/10	2007/12/10		2007/12/10		
COC Number		B 33527	B 33527		B 33527		
Registration #							
	Units	#4 <2mm	#4 <150MM	RDL	#5 <2mm	RDL	QC Batch

INORGANICS							
Organic Carbon (TOC)	g/kg	59	51	0.5	54	0.7	1436247

CJ MacLellan & Associates Client Project #: 6906-21 Project name: Sampler Initials:

RESULTS OF ANALYSES OF SOIL

Maxxam ID		W57896	W57897	W57897		
Sampling Date		2007/12/10	2007/12/10	2007/12/10		
COC Number		B 33527	B 33527	B 33527		
Registration #						
	Units	#5 <150MM	#6 <2mm	#6 <2mm	RDL	QC Batch
				Lab-Dup		
INORGANICS						
Organic Carbon (TOC)	a/ka	51	54	48	0.8	1436247

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID		W57898		W57899		W57900		
Sampling Date		2007/12/10		2007/12/10		2007/12/10		
COC Number		B 33527		B 33527		B 33527		
Registration #								
	Units	#6 <150MM	RDL	#8 <2mm	RDL	#8 <150MM	RDL	QC Batch

INORGANICS								
Organic Carbon (TOC)	g/kg	57	0.6	90	0.9	87	1	1436867

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID		W57901		W57902		W57903		
Sampling Date		2007/12/10		2007/12/10		2007/12/10		
COC Number		B 33527		B 33527		B 33527		
Registration #								
	Units	#9 <2mm	RDL	#9 <150MM	RDL	#11 <2mm	RDL	QC Batch

INORGANICS								
Organic Carbon (TOC)	g/kg	37	0.7	44	0.6	75	0.9	1436867

CJ MacLellan & Associates Client Project #: 6906-21 Project name: Sampler Initials:

RESULTS OF ANALYSES OF SOIL

Maxxam ID		W57904		W57905		W57906		
Sampling Date		2007/12/10		2007/12/10		2007/12/10		
COC Number		B 33527		B 33527		B 33527		
Registration #								
	Units	#11 <150MM	RDL	#12 <2mm	RDL	#12 <150MM	RDL	QC Batch

INORGANICS								
Organic Carbon (TOC)	g/kg	72	1	50	0.8	44	0.9	1436867

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID		W57907		W57908		W57909		
Sampling Date		2007/12/10		2007/12/10		2007/12/10		
COC Number		B 33527		B 33527		B 33527		
Registration #								
	Units	#13 <2mm	RDL	#13 <150MM	RDL	#14 <2mm	RDL	QC Batch

INORGANICS								
Organic Carbon (TOC)	g/kg	20	0.9	19	0.8	75	0.6	1436867

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID		W57909		W57910		W57911		
Sampling Date		2007/12/10		2007/12/10		2007/12/10		
COC Number		B 33527		B 33527		B 33527		
Registration #								
	Units	#14 <2mm	RDL	#14 <150MM	RDL	#15 <2mm	RDL	QC Batch
		Lab-Dup						

INORGANICS								
Organic Carbon (TOC)	g/kg	83	0.6	67	1	40	0.8	1436867

CJ MacLellan & Associates Client Project #: 6906-21 Project name:

Sampler Initials:

RESULTS OF ANALYSES OF SOIL

Maxxam ID		W57912		W57913		
Sampling Date		2007/12/10		2007/12/10		
COC Number		B 33527		B 33527		
Registration #						
	Units	#15 <150MM	RDL	#19 <2mm	RDL	QC Batch

INORGANICS						
Organic Carbon (TOC)	g/kg	33	1	2.3	0.6	1436867

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID		W57914		W57915		W57916		
Sampling Date		2007/12/10		2007/12/10		2007/12/10		
COC Number		B 33527		B 33527		B 33527		
Registration #								
	Units	#19 <150MM	RDL	#20 <2mm	RDL	#20 <150MM	RDL	QC Batch

INORGANICS								
Organic Carbon (TOC)	g/kg	4.8	0.3	14	0.4	15	0.5	1437606

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Registration #	Units	#21 <2mm	#21 <150MM	RDL	#22 <2mm	#22 <150MM	551	00 D-(-l-
COC Number		B 33527	B 33527		B 33527	B 33527		
Sampling Date		2007/12/10	2007/12/10		2007/12/10	2007/12/10		
Maxxam ID		W57917	W57918		W57919	W57920		

INORGANICS								
Organic Carbon (TOC)	g/kg	9.1	11	0.4	33	26	8.0	1437606

CJ MacLellan & Associates Client Project #: 6906-21 Project name:

Sampler Initials:

RESULTS OF ANALYSES OF SOIL

Maxxam ID		W57921		W57922		W57923		
Sampling Date		2007/12/10		2007/12/10		2007/12/10		
COC Number		B 33527		B 33527		B 33527		
Registration #								
	Units	#23 <2mm	RDL	#23 <150MM	RDL	#24 <2mm	RDL	QC Batch

INORGANICS								
Organic Carbon (TOC)	g/kg	6.2	0.4	7.2	0.5	9.8	0.4	1437606

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID		W57924		W57925		W57926		
Sampling Date		2007/12/10		2007/12/10		2007/12/10		
COC Number		B 33527		B 33527		B 33527		
Registration #								
	Units	#24 <150MM	RDL	#26 <2mm	RDL	#26 <150MM	RDL	QC Batch

INORGANICS								
Organic Carbon (TOC)	g/kg	9.7	0.4	26	0.6	33	0.9	1437606

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID		W57927		W57928		W57929		
Sampling Date		2007/12/10		2007/12/10		2007/12/10		
COC Number		B 33527		B 33527		B 33527		
Registration #								
	Units	#27 <2mm	RDL	#27 <150MM	RDL	#28 <2mm	RDL	QC Batch

INORGANICS								
Organic Carbon (TOC)	g/kg	1.0	0.3	1.3	0.4	49	0.5	1437606

CJ MacLellan & Associates Client Project #: 6906-21 Project name: Sampler Initials:

RESULTS OF ANALYSES OF SOIL

Maxxam ID		W57930		W57932		W57933		
Sampling Date		2007/12/10		2007/12/10		2007/12/10		
COC Number		B 33527		B 33527		B 33527		
Registration #								
	Units	#28 <150MM	RDL	#30-PH	RDL	#30-PH	RDL	QC Batch
				<2mm		<150MM		

INORGANICS								
Organic Carbon (TOC)	g/kg	36	0.9	64	0.7	39	0.8	1437606

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID		W57934	W57934		
Sampling Date		2007/12/10	2007/12/10		
COC Number		B 33527	B 33527		
Registration #					
	Units	#30-0/4	#30-0/4	RDL	QC Batch
		<2mm	<2mm		
			Lab-Dup		

INORGANICS					
Organic Carbon (TOC)	g/kg	97	97	1	1437606

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID		W57935		W57935		
Sampling Date		2007/12/10		2007/12/10		
COC Number		B 33527		B 33527		
Registration #						
	Units	#30-0/4	RDL	#30-0/4	RDL	QC Batch
		<150MM		<150MM		
				Lab-Dup		

INORGANICS						
Organic Carbon (TOC)	g/kg	62	0.3	61	0.7	1437607

CJ MacLellan & Associates Client Project #: 6906-21 Project name: Sampler Initials:

RESULTS OF ANALYSES OF SOIL

Maxxam ID		W57936		W57937		W57938		
Sampling Date		2007/12/10		2007/12/10		2007/12/10		
COC Number		B 33527		B 33527		B 33527		
Registration #								
	Units	#30-4/5	RDL	#30-4/5	RDL	#31 <2mm	RDL	QC Batch
		<2mm		<150MM				

INORGANICS								
Organic Carbon (TOC)	g/kg	9.1	0.2	8.1	0.4	6.3	0.6	1437607

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID		W57939		W57940	W57941		
Sampling Date		2007/12/10		2007/12/10	2007/12/10		
COC Number		B 33527		B 33527	B 33527		
Registration #							
	Units	#31 <150MM	RDL	#32 <2mm	#32 <150MM	RDL	QC Batch

INORGANICS							
Organic Carbon (TOC)	g/kg	6.5	0.6	59	58	4	1437607

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID		W57942	W57943		W57944		
Sampling Date		2007/12/10	2007/12/10		2007/12/10		
COC Number		B 33527	B 33527		B 33527		
Registration #							
	Units	#33 <2mm	#33 <150MM	RDL	#40 <2mm	RDL	QC Batch

INORGANICS							
Organic Carbon (TOC)	g/kg	32	29	2	220	5	1437607

CJ MacLellan & Associates Client Project #: 6906-21 Project name:

Sampler Initials:

RESULTS OF ANALYSES OF SOIL

Maxxam ID		W57945		W57946		W57947		
Sampling Date		2007/12/10		2007/12/10		2007/12/10		
COC Number		B 33527		B 33527		B 33527		
Registration #								
	Units	#40 <150MM	RDL	#41 <2mm	RDL	#41 <150MM	RDL	QC Batch

INORGANICS								
Organic Carbon (TOC)	g/kg	110	4	1.4	0.7	3	1	1437607

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID		W57948		W57949		W57950		
Sampling Date		2007/12/10		2007/12/10		2007/12/10		
COC Number		B 33527		B 33527		B 33527		
Registration #								
	Units	#42 <2mm	RDL	#42 <150MM	RDL	#43 <2mm	RDL	QC Batch

INORGANICS								
Organic Carbon (TOC)	g/kg	2.7	0.5	2.7	0.8	2.7	0.5	1437607

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID		W57951		W57952		W57953		
Sampling Date		2007/12/10		2007/12/10		2007/12/10		
COC Number		B 33527		B 33527		B 33527		
Registration #								
	Units	#43 <150MM	RDL	#46 <2mm	RDL	#46 <150MM	RDL	QC Batch

INORGANICS								
Organic Carbon (TOC)	g/kg	4	1	3.8	0.9	7	1	1437607

CJ MacLellan & Associates Client Project #: 6906-21 Project name: Sampler Initials:

RESULTS OF ANALYSES OF SOIL

Maxxam ID		W57954			W57955		
Sampling Date		2007/12/10			2007/12/10		
COC Number		B 33527			B 33527		
Registration #							
	Units	#47 <2mm	RDL	QC Batch	#47 <150MM	RDL	QC Batch

INORGANICS							
Organic Carbon (TOC)	g/kg	6	1	1437607	5.5	0.9	1437608

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

	Units	#48 <2mm	#48 <150MM	DDI	OC Botoh	#49 <2mm	DDI	QC Batch
Registration #								
COC Number		B 33527	B 33527			B 33527		
Sampling Date		2007/12/10	2007/12/10			2007/12/10		
Maxxam ID		W57956	W57957			W57958		

INORGANICS								
Organic Carbon (TOC)	g/kg	0.9	1.3	0.2	1439047	29	2	1437608

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID		W57959		W57960	W57960		
Sampling Date		2007/12/10		2007/12/10	2007/12/10		
COC Number		B 33527		B 33527	B 33527		
Registration #							
	Units	#49 <150MM	RDL	#50 <2mm	#50 <2mm Lab-Dup	RDL	QC Batch

INORGANICS							
Organic Carbon (TOC)	g/kg	29	4	86	87	2	1437608

CJ MacLellan & Associates Client Project #: 6906-21 Project name: Sampler Initials:

RESULTS OF ANALYSES OF SOIL

	Units	#50 <150MM	RDL	QC Batch
Registration #				
COC Number		B 33527		
Sampling Date		2007/12/10		
Maxxam ID		W57961		

INORGANICS				
Organic Carbon (TOC)	g/kg	78	3	1437608

CJ MacLellan & Associates Client Project #: 6906-21 Project name:

Sampler Initials:

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

	·	•			·	•		•
	Units	#1 <2mm	#1 <2mm Lab-Dup	#1 <150MM	RDL	#2 <2mm	RDL	QC Batch
Registration #								
COC Number		B 33527	B 33527	B 33527		B 33527		
Sampling Date		2007/12/10	2007/12/10	2007/12/10		2007/12/10		
Maxxam ID		W57864	W57864	W57888		W57889		

ELEMENTS								
Mercury (Hg)	mg/kg	0.10	0.09		0.01	2.0	0.1	1436306
Elements (ICP-MS)								
Available Arsenic (As)	mg/kg	180		180	2	650	2	1434547

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID		W57889	W57890		W57891		
Sampling Date		2007/12/10	2007/12/10		2007/12/10		
COC Number		B 33527	B 33527		B 33527		
Registration #							
	Units	#2 <2mm	#2 <150MM	RDL	#3 <2mm	RDL	QC Batch
		Lab-Dup					

ELEMENTS							
Mercury (Hg)	mg/kg			0.1	0.54	0.01	1436306
Elements (ICP-MS)							
Available Arsenic (As)	mg/kg	660	710	2	220	2	1434547

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID		W57892		W57893	W57894		
Sampling Date		2007/12/10		2007/12/10	2007/12/10		
COC Number		B 33527		B 33527	B 33527		
Registration #							
	Units	#3 <150MM	RDL	#4 <2mm	#4 <150MM	RDL	QC Batch

ELEMENTS							
Mercury (Hg)	mg/kg		0.01	2.4		0.1	1436306
Elements (ICP-MS)							
Available Arsenic (As)	mg/kg	270	2	880	850	2	1434548

CJ MacLellan & Associates Client Project #: 6906-21 Project name:

Sampler Initials:

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Maxxam ID		W57895	W57895	W57896		W57897		
Sampling Date		2007/12/10	2007/12/10	2007/12/10		2007/12/10		
COC Number		B 33527	B 33527	B 33527		B 33527		
Registration #								
	Units	#5 <2mm	#5 <2mm	#5 <150MM	RDL	#6 <2mm	RDL	QC Batch
			Lab-Dup					

ELEMENTS								
Mercury (Hg)	mg/kg	1.3			0.05	1.7	0.1	1436306
Elements (ICP-MS)								
Available Arsenic (As)	mg/kg	350	360	380	2	230	2	1434548

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID		W57898			W57899		
Sampling Date		2007/12/10			2007/12/10		
COC Number		B 33527			B 33527		
Registration #							
	Units	#6 <150MM	RDL	QC Batch	#8 <2mm	RDL	QC Batch

ELEMENTS							
Mercury (Hg)	mg/kg		0.1	1436306	0.71	0.01	1436306
Elements (ICP-MS)							
Available Arsenic (As)	mg/kg	230	2	1435043	130	2	1434548

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

	Units	#8 <150MM	QC Batch	#9 <2mm	QC Batch	#9 <150MM	RDL	QC Batch
Registration #								
COC Number		B 33527		B 33527		B 33527		
Sampling Date		2007/12/10		2007/12/10		2007/12/10		
Maxxam ID		W57900		W57901		W57902		

ELEMENTS								
Mercury (Hg)	mg/kg		1436306	0.06	1436306		0.01	1436306
Elements (ICP-MS)								
Available Arsenic (As)	mg/kg	130	1435043	1900	1434548	2500	2	1435043

CJ MacLellan & Associates Client Project #: 6906-21 Project name: Sampler Initials:

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Maxxam ID		W57903		W57904		
Sampling Date		2007/12/10		2007/12/10		
COC Number		B 33527		B 33527		
Registration #						
	Units	#11 <2mm	QC Batch	#11 <150MM	RDL	QC Batch

ELEMENTS						
Mercury (Hg)	mg/kg	20	1436306		0.5	1436306
Elements (ICP-MS)						
Available Arsenic (As)	mg/kg	730	1434548	700	2	1435043

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

	Units	#12 <2mm	QC Batch	#12 <150MM	#12 <150MM Lab-Dup	RDL	QC Batch
Registration #							
COC Number		B 33527		B 33527	B 33527		
Sampling Date		2007/12/10		2007/12/10	2007/12/10		
Maxxam ID		W57905		W57906	W57906		

ELEMENTS							
Mercury (Hg)	mg/kg	1.4	1436306			0.05	1436306
Elements (ICP-MS)							
Available Arsenic (As)	mg/kg	370	1434548	420	430	2	1435043

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID		W57907		W57908		
Sampling Date		2007/12/10		2007/12/10		
COC Number		B 33527		B 33527		
Registration #						
	Units	#13 <2mm	QC Batch	#13 <150MM	RDL	QC Batch

ELEMENTS						
Mercury (Hg)	mg/kg	13	1436306		0.5	1436306
Elements (ICP-MS)						
Available Arsenic (As)	mg/kg	5700	1434548	5600	2	1435043

CJ MacLellan & Associates Client Project #: 6906-21 Project name: Sampler Initials:

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Maxxam ID		W57909		W57910		
Sampling Date		2007/12/10		2007/12/10		
COC Number		B 33527		B 33527		
Registration #						
	Units	#14 <2mm	QC Batch	#14 <150MM	RDL	QC Batch

ELEMENTS						
Mercury (Hg)	mg/kg	2.4	1436306		0.1	1436306
Elements (ICP-MS)						
Available Arsenic (As)	mg/kg	1700	1434548	1800	2	1435043

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID		W57911		W57912		W57913		
Sampling Date		2007/12/10		2007/12/10		2007/12/10		
COC Number		B 33527		B 33527		B 33527		
Registration #								
	Units	#15 <2mm	QC Batch	#15 <150MM	QC Batch	#19 <2mm	RDL	QC Batch

ELEMENTS								
Mercury (Hg)	mg/kg	0.38	1436306		1436306	0.30	0.01	1436306
Elements (ICP-MS)								
Available Arsenic (As)	mg/kg	1100	1434548	1400	1435043	5300	2	1434548

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID		W57914		W57915		W57916		
Sampling Date		2007/12/10		2007/12/10		2007/12/10		
COC Number		B 33527		B 33527		B 33527		
Registration #								
	Units	#19 <150MM	QC Batch	#20 <2mm	QC Batch	#20 <150MM	RDL	QC Batch

ELEMENTS								
Mercury (Hg)	mg/kg		1436306	0.92	1436306		0.01	1436306
Elements (ICP-MS)								
Available Arsenic (As)	mg/kg	7400	1435043	960	1434548	1300	2	1435043

CJ MacLellan & Associates Client Project #: 6906-21 Project name:

Sampler Initials:

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Maxxam ID		W57917		W57918		
Sampling Date		2007/12/10		2007/12/10		
COC Number		B 33527		B 33527		
Registration #						
	Units	#21 <2mm	QC Batch	#21 <150MM	RDL	QC Batch

ELEMENTS						
Mercury (Hg)	mg/kg	1.1	1436306		0.02	1436306
Elements (ICP-MS)						
Available Arsenic (As)	mg/kg	1400	1434548	1300	2	1435046

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID		W57919		W57920		W57921		
Sampling Date		2007/12/10		2007/12/10		2007/12/10		
COC Number		B 33527		B 33527		B 33527		
Registration #								
	Units	#22 <2mm	QC Batch	#22 <150MM	QC Batch	#23 <2mm	RDL	QC Batch

ELEMENTS								
Mercury (Hg)	mg/kg	1.6	1436307		1436307	2.5	0.1	1436307
Elements (ICP-MS)								
Available Arsenic (As)	mg/kg	1600	1434548	1700	1435046	1900	2	1434548

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

	Units	#23 <150MM	RDL	QC Batch	#24 <2mm	RDL	QC Batch
Registration #							
COC Number		B 33527			B 33527		
Sampling Date		2007/12/10			2007/12/10		
Maxxam ID		W57922			W57923		

ELEMENTS							
Mercury (Hg)	mg/kg		0.1	1436307	0.46	0.01	1436307
Elements (ICP-MS)							
Available Arsenic (As)	mg/kg	2500	2	1435046	290	2	1434548

CJ MacLellan & Associates Client Project #: 6906-21 Project name:

Sampler Initials:

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Maxxam ID		W57924			W57925		
Sampling Date		2007/12/10			2007/12/10		
COC Number		B 33527			B 33527		
Registration #							
	Units	#24 <150MM	RDL	QC Batch	#26 <2mm	RDL	QC Batch

ELEMENTS							
Mercury (Hg)	mg/kg		0.01	1436307	1.4	0.05	1436307
Elements (ICP-MS)							
Available Arsenic (As)	mg/kg	350	2	1435046	1400	2	1434548

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID		W57926		W57927	W57928		
Sampling Date		2007/12/10		2007/12/10	2007/12/10		
COC Number		B 33527		B 33527	B 33527		
Registration #							
	Units	#26 <150MM	RDL	#27 <2mm	#27 <150MM	RDL	QC Batch

ELEMENTS							
Mercury (Hg)	mg/kg		0.05	0.55		0.01	1436307
Elements (ICP-MS)							
Available Arsenic (As)	mg/kg	2100	2	3700	6000	2	1435046

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID		W57929	W57929	W57930		W57932		
Sampling Date		2007/12/10	2007/12/10	2007/12/10		2007/12/10		
COC Number		B 33527	B 33527	B 33527		B 33527		
Registration #								
	Units	#28 <2mm	#28 <2mm	#28 <150MM	RDL	#30-PH	RDL	QC Batch
			Lab-Dup			<2mm		

ELEMENTS								
Mercury (Hg)	mg/kg	2.1			0.1	0.44	0.01	1436307
Elements (ICP-MS)								
Available Arsenic (As)	mg/kg	1000	1000	1300	2	51	2	1435046

CJ MacLellan & Associates Client Project #: 6906-21 Project name: Sampler Initials:

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Maxxam ID		W57933	W57934	W57935	W57936		
Sampling Date		2007/12/10	2007/12/10	2007/12/10	2007/12/10		
COC Number		B 33527	B 33527	B 33527	B 33527		
Registration #							
	Units	#30-PH	#30-0/4	#30-0/4	#30-4/5	RDL	QC Batch
		<150MM	<2mm	<150MM	<2mm		
ELEMENTS							
Mercury (Hg)	mg/kg		0.59		0.05	0.01	1436307
Elements (ICP-MS)							
Available Arsenic (As)	mg/kg	90	150	150	68	2	1435046
RDL = Reportable Dete QC Batch = Quality Co			•	•	•	•	•

Maxxam ID		W57937	W57938	W57939		W57940		
Sampling Date		2007/12/10	2007/12/10	2007/12/10		2007/12/10		
COC Number		B 33527	B 33527	B 33527		B 33527		
Registration #								
	Units	#30-4/5 <150MM	#31 <2mm	#31 <150MM	RDL	#32 <2mm	RDL	QC Batch
			_					
ELEMENTS								
	mg/kg		0.32		0.01	2.2	0.1	1436307
Mercury (Hg)	ا ققا							
Mercury (Hg) Elements (ICP-MS)	9,9							

Maxxam ID		W57941		W57942		W57943		
Sampling Date		2007/12/10		2007/12/10		2007/12/10		
COC Number		B 33527		B 33527		B 33527		
Registration #								
	Units	#32 <150MM	RDL	#33 <2mm	QC Batch	#33 <150MM	RDL	QC Batch
ELEMENTS								
Mercury (Hg)	mg/kg		0.1	0.09	1436307		0.01	1436307
Elements (ICP-MS)								
Available Arsenic (As)	mg/kg	8800	2	960	1435046	1800	2	1435425
RDL = Reportable Dete QC Batch = Quality Co			•		•			•

CJ MacLellan & Associates Client Project #: 6906-21 Project name:

Sampler Initials:

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Maxxam ID		W57944	W57945	W57946	W57946		
Sampling Date		2007/12/10	2007/12/10	2007/12/10	2007/12/10		
COC Number		B 33527	B 33527	B 33527	B 33527		
Registration #							
	Units	#40 <2mm	#40 <150MM	#41 <2mm	#41 <2mm	RDL	QC Batch
					Lab-Dup		

ELEMENTS							
Mercury (Hg)	mg/kg	0.84		0.09	0.09	0.01	1436307
Elements (ICP-MS)							
Available Arsenic (As)	mg/kg	51	77	5800		2	1435425

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID		W57947		W57948	W57949		
Sampling Date		2007/12/10		2007/12/10	2007/12/10		
COC Number		B 33527		B 33527	B 33527		
Registration #							
	Units	#41 <150MM	RDL	#42 <2mm	#42 <150MM	RDL	QC Batch

ELEMENTS							
Mercury (Hg)	mg/kg		0.01	8.6		0.1	1436307
Elements (ICP-MS)							
Available Arsenic (As)	mg/kg	17000	20	4700	4000	2	1435425

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

	Units	#43 <2mm	#43 <150MM	#46 <2mm	#46 <150MM	RDL	QC Batch
Registration #							
COC Number		B 33527	B 33527	B 33527	B 33527		
Sampling Date		2007/12/10	2007/12/10	2007/12/10	2007/12/10		
Maxxam ID		W57950	W57951	W57952	W57953		

ELEMENTS							
Mercury (Hg)	mg/kg	0.18		0.52		0.01	1436307
Elements (ICP-MS)							
Available Arsenic (As)	mg/kg	7100	7800	3500	4800	2	1435425

CJ MacLellan & Associates Client Project #: 6906-21 Project name: Sampler Initials:

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

M ID		14/57054	\M/E70E4	14/57055	1	1				
Maxxam ID		W57954	W57954	W57955						
Sampling Date		2007/12/10	2007/12/10	2007/12/10						
COC Number		B 33527	B 33527	B 33527						
Registration #										
	Units	#47 <2mm	#47 <2mm	#47 <150MM	RDL	QC Batch				
			Lab-Dup							
ELEMENTS										
Mercury (Hg)	mg/kg	1.0	1.0		0.02	1434793				
Elements (ICP-MS)										
Available Arsenic (As)	mg/kg	2500		2300	2	1435425				
RDL = Reportable Detection Limit QC Batch = Quality Control Batch										

				,			_	
Maxxam ID		W57956	W57957			W57958		
Sampling Date		2007/12/10	2007/12/10			2007/12/10		
COC Number		B 33527	B 33527			B 33527		
Registration #								
	Units	#48 <2mm	#48 <150MM	RDL	QC Batch	#49 <2mm	RDL	QC Batch
ELEMENTS								
Mercury (Hg)	mg/kg	0.16		0.01	1436307	1.8	0.1	1437671
Elements (ICP-MS)								
Available Arsenic (As)	mg/kg	2200	4200	2	1435425	1600	2	1435425
RDL = Reportable Dete QC Batch = Quality Co			•	•			•	

Maxxam ID		W57959			W57960	W57960		
Sampling Date		2007/12/10			2007/12/10	2007/12/10		
COC Number		B 33527			B 33527	B 33527		
Registration #								
	Units	#49 <150MM	RDL	QC Batch	#50 <2mm	#50 <2mm	RDL	QC Batch
						Lab-Dup		
ELEMENTS								
Mercury (Hg)	mg/kg		0.1	1437671	0.68		0.01	1436307
Elements (ICP-MS)								
Available Arsenic (As)	mg/kg	1800	2	1435425	130	140	2	1435425
RDL = Reportable Dete QC Batch = Quality Co							•	

CJ MacLellan & Associates Client Project #: 6906-21 Project name: Sampler Initials:

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

	Units	#50 <150MM	RDL	QC Batch
Registration #				
COC Number		B 33527		
Sampling Date		2007/12/10		
Maxxam ID		W57961		

Elements (ICP-MS)				
Available Arsenic (As)	mg/kg	350	2	1435425

CJ MacLellan & Associates Client Project #: 6906-21 Project name: Sampler Initials:

GENERAL COMMENTS

Results relate only to the items tested.

P.O. #: Project name:

Quality Assurance Report Maxxam Job Number: DA7E2184

QA/QC Batch			Date Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Limits
1434547 DLB	MATRIX SPIKE	. arameter	<i>,,,,,,,,,,,,</i>	14.40	<u> </u>	<u> </u>
	[W57889-01]	Available Arsenic (As)	2008/01/02	NC	%	75 - 125
	QC STANDARD	Available Arsenic (As)	2008/01/02	102	%	75 - 125
	Spiked Blank	Available Arsenic (As)	2008/01/02	81	%	75 - 125
	Method Blank	Available Arsenic (As)	2008/01/02	ND, RDL=2	mg/kg	
	RPD [W57889-01]	Available Arsenic (As)	2008/01/02	1.6	%	35
1434548 DLB	MATRIX SPIKE	,				
	[W57895-01]	Available Arsenic (As)	2008/01/02	NC	%	75 - 125
	QC STANDARD	Available Arsenic (As)	2008/01/02	102	%	75 - 125
	Spiked Blank	Available Arsenic (As)	2008/01/02	88	%	75 - 125
	Method Blank	Available Arsenic (As)	2008/01/02	ND, RDL=2	mg/kg	
	RPD [W57895-01]	Available Arsenic (As)	2008/01/02	1.9	%	35
1434793 AMC	MATRIX SPIKE					
	[W57954-01]	Mercury (Hg)	2008/01/02	NA	%	75 - 125
	QC STANDARD	Mercury (Hg)	2008/01/02	98	%	75 - 125
	Spiked Blank	Mercury (Hg)	2008/01/02	106	%	N/A
	Method Blank	Mercury (Hg)	2008/01/02	ND, RDL=0.01	mg/kg	,,
	RPD [W57954-01]	Mercury (Hg)	2008/01/02	2.8	g/\\g %	35
1435043 DLB	MATRIX SPIKE	wordary (rig)	2000/01/02	2.0	70	00
1400040 DED	[W57906-01]	Available Arsenic (As)	2008/01/03	122	%	75 - 125
	QC STANDARD	Available Arsenic (As)	2008/01/03	106	%	75 - 125
	Spiked Blank	Available Arsenic (As)	2008/01/03	94	%	75 - 125
	Method Blank	Available Arsenic (As)	2008/01/03	ND, RDL=2	mg/kg	75 120
	RPD [W57906-01]	Available Arsenic (As)	2008/01/03	1.7	111g/kg %	35
1435046 DLB	MATRIX SPIKE	Available Alsellic (As)	2006/01/03	1.7	70	3:
1433040 DLD	[W57929-01]	Available Arsenic (As)	2008/01/03	NC	%	75 - 125
	QC STANDARD	Available Arsenic (As)	2008/01/03	109	% %	75 - 125 75 - 125
		` ,		93	% %	
	Spiked Blank	Available Arsenic (As)	2008/01/03			75 - 125
	Method Blank	Available Arsenic (As)	2008/01/03	ND, RDL=2 0.5	mg/kg %	21
140E40E DI D	RPD [W57929-01]	Available Arsenic (As)	2008/01/03	0.5	70	38
1435425 DLB	MATRIX SPIKE [W57960-01]	Available Arsenic (As)	2008/01/02	NC	%	75 - 125
	QC STANDARD	Available Arsenic (As) Available Arsenic (As)	2008/01/03 2008/01/03	107	%	75 - 125 75 - 125
		` ,				
	Spiked Blank	Available Arsenic (As)	2008/01/03	99	%	75 - 12
	Method Blank	Available Arsenic (As)	2008/01/03	ND, RDL=2	mg/kg	21
4 4000 47 0 4 0	RPD [W57960-01]	` ,	2008/01/03	7.9	%	35
1436247 CAC	QC STANDARD	Organic Carbon (TOC)	2008/01/07	84	%	75 - 125
	Method Blank	Organic Carbon (TOC)	2008/01/07	ND, RDL=0.2	g/kg	
4 400000 001	RPD [W57897-01]	Organic Carbon (TOC)	2008/01/07	11.7	%	3
1436306 SSI	MATRIX SPIKE	Managery (LLa)	0000/04/07	407	0/	75 40
	[W57864-01]	Mercury (Hg)	2008/01/07	107	%	75 - 125
	QC STANDARD	Mercury (Hg)	2008/01/07	99	%	75 - 12
	Spiked Blank	Mercury (Hg)	2008/01/07	100	%	75 - 12
	Method Blank	Mercury (Hg)	2008/01/07	ND, RDL=0.01	mg/kg	
	RPD [W57864-01]	Mercury (Hg)	2008/01/07	10.8	%	38
1436307 SSI	MATRIX SPIKE					
	[W57946-01]	Mercury (Hg)	2008/01/07	117	%	75 - 12
	QC STANDARD	Mercury (Hg)	2008/01/07	102	%	75 - 12
	Spiked Blank	Mercury (Hg)	2008/01/07	104	%	75 - 12
	Method Blank	Mercury (Hg)	2008/01/07	ND, RDL=0.01	mg/kg	
	RPD [W57946-01]	Mercury (Hg)	2008/01/07	4.5	%	3
1436867 CAC	QC STANDARD	Organic Carbon (TOC)	2008/01/08	94	%	75 - 12
	Method Blank	Organic Carbon (TOC)	2008/01/08	ND, RDL=0.2	g/kg	
	RPD [W57909-01]		2008/01/08	10.7	%	35
	QC STANDARD	Organic Carbon (TOC)	2008/01/09	94	%	75 - 125

P.O. #: Project name:

Quality Assurance Report (Continued)

Maxxam Job Number: DA7E2184

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
1437606 CAC	Method Blank	Organic Carbon (TOC)	2008/01/09	ND, R	DL=0.2	g/kg	
	RPD [W57934-01]	Organic Carbon (TOC)	2008/01/09	0.1		%	35
1437607 CAC	QC STANDARD	Organic Carbon (TOC)	2008/01/10		97	%	75 - 125
	Method Blank	Organic Carbon (TOC)	2008/01/10	ND, R	DL=0.2	g/kg	
	RPD [W57935-01]	Organic Carbon (TOC)	2008/01/10	1.1		%	35
1437608 CAC	QC STANDARD	Organic Carbon (TOC)	2008/01/10		97	%	75 - 125
	Method Blank	Organic Carbon (TOC)	2008/01/10	ND, R	DL=0.2	g/kg	
	RPD [W57960-01]	Organic Carbon (TOC)	2008/01/10	0.5		%	35
1437671 SSI	MATRIX SPIKE	Mercury (Hg)	2008/01/09		95	%	75 - 125
	QC STANDARD	Mercury (Hg)	2008/01/09		99	%	75 - 125
	Spiked Blank	Mercury (Hg)	2008/01/09		102	%	75 - 125
	Method Blank	Mercury (Hg)	2008/01/09	ND, R	DL=0.01	mg/kg	
	RPD	Mercury (Hg)	2008/01/09	NC		%	35
1439047 CAC	QC STANDARD	Organic Carbon (TOC)	2008/01/11		94	%	75 - 125
	Method Blank	Organic Carbon (TOC)	2008/01/11	ND, R	DL=0.2	g/kg	
	RPD	Organic Carbon (TOC)	2008/01/11	17.0		%	35

ND = Not detected N/A = Not Applicable

NC = Non-calculable

RPD = Relative Percent Difference QC Standard = Quality Control Standard

SPIKE = Fortified sample

Your Project #: 6906-21 Your C.O.C. #: B 31200

Attention: Hilda Dunnewold
CJ MacLellan & Associates
65 Beech Hill Rd
Antigonish, NS
B2G 2P9

Report Date: 2008/06/05

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A855319 Received: 2008/05/29, 9:11

Sample Matrix: Water # Samples Received: 3

		Date	Date	Method
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Reference
Carbonate, Bicarbonate and Hydroxide	3	N/A	2008/06/03	
Alkalinity	3	N/A	2008/06/02 ATL SOP 00013 R2	Based on EPA310.2
Chloride	3	N/A	2008/06/02 ATL SOP 00014 R4	Based on SM4500-CI-
Colour	3	N/A	2008/06/03 ATL SOP 00020 R2.	Based on SM2120C
Conductance - water	3	N/A	2008/06/02 ATL SOP 00004	Based on SM2510B
			R3/00006 R3	
Hardness (calculated as CaCO3)	3	N/A	2008/06/03 ATL SOP 00048	Based on SM2340B
Metals Water Diss. OES	3	N/A	2008/06/02 ATL SOP 00025 R3	Based on EPA200.7
Metals Water Diss. MS	3	N/A	2008/06/02 ATL SOP 00024 R3	Based on EPA6020A
Ion Balance (% Difference)	2	N/A	2008/06/04	
Ion Balance (% Difference)	1	N/A	2008/06/05	
Anion and Cation Sum	2	N/A	2008/06/04	
Anion and Cation Sum	1	N/A	2008/06/05	
Nitrogen Ammonia - water	3	N/A	2008/06/03 ATL SOP 00015 R4	Based on USEPA 350.1
Nitrogen - Nitrate + Nitrite	3	N/A	2008/06/03 ATL SOP 00016 R3	Based on USGS - Enz.
Nitrogen - Nitrite	3	N/A	2008/06/02 ATL SOP 00017 R3	Based on USEPA 354.1
Nitrogen - Nitrate (as N)	3	N/A	2008/06/03 ATL SOP 00018 R2	Based on ASTMD3867
Hq	3	N/A	2008/06/02 ATL SOP 00003	Based on EPA150.1
			R3/00005 R3	
Phosphorus - ortho	3	N/A	2008/06/03 ATL SOP 00021 R2	Based on USEPA 365.1
Sat. pH and Langelier Index (@ 20C)	1	N/A	2008/06/03	
Sat. pH and Langelier Index (@ 20C)	1	N/A	2008/06/04	
Sat. pH and Langelier Index (@ 20C)	1	N/A	2008/06/05	
Sat. pH and Langelier Index (@ 4C)	1	N/A	2008/06/03	
Sat. pH and Langelier Index (@ 4C)	1	N/A	2008/06/04	
Sat. pH and Langelier Index (@ 4C)	1	N/A	2008/06/05	
Reactive Silica	3	N/A	2008/06/02 ATL SOP 00022 R2	Based on EPA 366.0
Sulphate	3	N/A	2008/06/03 ATL SOP 00023 R2	Based on EPA 375.4
Total Dissolved Solids (TDS calc)	2	N/A	2008/06/04	
Total Dissolved Solids (TDS calc)	1	N/A	2008/06/05	
Organic carbon - Total (TOC) (1)	3	N/A	2008/06/03 ATL SOP 00037 R2	Based on SM5310C
Turbidity ()	3	N/A	2008/06/02 ATL SOP 00011 R3	based on EPA 180.1

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) SCC/CAEAL

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

MICHELLE HILL, Project Manager Email: Michelle.Hill.Reports@maxxamanalytics.com Phone# (902) 420-0203

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

Total cover pages: 1

CJ MacLellan & Associates Client Project #: 6906-21

RESULTS OF ANALYSES OF WATER

Maxxam ID		Y93272 2008/05/26	Y93272		
Sampling Date COC Number		B 31200	2008/05/26 B 31200		
Registration #		B 01200	B 01200		
	Units	MW#1	MW#1	RDL	QC Batch
			Lab-Dup		

Calculated Parameters					
Anion Sum	me/L	0.380		N/A	1525296
				1	1525296
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	ND 20		1	
Calculated TDS	mg/L	30		<u> </u>	1525300
Carb. Alkalinity (calc. as CaCO3)	mg/L	ND		1	1525292
Cation Sum	me/L	0.380		N/A	1525296
Hardness (CaCO3)	mg/L	11		1	1525294
Ion Balance (% Difference)	%	0.00		N/A	1525295
Langelier Index (@ 20C)	N/A	NC			1525298
Langelier Index (@ 4C)	N/A	NC			1525299
Nitrate (N)	mg/L	0.05		0.05	1525309
Saturation pH (@ 20C)	N/A	NC			1525298
Saturation pH (@ 4C)	N/A	NC			1525299
Inorganics					
Total Alkalinity (Total as CaCO3)	mg/L	ND		5	1527646
Dissolved Chloride (CI)	mg/L	5		1	1527661
Colour	TCU	ND		5	1527671
Nitrate + Nitrite	mg/L	0.05		0.05	1527673
Nitrite (N)	mg/L	ND		0.01	1527675
Nitrogen (Ammonia Nitrogen)	mg/L	ND		0.05	1528199
Total Organic Carbon (C)	mg/L	ND		5	1528284
Orthophosphate (P)	mg/L	ND		0.01	1527672
рН	рН	4.76	4.84	N/A	1527447
Reactive Silica (SiO2)	mg/L	5.5		0.5	1527652
Dissolved Sulphate (SO4)	mg/L	10		2	1527670
Turbidity	NTU	230		1	1527392
Conductivity	uS/cm	57	55	1	1527455

ND = Not detected

NC = Non-calculable

Maxxam ID

CJ MacLellan & Associates Client Project #: 6906-21

Y93274

RESULTS OF ANALYSES OF WATER

Y93273

IVIAAAAIII ID		193273		1 33274		
Sampling Date		2008/05/26		2008/05/26		
COC Number		B 31200		B 31200		
Registration #	Units	MW#2	RDL	MW#3	RDL	QC Batch
	Units	IVI VV#Z	INDL	IVIVV#3	INDL	QC Balcii
Calculated Parameters						
Anion Sum	me/L	4.17	N/A	1.84	N/A	1525296
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	112	1	76	1	1525292
Calculated TDS	mg/L	253	1	108	1	1525300
Carb. Alkalinity (calc. as CaCO3)	mg/L	ND	1	ND	1	1525292
Cation Sum	me/L	4.03	N/A	1.90	N/A	1525296
Hardness (CaCO3)	mg/L	180	1	83	1	1525294
Ion Balance (% Difference)	%	1.71	N/A	1.60	N/A	1525295
Langelier Index (@ 20C)	N/A	-0.265		-0.294		1525298
Langelier Index (@ 4C)	N/A	-0.514		-0.545		1525299
Nitrate (N)	mg/L	0.17	0.05	0.06	0.05	1525309
Saturation pH (@ 20C)	N/A	7.63		7.99		1525298
Saturation pH (@ 4C)	N/A	7.87		8.25		1525299
Inorganics						
Total Alkalinity (Total as CaCO3)	mg/L	110	30	77	5	1527646
Dissolved Chloride (CI)	mg/L	7	1	5	1	1527661
Colour	TCU	ND	5	ND	5	1527671
Nitrate + Nitrite	mg/L	0.17	0.05	0.06	0.05	1527673
Nitrite (N)	mg/L	ND	0.01	ND	0.01	1527675
Nitrogen (Ammonia Nitrogen)	mg/L	ND	0.05	ND	0.05	1528199
Total Organic Carbon (C)	mg/L	ND	30	ND	50	1528284
Orthophosphate (P)	mg/L	0.12	0.01	0.01	0.01	1527672
рН	рН	7.36	N/A	7.70	N/A	1527456
Reactive Silica (SiO2)	mg/L	12	0.5	7.7	0.5	1527652
Dissolved Sulphate (SO4)	mg/L	83	2	8	2	1527670
Turbidity	NTU	>1000	5	>1000	10	1527392
Conductivity	uS/cm	410	1	190	1	1527459

ND = Not detected

CJ MacLellan & Associates Client Project #: 6906-21

ELEMENTS BY ICP-AES (WATER)

Maxxam ID		Y93272	Y93273	Y93274		
Sampling Date		2008/05/26	2008/05/26	2008/05/26		
COC Number		B 31200	B 31200	B 31200		
Registration #						
	Units	MW#1	MW#2	MW#3	RDL	QC Batch

Metals						
Dissolved Calcium (Ca)	mg/L	3.4	54	29	0.1	1527198
Dissolved Magnesium (Mg)	mg/L	0.5	12	2.4	0.1	1527198
Dissolved Phosphorus (P)	mg/L	ND	ND	ND	0.1	1527198
Dissolved Potassium (K)	mg/L	0.8	6.8	4.0	0.1	1527198
Dissolved Sodium (Na)	mg/L	3.1	4.8	3.1	0.1	1527198
Dissolved Sulphur (S)	mg/L	3.4	27	2.6	0.5	1527198

ND = Not detected RDL = Reportable Detection Limit

CJ MacLellan & Associates Client Project #: 6906-21

ELEMENTS BY ICP/MS (WATER)

Maxxam ID		Y93272	Y93272	Y93273		
Sampling Date		2008/05/26	2008/05/26	2008/05/26		
COC Number Registration #		B 31200	B 31200	B 31200	+	
registration #	Units	MW#1	MW#1 Lab-Dup	MW#2	RDL	QC Batch
Metals						
Dissolved Aluminum (AI)	ug/L	230	220	54	10	1527857
Dissolved Antimony (Sb)	ug/L	ND	ND	9	2	1527857
Dissolved Arsenic (As)	ug/L	ND	ND	450	2	1527857
Dissolved Barium (Ba)	ug/L	15	14	20	5	1527857
Dissolved Beryllium (Be)	ug/L	ND	ND	ND	2	1527857
Dissolved Bismuth (Bi)	ug/L	ND	ND	ND	2	1527857
Dissolved Boron (B)	ug/L	5	5	11	5	1527857
Dissolved Cadmium (Cd)	ug/L	0.9	0.9	ND	0.3	1527857
Dissolved Chromium (Cr)	ug/L	ND	ND	ND	2	1527857
Dissolved Cobalt (Co)	ug/L	11	11	19	1	1527857
Dissolved Copper (Cu)	ug/L	6	6	ND	2	1527857
Dissolved Iron (Fe)	ug/L	ND	ND	ND	50	1527857
Dissolved Lead (Pb)	ug/L	ND	ND	ND	0.5	1527857
Dissolved Manganese (Mn)	ug/L	220	220	4800	2	1527857
Dissolved Molybdenum (Mo)	ug/L	ND	ND	3	2	1527857
Dissolved Nickel (Ni)	ug/L	14	14	21	2	1527857
Dissolved Selenium (Se)	ug/L	ND	ND	ND	2	1527857
Dissolved Silver (Ag)	ug/L	ND	ND	ND	0.5	1527857
Dissolved Strontium (Sr)	ug/L	16	16	310	5	1527857
Dissolved Thallium (TI)	ug/L	ND	ND	ND	0.1	1527857
Dissolved Tin (Sn)	ug/L	ND	ND	ND	2	1527857
Dissolved Titanium (Ti)	ug/L	ND	ND	4	2	1527857
Dissolved Uranium (U)	ug/L	ND	ND	0.2	0.1	1527857
Dissolved Vanadium (V)	ug/L	ND	ND	ND	2	1527857
Dissolved Zinc (Zn)	ug/L	98	98	6	5	1527857

ND = Not detected

RDL = Reportable Detection Limit

CJ MacLellan & Associates Client Project #: 6906-21

ELEMENTS BY ICP/MS (WATER)

Maxxam ID		Y93274		
Sampling Date		2008/05/26		
COC Number		B 31200		
Registration #				
	Units	MW#3	RDL	QC Batch

Metals				
Dissolved Aluminum (Al)	ug/L	16	10	1527857
Dissolved Antimony (Sb)	ug/L	ND	2	1527857
Dissolved Arsenic (As)	ug/L	54	2	1527857
Dissolved Barium (Ba)	ug/L	6	5	1527857
Dissolved Beryllium (Be)	ug/L	ND	20	1527857
Dissolved Bismuth (Bi)	ug/L	ND	2	1527857
Dissolved Boron (B)	ug/L	ND	50	1527857
Dissolved Cadmium (Cd)	ug/L	ND	0.3	1527857
Dissolved Chromium (Cr)	ug/L	ND	2	1527857
Dissolved Cobalt (Co)	ug/L	1	1	1527857
Dissolved Copper (Cu)	ug/L	ND	2	1527857
Dissolved Iron (Fe)	ug/L	ND	50	1527857
Dissolved Lead (Pb)	ug/L	ND	0.5	1527857
Dissolved Manganese (Mn)	ug/L	1900	2	1527857
Dissolved Molybdenum (Mo)	ug/L	ND	2	1527857
Dissolved Nickel (Ni)	ug/L	6	2	1527857
Dissolved Selenium (Se)	ug/L	ND	2	1527857
Dissolved Silver (Ag)	ug/L	ND	0.5	1527857
Dissolved Strontium (Sr)	ug/L	83	5	1527857
Dissolved Thallium (TI)	ug/L	ND	0.1	1527857
Dissolved Tin (Sn)	ug/L	ND	2	1527857
Dissolved Titanium (Ti)	ug/L	ND	2	1527857
Dissolved Uranium (U)	ug/L	0.3	0.1	1527857
Dissolved Vanadium (V)	ug/L	ND	2	1527857
Dissolved Zinc (Zn)	ug/L	ND	5	1527857

ND = Not detected

RDL = Reportable Detection Limit

CJ MacLellan & Associates Client Project #: 6906-21

GENERAL COMMENTS

Sample Y93272-01: Elevated detection limit for TOC due to turbidity from sample.

Sample Y93273-01: Elevated detection limit for TOC due to turbidity from sample.

Sample Y93274-01: Elevated detection limit for TOC due to turbidity from sample.

Elevated reporting limits for boron and beryllium due to matrix interference.

Results relate only to the items tested.

P.O. #: Project name:

Quality Assurance Report Maxxam Job Number: DA855319

QA/QC			Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Limits
1527198 MLB	MATRIX SPIKE	Dissolved Calcium (Ca)	2008/06/02	93	%	80 - 120
		Dissolved Magnesium (Mg)	2008/06/02	92	%	80 - 120
		Dissolved Phosphorus (P)	2008/06/02	103	%	80 - 120
		Dissolved Potassium (K)	2008/06/02	102	%	80 - 120
		Dissolved Sodium (Na)	2008/06/02	102	%	80 - 120
		Dissolved Sulphur (S)	2008/06/02	105	%	80 - 120
	QC STANDARD	Dissolved Calcium (Ca)	2008/06/02	96	%	80 - 120
		Dissolved Magnesium (Mg)	2008/06/02	98	%	80 - 120
		Dissolved Phosphorus (P)	2008/06/02	98	%	80 - 120
		Dissolved Potassium (K)	2008/06/02	103	%	80 - 120
		Dissolved Sodium (Na)	2008/06/02	107	%	80 - 120
	Spiked Blank	Dissolved Calcium (Ca)	2008/06/02	94	%	80 - 120
		Dissolved Magnesium (Mg)	2008/06/02	95	%	80 - 120
		Dissolved Phosphorus (P)	2008/06/02	102	%	80 - 120
		Dissolved Potassium (K)	2008/06/02	100	%	80 - 120
		Dissolved Sodium (Na)	2008/06/02	102	%	80 - 120
		Dissolved Sulphur (S)	2008/06/02	99	%	80 - 120
	Method Blank	Dissolved Calcium (Ca)	2008/06/02	ND, RDL=0.1	mg/L	00 120
	Wictioa Blank	Dissolved Magnesium (Mg)	2008/06/02	ND, RDL=0.1	mg/L	
		Dissolved Phosphorus (P)	2008/06/02	ND, RDL=0.1	mg/L	
		Dissolved Potassium (K)	2008/06/02	ND. RDL=0.1	mg/L	
		Dissolved Folassidin (N) Dissolved Sodium (Na)	2008/06/02	ND, RDL=0.1	mg/L	
		Dissolved Solidin (Na) Dissolved Sulphur (S)	2008/06/02	ND, RDL=0.1	mg/L	
	RPD	Dissolved Sdiphur (S) Dissolved Calcium (Ca)	2008/06/02	0.6	1119/L %	25
	KFD	Dissolved Calcium (Ca) Dissolved Magnesium (Mg)	2008/06/02	0.6	%	25 25
		Dissolved Magnesium (Mg) Dissolved Phosphorus (P)	2008/06/02	NC	% %	25 25
		. ,			%	
		Dissolved Potassium (K)	2008/06/02	1.2		25
		Dissolved Sodium (Na)	2008/06/02	0.7	%	25
4507000 CMT	OC CTANDADD	Dissolved Sulphur (S)	2008/06/02	NC	%	25
1527392 SMT	QC STANDARD	Turbidity	2008/06/02	99	% N.T.I.	80 - 120
	Method Blank	Turbidity	2008/06/02	-0.030	NTU	0.5
4507447 OMT	RPD	Turbidity	2008/06/02	NC 100	%	25
1527447 SMT	QC STANDARD	pH	2008/06/02	102	%	80 - 120
	Method Blank	pH	2008/06/02	1.28, RDL=0	pН	
4507455 ONT	RPD [Y93272-01]	pH	2008/06/02	1.7	%	25
1527455 SMT	QC STANDARD	Conductivity	2008/06/02	102	%	80 - 120
	Method Blank	Conductivity	2008/06/02	1, RDL=1	uS/cm	
	RPD [Y93272-01]	Conductivity	2008/06/02	2.5	%	25
1527456 SMT	QC STANDARD	pH	2008/06/02	102	%	80 - 120
	Method Blank	pH	2008/06/02	6.09, RDL=0	pН	
	RPD	pH	2008/06/02	1.4	%	25
1527459 SMT	QC STANDARD	Conductivity	2008/06/02	104	%	80 - 120
	Method Blank	Conductivity	2008/06/02	1, RDL=1	uS/cm	
	RPD	Conductivity	2008/06/02	0.6	%	25
1527646 DLB	MATRIX SPIKE	Total Alkalinity (Total as CaCO3)	2008/06/02	NC	%	80 - 120
	QC STANDARD	Total Alkalinity (Total as CaCO3)	2008/06/02	100	%	80 - 120
	Spiked Blank	Total Alkalinity (Total as CaCO3)	2008/06/02	98	%	80 - 120
	Method Blank	Total Alkalinity (Total as CaCO3)	2008/06/02	ND, RDL=5	mg/L	
	RPD	Total Alkalinity (Total as CaCO3)	2008/06/02	0.4	%	25
1527652 DLB	MATRIX SPIKE	Reactive Silica (SiO2)	2008/06/02	NC	%	80 - 120
	QC STANDARD	Reactive Silica (SiO2)	2008/06/02	103	%	75 - 125
	Spiked Blank	Reactive Silica (SiO2)	2008/06/02	98	%	80 - 120
	Method Blank	Reactive Silica (SiO2)	2008/06/02	ND, RDL=0.5	mg/L	
	RPD	Reactive Silica (SiO2)	2008/06/02	0.8	%	25
	INI D					

P.O. #: Project name:

Quality Assurance Report (Continued)

Maxxam Job Number: DA855319

QA/QC Batch			Date Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Limits
1527661 AHN	QC STANDARD	Dissolved Chloride (CI)	2008/06/02	100	%	80 - 120
102700171111	Spiked Blank	Dissolved Chloride (CI)	2008/06/02	100	%	80 - 120
	Method Blank	Dissolved Chloride (CI)	2008/06/02	ND, RDL=1	mg/L	00 - 120
	RPD	Dissolved Chloride (CI)	2008/06/02	NC	%	25
1527670 ABU	MATRIX SPIKE	Dissolved Sulphate (SO4)	2008/06/03	108	%	80 - 120
1327070 ABO	QC STANDARD	Dissolved Sulphate (SO4)	2008/06/03	105	%	80 - 120
	Spiked Blank	Dissolved Sulphate (SO4)	2008/06/03	103	% %	80 - 120
	Method Blank	Dissolved Sulphate (SO4)	2008/06/03	ND, RDL=2		00 - 120
	RPD	. ,		•	mg/L	21
4507074 ADII		Dissolved Sulphate (SO4)	2008/06/03	0.01	%	25
1527671 ABU	QC STANDARD	Colour	2008/06/03	99 ND DDI 5	% TCU	80 - 120
	Method Blank	Colour	2008/06/03	ND, RDL=5	TCU	0.0
	RPD	Colour	2008/06/03	NC	%	25
1527672 MCN	MATRIX SPIKE	Orthophosphate (P)	2008/06/03	89	%	80 - 120
	QC STANDARD	Orthophosphate (P)	2008/06/03	103	%	80 - 120
	Spiked Blank	Orthophosphate (P)	2008/06/03	99	%	80 - 120
	Method Blank	Orthophosphate (P)	2008/06/03	ND, RDL=0.01	mg/L	
	RPD	Orthophosphate (P)	2008/06/03	NC	%	25
1527673 JPU	MATRIX SPIKE	Nitrate + Nitrite	2008/06/03	101	%	80 - 120
	QC STANDARD	Nitrate + Nitrite	2008/06/03	102	%	80 - 120
	Spiked Blank	Nitrate + Nitrite	2008/06/03	98	%	80 - 120
	Method Blank	Nitrate + Nitrite	2008/06/03	ND, RDL=0.05	mg/L	
	RPD	Nitrate + Nitrite	2008/06/03	NC	%	25
1527675 AHN	MATRIX SPIKE	Nitrite (N)	2008/06/02	96	%	80 - 120
	QC STANDARD	Nitrite (N)	2008/06/02	105	%	80 - 120
	Spiked Blank	Nitrite (N)	2008/06/02	101	%	80 - 120
	Method Blank	Nitrite (N)	2008/06/02	ND, RDL=0.01	mg/L	00 120
	RPD	Nitrite (N)	2008/06/02	NC	//////////////////////////////////////	25
1527857 MPT	MATRIX SPIKE	Nitifie (N)	2000/00/02	NC	/0	20
1327637 WIF I	[Y93273-01]	Dissolved Aluminum (AI)	2008/06/02	NC	%	80 - 120
	[1932/3-01]	` '			%	
		Dissolved Antimony (Sb)	2008/06/02	102		80 - 120
		Dissolved Arsenic (As)	2008/06/02	NC	%	80 - 120
		Dissolved Barium (Ba)	2008/06/02	99	%	80 - 120
		Dissolved Beryllium (Be)	2008/06/02	102	%	80 - 120
		Dissolved Bismuth (Bi)	2008/06/02	85	%	80 - 120
		Dissolved Boron (B)	2008/06/02	94	%	80 - 120
		Dissolved Cadmium (Cd)	2008/06/02	102	%	80 - 120
		Dissolved Chromium (Cr)	2008/06/02	93	%	80 - 120
		Dissolved Cobalt (Co)	2008/06/02	95	%	80 - 120
		Dissolved Copper (Cu)	2008/06/02	89	%	80 - 120
		Dissolved Lead (Pb)	2008/06/02	93	%	80 - 120
		Dissolved Manganese (Mn)	2008/06/02	NC	%	80 - 120
		Dissolved Molybdenum (Mo)	2008/06/02	101	%	80 - 120
		Dissolved Nickel (Ni)	2008/06/02	92	%	80 - 120
		Dissolved Selenium (Se)	2008/06/02	111	%	80 - 120
		Dissolved Silver (Ag)	2008/06/02	77 (1)		80 - 120
		Dissolved Strontium (Sr)	2008/06/02	NC NC	%	80 - 120
		Dissolved Strottlum (SI)	2008/06/02	92	%	80 - 120
		` '				
		Dissolved Tin (Sn)	2008/06/02	100	%	80 - 120
		Dissolved Titanium (Ti)	2008/06/02	95	%	80 - 120
		Dissolved Uranium (U)	2008/06/02	94	%	80 - 12
		Dissolved Vanadium (V)	2008/06/02	98	%	80 - 120
		Dissolved Zinc (Zn)	2008/06/02	109	%	80 - 120
	QC STANDARD	Dissolved Aluminum (AI)	2008/06/02	101	%	80 - 120
		Dissolved Antimony (Sb)	2008/06/02	108	%	80 - 120
		Dissolved Arsenic (As)	2008/06/02	105	%	80 - 120

P.O. #: Project name:

Quality Assurance Report (Continued)

Maxxam Job Number: DA855319

QA/QC			Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Limits
1527857 MPT	QC STANDARD	Dissolved Barium (Ba)	2008/06/02	99	%	80 - 120
		Dissolved Beryllium (Be)	2008/06/02	108	%	80 - 120
		Dissolved Boron (B)	2008/06/02	101	%	80 - 120
		Dissolved Cadmium (Cd)	2008/06/02	104	%	80 - 120
		Dissolved Chromium (Cr)	2008/06/02	96	%	80 - 120
		Dissolved Cobalt (Co)	2008/06/02	99	%	80 - 120
		` ,	2008/06/02	96	% %	80 - 120
		Dissolved Copper (Cu)				
		Dissolved Lead (Pb)	2008/06/02	97	%	80 - 120
		Dissolved Manganese (Mn)	2008/06/02	103	%	80 - 120
		Dissolved Molybdenum (Mo)	2008/06/02	103	%	80 - 120
		Dissolved Nickel (Ni)	2008/06/02	98	%	80 - 120
		Dissolved Selenium (Se)	2008/06/02	117	%	80 - 120
		Dissolved Silver (Ag)	2008/06/02	106	%	80 - 120
		Dissolved Strontium (Sr)	2008/06/02	98	%	80 - 120
		Dissolved Vanadium (V)	2008/06/02	104	%	80 - 120
		Dissolved Zinc (Zn)	2008/06/02	112	%	80 - 120
	Spiked Blank	Dissolved Aluminum (AI)	2008/06/02	103	%	80 - 120
		Dissolved Antimony (Sb)	2008/06/02	94	%	80 - 120
		Dissolved Arsenic (As)	2008/06/02	96	%	80 - 120
		Dissolved Barium (Ba)	2008/06/02	94	%	80 - 120
		Dissolved Beryllium (Be)	2008/06/02	96	%	80 - 120
		Dissolved Bismuth (Bi)	2008/06/02	96	%	80 - 120
				95 95		
		Dissolved Boron (B)	2008/06/02		%	80 - 120
		Dissolved Cadmium (Cd)	2008/06/02	94	%	80 - 120
		Dissolved Chromium (Cr)	2008/06/02	94	%	80 - 120
		Dissolved Cobalt (Co)	2008/06/02	96	%	80 - 120
		Dissolved Copper (Cu)	2008/06/02	94	%	80 - 120
		Dissolved Lead (Pb)	2008/06/02	92	%	80 - 120
		Dissolved Manganese (Mn)	2008/06/02	104	%	80 - 120
		Dissolved Molybdenum (Mo)	2008/06/02	94	%	80 - 120
		Dissolved Nickel (Ni)	2008/06/02	96	%	80 - 120
		Dissolved Selenium (Se)	2008/06/02	94	%	80 - 120
		Dissolved Silver (Ag)	2008/06/02	96	%	80 - 120
		Dissolved Strontium (Sr)	2008/06/02	96	%	80 - 120
		Dissolved Thallium (TI)	2008/06/02	94	%	80 - 120
		Dissolved Tin (Sn)	2008/06/02	95	%	80 - 120
		Dissolved Titanium (Ti)	2008/06/02	93	%	80 - 120
		Dissolved Triallium (Tr) Dissolved Uranium (U)	2008/06/02	95	%	80 - 120
		Dissolved Granium (0) Dissolved Vanadium (V)	2008/06/02	94	% %	80 - 120
		` /				
	Made at Diagle	Dissolved Zinc (Zn)	2008/06/02	103	%	80 - 120
	Method Blank	Dissolved Aluminum (Al)	2008/06/02	ND, RDL=10	ug/L	
		Dissolved Antimony (Sb)	2008/06/02	ND, RDL=2	ug/L	
		Dissolved Arsenic (As)	2008/06/02	ND, RDL=2	ug/L	
		Dissolved Barium (Ba)	2008/06/02	ND, RDL=5	ug/L	
		Dissolved Beryllium (Be)	2008/06/02	ND, RDL=2	ug/L	
		Dissolved Bismuth (Bi)	2008/06/02	ND, RDL=2	ug/L	
		Dissolved Boron (B)	2008/06/02	ND, RDL=5	ug/L	
		Dissolved Cadmium (Cd)	2008/06/02	ND, RDL=0.3	ug/L	
		Dissolved Chromium (Cr)	2008/06/02	ND, RDL=2	ug/L	
		Dissolved Cobalt (Co)	2008/06/02	ND, RDL=1	ug/L	
		Dissolved Copper (Cu)	2008/06/02	ND, RDL=2	ug/L	
		Dissolved Iron (Fe)	2008/06/02	ND, RDL=50	ug/L	
		Dissolved from (Fe) Dissolved Lead (Pb)	2008/06/02	ND, RDL=0.5	ug/L ug/L	
		Dissolved Lead (Fb) Dissolved Manganese (Mn)	2008/06/02	ND, RDL=0.5 ND, RDL=2	Ū	
					ug/L	
		Dissolved Molybdenum (Mo)	2008/06/02	ND, RDL=2	ug/L	

CJ MacLellan & Associates Attention: Hilda Dunnewold Client Project #: 6906-21

P.O. #: Project name:

Quality Assurance Report (Continued)

Maxxam Job Number: DA855319

QA/QC			Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Limits
1527857 MPT	Method Blank	Dissolved Nickel (Ni)	2008/06/02	ND, RDL=2	ug/L	
		Dissolved Selenium (Se)	2008/06/02	ND, RDL=2	ug/L	
		Dissolved Silver (Ag)	2008/06/02	ND, RDL=0.5	ug/L	
		Dissolved Strontium (Sr)	2008/06/02	ND, RDL=5	ug/L	
		Dissolved Thallium (TI)	2008/06/02	ND, RDL=0.1	ug/L	
		Dissolved Tin (Sn)	2008/06/02	ND, RDL=2	ug/L	
		Dissolved Titanium (Ti)	2008/06/02	ND, RDL=2	ug/L	
		Dissolved Uranium (U)	2008/06/02	ND, RDL=0.1	ug/L	
		Dissolved Vanadium (V)	2008/06/02	ND, RDL=2	ug/L	
		Dissolved Zinc (Zn)	2008/06/02	ND, RDL=5	ug/L	
	RPD [Y93272-01]	Dissolved Aluminum (AI)	2008/06/02	0.3	%	25
		Dissolved Antimony (Sb)	2008/06/02	NC	%	25
		Dissolved Arsenic (As)	2008/06/02	NC	%	25
		Dissolved Barium (Ba)	2008/06/02	NC	%	25
		Dissolved Beryllium (Be)	2008/06/02	NC	%	25
		Dissolved Bismuth (Bi)	2008/06/02	NC	%	25
		Dissolved Boron (B)	2008/06/02	NC	%	25
		Dissolved Cadmium (Cd)	2008/06/02	NC	%	25
		Dissolved Chromium (Cr)	2008/06/02	NC	%	25
		Dissolved Cobalt (Co)	2008/06/02	1.6	%	25
		Dissolved Copper (Cu)	2008/06/02	NC	%	25
		Dissolved Iron (Fe)	2008/06/02	NC	%	25
		Dissolved Lead (Pb)	2008/06/02	NC	%	25
		Dissolved Manganese (Mn)	2008/06/02	1.8	%	25
		Dissolved Manganese (Min) Dissolved Molybdenum (Mo)	2008/06/02	NC	%	25 25
		Dissolved Nickel (Ni)	2008/06/02	3.5	%	25
		Dissolved Nickel (Ni) Dissolved Selenium (Se)	2008/06/02	NC	% %	25 25
		Dissolved Seleman (Se) Dissolved Silver (Ag)	2008/06/02	NC	% %	25 25
		Dissolved Strontium (Sr)		NC NC	%	25 25
		Dissolved Strottlum (SI) Dissolved Thallium (TI)	2008/06/02 2008/06/02	NC NC	% %	25 25
		` ,			%	25 25
		Dissolved Tin (Sn)	2008/06/02	NC NC	% %	
		Dissolved Titanium (Ti)	2008/06/02	NC NC		25
		Dissolved Uranium (U)	2008/06/02	NC	%	25
		Dissolved Vanadium (V)	2008/06/02	NC	%	25
4500400 1401	MATRIX ORUSE	Dissolved Zinc (Zn)	2008/06/02	0.7	%	25
1528199 MCN	MATRIX SPIKE	Nitrogen (Ammonia Nitrogen)	2008/06/03	94	%	80 - 120
	QC STANDARD	Nitrogen (Ammonia Nitrogen)	2008/06/03	102	%	80 - 120
	Spiked Blank	Nitrogen (Ammonia Nitrogen)	2008/06/03	100	%	80 - 120
	Method Blank	Nitrogen (Ammonia Nitrogen)	2008/06/03	ND, RDL=0.05	mg/L	
	RPD	Nitrogen (Ammonia Nitrogen)	2008/06/03	NC	%	25
1528284 AHN	MATRIX SPIKE	Total Organic Carbon (C)	2008/06/03	110	%	75 - 125
	QC STANDARD	Total Organic Carbon (C)	2008/06/03	101	%	80 - 120
	Spiked Blank	Total Organic Carbon (C)	2008/06/03	102	%	75 - 125
	Method Blank	Total Organic Carbon (C)	2008/06/03	ND, RDL=0.5	mg/L	
	RPD	Total Organic Carbon (C)	2008/06/03	NC	%	25

ND = Not detected

NC = Non-calculable

RPD = Relative Percent Difference

QC Standard = Quality Control Standard

SPIKE = Fortified sample

(1) Recovery is within acceptance criteria.

Your Project #: 6906-21 Your C.O.C. #: B 42232

Attention: Hilda Dunnewold
CJ MacLellan & Associates
65 Beech Hill Rd
Antigonish, NS
B2G 2P9

Report Date: 2008/06/10

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A856148 Received: 2008/05/30, 10:04

Sample Matrix: Soil # Samples Received: 17

		Date	Date	Method
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Reference
Mercury (CVAA)	16	N/A	2008/06/04 ATL SOP 00026 R3	Based on EPA245.5
Mercury (CVAA)	1	N/A	2008/06/06 ATL SOP 00026 R3	Based on EPA245.5
Metals Solid Avail. MS - N-per, <150 um	17	N/A	2008/06/04 ATL SOP 00024 R3	Based on EPA6020A
Metals Solid Avail. MS - N-per	17	N/A	2008/06/04 ATL SOP 00024 R3	Based on EPA6020A
Total Organic Carbon in Soil (<150 um)	16	N/A	2008/06/05 ATL SOP 00044 R2	LECO 203-601-224
Total Organic Carbon in Soil (<150 um)	1	N/A	2008/06/10 ATL SOP 00044 R2	LECO 203-601-224
Total Organic Carbon in Soil	3	N/A	2008/06/04 ATL SOP 00044 R2	LECO 203-601-224
Total Organic Carbon in Soil	14	N/A	2008/06/05 ATL SOP 00044 R2	LECO 203-601-224

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

MICHELLE HILL, Project Manager

Email: Michelle.Hill.Reports@maxxamanalytics.com

Phone# (902) 420-0203

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

Total cover pages: 1

CJ MacLellan & Associates Client Project #: 6906-21

RESULTS OF ANALYSES OF SOIL

Maxxam ID		Y97346	Y97346		Y98554		
Sampling Date		2008/05/26	2008/05/26		2008/05/26		
COC Number		B 42232	B 42232		B 42232		
Registration #							
	Units	25	25 Lab-Dup	RDL	34	RDL	QC Batch

Inorganics							
Organic Carbon (TOC)	g/kg	26		0.5	17	0.9	1528866
< 150 um Organic Carbon (TOC)	g/kg	27	27	0.7	21	0.5	1529953

RDL = Reportable Detection Limit Lab-Dup = Laboratory Initiated Duplicate QC Batch = Quality Control Batch

Maxxam ID		Y98555			Y98556		
Sampling Date		2008/05/26			2008/05/26		
COC Number		B 42232			B 42232		
Registration #							
	Units	35	RDL	QC Batch	37	RDL	QC Batch

Inorganics							
Organic Carbon (TOC)	g/kg	17	0.5	1528866	17	0.5	1529954
< 150 um Organic Carbon (TOC)	g/kg	17	0.4	1529953	14	0.3	1529953

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID		Y98556		Y98557		
Sampling Date		2008/05/26		2008/05/26		
COC Number		B 42232		B 42232		
Registration #						
	Units	37 Lab-Dup	RDL	38-PH	RDL	QC Batch

Inorganics						
Organic Carbon (TOC)	g/kg	17	0.5	31	0.4	1529954
< 150 um Organic Carbon (TOC)	g/kg		0.3	24	0.2	1529953

RDL = Reportable Detection Limit Lab-Dup = Laboratory Initiated Duplicate QC Batch = Quality Control Batch

CJ MacLellan & Associates Client Project #: 6906-21

RESULTS OF ANALYSES OF SOIL

Maxxam ID		Y98558		Y98559		
Sampling Date		2008/05/26		2008/05/26		
COC Number		B 42232		B 42232		
Registration #						
	Units	38-0/2	RDL	38-2/5	RDL	QC Batch

Inorganics						
Organic Carbon (TOC)	g/kg	75	0.6	28	0.5	1529954
< 150 um Organic Carbon (TOC)	g/kg	57	0.6	20	0.6	1529953

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID		Y98560		Y98561		
Sampling Date		2008/05/26		2008/05/26		
COC Number		B 42232		B 42232		
Registration #						
	Units	39-PH	RDL	39-0/3	RDL	QC Batch

Inorganics						
Organic Carbon (TOC)	g/kg	91	0.7	190	2	1529954
< 150 um Organic Carbon (TOC)	g/kg	47	0.5	110	1	1529953

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID		Y98562			Y98563		
Sampling Date		2008/05/26			2008/05/26		
COC Number		B 42232			B 42232		
Registration #							
	Units	39-3/5	RDL	QC Batch	44	RDL	QC Batch

Inorganics							
Organic Carbon (TOC)	g/kg	14	0.3	1529954	0.4	0.2	1529954
< 150 um Organic Carbon (TOC)	g/kg	12	0.4	1529953	0.7	0.2	1532491

CJ MacLellan & Associates Client Project #: 6906-21

RESULTS OF ANALYSES OF SOIL

Maxxam ID		Y98563	Y98564		
Sampling Date		2008/05/26	2008/05/26		
COC Number		B 42232	B 42232		
Registration #					
	Units	44 Lab-Dup	45	RDL	QC Batch

Inorganics					
Organic Carbon (TOC)	g/kg		0.9	0.2	1529954
< 150 um Organic Carbon (TOC)	g/kg	0.6	1.4	0.2	1532491

RDL = Reportable Detection Limit Lab-Dup = Laboratory Initiated Duplicate QC Batch = Quality Control Batch

Maxxam ID		Y98565	Y98565		
Sampling Date		2008/05/26	2008/05/26		
COC Number		B 42232	B 42232		
Registration #					
	Units	51	51 Lab-Dup	RDL	QC Batch

Inorganics					
Organic Carbon (TOC)	g/kg	47		0.4	1529954
< 150 um Organic Carbon (TOC)	g/kg	37	39	1	1533533

RDL = Reportable Detection Limit Lab-Dup = Laboratory Initiated Duplicate QC Batch = Quality Control Batch

Maxxam ID		Y98566		Y98567		
Sampling Date		2008/05/26		2008/05/26		
COC Number		B 42232		B 42232		
Registration #						
	Units	52	RDL	53	RDL	QC Batch

Inorganics						
Organic Carbon (TOC)	g/kg	65	0.5	40	0.3	1529954
< 150 um Organic Carbon (TOC)	g/kg	60	0.6	39	0.4	1529953

CJ MacLellan & Associates Client Project #: 6906-21

RESULTS OF ANALYSES OF SOIL

Maxxam ID		Y98568		Y98569		
Sampling Date		2008/05/26		2008/05/26		
COC Number		B 42232		B 42232		
Registration #						
	Units	54	RDL	55	RDL	QC Batch

Inorganics						
Organic Carbon (TOC)	g/kg	290	3	29	0.4	1529954
< 150 um Organic Carbon (TOC)	g/kg	210	2	22	0.3	1529953

CJ MacLellan & Associates Client Project #: 6906-21

MERCURY BY COLD VAPOUR AA (SOIL)

Maxxam ID		Y97346	Y98554	Y98555	Y98556	Y98557		
Sampling Date		2008/05/26	2008/05/26	2008/05/26	2008/05/26	2008/05/26		
COC Number		B 42232						
Registration #								
	Units	25	34	35	37	38-PH	RDL	QC Batch

Metals								
Mercury (Hg)	mg/kg	0.44	0.02	0.31	0.05	0.08	0.01	1528923

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID		Y98558	Y98559	Y98560	Y98561	Y98562		
Sampling Date		2008/05/26	2008/05/26	2008/05/26	2008/05/26	2008/05/26		
COC Number		B 42232						
Registration #								
	Units	38-0/2	38-2/5	39-PH	39-0/3	39-3/5	RDL	QC Batch

Metals								
Mercury (Hg)	mg/kg	0.29	0.11	0.18	0.37	0.06	0.01	1528926

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID		Y98563		Y98564		Y98565		
Sampling Date		2008/05/26		2008/05/26		2008/05/26		
COC Number		B 42232		B 42232		B 42232		
Registration #								
	Units	44	QC Batch	45	QC Batch	51	RDL	QC Batch

Metals								
Mercury (Hg)	mg/kg	0.17	1528926	0.33	1531178	0.32	0.01	1528926

CJ MacLellan & Associates Client Project #: 6906-21

MERCURY BY COLD VAPOUR AA (SOIL)

Maxxam ID		Y98566	Y98567	Y98568	Y98569		
Sampling Date		2008/05/26	2008/05/26	2008/05/26	2008/05/26		
COC Number		B 42232	B 42232	B 42232	B 42232		
Registration #							
	Units	52	53	54	55	RDL	QC Batch

Metals							
Mercury (Hg)	mg/kg	0.17	0.07	0.57	0.11	0.01	1528926

CJ MacLellan & Associates Client Project #: 6906-21

ELEMENTS BY ICP/MS (SOIL)

Maxxam ID		Y97346	Y97346	Y98554	Y98555		
Sampling Date		2008/05/26	2008/05/26	2008/05/26	2008/05/26		
COC Number		B 42232	B 42232	B 42232	B 42232		
Registration #							
	Units	25	25 Lab-Dup	34	35	RDL	QC Batch

Metals							
available (<150 um) Arsenic (As)	mg/kg	980		51	360	2	1529664
Available Arsenic (As)	mg/kg	770	820	35	410	2	1529657

RDL = Reportable Detection Limit Lab-Dup = Laboratory Initiated Duplicate QC Batch = Quality Control Batch

Maxxam ID		Y98556	Y98557	Y98558	Y98559		
Sampling Date		2008/05/26	2008/05/26	2008/05/26	2008/05/26		
COC Number		B 42232	B 42232	B 42232	B 42232		
Registration #							
	Units	37	38-PH	38-0/2	38-2/5	RDL	QC Batch

Metals							
available (<150 um) Arsenic (As)	mg/kg	190	64	78	67	2	1529664
Available Arsenic (As)	mg/kg	180	70	91	79	2	1529657

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID		Y98560	Y98561	Y98562	Y98563		
Sampling Date		2008/05/26	2008/05/26	2008/05/26	2008/05/26		
COC Number		B 42232	B 42232	B 42232	B 42232		
Registration #							
	Units	39-PH	39-0/3	39-3/5	44	RDL	QC Batch

Metals							
available (<150 um) Arsenic (As)	mg/kg	17	61	210	3000	2	1529664
Available Arsenic (As)	mg/kg	20	61	240	1200	2	1529657

CJ MacLellan & Associates Client Project #: 6906-21

ELEMENTS BY ICP/MS (SOIL)

Maxxam ID		Y98563	Y98564	Y98565	Y98566		
Sampling Date		2008/05/26	2008/05/26	2008/05/26	2008/05/26		
COC Number		B 42232	B 42232	B 42232	B 42232		
Registration #							
	Units	44 Lab-Dup	45	51	52	RDL	QC Batch

Metals							
available (<150 um) Arsenic (As)	mg/kg	3200	8700	2500	110	2	1529664
Available Arsenic (As)	mg/kg		3700	2000	120	2	1529657

RDL = Reportable Detection Limit Lab-Dup = Laboratory Initiated Duplicate QC Batch = Quality Control Batch

Maxxam ID		Y98567	Y98568	Y98569		
Sampling Date		2008/05/26	2008/05/26	2008/05/26		
COC Number		B 42232	B 42232	B 42232		
Registration #						
	Units	53	54	55	RDL	QC Batch

Metals						
available (<150 um) Arsenic (As)	mg/kg	1200	51	68	2	1529664
Available Arsenic (As)	mg/kg	1200	69	76	2	1529657

CJ MacLellan & Associates Client Project #: 6906-21

GENERAL COMMENTS

Results relate only to the items tested.

CJ MacLellan & Associates Attention: Hilda Dunnewold Client Project #: 6906-21

P.O. #: Project name:

Quality Assurance Report Maxxam Job Number: DA856148

QA/QC			Date			
Batch		_	Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Limits
1528866 CAC	QC STANDARD	Organic Carbon (TOC)	2008/06/04	94	%	75 - 125
	Method Blank	Organic Carbon (TOC)	2008/06/04	ND, RDL=0.2	g/kg	
	RPD	Organic Carbon (TOC)	2008/06/04	5.5	%	35
1528923 SSI	MATRIX SPIKE	Mercury (Hg)	2008/06/04	98	%	75 - 125
	QC STANDARD	Mercury (Hg)	2008/06/04	94	%	75 - 125
	Spiked Blank	Mercury (Hg)	2008/06/04	104	%	75 - 125
	Method Blank	Mercury (Hg)	2008/06/04	ND, RDL=0.01	mg/kg	
	RPD	Mercury (Hg)	2008/06/04	NC	%	35
1528926 SSI	QC STANDARD	Mercury (Hg)	2008/06/04	82	%	75 - 125
	Spiked Blank	Mercury (Hg)	2008/06/04	106	%	75 - 125
	Method Blank	Mercury (Hg)	2008/06/04	ND, RDL=0.01	mg/kg	
1529657 MPT	MATRIX SPIKE					
	[Y97346-02]	Available Arsenic (As)	2008/06/04	NC	%	75 - 125
	QC STANDARD	Available Arsenic (As)	2008/06/04	111	%	75 - 125
	Spiked Blank	Available Arsenic (As)	2008/06/04	95	%	75 - 125
	Method Blank	Available Arsenic (As)	2008/06/04	ND, RDL=2	mg/kg	
	RPD [Y97346-02]	Available Arsenic (As)	2008/06/04	6.9	%	35
1529664 MPT	MATRIX SPIKE					
	[Y98563-01]	available (<150 um) Arsenic (As)	2008/06/04	NC	%	75 - 125
	QC STANDARD	available (<150 um) Arsenic (As)	2008/06/04	109	%	75 - 125
	Spiked Blank	available (<150 um) Arsenic (As)	2008/06/04	93	%	75 - 125
	Method Blank	available (<150 um) Arsenic (As)	2008/06/04	ND, RDL=2	mg/kg	
	RPD [Y98563-01]	available (<150 um) Arsenic (As)	2008/06/04	5.8	%	35
1529953 CAC	QC STANDARD	< 150 um Organic Carbon (TOC)	2008/06/05	94	%	75 - 125
	Method Blank	< 150 um Organic Carbon (TOC)	2008/06/05	ND, RDL=0.2	g/kg	
	RPD [Y97346-01]	< 150 um Organic Carbon (TOC)	2008/06/05	2.4	%	35
1529954 CAC	QC STANDARD	Organic Carbon (TOC)	2008/06/05	97	%	75 - 125
	Method Blank	Organic Carbon (TOC)	2008/06/05	ND, RDL=0.2	g/kg	
	RPD [Y98556-02]	Organic Carbon (TOC)	2008/06/05	0.2	%	35
1531178 SSI	MATRIX SPIKE	Mercury (Hg)	2008/06/06	103	%	75 - 125
	QC STANDARD	Mercury (Hg)	2008/06/06	81	%	75 - 125
	Spiked Blank	Mercury (Hg)	2008/06/06	102	%	75 - 125
	Method Blank	Mercury (Hg)	2008/06/06	ND, RDL=0.01	mg/kg	
	RPD	Mercury (Hg)	2008/06/06	NC	%	35
1532491 CAC	QC STANDARD	< 150 um Organic Carbon (TOC)	2008/06/09	100	%	75 - 125
	Method Blank	< 150 um Organic Carbon (TOC)	2008/06/09	ND, RDL=0.2	g/kg	
	RPD [Y98563-01]	< 150 um Organic Carbon (TOC)	2008/06/09	NC	%	35
1533533 CAC	QC STANDARD	< 150 um Organic Carbon (TOC)	2008/06/10	91	%	75 - 125
	Method Blank	< 150 um Organic Carbon (TOC)	2008/06/10	ND, RDL=0.2	g/kg	
	RPD [Y98565-01]	< 150 um Organic Carbon (TOC)	2008/06/10	6.5	% %	35

ND = Not detected NC = Non-calculable

RPD = Relative Percent Difference

QC Standard = Quality Control Standard

SPIKE = Fortified sample

FINAL REPORT

MODIFIED PHASE II ENVIRONMENTAL SITE ASSESSMENT FORMER GOLD MINE SITE MONTAGUE MINES, NOVA SCOTIA

Prepared for

Nova Scotia Department of Transportation and Infrastructure Renewal 1672 Granville Street P.O. Box 186 Halifax, NS B3J 2N2

By

Maritime Testing (1985) Limited 97 Troop Avenue Dartmouth, Nova Scotia B3B 2A7

January 19, 2009

MTL PROJECT NO. 7442

MARITIME TESTING (1985) LIMITED 97 Troop Avenue, Dartmouth NS B3B 2A7 Phone (902) 468-6486 - Fax (902) 468-4919 Website http://www.maritimetesting.ca

TABLE OF CONTENTS

		Page
EXEC	CUTIVE SUMMARY	i
1.0	INTRODUCTION	1
2.0	REGULATORY GUIDELINES	1
3.0	SITE DESCRIPTION	2
4.0	SCOPE OF WORK AND METHODOLOGY	2
4.1	Summary of Observations on Land Use and Human Receptors	2
4.2	Scope of Work for Modified Phase II ESA	3
4.3	Soil Sampling Program	
4.4	Borehole Drilling Program	5
4.5	Monitor Well Installation and Groundwater Sampling	6
4.6	Decommissioning of Monitoring Wells	7
4.7	Laboratory Analysis	
5.0	RESULTS	
5.1	Geologic Conditions	
5	.1.1 Fill	9
5	.1.2 Till	10
_	.1.3 Bedrock	
5.2	Groundwater Conditions	
5.3	Analysis of Mercury, Arsenic and Total Organic Carbon	
_	.3.1 200 mm Soil Fraction.	
5	.3.2 0.15mm (or 150 micron) Soil Fraction	
	.3.3 Dry Weight Calculations and Moisture Content for Soil Samples	
_	.3.4 1F-MS and Group 7AR Results	
_	.3.5 Groundwater Results	
6.0	CONCLUSIONS	
7.0	CLOSING	16

LIST OF FIGURES

Figure 1	l – S	site	Location	M	ap
----------	-------	------	----------	---	----

- Figure 2 Soil Sample Location with Monitor Wells and Inferred Groundwater Flow Diagram
- Figure 3 Site Plan with Mercury Results (2mm fraction)
- Figure 4 Site Plan with Arsenic and Total Organic Carbon Results (2mm fraction)
- Figure 5 Site Plan with Arsenic and Total Organic Carbon Results (150 micron fraction)

LIST OF APPENDICES

Appendix A – Figures

Appendix B – Site Photos (See electronic files)

Appendix C – Table of Individual Soil Sample Data and Original Field Observation Sheets

Appendix D – Explanation of Symbols and Terms, Borehole and Monitor Well Logs

Appendix E – Laboratory Analytical Results – Mercury, Arsenic and Total Organic Carbon

Appendix F – Laboratory Certificates of Analysis and Chain of Custody Forms

LIST OF TABLES

Table 1 – Relative Elevations of Monitoring Wells and Groundwater

Appendix C

Table C1 – Individual Soil Sample Data Sheets

Appendix E

Table E2 - Mercury, Arsenic and Total Organic Carbon Results in 2mm Soil Fraction

Table E3 – Arsenic and Total Organic Carbon Results in 150 micron Soil Fraction

Table E4 - Dry Weight Calculations and Moisture Content Analysis in Soil

Table E5 – 1F-MS and Group 7AR Mercury and Arsenic Results in Tailings

Table E6 – Mercury and Arsenic Results in Groundwater Samples

EXECUTIVE SUMMARY

Between January 16, 2008 and June 11, 2008, Maritime Testing (1985) Limited conducted a Modified Phase II Environmental Site Assessment (ESA) of the former Montague Mines gold mine property in Waverley, Halifax County, Nova Scotia. The Modified Phase II Environmental Site Assessment was performed as per the Request for Proposal (RFP) dated October 18, 2008 and further requests for additional testing received from the Nova Scotia Department of Transportation and Infrastructure Renewal.

Several areas of concern were identified in the RFP, including:

- Elevated arsenic and/or mercury in tailings samples from the site;
- Proximity of residential homes to the subject site and potential health implications; and
- Lack of delineation of the metals contamination toward the residential homes.

The results of the Modified Phase II ESA have identified elevated levels of arsenic and/or mercury in additional soil and/or groundwater sampling sites in excess of the CCME residential guidelines. A summary of Modified Phase II findings at the site follows:

- Elevated mercury concentrations (generally >1 mg/kg Hg) in the 2mm soil fraction appear to be associated with the locations of the former Stamp Mill, in the central tailings area and in areas downgradient of the pre-identified tailings area. Lower values (generally <1 mg/kg Hg) have been documented in the wooded areas east of the tailings area. Mercury concentrations in groundwater from all monitor wells satisfied the applicable CCME guideline for mercury.
- Three split tailings samples analyzed at ACME labs reported lower Hg and As results than the 200 mm fraction, but higher As results than the 150 µm sample analyzed by Maxxam. A value of 2.1 % arsenic was reported in sample MM-52.
- Elevated arsenic concentrations were reported in the 2mm soil fraction in the central tailings locations, in several former Stamp Mill / waste rock pile areas and the edge of the treed area east and southwest of the pre-identified tailings area. The arsenic results for the 150micron fraction are generally comparable to the 2mm fraction results. Arsenic concentrations in all groundwater samples from the January and May 2008 events all exceed the applicable CCME guideline for arsenic in groundwater. No background arsenic concentrations have been established for the site.
- Laboratory analysis indicates that TOC concentrations in the 2mm and 150 micron analyses are comparable and generally range from 2 to 400 g/kg. The lowest TOC levels were generally observed in the tailings followed by slightly higher levels in the native till samples and highest concentrations in the surface soil samples.
- Between 61% and 100% of the sample material passed the 2mm screen, while between 9.2% and 57% of the samples analyzed passed through the 150 micron screen, except for sample MM-4 (0-5cm), which had 99% passing the 150 micron screen.
- Moisture contents were generally high for all soil samples, ranging from 15 to 79 percent (%) moisture with only 7 of 77 samples reported to contain less than 25% moisture.

1.0 INTRODUCTION

Maritime Testing (1985) Limited (MTL) was retained by the Nova Scotia Department of Transportation and Infrastructure Renewal to perform a Modified Phase II Environmental Site Assessment (ESA) of the former gold mine property (PID No. 00315085) in Montague Mines, Nova Scotia. Historically, this property has been the location of extensive gold mining operations since the late-1800s and more recent (mid-1900s) development of the surrounding properties in a residential capacity has occurred. The Modified Phase II ESA was performed under the supervision of Mr. Robert Bekkers, M.Sc., P.Geo., of MTL between January 16, 2008 and June 11, 2008.

This report presents the results of our Modified Phase II ESA program. The purpose of the Modified Phase II ESA was to collect samples of tailing and surface soils in the area of the former gold mines at the Montague site for analysis of arsenic and mercury levels, and drilling of three monitoring wells for the purpose of determining groundwater flow direction.

The information contained in this report has been provided to reflect the 'Terms of Reference' for the project: Request for Proposals to Perform Phase II Environmental Site Assessment Work at the Former Gold Mine Site, Montague Mines, Nova Scotia (dated October 18, 2008).

2.0 REGULATORY GUIDELINES

National guidelines, acceptable for use within the Province of Nova Scotia, for environmental quality were used in the current assessment. These include:

• Canadian Council of Ministers of Environment (CCME) Canadian Environmental Quality Guidelines, 1999 (with 2008 updates).

Given the current access and use of the property by local residents and proximity of residential dwellings to the site, the Modified Phase II ESA soil and groundwater results were compared to more conservative CCME residential guidelines.

3.0 SITE DESCRIPTION

The subject property, referred to herein as 'the Montague Mines site' is located at the former Montague Gold Mines property (property identification number (PID) No. 00315085) south of the intersection of Montague Road and Montague Mines Road in Waverley, Halifax County, Nova Scotia. A site location map (Figure 1) is provided in Appendix A.

The subject site has a cumulative area of 0.81square kilometres (200 acres). It is bounded on the north and northeast by private residential homes and treed/undeveloped lots along Montague Mines and Montague Mines Road, east and west by treed and undeveloped lands, and south by undeveloped low-lying treed property extending to and across to the opposite side of Highway No. 107 (Forest Hills Extension). Approximately 500 metres east of the Montague Mines site is Loon Lake (and associated wetland) and extending westward from Loon Lake (through Barry's Run) across the subject property is a small tributary, locally referred to as Mitchell Brook. No commercial or residential structures are present on the Montague Mines property.

Within the limits of the property are several flat and open areas referred to as 'racetrack areas' given their present usage by local recreational vehicles (all terrain vehicles and dirt bikes). All surface water flow appears to be along site contours towards the low-lying area south of the subject site. No catch basins for storm water were observed on the subject property. Locally in the racetrack areas, the surface water flow appeared to be altered and water was observed to pond within deep grooves or tracks cut into the tailings deposits.

Potable water in the subject areas is supplied by private on-site drilled wells. No potable wells were noted on the Montague Mines site during the fieldwork for this program. Sewage effluent from the private residences surrounding the site is discharged to individual septic tanks on the neighbouring lands. No septic tanks were noted on the subject property.

4.0 SCOPE OF WORK AND METHODOLOGY

4.1 Summary of Observations on Land Use and Human Receptors

During the field work for the Modified Phase II ESA, MTL identified the following potential environmental concerns, specifically:

- Most of the residential properties surrounding the former gold mine site appear to be

- supplied by on-site potable water systems, many of which appear to be drilled wells.
- Local residents continue to use the central tailings area of the site for recreation despite Human Health Hazard signs posed throughout the property.
- Even though the site conditions during the field portion of the program were either frozen (January) or wet (May/June), small areas of dust generated from the tailings area were noted.
- Three areas with concrete foundations and abundant waste rock piles (reported to have been formerly occupied by Stamp Mills) were observed on the southeast side of the subject property during the site work.
- Large areas of run-off were observed in the low-lying areas west of the tailings deposits.

4.2 Scope of Work for Modified Phase II ESA

Background

Further to recent data obtained by scientists from Natural Resources Canada (NRCan), working in collaboration with the NS Department of Natural Resources (DNR) and others on the geochemistry of historically-deposited gold mine tailings across Nova Scotia, NSTIR issued a RFP in 2007 to consultants to conduct additional site assessment including delineation of elevated arsenic and mercury levels in tailings collected and analyzed from the site. Much of the sensitivity of this site arises out of the fact that there are privately-owned residential properties within a few hundred metres of tailings located to the north east and east along Montague Road and Montague Mines Road. These residential properties may be impacted due to offsite migration of arsenic or mercury contamination sourced from tailings, by wind or other air pathways, or they may also be locally impacted by arsenic derived from mine waste rock and other anthropogenic sources of arsenic located on their property. Large areas of the tailings are unvegetated and are known to generate dust seasonally during high winds and when being used for recreational motor vehicle activities. Based on topography and surface water flows, groundwater flow on or near the tailings appear to be away from residences on Montague Mines Road. This information and data will be used to seek advice on the necessity of human health risk assessment from a consulting toxicologist to indicate whether remediation and/ or risk management measures, to block or mitigate human exposure to the tailings, are necessary.

NSTIR has contracted MTL to conduct additional site sampling work to delineate the full extent of arsenic contamination, both on unsampled tailings (away from the 'racetracks') and adjacent surface soils (on public and potentially on private lands), to establish potential boundaries for remediation or risk management. Data on the vertical distribution of arsenic in any physically undisturbed soils within the study area are also needed, to test whether tailings-related impacts can be distinguished

from naturally occurring, localized arsenic 'hotspots' associated with the site's geology. It is also necessary to evaluate whether groundwater migrating through tailings could impact neighbouring wells, and whether the soils adjacent to tailings may contain elevated arsenic and/or mercury due to 100 + years of tailings and/or contaminant migration due to natural processes or if potential tailings-sourced contamination may overprint historical contamination related to ground disturbance from historical mining activities.

Current Program

The Modified Phase II ESA at Montague Mines consisted of the following:

- Intrusive investigation of the surface (upper 5 to 10 cm) via hand sampling and subsurface soils (>10cm) through a drilling program using an all-terrain geo-environmental drill rig;
- investigation of vertical arsenic distribution patterns within any individual soil horizons in the top 5 cm of physically-undisturbed soils on public lands;
- investigation of the groundwater quality and gradient through the installation and sampling of monitoring wells; and
- laboratory analysis of selected soil and groundwater samples for metals analysis (namely Hg and As in designated fractions), TOC and dry weight calculation of the 150 micron fraction.

4.3 Soil Sampling Program

Non-routine soil sampling protocols were required for collection of the required soils with distinct soil horizons at the Montague Mines site. Specific sampling protocols were required for these samples to fulfill requirements of a study that is currently underway (by others). MTL field personnel participated in an information/training session prior to commencement of field work delivered by geochemists from Nova Scotia Natural Resources and Natural Resources Canada on November 16, 2007. It consisted of a combination of a classroom session with presentation(s) in the morning, and time in the field practicing the required soil sampling protocols at the Montague Mines site in the afternoon.

Soil sampling was conducted in two main areas, 1) in areas of tailings (for which no previous data were available) and 2) in surface soils (surrounding tailings). In areas of tailings for which data are already available, samples were collected from the upper 10 cm for confirmation and comparison with pre-existing and generally known information on tailings deposits. In the soils areas, the top 0-5 cm were sampled in undisturbed soils in accordance with the methods described during the soil sampling protocol information sessions. At each sampling point, observations were made on location

co-ordinates (NAD 83), ground cover, vegetation, slope, drainage, thickness of organic material removed before sampling, and soil description including Munsell colour, thickness of individual soil horizons within the 0-5 cm interval, presence / absence of rock fragments in the soil, proximity to waste rock or historical mine openings, etc. Field observations and samples taken were recorded on the standardized field observation sheet / sampling form. These are provided in Appendix C. Digital colour photographs (with a scale for reference) were taken at each location and are provided in Appendix B.

Soil sampling at the Montague Mines site was conducted between May 15, 2008 and June 11, 2008. The sample locations were based on 54 proposed locations (and co-ordinates) provided by NSTIR in their RFP dated October 18, 2008. In addition to the original 54 proposed locations, 5 additional locations were sampled (at the request of NSE personnel in November 2007) in two separate areas outside of those identified on the NSTIR supplied map. All soil sampling was conducted using QA/QC procedures that are consistent with the CCME Guidance Manual on Sampling, Analysis and Data Management for Contaminated Sites. All soil samples collected were analyzed for mercury, arsenic and total organic carbon on both of the laboratory sieved fractions (2mm and 150 micron) in Bedford, NS. In addition, splits of three tailings samples were sent to Vancouver, BC for aqua regia digestion analysis.

4.4 Borehole Drilling Program

On January 16 and 17, 2008, three boreholes were advanced into the subsurface at the locations identified as MW1, MW2 and MW3 on Figure 2 (Appendix A). The boreholes were referenced to site existing features and the elevations noted on the Borehole Logs were referenced to local GPS mapping and topography in the area, which indicate an assigned surface elevation of 100.0 metres at monitoring well MW1. The boreholes were drilled with a track-mounted drill rig supplied by Lantech Drilling Services from Dieppe, New Brunswick.

The field investigation was carried out by qualified technical personnel who positioned and logged the boreholes and sampled the *in situ* soils. All drilling work including soil and groundwater sampling was conducted using procedures that are consistent with the CCME Subsurface Assessment Handbook for Contaminated Sites. Test locations were chosen to provide an indication of subsurface conditions in the central tailings area of the site. An explanation of terms and symbols used in the report and Borehole Logs is provided in Appendix D.

A summary of encountered geologic conditions is provided in the Borehole Logs in Appendix D. It should be noted that the stratigraphic boundaries on the Borehole Logs typically represent a

transition of one soil type to another and do not necessarily indicate an exact plane of geologic change. Subsurface conditions may vary between and beyond the borehole locations.

The boreholes were advanced through the overburden using hollow stem augers. Standard Penetration Testing and soil sampling were performed in the overburden using a 50-mm outside diameter (OD) split-spoon sampler. Soil samples were taken at nominal depth intervals of 0.6 metres, often continuously. Soil samples from the boreholes were placed in lab-supplied teflon-lined glass containers and stored in ice-packed coolers. Select soil samples were submitted to Maxxam Analytics Inc. laboratory in Bedford for laboratory analysis of arsenic and mercury.

4.5 Monitor Well Installation and Groundwater Sampling

During the drilling program, three monitor wells were installed for the purpose of providing water quality sampling stations. The monitor wells consisted of 50-mm OD polyvinyl chloride (PVC) threaded Schedule 40 casing and 20 slot screen. The screened intervals were positioned to intersect the groundwater table, and the annular space around the screen was filled with clean No. 2 silica sand. Each installation was sealed with a bentonite plug, minimum 0.6 metre thickness, above the sand pack to prevent migration of the surface flow into the well. The wells were capped with J-plugs and steel above ground protective casings. Monitor well construction details are included on the Logs in Appendix D. All groundwater assessment work was conducted using procedures that are consistent with the CCME Subsurface Assessment Handbook for Contaminated Sites.

On January 18, 2008, MTL personnel measured the static water levels in the monitor wells using a *Solinst* water level indicator. The wells were developed by purging a minimum of three well pore volumes using dedicated hand bailers. Following well recovery, groundwater samples from the monitor wells were collected in lab-supplied teflon-lined plastic and glass jars, immediately placed in an ice-packed cooler and transported to Maxxam Analytics Inc. laboratory in Bedford for analysis of arsenic and mercury. Proper preservation of water samples collected for mercury and arsenic analysis was conducted in accordance with the required laboratory protocol.

On May 20, 2008, a second series of groundwater monitoring was attempted on the three wells drilled previously by MTL in January 2008. Monitoring wells MW1 and MW2 were observed to have been knocked over and no longer accessible. For this reason, no additional water samples could be collected from these wells. Monitoring well MW3 was inspected and it was noted that the area around the well was highly disturbed and the cover on the protective casing was slightly displaced; however, there was no evidence of tampering to the existing J-plug. As in January 2008, the existing

well was developed by purging a minimum of three well pore volumes using dedicated hand bailers. Following well recovery, the groundwater sample from MW3 was collected in lab-supplied teflon-lined plastic and glass jars, immediately placed in an ice-packed cooler and transported to Maxxam Analytics Inc. laboratory in Bedford for analysis of arsenic and mercury.

4.6 Decommissioning of Monitoring Wells

Following receipt of the groundwater monitoring results from MW3 in May 2008, the three on-site groundwater wells were sealed and abandoned on June 2, 2008 under the guidance of an MTL site professional via recognized general well abandonment procedures outlined by the NSE. In order to abandon the wells, MTL accessed each of the three monitor wells to determine the static water level and accessibility to the well at the time of the site work. Due to the physical damage to MW1 and MW2, no access was possible and therefore, no static water levels were available for the June monitoring event for the first two wells. The surface area in each destroyed well location was inspected, filled to grade with granular fill material from the property (as required).

Based on the static water information and known well installation details of MW3, the screened portion of the monitor well was filled with bentonite chips to seal it and prevent vertical migration of the water into the well. Once the monitor well was sealed, the upper solid casing portion of the well was removed to a depth of greater than 0.3 metre below ground surface and the remaining void filled to grade with granular fill material from the property. Following the abandonment work, the steel casings, surplus well materials (PVC casing, J-plugs) and groundwater bailers was removed from the site by MTL personnel.

4.7 Laboratory Analysis

In total, 54 soil sampling locations were sampled by MTL between May 15, 2008 and June 11, 2008. Of the original 54 proposed locations, 5 samples (MM-6, MM-37, MM-45, MM-46 and MM-49) could not be collected due to access concerns or lack of soil (i.e. swamp or flooded area). Five additional soil sampling locations were added by NSE to those identified on the NSTIR TOR map (locations MM-60 to MM-64). Five (5) field duplicate soil samples (labelled MM-55 to MM-59) were collected and analyzed during the field program.

Soil samples collected across the site were submitted for analysis of mercury, arsenic and total organic carbon. For every soil sample submitted, the specified soil testing (outlined below) was completed on two laboratory sieved fractions, the 2mm fractions (for Hg, As and TOC) and the 150 micron fraction (for As and TOC) except for the borehole soil samples, which only the mercury and

arsenic in the 2mm fraction were analyzed. In total, between the soil, tailings and borehole samples submitted for analysis, 92 'soil' samples were submitted to Maxxam Analytics Inc. for laboratory testing.

Specifically, samples of tailings and soils were analysed using methods that are standard for contaminated sites in Canada. In particular, arsenic extraction and analysis by the Maxxam laboratory were consistent with USEPA Methods 3050B and 6020 and mercury extraction and analysis was consistent with USEPA Method 7471A. Minimum detection limits were reported to be 2 milligrams per kilogram (i.e. ppm) for arsenic and 10 micrograms/kg (i.e. ppb) for mercury. Total organic carbon was determined using a high-temperature combustion method (e.g. LECO, or equivalent), following removal of inorganic carbon (carbonate) using HCl.

Appropriate QA / QC procedures consistent with the CCME Guidance Manual on Sampling, Analysis and Data Management for Contaminated Sites were followed. This included submission of 5% duplicate soil samples (5 duplicates in 92 total soil samples submitted for analysis).

In addition, splits of three tailings samples (samples MM-51, MM-52 and MM53) from an area previously sampled (by others) were sent to ACME Analytical Laboratories Ltd in Vancouver, BC and analysed using *aqua regia* digestion. This analysis at ACME was for purposes of comparison of labs and methods used by previous studies by scientists from Natural Resources Canada (NRCan), working in collaboration with the Nova Scotia Department of Natural Resources (DNR) and others. Samples sent to ACME were analyzed first using Group 1F-MS (Ultratrace Aqua Regia Digestion, Basic Suite (37 Elements)). The ACME analytical results reported one tailings sample (MM-52) with arsenic (As) at a concentration greater than the upper limits for 1F-MS. Based on this result, sample MM-52 was then re-submitted for detailed analysis of arsenic using the Group 7AR (Multi-Element Assay).

Groundwater samples were collected and analysed for arsenic and total mercury. In total, four groundwater samples were analyzed, two from MW-3 (January 18, 2008 and May 20, 2008) and one sample each from MW-1 and MW-2 on January 18, 2008. Proper preservation of water samples in accordance with the required laboratory protocol was conducted during the field sampling program.

All soil and water samples were transported under cool storage to the Maxxam Analytics Inc. laboratory in Bedford, Nova Scotia or submitted to the laboratory on the same day as collection. Results of all analyses are presented in Appendix E. Laboratory analyses were conducted in accordance with the prescribed methodology set out in the NSTIR RFP (dated October 18, 2007)

including submission and analysis of samples at ACME Analytical Laboratories Ltd. in Vancouver, British Columbia (as a sub-contract to Maxxam Analytics).

5.0 RESULTS

5.1 Geologic Conditions

Surficial geology mapping of the Montague Mines area indicates the native soil type to be Quartzite Till, which are described as a light bluish grey, sandy till with gravel, cobble and boulder sizes. Geological mapping indicates that bedrock underlying the site is Goldenville Formation of the Meguma Group of metasediments, consisting mainly of quartzite and minor black slates interbeds. Goldenville Quartzites are typically fine to medium-grained, grey in colour and massive.

Soil conditions encountered at the site confirmed the geological mapping of the subject site and regional area. The maximum depth of sampling during the surficial sampling program was 0.25 metre and were terminated in either tailings, organic (H) or leachate (A) layer, or extended into the native site Till (B or C). Conditions at the drilled borehole locations in January 2008 consisted of up to 0.25 metre of ice over surface tailings deposits. The tailings were generally 1.5 metres thick underlain by a black to yellow-brown organic soil, peat and quartzite boulder-rich layer directly overlying native glacial Till. Bedrock was not encountered during the site drilling or hand sampling work.

5.1.1 Fill

The main fill deposits on the site were tailings and waste rock piles. The tailings in the central area of the site were generally in the order of 1.5 metres in thickness and underlain by a 1.5 to 1.8 metre thick layer of black to yellow-brown organic soil, peat and quartzite boulder-rich layer. It is assumed the peat and boulder-rich layer was a former low-lying swampy area onto which years of tailings deposits, generated during operation of the gold mine, were deposited. Numerous piles of waste rock were observed across the site. Many of the larger waste rock piles were located near former site infrastructure (i.e. stamp mills) but also were noted near former mine shaft and exploration trenches.

Minor debris, such as wood, concrete, brick, ash or coal was observed in the selected hand shovel pits (MM-34, MM-42). The characteristics of the fill varied from loose to compact, moist to wet and black, grey, red, orange or brown in colour. One automobile was observed in the main tailings area, abandoned between January 2008 and May 2008.

5.1.2 Till

Till was silty to gravely sand, abundant quartzite cobbles and boulders, compact to dense, moist to wet, and grey to brown in colour.

5.1.3 Bedrock

Bedrock was not encountered during this investigation, which included borehole drilling to a maximum depth of 5.2 metres.

5.2 Groundwater Conditions

In January 2008, groundwater was encountered at depths ranging from 0.06 to 0.23 metres below ground surface. Table 1, below, presents the results of the groundwater survey conducted on January 18, 2008 and corrected for height of the stick-up protectors. Based on the groundwater survey, the inferred groundwater flow direction is to the northwest away from the local residences along Montague Mines Road and is presented on Figure 2 (Appendix A).

Table 1: Relative Elevations of Monitoring Wells and Groundwater Former Gold Mine, Montague Mines, NS, January 18, 2008

Location	Depth to Groundwater (metres)	Ground Surface Elevation (metres)	Groundwater Elevation (metres)
MWI	0.06	100.0	99.94
MW2	0.11	99.93	99.82
MW3	0.23	100.23	100.0

Note: Ground surface elevations referenced to assigned elevation of 100 metres at MW1.

5.3 Analysis of Mercury, Arsenic and Total Organic Carbon

Laboratory analytical results for arsenic, mercury and total organic carbon obtained in soil and/or groundwater during the Modified Phase II ESA portion of this program are provided in Tables E2 to E6 (Appendix E). Analytical results have been tabulated by fraction with the 200 mm fraction soil data found in Table E2, 0.15mm (or 150 micron) soil data in Table E3, dry weight and moisture soil data in Table E4, 1F-MS and Group 7AR (*aqua regia* digestion) in tailings in Table E5, and groundwater results in Table E6. These results have been compared to the applicable (and more conservative) 2006 Canadian Council for Ministers for the Environment (CCME) guidelines for residential receptors and potable drinking water, as required. Note that in this section, 'guideline'

refers to the applicable soil or groundwater criterion from the CCME criteria. Laboratory certificates of analysis are provided in Appendix F.

5.3.1 200 mm Soil Fraction

Mercury

Table E2 (Appendix E) presents the results of fifteen (15) soil samples selected from the monitor wells for mercury analysis. In summary, laboratory analysis indicates that all concentrations of mercury identified in the soils are below the CCME environmental quality guideline of 6.6 mg/kg for soil with residential land use. Higher mercury levels were detected in the surficial tailings samples (samples MW1/1, MW1/2, MW2/1, MW3/1 and MW3/2) at concentrations ranging from 0.7 to 4.4 mg/kg; however, these results are below the applicable CCME residential guideline of 6.6 mg/kg.

Mercury results in the 2mm soil sample fraction collected from the 54 sampling locations identified in Figure 3 (Appendix A) are also summarized in Table E2 (Appendix E). Soil results indicate mercury levels in the 2mm fraction of the soil samples analyzed range from 0.02 mg/kg in sample MM-26 (2-5cm) to 25 mg/kg in sample MM-47 (0-5cm). Only nineteen (19) samples of the 77 soil samples analyzed were reported to contain more than 1.0 mg/kg mercury, and only four (4) of the 19 samples (MM-4 (0-5cm), MM-8 (0-5cm), MM-47 (0-5cm) and MM-54 (0-5cm)) containing more than 1.0 mg/kg mercury were reported to exceed the applicable CCME residential guideline of 6.6 mg/kg. From these results, there appears to be significant difference in elevated mercury concentrations (generally >1 mg/kg Hg) reported in the locations of the former Stamp Mill, central tailings and areas downgradient of the pre-identified tailings area versus the wooded and residential areas to the north and northeast (generally <1 mg/kg Hg).

Arsenic

Table E2 (Appendix E) presents the results of fifteen (15) soil samples selected from the monitor wells for arsenic analysis. In summary, laboratory analysis indicates that all concentrations of arsenic in the soil from the monitor wells are in excess of the CCME guideline of 12 mg/kg. Average arsenic concentrations ranged from 4,200 mg/kg arsenic in the tailings, 660 mg/kg arsenic in the peat and 160 mg/kg in the underlying native Till unit.

Arsenic results in 2mm soil sample fraction collected from the 54 sampling locations identified in Figure 4 (Appendix A) are also summarized in Table E2 (Appendix E). Soil results indicate arsenic

levels in the 2mm fraction of the soil samples analyzed range from 7 mg/kg in sample MM-1 (3.5-5cm) to 17,000 mg/kg in sample MM-52 (0-10cm). Only twenty-four (24) of the 77 soil samples analyzed were reported to contain more than 400 mg/kg arsenic, and only six (6) of the 77 samples (MM-1 (3.5-5cm), MM-10 (0-1.5cm), MM-11 (0-2cm), MM-12 (0-5cm), MM-13 (0-5cm) and MM-16 (0-5cm)) reported were below (i.e. satisfy) the applicable CCME residential guideline of 12 mg/kg. From these results, there appears to be significant difference in elevated arsenic concentrations reported in the central tailings locations, in several former Stamp Mill / waste rock pile areas (locations MM-41 and MM-42) and the edge of the treed area east (locations MM-28 and MM-33) and southwest (locations MM-4, MM-48 and MM-50) of the pre-identified tailings area.

Total Organic Carbon (TOC)

Table E2 (Appendix E) also presents the results of 77 soil samples (2mm fraction) submitted for analysis of total organic carbon (TOC). TOC results in soil samples collected from the 54 sampling locations are identified in Figure 4 (Appendix A) and summarized in Table E2 (Appendix E). In summary, laboratory analysis indicates that concentrations of TOC range from less than 2 g/kg in the central tailings area (MM-51 to MM-53) to a maximum of 400 g/mg in MM-31. Generally, the organic-rich upper (surficial) soil samples contained higher TOC contents than the underlying native till unit.

5.3.2 0.15mm (or 150 micron) Soil Fraction

<u>Arsenic</u>

Arsenic results in 150 micron soil sample fractions collected from the 54 sampling locations identified in Figure 5 (Appendix A) are summarized in Table E3 (Appendix E). Soil results indicate arsenic levels in the 150 micron fraction of the soil samples analyzed range from 6 mg/kg in sample MM-1 (3.5-5cm) to 35,000 mg/kg in sample MM-52 (0-10cm). Only twenty-three (23) samples of the 77 soil samples analyzed were reported to contain more than 400 mg/kg arsenic, and only six (6) of the 77 samples (MM-1 (0-5cm), MM-1 (3.5-5cm), MM-10 (0-1.5cm), MM-11 (0-2cm), MM-12 (0-5cm) and MM-13 (0-5cm)) reported to satisfy the applicable CCME residential guideline of 12 mg/kg. Generally, the arsenic results for the 150 micron fraction are directly comparable to the 2mm fraction results indicating higher arsenic in the central tailings locations, former Stamp Mill / waste rock pile areas and at the east and southwest treed areas on the edge of the pre-identified tailings area.

TOC

Table E3 (Appendix E) presents the results of 77 soil samples (150 micron fraction) submitted for analysis of total organic carbon (TOC). TOC results in soil samples collected from the 54 sampling locations are identified in Figure 5 (Appendix A) and summarized in Table E3 (Appendix E). In summary, laboratory analysis indicates that concentrations of TOC range from less than 4 g/kg in the central tailings area (MM-51 to MM-53) to a maximum of 400 g/mg in MM-31. Generally, the 150 micron fraction results are comparable to the 2mm fraction results indicating higher TOC values in the organic-rich upper soil samples than the underlying native till unit.

5.3.3 Dry Weight Calculations and Moisture Content for Soil Samples

Table E4 (Appendix E) presents the results of all dry weight calculations for the soil samples submitted for laboratory analysis. Between 61% and 100% of the sample material passed the 2mm screen (all but 6 samples with over 80% passing), while between 9.2% and 57% of the samples analyzed passed through the 150 micron screen. One exception was sample MM-4 (0-5cm), which had 99% passing (or only 1% larger than) the 150 micron screen.

Moisture contents were generally high for all soil samples, ranging from 15 to 79 percent (%) moisture with only 7 of 77 samples reported to contain less than 25% moisture. These results are also presented in Table E4 (Appendix E).

5.3.4 1F-MS and Group 7AR Results

The results of the Group 1F-MS (Ultratrace Aqua Regia Digestion, Basic Suite) for three selected split tailings samples (MM-51, MM-52 and MM-53) completed at the ACME analytical laboratory in Vancouver, BC included analysis of 37 separate elements (including arsenic (As) and mercury (Hg)). The laboratory certificate for all 37 elements is provided in Appendix F; however, for the purpose of this report, only As and Hg will be tabulated (Table E5, Appendix E) and discussed. Results for additional analysis of arsenic in tailings sample MM-52 by ACME using the Group 7AR (Multi-Element Assay) was also conducted based on an elevated concentration greater than the upper limits for 1F-MS. The results are reported in Table E5 (Appendix E).

Mercury

Table E5 (Appendix E) presents the mercury results of three (3) split tailings samples analyzed at ACME labs in Vancouver, BC. In summary, laboratory analysis indicates that mercury

concentrations identified in the tailings samples ranged from 0.551 ppm (or mg/kg) in sample MM-53 to 1.45 ppm in sample MM-51. In comparison, these results are lower (25 to 35%) than the Hg results for the 200 mm fraction on the same sample as reported by Maxxam in Table E2 (Appendix E). All of these results are below the applicable CCME residential guideline of 6.6 mg/kg.

Arsenic

Table E5 (Appendix E) also presents the arsenic results of three (3) split tailings samples analyzed at ACME labs. In summary, laboratory analysis indicates that concentrations of arsenic identified in the tailings samples ranged from 2,178 ppm As in sample MM-51 to >10,000 ppm As in sample MM-52. In comparison, these results are slightly (18%) higher than the As results for the 200 mm fraction and approximately 40% lower than the 150 μ m results reported by Maxxam for the same tailings sample (Table E2, Appendix E). In summary, the arsenic results from the ACME laboratory indicate that the concentrations reported in all three tailings samples are in excess of the CCME residential guideline of 12 mg/kg.

Based on the arsenic results in tailings sample MM-52 elevated over the upper limits for 1F-MS reported by ACME, additional analysis of this samples using the Group 7AR (Multi-Element Assay) was conducted. A result of 2.1% arsenic was reported by ACME in sample MM-52 (Table E5, Appendix E).

5.3.5 Groundwater Results

Groundwater samples were analysed for only two metals parameters, namely mercury and arsenic. Elevated metals values in the groundwater results in excess of the CCME Drinking Water guidelines were identified in the groundwater samples collected from all three monitor wells (Table E6, Appendix E) in January 2008.

Mercury concentrations varied from 0.02 to 0.15 μ g/L in the groundwater samples analyzed. No mercury levels in excess of the applicable guideline of 1 μ g/L mercury were identified.

Arsenic concentrations ranged from 250 μ g/L in monitoring well MW2 to 570 μ g/L in monitoring well MW3. Arsenic concentrations identified in all three monitoring wells exceed the applicable guideline of 10 μ g/L.

Since two of the monitoring wells (MW1 and MW2) were destroyed prior to May 2008, only one additional groundwater sample was collected prior to proposed well abandonment work by MTL.

Laboratory results of the May 20, 2008 groundwater sampling event reported 0.57 μ g/L mercury and 3,100 μ g/L arsenic in *MW3* (Table E6, Appendix E). Similar to the January 2008 results, the reported mercury result for *MW3* satisfied the applicable CCME Drinking Water guidelines, while the arsenic concentration exceeded these same guidelines.

6.0 CONCLUSIONS

In summary, the Modified Phase II ESA has identified elevated levels of arsenic and mercury in the soil and/or groundwater in excess of the CCME residential guidelines. Elevated arsenic levels in soil in the subject area could be partially attributed to slate bedrock and slate-derived glacial till underlying the Halifax area, although no background arsenic concentration have been established for the site. Based on the laboratory data, the following conclusions have been reached:

- Elevated mercury concentrations (generally >1 mg/kg Hg) in the 2mm soil fraction appear to be associated with the locations of the former Stamp Mill, in the central tailings area and in areas downgradient of the pre-identified tailings area. Lower values (generally <1 mg/kg Hg) have been documented in the wooded areas east of the tailings area.
- Elevated arsenic concentrations were reported in the 2mm soil fraction in the central tailings locations, in several former Stamp Mill / waste rock pile areas and the edge of the treed area east and southwest of the pre-identified tailings area. Also, the arsenic results for the 150 micron fraction are generally comparable to the 2mm fraction results.
- Mercury and arsenic results in three (3) split tailings samples analyzed at ACME labs reported lower Hg and As results than the 200 mm fraction, but higher As results than the 150 µm sample analyzed by Maxxam. A value of 2.1 % arsenic was reported in sample MM-52.
- Mercury concentrations in all groundwater wells varied from 0.02 to 0.57 μ g/L in the groundwater samples analyzed, which satisfy the applicable CCME guideline of 1 μ g/L mercury.
- Arsenic concentrations in all groundwater from the January and May 2008 sampling events ranged from 250 μ g/L to 3,100 μ g/L and exceed the exceed the applicable CCME guideline of 10 μ g/L arsenic.
- Laboratory analysis indicates that TOC concentrations range from 2 to 400 g/kg, generally indicating higher TOC in the surface soil than in the underlying native till. The lowest TOC values were reported in the tailings samples. Generally, the 150 micron fraction TOC results are comparable to the 2mm fraction TOC results.

- Between 61% and 100% of the sample material passed the 2mm screen, while between 9.2% and 57% of the samples analyzed passed through the 150 micron screen, except for sample MM-4 (0-5cm), which had 99% passing the 150 micron screen.
- Moisture contents were generally high for all soil samples, ranging from 15 to 79 percent (%) moisture with only 7 of 77 samples reported to contain less than 25% moisture.

7.0 CLOSING

The statements and conclusions presented in this report are professional opinions based upon visual observations made during the digging and sampling of 54 shallow (<10cm) soil/tailing locations, drilling and sampling of three boreholes, sampling groundwater from three monitoring wells and on interpretation of select chemical analyses. The opinions in this report are given using generally accepted scientific judgement, principles, and practices; however, because of the inherent uncertainty in this process no guarantee of conclusion is intended or can be given.

This report was prepared by Maritime Testing (1985) Limited for the exclusive use of Nova Scotia Department of Transportation and Infrastructure Renewal and Nova Scotia Environment. The scope of the services performed may not be appropriate to satisfy the needs of third parties. Any use which a third party makes of this report, or any reliance on or decisions made based on it, is the sole responsibility of the third party. Maritime Testing (1985) Limited accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

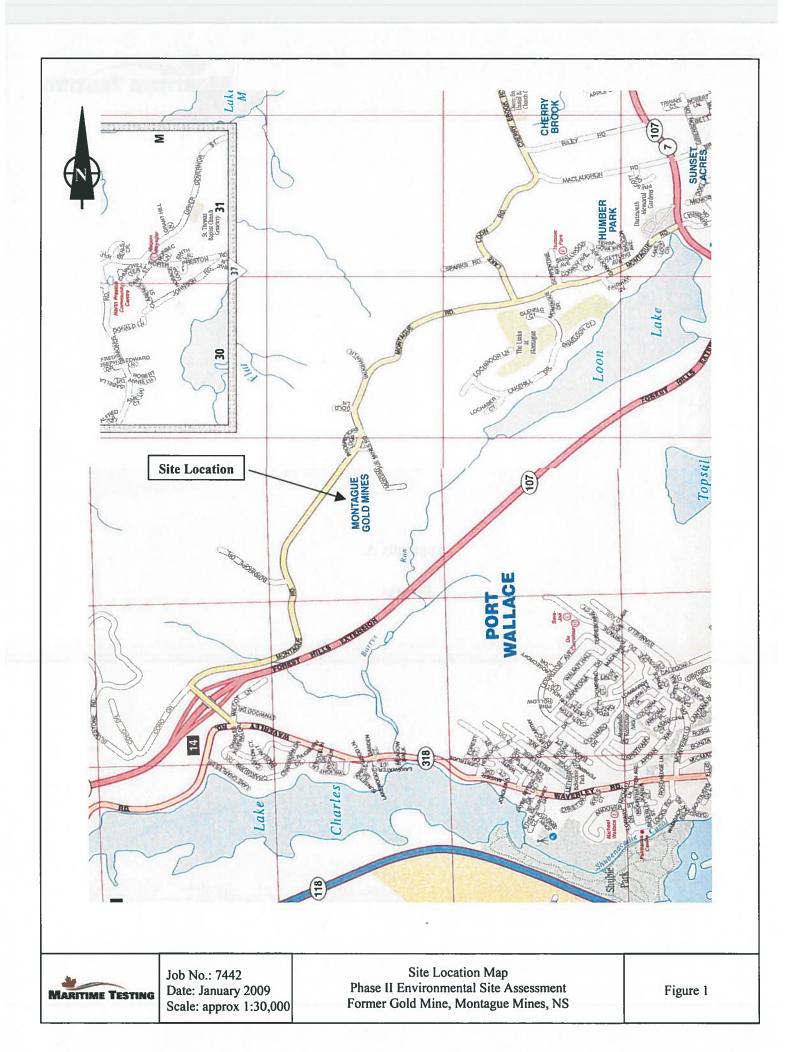
We trust this information meets your present requirements. This report has been prepared by Robert Bekkers, M.Sc., P.Geo. with contributions and review by Doreen Chenard, B.Sc. in Agr.

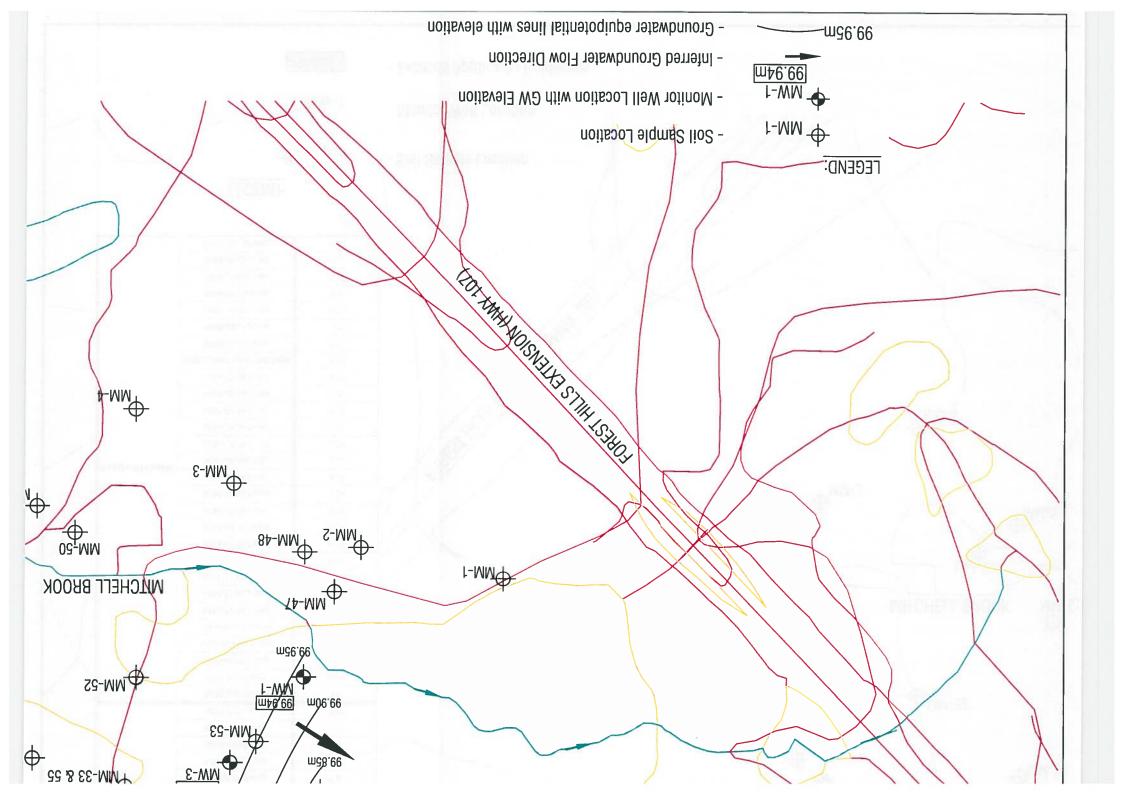
Respectfully Submitted,

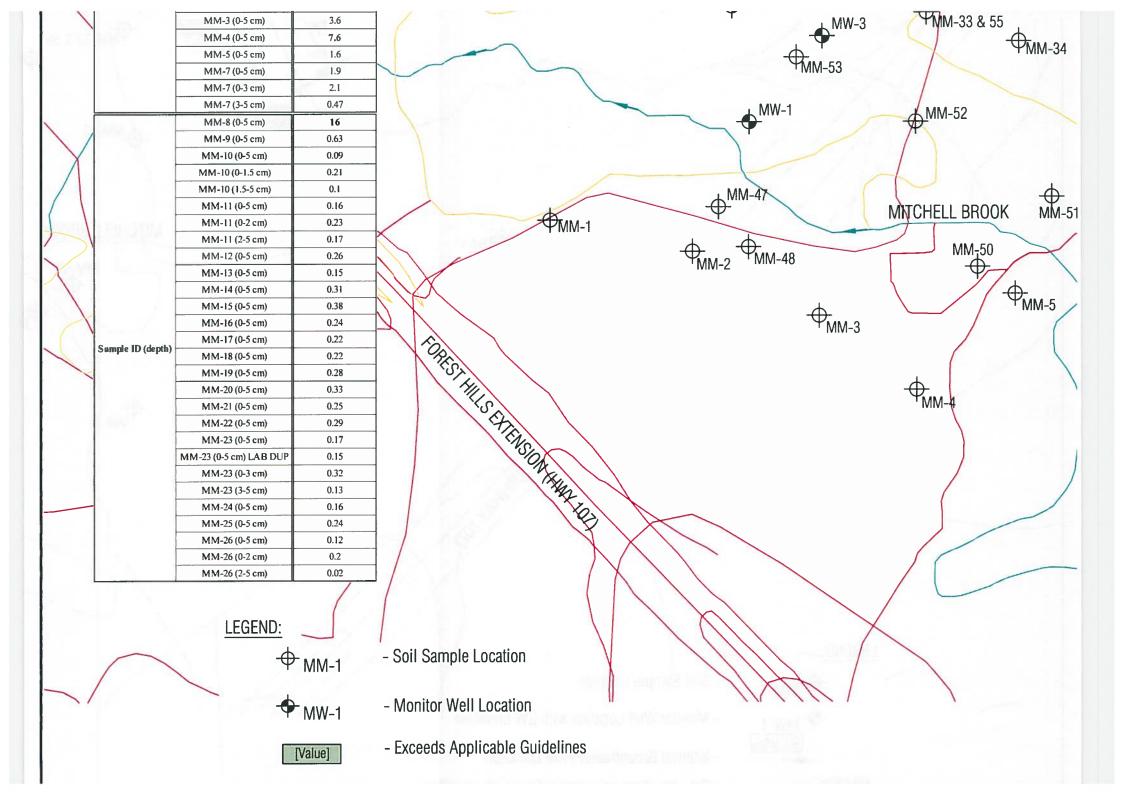
Maritime Testing (1985) Limited

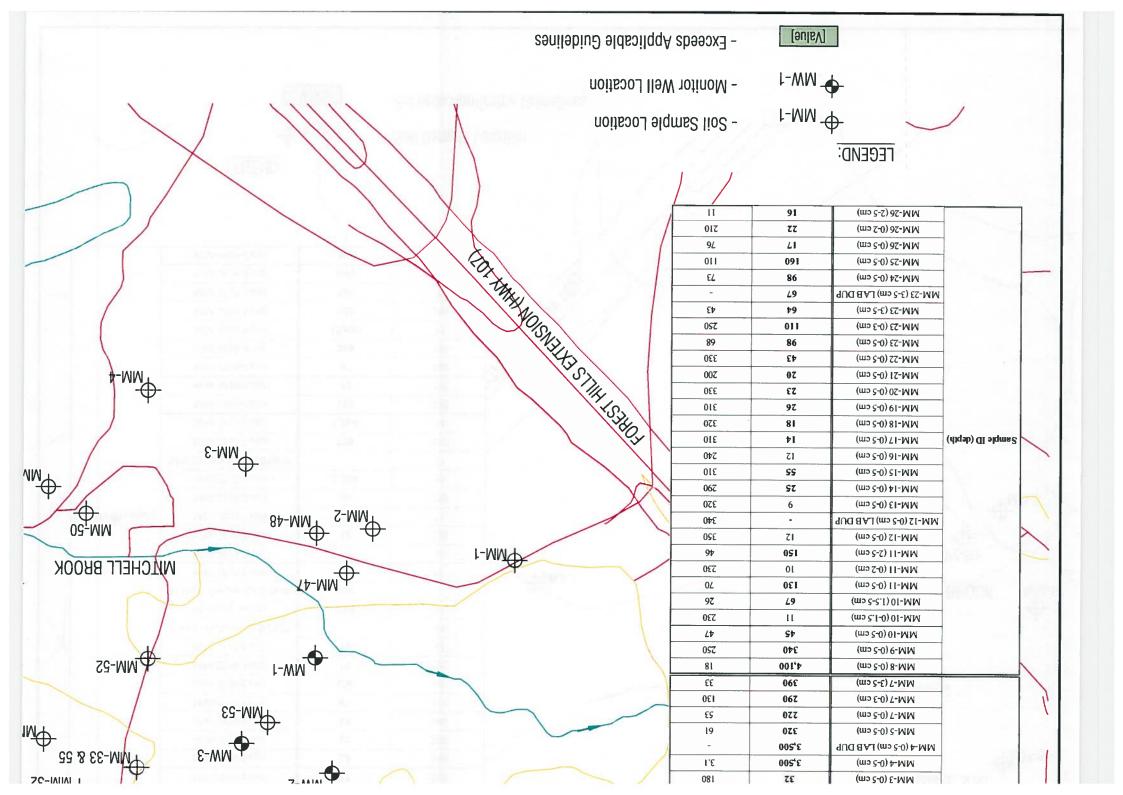
Robert Bekkers, M.Sc., P.Geo.

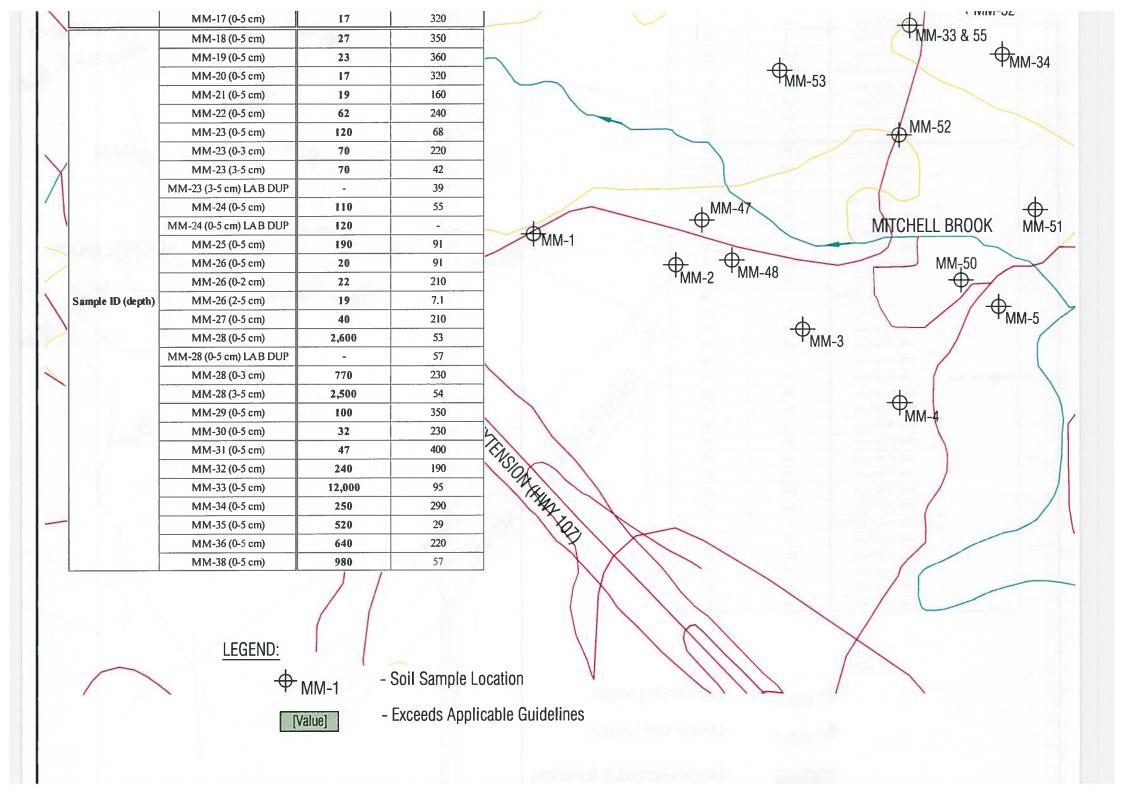
Project Manager


Doreen Chenard, B.Sc. in Agr.


Manager, Environmental Assessments




Appendix A


Figures

Appendix B

Site Photos

(See Electronic Files)

NOTE RE LOCATIONS FOR PHOTOGRAPHS:

Photographs are labelled with their original sequential numerical file name. At each sample pit location the first photo shows the location as written on a sample jar top. The following 2 photos of the setting are mostly taken to the north and then to the south. In some cases photographs were taken in different directions and these are indicated in the field notes.

Appendix C

Table of Individual Soil Sample Data and Original Field Observation Sheets

Client: NSTIR

Site: Fm. Gold Mine, Montague Mines, NS Sampled: Jan. 16/17, May 15/20, Jun. 2/11, 08

Gold District				Montague Mines			
Sample Site	MM-I	MM-I	MM-I	MM-2	MM-2	MM-2	MM-3
Site Description	Treed area	Treed area	Treed area	Downgradient of Tailings	Downgradient of Tailings	Downgradient of Tailings	Downgradient of Tailing
Northing (20T, NAD 83)	4951352.63	4951352.63	4951352.63	4951327.80	4951327.80	4951327.80	4951276.79
Easting (20T, NAD 83)	458409.36	458409.36	458409.36	458521.96	458521.96	458521.96	458622.31
Date	20-May-08	20-May-08	20-May-08	15-May-08	15-May-08	15-May-08	15-May-08
Depth or Horizon sample	Composite	Н	Ac	Composite	н	Ae	н
Subsample ID	MM-1 (0-5 cm)	MM-1 (0-3.5 cm)	MM-1 (3.5-5 cm)	MM-2 (0-5 cm)	MM-2 (0-3 cm)	MM-2 (3-5 cm)	MM-3 (0-5 cm)
Top Sample Interval (cm)	0	0	3.5	0	0	3	0
Bottom Sample Interval (cm)	5	3.5	5	5	3	5	5
Sample Wet weight (g)	4.7	2.86	4.62	3.28	3.16	3.91	5.85
Sample Dry weight (g)	2.63	1	3.5	1.94	1.26	2.95	1.87
Water content (moisture (%))	44	65	24	41	60	25	68
Original sediment weight (g)	9.5	5.19	17.37	9.22	5.98	11.02	5.61
<150 μm (g)	2.78	1.22	5.26	2.74	2.36	3.98	1.53
<150 μm (%)	29	24	30	30	40	36	27
<2 mm (%)	88	94	81	88	91	86	96
Soil description	Composite	Organics/Silt	Sandy Silt	Composite	Sand	Sandy Silt	Organic Silt
Hg (mg/kg) in <2 mm fraction	0.14	0.19	0.04	0.08	0.25	0.04	3.6
Total Org. Carbon (% dry wt.) in <150 μm fraction	46	150	22	70	250	13	190
Total Org. Carbon (% dry wt.) in <2 mm fraction	70	280	27	33	170	15	180
As (mg/kg) in <150 μm fraction	10	30	6	76	40	13	28
As (mg/kg) in <2 mm fraction	16	18	7	66	34	24	32

Client: NSTIR

Site: Fm. Gold Mine, Montague Mines, NS Sampled: Jan. 16/17, May 15/20, Jun. 2/11, 08

Gold District	100			Montague Mines			T HA
Sample Site	MM-4	MM-5	MM-6	MM-7	MM-7	MM-7	MM-8
Site Description	Tailings	Treed area	177	Treed area	Treed area	Treed area	Treed/Tailings
Northing (20T, NAD 83)	4951218.00	4951294.68	N 6	4951292.99	4951292.99	4951292.99	4951354.54
Easting (20T, NAD 83)	458699.33	458777.34	No Sample	458892.17	458892.17	458892.17	458855,08
Date	15-May-08	15-May-08		15-May-08	15-May-08	15-May-08	15-May-08
Depth or Horizon sample	Tailings	н		Composite	н	Ae	Tailings
Subsample ID	MM-4 (0-5 cm)	MM-5 (0-5 cm)		MM-7 (0-5 cm)	MM-7 (0-3 cm)	MM-7 (3-5 cm)	MM-8 (0-5 cm
Top Sample Interval (cm)	0	0		0	0	3	0
Bottom Sample Interval (cm)	5	5		5	3	5	5
Sample Wet weight (g)	3.73	2.52		4.03	4.13	4.96	5.74
Sample Dry weight (g)	2.61	1.62		2.39	1.79	3.52	3.73
Water content (moisture (%))	30	36		41	57	29	35
Original sediment weight (g)	30	6.23		7.91	5.22	11.47	8.3
<150 μm (g)	16.9	2.81		2.95	2.39	5.95	3.51
<150 µm (%)	99	45		37	46	52	42
<2 mm (%)	100	83		80	97	91	96
Soil description	Silty	Organic/Silt		Composite	Organic/Silt	Silty	Silt
Hg (mg/kg) in <2 mm fraction	7.6	1.6		1.9	2.1	0.47	16
Total Org. Carbon (% dry wt.) in <150 µm fraction	2.8	49		53	120	32	30
Total Org. Carbon (% dry wt.) in <2 mm fraction	3.1	61		53	130	33	18
As (mg/kg) in <150 μm fraction	3,600	520		460	210	440	3,900
As (mg/kg) in <2 mm fraction	3,500	320		220	290	390	4,100

Client: NSTIR

Site: Fm. Gold Mine, Montague Mines, NS Sampled: Jan. 16/17, May 15/20, Jun. 2/11, 08

Gold District	E APP			Montague Mines			22
Sample Site	MM-9	MM-10	MM-10	MM-10	MM-II	MM-11	MM-11
Site Description	Treed area	Treed area	Treed area	Treed area	Treed area	Treed area	Treed area
Northing (20T, NAD 83)	4951628.21	4951669.48	4951669.48	4951669.48	4951687.81	4951687.81	4951687.81
Easting (20T, NAD 83)	458568.06	458599.38	458599.38	458599.38	458643.43	458643.43	458643.43
Date	2-Jun-08	2-Jun-08	2-Jun-08	2-Jun-08	2-Jun-08	2-Jun-08	2-Jun-08
Depth or Horizon sample	Н	Composite	Composite	Composite	Composite	Н	В
Subsample ID	MM-9 (0-5 cm)	MM-10 (0-5 cm)	MM-10 (0-1.5 cm)	MM-10 (1.5-5 cm)	MM-11 (0-5 cm)	MM-11 (0-2 cm)	MM-11 (2-5 cm
Top Sample Interval (cm)	0	0	0	1.5	0	0	2
Bottom Sample Interval (cm)	5	5	1.5	5	5	2	5
Sample Wet weight (g)	3.29	4.68	5.59	4.58	3.83	3.64	4.27
Sample Dry weight (g)	0.86	2.96	1.9	3.27	3.83	1.32	2.8
Water content (moisture (%))	74	37	66	29	34	64	34
Original sediment weight (g)	5.52	15.42	4.19	10.3	10.35	7.9	16.46
<150 μm (g)	0.65	2.66	2.06	4.24	2.41	1.71	2.98
<150 μm (%)	12	17	49	41	23	22	18
<2 mm (%)	64	84	99	98	73	99	68
Soil description	Organic/Silt	Composite	Organic/Silt	Sandy Silt	Composite	Organic/Silt	Silty
Hg (mg/kg) in <2 mm fraction	0.63	0.09	0.21	0.1	0.16	0.23	0.17
Total Org. Carbon (% dry wt.) in <150 μm fraction	260	30	230	31	45	160	36
Total Org. Carbon (% dry wt.) in <2 mm fraction	250	47	230	26	70	230	46
As (mg/kg) in <150 μm fraction	230	29	11	86	130	8	170
As (mg/kg) in <2 mm fraction	340	45	11	67	130	10	150

Client: NSTIR

Site: Fm. Gold Mine, Montague Mines, NS Sampled: Jan. 16/17, May 15/20, Jun. 2/11, 08

Gold District				Montague Mines			
Sample Site	MM-12	MM-13	MM-14	MM-15	MM-16	MM-17	MM-18
Site Description	Treed area	Treed area	Treed area	Wet, Treed area	Treed area	Treed area	Treed area
Northing (20T, NAD 83)	4951716.83	4951743.75	4951615.60	4951571.58	4951639.71	4951669.13	4951683.84
Easting (20T, NAD 83)	458699.10	458757.45	458595.57	458599.83	458626.99	458674.44	458728.81
Date	2-Jun-08	2-Jun-08	2-Jun-08	2-Jun-08	2-Jun-08	2-Jun-08	2-Jun-08
Depth or Horizon sample] н	Н	н	н	н	н	Н
Subsample ID	MM-12 (0-5 cm)	MM-13 (0-5 cm)	MM-14 (0-5 cm)	MM-15 (0-5 cm)	MM-16 (0-5 cm)	MM-17 (0-5 cm)	MM-18 (0-5 cm
Top Sample Interval (cm)	0	0	0	0	0	0	0
Bottom Sample Interval (cm)	5	5	5	5	5	5	5
Sample Wet weight (g)	2.45	3.56	4.37	4.49	4.14	4.39	506
Sample Dry weight (g)	0.8	0.9	1.25	1.22	0.88	1.09	1.37
Water content (moisture (%))	67	75	71	73	79	75	73
Original sediment weight (g)	3.15	3.59	4.23	3.23	2.48	5.28	5.89
<150 µm (g)	0.97	0.9	0.96	0.97	0.49	96	1.65
<150 μm (%)	31	25	23	30	20	36	28
<2 mm (%)	100	97	95	99	90	96	96
Soil description	Organic/Silt	Organic/Silt	Organic/Silt	Organic/Silt	Organic/Silt	Organic/Silt	Organic/Silt
Hg (mg/kg) in <2 nun fraction	0.26	0.15	0.31	0.38	0.24	0.22	0.22
Total Org. Carbon (% dry wt.) in <150 μm fraction	300	240	300	240	430	320	350
Total Org. Carbon (% dry wt.) in <2 mm fraction	350	320	290	310	240	310	320
As (mg/kg) in <150 μm fraction	10	10	31	54	23	17	27
As (mg/kg) in <2 mm fraction	l2	9	25	55	12	14	18

Client: NSTIR

Site: Fm. Gold Mine, Montague Mines, NS Sampled: Jan. 16/17, May 15/20, Jun. 2/11, 08

Gold District				Montague Mines			
Sample Site	MM-19	MM-20	MM-21	MM-22	MM-23	MM-23	MM-23
Site Description	Treed area	Treed area					
Northing (20T, NAD 83)	4951704.56	4951731.79	4951672.62	4951690.00	4951699.05	4951699.05	4951699.05
Easting (20T, NAD 83)	458774.27	458829.86	458779.35	458818.73	458865.60	458865.60	458865.60
Date	2-Jun-08	2-Jun-08	2-Jun-08	2-Jun-08	2-Jun-08	2-Jun-08	2-Jun-08
Depth or Horizon sample	Н	н	н	н	Composite	н	В
Subsample ID	MM-19 (0-5 cm)	MM-20 (0-5 cm)	MM-21 (0-5 cm)	MM-22 (0-5 cm)	MM-23 (0-5 cm)	MM-23 (0-3 cm)	MM-23 (3-5 cm)
Top Sample Interval (cm)	0	0	0	0	0	0	3
Bottom Sample Interval (cm)	5	5	5	5	5	1	5
Sample Wet weight (g)	3.36	3.83	4.16	4.78	4.03	3.56	4.27
Sample Dry weight (g)	0.86	1	0.93	1.56	2.54	1.29	2.76
Water content (moisture (%))	74	74	78	67	37	64	35
Original sediment weight (g)	3.96	4.77	7.72	5.48	9.55	5.42	16.33
<150 μm (g)	1.13	1.1	2.06	1.1	3.99	2.15	5.64
<150 µm (%)	29	23	27	20	42	40	
<2 mm (%)	95	91	81	93	92	95	35
Soil description	Organic/Silt	Organic	Organic/Silt	Organic/Silt	Composite	Organic/Silt	93
Hg (mg/kg) in <2 mm fraction	0.28	0.33	0.25	0.29	0.17	0.32	Silty
Total Org. Carbon (% dry wt.) in <150 µm fraction	360	320	160	240	68	220	0.13
Total Org. Carbon (% dry wt.) in <2 mm fraction	310	330	200	330	68		42
As (mg/kg) in <150 μm fraction	23	17	19	62	120	250	43
As (mg/kg) in <2 mm fraction	26	23	20	43	98	70 11 0	70 64

Client: NSTIR

Site: Fm. Gold Mine, Montague Mines, NS Sampled: Jan. 16/17, May 15/20, Jun. 2/11, 08

Gold District			-	Montague Mines			
Sample Site	MM-24	MM-25	MM-26	MM-26	MM-26	MM-27	MM-28
Site Description	Treed area						
Northing (20T, NAD 83)	4951682.94	4951639.45	4951614.95	4951614.95	4951614.95	4951584.07	4951568.58
Easting (20T, NAD 83)	458910.82	458771.98	458703.67	458703.67	458703.67	458652.48	458742.09
Date	2-Jun-08						
Depth or Horizon sample	B (Topsoil) ?	н	Composite	н	Ae	Н	Composite
Subsample ID	MM-24 (0-5 cm)	MM-25 (0-5 cm)	MM-26 (0-5 cm)	MM-26 (0-2 cm)	MM-26 (2-5 cm)	MM-27 (0-5 cm)	MM-28 (0-5 cm
Top Sample Interval (cm)	0	0	0	0	2	0	0
Bottom Sample Interval (cm)	5	5	5	2	5	5	5
Sample Wet weight (g)	5.52	3.97	5.53	4.86	4.93	4.04	4.12
Sample Dry weight (g)	3.27	1.99	3.57	2.12	4	1.03	2.3
Water content (moisture (%))	41	50	35	56	19	74	44
Original sediment weight (g)	13.91	14.34	14.47	6.93	15.7	5.06	8.89
<150 μm (g)	5.72	5.68	4.98	2.6	5.26	1.3	2.26
<150 µm (%)	41	40	34	38	34	26	25
<2 mm (%)	85	99	95	98	94	96	90
Soil description	Silty	Organic/Silt	Composite	Organic/Silt	Silty	Organic/Silt	Composite
Hg (mg/kg) in <2 mm fraction	0.16	0.24	0.12	0.2	0.02	0.21	0.15
Total Org. Carbon (% dry wt.) in <150 μm fraction	55	91	91	210	7.1	210	53
Total Org. Carbon (% dry wt.) in <2 mm fraction	73	110	76	210	11	340	64
As (mg/kg) in <150 μm fraction	110	190	20	22	19	40	2.600
As (mg/kg) in <2 mm fraction	98	160	17	22	16	50	2,100

Client: NSTIR

Site: Fm. Gold Mine, Montague Mines, NS Sampled: Jan. 16/17, May 15/20, Jun. 2/11, 08

Gold District				Montague Mines			
Sample Site	MM-28	MM-28	MM-29	MM-30	MM-31	MM-32	MM-33
Site Description	Treed area	Near Tailings					
Northing (20T, NAD 83)	4951568.58	4951568.58	4951588.98	4951571.21	4951553.9	4951537.05	4951518.09
Easting (20T, NAD 83)	458742.09	458742.09	458778.12	458842.01	458792.11	458751.86	458706.74
Date	2-Jun-08	2-Jun-08	2-Jun-08	2-Jun-08	2-Jun-08	2-Jun-08	20-May-08
Depth or Horizon sample] н	В	Н	н	н	н	Н
Subsample ID	MM-28 (0-3 cm)	MM-28 (3-5 cm)	MM-29 (0-5 cm)	MM-30 (0-5 cm)	MM-31 (0-5 cm)	MM-32 (0-5 cm)	MM-33 (0-5 cm
Top Sample Interval (cm)	0	3	0	0	0	0	0
Bottom Sample Interval (cm)	3	5	5	5	5	5	5
Sample Wet weight (g)	2.97	3.78	3.9	5.73	3.59	4.81	4.64
Sample Dry weight (g)	0.8	2	0.84	1.78	0.81	1.94	1.97
Water content (moisture (%))	73	47	78	69	77	60	58
Original sediment weight (g)	3.66	9.12	2.73	3.52	2.56	4.29	6.57
<150 μm (g)	1.62	2.32	0.69	1.71	0.93	1.94	2.2
<150 µm (%)	44	25	25	49	36	45	34
<2 mm (%)	96	74	85	96	100	96	94
Soil description	Organic/Silt	Silty	Organic/Silt	Organic/Silt	Organic/Silt	Organic/Silt	Organic/Silt
Hg (mg/kg) in <2 mm fraction	0.44	0.19	0.32	0.31	0.13	0.46	1.1
Total Org. Carbon (% dry wt.) in <150 μm fraction	230	54	350	230	400	190	95
Total Org. Carbon (% dry wt.) in <2 mm fraction	210	79	390	210	400	190	140
As (mg/kg) in <150 μm fraction	770	2,500	100	32	47	240	12,000
As (mg/kg) in <2 mm fraction	1,100	2,200	77	31	40	270	11,000

Client: NSTIR

Site: Fm. Gold Mine, Montague Mines, NS Sampled: Jan. 16/17, May 15/20, Jun. 2/11, 08

Gold District				Montague Mines			
Sample Site	MM-34	MM-35	MM-36	MM-37	MM-38	MM-39	MM-40
Site Description	Treed Area	Treed Area	Treed Area		Treed Area	Tailings	Treed area
Northing (20T, NAD 83)	4951495.83	4951524.26	4951547.75		4951326.84	4951385.09	4951464.85
Easting (20T, NAD 83)	458780.37	458848.36	458877.47	No Sample	458922.39	458909.89	458949.33
Date	20-May-08	2-Jun-08	2-Jun-08		15-May-08	15-May-08	15-May-08
Depth or Horizon sample	н	Tailings?	н		н	Tailings	Fill (Topsoil ?)
Subsample ID	MM-34 (0-5 cm)	MM-35 (0-5 cm)	MM-36 (0-5 cm)		MM-38 (0-5 cm)	MM-39 (0-5 cm)	MM-40 (0-5 cm
Top Sample Interval (cm)	0	0	0		0	0	0
Bottom Sample Interval (cm)	5	5	5		5	5	5
Sample Wet weight (g)	2.64	4.82	3.61		3.15	3.18	2.11
Sample Dry weight (g)	0.81	3.44	1.68		1.95	3.14	1.21
Water content (moisture (%))	69	29	53		38	18	43
Original sediment weight (g)	4	18.56	8.76		6.95	8.77	7.72
<150 μm (g)	1.25	10.51	2.78		3.47	2.38	3.08
<150 μm (%)	31	57	32		50	27	40
<2 ntm (%)	89	94	61		97	81	100
Soil description	Organics/Coal	Sandy Silt	Organics with Silt		Organics/Silt	Sandy Silt	Silty Silt
Hg (mg/kg) in <2 mm fraction	0.48	0.2	0.7		2.4	3.2	0.56
Total Org. Carbon (% dry wt.) in <150 μm fraction	290	29	220		57	19	75
Total Org. Carbon (% dry wt.) in <2 mm fraction	350	22	250		67	21	73
As (mg/kg) in <150 μm fraction	250	520	640		980	1,600	290
As (mg/kg) in <2 mm fraction	220	610	580		780	1,200	330

Client: NSTIR

Site: Fm. Gold Mine, Montague Mines, NS Sampled: Jan. 16/17, May 15/20, Jun. 2/11, 08

Gold District	la la			Montague Mines			
Sample Site	MM-41	MM-42	MM-43	MM-44	MM-45	MM-46	MM-47
Site Description	Tailings	Treed area	Treed area	Treed area			Treed area
Northing (20T, NAD 83)	4951436.73	4951375.62	4951337.68	4951390.00			4951363,26
Easting (20T, NAD 83)	458981.38	458994.26	458998.61	459070.62	No Sample	No Sample	458542.55
Date	15-May-08	15-May-08	15-May-08	15-May-08			20-May-08
Depth or Horizon sample	Tailings	н	Н	н			Ac
Subsample ID	MM-41 (0-5 cm)	MM-42 (0-5 cm)	MM-43 (0-5 cm)	MM-44 (0-5 cm)			MM-47 (0-5 cm
Top Sample Interval (cm)	0	0	0	0			0
Bottom Sample Interval (cm)	5	5	5	5			5
Sample Wet weight (g)	4.72	3.26	5.13	2.45			3.53
Sample Dry weight (g)	3.74	1.93	3.01	1.42			2.07
Water content (moisture (%))	21	41	41	42			41
Original sediment weight (g)	12.42	7.25	11.36	5.5			15.17
<150 μm (g)	4.91	1.95	3.05	2.28			1.4
<150 μm (%)	40	27	27	42			9.2
<2 num (%)	93	84	96	99			
Soil description	sand	Silty Sand	Organics/Silty Sand	Organics/Silt			100
Hg (mg/kg) in <2 mm fraction	1.2	2.1	0.67	0.9			Silty Clay
Total Org. Carbon (% dry wt.) in <150 µm fraction	32	110	52	94			25
Total Org. Carbon (% dry wt.) in <2 mm fraction	9	110	94	110			18
As (mg/kg) in <150 μm fraction	3,000	1,000	350	630			24
As (mg/kg) in <2 mm fraction	2,400	890	250	640			54 63

Client: NSTIR

Site: Fm. Gold Mine, Montague Mines, NS Sampled: Jan. 16/17, May 15/20, Jun. 2/11, 08

Gold District		T. T.		Montague Mines			
Sample Site	MM-48	MM-49	MM-50	MM-51	MM-52	MM-53	MM-54
Site Description	Wet, Dngrd. of Tailings		Tailings	Tailings	Tailings	Tailings	Tailings
Northing (20T, NAD 83)	4951331.42		4951315.91	4951371.79	4951431,32	4951482.35	4951555.39
Easting (20T, NAD 83)	458566.32	No Sample	458747.48	458806.42	458698.33	458604.12	458511.07
Date	15-May-08		15-May-08	20-May-08	20-May-08	20-May-08	20-May-08
Depth or Horizon sample	н		Tailings	Tailings	Tailings	Tailings	Tailings
Subsample ID	MM-48 (0-5 cm)		MM-50 (0-5 cm)	MM-51 (0-10 cm)	MM-52 (0-10 cm)	MM-53 (0-10 cm)	MM-54 (0-10 cm)
Top Sample Interval (cm)	0		0	0	0	0	0
Bottom Sample Interval (cm)	5		5	10	10	10	10
Sample Wet weight (g)	3.38		5.91	5.44	5.28	5.3	4.3
Sample Dry weight (g)	1.86		3.41	4.63	4.44	4.43	1.14
Water content (moisture (%))	45		42	15	16	16	73
Original sediment weight (g)	8.37		10.67	18.48	16.78	15.8	6.77
<150 μm (g)	2.76		4	3.06	3.52	3.73	3.18
<150 µm (%)	33		38	17	21	24	47
<2 mm (%)	100		100	100	100	100	100
Soil description	Organics/Silt		Silty Sand	Sandy	Sandy	Sandy	Silt
Hg (mg/kg) in <2 mm fraction	2.8		4.4	0.94	0.58	0.3	8.1
Total Org. Carbon (% dry wt.) in <150 µm fraction	66		18	3.8	2.6	0.4	54
Total Org. Carbon (% dry wt.) in <2 mm fraction	70		27	1.4	1.1	0.3	70
As (mg/kg) in <150 μm fraction	860		2,700	3,500	35,000	5,700	5,700
As (mg/kg) in <2 mm fraction	1,000		2,500	1,800	17,000	2,600	2,600

Client: NSTIR

Site: Fm. Gold Mine, Montague Mines, NS Sampled: Jan. 16/17, May 15/20, Jun. 2/11, 08 MTL Project No. 7442

Gold District	1 /			Montague Mines			
Sample Site	MM-55	MM-56	MM-57	MM-58	MM-59	MM-60	MM-61
Site Description	DUP of MM-33 (0-5 cm)	DUP of MM-26 (0-5 cm)	DUP of MM-23 (0-5 cm)	DUP of MM-60 (0-5 cm)	DUP of MM-64 (2-5 cm)	Treed area	Treed area
Northing (20T, NAD 83)	4951518.09	4951614.95	4951699.05	4951573.46	4951801.03	4951573.46	4951511.18
Easting (20T, NAD 83)	458706.74	458703.67	458865.60	459063.05	459174.54	459063.05	459130.61
Date	20-May-08	2-Jun-08	2-Jun-08	11-Jun-08	11-Jun-08	11-Jun-08	11-Jun-08
Depth or Horizon sample	Н	Composite	Composite	н	В	Н	н
Subsample ID	MM-55 (0-5 cm)	MM-56 (0-5 cm)	MM-57 (0-5 cm)	MM-58 (0-5 cm)	MM-59 (2-5 cm)	MM-60 (0-5 cm)	MM-61 (0-5 cm)
Top Sample Interval (cm)	0	0	0	0	2	0	0
Bottom Sample Interval (cm)	5	5	5	5	5	5	5
Sample Wet weight (g)	3.92	3.99	3.24	2.22	2.89	2.3	3.05
Sample Dry weight (g)	1.75	2.41	1.95	0.95	1.95	0.77	0.93
Water content (moisture (%))	55	40	40	57	32	66	69
Original sediment weight (g)	7.72	11.66	11.72	5.94	12.63	4,88	4.13
<150 µm (g)	3.22	4.54	5.19	0.94	5.54	0.7	1.94
<150 µm (%)	42	39	44	16	44	14	47
<2 mm (%)	95	64	92	69	82	92	97
Soil description	Organics/Silt	Composite	Composite	Organics/Silt	Silty	Organic/Silt	Organic/Silt
Hg (mg/kg) in <2 mm fraction	1.1	0.16	0.15	0.38	0.17	0.37	0.4
Total Org. Carbon (% dry wt.) in <150 μm fraction	120	110	57	230	45	270	290
Total Org. Carbon (% dry wt.) in <2 mm fraction	170	120	71	280	39	250	310
As (mg/kg) in <150 μm fraction	12,000	15	110	73	130	41	51
As (mg/kg) in <2 mm fraction	12,000	16	140	51	110	48	37

Client: NSTIR

Site: Fm. Gold Mine, Montague Mines, NS Sampled: Jan. 16/17, May 15/20, Jun. 2/11, 08

Gold District	745 (9)	10-14	744	Montague Mines			
Sample Site	MM-62	MM-63	MM-64	MM-64	MM-64	MW-1	MW-1
Site Description	Treed area	Tailings area	Tailings area				
Northing (20T, NAD 83)	4951758.04	4951833.43	4951801.03	4951801.03	4951801.03	4951452.21	4951452.21
Easting (20T, NAD 83)	459162.60	459143.36	459174.54	459174.54	459174.54	458566.93	458566,93
Date	l I - Jun-08	11-Jun-08	11-Jun-08	I I -Jun-08	11-Jun-08	16-Jan-08	16-Jan-08
Depth or Horizon sample	н	н	Composite	н	В		
Subsample ID	MM-62 (0-5 cm)	MM-63 (0-5 cm)	MM-64 (0-5 cm)	MM-64 (0-2 cm)	MM-64 (2-5 cm)	MW1/S1 (0.3-1.5 m)	MW1/S2 (1.5-2.1 m)
Top Sample Interval (cm)	0	0	0	0	2	0.3 m	1.5 m
Bottom Sample Interval (cm)	5	5	5	2	5	1.5 m	2.1 m
Sample Wet weight (g)	3.73	3.36	4.78	4.01	3.57		
Sample Dry weight (g)	1.18	1.05	2.67	1.56	2.31		
Water content (moisture (%))	68	69	44	61	35		
Original sediment weight (g)	3.95	3.14	6.59	2.19	12.09		
<150 µm (g)	1.07	0.76	2.52	1.25	4.5		
<150 µm (%)	27	24	38	57	37		
<2 mm (%)	95	98	91	99	80		
Soil description	Organic/Silt	Organic/Silt	Composite	Organic/Silt	Silty	Tailings	Tailings/Peat
Hg (mg/kg) in <2 mm fraction	0.33	0.28	0.22	0.27	0.16	0.7	4.4
Fotal Org. Carbon (% dry wt.) in <150 μm fraction	340	300	110	300	60		
Total Org. Carbon (% dry wt.) in <2 mm fraction	310	360	110	330	52		
As (mg/kg) in <150 μm fraction	31	21	120	39	130		
As (mg/kg) in <2 nun fraction	25	17	110	32	120	5,300	1,700

Client: NSTIR

Site: Fm. Gold Mine, Montague Mines, NS Sampled: Jan. 16/17, May 15/20, Jun. 2/11, 08

Gold District				Montague Mines			
Sample Site	MW-1	MW-I	MW-1	MW-1	MW-2	MW-2	MW-2
Site Description	Tailings area	Tailings area	Tailings area	Tailings area	Tailings area	Tailings area	Tailings area
Northing (20T, NAD 83)	4951452.21	4951452.21	4951452.21	4951452.21	4951522.55	4951522.55	4951522.55
Easting (20T, NAD 83)	458566.93	458566.93	458566.93	458566.93	458553.24	458553.24	458553.24
Date	16-Jan-08	16-Jan-08	16-Jan-08	16-Jan-08	17-Jan-08	17-Jan-08	17-Jan-08
Depth or Horizon sample							
Subsample ID	MW1/S3 (2.1-2.7 m)	MW1/S4 (3.0-3.7 m)	MW1/S5 (3.7-4.3 m)	MW1/S6 (4.7-5.2 m)	MW2/\$1 (0.3-0.9 m)	MW2/S2 (0.9-1.5 m)	MW2/S3 (1.5-2.1 m)
Top Sample Interval (cm)	2.1 m	3.0 m	3.7 m	4.7 m	0.3 m	0.9 m	1.5 m
Bottom Sample Interval (cm)	2.7 m	3.7 m	4.3 m	5.2 m	0.9 m	1.5 m	2.1 m
Sample Wet weight (g)	150						a 110
Sample Dry weight (g)	142						
Water content (moisture (%))	1						
Original sediment weight (g)							
<150 µm (g)	Tomograph and Admit						
<150 µm (%)							
<2 mm (%)							
Soil description	Peat	Peat/Sand	Quartzite Till	Quartzite Till	Tailings	Peat	Peat/Sand
Hg (mg/kg) in <2 mm fraction	0.41	0.04	0.22	0.03	3.3	0.07	0.09
Total Org. Carbon (% dry wt.) in <150 µm fraction					3.3	0.07	0.09
Total Org. Carbon (% dry wt.) in <2 mm fraction							
As (mg/kg) in <150 μm fraction							
As (mg/kg) in <2 mm fraction	900	190	510	25	8,900	30	290

Client: NSTIR

Site: Fm. Gold Mine, Montague Mines, NS Sampled: Jan. 16/17, May 15/20, Jun. 2/11, 08

Gold District			Montagu	e Mines		
Sample Site	MW-2	MW-2	MW-3	MW-3	MW-3	MW-3
Site Description	Tailings area					
Northing (20T, NAD 83)	4951522.55	4951522.55	4951499.17	4951499.17	4951499.17	4951499.17
Easting (20T, NAD 83)	458553.24	458553.24	458624.47	458624.47	458624.47	458624.47
Date	17-Jan-08	17-Jan-08	17-Jan-08	17-Jan-08	17-Jan-08	17-Jan-08
Depth or Horizon sample						********
Subsample ID	MW2/S4 (2.1-2.7 m)	MW2/S5 (2.7-3.4 m)	MW3/S1 (0.3-0.9 m)	MW3/S2 (0.9-1.5 m)	MW3/S3 (1.5-2.1 m)	MW3/S4 (4.0-4.3 m)
Top Sample Interval (cm)	2.1 m	2.7 m	0.3 m	0.9 m	1.5 m	4.0 m
Bottom Sample Interval (cm)	2.7 m	3.4 m	0.9 m	1.5 m	2.1 m	4.3 m
Sample Wet weight (g)						
Sample Dry weight (g)						
Water content (moisture (%))						
Original sediment weight (g)						
<150 μm (g)						
<150 µm (%)						
<2 mm (%)						
Soil description	Quartzite Till	Quartzite Till	Tailings	Tailings	Peat/Sand	Quartzite Till
Hg (mg/kg) in <2 mm fraction	0.05	0.05	0.96	1.9	0.69	0.03
Total Org. Carbon (% dry wt.) in <150 µm fraction				1.5	0,03	0.03
Total Org. Carbon (% dry wt.) in <2 mm fraction						
As (mg/kg) in <150 µm fraction	1					
As (mg/kg) in <2 mm fraction	120	76	2,400	2,800	1,900	78

Northing (20TNAD83) Easting (20TNAD83) Site ID Sample Type - Horizon No Yes Names of Samplers RepStat Sampling Depth 0 - 5 cm Resampled Site No Yes Contamination Popth sample (all horizons) Popth sample Popth sam	Site		Date	Time
Names of Samplers RepStat RepStat Sampling Depth 0 - 5 cm Resampled Site No Yes Contamination Comments: (E.g., Presence of waste rock, berms, pits, trench other mining activity) Profusion Porizon Assortium Cover	Muntagarel	Mine's	20 May 08	M .
Names of Samplers RepStat Sampling Depth 0 - 5 cm Resampled Site No Yes Samples Collected 0 - 5 cm Contamination Pepth sample (all horizons) Pepth sample Probable Probable Probable Probable Poffinite Poffinite	Northing (20TNAD83)	Easting (20TNAD83)	Site ID	Sample Type - Horizon
Samples Collected -5 cm epth sample (all horizons) orizon Sample -horizon Contamination Comments: (E.g., Presence of waste rock, berms, pils, trench other mining activity) Assortium Core			Pi [0] -]	
Resampled Site No Yes → Samples Collected 1-5 cm Pepth sample (all horizons) Prossible	Names of	Samplers	RepStat	Sampling Depth
Samples Collected - 5 cm epth sample (all horizons) orizon Sample - horizon According Contamination Comments: (E.g., Presence of waste rock, berms, pits, trench other mining activity) According Comments: According Contamination Comments: (E.g., Presence of waste rock, berms, pits, trench other mining activity) According Comments:	Robert Bakkers			0 - 5 cm
Contamination Comments: Possible Contamination Comments	ry. 11111.			Site
Possible Probable	Samples Collected			
pe of Surface Material Parkland Parkland Other - 2m higher (elev=) them			Contamination	Comments:

Local Surface Expression

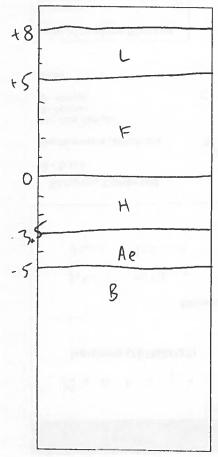
Mineral Surface Form
Blanket
Dissected
Fan
Hummocky
Inclined
Level
Rolling
Ridged
Steep
Terrace
Undulating
Vencer

Drainage

Very rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained

Sunny/Clear Partly cloudy Overcast Rain Sleet Snow

Air Temp.


Horizons

D: Lithological discontinuity Ma Master horizons (Humus, A. B. C) Suffix: Suffixes M: Modifier (B1, B2, B3)

Horizon Boundary (HB)

S Smooth W Wavy I: Irregular B. Broken

Soil Profile Diagram

Colour Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM) Y: Visible

N. Not visible

Coarse Fragments (CF) Estimated value in %

Field Texture

Clay, Sandy Clay, Loam
Silt, Silty Sand, Silt Loam, Silty Clay Loam
Loam, Sandy Loam, Loamy Sand
Sand, Very Fine Sand, Fine Sand, Medium
Sand, Coarse Sand, Very Coarse Sand

	Photo:	§
	Pit with Samples	\square
i	Looking North	Image: second control of the control
	Looking East	
	Looking South	Image: section of the content of the
	Looking West	
	Others	
ı		

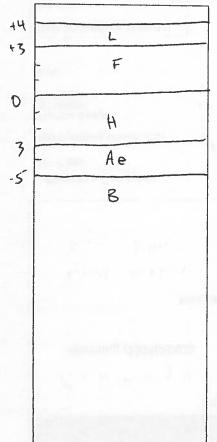
Horizons # Ma Suffix	Depth HE	3 Colour	DM CF	Field Texture
1 L 2 F 3 H 4 A 5 B 6 7 8 9 10	+8 +5 W +5 0 W 0 -35 W -35 -5 B	104R 2/1 104R 5/1 104R 5/6	0 0 20 20 20	sand sandy s. 1t s. Ity sand

Gold Mine Dis	trict Soil Sampling Field Data Sheet
Site Muntagard Man (25 Northing (20TNAD83) Easting (20TNAD83)	Date Time 15 May 68 15:55 Site ID Sample Type - Horizon No Yes
Names of Samplers Koher I Bekkers Kyon Fellon	RepStat Sampling Depth 0 - 5 cm Resampled Site No Yes →
Samples Collected 0 - 5 cm Depth sample (all honzons) Horizon Sample A - horizon B - horizon Other. Type of Surface Material Mineral Soil Organic Soil Urban Local Surface Expression Mineral Surface Form Blanket Dissected Fan Hummocky Inclined Pitted Level Depth sample (all honzons) Vegetation Cover Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Mix	Contamination None Possible Probable Definite Farming Housing Industry Logging Mining Road Garbage Other Weather Sunny/Clear Partly cloudy Overcast Rain Size t Snow Air Temp. Comments: (E.g. Presence of waste rock. berms, pits. trenches or other mining activity) Abundant true fall Area (bouldurx) - 15 m 5 of trench and brock - Dense tree cover
Level Rolling Ridged Steep Terrace Undulating Veneer	1 : 3 °C

Horizons

D: Lithological discontinuity

Ma: Master horizons (Humus, A, B, C)


Suffix: Suffixes M: Modifier (B1, B2, B3)

Horizon Boundary (HB)

W Wavy

I: Irregular B. Broken

Soil Profile Diagram

Colour

Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM)

Y: Visible

N: Not visible

Coarse Fragments (CF) Estimated value in %

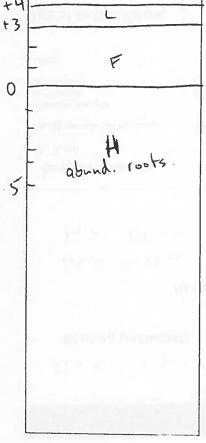
Field Texture

Clay, Sandy Clay, Sandy Clay, Loam Silt, Sitty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

Photo	<u>\$</u>
Pit with Samples	Image: section of the content of the
Looking North	V
Looking East	
Looking South	V
Looking West	
Others	

Horizons # Ma Suffix	Depth HB	Colour	CF %	Field Texture
1 L 2 F 3 H 4 Ae 5 B 6 7 8 9 10	+4 +3 W +3 0 W 0 -3 W -3 -5 1	10YR 6/2	0 0 0 20 30	org. org. silt. silty sand silt.

	Gold Mine District	Soil Sampling Field Data Sheet
Northing (20TNAD83)		Date Time 15 May 08 16:20 : Site ID Sample Type - Horizon
		MM - 3 No Yes
Names	of Samplers	RepStat Sampling Depth
Robert Bekkers		0 - 5 cm
Kyon Pillon		Resampled Site No Yes →
Samples Collected	у на да овин ба	
O - 5 cm Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other. Type of Surface Material Mineral Soil Organic Soil Non-Soil Urban	Vegetation Cover Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Unvegetated Surface	Contamination Comments: (E.g., Presence of waste rock, berms, pits, trenches of other mining activity) - Probable - Probable - Definite - Housing - Industry - Logging - Mining - Road - Garbage - Other Weather Sunny/Clear Partly cloudy Comments: (E.g., Presence of waste rock, berms, pits, trenches of other mining activity) - Abundant free fall - Wet area (puddles) - Abundant boulders.
Local Surface Expression Mineral Surface Form Bianket Dissected Fan Hummocky Inclined Pitted Level Rolling Ridged Steep Terrace Undulating Veneer	Drainage Very rapidly drained	Partly cloudy Overcast Rain Sleet Snow Air Temp. 1 3°C


Horizons

D: Lithological discontinuity
Ma: Master horizons (Humus, A, B, C)
Suffix: Suffixes
M: Modifier (B1, B2, B3)

Horizon Boundary (HB) S Smooth

S: Smooth W: Wavy I: Irregular B. Broken

Soil Profile Diagram

Colour Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM)
Y: Visible

N. Not visible

Coarse Fragments (CF)
Estimated value in %

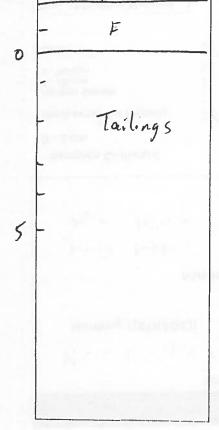
Field Texture

Clay, Sandy Clay, Sandy Clay, Loam, Silt, Silty Sand, Silt Loam, Silty Clay Loam, Loam, Sandy Loam, Loamy Sand, Sand, Very Fine Sand, Fine Sand, Medium, Sand, Coarse Sand, Very Coarse Sand

<u>Photos</u>						
Pit with Samples						
Looking North						
Looking East						
Looking South						
Looking West						
Others						

	Horizo	ns		Depth	HB	Colour	BM	CF	Field
# 1	Ma	Suffix	-	Up Low	The Tree Lan			%	Texture
1				+4 +3	_ W ::			-	0.60
2	F			+3 0	W			0	019
3	H			0	W	* 40 (42 mmm a mmmm a) yea	17.		019
4	*)							0	org. /silt
5	1			100		***	1 :		wet.
11	1		- i				() (4/4)	î	
6	E .		- 1				Ub _ Am		ěi.
7	and to		1 ! !				market blocks		
8	100		25.00				4		
9.		1							
0	1.50				The la		* .		
		L 1				- 1:	1-1-1		

	Gold Mine District	t Soil Sampling Field	l Data Sheet
Site	Easting (20TNAD83)	Date 15 May 08 1	Time / : O O : Sample Type - Horizon
		MM-4	No Yes V
Names of Sa	mplers	RepStat	Sampling Depth
Lubert Bikking		1.1.1	0 - 5 cm
Ryon Pellouin		Resampled Si No Yes →	ite
Samples Collected 0 - 5 cm Depth sample (all horizons) Horizon Sample A - horizon B - horizon Cother: Type of Surface Material Mineral Soil Organic Soil Non-Soil Urban	Vegetation Cover Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Unvegetated Surface	Contamination None Possible Probable Definite Farming Housing Industry Logging Wirring Road Garbage Other Weather Sunny/Clear	Comments: (E.g. Presence of waste rock, berms, pits, trenches or other mining activity) - Waste rock in area. - tailings area.
Local Surface Expression Mineral Surface Form Blanket Dissected Fan Hummocky Inclined Pitted Level Rolling Ridged Sleep Terrace Undulating Veneer	Drainage Very rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained	Partly cloudy Overcast Rain Sleet Snow	


Horizons

D-Lithological discontinuity
Ma: Master horizons (Humus, A, B, C)
Suffix: Suffixes
M: Modifier (B1, B2, B3)

Horizon Boundary (HB)

S Smooth
W Wavy
I Irregular
B. Broken

Soil Profile Diagram

Colour

Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM)

Y: Visible N: Not visible

Coarse Fragments (CF) Estimated value in %

Field Texture

Clay, Sandy Clay Sandy Clay Loarn
Silt, Silty Sand, Silt Loarn, Silty Clay Loarn
Loam, Sandy Loarn, Loarny Sand
Sand, Very Fine Sand Fine Sand, Medium
Sand, Coarse Sand, Very Coarse Sand

Photos							
Pit with Samples	Y						
Looking North	4						
Looking East							
Looking South	Image: Control of the						
Looking West							
Others							

Horizons # Ma Suffix	Depth HB	Colour	DM CF	Field Texture
1 /			%	
2 6	2		9	org-
3				org-
4		104R 5/2	0	stly.
5		Some gray	1	T ide
6		variability in		
7	2 414	Faitings.	1,30 15	
8 minula em presenta		1 Nam	the special results of	
9			a. K	
0			1.000	
	Car Somosaniti II.			

Site		Date	Time
Montagael	Mines	Nov 30/07	9:40 :
Northing (20TNAD83)	Easting (20TNAD83)	Site ID	Sample Type - Horizon
		MM-5	No Yes
Names of	Samplers	RepStat	Sampling Depth
Robert Bokkers		<u> </u>	0 - 5 cm
Agen Pellerin		Resampled S No Yes →	ite
amples Collected 5 cm oth sample (all horizons) izon Sample norizon orizon er. H	Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland	Contamination None Possible Probable Definite Farming Housing Industry Logging Mining Road Garbage Other	Comments: (E.g., Presence of waste rock, berms, pits, trench other mining activity) - 5 m W of path - 15 m S of road as failings area (aporox " 5 m from garbage

Local Surface Expression

Mineral Surface Form Blanket OKCOCKOCOCOCO Dissected Fan Hummocky Inclined Pitted Level Rolling Ridged Steep Terrace Undulating Veneer

Drainage

Very rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained

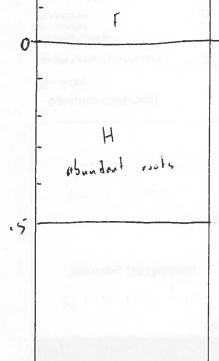
0000000

Weather

Sunny/Clear Partly cloudy Overcast 000000 Rain Sleet Snow

Air Temp.

(cons).
- Steep slope (down) 5m
to north.


Horizons

D: Lithological-discontinuity
Ma: Master horizons (Humus, A, B, C)
Suffix: Suffixes M: Modifier (B1, B2, B3)

S Smooth W: Wavy t Irregular B. Broken

Horizon Boundary (HB)

Soil Profile Diagram

Colour

Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM)

Y: Visible N: Not visible

Coarse Fragments (CF) Estimated value in %

Field Texture

Clay, Sandy Clay Sandy Clay Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

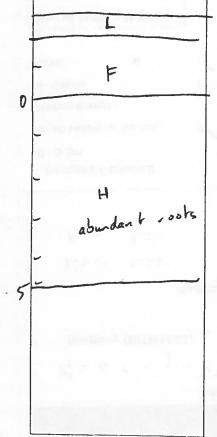
Photo	<u>\$</u>
Pit with Samples	
Looking North	
Looking East	
Looking South	F
Looking West	
Others	U

# #	Horizon:	s Suffix 🌌	Depth Up Low	НВ	Colour	DM	CF	Field Texture
1 2 3 4	L F H A		+3 +2 +2 0 0 -5 -5 -6	W W W	104R 2/1		% 0 0	org solf.
5 6 7	В		-6		JOYR 5/6	di. 100	40	sand youne si
9								

Gold Mine District S	Soil Sampling Field Data Sheet
Muntagael Minels!	Date Time 15 May 08 10:55:
Northing (20TNAD83) Easting (20TNAD83)	Site ID Sample Type - Horizon No Yes
Names of Samplers Kubirl Rikking Kyon Filling	RepStat Sampling Depth 0 - 5 cm Resampled Site No Yes No Yes
Samples Collected 0 - 5 cm Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other: H Type of Surface Material Mineral Soil Organic Soil Non-Suil Urban Wegetation Cover Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Unvegetated Surface	Contamination None Possible Probable Definite Farming Housing Industry Logging Mining Road Garbage Other Weather Sunny/Clear Sunny/Clear Sunny/Clear Comments: (E.g., Presence of waste rock, berms. pits, trenches other mining activity) - 5m W of path - 15m S of road and - 4ailings area. - 5m from garbage (can
Mineral Surface Form Blanket	Party cloudy Overcast Rain Sleet Snow Air Temp. 1 0 °C

Horizons

D. Lithological discontinuity
 Ma Master horizons (Humus, A, B, C)
 Suffix: Suffixes


M: Modifier (B1, B2, B3)

Horizon Boundary (HB)

S: Smooth W: Wavy

I: Irregular B. Broken

Soil Profile Diagram

Colour

Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM)

Y: Visible N: Not visible

Coarse Fragments (CF) Estimated value in %

Field Texture

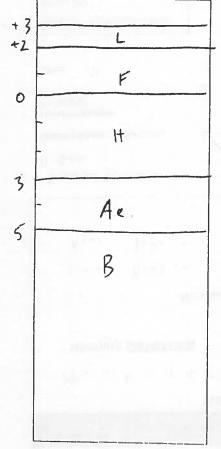
Clay Sandy Clay. Sandy Clay Loam Silt, Silty Sand, Silt Loam. Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

Photos						
Pit with Samples						
Looking North						
Looking East						
Looking South	3					
Looking West						
Others						
	F" //					

¥	Horizo	ons Suffix J	Depth Up Low	НВ	Colour	BM	CF	Field Texture
	9 %	Outilix 2				241	%	TCALLIC
1	L		+3 +2	W		.1 .	0	Dvg.
2	F		+2 0	W			0	<i>J</i>
3	н			W	10000 41.			019
4			0 -5	110	10 YR 2/1		0	org.
	A		-5 -6	W	10 YR 4/4	1: 6	5	sandy silt
5	. B		-6		10 YR 5/6		40	sand, some s
6	8		1	1		The state of the s		7411) 5 7002 9
7			7		75 shows (5.75)			
3	wind to	-	1961 98 70	in our				W.
'								
				. !!	220 220 220			

	Gold Mine District	Soil Sampling Field Dat	a Sheet
Montagae	te	Date 15 Man 08 12:4	Time
Northing (20TNAD83)	Easting (20TNAD83)	Site ID Sample	Type - Horizon Yes
Kyon Fellows	s of Samplers	RepStat Resampled Site No Yes →	Sampling Depth 0 - 5 cm
Samples Collected 0 - 5 cm Depth sample (all horizons) Horizon Sample A - horizon B - honzon Other. H Type of Surface Material Mineral Soil Organic Soil Non-Soil Urban	Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Unvegetated Surface	None Possible Probable Definite Housing Industry Logging Mining Road Garbage Other Weather	Omments: E.g., Presence of waste rock, berms, pits, trenches or other mining activity) 30 m S of road. Dense forest. 2 m from tree fall. 10 m E of wet area (swamp).
Local Surface Expression Mineral Surface Form Blanket Dissected Fan Hummocky Inclined Pitted Level Rolling Ridged Steep Terrace Undulating Veneer	Drainage Very rapidly drained	Partly cloudy Overcast Rain Sleet Snow Air Temp.	arti (swamp).

Horizons"


D:Lithological discontinuity
Ma. Master horizons (Humus, A, B, C)
Suffix: Suffixes
M: Modifier (B1, B2, B3)

(51, 52, 53

Horizon Boundary (HB)

W Wavy I: Irregular B Broken

Soil Profile Diagram

Colour

Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM)

Y: Visible N: Not visible

Coarse Fragments (CF) Estimated value in %

Field Texture

Clay, Sandy Clay Sandy Clay Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

Photos								
Pit with Samples	Image: Control of the							
Looking North	Image: Control of the							
Looking East								
Looking South								
Looking West								
Others								
h 12 et								
1								

# 1 1	Horizo	ons Suffix	Depth Up Low	НВ	Colour	DIM	CF %	Field Texture
2 3 4 5	H Ae B		+3 +2 +2 0 0 -3 -3 -5	W 1	10 YR 3/2		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	org. org. silty. T
6 7 8				- 900				
9								

	Gold Mine District	Soil Sampling Field Data Sh	eet
Site Muntaga el	Minels	Date Time	:
Northing (20TNAD83)	Easting (20TNAD83)	Site ID Sample Type - Ho	rizon
Ryon Fellon	Samplers	RepStat Resampled Site No Yes →	Sampling Depth 0 - 5 cm
Samples Collected 0 - 5 cm Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other. Type of Surface Material Mineral Soil Organic Soil Non-Soil Urban	Vegetation Cover Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Unvegetated Surface	Probable Probable Definite Farming Housing Industry Logging Mining Road Garbage Other Weather Sunny/Clear	nce of waste rock, berms, pits, trenches of
Local Surface Expression Mineral Surface Form Blanket	Drainage Very rapidly drained	Partly cloudy Overcast Rain Sleet Snow	

Horizons

D: Lithological discontinuity

Ma Master horizons (Humus, A, B, C) Suffix: Suffixes

M: Modifier (B1, B2, B3)

Horizon Boundary (HB) S: Smooth

W: Wavy

1. Irregular B. Broken

Soil Profile Diagram

Codes for Horizon Description

Colour

Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM)

Y: Visible

N: Not visible

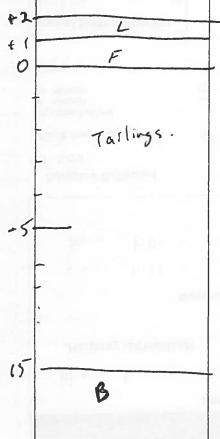
Coarse Fragments (CF) Estimated value in %

Field Texture

Clay, Sandy Clay, Sandy Clay, Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

Photos					
Pit with Samples	Image: Control of the				
Looking North					
Looking East	9				
Looking South					
Looking West					
Others					

# #	Horizons Ma Suffix	Depth Up Low	HB Colour	CF %	Field Texture
1 2 3 4 5	F H Tailings	+3 +2 +2 0 0 -5 -5 -19	W S W 10 YR	0 0 5	org. org
6 7 8				erongo das poserou.	3
9					


	Gold Mine District	Soil Sampling Field Data	Sheet
Site	Easting (20TNAD83)	Date T 15 May 08 17:36 Site ID Sample Typ	ime :
Names of Sa Ryon Pellenn	implers	RepStat Resampled Site No Yes →	Sampling Depth 0 - 5 cm
Samples Collected 0 - 5 cm Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other: Type of Surface Material Mineral Soil Organic Soil Non-Soil Urban	Vegetation Cover Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Unvegetated Surface	None Possible Probable Probable Definite Housing Industry Logging Mining Road Garbage Other Weather Carbage C	Presence of waste rock berms, pits, trenches or r mining activity) N of road. S of this longs. Leslope to Morth.
Local Surface Expression Mineral Surface Form Blanket Dissected Fan Hummocky Inclined Pitted Level Rolling Ridged Steep Terrace Undulating Veneer	Drainage Very rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained	Sunny/Clear Parity cloudy Overcast Rain Sleet Snow	

Horizons

D- Lithological-discontinuity
Ma. Master horizons (Humus, A, B, C) Suffix: Suffixes M: Modifier (B1, B2, B3)

Horizon Boundary (HB) S: Smooth W: Wavy 1. Irregular B. Broken

Soil Profile Diagram

Colour

Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM)

Y: Visible N: Not visible

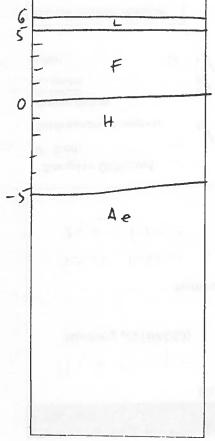
Coarse Fragments (CF) Estimated value in %

Field Texture Clay, Sandy Clay, Sandy Clay Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

Photo	Ş
Pit with Samples	W
Looking North	I
Looking East	
Looking South	P
Looking West	
Others	
The state of	

ل ر #	Horizons Ma Suffix	Depth Up Lo		Colour	CF %	Field Texture
1	1	+2 +	W		0	org.
2	F	11110) W		0	019.
3	Tailings	0.	_/o;	YR 3/3	0	51/+.
4						0/-9: 000
5			1			
6					a great of	
В		+		sai	ng Teler-polices	
9			- ; ;!		128 -	
0			The same is a second		- 11000	

		Soil Sampling Field Data Sh	
Site	10	Date Time	
Mentagnel	Mines	2 Jun 08 12:55	4 () the Company of
Northing (20TNAD83)	Easting (20TNAD83)	Site ID Sample Type - Ho	
		MM - 9 No Yes V	/
Names of S	Samplers	RepStat	Sampling Depth
Robert Robbins	5	1.3	0 - 5 cm
Kyon Pellonia		Resampled Site No Yes →	
amples Collected	14 10 2000 4	Contamination	e negros
5 cm		Continue	
pth sample (all horizons)	Vegetation Cover	None (E.g., Preser other mining Definite	nce of waste rock, berms, pits, trenche g_activity)
horizon	™gricultural Crops	- Definite - Boulders	, true fall in are
er: (_)	Coniferous Forest Deciduous Forest	l lodding	
	Mixed Forest Meadow, Wet	-Logging -Mining -Road	area
e of Surface Material	Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland	-Garbage -Other	E of approclem
eral Soil	Shrubland Unvegetated Surface	(tai	4
anic Soil -Soil an		Weather	1755).
an Ö	*	Sunny/Clear	
al Surface Expression		Partty cloudy Overcast Rain Sleet Snow	
	<u>Drainage</u>	Sleet D	
eral Surface Form	Very rapidly drained ☐ Rapidly drained ☐ Well drained ☑	0.00	
ected	Well drained Moderately well drained		
mocky	Moderately well drained	Air Temp.	
mocky and a control of the control o	Very poorly drained	/ S°C	
ng d			
p C C C C C C C C C C C C C C C C C C C			


Horizons

D: Lithological discontinuity
Ma: Master horizons (Humus, A, B, C)
Suffix: Suffixes
M: Modifier (B1, B2, B3)

Horizon Boundary (HB)

S: Smooth
W: Wavy
I: Irregular
B: Broken

Soil Profile Diagram

Colour

Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM)

Y: Visible

N: Not visible

Coarse Fragments (CF) Estimated value in %

Field Texture

Clay, Sandy Clay, Sandy Clay Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

Photos	Ş
Pit with Samples	
Looking North	
Looking East	
Looking South	
Looking West	
Others	
Production of	
n. paren	Lower Park

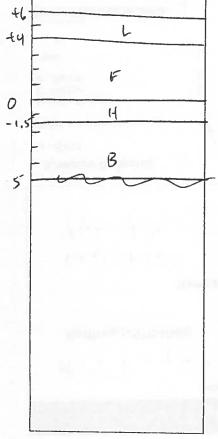
	Horizo			Dep		НВ	Colour	BM	CF	Field
# 15	Ма	Suffix	M	Up	Low			•	%	Texture
1	L		1.	+6	+5	W			A	0.60
2	: F		1	اسم.		W		E	0	org-
3	1011		- i i	72	0			100	0	org.
	, н			0	-5_	- W	10 YR 2/1		D	silty lorg.
4	Ae		-	-5		13		Free P		silt/sand
5	1					15			* 3	
6		146					1	4		
7		7 8	+ 11							
	***************************************			:			5 . See		1	
В		20 11					1			
9				1			(6.0	1.		
0	*							· .		
		- 1		-#	18		*	75 67 7	TIERT.	

	Sold Mine District S	oil Sampling Field	Data Sheet
Ment a garage	line's	Date 2 Jun 08 13	Time :
Northing (20TNAD83) Easting (20TNAD83)		Site ID S	ample Type - Horizon No Yes
Names of San	nplers	RepStat	Sampling Depth
Ryon Fellerin		Resampled Site	0 - 5 cm
Samples Collected 0 - 5 cm Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other: Type of Surface Material Mineral Soil Organic Soil Non-Soil Urban	Vegetation Cover Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Unvegetated Surface	Contamination None Possible Probable Definite Farming Housing Industry Logging Mining Road Garbage Other Weather Sunny/Clear	Comments: (E.g., Presence of waste rock, berms, pits, trenches or other mining activity) = 10m E of clearing (failings). -15m N of french (shaffs) -Tree fall, boulders abundant - Med. Free cover
Local Surface Expression Mineral Surface Form Blanket	Drainage Very rapidly drained	Sunny/Clear Partly cloudy Overcast Rain Sleet Snow	

Horizons

D: Lithological discontinuity

Ma: Master horizons (Humus, A, B, C)


Suffix: Suffixes

M: Modifier (B1, B2, B3)

Horizon Boundary (HB)

S: Smooth W: Wavy I: Irregular B. Broken

Soil Profile Diagram

Colour Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM)

Y. Visible N. Not visible

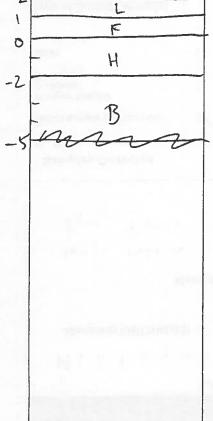
Coarse Fragments (CF) Estimated value in %

Field Texture
Clay, Sandy Clay Loam
Silt, Silty Sand, Silt Loam, Silty Clay Loam
Loam, Sandy Loam, Loamy Sand
Sand, Very Fine Sand Fine Sand, Medium
Sand, Coarse Sand, Very Coarse Sand

Photo	Ş
Pit with Samples	
Looking North	9
Looking East	
Looking South	
Looking West	
Others	
p-1	

	Horizo	ons	E	Depth	НВ	Colour	DM	CF	Field
# 25	Ma	Suffix	المرا	Jp Low	militar Fe			%	Texture
1	L		1 46	+4	W			d	Urg
2	F		44	٥	W		1		019.
3	4		0	-1.5	W	10 YR 2/1		0	
4	8	17.55(37-3)	1-1.5		W	10 YR 3/3		2	org Tsilty sandlsilt
5						C 115 -719	9	0	Sand (Silf
6						720 22			
7		1					-		Til.
8				g homenil				3	
9.				-		p	9 P-1		
0		Î	1 - 4			f	1 1		
		* *				*			

Gold Mine District	t Soil Sampling Field Data Sheet
Site Muntage Mincs Northing (20TNAD83) Easting (20TNAD83)	Date Time 2 Jun 08 14:00 Site ID Sample Type - Horizon No Yes
Names of Samplers Robert Rikkers Ryon Pellonn	RepStat Sampling Depth 0 - 5 cm Resampled Site No Yes →
Samples Collected 0 - 5 cm Depth sample (all horizons) Horizon Sample A - horizon B - horizon Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Unvegetated Surface Unvegetated Surface	Contamination None Possible Probable Definite Farming Housing Industry Logging Mining Road Garbage Other Weather Comments: (E.g., Presence of waste rock, berms, pits, trenches or other mining activity) - Weavy Free Fall , A area. - On a slight slope. - Medium tree cover.
Local Surface Expression Mineral Surface Form Blanket Dissected Fan Hummocky Inclined Pitted Level Rolling Ridged Steep Terrace Undulating Veneer Mineral Surface Expression Very rapidly drained Rapidly drained Well drained Well drained Imperfectly drained Poorly drained Very poorly drained Very poorly drained Undulating Veneer	Sunny/Clear Partly cloudy Overcast Rain Sleet Snow Air Temp. 1 6 °C


Horizons

D: Lithological-discontinuity
Ma: Master horizons (Humus, A, B, C)
Suffix: Suffixes
M: Modifier (B1, B2, B3)

Horizon Boundary (HB)

S: Smooth W: Wavy I: Irregular B: Broken

Soil Profile Diagram

Colour

Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM)

Y: Visible

N: Not visible

Coarse Fragments (CF) Estimated value in %

Field Texture

Clay, Sandy Clay, Sandy Clay Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

Photos	•
Pit with Samples	1

Looking North

Looking East

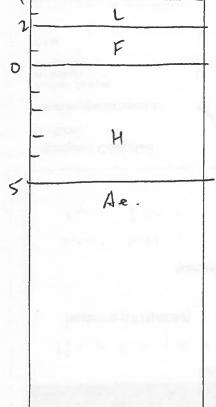
Looking South

Looking West

Others

Horizons # Ma Suffix M	Depth H	B Colour	DM CF	Field Texture
1 2		N_	0	019.
3	0 -2	N 1078 2/1	0	silty lorg
4 5	-2 91 1	3	5	silty.
7		1	i - i	
8			. !	
0		(II) (II) (III) (III)	These	

	Gold Mine District	t Soil Sampling Field	l Data Sheet
Mcn+494el Northing (20TNAD83)	Easting (20TNAD83)	Date 2 Jun 08 14	Time # : / O : Sample Type - Horizon No Yes
Names of S	Samplers	RepStat	Sampling Depth
Robert Behking			0 - 5 cm
Kyon Pelleria		Resampled Si No Yes →	te
Samples Collected 0 - 5 cm Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other: Type of Surface Material Mineral Soil Organic Soil Non-Soil	Vegetation Cover Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Unvegetated Surface	Contamination None Possible Probable Definite Farming Housing Industry Logging Miring Road Garbage Other Weather	Comments: (E.g., Presence of waste rock, berms, pits, trenches or other mining activity) - 5 m W of shaft. - 3 m E of trail. - 2 n from tree full. - Med. tree cover.
Local Surface Expression Mineral Surface Form Blanket Dissected Fan Hummocky Inclined Pitted Level Rolling Ridged Steep Terrace Undulating Veneer	Drainage Very rapidly drained Rapidly drained Well drained Moderately well drained Insperfectly drained Poorly drained Very poorly drained	Sunny/Clear Partly cloudy Overcast Rain Sleet Snow	


Horizons

D: Lithological discontinuity
Ma. Master horizons (Humus, A, B, C)
Suffix: Suffixes
M: Modifier (B1, B2, B3)

Horizon Boundary (HB) S: Smooth

S: Smooth W: Wavy I: Irregular B. Broken

Soil Profile Diagram

Colour

Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM)

Y: Visible N: Not visible

Coarse Fragments (CF) Estimated value in %

Field Texture

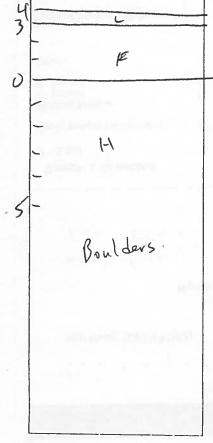
Clay, Sandy Clay, Sandy Clay Loani Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

Photo	<u>\$</u>
Pit with Samples	
Looking North	1
Looking East	
Looking South	
Looking West	
Others	
y	

	Horizo			Depth	НВ	Colour	BM	CF	Field
# 1	Ma	Suffix		Up Low			ľ	%	Texture
1	L			+4 +2	W		1	0	0/9.
2	F			t2 0	W		1	Λ	
3	14		13.5	0 -5	W	1 2		U	org.
4			1	<u></u>	0	104R2/1	· . · ·	0	STITY long
5	Ae_		1 - f-	-> -	_ 0				M-6 EM
t			- i i .			***			
6		4 540					1		
7									
8		i							
9						_			
10	(4)	į.					1		
- 1					10.00			8	

	Gold Mine District S	oil Sampling Field	Data Sheet
Muntay. el	Minels	Date 2 Jun 08 14	Time : 2 5
Northing (20TNAD83)	Easting (20TNAD83)	THE RESTRICTION OF THE RESTRICT	ample Type - Horizon
Robert Behlers Kyrn Fillerin	f Samplers	RepStat Resampled Site No Yes →	Sampling Depth 0 - 5 cm
Samples Collected 0 - 5 cm Depth sample (all honzons) Horizon Sample A - horizon B - honzon Other. Type of Surface Material Mineral Soil Organic Soil Non-Soil Urban Local Surface Expression Mineral Surface Form Blanket Dissected Fan Hummocky Inclined Pitted Level Rolling Ridged Steep Terrace Undulating Veneer	Vegetation Cover Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Unvegetated Surface Drainage Very rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained Very poorly drained	Contamination None Possible Probable Probable Definite Farming Housing Industry Logging Mining Road Garbage Other Weather Sunny/Clear Partly cloudy Overcast Rain Sleet Snow Air Temp.	Comments: (E.g. Presence of waste rock, berms, pits, trenches or other mining activity) - 10 m N of trench/ shaft. - Large boulders to N (5 m). - Dense tree cover - moderate up slope to E (10 m).

Horizons


D: Lithological discontinuity
Ma. Master horizons (Humus, A. B. C)
Suffix: Suffixes
M. Matter (As. Do. Do.

M: Modifier (B1, B2, B3)

Horizon Boundary (HB)

S Smooth W Wavy I: Irregular B Broken

Soil Profile Diagram

Colour

Munself colour or descriptive colour using table 1

Redoximorphic Features (RM)

Y: Visible N: Not visible

Coarse Fragments (CF) Estimated value in %

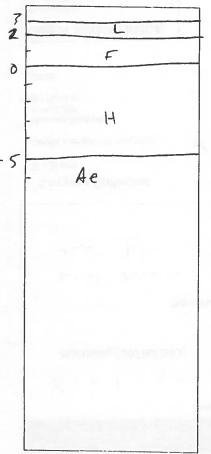
Field Texture

Clay, Sandy Clay Sandy Clay Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

Photos Pit with Samples Looking North Looking East Looking South Looking West Others

Horizons # Ma Suffix M	Depth HB	Colour	DM CF	Field Texture
# Ma Suffix	Up Low	K -	%	rexture
	17 14 5 11		O	org.
2 F	+3 0 W		0	org.
3 H	0	10 1R 2/1	0	silty lorg.
4	1 - 11 - 1 - 11			1 7
5		Mag. 0000		
6		i		
7			and the same and the same are same as the same are same a	
8	men			
9			41.5	
10		- 10-10 20 5	A STATE OF THE STA	

	Gold Mine Distric	t Soil Sampling Field	Data Sheet
Sit	te	Date	Time
Monthagae	Mines	2 Jan 08 12	: 40
Northing (20TNAD83)	Easting (20TNAD83)		ample Type - Horizon
		M M - 14	No Yes
Names	s of Samplers	RepStat	Sampling Depth
Robert Fiehling			0 - 5 cm
Kyon Fello. n		Resampled Site No Yes →	
Samples Collected			
0 - 5 cm		Contamination	Comments:
Depth sample (all horizons)	100 E O B O	None	(E.g., Presence of waste rock, berms, pits, trenches or
Horizon Sample	Vegetation Cover	None	other mining activity)
A - horizon	Agricultural Crops	- Definite - Farming -	- Dense tree Gall
B - horizon	Coniferous Forest	Housing 1	vente ives hall
Other.	Deciduous Forest Mixed Forest	Farming Housing Housing Industry Logging Mining Road Garbage	- On top of mound.
	Meadow, Wet	Mining 1	Thousand.
Type of Surface Material	Parkland	Garbage Gther	-10m W of trench.
Mineral Soil	Unvegetated Surface		- Minimal tree coass
Non-Suit		Weather	LANGE CORP.
Urban		Sunny/Clear	Charles .
		Sunny/Clear Partly cloudy Overcast Rain Sleet Snow	rational year
Local Surface Expression	Drainage	Rain	į.
Mineral Surface Form	Managan Managan and	Sleet Snow	A PROPERTY OF THE PROPERTY OF
Blanket	Very rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained		
Dissected []	Well drained Moderately well drained		
Hummocky	Imperfectly drained		The same of the sa
Inclined CI	Poorly drained Usery poorly drained	Air Temp.	
Level	very poorty drained	1 5°C	Filmh Summer 18
Rolling Ridged		_(and the state of t
Steep			i
Dissected Fan Hummocky Inclined Pitted Level Rolling Ridged Steep Terrace Undulating Veneer			1
Veneer			*


Horizons

D: Lithological discontinuity
Ma: Master horizons (Humus, A, B, C)
Suffix: Suffixes
M: Modifier (B1, B2, B3)

Horizon Boundary (HB)

S: Smooth W: Wavy I: Irregular B: Broken

Soil Profile Diagram

Colour

Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM)

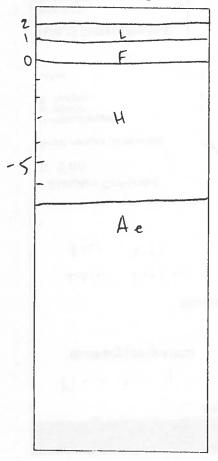
Y Visible N Not visible

Coarse Fragments (CF) Estimated value in %

Field Texture

Clay, Sandy Clay Sandy Clay Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

Photo:	\$
Pit with Samples	r
Looking North	Ø
Looking East	
Looking South	
Looking West	
Others	
	9


	Horizo	ns		Depth	HB	Colour	BM	CF	Field
#	Ma	Suffix	Marie Contract	Up Low				%	Texture
	L		1	3 +2	W		1	0	1 ² -1-1
2	F		4	2 0	W				019
3	Н			0 -51	W	10 YR 2/1		0	7-1
	Ae		i 18-	-5	В	1046 41		50	
5	ia						i a	30	boolders
					id			, a :	
							1: -		935
3							5 ti		
	A c Te								
			it		i:				
			T						

Site		Soil Sampling Field I	
Montagnel	Minels	Date 2 Jun 08 12	Time
Northing (20TNAD83)	Easting (20TNAD83)	Site ID Sai	mple Type - Horizon
		MM-15	Yes V
Names of	Samplers	RepStat	Sampling Depth
Robert Bolkers			0 - 5 cm
Ayon Pelisin		Resampled Site No Yes →	
Samples Collected	and the source of	Contamination	Comments:
Depth sample (all horizons)	Vegetation Cover	- None - Possible - Probable - Definite	(E.g., Presence of waste rock, berms, pits, trenche other mining activity)
	Agricultural Crops	- Definite	- Wet swammer areas no
Other. (,)	Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland	Farming Housing Industry Logging Mining Road Garbage	- Wet, swampy areas nea - Med. Forest cover.
	Meadow, Wet	—Mining —Road —Garbage	-10 M Cover
ype of Surface Material		Other	- 10 m N of tailings.
ineral Soil []	Unvegetated Surface		- Tree fall in area.
rganic Scil		Weather Sunny/Clear	- Abundant boulders
ocal Surface Expression		Sunny/Clear Partly cloudy Overcast Rain Sleet Snow	ABUNDANI SOUI CAS
E HUM	<u>Drainage</u>	Rain Sleet Snow	rossed wars eq.
ineral Surface Form	Very rapidly drained Rapidly drained Well drained Moderately well drained	STOW L	
ssected in ii	Well drained		
ummocky Clined Clited C	Imperfectly drained Poorly drained Very poorly drained	Air Temp.	e Salara (mala Salara
evel Ding	Very poorly drained	1 5 °C	And with Limited 1997
- M			
dged eep			

D::Lithological-discontinuity
Ma: Master horizons (Humus, A, B, C)
Suffix: Suffixes
M: Modifier (B1, B2, B3)

Horizon Boundary (HB) S: Smooth W: Wavy I: Irregular B: Broken

Soil Profile Diagram

Codes for Horizon Description

Colour

Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM)

Y: Visible N: Not visible

Coarse Fragments (CF) Estimated value in %

Field Texture
Clay Sandy Clay Sandy Clay Loam
Sill, Silly Sand, Silt Loam, Silty Clay Loam
Loam, Sandy Loam, Loamy Sand
Sand, Very Fine Sand Fine Sand, Medium
Sand, Coarse Sand, Very Coarse Sand

Photos	£ /
Pit with Samples	团
Looking North	d
Looking East	
Looking South	d
Looking West	
Others	

Horizons # Ma Suffix	Depth HB Up Low	Colour	CF Field Texture
L F H Ae	+2 +1 W +L 0 W 0 -7 W -7 B	10 YR 2/1	o org. o silty lorg to sandy.
			1000

	Gold Min	e District Soil	Sampling Fie	ld Data Sheet	
Monthing (20TNAD83)	ite	NAD83)	Date 2 Jun 08 1 Site ID	Time 2:25 :	
Name	es of Samplers	*	RepStat	No ites V	Sampling Depth
Robert Bakkers Kyrn Pellerin			Resampled No Yes →	1 Site	0 - 5 cm
Samples Collected 0 - 5 cm Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other: Type of Surface Material Mineral Soil Organic Soil Non-Soil Urban	Agricultural Cro	ps Dest Signature of the state	Weather	other mining activity	aste rock, berms, pits, trenches or
Local Surface Expression Mineral Surface Form Blanket Dissected Fan Hummocky Inclined Pitted Level Rolling Ridged Steep Terrace Undulating Veneer	Very rapidly drained Rapidly drained Well drained Moderately well Imperfectly drained Poorly drained Very poorly drain	drained CV	Sunny/Clear Partly cloudy Overcast Rain Sleet Snow		

Horizons

W: Wavy I: Irregular B: Broken

D: Lithological discontinuity

Ma: Master horizons (Humus, A, B, C)

Suffix: Suffixes

Horizon Boundary (HB) S Smooth

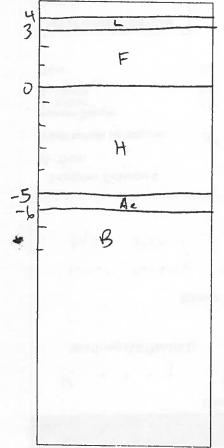
M: Modifier (B1, B2, B3)

Colour

Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM)

Y: Visible N: Not visible


Coarse Fragments (CF) Estimated value in %

Field Texture

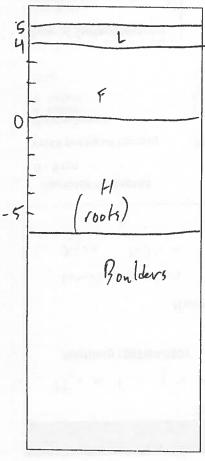
Clay, Sandy Clay, Sandy Clay, Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

Photos	§ .
Pit with Samples	V
Looking North	
Looking East	
Looking South	9
Looking West	
Others	

Soil Profile Diagram

	Horizo		Depth	HB	Colour	BM	CF	Field
# #	Ma	Suffix	Up Low				%	Texture
1	: L		+4 +3	W		±	0	Ofg.
2	F		+3 0	W		×	0	
3	H	Ī	0 -5	W	10 YR 2/1			0/2: /
. 1	Ae			W	-10 TV -11	1	9	siltylorg.
5				2	S DE CLEAR EMPERO	1		
6	В			1 2		g = x	*	
,			4 4 9/	i [_			
						atot ji Ba- 10	¥2	
3				1 1 1				
					1 3 Mg (#5) [5 4]	and the second		

		Gold Mine Distric	ct Soil Sampling Field	Data Sheet
	Site		Date	Time
Mentag	., e	Minels	2 Jun 08 15	: 70 :
Northing (20TNAD8	3)	Easting (20TNAD83)	Site ID S	ample Type - Horizon
=			THE SECOND SECON	No Yes V
t	Names of S	amplers	RepStat	Sampling Depth
Rubert Behker				0 - 5 cm
Ryon Pellonia	,		Resampled Site No Yes →	
Samples Collected				
0 - 5 cm		the supplied of	Contamination	Comments:
Depth sample (all horizons)			_None	(E.g., Presence of waste rock, berms, pits, trenches or
Horizon Sample A - horizon B - horizon	0	Vegetation Cover Agricultural Crops	-None	other mining activity) - Heavy tree Gall
Other.	n	Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland	FarmingHousing	1
Type of Surface Material		Field Parkland Shrubland Unvegetated Surface	-Garbage - Cother	- No tree cover. - Boulders in area.
Mineral Soil Organic Soil Non-Soil Urban			Weather	Legione .
Local Surface Expression	_	Drainage	Sunny/Clear Partly cloudy Overcast Rain Sleet Snow	Francis Africa
			Sleet O	Each-right-result. Life
Mineral Surface Form Blanket Dissected Fan Hummocky		Very rapidly drained Rapidly drained Well drained		
		Moderately well drained		THE REAL PROPERTY AND ADDRESS OF THE PERTY ADDRESS OF THE PERTY ADDRESS OF THE PERTY AND ADDRESS OF THE PERTY ADDR
Inclined		Poorly drained Very poorly drained	Air Temp.	In sep plaction (E)
Rolling SI Ridged CI Steep CI		Collans Section 1 - Section 1 - Section 1	[7, 6; C]	Salvan legi . punte
Terrace				


Horizons

O: Lithological discontinuity
Ma: Master horizons (Humus, A, B, C)
Suffix: Suffixes M: Modifier (B1, B2, B3)

Horizon Boundary (HB) S Smooth

W: Wavy I. Irregular B. Broken

Soil Profile Diagram

Colour

Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM)

Y: Visible N Not visible

Coarse Fragments (CF) Estimated value in %

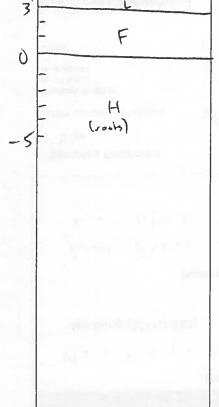
Field Texture

Clay Sandy Clay Sandy Clay Loam Sitt, Sitty Sand, Sitt Loam, Sitty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

Photos	<u>s</u>
Pit with Samples	B
Looking North	P
Looking East	
Looking South	3
Looking West	
Others	

پر #	Horizons Ma Suffix	Depth Up Low	HB Colour	CF %	Field Texture
1 2 3 4 5	L F H Boulders	14 0	W 1048 2/1 B	0 0 0 100	org. org. sitty lorg.
6 7 8	n jadest mende				
9.				1	

	Gold Mine District So	oil Sampling Field	Data Sheet
Muntaga el	Minels	Date	Time : 1 S :
Northing (20TNAD83)	Easting (20TNAD83)	F F F F F F	Imple Type - Horizon No Yes
Names of	Samplers	RepStat	Sampling Depth
Robert Behkers Kyrn Fellerin		Resampled Site No Yes →	0-5 cm
Samples Collected 0 - 5 cm Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other: Type of Surface Material Mineral Soil Organic Soil Non-Soil Urban	Vegetation Cover Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Unvegetated Surface	Contamination None Possible Probable Probable Definite Farming Housing Industry Garbage Other Weather Sunny/Clear	Comments: (E.g., Presence of waste rock, berms, pits, trenches on other mining activity) - 3 m S of path. - 7 m S of trench. - Open area. - Tree fall in area.
Mineral Surface Expression Mineral Surface Form Blanket Dissected Gan Hummocky Inclined Disted Level Rolling Ridged Steep Gerace Undulating Vencer	Drainage Very rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained	Partly cloudy Overcast Rain Sleet Snow Air Temp.	


D: Ltthological discontinuity
Ma: Master horizons (Humus, A, B, C)
Suffix: Suffixes

M: Modifier (B1, B2, B3)

Horizon Boundary (HB)

S Smooth
W Wavy
I Irregular
B Broken

Soil Profile Diagram

Codes for Horizon Description

Colour

Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM)

Y: Visible N: Not visible

Coarse Fragments (CF) Estimated value in %

Field Texture

Clay, Sandy Clay, Sandy Clay Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

Photos							
Pit with Samples							
Looking North							
Looking East							
Looking South	Image: Control of the						
Looking West							
Others							
- was							

البر #	Horizons Ma Suffix	-	Dep Up	Low	нв	Colour	BM	CF	Field Texture
1	L.		44	+3	W	1		0	ors.
2	F		73	0	W			٥	Org.
3	! н		0		W	10 YR 2/1		0	5:1/y 100g.
4									
5								į.	
6	1 4			1.	1		u jer j		10 40
7	a factoria e escuest								
В	-	!		!!					
9				-					8
0					i :			•	

	Gold Mine District	Soil Sampling Field Data	Sheet
Northing (20TNAD83)	M in a c b Easting (20TNAD83)	Date 2 Jun 08 14:45 Site ID Sample Typ	ime : e - Horizon
Names o	of Samplers		es V
Robert Bakkers Kyon tellerin	in Samplers	RepStat Resampled Site No Yes →	Sampling Depth 0 - 5 cm
Samples Collected 0 - 5 cm Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other: Type of Surface Material Mineral Soil Organic Soil Non-Soil Urban	Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Univegetated Surface	None Possible Probable Probable Definite Farming Housing Industry Logging Road Garbage Other Weather	Presence of waste rock, berms, pits, trenches or r mining activity) devatue slope. getree fall to N(Sm). d. tree cover. Iders in area.
	Very rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained	Sunny/Clear Partly cloudy Overcast Rain Sleet Snow	

Horizons

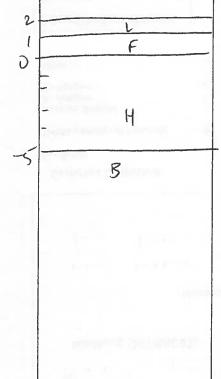
D: Lithological-discontinuity

Ma: Master horizons (Humus, A, B, C)

Suffix: Suffixes

M: Modifier (B1, B2, B3)

Horizon Boundary (HB)


W Wavy

I: Irregular

B. Broken

S: Smooth

Soil Profile Diagram

Colour

Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM)

Y: Visible

N: Not visible

Coarse Fragments (CF) Estimated value in %

Field Texture

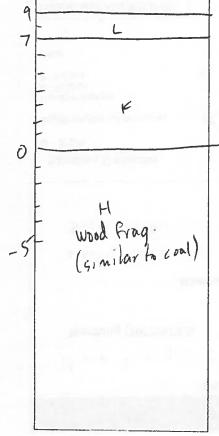
Clay, Sandy Clay, Sandy Clay Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

Photos							
Pit with Samples	d ,						
Looking North	1						
Looking East	\Box						
Looking South	Z'						
Looking West							
Others							

	Horizon		Depth	НВ	Colour	DM	CF	Field
# 25	Ma S	Suffix	Up Low		7.0 F W 100 0 5 1		%	Texture
1	L		12 +1	W			0	org.
2	F		+1 0	W.		:	O	ovn.
3	H.	a de la companya de l	0 -5		10 YR 2/1		0	4. 1
	B	***		2	10 YR 2/1		William	ssity long
5	9 -			- リー	122 (222 2)		20	silty.
				574				Ampling Days
3	:				y 4040	b . 150		
		-210				ings - Lon - Long		
5 T		1						
				11	2040 8	1		
					3			

		Gold Mine District	Soil Sampling Field Da	ta Sheet
	Site	10	Date	Time
Muntag	., e	Min els:	2 Jun 08 16:4	1 0 :
Northing (20TNAD8	33)	Easting (20TNAD83)	Site ID Sample	Type - Horizon
				Yes V
	Names o	f Samplers	RepStat	Sampling Depth
Robert Dehker	,			0 - 5 cm
Ryon Pello.	1		Resampled Site No Yes →	
Samples Collected				<i>V</i>
0 - 5 cm		E. W. R. BURK DE	Contamination	Comments:
Depth sample (all horizons)	TE .	PROFESSION		(E.g., Presence of waste rock, berms, pits, trenche
sopul sample (all nonzons)	ĢEI	Vegetation Cover	None Possible Probable Definite	other mining activity)
Horizon Sample			- Probable	
A - horizon		Agricultural Crops		Dense Forest coror. Trae fall near by.
B - horizon		Coniferous Forest	Farming Housing Industry Logging Mining Road Garbage	Terry lovest cover.
Other.		Deciduous Forest	-Industry	T (-1)
34161		Mixed Forest	Logging D	Weer by.
		Meadow, Wet	Road	/
	_,	Field		
ype of Surface Material		Shrubland	L-Other	
ineral Soil		Unvegetated Surface	1	
Organic Soil	/		Manhan	
Organic Soil			Weather	
		d .	Sunny/Clear	
			Sunny/Clear Partly cloudy Overcast Rain Sleet Snow	
ocal Surface Expression			Overcast 図	
Cour Currace Expression	4	<u>Drainage</u>	Sleet	
Mineral Surface Form	1		Snow	
		Very rapidly drained		
anket [] ssected [] an []		Rapidly drained Well drained		
an Ci		Moderately well drained		
ummocky 🔲		Imperfectly drained		
clined		Very rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained	Air Temp.	
itted 📋		Very poorly drained		
evel	1		(C °C	
Inclined Interest Int	6 12			
teep 🔲			AGAIN THE THE PARTY OF THE PART	
errace [1]	,			
ndulating	Ί		orthropol	
eneer n	1			

Horizons


D Lithological discontinuity
Ma Master horizons (Humus, A, B, C)
Suffix: Suffixes
M: Modifier (B1, B2, B3)

.....

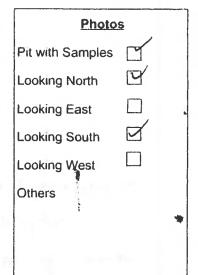
Horizon Boundary (HB) S Smooth

S Smooth W Wavy I Irregular B Broken

Soil Profile Diagram

Colour

Munsell colour or descriptive colour using table 1


Redoximorphic Features (RM)

Y: Visible
N: Not visible

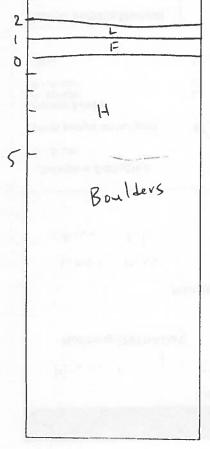
Coarse Fragments (CF) Estimated value in %

Field Texture

Clay, Sandy Clay, Sandy Clay Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

	Horizons	Depth	HB	Colour	DM CF	Field
# 1	Ma Suffix	Up Low			%	Texture
1		+9 +7	_ W ::		0	014.
2	F	47 0	W		0	org.
3	н	0	W	10 YR 2/1	O	silty lorg
4				t r e st .		W/wood Rag.
5						, , ,
6	mm	- 1 72 8	:			
7		F -			0 - 750	
8				ý	Alice Mary Secretar	*
9	6 7 6 97 98 98 9					
(1)	1		i !:		45.7	
0			1			

	Gold Mine Dist	rict Soil Sampling Field Data Sheet
	Site	Date Time
Montaga	el Mines	2 Jun 08 19:55:
Northing (20TNAD83)	Easting (20TNAD83)	Site ID Sample Type - Horizon No Yes
Nam	es of Samplers	RepStat Sampling Depth
Robert Behkers		0 - 5 cm
Kyon Tillerin		Resampled Site No Yes →
Horizon Sample A - horizon C B - horizon C		Contamination None Possible Probable Perinte Perinte Posining Possible Probable Positive Probable Possible Probable Possible Probable Probable Possible Probable Probable Possible Probable Parming Possible Probable Probable Possible Probable Possible Probable Probable Possible Probable Possible Probable Possible Probable Possible Probable Possible Probable Possible Possible Possible Probable Possible Possible Probable Possible Possible Probable Possible Possible Probable Possible Possible Probable Possible Possible Probable Possible Poss
Local Surface Expression Mineral Surface Form Blanket	Very rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained	Overcast Rain Sleet Snow Air Temp. 1.7°C


Horizons

D: Lithological discontinuity
Ma: Master horizons (Humus, A, B, C)
Suffix: Suffixes
M: Modifier (B1, B2, B3)

Horizon Boundary (HB)

S: Smooth
W: Wavy
I. Irregular
B. Broken

Soil Profile Diagram

Colour

Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM)

Y: Visible N: Not visible

Coarse Fragments (CF) Estimated value in %

Field Texture

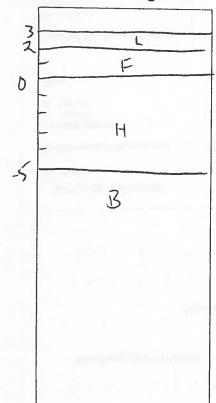
Clay, Sandy Clay, Sandy Clay, Loam Sitt, Sitty Sand, Sitt Loam, Sitty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

	Photos	1	
Pit with Sar	nples	[]	
Looking No	rth	T	
Looking Ea	st		
Looking So	uth		
Looking We	est		
Others			
at pr			

Horizons # Ma Suffix	Depth H	HB Colour	CF %	Field Texture
1 2 F 3 H	1 1 0	W loye 2/1		org. org. silty lovg.
Bonlders 5	1-5	β	100	
7 8				
9	!		4	

Gold Mine District So	oil Sampling Field Data Sheet
Muntagael Mine's	Date Time 2 Jun 08 16:55 :
Northing (20TNAD83) Easting (20TNAD83)	Site ID Sample Type - Horizon No Yes
Names of Samplers	RepStat Sampling Depth
Robert Bekkers	0 - 5 cm
ky-n felloa	Resampled Site No Yes →
Samples Collected	
Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other: Other: Type of Surface Material Mineral Soil Organic Soil Non-Soil Urban Wegetation Cover Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Unvegetated Surface	Contamination Comments: (E.g., Presence of waste rock, berms, pits, trenches of other mining, activity) - Possible - Probable - Definite - Parming - Housing - Industry - Logging - Mining - Road - Garbage - Other Weather Sunny/Clear Partly cloudy Comments: (E.g., Presence of waste rock, berms, pits, trenches of other mining, activity) - Industry - Logging - Mining - Road - Garbage - Other - At toe of up slape.
Mineral Surface Form Blanket Dissected Hummocky Inclined Development Developme	Partly cloudy Overcast Rain Sleet Snow Air Temp.

D: Lithological discontinuity
Ma: Master horizons (Humus, A., B, C)
Suffix: Suffixes


M: Modifier (B1, B2, B3)

Horizon Boundary (HB)

S: Smooth W: Wavy

I: Irregular B. Broken

Soil Profile Diagram

Codes for Horizon Description

Colour

Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM)

Y: Visible

N. Not visible

Coarse Fragments (CF) Estimated value in %

Field Texture

Clay Sandy Clay Sandy Clay Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

Photo	<u>s</u>
Pit with Samples	
Looking North	3
Looking East	
Looking South	G'
Looking West	
Others	

# 1	Horizoi Ma	ns Suffix	De _l Up	pth Low	нв	Colour	DM .	CF %	Field Texture
2			+3	42	W			0	619.
3	H B		0	-5	W	10 YR 2/	De .	0	silty long
5	<i>D</i>		3-		B			10	silty
7	:							inerized	
8									
0		1.			- 1		1		

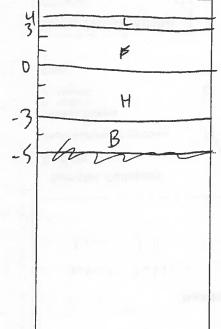
	Gold Mine District	Soil Sampling Field	Data Sheet
Site Muntagael Northing (20TNAD83)	Easting (20TNAD83)	2 Jun 08 16	Time Sample Type - Horizon No Yes
Names o	of Samplers	RepStat	Sampling Depth
Robert Bakkers		57"	0 - 5 cm
kyon fellen		Resampled Sit	:e
Samples Collected			
O - 5 cm Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other. Type of Surface Material Mineral Soil Organic Soil Non-Soil Urban	Vegetation Cover Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Unvegetated Surface	Contamination None Possible Probable Definite Farming Housing Industry Logging Mining Road Garbage Other Weather Sunny/Clear Partly cloudy	Comments: (E.g., Presence of waste rock. berms, pits, trenches of other mining activity) - 5m W of stream - At tox of up slope - Dense tree cover. - 20m W of houses.
Mineral Surface Expression Mineral Surface Form Blanket Dissected Fan Hummocky	Very rapidly drained Rapidly drained Well drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained	Rain Sleet Snow	
idianket issected ian lummocky inclined itted evel tolling tidiged itteep errace Indulating idener	Poorly drained	Air Temp.	A Company of the Comp
Ferrace Undulating Veneer U			i .

Horizons

D:-Lithological-discontinuity

Ma: Master horizons (Humus, A, B, C) Suffix Suffixes

M: Modifier (B1, B2, B3)


Horizon Boundary (HB)

S Smooth W Wavy

I. Irregular

8. Broken

Soil Profile Diagram

Colour Redoximorphic Features Munsell colour or descriptive colour using table 1

(RM)

Y: Visible N: Not visible

Coarse Fragments (CF) Estimated value in %

Field Texture

Clay, Sandy Clay Sandy Clay Loain Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loainy Sand Sand, Very Fine Sand Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

Photo	S
Pit with Samples	
Looking North	U
Looking East	
Looking South	
Looking West	
Others	
of the	- 12

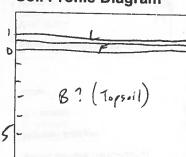
# 25	Horizo Ma	ons Suffix	نبي	Depth Up Low	НВ	Colour	BM	CF	Field Texture
1 2 3 4 5	F H B			-4 +3 0 0 -3 -3	W W B	10 YR 2/1		0 0 0	org. org. silhylory silty
6 7 8 9								nourou.	

	Gold Mine District So	oil Sampling Field	Data Sheet
Site Morthing (20TNAD83)	Mines	Date 2 Jun 08 16	Time : 2 0
Northing (201NAD83)	Easting (20TNAD83)	M M - 24	sample Type - Horizon No Yes
Names of	Samplers	RepStat	Sampling Depth
Robert Bakkers			0 - 5 cm
Kyrn Fellerin		Resampled Site No Yes →	
Samples Collected			
0 - 5 cm		Contamination	Comments:
Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other. Type of Surface Material	Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Unvegetated Surface	None Possible Probable Definite Farming Housing Logging Mining Road Garbage Other	(E.g., Presence of waste rock, berms, pits, trenches or other mining activity) - 3 m E of Swamp. - 5 m W of vesid. prop. - 10 m W of about cars.
Mineral Soil Organic Soil Non-Soil Urban	Unvegetated Sunace	Weather Sunny/Clear Partly cloudy Overcast	- 2m E of trail
Local Surface Expression Mineral Surface Form Blanket	Drainage Very rapidly drained □	Partly cloudy Overcast Rain Sleet Snow	
Blanket Dissected Fan Hummocky Inclined Pitted Level Rolling Ridged Steep Terrace Undulating Veneer	Very rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained	Air Temp.	Shakes 100) Shakes the last of

D: Lithological discontinuity

Ma: Master horizons (Humus, A, B, C) Suffix: Suffixes

M: Modifier (B1, B2, B3)


Horizon Boundary (HB)

S Smooth W Wavy

I irregular

B. Broken

Soil Profile Diagram

Codes for Horizon Description

Colour

Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM)

Y Visible

N: Not visible

Coarse Fragments (CF) Estimated value in %

Field Texture

Clay, Sandy Clay Sandy Clay Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

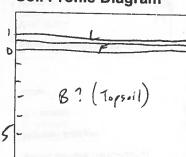
Photo	S	
Pit with Samples	V	
Looking North	V	
Looking East		
Looking South	Y	
Looking West		
Others		
p.f. Small		
SE SLEE		

Horizons # Ma Suffix	Depth Up Low	HB Colour	CF %	Field Texture
1 2	+1 +0.5 +0.5 0			019.
3 B? (Topsoil)	0	10 YR_3/3	10	019. 51/ty,
5	+- -	7,7		31179,
6				
7			The sections	
9		g	7.78	
10		* [[[]]]	100	

D: Lithological discontinuity

Ma: Master horizons (Humus, A, B, C) Suffix: Suffixes

M: Modifier (B1, B2, B3)


Horizon Boundary (HB)

S Smooth W Wavy

I irregular

B. Broken

Soil Profile Diagram

Codes for Horizon Description

Colour

Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM)

Y Visible

N: Not visible

Coarse Fragments (CF) Estimated value in %

Field Texture

Clay, Sandy Clay Sandy Clay Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

Photo		
Pit with Samples	V	
Looking North	V	
Looking East		
Looking South	Y	
Looking West		
Others		
p.f. Small		
SE SLEE		

Depth Up Low	HB Colour	CF %	Field Texture
+1 +0.5		1 0	019.
0	10 YR 3/2		019. 51/ty,
			31779,
- V	1		
ii	p	781	
	******	2020	
	Up Low + 1 + 0.5	Up Low +1 +0.5 0	Up Low % +1 +0.5 0 0

	Gold Mine District	Soil Sampling Field	l Data Sheet
Northing (20FNAD83)	Easting (20TNAD83)	Date 2 Jun 08 10	Time Control Control
Names o	f Samplers	RepStat Resampled Si	Sampling Depth 0 - 5 cm
Samples Collected 0 - 5 cm Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other. Ci Type of Surface Material Mineral Scril Organic Scril Urban Urban	Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Unvegetated Surface	Contamination None Possible Probable Probable Definite Farming Housing Industry Logging Miring Road Garbage Other Weather	Comments: (Eg. Presence of waste rock, berms, pits, trenches of other mining activity) - 2m S of swampy area. - Tree fall in area. - Boulders in area. - 3m & of small stree - 30m W of house.
Local Surface Expression Mineral Surface Form Blanket Dissected Fan Hummocky Inclined Pitted Level Rowing Steep Terrace Undulating Vencer	Very rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained	Sunny/Clear Partly cloudy Overcast Rain Sleet Snow	

Horizons

D. Lithological discontinuity Ma. Master horizons (Humus, A. B. C) Suffix Suffixes

M: Modifier (B1, B2, B3)

Horizon Boundary (HB)

S Smooth W Wavy

I: Irregular

B. Broken

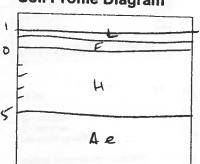
Colour Redoximorphic Features Munsell colour or descriptive

colour using table 1

(RM)

Y: Visible

N. Not visible


Coarse Fragments (CF) Estimated value in %

Field Texture

Clay Sandy Clay Sandy Clay Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam Loamy Sand Sand, Very Fine Sand Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

Photos				
Pit with Samples				
Looking North	Image: Control of the con			
Looking East				
Looking South	☐ (I			
Looking West				
Others				

Soil Profile Diagram

Ae				
	Horizons # Ma Suffix	Depth HB Colour Up Low	CF Field Texture	
	2 F 3 H	to.5 W W 104R 2/1	o org.	
	4 Ae 5	P. B.	20 silty sand.	
Martiness Conferences	7 8 9		Control Albertaneous	
	10			

	Gold Mine District	Soil Sampling Field	Data Sheet
Site Muntagael Northing (20TNAD83)	Easting (20TNAD83)	2 Jun 08 16	Time Sample Type - Horizon No Yes
Names o	of Samplers	RepStat	Sampling Depth
Robert Bakkers		57"	0 - 5 cm
kyon fellen		Resampled Sit	:e
Samples Collected			
O - 5 cm Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other. Type of Surface Material Mineral Soil Organic Soil Non-Soil Urban	Vegetation Cover Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Unvegetated Surface	Contamination None Possible Probable Definite Farming Housing Industry Logging Mining Road Garbage Other Weather Sunny/Clear Partly cloudy	Comments: (E.g., Presence of waste rock. berms, pits, trenches of other mining activity) - 5m W of stream - At tox of up slope - Dense tree cover. - 20m W of houses.
Mineral Surface Expression Mineral Surface Form Blanket Dissected Fan Hummocky	Very rapidly drained Rapidly drained Well drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained	Rain Sleet Snow	
idianket issected ian lummocky inclined itted evel tolling tidiged itteep errace Indulating idener	Poorly drained	Air Temp.	
Ferrace Undulating Veneer U			i .

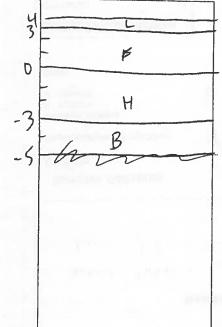
Codes for Horizon Description

Horizons

D:-Lithological-discontinuity

Ma: Master horizons (Humus, A, B, C) Suffix Suffixes

M: Modifier (B1, B2, B3)


S Smooth

W Wavy I. Irregular

8. Broken

Horizon Boundary (HB)

Soil Profile Diagram

Colour

Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM)

Y: Visible

N: Not visible

Coarse Fragments (CF) Estimated value in %

Field Texture

Clay, Sandy Clay Sandy Clay Loain Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loainy Sand Sand, Very Fine Sand Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

Photos					
Pit with Samples					
Looking North	U				
Looking East					
Looking South					
Looking West					
Others					
J. 4-1					

# 1	Horizo	Suffix	أمجو	Depth Up Low	НВ	Colour	BM	CF	Field Texture
1 2 3 4 5	F H B			+3 0 6 -3	W W W B	_104R 2/1		0 0 0	org. org. silkylory silky
6 7 8							TO - TAME		
9			-						

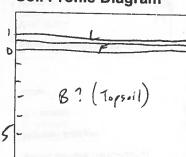
	Gold Mine District So	oil Sampling Field	Data Sheet
Site Morthing (20TNAD83)	Mines	Date 2 Jun 08 16	Time : 2 0
Northing (201NAD83)	Easting (20TNAD83)	M M - 24	sample Type - Horizon No Yes
Names of	Samplers	RepStat	Sampling Depth
Robert Bakkers			0 - 5 cm
Kyrn Fellerin		Resampled Site No Yes →	
Samples Collected			
0 - 5 cm		Contamination	Comments:
Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other. Type of Surface Material	Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Unvegetated Surface	None Possible Probable Definite Farming Housing Logging Mining Road Garbage Other	(E.g., Presence of waste rock, berms, pits, trenches or other mining activity) - 3m E of Swamp. - 5m W of vesid. prop. - 10m W of about cars.
Mineral Soil Organic Soil Non-Soil Urban	Unvegetated Sunace	Weather Sunny/Clear Partly cloudy Overcast	- 2m E of trail
Local Surface Expression Mineral Surface Form Blanket	Drainage Very rapidly drained □	Partly cloudy Overcast Rain Sleet Snow	
Blanket Dissected Fan Hummocky Inclined Pitted Level Rolling Ridged Steep Terrace Undulating Veneer	Very rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained	Air Temp.	Shakes 100) Shakes the last

Horizons

D: Lithological discontinuity

Ma: Master horizons (Humus, A, B, C) Suffix: Suffixes

M: Modifier (B1, B2, B3)


Horizon Boundary (HB)

S Smooth W Wavy

I irregular

B. Broken

Soil Profile Diagram

Codes for Horizon Description

Colour

Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM)

Y Visible

N: Not visible

Coarse Fragments (CF) Estimated value in %

Field Texture

Clay, Sandy Clay Sandy Clay Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

Photo	S	
Pit with Samples	V	
Looking North	V	
Looking East		
Looking South	Y	
Looking West		
Others		
p.f. Small		
AND WHEN		

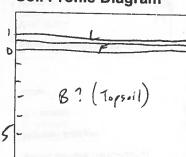
Horizons # Ma Suffix	Depth Up Low	HB Colour	CF %	Field Texture
1 2	+1 +0.5 +0.5 0		0	019.
3 B? (Topsoil)	0	10 YR_3/3	10	oig. silty,
5	+-	7,7		31179,
6				
7			The sections	
9		g	100	
10		* [[[]]]	100	

Horizons

D: Lithological discontinuity

Ma: Master horizons (Humus, A, B, C) Suffix: Suffixes

M: Modifier (B1, B2, B3)


Horizon Boundary (HB)

S Smooth W Wavy

I irregular

B. Broken

Soil Profile Diagram

Codes for Horizon Description

Colour

Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM)

Y Visible

N: Not visible

Coarse Fragments (CF) Estimated value in %

Field Texture

Clay, Sandy Clay Sandy Clay Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

Photo	S	
Pit with Samples	V	
Looking North	V	
Looking East		
Looking South	Y	
Looking West		
Others		
p.f. Small		
AND WHEN		

Horizons # Ma Suffix	Depth Up Low	HB Colour	CF %	Field Texture
1 2	+1 +0.5 +0.5 0		0	019.
3 B? (Topsoil)	0	10 YR_3/3	10	oig. silty,
5	+-	7,7		31179,
6				
7			The sections	
9		g	100	
10		* [[[]]]	100	

	Gold Mine District	Soil Sampling Field	l Data Sheet
Northing (20FNAD83)	Easting (20TNAD83)	Date 2 Jun 08 10	Time Control Control
Names o	f Samplers	RepStat Resampled Si	Sampling Depth 0 - 5 cm
Samples Collected 0 - 5 cm Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other. Ci Type of Surface Material Mineral Scril Organic Scil Non-Suit Urban	Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Unvegetated Surface	Contamination None Possible Probable Probable Definite Farming Housing Industry Logging Miring Road Garbage Other Weather	Comments: (Eg. Presence of waste rock, berms, pits, trenches of other mining activity) - 2m S of swampy area. - Tree fall in area. - Boulders in area. - 3m & of small stree - 30m W of house.
Local Surface Expression Mineral Surface Form Blanket Dissected Fan Hummocky Inclined Pitted Level Rowing Steep Terrace Undulating Vencer	Very rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained	Sunny/Clear Partly cloudy Overcast Rain Sleet Snow	

Codes for Horizon Description

Horizons

D. Lithological discontinuity Ma. Master horizons (Humus, A. B. C) Suffix Suffixes

M: Modifier (B1, B2, B3)

Horizon Boundary (HB)

S Smooth W Wavy

I: Irregular

B. Broken

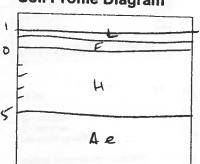
Colour Redoximorphic Features Munsell colour or descriptive

colour using table 1

(RM)

Y: Visible

N. Not visible


Coarse Fragments (CF) Estimated value in %

Field Texture

Clay Sandy Clay Sandy Clay Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam Loamy Sand Sand, Very Fine Sand Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

Photos					
Pit with Samples					
Looking North	Image: Control of the con				
Looking East					
Looking South	☐ (I				
Looking West					
Others					

Soil Profile Diagram

Ae			
g State	Horizons # Ma Suffix	Depth HB Colour Up Low	CF Field Texture
	2 F 3 H	to.5 & W to.5 & W 0 -5 W 104R 2/1	o org.
	4 Ae 5	P. B.	20 silty sand.
Machine GUTTERSOLL	7 8 9		Code Alle Carments
	10		

	Gold Mine District	Soil Sampling Field	l Data Sheet
Northing (20FNAD83)	Easting (20TNAD83)	Date 2 Jun 08 10	Time Control Control
Names o	f Samplers	RepStat Resampled Si	Sampling Depth 0 - 5 cm
Samples Collected 0 - 5 cm Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other. Ci Type of Surface Material Mineral Scril Organic Scil Non-Suit Urban	Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Unvegetated Surface	Contamination None Possible Probable Probable Definite Farming Housing Industry Logging Miring Road Garbage Other Weather	Comments: (Eg. Presence of waste rock, berms, pits, trenches of other mining activity) - 2m S of swampy area. - Tree fall in area. - Boulders in area. - 3m & of small stree - 30m W of house.
Local Surface Expression Mineral Surface Form Blanket Dissected Fan Hummocky Inclined Pitted Level Rowing Steep Terrace Undulating Vencer	Very rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained	Sunny/Clear Partly cloudy Overcast Rain Sleet Snow	

Codes for Horizon Description

Horizons

D. Lithological discontinuity Ma. Master horizons (Humus, A. B. C) Suffix Suffixes

M: Modifier (B1, B2, B3)

Horizon Boundary (HB)

S Smooth W Wavy

I: Irregular

B. Broken

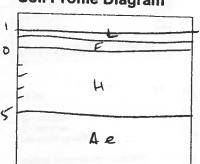
Colour Redoximorphic Features Munsell colour or descriptive

colour using table 1

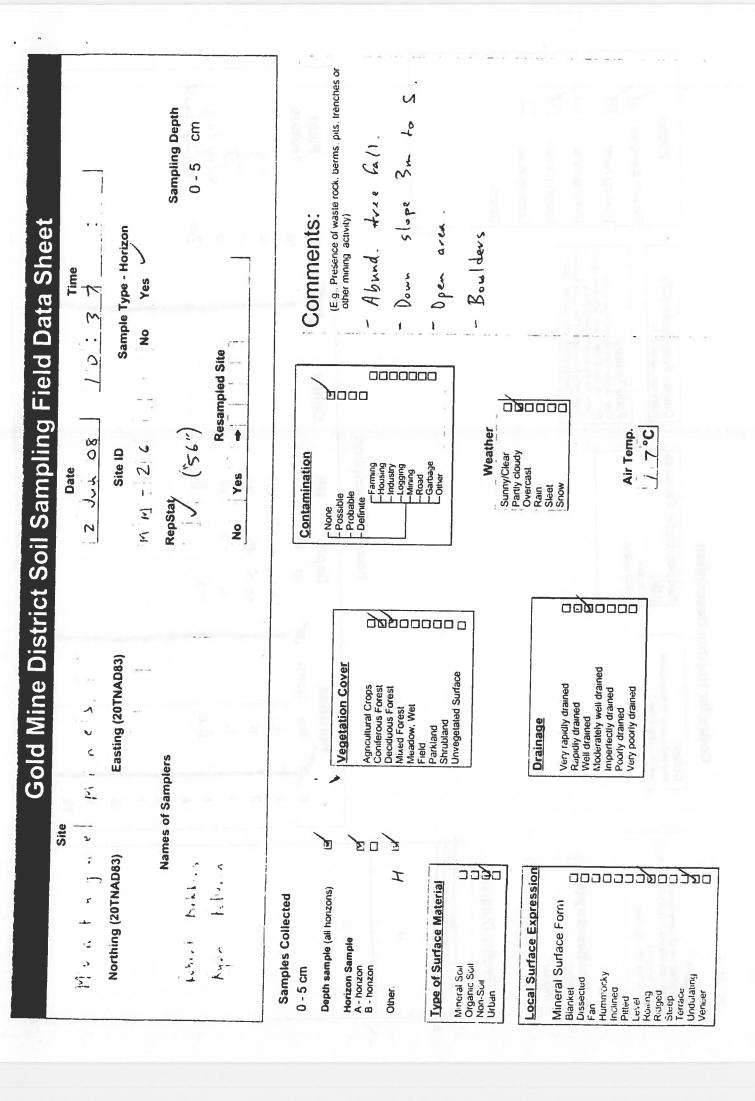
(RM)

Y: Visible

N. Not visible

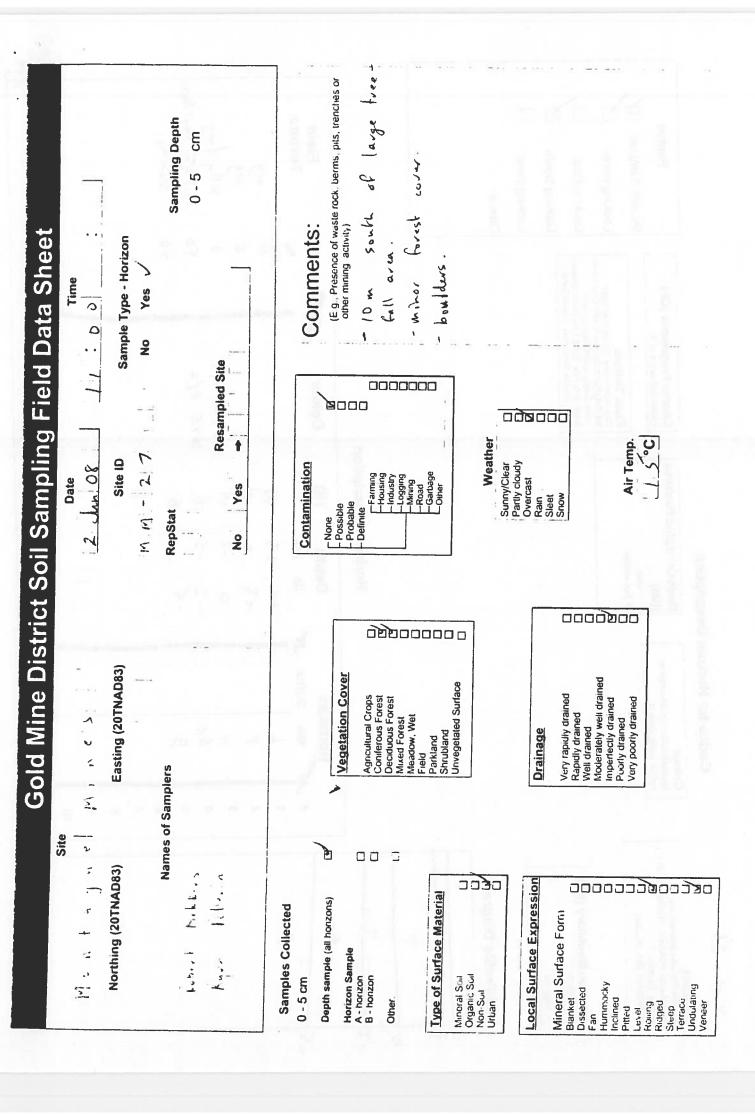

Coarse Fragments (CF) Estimated value in %

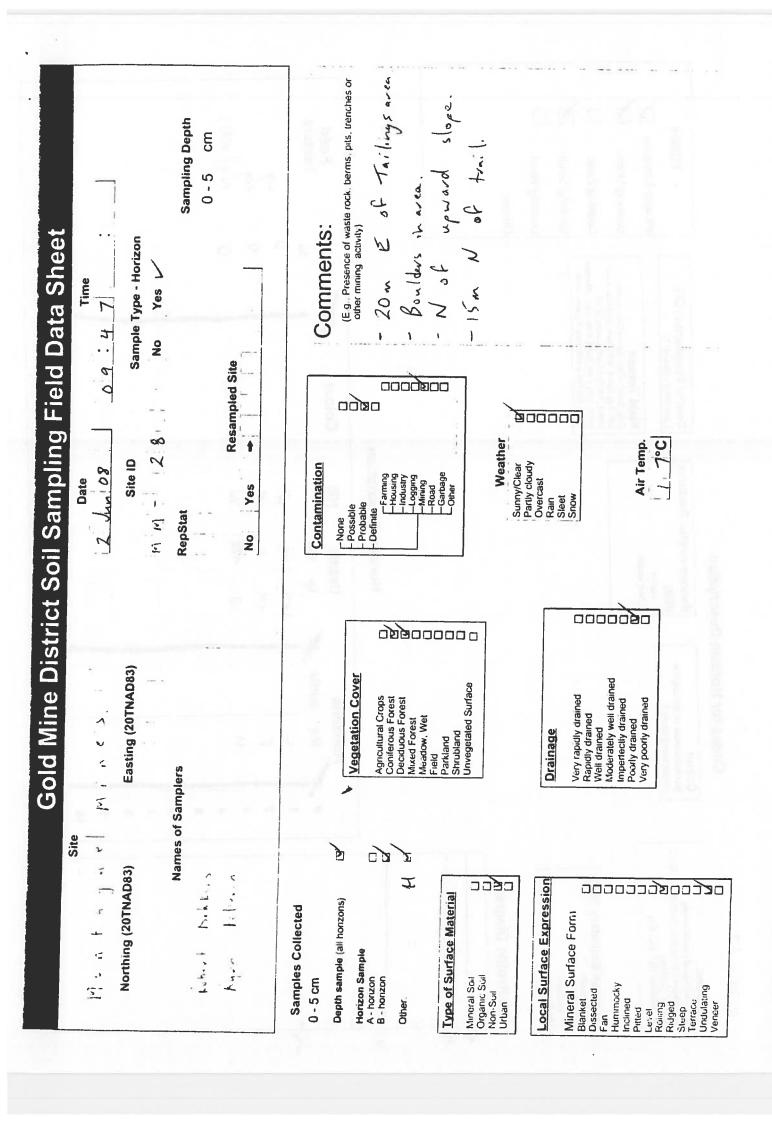
Field Texture

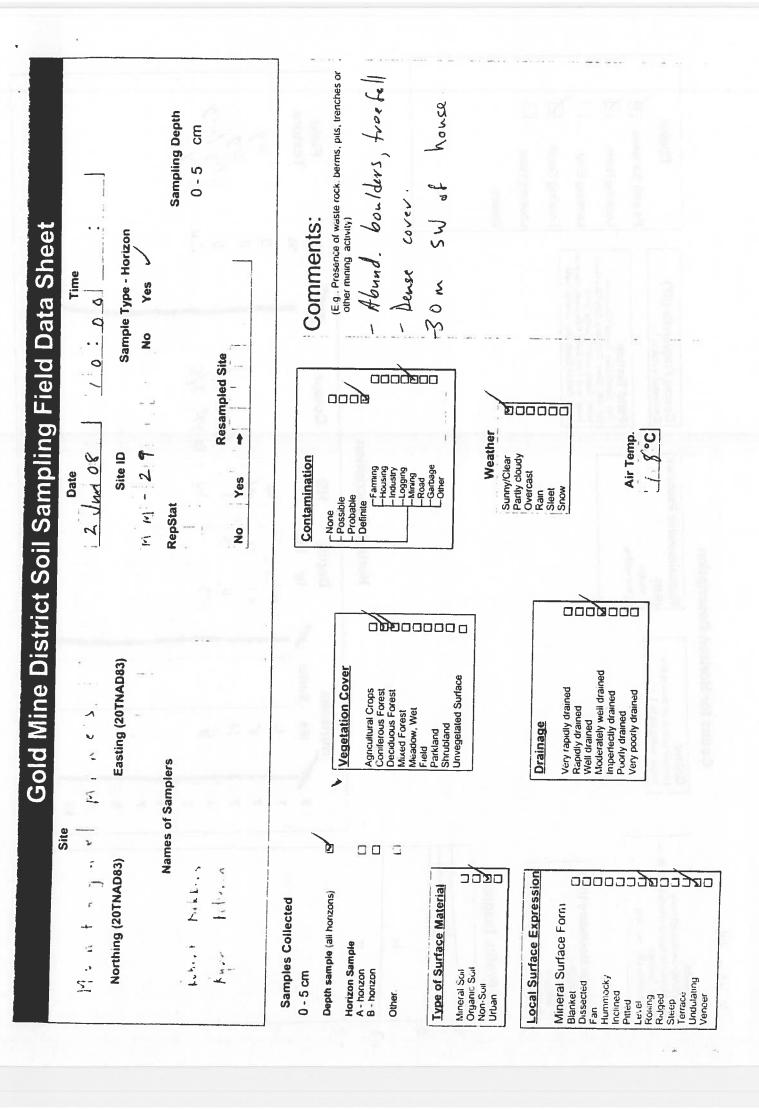

Clay Sandy Clay Sandy Clay Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam Loamy Sand Sand, Very Fine Sand Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

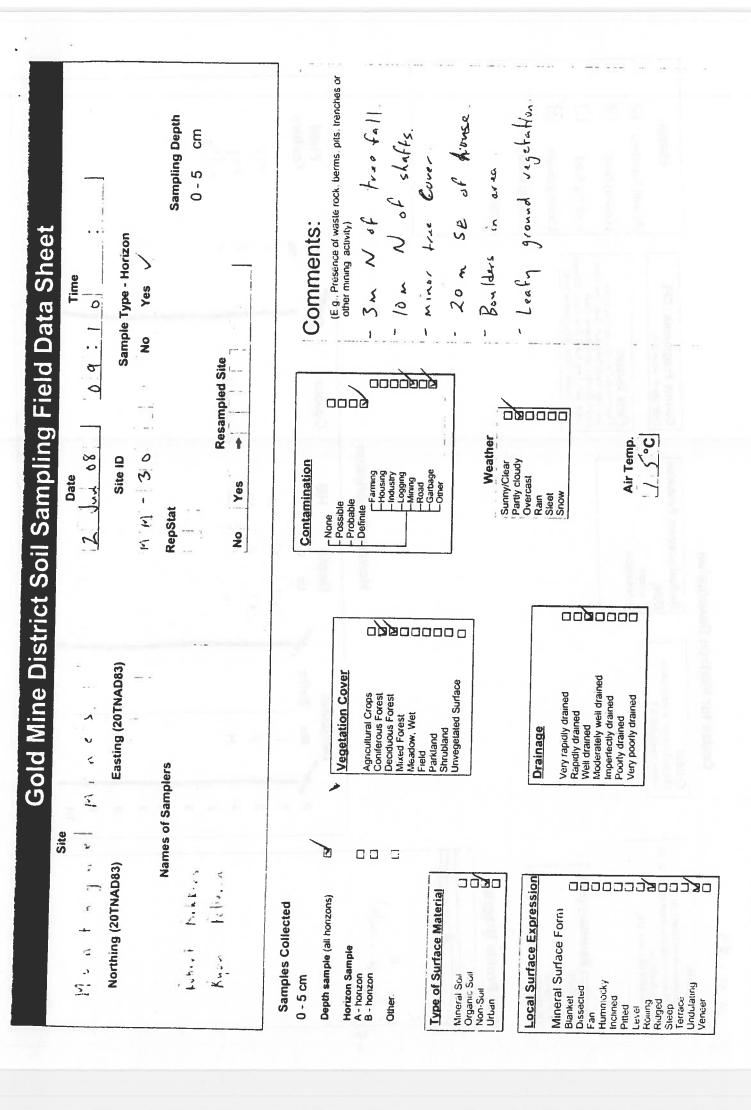
Photos			
Pit with Samples			
Looking North	Image: Control of the con		
Looking East			
Looking South	☐ (I		
Looking West			
Others			

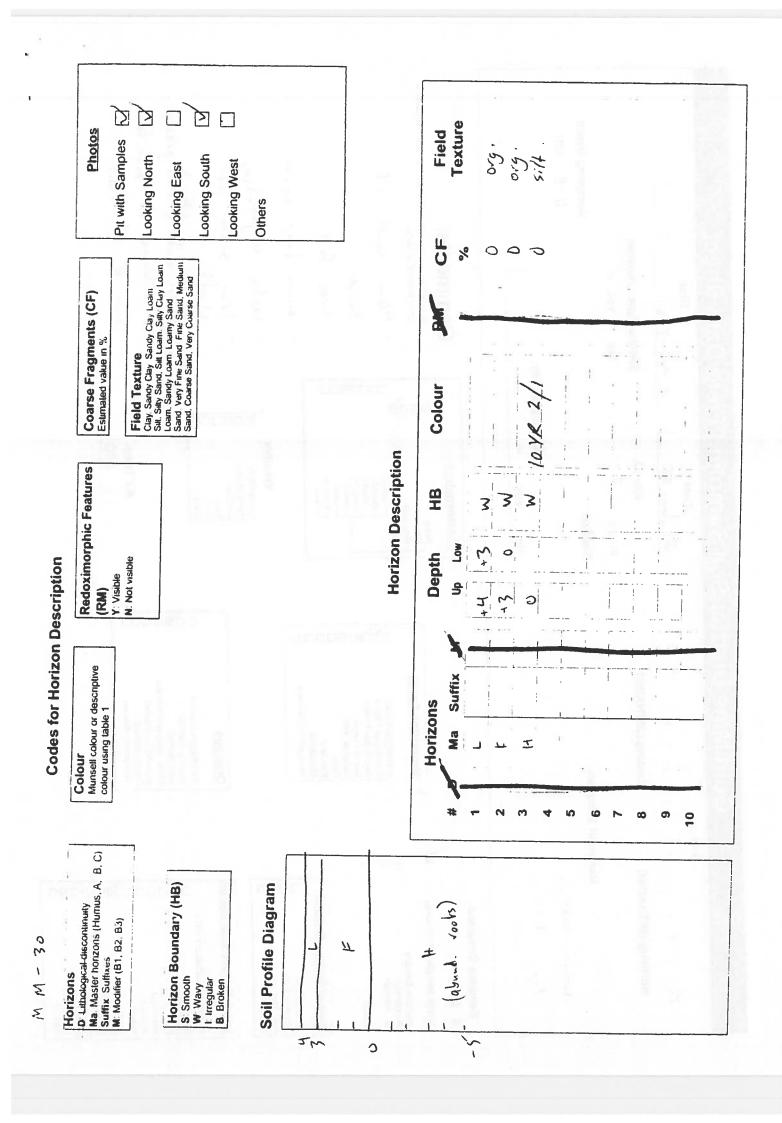
Soil Profile Diagram

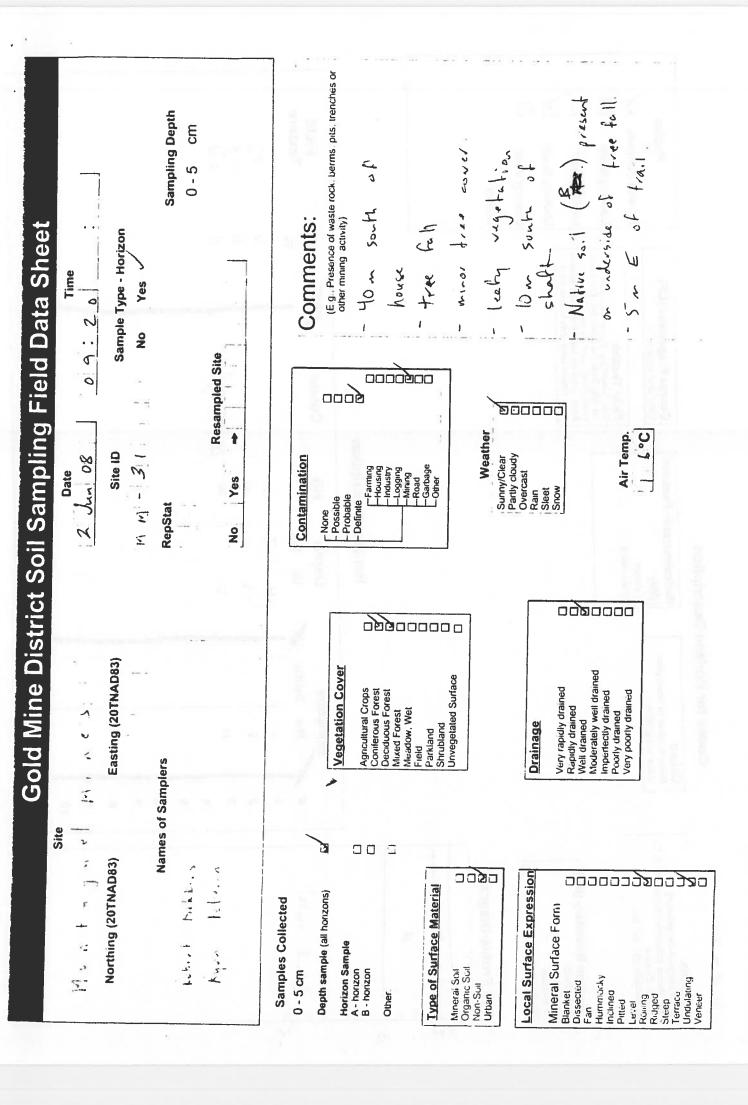


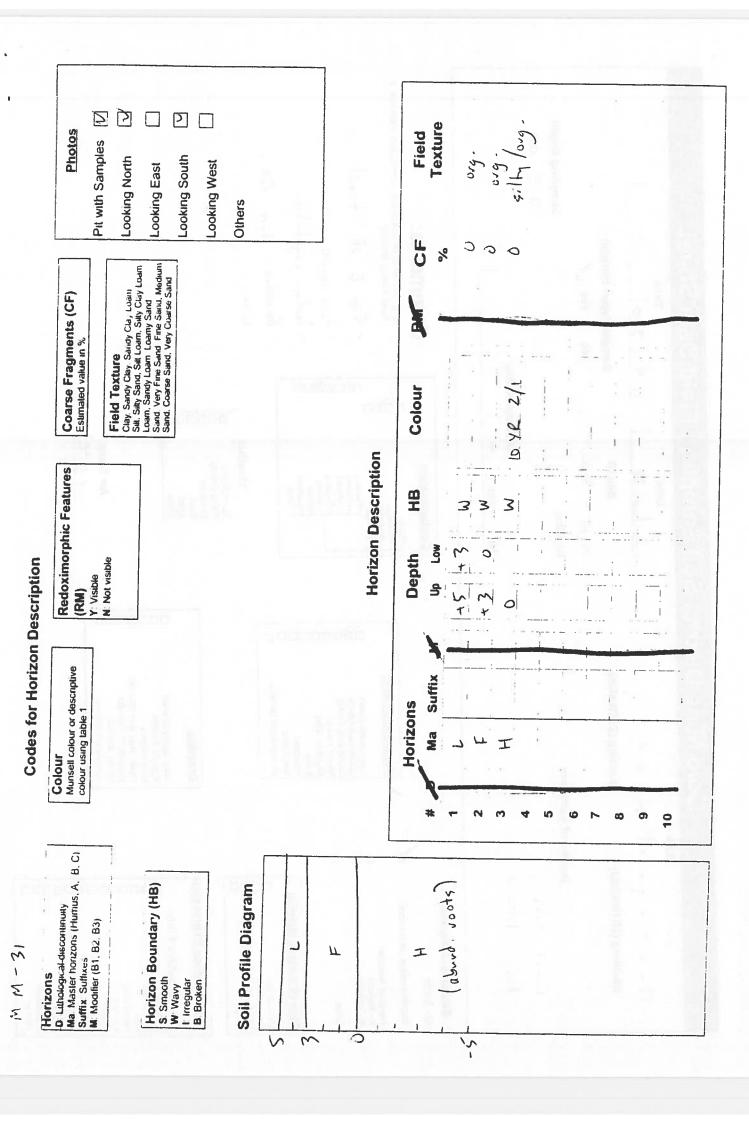

Ae				
	Horizons # Ma Suffix	Depth HB Colour Up Low	CF Field Texture	
	2 F 3 H	to.5 W W 104R 2/1	o org.	
	4 Ae 5	P. B.	20 silty sand.	
Martiness Conferences	7 8 9		Control Albertaneous	
	10			

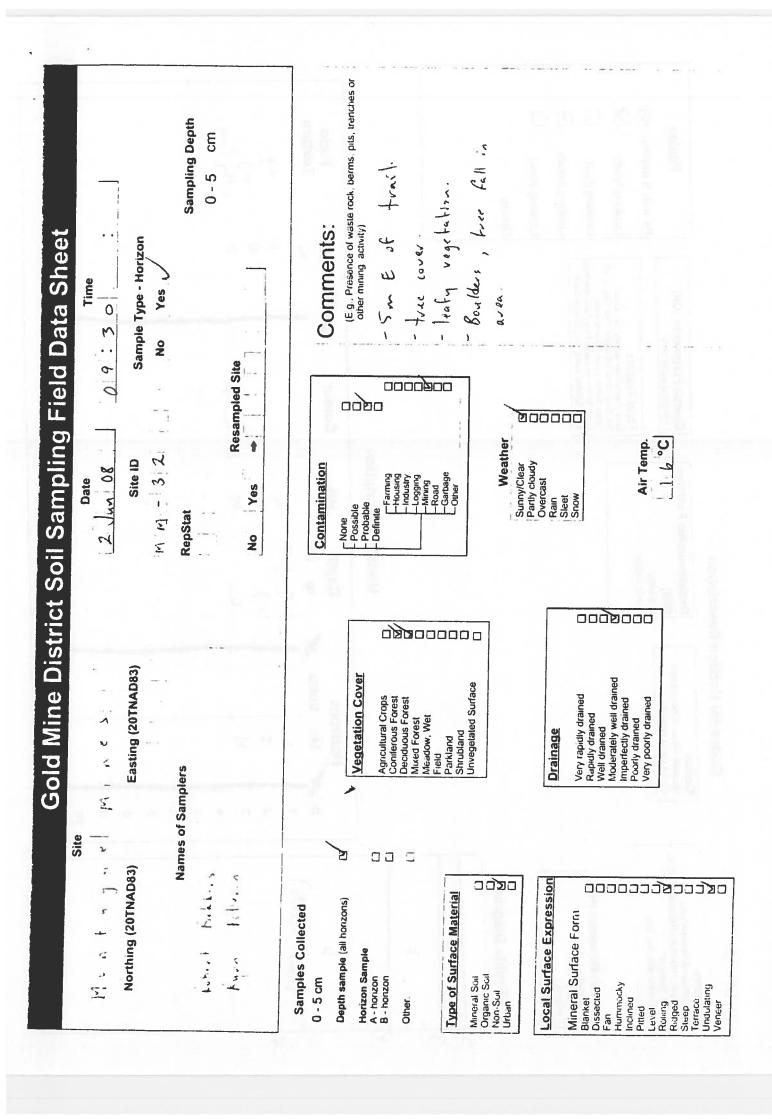

M M - 26

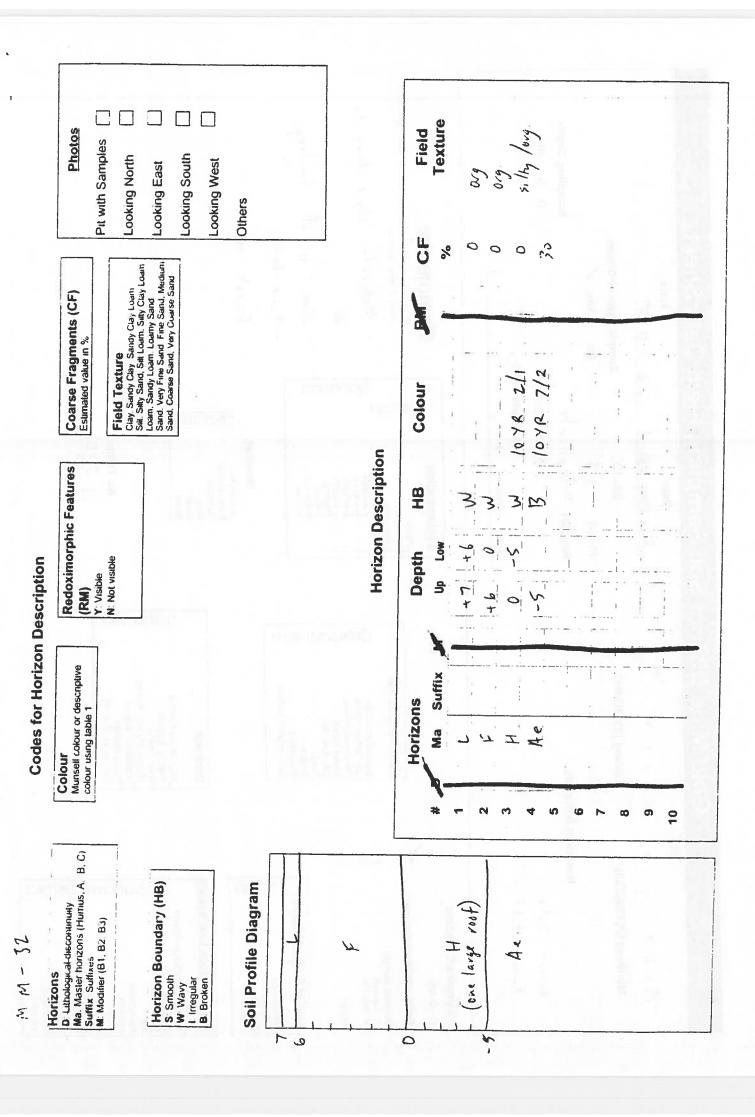

M M - 26

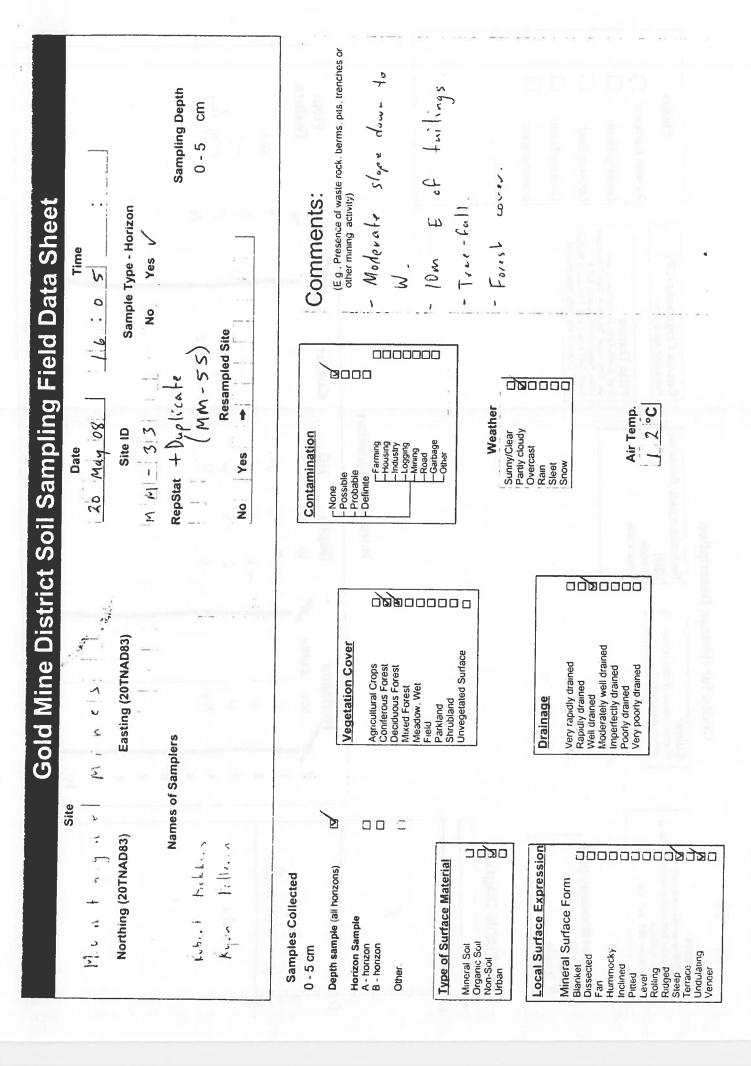


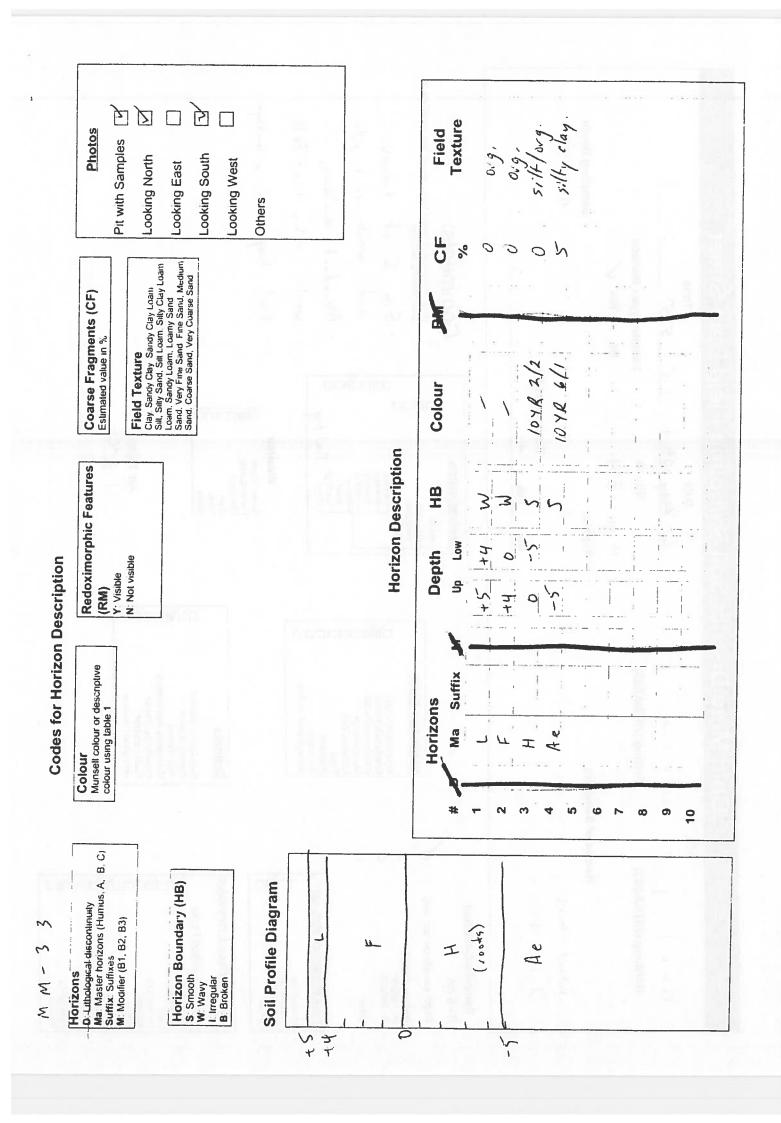


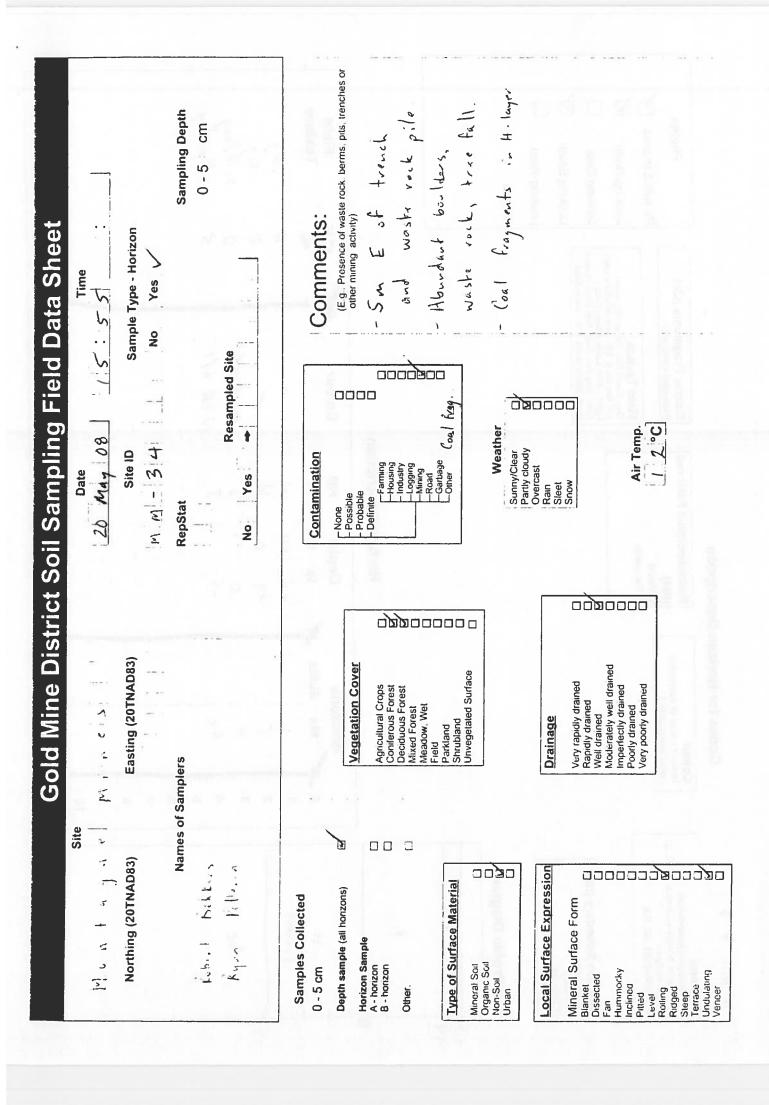

M M - 28

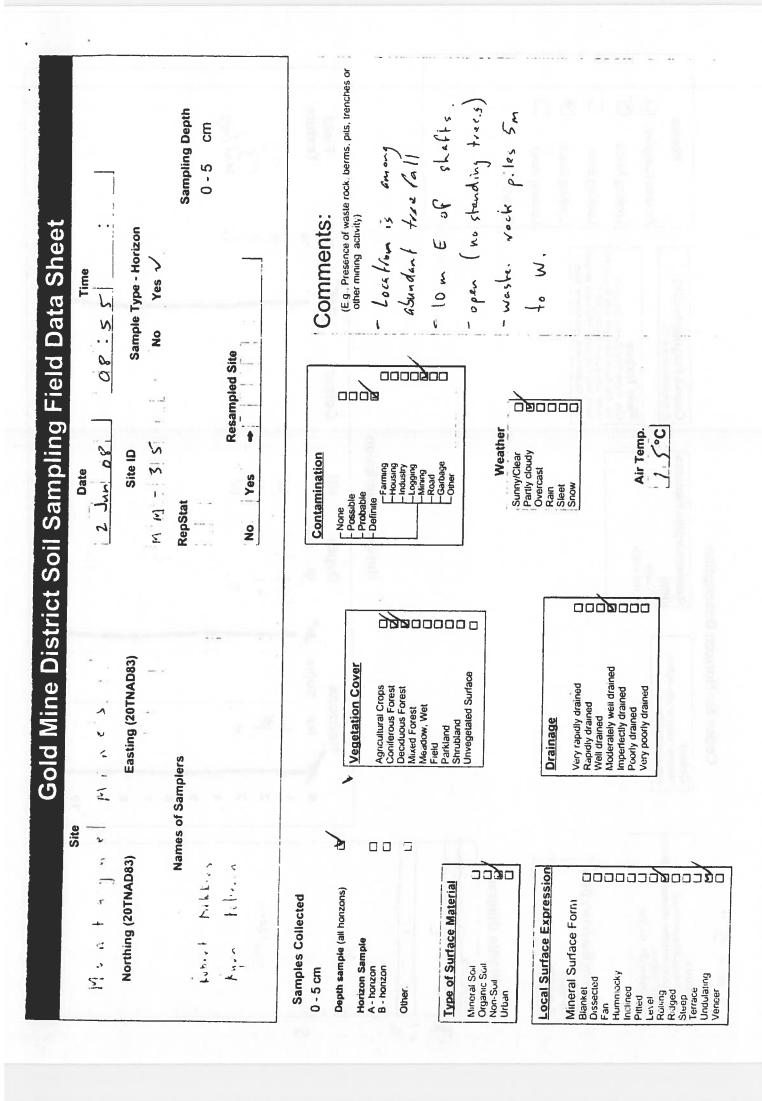


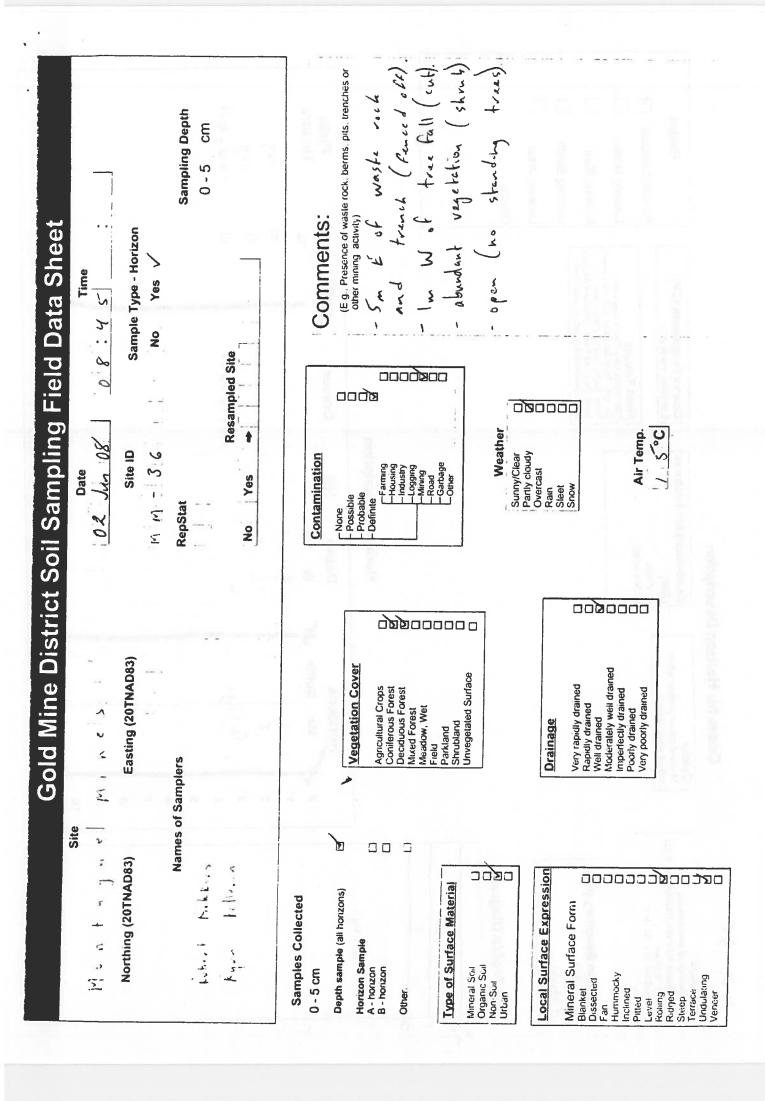


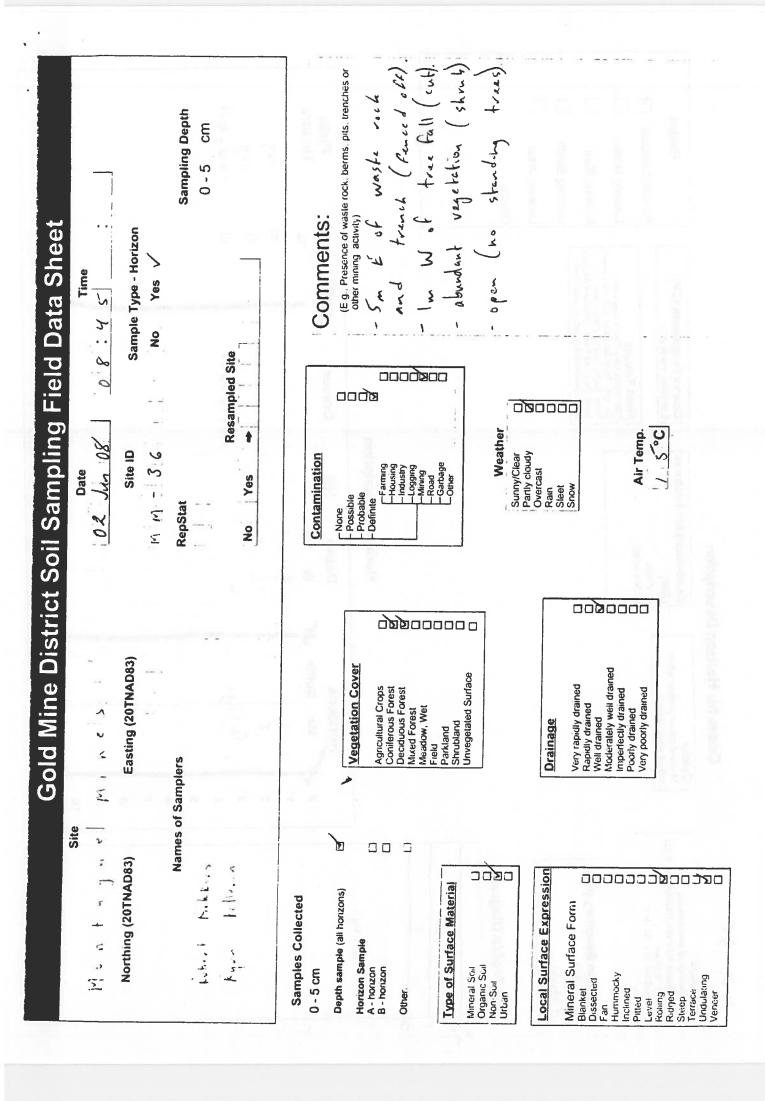


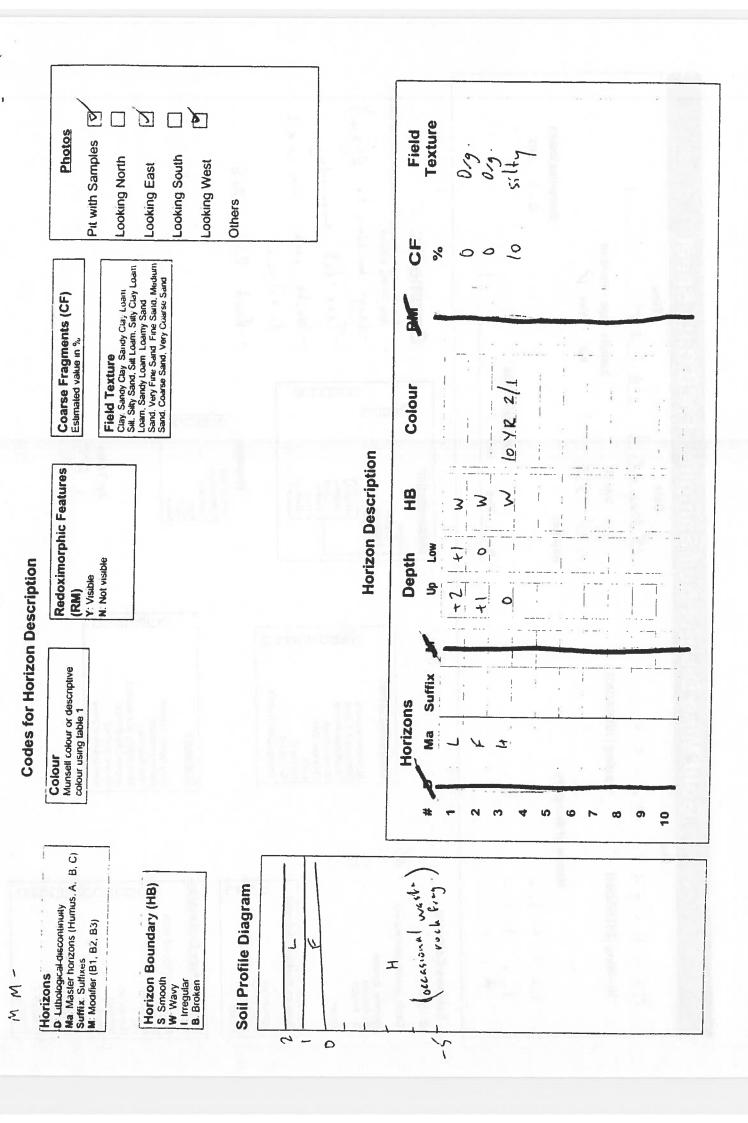


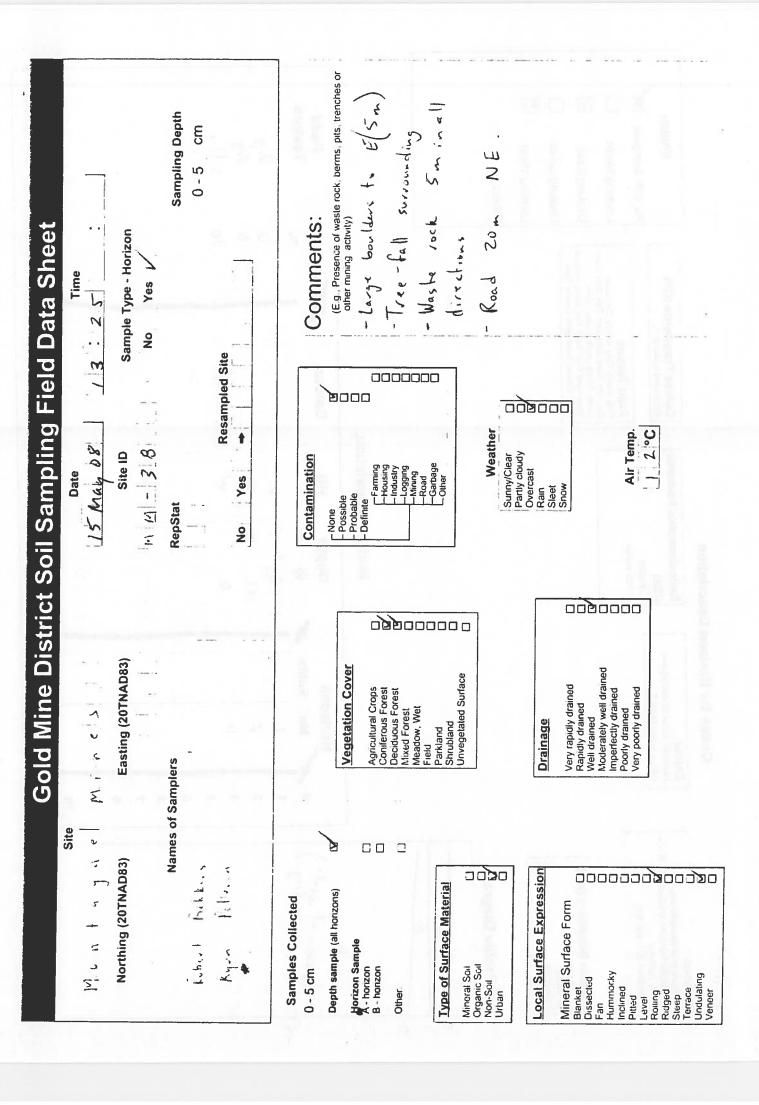


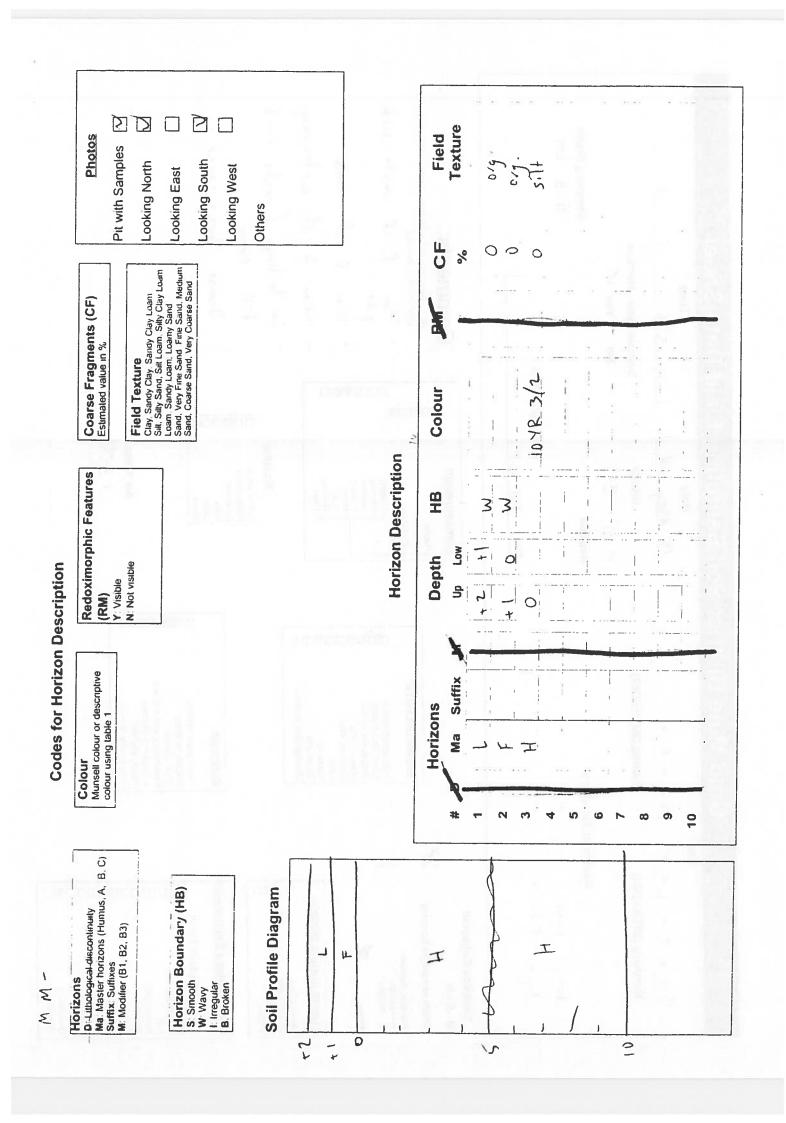


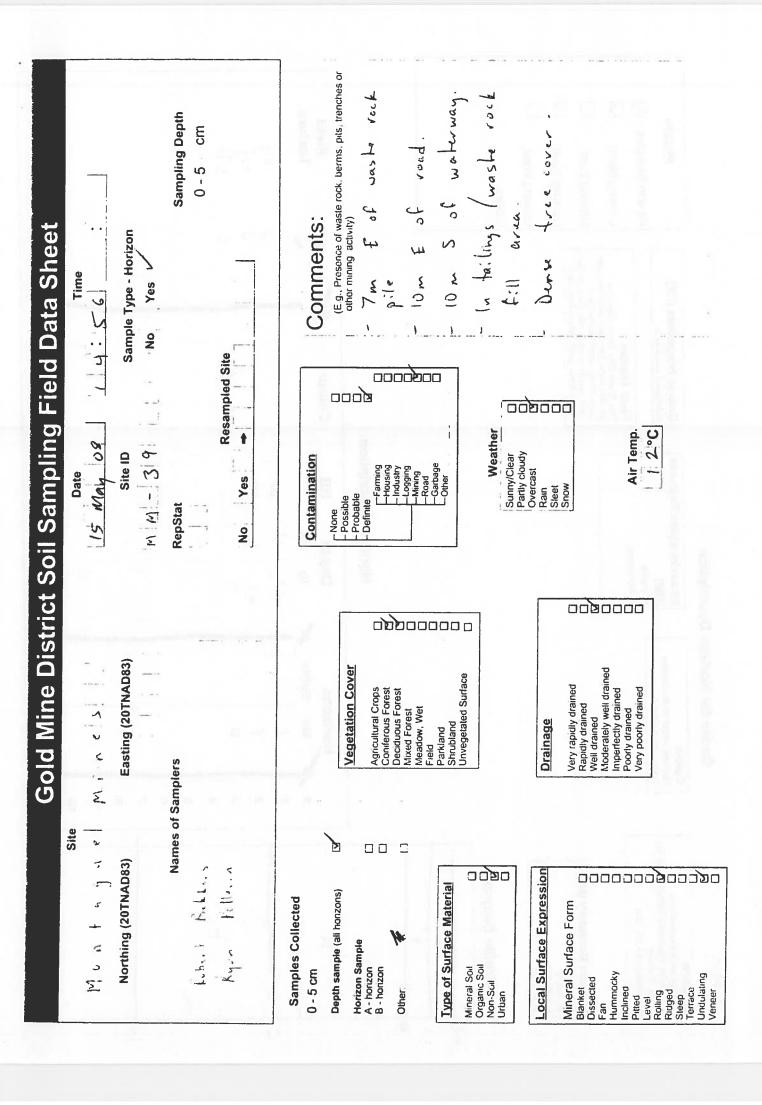


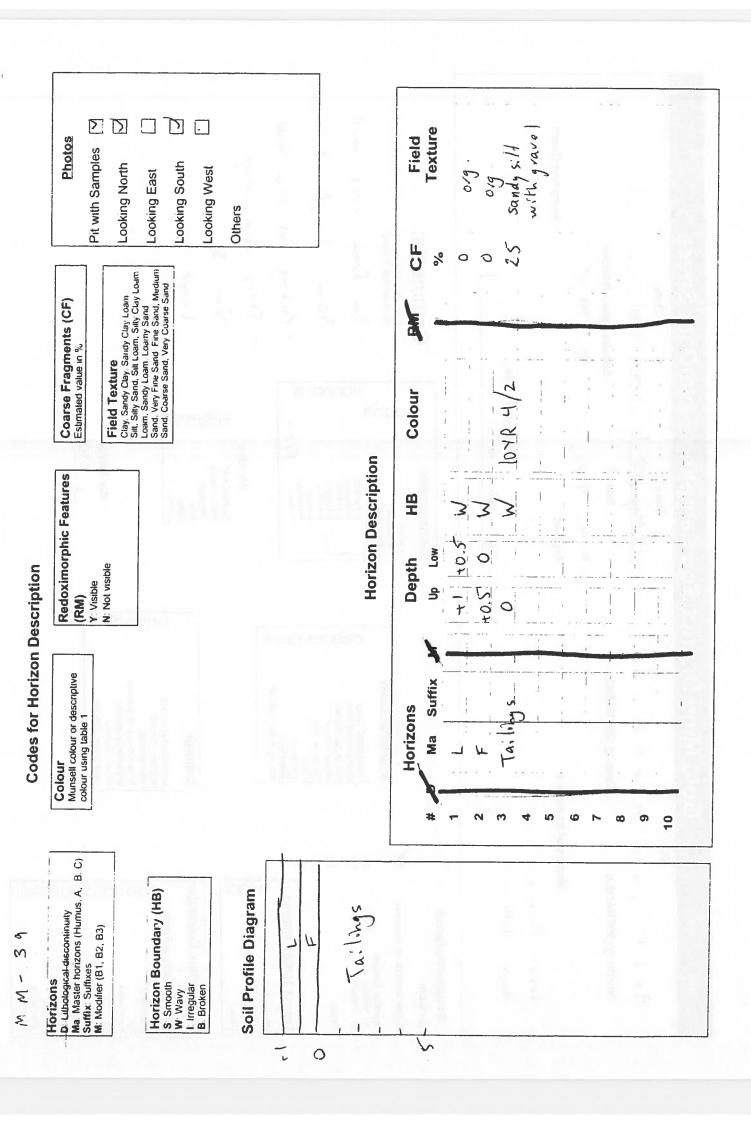

2 Field Texture **Photos** Pit with Samples Looking South Looking North Looking West Looking East Others CF % Loam, Sandy Loam Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand Field Texture
Clay Sandy Clay Loam
Sitt, Sandy Clay Loam
Sitt, Sand, Sitt Loam, Sitty Clay Loam Coarse Fragments (CF) Estimated value in % 1048 21 Colour Horizon Description Redoximorphic Features HB 3 ₹ Depth Y Visible N Not visible **Codes for Horizon Description** S (RM) Colour
Munsell colour or descriptive colour using table 1 Suffix Horizons Ma œ D-Libological discontinuity
Ma: Master horizons (Humus, A. B. C.)
Suffix: Suffixes
M: Modifier (B1, B2, B3) Horizon Boundary (HB) S. Smooth W. Wavy Soil Profile Diagram Soulders. I Horizons I: Irregular B: Broken +

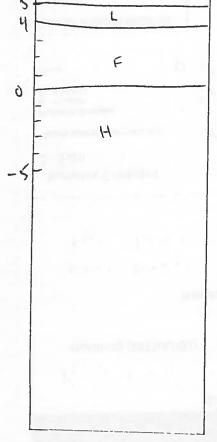

3


IN MI









Gold Mine Distric	t Soil Sampling Field Data Sheet
Northing (20TNAD83) Easting (20TNAD83)	Date Time 2 Jun 08 11:00 Site ID Sample Type - Horizon No Yes
Names of Samplers	RepStat Sampling Depth
Kyon Televin	0 - 5 cm Resampled Site No Yes →
Samples Collected 0 - 5 cm Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other. Ul Type of Surface Material Minoral Soil Organic Soil Urban	Contamination None Possible Probable Definite Housing Industry Logging Mirring Garbage Other Weather Comments: (E.g., Presence of waste rock, berms, pits, trenches or other mining activity) - 10 m South of large free fall area withor forest cover. Weather
Local Surface Expression Mineral Surface Form Blanket Dissected Fan Hummocky Inclined Pitted Level Ridged Steep Terrace Undulating Veneer Drainage Very rapidly drained Rapidly drained Well drained Well drained Imperfectly drained Poorly drained Very poorly drained Very poorly drained Udatating Veneer	Sunny/Clear Partly cloudy Overcast Rain Sleet Snow Air Temp.

D' Lithological discontinuity
Ma. Master horizons (Humus, A, B, C)
Suffix: Suffixes
M: Modifier (B1, B2, B3)

Horizon Boundary (HB)
S Smooth
W Wavy
I Irregular
B Broken

Soil Profile Diagram

Codes for Horizon Description

Colour

Munsell colour or descriptive colour using table 1

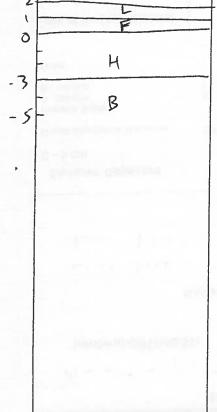
Redoximorphic Features (RM)

Y: Visible N. Not visible

Coarse Fragments (CF) Estimated value in %

Field Texture
Clay, Sandy Clay, Sandy Clay, Loam
Sill, Silty Sand, Silt Loam, Silty Clay Loam
Loam, Sandy Loam Loamy Sand
Sand, Very Fine Sand Fine Sand, Medium
Sand, Coarse Sand, Very Coarse Sand

Photo	ş
Pit with Samples	
Looking North	
Looking East	
Looking South	प्र
Looking West	
Others	


Horizons Ma Suffix	Depth HB	Colour	DM CF	Field Texture
L	+5 +4 W	1	0	
F	+4 0 W			org
И	0 4 W	10 YR 2/1		0/9.
	2		0	orgl silt
			The same of the sa	
		:		
-			Care .	
		ee e la promitié de	5 1 5 116 15	

	Gold Mine Distric	t Soil Sampling Field Data S	Sheet
Northing (20TNAD83)		Date Tin 2 Jun 08 09:47 Site ID Sample Type	ne :
Names	of Samplers	RepStat	Sampling Depth
Fobert Bokkers			0 - 5 cm
Agen leteren		Resampled Site No Yes →	0 Mal water
Samples Collected			
0 - 5 cm		Contamination	ments:
Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other. Type of Surface Material Mineral Soil Organic Soil Non-Soil Urban Urban	Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Unvegetated Surface	None Possible Probable Definite Farming Housing Industry Logging Mining Road Garbage Other Weather	Presence of waste rock, berms, pits, trenches or mining activity) n E of Tailings area lders in area. of upward slope. N of trail.
Local Surface Expression Mineral Surface Form Blanket	Drainage Very rapidly drained □ Rapidly drained □	Partly cloudy Overcast Rain Sleet Snow	
Biarket Dissected Fan Hummocky Inclined Pitted Level Rosing Ridged Steep	Very rapidly drained Rapidly drained Well drained Well drained Moderately well drained Impertectly drained Poorly drained Very poorly drained	/ Air Temp.	
Level	(Calculation)	<u>1. 7°C</u>	

D' Lithological-discontinuity
Ma. Master horizons (Humus, A, B, C)
Suffix Suffixes
M: Modifier (B1, B2, B3)

Horizon Boundary (HB)
S Smooth
W Wavy
I tregular
B Broken

Soil Profile Diagram

Codes for Horizon Description

Colour

Munsell colour or descriptive colour using table 1

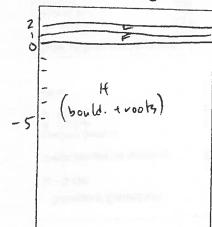
Redoximorphic Features (RM)

Y: Visible N: Not visible

Coarse Fragments (CF) Estimated value in %

Field Texture
Clay, Sandy Clay Sandy Clay Loam
Silt, Silty Sand, Silt Loam, Silty Clay Loam
Loam, Sandy Loam Loamy Sand
Sand, Very Fine Sand, Fine Sand, Medium
Sand, Coarse Sand, Very Coarse Sand

Photo	S
Pit with Samples	E ,
Looking North	g
Looking East	
Looking South	Image: Control of the
Looking West	
Others	
A SE JOS	-40


Horizons Ma Suffix	Depth Up Low	НВ	Colour	DM	CF %	Field Texture
	+2 +1			1	0	019
2 F	+1:0	W		:	O	019
3 H	0 -3	.5	10 YR 2/1		0	silly lorg
4 3	-3		YR 5/6		20	5,1hy.
5						77.19.
6		11				2.2
7						
8			T 15 15 15 15			
9		:	-			
0		- ;				
	-	-				

	Gold Mine Distric	t Soil Sampling Field Data	Sheet
Site Morthing (20TNAD83)	Easting (20TNAD83)	Date 2 Jun 08 / 0 : 0 6 Site ID Sample Ty	Time
Names of S	Samplers	RepStat	
Robert Nakking		· I ·	Sampling Depth 0 - 5 cm
Kyrr tilen		Resampled Site No Yes →	
Samples Collected			
O - 5 cm Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other. IType of Surface Material Mineral Soil Organic Soil Non-Soil Urban	Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Unvegetated Surface	None Possible Probable Definite Faming Housing Industry Logging Minng Road Garbage Other Weather	mments: g. Presence of waste rock, berms, pits, trenches or her mining activity) Hound. boulders, tree fall Lense cover. m SW of house.
Local Surface Expression Mineral Surface Form Blanket	Drainage Very rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained	Partly cloudy Overcast Rain Sleet Snow	

D: Lithological discontinuity
Ma. Master horizons (Humus, A, B, C)
Suffix: Suffixes
M: Modifier (B1, B2, B3)

Horizon Boundary (HB)
S Smooth
W Wavy
I Irregular
B Broken

Soil Profile Diagram

Codes for Horizon Description

Colour Munsell colour

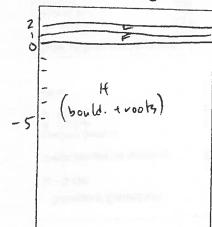
Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM)

Y: Visible N: Not visible

Coarse Fragments (CF) Estimated value in %

Field Texture
Clay, Sandy Clay Sandy Clay Loam
Sitt, Sitty Sand, Sitt Loam, Sitty Clay Loam
Loam, Sandy Loam Loamy Sand
Sand, Very Fine Sand Fine Sand, Medium
Sand, Coarse Sand, Very Coarse Sand


Photo	§.
Pit with Samples	d,
Looking North	(d)
Looking East	
Looking South	9
Looking West	
Others	
go the year	-
	1 - 1

	Horizo			De	pth	HB	Colour	DM	CF	Field
-	Ma	Suffix	A. C.	Up	Low				%	Texture
7/4	L			+2!	1+1	W	(A)		_	
2	F		- 1		-01	- 1	jes	3	0	org.
- 6	190				1	w			Q	019.
Î	H	-0	s	_0 _	100	W	LOYR 2/1	1	U	silty
				1 :	1 . 1.	_ id		1	20	9
				1 1				×		
		6				11	*** ** ** *** ***			
	27	E 600 m	1		10		- 1 - 1-	10 · Xee		
			5535			Elie	-	gailing (She X)		
		+	2.					Was I loss		
					i					
1			1		1	- 1		10.5		
			1				***	F191		

D: Lithological discontinuity
Ma. Master horizons (Humus, A, B, C)
Suffix: Suffixes
M: Modifier (B1, B2, B3)

Horizon Boundary (HB)
S Smooth
W Wavy
I Irregular
B Broken

Soil Profile Diagram

Codes for Horizon Description

Colour Munsell colour

Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM)

Y: Visible N: Not visible

Coarse Fragments (CF) Estimated value in %

Field Texture
Clay, Sandy Clay Sandy Clay Loam
Sitt, Sitty Sand, Sitt Loam, Sitty Clay Loam
Loam, Sandy Loam Loamy Sand
Sand, Very Fine Sand Fine Sand, Medium
Sand, Coarse Sand, Very Coarse Sand

Photo	§.
Pit with Samples	d,
Looking North	(d)
Looking East	
Looking South	9
Looking West	
Others	
go the year	-
	1 - 1

	Horizo			De	pth	HB	Colour	DM	CF	Field
-	Ma	Suffix	A. C.	Up	Low				%	Texture
7/4	L			+2!	1+1	W	(A)		_	
2	F		- 1		-01	- 1	jes	3	0	org.
- 6	190				1	w			Q	019.
Î	H	-0	s	_0 _	100	W	LOYR 2/1	1	U	silty
				1 :	1 . 1.	_ id		1	20	9
				1 1				×		
		6				11	*** ** ** *** ***			
	27	E 600 m	1		10		- 1 - 1-	10 · Xee		
			5535			Elie	-	gailing (She X)		
		+	2.					Was I loss		
					i					
1			1		1	- 1		10.5		
			1				***	F191		

	Gold Mine Distric	t Soil Sampling Field	Data Sheet
Site .	Easting (20TNAD83)	Date 2 Jun 08 0 9 Site ID Sa	Time : 1 0 :
Names of S. Lohert Bakking Know Telleria	amplers	RepStat Resampled Site No Yes →	Sampling Depth 0 - 5 cm
Samples Collected 0 - 5 cm Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other. Claim Type of Surface Material Mineral Soil Organic Soil Non-Suil Urban	Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Univegetated Surface	Contamination None Possible Probable Definite Farming Housing Industry Logging Mining Road Garbage Other Weather	Comments: (E.g., Presence of waste rock, berms, pits, trenches or other mining activity) - 3 m N of tree fall. - 10 m N of shafts. - minor tree Cover. - 20 m SE of Airnse. - Boulders in area.
Local Surface Expression Mineral Surface Form Blanket	Drainage Very rapidly drained	Partly cloudy Overcast Rain Sleet Snow	- Leafy ground regetation.

Horizons

S: Smooth W: Wavy I: Irregular B: Broken

O Lithological discontinuity

Ma. Master horizons (Humus, A, B, C)

Suffix Suffixes

M: Modifier (B1, B2, B3)

Colour

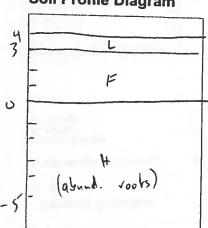
Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM)

Y: Visible

N. Not visible

Coarse Fragments (CF) Estimated value in %


Field Texture

Clay, Sandy Clay Sandy Clay Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam Loamy Sand Sand, Very Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

<u>Photos</u>				
Pit with Samples				
Looking North				
Looking East				
Looking South	Q			
Looking West				
Others				
A man				

Soil Profile Diagram

Horizon Boundary (HB)

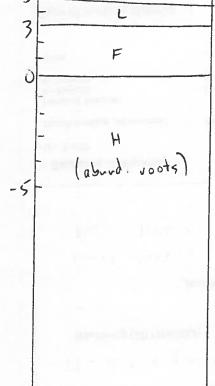
2 t		%	Colour	НВ	Depth Up Low	Suffix	Horizo Ma	# -	(abund. rooks)
5 6 7	J	, O D	10 YR 2/1	W	43 0	S	14	3	
							÷	5 6	Non-
9		The Translated	iy = i	-			svenium (So	8	medical (Schwart)

Gold Mine Distric	ct Soil Sampling Field Data Sheet
Northing (20TNAD83) Easting (20TNAD83)	Date Time 2 Jun 08 09:20 Site ID Sample Type - Horizon No Yes
Names of Samplers	RepStat Sampling Depth
hobert Mikkers	0 - 5 cm
Kyon telena	Resampled Site No. Yes →
Samples Collected	
0 - 5 cm	Contamination Comments:
Horizon Sample A - horizon B - horizon Other: Type of Surface Material Minerai Soil Organic Soil Urban Wegetation Cover Agnicultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Univergetated Surface	None Possible Probable Definite Farming Housing Industry Logging Road Garbage Other Weather Sunny/Clear (E.g., Presence of waste rock, berms, pits, trenches or other mining activity) - 40 m South of house - 40 m South of house - 4 ree fall - minor fire cover.
Mineral Surface Form Blanket Dissected Fan Hummocky Inclined Pitted Level Raiged Steep Terrace Undulating Veneer	Overcast

Horizons

D Lithological discontinuity
Ma. Master horizons (Humus, A, B, C)
Suffix: Suffixes

M: Modifier (B1, B2, B3)


Horizon Boundary (HB)

S: Smooth W: Wavy

I Irregular

B. Broken

Soil Profile Diagram

Colour
Munsell colour or descriptive
colour using table 1

Redox
(RM)

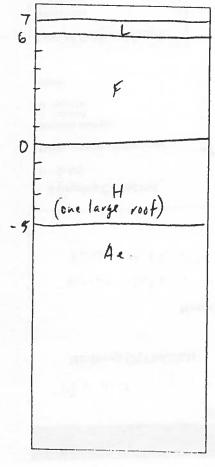
Redoximorphic Features (RM) Y: Visible

N: Not visible

Coarse Fragments (CF) Estimated value in %

Field Texture
Clay, Sandy Clay, Sandy Clay, Loam,
Sult, Sity Sand, Sitt Loam, Sulty Clay Loam,
Loam, Sandy Loam Loamy Sand
Sand Very Fine Sand Fine Sand, Medium,
Sand, Coarse Sand, Very Coarse Sand

Photo	ş
Pit with Samples	[V]
Looking North	☑
Looking East	
Looking South	ᄓ
Looking West	
Others	
4-24	
1	


Horizons # Ma Suffix	Depth HB Cole	our DM CF	Field Texture
2 F 3 H	+3 0 W 10 YR	2/1	org. org. silly long.
5 6 7		100 100 100	
B 9			

	Gold Mine District	Soil Sampling Field D	ata Sheet
Site Meatage	Mines	Date 2 Jun 08 09:	Time
Northing (20TNAD83)	Easting (20TNAD83)		ole Type - Horizon
Names of	Samplers	RepStat Resampled Site	Sampling Depth 0 - 5 cm
Samples Collected 0 - 5 cm Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other. Type of Surface Material Mineral Soil Organic Soil Non-Suil Urban	Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Unvegetated Surface	None Possible Probable Positive	Comments: (E.g., Presence of waste rock, berms, pits, trenches or other mining activity) - 5 m E of trail. - trac cover. - leafy regetation. - Bouldes, free fall in area.
Local Surface Expression Mineral Surface Form Blanket Dissected Fan UHummöcky Inclined Pitted Level Level Rolling Ridged Steep Terrace Undulating Veneer	Drainage Very rapidly drained	Sunny/Clear Partly cloudy Overcast Rain Sleet Snow Air Temp.	

D: Lithological discontinuity
Ma. Master horizons (Humus, A. B. C)
Suffix: Suffixes
M: Modifier (B1, B2, B3)

S Smooth	Boundary (HB)
W Wavy I Irregular B Broken	

Soil Profile Diagram

Codes for Horizon Description

Colour

Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM) Y: Visible

N: Not visible

Coarse Fragments (CF) Estimated value in %

Field Texture

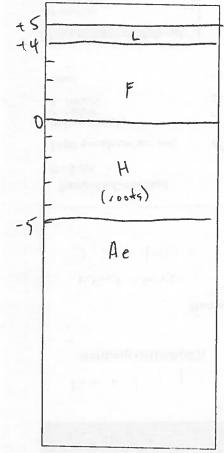
Clay, Sandy Clay Sandy Clay Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

Photos	Ş
Pit with Samples	
Looking North	
Looking East	
Looking South	
Looking West	
Others	

Ma Suffix	Up Low	Colour	CF %	Field Texture
L	1+7 1+6 W		0	Org
Fall S	46 0 W		. 0	019
H	0 -5 W 10	YR 2/1	D	1. 1
Ae		YR 7/2	30	silty loving.
		19 14		
			Joseph A.	
and the second		guide	Alto-regulated	
4		_		
		7	1200	

	Gold Mine District	Soil Sampling Field Data	Sheet
Northing (20TNAD83)	Easting (20TNAD83)	Date T 20 May 08 16:05 Site ID Sample Type	ime :
Names of Kubi. 1 Hills.	of Samplers	RepStat + Duplicate (MM - 55) Resampled Site	Sampling Depth 0 - 5 cm
Samples Collected 0 - 5 cm Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other. Type of Surface Material Mineral Soil Organic Soil Non-Soil Urban	Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Unvegetated Surface	None Possible Probable Probable Definite Farming Housing Industry Logging Mirring Road Garbage Other Weather	Presence of waste rock, berms, pits, trenches or mining activity) Merate slope down to me E of tailings me - fall.
Local Surface Expression Mineral Surface Form Blanket Dissected Fan Hummocky Inclined Pitted Level Rolling Ridged Steep Terrace Undulating Vencer	Very rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained	Sunny/Clear Partly cloudy Overcast Rain Sleet Snow Air Temp. 1 2 °C	

D: Lithological discontinuity


Ma: Master horizons (Humus, A, B, C) Suffix: Suffixes M: Modifier (B1, B2, B3)

Horizon Boundary (HB)

S: Smooth W: Wavy I: Irregular

B: Broken

Soil Profile Diagram

Codes for Horizon Description

Colour

Munselt colour or descriptive colour using table 1

Redoximorphic Features (RM)

Y: Visible

N: Not visible

Coarse Fragments (CF) Estimated value in %

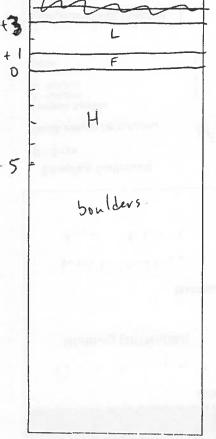
Field Texture

Clay Sandy Clay Sandy Clay Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

Photos	s
Pit with Samples	g
Looking North	Ø
Looking East	
Looking South	
Looking West	
Others	

# #	Horizons Ma Suffix	Depth HB	Colour	CF	Field Texture
1 1	illa Gallix			%	rexture
		+5 +4 W		0	0.49,
2	F	+4 0 W		0	0,9
3	Н	0 -5 5	104R 2/2		silt/org.
4	Ae	-5		0	,, ' J
5			10 YR 6/1	5	silty clay.
6	8 · ·				مرواغي فالمراكليون
7		***************************************		Jones, P.C.	
1.0					
8					
9					
0			!	THE	
		ti ti			

	Gold Mine Distric	t Soil Sampling Field Data Sheet	
Site	Easting (20TNAD83)	Date Time 20 May 08 15:55 Site ID Sample Type - Horizon	
Names o	f Samplers	RepStat RepStat Sampling Depth 0 - 5 cm Resampled Site	
Samples Collected 0 - 5 cm Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other. Type of Surface Material Mineral Soil Organic Soil Non-Soil	Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Unvegetated Surface	Contamination None Possible Probable Definite Industry Logging Mining Road Garbage Other Coal fragments in H. lan Sunny/Clear Comments: (E.g Presence of waste rock berms, pits, tree other mining activity) - Sm. E. of trench waste veck pile - Houndant boulders, waste rock, tree fall Veather Sunny/Clear	-
Urban Local Surface Expression Mineral Surface Form Blanket Dissected Fan Hummorky Inclined Pitted Level Rolling Ridged Steep Terrace Undulating Vencer	Drainage Very rapidly drained	Sunny/Clear Partly cloudy Overcast Rain Sleet Snow Air Temp.	ge.


Horizons

-- D- Lithological discontinuity
Ma: Master horizons (Humus, A, B, C)
Suffix: Suffixes
M: Modifier (B1, B2, B3)

Horizon Boundary (HB)

S: Smooth
W: Wavy
I: Irregular
B: Broken

Soil Profile Diagram

Colour

Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM)

Y: Visible N: Not visible

Coarse Fragments (CF) Estimated value in %

Field Texture

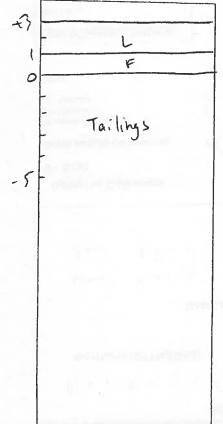
Clay Sandy Clay Sandy Clay Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

<u>Photos</u>						
Pit with Samples						
Looking North						
Looking East						
Looking South	<u>r</u>					
Looking West						
Others						
garaged per	-1					
19 19 11						

Horizo	ons		Dep	oth	HB	Colour	DM	CF	Field
Ma	Suffix	A Property of	Up	Low				%	Texture
			+3	+1	W	2 37 37 237		Á	org,
F			41	0	W			0	019
			0		W	1040 2/1		2.0	J, /
		· · · · · ·		-	7	1		,,)0	sandlorg.
					1		1		
:		1		-	· ;	1	IL TO	*	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	*	11					-		
20,000 000	Asia al	· • •	8000		- :	j			
- 2	1			-1-		(9.0)			
	i-	1 4 1		- !!	1	* * * * * * * * * * * * * * * * * * * *	Lie		
	Ma L H	H H	Ma Suffix	Ma Suffix Up L H -13 -11 H -0	Ma Suffix Up Low L	Ma Suffix Up Low L	Ma Suffix Up Low L 13 +1 W H 0 W 104R 2/1	Ma Suffix Up Low L +3 +1 W H 0 W 104R 2/1	Ma Suffix Up Low % L 13 +1 W 6 0 W 104R 2/1 30

	Gold Mine District	Soil Sampling Field Data	Sheet
Site	Mines		lime .
Northing (20TNAD83)	Easting (20TNAD83)	Site ID Sample Typ	· · · · · · · · · · · · · · · · · · ·
Names of	f Samplers	RepStat	Sampling Depth
Futuret Nikking			0 - 5 cm
kyen telerin		Resampled Site No Yes ◆	
Samples Collected 0 - 5 cm Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other. Type of Surface Material Mineral Soil Organic Soil Non-Soil Urban	Vegetation Cover Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Unvegetated Surface	None Possible Probable Definite Farming Housing Industry Dogging Mining Road Garbage Other Weather Carbage Car	nments: Presence of waste rock berms, pits, trenches or er mining activity) Octobrom is Gmong andant tree Call om E of shafts. en (no standing tree.s) aste. wock piles 5m
Mineral Surface Expression Mineral Surface Form Blanket Dissected Fan Understand Unde	Drainage Very rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained	Air Temp.	Andrews I was to

D: Luthological-discontinuity


Ma. Master horizons (Humus, A. B. C)

Suffix: Suffixes

M: Modifier (B1, B2, B3)

Horizon S Smooth	Boundary (HB)
S Smooth W Wavy	
I Irregular	
B. Broken	

Soil Profile Diagram

Codes for Horizon Description

Colour Munsell colour or

Munsell colour or descriptive colour using table 1

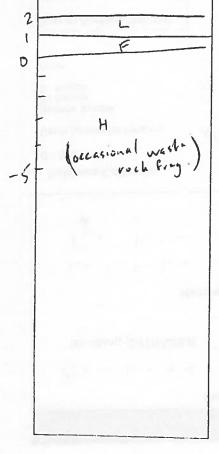
Redoximorphic Features (RM) Y: Visible N: Not visible

Coarse Fragments (CF)
Estimated value in %

Field Texture Clay Sandy Clay Sandy Clay Loam Silt. Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam Loamy Sand Sand, Very Fine Sand Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

	Photos					
	Pit with Samples	Image: Control of the				
	Looking North					
	Looking East					
	Looking South					
	Looking West					
l	Others					
	Looking South					

* -	Horizons Ma Suffix	Depth Up Low	НВ	Colour		CF	Field Texture
2	r -	+3 +1	ij	. - .	1	0	org.
3	Tailings	0		10 YR 3/2	* * * * * * * * * * * * * * * * * * *	0	org . sundy silt
5			-		i i		OVE CIU
6					in tues		
8	merita series		- 308	#C #44 #44 E	ionii lor iii	o-cast and	
9							


	Gold Mine District	Soil Sampling Field Data S	Sheet
Site	Mines	Date Tim 02 Jun 08 08:45	
Northing (20TNAD83)	Easting (20TNAD83)	Site ID Sample Type - No Yes	
Names o	of Samplers	RepStat	Sampling Depth
Libert Bakkers	2		0 - 5 cm
kyon tilian		Resampled Site No Yes →	
Samples Collected 0 - 5 cm Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other. I Type of Surface Material Mineral Scril Organic Scril Non-Suil Urban	Vegetation Cover Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Univegetated Surface	None Possible Probable Probable Definite Farming Housing Industry Logging Winning Road Garbage Other Weather	ments: resence of waste rock, berms, pits, trenches or sining activity) E of waste rock trench (fenced off) W of tree fall (cut). dant regetation (shrub) (no standing trees)
Local Surface Expression Mineral Surface Form Blanket Dissected Fan Hummocky Inclined Pitted Level Robing Ridged Steep Terrace Undulating Vencer	Very rapidly drained Rapidly drained Well drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained	Sunny/Clear Partly cloudy Overcast Rain Sleet Snow	

	Gold Mine District	Soil Sampling Field Data S	Sheet
Site	Mines	Date Tim 02 Jun 08 08:45	
Northing (20TNAD83)	Easting (20TNAD83)	Site ID Sample Type - No Yes	
Names o	of Samplers	RepStat	Sampling Depth
Libert Bakkers	2		0 - 5 cm
kyon tilian		Resampled Site No Yes →	
Samples Collected 0 - 5 cm Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other. I Type of Surface Material Mineral Scril Organic Scril Non-Suil Urban	Vegetation Cover Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Univegetated Surface	None Possible Probable Probable Definite Farming Housing Industry Logging Winning Road Garbage Other Weather	ments: resence of waste rock, berms, pits, trenches or sining activity) E of waste rock trench (fenced off) W of tree fall (cut). dant regetation (shrub) (no standing trees)
Local Surface Expression Mineral Surface Form Blanket Dissected Fan Hummocky Inclined Pitted Level Robing Ridged Steep Terrace Undulating Vencer	Very rapidly drained Rapidly drained Well drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained	Sunny/Clear Partly cloudy Overcast Rain Sleet Snow	

D. Lithological discontinuity Ma. Master horizons (Humus, A. B. C) Suffix: Suffixes M: Modifier (B1, B2, B3)

Horizon Boundary (HB) S Smooth W Wavy t Irregular B. Broken

Soil Profile Diagram

Codes for Horizon Description

Colour Munsell colour or descriptive

Redoximorphic Features (RM) colour using table 1 Y: Visible N. Not visible

Coarse Fragments (CF) Estimated value in %

> **Field Texture** Clay, Sandy Clay Sandy Clay, Loant Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

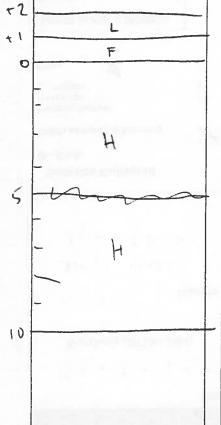
Photos Pit with Samples Looking North Looking East Looking South Looking West Others

الر #	Horizons Ma Suffix	Depth Up Low	НВ	Colour		F Field Texture
1	L	+2 +1	W	trian and a		0 019.
2	F	41 0	W	* * * * * * * * * * * * * * * * * * * *	:	0 019.
3	4	0	WI	0 YR 2/1		o silty
4			: -			0 - 7 - 102
5					. h	
,					in and by	
	Percent and Dushe		- Election		With the House	
	e e e i			3	3 3 4	
	-		** 11		A Complete	
	1 = 4			on en e	345 656	

	Gold Mine Distric	t Soil Sampling Field [Data Sheet
Site	Easting (20TNAD83)	Date 15 May 08 / 3 Site ID Sai	Time 2 5 :
Names o	f Samplers	RepStat	No Yes V
Ryon Pellerin		Resampled Site No Yes →	0 - 5 cm
Samples Collected 0 - 5 cm Depth sample (all horizons) Horizon Sample A - horizon B - honzon Other: Type of Surface Material Mineral Soil Organic Soil Non-Soil Urban Local Surface Expression Mineral Surface Form Blanket Dissected Fan Hummorky Inclined Pitted Level Rolling Ridged Steep Terrace Undulating	Vegetation Cover Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Unvegetated Surface Drainage Very rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained	Contamination None Possible Probable Definite Farming Housing Industry Logging Mining Aniung Other Weather Sunny/Clear Partly cloudy Overcast Rain Sleet Snow Air Temp. 1 2 °C	Comments: (E.g., Presence of waste rock, berms, pits, trenches or other mining activity) - Large boulders to E(5m) - Tree-fall surrounding - Washe rock 5m in all directions - Road 20m NE.

Horizons

O:-Lithological discontinuity
Ma: Master horizons (Humus, A, B, C)
Suffix: Suffixes


M: Modifier (B1, B2, B3)

Horizon Boundary (HB)

S Smooth W Wavy

I: irregular B. Broken

Soil Profile Diagram

Colour Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM) Y: Visible

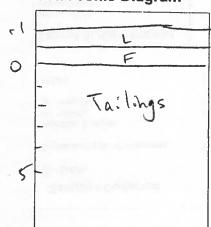
N: Not visible

Coarse Fragments (CF)
Estimated value in %

Field Texture

Clay, Sandy Clay, Sandy Clay Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

<u>Photos</u>						
Pit with Samples	Y					
Looking North						
Looking East						
Looking South	\square					
Looking West						
Others						


Horizons Ma Suffix	Depth Up Low	HB Colour	CF %	Field Texture
	+2 +1		0	0/9
F	+1 0	W	0	011.
H		10YR 3/2	- 1	silt
			100 - 100 P.	N
tomatical accept				
*		EXIII P. F. Common		

	Gold Mine District	t Soil Sampling Field Data Sheet		
Site V c n + n g n e Northing (20TNAD83)	Easting (20TNAD83)	Date 15 May 08 14	Time	
		mm-39	No Yes	
Names of	Samplers	RepStat	Sampling Depth	
Robert Bekkers		- 1 :	0 - 5 - cm	
Kyan Fillerin		No Yes →		
Samples Collected				
0 - 5 cm	a de suma se	Contamination	Comments:	
Depth sample (all horizons)	Vegetation Cover	None	(E.g., Presence of waste rock, berms, pits, trenches or other mining activity)	
Horizon Sample A - horizon B - horizon Other: Type of Surface Material Mineral Soil Organic Soil Non-Suil Urban	Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Unvegetated Surface	Probable Definite Farming Housing Industry Logging Mining Road Garbage Other Weather	- 7m & of washe rock pile - 10m & of road. - 10m S of waterway. - In tailings (washe rock	
Urban			fill area.	
Local Surface Expression Mineral Surface Form Blanket Dissected	Drainage Very rapidly drained □ Rapidly drained □ Well drained □	Sunny/Clear Partly cloudy Overcast Rain Sleet Snow	- Dense tree cover.	
Blanket Dissected Fan Hummocky Inclined Pitted Level Rolling Ridged Steep Terrace Undulating Veneer	Very rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained	Air Temp.		
Steep Terrace Undulating Veneer				

D: Lithological discontinuity
Ma. Master horizons (Humus, A. B. C)
Suffix: Suffixes
M: Modifier (B1, B2, B3)

Horizon Boundary (HB)
S Smooth
W Wavy
I Irregular
B Broken

Soil Profile Diagram

Codes for Horizon Description

Colour

Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM)

Y: Visible N: Not visible

Coarse Fragments (CF) Estimated value in %

Field Texture

Clay, Sandy Clay, Sandy Clay, Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

Photo:	5
Pit with Samples	\Box
Looking North	
Looking East	
Looking South	Image: Control of the
Looking West	
Others	
AL INC. IN	

#	Horizons Ma Suffix	No.	Depth Up Low	НВ	Colour	BM	CF	Field Texture
1	L xx 2		1 10.5	_W			0	019.
2	F	+0	.5. 0	W		:	0	019
3	Tailings.)	W	10YR 4/2		25	sandy silt
4	0						-5	with gravel
5					*(i) · · · · · · · · · · · · · · · · · · ·			
6				i		8 477		
7		1:						
8				·- + 887 i 9.	5 5 5 N T			
9		1-1				-1		
10			!!!	- 1:	911 914 14		380	
	_		1			TEST FOL		

	Gold Mine Distric	t Soil Sampling Field	Data Sheet
Site .	Easting (20TNAD83)	Date 2 Jun 08 0 9 Site ID Sa	Time : 1 0 :
Names of S. Lohert Bakking Know Telleria	amplers	RepStat Resampled Site No Yes →	Sampling Depth 0 - 5 cm
Samples Collected 0 - 5 cm Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other. Claim Type of Surface Material Mineral Soil Organic Soil Non-Suil Urban	Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Univegetated Surface	Contamination None Possible Probable Definite Farming Housing Industry Logging Mining Road Garbage Other Weather	Comments: (E.g., Presence of waste rock, berms, pits, trenches or other mining activity) - 3 m N of tree fall. - 10 m N of shafts. - minor tree Cover. - 20 m SE of Airnse. - Boulders in area.
Local Surface Expression Mineral Surface Form Blanket	Drainage Very rapidly drained	Partly cloudy Overcast Rain Sleet Snow	- Leafy ground regetation.

Horizons

S: Smooth W: Wavy I: Irregular B: Broken

O Lithological discontinuity

Ma. Master horizons (Humus, A, B, C)

Suffix Suffixes

M: Modifier (B1, B2, B3)

Colour

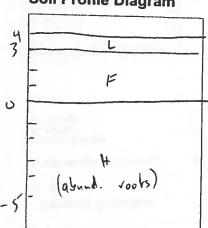
Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM)

Y: Visible

N. Not visible

Coarse Fragments (CF) Estimated value in %


Field Texture

Clay, Sandy Clay Sandy Clay Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam Loamy Sand Sand, Very Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

Photos	<u>\$</u>
Pit with Samples	
Looking North	
Looking East	
Looking South	回
Looking West	
Others	
A man	

Soil Profile Diagram

Horizon Boundary (HB)

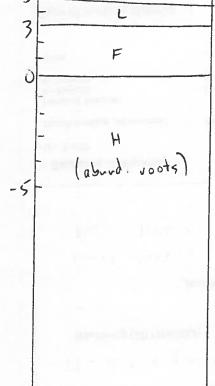
2 t		%	Colour	НВ	Depth Up Low	Suffix	Horizo Ma	# -	(abund. rooks)
5 6 7	J	, O D	10 YR 2/1	W	43 0	S	14	3	
							÷	5 6	Non-
9		The Translated	iy = i	-			svenium (So	8	medical (Schwart)

Gold Mine Distric	ct Soil Sampling Field Data Sheet
Northing (20TNAD83) Easting (20TNAD83)	Date Time 2 Jun 08 09:20 Site ID Sample Type - Horizon No Yes
Names of Samplers	RepStat Sampling Depth
hobert Mikkers	0 - 5 cm
Kyon telena	Resampled Site No. Yes →
Samples Collected	
0 - 5 cm	Contamination Comments:
Horizon Sample A - horizon B - horizon Other: Type of Surface Material Minerai Soil Organic Soil Urban Wegetation Cover Agnicultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Univergetated Surface	None Possible Probable Definite Farming Housing Industry Logging Road Garbage Other Weather Sunny/Clear (E.g., Presence of waste rock, berms, pits, trenches or other mining activity) - 40 m South of house - 40 m South of house - 4 ree fall - minor fire cover.
Mineral Surface Form Blanket Dissected Fan Hummocky Inclined Pitted Level Raiged Steep Terrace Undulating Veneer	Overcast

Horizons

D Lithological discontinuity
Ma. Master horizons (Humus, A, B, C)
Suffix: Suffixes

M: Modifier (B1, B2, B3)


Horizon Boundary (HB)

S: Smooth W: Wavy

I Irregular

B. Broken

Soil Profile Diagram

Colour
Munsell colour or descriptive
colour using table 1

Redox
(RM)

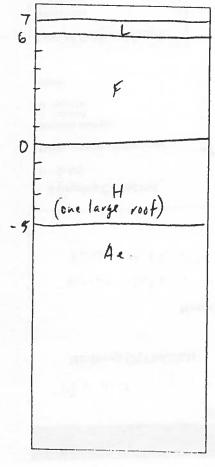
Redoximorphic Features (RM) Y: Visible

N: Not visible

Coarse Fragments (CF) Estimated value in %

Field Texture
Clay, Sandy Clay, Sandy Clay, Loam,
Sult, Sity Sand, Sitt Loam, Sulty Clay Loam,
Loam, Sandy Loam Loamy Sand
Sand Very Fine Sand Fine Sand, Medium,
Sand, Coarse Sand, Very Coarse Sand

Photo	ş
Pit with Samples	[V]
Looking North	☑
Looking East	
Looking South	ᄓ
Looking West	
Others	
4-24	
1	


Horizons # Ma Suffix	Depth HB Cole	our DM CF	Field Texture
2 F 3 H	+3 0 W 10 YR	2/1	org. org. silly long.
5 6 7		100 100 100	
B 9			

	Gold Mine District	Soil Sampling Field D	ata Sheet
Site Meatage	Mines	Date 2 Jun 08 09:	Time
Northing (20TNAD83)	Easting (20TNAD83)		ole Type - Horizon
Names of	Samplers	RepStat Resampled Site	Sampling Depth 0 - 5 cm
Samples Collected 0 - 5 cm Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other. Type of Surface Material Mineral Soil Organic Soil Non-Suil Urban	Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Unvegetated Surface	None Possible Probable Positive	Comments: (E.g., Presence of waste rock, berms, pits, trenches or other mining activity) - 5 m E of trail. - trac cover. - leafy regetation. - Bouldes, free fall in area.
Local Surface Expression Mineral Surface Form Blanket Dissected Fan UHummöcky Inclined Pitted Level Level Rolling Ridged Steep Terrace Undulating Veneer	Drainage Very rapidly drained	Sunny/Clear Partly cloudy Overcast Rain Sleet Snow Air Temp.	

D: Lithological discontinuity
Ma. Master horizons (Humus, A. B. C)
Suffix: Suffixes
M: Modifier (B1, B2, B3)

S Smooth	Boundary (HB)
W Wavy I Irregular B Broken	

Soil Profile Diagram

Codes for Horizon Description

Colour

Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM) Y: Visible

N: Not visible

Coarse Fragments (CF) Estimated value in %

Field Texture

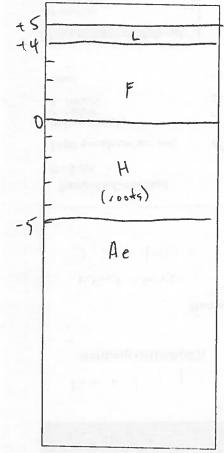
Clay, Sandy Clay Sandy Clay Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

Photos				
Pit with Samples				
Looking North				
Looking East				
Looking South				
Looking West				
Others				

Horizons # Ma S	uffix	Depth Up Low	НВ	Colour	BM	CF %	Field Texture
1		+7 +6	W			0	org
2 F		+6 0	W			0	019
3 H		0 -5	W	18 YR 2/1		D	1. 1
4 Ae		1-5	_ 13	10 YR 7/2		30	silly brig
5						70	
5			!		La Travel I		
	4				ides in the		
3	-						
			l e				
	<u> </u>						
				* Practice			

	Gold Mine District	Soil Sampling Field Data	Sheet
Northing (20TNAD83)	Easting (20TNAD83)	Date 20 May 08 / 6 : 0 9 Site ID Sample Ty	Time ype - Horizon Yes
Names of Kubich Hills.	of Samplers	RepStat + Duplicate (MM - 55) Resampled Site No Yes -	Sampling Depth 0 - 5 cm
Samples Collected 0 - 5 cm Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other. Type of Surface Material Mineral Soil Organic Soil Non-Soil Urban	Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Unvegetated Surface	None Possible Probable Definite Farming Housing Industry Logging Mirring Road Garbage Other Weather	mments: g. Presence of waste rock, berms, pits, trenches or her mining activity) Moderate slope down to J. Om E of tailings ree-fall. orest were.
Local Surface Expression Mineral Surface Form Blanket Dissected Fan Hummocky Inclined Pitted Level Rolling Ridged Steep Terrace Undulating Vencer	Drainage Very rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained	Sunny/Clear Partly cloudy Overcast Rain Sleet Snow Air Temp. 1 2 °C	A

D: Lithological discontinuity


Ma: Master horizons (Humus, A, B, C) Suffix: Suffixes M: Modifier (B1, B2, B3)

Horizon Boundary (HB)

S: Smooth W: Wavy I: Irregular

B: Broken

Soil Profile Diagram

Codes for Horizon Description

Colour

Munselt colour or descriptive colour using table 1

Redoximorphic Features (RM)

Y: Visible

N: Not visible

Coarse Fragments (CF) Estimated value in %

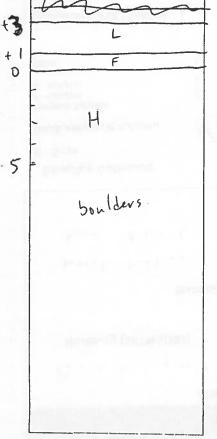
Field Texture

Clay Sandy Clay Sandy Clay Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

<u>Photos</u>				
Pit with Samples	g			
Looking North	Ø			
Looking East				
Looking South				
Looking West				
Others				

# 20	Horizons Ma Suffix 🌙	Depth HB	Colour	DM CF	Field Texture
1 1	Julia			%	rexture
		- +5 +4 W		0	0.9,
2	F	+4 0 W		0	0,9
3	H	0 -5 5	104R 2/2		silt/org.
4	Ae	-5		0	,, ' J
5	-		10 YR 6/1	5	silty clay.
6	3			2.1	
7	-			w 100+ PC	
114				es Diec i Line men	
8	94.5				
9			-		
0		6mm (1	!	1,14,10	
		11 11 -			

	Gold Mine Distric	t Soil Sampling Field Data Sheet	
Site	Easting (20TNAD83)	Date Time 20 May 08 15:55 Site ID Sample Type - Horizon	
Names o	f Samplers	RepStat RepStat Sampling Depth 0 - 5 cm Resampled Site	
Samples Collected 0 - 5 cm Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other. Type of Surface Material Mineral Soil Organic Soil Non-Soil	Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Unvegetated Surface	Contamination None Possible Probable Definite Industry Logging Mining Road Garbage Other Coal fragments in H. lan Sunny/Clear Comments: (E.g Presence of waste rock berms, pits, tree other mining activity) - Sm. E. of trench waste veck pile - Houndant boulders, waste rock, tree fall Veather Sunny/Clear	-
Urban Local Surface Expression Mineral Surface Form Blanket Dissected Fan Hummorky Inclined Pitted Level Rolling Ridged Steep Terrace Undulating Vencer	Drainage Very rapidly drained	Sunny/Clear Partly cloudy Overcast Rain Sleet Snow Air Temp.	ge.


Horizons

-- D- Lithological discontinuity
Ma: Master horizons (Humus, A, B, C)
Suffix: Suffixes
M: Modifier (B1, B2, B3)

Horizon Boundary (HB)

Horizon Boundary (HB S: Smooth W: Wavy I: Irregular B: Broken

Soil Profile Diagram

Colour
Munsell colour or descriptive

colour using table 1

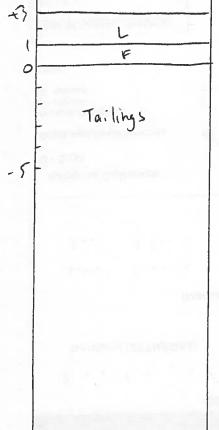
Redoximorphic Features (RM)

Y: Visible N: Not visible Coarse Fragments (CF)
Estimated value in %

Field Texture

Clay Sandy Clay Sandy Clay Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

Photos	<u>s</u>
Pit with Samples	
Looking North	
Looking East	
Looking South	P
Looking West	
Others	
general pro-	
of the sale	


	Horizo			Dep		HB	Colour	DM	CF	Field
# 1	Ma	Suffix	- Marie	Up	Low	4	* * * * * * * * * * * * * * * * * * *	-	%	Texture
1	_ L			+3	+1	W	1		Ó	org,
2	F		- 1	41	0	W		4	! 1	9
3	н	1		1			1040 01			0.9.
4	7.16			0 - :		W	104R 2/1	į.	30	sandlorg.
5	** **				- 1					
- 3	1		i i '	. 1				a Na Rea		
6	9) :r							do no		
7	:		1	:	: :			and the	i again ma	
8						-				
9	- 2 - 2		+ ; ;		-		0.4		*	
0		į-	- 1 1		- !!	1	gen and the second	4		
			10							
			•							

	Gold Mine District	Soil Sampling Field Data	Sheet
Site	Mines		lime .
Northing (20TNAD83)	Easting (20TNAD83)	Site ID Sample Typ	· · · · · · · · · · · · · · · · · · ·
Names of	f Samplers	RepStat	Sampling Depth
Futuret Nikking			0 - 5 cm
Kyon telerin		Resampled Site No Yes ◆	
Samples Collected 0 - 5 cm Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other. Type of Surface Material Mineral Soil Organic Soil Non-Soil Urban	Vegetation Cover Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Unvegetated Surface	None Possible Probable Definite Farming Housing Industry Dogging Mining Road Garbage Other Weather Carbage Car	nments: Presence of waste rock berms, pits, trenches or er mining activity) Octobrom is Gmong andant tree Call om E of shafts. en (no standing tree.s) aste. wock piles 5m
Mineral Surface Expression Mineral Surface Form Blanket Dissected Fan Understand Unde	Drainage Very rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained	Air Temp.	Andrews I was to

D. Lithological discontinuity
Ma. Master horizons (Hurrius, A. B. C)
Suffix: Suffixes
M: Modifier (B1, B2, B3)

Horizon Boundary (HB)
S Smooth
W Wavy
I Irregular
B. Broken

Soil Profile Diagram

Codes for Horizon Description

Colour Munsell colour or descriptive colour using table 1

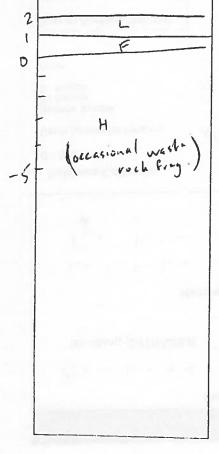
Redoximorphic Features (RM) Y: Visible N: Not visible

Coarse Fragments (CF)
Estimated value in %

Field Texture
Clay, Sandy Clay, Loam
Silt, Salty Sand, Silt Loam, Silty Clay Loam
Loam, Sandy Loam Loamy Sand
Sand, Very Fine Sand, Fine Sand, Medium
Sand, Coarse Sand, Very Coarse Sand

Photos	Ş
Pit with Samples	B
Looking North	
Looking East	
Looking South	
Looking West	
Others	
Adding the 1	
D GARAGE EARL	1 - 1 - 1

* -	Horizons Ma Suffix	Depth Up Low	НВ	Colour		CF	Field Texture
2	r .	+3 +1	ij	. - .	1	0	org.
3	Tailings	0		10 YR 3/2	* * * * * * * * * * * * * * * * * * *	0	org . sundy silt
5			-		i i		no in the company
6					in tues		
8	merita series		- 308	#C #44 #44 E	ionii lor iii	o-cast and	
9							


	Gold Mine District	Soil Sampling Field Data S	Sheet
Site	Mines	Date Tim 02 Jun 08 08:45	
Northing (20TNAD83)	Easting (20TNAD83)	Site ID Sample Type - No Yes	
Names o	of Samplers	RepStat	Sampling Depth
Libert Bakkers	2		0 - 5 cm
kyon tilian		Resampled Site No Yes →	
Samples Collected 0 - 5 cm Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other. I Type of Surface Material Mineral Scril Organic Scril Non-Suil Urban	Vegetation Cover Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Univegetated Surface	None Possible Probable Probable Definite Farming Housing Industry Logging Winning Road Garbage Other Weather	ments: resence of waste rock, berms, pits, trenches or sining activity) E of waste rock trench (fenced off) W of tree fall (cut). dant regetation (shrub) (no standing trees)
Local Surface Expression Mineral Surface Form Blanket Dissected Fan Hummocky Inclined Pitted Level Rohing Ridged Steep Terrace Undulating Vencer	Very rapidly drained Rapidly drained Well drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained	Sunny/Clear Partly cloudy Overcast Rain Sleet Snow	

	Gold Mine District	Soil Sampling Field Data S	Sheet
Site	Mines	Date Tim 02 Jun 08 08:45	
Northing (20TNAD83)	Easting (20TNAD83)	Site ID Sample Type - No Yes	
Names o	of Samplers	RepStat	Sampling Depth
Libert Bakkers	2		0 - 5 cm
kyon tilian		Resampled Site No Yes →	
Samples Collected 0 - 5 cm Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other. I Type of Surface Material Mineral Scril Organic Scril Non-Suil Urban	Vegetation Cover Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Univegetated Surface	None Possible Probable Probable Definite Farming Housing Industry Logging Winning Road Garbage Other Weather	ments: resence of waste rock, berms, pits, trenches or sining activity) E of waste rock trench (fenced off) W of tree fall (cut). dant regetation (shrub) (no standing trees)
Local Surface Expression Mineral Surface Form Blanket Dissected Fan Hummocky Inclined Pitted Level Rohing Ridged Steep Terrace Undulating Vencer	Very rapidly drained Rapidly drained Well drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained	Sunny/Clear Partly cloudy Overcast Rain Sleet Snow	

D. Lithological discontinuity Ma. Master horizons (Humus, A. B. C) Suffix: Suffixes M: Modifier (B1, B2, B3)

Horizon Boundary (HB) S Smooth W Wavy t Irregular B. Broken

Soil Profile Diagram

Codes for Horizon Description

Colour Munsell colour or descriptive

Redoximorphic Features (RM) colour using table 1 Y: Visible N. Not visible

Coarse Fragments (CF) Estimated value in %

> **Field Texture** Clay, Sandy Clay Sandy Clay, Loant Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

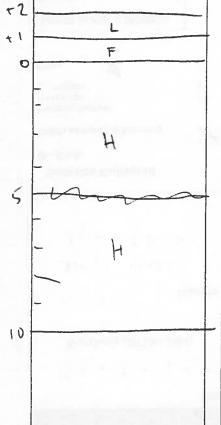
Photos Pit with Samples Looking North Looking East Looking South Looking West Others

الر #	Horizons Ma Suffix	Depth Up Low	НВ	Colour		F Field Texture
1	L	+2 +1	W	trian and a		0 019.
2	F	41 0	W	* * * * * * * * * * * * * * * * * * * *	:	0 019.
3	4	0	WI	0 YR 2/1		o silty
4			: -			0 - 7 - 102
5					. h	
,					in and by	
	Percent and Dayle		- Election		With the House	
	e e e i			3	3 3 4	
	-		** 11		A Complete	
	1 = 4			on en e	345 656	

	Gold Mine Distric	t Soil Sampling Field [Data Sheet
Site	Easting (20TNAD83)	Date 15 May 08 / 3 Site ID Sai	Time 2 5 :
Names o	f Samplers	RepStat	No Yes V
Ryon Pellerin		Resampled Site No Yes →	0 - 5 cm
Samples Collected 0 - 5 cm Depth sample (all horizons) Horizon Sample A - horizon B - honzon Other: Type of Surface Material Mineral Soil Organic Soil Non-Soil Urban Local Surface Expression Mineral Surface Form Blanket Dissected Fan Hummorky Inclined Pitted Level Rolling Ridged Steep Terrace Undulating	Vegetation Cover Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Unvegetated Surface Drainage Very rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained	Contamination None Possible Probable Definite Farming Housing Industry Logging Mining Aniung Other Weather Sunny/Clear Partly cloudy Overcast Rain Sleet Snow Air Temp. 1 2 °C	Comments: (E.g., Presence of waste rock, berms, pits, trenches or other mining activity) - Large boulders to E(5m) - Tree-fall surrounding - Washe rock 5m in all directions - Road 20m NE.

Horizons

O:-Lithological discontinuity
Ma: Master horizons (Humus, A, B, C)
Suffix: Suffixes


M: Modifier (B1, B2, B3)

Horizon Boundary (HB)

S Smooth W Wavy

I: irregular B. Broken

Soil Profile Diagram

Colour Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM) Y: Visible

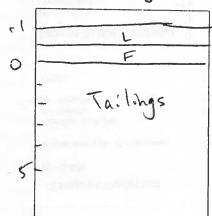
N: Not visible

Coarse Fragments (CF)
Estimated value in %

Field Texture

Clay, Sandy Clay, Sandy Clay Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

Photos	5
Pit with Samples	Y
Looking North	
Looking East	
Looking South	\square
Looking West	
Others	


Horizons Ma Suffix	Depth Up Low	HB Colour	CF %	Field Texture
	+2 +1		0	0/9
F	+1 0	W	0	011.
H		10YR 3/2	- 1	silt
			100 - 500 P.	N
tomatical accept				
*		EXIII P. F. Vere		

	Gold Mine District	Soil Sampling Field	Data Sheet
Site V v n + n g n e Northing (20TNAD83)	Easting (20TNAD83)	Date 15 May 08 14	Time
		mm-39	No Yes
Names of	Samplers	RepStat	Sampling Depth
Robert Bekkers		- 1 1	0 - 5 - cm
Kyan Fillerin		No Yes →	
Samples Collected			
0 - 5 cm	a de suma se	Contamination	Comments:
Depth sample (all horizons)	Vegetation Cover	None	(E.g., Presence of waste rock, berms, pits, trenches or other mining activity)
Horizon Sample A - horizon B - horizon Other: Type of Surface Material Mineral Soil Organic Soil Non-Suil Urban	Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Unvegetated Surface	Probable Definite Farming Housing Industry Logging Mining Road Garbage Other Weather	- 7m & of washe rock pile - 10m & of road. - 10m S of waterway. - In tailings (washe rock
Urban			fill area.
Local Surface Expression Mineral Surface Form Blanket Dissected	Drainage Very rapidly drained □ Rapidly drained □ Well drained □	Sunny/Clear Partly cloudy Overcast Rain Sleet Snow	- Dense tree cover.
Blanket Dissected Fan Hummocky Inclined Pitted Level Rolling Ridged Steep Terrace Undulating Veneer	Very rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained	Air Temp.	
Steep Terrace Undulating Veneer			

D: Lithological discontinuity
Ma. Master horizons (Humus, A. B. C)
Suffix: Suffixes
M: Modifier (B1, B2, B3)

Horizon Boundary (HB)
S Smooth
W Wavy
I Irregular
B Broken

Soil Profile Diagram

Codes for Horizon Description

Colour

Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM)

Y: Visible N: Not visible

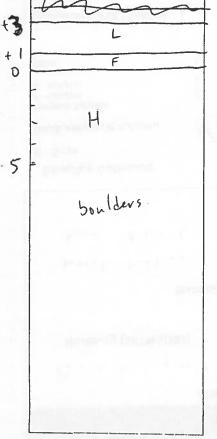
Coarse Fragments (CF) Estimated value in %

Field Texture

Clay, Sandy Clay, Sandy Clay, Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

Photos	5
Pit with Samples	\Box
Looking North	
Looking East	
Looking South	
Looking West	
Others	
	77

# #	Horizons Ma Suffi	x M	Depth Up Low	НВ	Colour	DM	CF %	Field Texture
2	L		+1 +0.5	_W			0	019.
11 11		- -	t0.5 0	_W,	W- V - p		0	019
3	Tailing s.		0	W	10YR 4/2		25	sandy silt
4				_ 11.		*		with gravel
5								<i>J</i>
6				i- lih		8) 407 2)		
7	(4.8)	1			-	-		
8				·- 8 887 g	5 5 507			
9	the good of	7 1			* * * * * * * * * * * * * * * * * * * *			
10						a distribution	580.	
			I					


Horizons

-- D- Lithological discontinuity
Ma: Master horizons (Humus, A, B, C)
Suffix: Suffixes
M: Modifier (B1, B2, B3)

Horizon Boundary (HB)

Horizon Boundary (HB S: Smooth W: Wavy I: Irregular B: Broken

Soil Profile Diagram

Colour
Munsell colour or descriptive

colour using table 1

Redoximorphic Features (RM)

Y: Visible N: Not visible Coarse Fragments (CF)
Estimated value in %

Field Texture

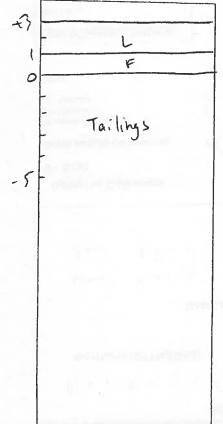
Clay Sandy Clay Sandy Clay Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

Photos	<u>s</u>
Pit with Samples	
Looking North	
Looking East	
Looking South	P
Looking West	
Others	
general pro-	
of the sale	

	Horizo			Dep		HB	Colour	DM	CF	Field
# 1	Ma	Suffix	- Marie	Up	Low	4	* * * * * * * * * * * * * * * * * * *	-	%	Texture
1	_ L			+3	+1	W	1		Ó	org,
2	F		- 1	41	0	W		4	! 1	9
3	н	1		1			1040 01			0.9.
4	7.16			0 - :		W	104R 2/1	į.	30	sandlorg.
5	** **				- 1					
- 3	1		i i	. 1				a Na Rea		
6	9) :r							do no		
7	:		1	:	: :			and the	i again ma	
8						-				
9	- 2 - 2		+ ; ;		-		0.4		*	
0		į-	- 1 1		- !!	1	gen and the second	4		
			10							
			•							

	Gold Mine District	Soil Sampling Field Data	Sheet
Site	Mines		lime .
Northing (20TNAD83)	Easting (20TNAD83)	Site ID Sample Typ	· · · · · · · · · · · · · · · · · · ·
Names of	f Samplers	RepStat	Sampling Depth
Futuret Nikking			0 - 5 cm
kyen telerin		Resampled Site No Yes ◆	
Samples Collected 0 - 5 cm Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other. Type of Surface Material Mineral Soil Organic Soil Non-Soil Urban	Vegetation Cover Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Unvegetated Surface	None Possible Probable Definite Farming Housing Industry Dogging Mining Road Garbage Other Weather Carbage Car	nments: Presence of waste rock berms, pits, trenches or er mining activity) Octobrom is Gmong andant tree Call om E of shafts. en (no standing tree.s) aste. wock piles 5m
Mineral Surface Expression Mineral Surface Form Blanket Dissected Fan Understand Unde	Drainage Very rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained	Air Temp.	Andrews I was to

D: Luthological-discontinuity


Ma. Master horizons (Humus, A. B. C)

Suffix: Suffixes

M: Modifier (B1, B2, B3)

Horizon S Smooth	Boundary (HB)
S Smooth W Wavy	
I Irregular	
B. Broken	

Soil Profile Diagram

Codes for Horizon Description

Colour Munsell colour or

Munsell colour or descriptive colour using table 1

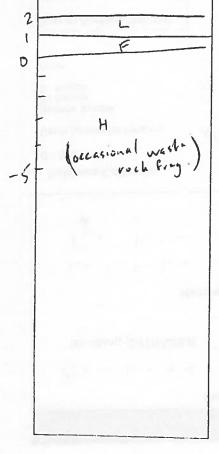
Redoximorphic Features (RM) Y: Visible N: Not visible

Coarse Fragments (CF)
Estimated value in %

Field Texture Clay Sandy Clay Sandy Clay Loam Silt. Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam Loamy Sand Sand, Very Fine Sand Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

	Photo:	ş
	Pit with Samples	G
	Looking North	
	Looking East	
	Looking South	
	Looking West	
l	Others	
	Looking South	

* -	Horizons Ma Suffix	Depth Up Low	НВ	Colour		CF	Field Texture
2	r .	+3 +1	ij	. - .	1	0	org.
3	Tailings	0		10 YR 3/2	* * * * * * * * * * * * * * * * * * *	0	org . sundy silt
5			-		i i		no in the company
6					in tues		
8	merita series		- 308	#C #44 #44 E	ionii lor iii	o-cast and	
9							


	Gold Mine District	Soil Sampling Field Data S	Sheet
Site	Mines	Date Tim 02 Jun 08 08:45	
Northing (20TNAD83)	Easting (20TNAD83)	Site ID Sample Type - No Yes	
Names o	of Samplers	RepStat	Sampling Depth
Libert Bakkers	2		0 - 5 cm
kyon tilian		Resampled Site No Yes →	
Samples Collected 0 - 5 cm Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other. I Type of Surface Material Mineral Scril Organic Scril Non-Suil Urban	Vegetation Cover Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Univegetated Surface	None Possible Probable Probable Definite Farming Housing Industry Logging Winning Road Garbage Other Weather	ments: resence of waste rock, berms, pits, trenches or sining activity) E of waste rock trench (fenced off) W of tree fall (cut). dant regetation (shrub) (no standing trees)
Local Surface Expression Mineral Surface Form Blanket Dissected Fan Hummocky Inclined Pitted Level Rohing Ridged Steep Terrace Undulating Vencer	Very rapidly drained Rapidly drained Well drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained	Sunny/Clear Partly cloudy Overcast Rain Sleet Snow	

	Gold Mine District	Soil Sampling Field Data S	Sheet
Site	Mines	Date Tim 02 Jun 08 08:45	
Northing (20TNAD83)	Easting (20TNAD83)	Site ID Sample Type - No Yes	
Names o	of Samplers	RepStat	Sampling Depth
Libert Bakkers	2		0 - 5 cm
kyon tilian		Resampled Site No Yes →	
Samples Collected 0 - 5 cm Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other. I Type of Surface Material Mineral Scril Organic Scril Non-Suil Urban	Vegetation Cover Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Univegetated Surface	None Possible Probable Probable Definite Farming Housing Industry Logging Winning Road Garbage Other Weather	ments: resence of waste rock, berms, pits, trenches or sining activity) E of waste rock trench (fenced off) W of tree fall (cut). dant regetation (shrub) (no standing trees)
Local Surface Expression Mineral Surface Form Blanket Dissected Fan Hummocky Inclined Pitted Level Rohing Ridged Steep Terrace Undulating Vencer	Very rapidly drained Rapidly drained Well drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained	Sunny/Clear Partly cloudy Overcast Rain Sleet Snow	

D. Lithological discontinuity Ma. Master horizons (Humus, A. B. C) Suffix: Suffixes M: Modifier (B1, B2, B3)

Horizon Boundary (HB) S Smooth W Wavy t Irregular B. Broken

Soil Profile Diagram

Codes for Horizon Description

Colour Munsell colour or descriptive

Redoximorphic Features (RM) colour using table 1 Y: Visible N. Not visible

Coarse Fragments (CF) Estimated value in %

> **Field Texture** Clay, Sandy Clay Sandy Clay, Loant Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

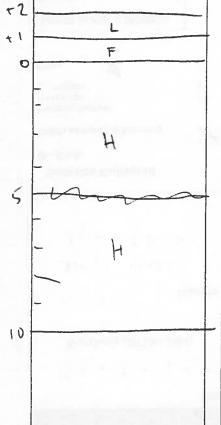
Photos Pit with Samples Looking North Looking East Looking South Looking West Others

الر #	Horizons Ma Suffix	Depth Up Low	НВ	Colour		F Field Texture
1	L	+2 +1	W	trian and a		0 019.
2	F	41 0	W	* * * * * * * * * * * * * * * * * * * *	:	0 019.
3	4	0	WI	0 YR 2/1		o silty
4			: -			0 - 7 - 102
5					. h	
,					in and by	
	Percent and Dushe		- Election		With the House	
	a e a T			3	3 3 4	
	-		** 11		A Complete	
	1 = 4			on en e	345 656	

	Gold Mine Distric	t Soil Sampling Field [Data Sheet
Site	Easting (20TNAD83)	Date 15 May 08 / 3 Site ID Sai	Time 2 5 :
Names o	f Samplers	RepStat	No Yes V
Ryon Pellerin		Resampled Site No Yes →	0 - 5 cm
Samples Collected 0 - 5 cm Depth sample (all horizons) Horizon Sample A - horizon B - honzon Other: Type of Surface Material Mineral Soil Organic Soil Non-Soil Urban Local Surface Expression Mineral Surface Form Blanket Dissected Fan Hummorky Inclined Pitted Level Rolling Ridged Steep Terrace Undulating	Vegetation Cover Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Unvegetated Surface Drainage Very rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained	Contamination None Possible Probable Definite Farming Housing Industry Logging Mining Aniung Other Weather Sunny/Clear Partly cloudy Overcast Rain Sleet Snow Air Temp. 1 2 °C	Comments: (E.g., Presence of waste rock, berms, pits, trenches or other mining activity) - Large boulders to E(5m) - Tree-fall surrounding - Washe rock 5m in all directions - Road 20m NE.

Horizons

O:-Lithological discontinuity
Ma: Master horizons (Humus, A, B, C)
Suffix: Suffixes


M: Modifier (B1, B2, B3)

Horizon Boundary (HB)

S Smooth W Wavy

I: irregular B. Broken

Soil Profile Diagram

Colour Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM) Y: Visible

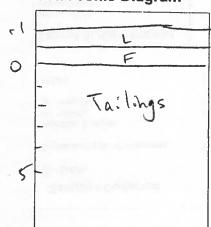
N: Not visible

Coarse Fragments (CF)
Estimated value in %

Field Texture

Clay, Sandy Clay, Sandy Clay Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

Photos	5
Pit with Samples	Y
Looking North	
Looking East	
Looking South	\square
Looking West	
Others	


Horizons Ma Suffix	Depth Up Low	HB Colour	CF %	Field Texture
	+2 +1		0	0/9
F	+1 0	W	0	011.
H		10YR 3/2	- 1	silt
			100 - 500 P.	N
tomatical accept				
*		EXIII P. F. Vere		

	Gold Mine District	Soil Sampling Field	Data Sheet
Site V v n + n g n e Northing (20TNAD83)	Easting (20TNAD83)	Date 15 May 08 14	Time
		mm-39	No Yes
Names of	Samplers	RepStat	Sampling Depth
Robert Bekkers		- 1 1	0 - 5 - cm
Kyan Fillerin		No Yes →	
Samples Collected			
0 - 5 cm	a de suma se	Contamination	Comments:
Depth sample (all horizons)	Vegetation Cover	None	(E.g., Presence of waste rock, berms, pits, trenches or other mining activity)
Horizon Sample A - horizon B - horizon Other: Type of Surface Material Mineral Soil Organic Soil Non-Suil Urban	Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Unvegetated Surface	Probable Definite Farming Housing Industry Logging Mining Road Garbage Other Weather	- 7m & of washe rock pile - 10m & of road. - 10m S of waterway. - In tailings (washe rock
Urban			fill area.
Local Surface Expression Mineral Surface Form Blanket Dissected	Drainage Very rapidly drained □ Rapidly drained □ Well drained □	Sunny/Clear Partly cloudy Overcast Rain Sleet Snow	- Dense tree cover.
Blanket Dissected Fan Hummocky Inclined Pitted Level Rolling Ridged Steep Terrace Undulating Veneer	Very rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained	Air Temp.	
Steep Terrace Undulating Veneer			

D: Lithological discontinuity
Ma. Master horizons (Humus, A. B. C)
Suffix: Suffixes
M: Modifier (B1, B2, B3)

Horizon Boundary (HB)
S Smooth
W Wavy
I Irregular
B Broken

Soil Profile Diagram

Codes for Horizon Description

Colour

Munsell colour or descriptive colour using table 1

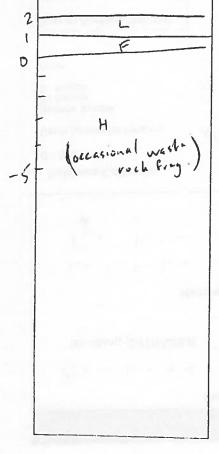
Redoximorphic Features (RM)

Y: Visible N: Not visible

Coarse Fragments (CF) Estimated value in %

Field Texture

Clay, Sandy Clay, Sandy Clay, Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand


Photos	5
Pit with Samples	\bigcirc
Looking North	
Looking East	
Looking South	Image: Control of the
Looking West	
Others	
AL INC. IN	

#	Horizons Ma Suffix	No.	Depth Up Low	НВ	Colour	BM	CF	Field Texture
1	L xx 2		1 10.5	_W			0	019.
2	F	+0	.5. 0	W		:	0	019
3	Tailings.)	W	10YR 4/2		25	sandy silt
4	0						-5	with gravel
5					*(i) · · · · · · · · · · · · · · · · · · ·			
6				i		8 477		
7		1:						
8				·- + 887 i 9.				
9		1-1				-1		
10			!!!	- 1:	911 914 14		380	
	_		1			TEST FOL		

D. Lithological discontinuity Ma. Master horizons (Humus, A. B. C) Suffix: Suffixes M: Modifier (B1, B2, B3)

Horizon Boundary (HB) S Smooth W Wavy t Irregular B. Broken

Soil Profile Diagram

Codes for Horizon Description

Colour Munsell colour or descriptive

Redoximorphic Features (RM) colour using table 1 Y: Visible N. Not visible

Coarse Fragments (CF) Estimated value in %

> **Field Texture** Clay, Sandy Clay Sandy Clay, Loant Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

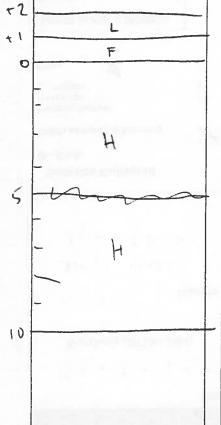
Photos Pit with Samples Looking North Looking East Looking South Looking West Others

الر #	Horizons Ma Suffix	Depth Up Low	НВ	Colour		F Field Texture
1	L	+2 +1	W	trian and a		0 019.
2	F	41 0	W	* * * * * * * * * * * * * * * * * * * *	:	0 019.
3	4	0	WI	0 YR 2/1		o silty
4			: -			0 - 7 - 102
5					. h	
,					in and by	
	Percent and Dushe		- Election		With the House	
	a e a T			3	3 3 4	
	-		** 11		A Complete	
	1 = 4			on en e	345 656	

	Gold Mine Distric	t Soil Sampling Field [Data Sheet
Site	Easting (20TNAD83)	Date 15 May 08 / 3 Site ID Sai	Time 2 5 :
Names o	f Samplers	RepStat	No Yes V
Ryon Pellerin		Resampled Site No Yes →	0 - 5 cm
Samples Collected 0 - 5 cm Depth sample (all horizons) Horizon Sample A - horizon B - honzon Other: Type of Surface Material Mineral Soil Organic Soil Non-Soil Urban Local Surface Expression Mineral Surface Form Blanket Dissected Fan Hummorky Inclined Pitted Level Rolling Ridged Steep Terrace Undulating	Vegetation Cover Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Unvegetated Surface Drainage Very rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained	Contamination None Possible Probable Definite Farming Housing Industry Logging Mining Aniung Other Weather Sunny/Clear Partly cloudy Overcast Rain Sleet Snow Air Temp. 1 2 °C	Comments: (E.g., Presence of waste rock, berms, pits, trenches or other mining activity) - Large boulders to E(5m) - Tree-fall surrounding - Washe rock 5m in all directions - Road 20m NE.

Horizons

O:-Lithological discontinuity
Ma: Master horizons (Humus, A, B, C)
Suffix: Suffixes


M: Modifier (B1, B2, B3)

Horizon Boundary (HB)

S Smooth W Wavy

I: irregular B. Broken

Soil Profile Diagram

Colour Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM) Y: Visible

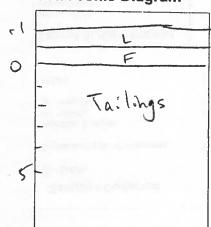
N: Not visible

Coarse Fragments (CF)
Estimated value in %

Field Texture

Clay, Sandy Clay, Sandy Clay Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

Photos	5
Pit with Samples	Y
Looking North	
Looking East	
Looking South	\square
Looking West	
Others	


Horizons Ma Suffix	Depth Up Low	HB Colour	CF %	Field Texture
	+2 +1		0	0/9
F	+1 0	W	0	011.
H		10YR 3/2	- 1	silt
			100 - 500 P.	N
tomatical accept				
*		EXIII P. F. Vere		

	Gold Mine District	Soil Sampling Field	Data Sheet
Site V v n + n g n e Northing (20TNAD83)	Easting (20TNAD83)	Date 15 May 08 14	Time
		mm-39	No Yes
Names of	Samplers	RepStat	Sampling Depth
Robert Bekkers		- 1 1	0 - 5 - cm
Kyan Fillerin		No Yes →	
Samples Collected			
0 - 5 cm	a de suma se	Contamination	Comments:
Depth sample (all horizons)	Vegetation Cover	None	(E.g., Presence of waste rock, berms, pits, trenches or other mining activity)
Horizon Sample A - horizon B - horizon Other: Type of Surface Material Mineral Soil Organic Soil Non-Suil Urban	Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Unvegetated Surface	Probable Definite Farming Housing Industry Logging Mining Road Garbage Other Weather	- 7m & of washe rock pile - 10m & of road. - 10m S of waterway. - In tailings (washe rock
Urban			fill area.
Local Surface Expression Mineral Surface Form Blanket Dissected	Drainage Very rapidly drained □ Rapidly drained □ Well drained □	Sunny/Clear Partly cloudy Overcast Rain Sleet Snow	- Dense tree cover.
Blanket Dissected Fan Hummocky Inclined Pitted Level Rolling Ridged Steep Terrace Undulating Veneer	Very rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained	Air Temp.	
Steep Terrace Undulating Veneer			

D: Lithological discontinuity
Ma. Master horizons (Humus, A. B. C)
Suffix: Suffixes
M: Modifier (B1, B2, B3)

Horizon Boundary (HB)
S Smooth
W Wavy
I Irregular
B Broken

Soil Profile Diagram

Codes for Horizon Description

Colour

Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM)

Y: Visible N: Not visible

Coarse Fragments (CF) Estimated value in %

Field Texture

Clay, Sandy Clay, Sandy Clay, Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

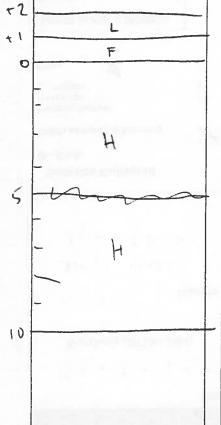
Photos	5
Pit with Samples	\bigcirc
Looking North	
Looking East	
Looking South	Image: Control of the
Looking West	
Others	
AL INC. IN	

#	Horizons Ma Suffix	No.	Depth Up Low	НВ	Colour	BM	CF	Field Texture
1	L xx 2		1 10.5	_W			0	019.
2	F	+0	.5. 0	W		:	0	019
3	Tailings.)	W	10YR 4/2		25	sandy silt
4	0						-5	with gravel
5					*(i) · · · · · · · · · · · · · · · · · · ·			
6				i		8 477		
7		1:						
8				·- + 887 i 9.	5 5 5 N T			
9		1-1				-1		
10			!!!	- 1:	911 914 14		380	
	_		1			TEST FOL		

	Gold Mine Distric	t Soil Sampling Field [Data Sheet
Site	Easting (20TNAD83)	Date 15 May 08 / 3 Site ID Sai	Time 2 5 :
Names o	f Samplers	RepStat	No Yes V
Ryon Pellerin		Resampled Site No Yes →	0 - 5 cm
Samples Collected 0 - 5 cm Depth sample (all horizons) Horizon Sample A - horizon B - honzon Other: Type of Surface Material Mineral Soil Organic Soil Non-Soil Urban Local Surface Expression Mineral Surface Form Blanket Dissected Fan Hummorky Inclined Pitted Level Rolling Ridged Steep Terrace Undulating	Vegetation Cover Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Unvegetated Surface Drainage Very rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained	Contamination None Possible Probable Definite Farming Housing Industry Logging Mining Aniung Other Weather Sunny/Clear Partly cloudy Overcast Rain Sleet Snow Air Temp. 1 2 °C	Comments: (E.g., Presence of waste rock, berms, pits, trenches or other mining activity) - Large boulders to E(5m) - Tree-fall surrounding - Washe rock 5m in all directions - Road 20m NE.

Horizons

O:-Lithological discontinuity
Ma: Master horizons (Humus, A, B, C)
Suffix: Suffixes


M: Modifier (B1, B2, B3)

Horizon Boundary (HB)

S Smooth W Wavy

I: irregular B. Broken

Soil Profile Diagram

Colour Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM) Y: Visible

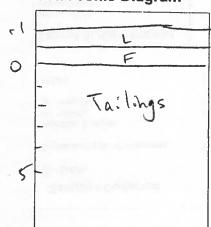
N: Not visible

Coarse Fragments (CF)
Estimated value in %

Field Texture

Clay, Sandy Clay, Sandy Clay Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

Photos	5
Pit with Samples	Y
Looking North	
Looking East	
Looking South	\square
Looking West	
Others	


Horizons Ma Suffix	Depth Up Low	HB Colour	CF %	Field Texture
	+2 +1		0	0/9
F	+1 0	W	0	011.
H		10YR 3/2	- 1	silt
			100 - 100 P.	N
tomatical accept				
*		EXIII P. F. Vere		

	Gold Mine District	Soil Sampling Field	Data Sheet
Site V v n + n g n e Northing (20TNAD83)	Easting (20TNAD83)	Date 15 May 08 14	Time
		mm-39	No Yes
Names of	Samplers	RepStat	Sampling Depth
Robert Bekkers		- 1 1	0 - 5 - cm
Kyan Fillerin		No Yes →	
Samples Collected			
0 - 5 cm	a de suma se	Contamination	Comments:
Depth sample (all horizons)	Vegetation Cover	None	(E.g., Presence of waste rock, berms, pits, trenches or other mining activity)
Horizon Sample A - horizon B - horizon Other: Type of Surface Material Mineral Soil Organic Soil Non-Suil Urban	Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Unvegetated Surface	Probable Definite Farming Housing Industry Logging Mining Road Garbage Other Weather	- 7m & of washe rock pile - 10m & of road. - 10m S of waterway. - In tailings (washe rock
Urban			fill area.
Local Surface Expression Mineral Surface Form Blanket Dissected	Drainage Very rapidly drained □ Rapidly drained □ Well drained □	Sunny/Clear Partly cloudy Overcast Rain Sleet Snow	- Dense tree cover.
Blanket Dissected Fan Hummocky Inclined Pitted Level Rolling Ridged Steep Terrace Undulating Veneer	Very rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained	Air Temp.	
Steep Terrace Undulating Veneer			

D: Lithological discontinuity
Ma. Master horizons (Humus, A. B. C)
Suffix: Suffixes
M: Modifier (B1, B2, B3)

Horizon Boundary (HB)
S Smooth
W Wavy
I Irregular
B Broken

Soil Profile Diagram

Codes for Horizon Description

Colour

Munsell colour or descriptive colour using table 1

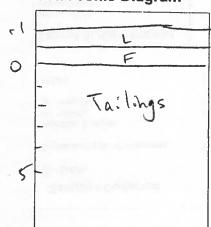
Redoximorphic Features (RM)

Y: Visible N: Not visible

Coarse Fragments (CF) Estimated value in %

Field Texture

Clay, Sandy Clay, Sandy Clay, Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand


Photos	5
Pit with Samples	\bigcirc
Looking North	
Looking East	
Looking South	Image: Control of the
Looking West	
Others	
AL INC. IN	

#	Horizons Ma Suffix	No.	Depth Up Low	НВ	Colour	BM	CF	Field Texture
1	L xx 2		1 10.5	_W			0	019.
2	F	+0	.5. 0	W		:	0	019
3	Tailings.)	W	10YR 4/2		25	sandy silt
4	0						-5	with gravel
5					*(i) · · · · · · · · · · · · · · · · · · ·			
6				i		8 477		
7		1:						
8				·- + 887 i 9.	5 5 5 N T			
9		1-1				-1		
10			!!!	- 1:	911 914 14		380	
	_		1			TEST FOL		

D: Lithological discontinuity
Ma. Master horizons (Humus, A. B. C)
Suffix: Suffixes
M: Modifier (B1, B2, B3)

Horizon Boundary (HB)
S Smooth
W Wavy
I Irregular
B Broken

Soil Profile Diagram

Codes for Horizon Description

Colour

Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM)

Y: Visible N: Not visible

Coarse Fragments (CF) Estimated value in %

Field Texture

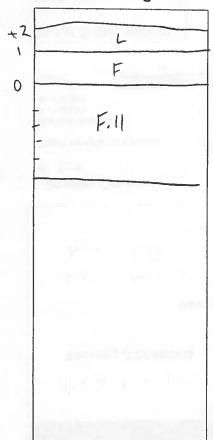
Clay, Sandy Clay, Sandy Clay, Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

Photos	5
Pit with Samples	\bigcirc
Looking North	
Looking East	
Looking South	Image: Control of the
Looking West	
Others	
AL INC. IN	

#	Horizons Ma Suffix	No.	Depth Up Low	НВ	Colour	BM	CF	Field Texture
1	L xx 2		1 10.5	_W			0	019.
2	F	+0	.5. 0	W		:	0	019
3	Tailings.)	W	10YR 4/2		25	sandy silt
4	0						-5	with gravel
5					*(i) · · · · · · · · · · · · · · · · · · ·			
6				i		8 477		
7		1:						
8				·- + 887 i 9.	5 5 5 N T			
9		1-1				-1		
10			!!!	- 1:	911 914 14		380	
	_		1			TEST FOL		

ther: Conferous Forest Deciduous Forest Deci	Si	te		Date	Time	
Names of Samplers RepStat Sampling Depth 0 - 5 cm Resampled Site No Yes Contamination Resample (all horzons) Processor Prosable Pro	Muntagae	1 m	1 m c 3	15 May 08	14:40	•
Names of Samplers RepStat Sampling Depth 0 - 5 cm Resampled Site No Yes Resampled Site No Yes Contamination Comments: (E.g., Presence of waste rock, berms, pits, tren of monitor mining activity) Portion Sample Prosable Pros	Northing (20TNAD83)		Easting (20TNAD83)	/ Site ID	Sample Type - Horiz	on
Names of Samplers RepStat O - 5 cm Resampled Site No! Yes Resampled Site No! Yes Resampled Site No! Yes Contamination Comments: (E.g., Presence of waste rock, berms, pits, fren other mining activity) - 3 m from vock wall french other mining activity) - 3 m from vock wall freid parking left to m NW Resampled Site No! Yes Contamination Comments: (E.g., Presence of waste rock, berms, pits, fren other mining activity) - 3 m from vock wall freid parking left to m NW RepStat Contamination Comments: (E.g., Presence of waste rock, berms, pits, fren other mining activity) - 3 m from vock wall freid parking left to m NW No Yes Contamination Comments: (E.g., Presence of waste rock, berms, pits, fren other mining activity) - 3 m from vock wall freid parking left to m NW - 4 cal Surface Material No S of 2 h - 5 cm Comments: (E.g., Presence of waste rock, berms, pits, fren other mining activity) - 3 m from vock wall freid parking left to m NW - 5 cm Contamination (E.g., Presence of waste rock, berms, pits, fren other mining activity) - 3 m from vock wall freid parking left to m NW - 5 cm Contamination (E.g., Presence of waste rock, berms, pits, fren other mining activity) - 3 m from vock wall freid parking left to m NW - 5 cm Contamination (E.g., Presence of waste rock, berms, pits, fren other mining activity) - 3 m from vock wall freid parking left to mining activity) - 4 cm Contamination (E.g., Presence of waste rock, berms, pits, fren other mining activity) - 3 m from vock wall freid parking left to mining activity - 4 cm Contamination (E.g., Presence of waste rock, berms, pits, fren other mining activity) - 3 m from vock wall freid parking left to mining activity) - 4 cm Contamination (E.g., Presence of waste rock, berms, pits, fren other mining activity) - 3 m from vock wall freid parking left to mining activity - 4 cm Contamination (E.g., Presence of waste rock, berms, pits, fren other mining activity) - 4 cm Contamination (E.g., Presence of waste rock,				MM-40		
Resampled Site No Yes No Yes Contamination Comments: (E.g., Presence of waste rock, berms, pits, tren other mining activity) Probable - Probable - Online - Sunny/Clear Partly cloudy Partland Shrubland Drainage Partles of Show Par	Name	s of Sam	plers	RepStat		Sampling Depth
Samples Collected -5 cm epth sample (all horzons) orizon Sample -horzon -hor	Robert Bekkers		i			0 - 5 cm
- 5 cm epth sample (all honzons) orizon Sample - horizon - horiz	Ryon Pellonia			- 1 1 1- 1- 1	pled Site	
Possible Probable	Samples Collected		d and the second			
Agricultural Crops Conferous Forest Deciduous Forest Mixed Forest Mixe		/ 4		ments also	A CONTRACTOR OF THE CONTRACTOR	
Agricultural Crops Conferous Forest Deciduous Forest Mixed Forest Mixe		W	Vegetation Cover	- Possible - Probable	other mining ac	
Shrubland Unvergetated Surface Sunny/Clear Sunny/C	- horizon		Agricultural Crops	Farming		m rock wall
Shrubland Unvergetated Surface Sunny/Clear Sunny/C		5	Deciduous Forest Mixed Forest	-Industry -Logging	当 - マ _ヘ	2 1 2 1
Shrubland Unvergetated Surface Sunny/Clear Sunny/C			Meadow, Wet	-Road		
Weather Sunny/Clear Sunny/C	pe of Surface Material		Shrubland	Other Filh	- Parking	lot 10m NW.
Sunny/Clear Partly cloudy Overcast Rain Sleet Sleet Snow Well drained Well drained Well drained Well drained Sunny/Clear Partly cloudy Overcast Snow Sheet Snow Sheet Snow Sunny/Clear Partly cloudy Overcast Snow Sheet Sheet Snow Sheet Sheet Snow Sheet Snow Sheet Snow Sheet Sheet Sheet Snow Sheet					- Steen	and the
Cal Surface Expression Drainage Very rapidly drained Rapidly drained Rapidly drained Well drained Well drained Well drained Well drained Rapidly drained Ra	n-Súil Dan			f	1	
very rapidity drained Rapidly drained Well drained Well drained				Partly cloudy Overcast	>m	
richal Surface Form Very rapidly drained Rapidly drained Sected Well drained Well drained	cal Surface Expression		<u>Drainage</u>	Rain Sleet	- Large	trees
sected Well drained 😭			Very rapidly drained	Snow]	
Imperfectly drained	sected		Well drained □			
ed	mniocky 📋		Imperfectly drained	Air Town	at present i	
ing (Z°C	ed 🔲		Very poorly drained	(2°C	1	

(Horizons


D: Lithological discontinuity
Ma. Master horizons (Humus, A. B. C)
Suffix: Suffixes
M: Modifier (B1, B2, B3)

Horizon Boundary (HB)

S Smooth W Wavy I Irregular

B. Broken

Soil Profile Diagram

Colour

Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM)

Y: Visible

N: Not visible

Coarse Fragments (CF) Estimated value in %

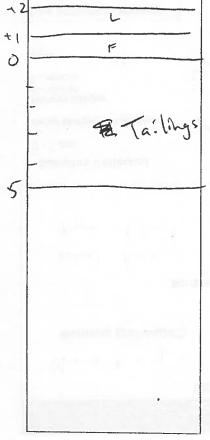
Field Texture

Clay, Sandy Clay Sandy Clay Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loany Sand Sand, Very Fine Sand Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

<u>Photos</u>							
Pit with Samples							
Looking North							
Looking East							
Looking South							
Looking West							
Others							
L. L.							

# #	Horizo Ma	ons Suffix		Depth Up Low	НВ	Colour	DM	CF %	Field Texture
1	- L		1 1	2 11	·S		1	0	019
2	F	-	- : -/		S		2-0-	0	org
3	Fill			0	- 3	7.5 YR 3/	3	10	silty sand
4			i: i	- 10-1	<u> i</u> l				0 9 6
5	-							w.	
6	1		1 11.		[]		10		ē
7					m.c. !;		united the se		
В			1						
9					1.			w.	
0		1			1.1		2		

	Gold Mine District	Soil Sampling Field Data S	heet
Muntagnel	Minels!	Date Time 15 May 08 14:30	
Northing (20TNAD83)	Easting (20TNAD83)	Site ID Sample Type -	/
Kohert Bekkers Kynn Pellern	f Samplers	RepStat Resampled Site	Sampling Depth 0 - 5 cm
Samples Collected. 0 - 5 cm Depth sample (all honzons) Horizon Sample A - horizon B - horizon Other: Type of Surface Material Mineral Soil Organic Soil Non-Soil Urban	Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Unvegetated Surface	Contamination None Possible Probable Probable Pefinite Farming Industry Logging Mining Road Garbage Other Weather	ments: esence of waste rock, berms, pits, trenches or ining activity) m N of shaft ings and wasta rock area E of path.
Local Surface Expression Mineral Surface Form Blanket Dissected Fan Hummocky Inclined Pitted Level Rolling Rolling Rolling Rolling Steep Terrace Undulating Veneer	Very rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained	Sunny/Clear Partly cloudy Overcast Rain Sleet Snow	


Horizons

D: Lithological discontinuity
Ma: Master horizons (Humus, A, B, C)
Suffix: Suffixes
M: Modifier (B1, B2, B3)

Horizon Boundary (HB)

S: Smooth W: Wavy I: Irregular B: Broken

Soil Profile Diagram

Colour

Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM)

Y: Visible
N: Not visible

Coarse Fragments (CF) Estimated value in %

Field Texture

Clay, Sandy Clay, Sandy Clay Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

Photos

Pit with Samples

Looking East

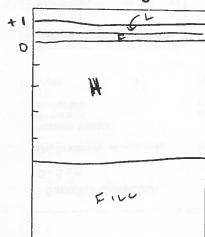
Looking North

Looking South

Looking West

Others

Horizons # Ma Suffix	Depth HB	Colour DM	CF %	Field Texture
1 L 2 F 3 Tailings	t2 t1 - W -	10 Ne 3/2	0	urg
5	0 W	_10.Y.R_3/2.	10	sand
6 7 8			i land	
9				


Gold Mine District Soil Sampling Field Data Sheet							
Montagael	Minels	Date Time 15 May 08 14:08 :					
Northing (20TNAD83)	Easting (20TNAD83)	Site ID Sample Type - Horizon M M - 4 2 No Yes					
Names o	f Samplers	RepStat Sampling Dep	pth				
Robert Behkers		0 - 5 cm					
Kyon Pellerin		Resampled Site No Yes →					
Samples Collected 0 - 5 cm Depth sample (all honzons) Horizon Sample A - horizon B - horizon Other: Type of Surface Material Mineral Soil Organic Soil Non-Soil Urban	Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Univegetated Surface	Housing Industry Logging Mining Road Garbage Other Concrete Weather Weather Weather	ed (
Local Surface Expression Mineral Surface Form Blanket Dissected Fan Hummocky Inclined Pitted Level Rolling Ridged Steep Terrace Undulating Veneer	Drainage Very rapidly drained	Partly cloudy Overcast Rain Sleet Snow Air Temp. 1 2 °C					

Horizons

D: Lithological discontinuity
Ma: Master horizons (Humus, A, B, C)
Suffix: Suffixes
M: Modifier (B1, B2, B3)

Horizon Boundary (HB)
S Smooth
W Wavy
I Irregular
B Broken

Soil Profile Diagram

Colour Munsell colour or descriptive colour using table 1 Redoximorphic Features (RM)

Y: Visible

N: Not visible

Coarse Fragments (CF) Estimated value in %

Field Texture

Clay, Sandy Clay, Sandy Clay Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

<u>Photos</u>						
Pit with Samples						
Looking North						
Looking East						
Looking South						
Looking West						
Others						
ALP IT						
10 TO P						

	Horizons	Depth	HB	Colour	DM	CF	Field
# #	Ma Suffix	Up Low				%	Texture
1	L	41 40.5	W			0	019.
2	F	t0.5 0	5				
3	H	0 -5	T	in 10 2/		0	11019.
4			- -	IOYR 2/1		٥	silty sou
5	Kill (waite)		- v .	3		80	gravel.
1/14					100	1	
6	·				e . 445 **		*
7							
8			# IV				
9			10		3 24		
0	i" i"		- 1		9		
	1						

	Gold Mine District	Soil Sampling Field	Data Sheet
Site Muntagarel Northing (20TNAD83)	Easting (20TNAD83)	Date 13 May 08 13	Time
Names of	f Samplers	RepStat	Sampling Depth
Robert Bekkers		111	0 - 5 cm
Kyon Fellerin		Resampled Site	
Samples Collected			
0 - 5 cm		Contamination	Comments:
Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other: Type of Surface Material Mineral Soil Organic Soil Non-Soil Urban	Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Unvegetated Surface	None Possible Probable Definite Farming Housing Industry Logging Mining Road Garbage Other Weather Sunny/Clear Partly cloudy	(E.g., Presence of waste rock, berms, pits, trenches or other mining activity) - Large Frans - 5 m S of road. - Stamp mill 10 m W. - Waste rock in
Local Surface Expression Mineral Surface Form Blanket	Drainage Very rapidly drained □ Rapidly drained □ Well drained □	Partly cloudy Overcast Rain Sleet Snow	
Blanket Dissected Fan Hummocky Inclined Pitted Level Rolling Ridged Steep Terrace Undulating Veneer	Very rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained	Air Temp.	Proposed pages
Ridged Steep Terrace Undulating Veneer		Madillary also Person Surrey For	SLAW (CF)

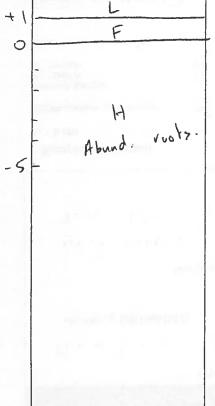
Horizons

D: Lithological-discontinuity

Ma: Master horizons (Humus, A, B, C)

Suffix: Suffixes

M: Modifier (B1, B2, B3)


Horizon Boundary (HB)

S: Smooth W: Wavy

I: Irregular

B. Broken

Soil Profile Diagram

Colour

Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM)

Y: Visible

N: Not visible

Coarse Fragments (CF) Estimated value in %

Field Texture

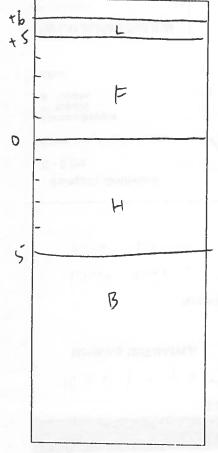
Clay, Sandy Clay, Sandy Clay Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

	Photo	S
1	Pit with Samples	
1	Looking North	
	Looking East	
	Looking South	
	Looking West	
	Others	
	-	
	ii - = = = = = = = = = = = = = = = = = =	

	Horizo	ons		De	pth	HB	Colour	BM	CF	Field
# 1	Ma	Suffix	M	Up	Low	Oley III. Mill		. 1	%	Texture
1	L.			+2	+1	W		1 .	0	D/g.
2	_ F.			4]	0	W			Ü	» 619.
3	Н.			0			101R 3/2		, O	silty sand
4	6									9
5			. 1							
6	1 - 1		(6)							
			. !					elen En		
3										
			0.0					1		
								1 .		

	Gold Mine Distric	t Soil Sampling Field	Data Sheet
Site V c n 4 7 1 e Northing (20TNAD83)	Mincls Easting (20TNAD83)	Date 15 May 08 13	Time : 5 2 :
			No Yes V
Names of	f Samplers	RepStat	Sampling Depth
Robert Behkers		1 1	0 - 5 cm
Kyon Fellown		Resampled Site No Yes →	
Samples Collected			
0 - 5 cm		Contamination	Comments:
Depth sample (all honzons)	Vegetation Cover	None Possible	(E.g., Presence of waste rock, berms, pits, trenches or other mining activity)
Horizon Sample A - horizon B - horizon Other: Type of Surface Material	Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland	Possible Probable Probable Posinite Farming Housing Industry Logging Mining Road Garbage Other	- 5m S of road. - 15m N of trench - tree fall in area.
Mineral Soil Organic Soil Non-Soil Urban	Unvegetated Surface	Weather Sunny/Clear	- scattered waste rock
Local Surface Expression	Drainage	Partly cloudy Overcast Rain Sleet Snow	
Mineral Surface Form Blanket Dissected Fan Hummocky Inclined Pitted Level Rolling	Very rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained	Air Temp.	
Rolling Ridged Steep Terrace Undulating Veneer			Pressor.

D: Lithological-discontinuity


Ma: Master horizons (Humus, A, B, C)

Suffix: Suffixes

M: Modifier (B1, B2, B3)

Horizon Boundary (HB) S Smooth W Wavy I Irregular B Broken

Soil Profile Diagram

Codes for Horizon Description

Colour

Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM) Y: Visible

N: Not visible

Coarse Fragments (CF) Estimated value in %

Field Texture

Clay, Sandy Clay. Sandy Clay Loam Sitt, Sitty Sand, Sitt Loam, Sitty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Cuarse Sand

	Photos						
	Pit with Samples	V					
	Looking North	Image: Control of the					
ĺ	Looking East						
	Looking South	I					
	Looking West						
	Others						

# 1	Horizons Ma Suffi	X MA	Depth Up Low	НВ	Colour		Field Texture
1 2 3 4 5	F		+6 +5 +5 0 -6 -5 -5	WWW	10 YR 3/2		o org org sand.
6 7 8 9						je det jedno	

	Gold Wilne Distric	t Soil Sampling Fie	eld Data Sheet
Monthy nel	minels!!	20 May 08	Time : / 5 :
Northing (20TNAD83)	Easting (20TNAD83)	Site ID	Sample Type - Horizon No Yes
Names of Sa	amplers	RepStat	Sampling Depth
Robert Bekkers			0 - 5 cm
Kyon Pellonn		No Yes →	d Site
Samples Collected - 5 cm	. All the same that	Contamination] Commonto
ppth sample (all horizons) prizon Sample horizon horizon horizon prizon Sample horizon prizon Sample horizon prizon Sample	Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland	Probable Definite	Comments: (E.g., Presence of waste rock, berms, pits, trenche other mining activity) - Abundant tree-fall - 10 n from edge of marsh (open area)
eral Soil anic Soil -Soil	Unvegetated Surface		- Very wet soil.

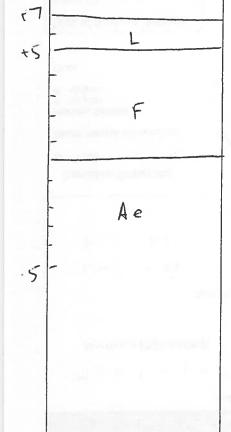
Local Surface Expression

Mineral Surface Form Blanket Dissected Fan Hummocky Inclined Pitted Level Rolling Ridged Steep Terrace Undulating Veneer

Drainage Very rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained 00000000

Weather Sunny/Clear Partly cloudy Overcast 000000 Rain Sleet Snow

Air Temp.


Horizons

D: Lithological discontinuity
Ma: Master horizons (Humus, A, B, C)
Suffix: Suffixes
M: Modifier (B1, B2, B3)

Horizon Boundary (HB) S: Smooth

S: Smooth W: Wavy I: Irregular B. Broken

Soil Profile Diagram

Colour Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM) Y: Visible

N: Not visible

- L

Coarse Fragments (CF) Estimated value in %

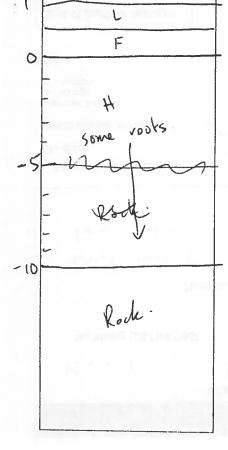
Field Texture Clay, Sandy Clay Sandy Clay Loam Sitt, Sitty Sand, Sitt Loam Sitty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

Photo	Photos							
Pit with Samples	Image: Control of the							
Looking North	V							
Looking East								
Looking South								
Looking West								
Others								
4 号 5								

# M	zons a Suffix	Depth Up Low	НВ	Colour	CF %	Field Texture
1 L 2 F		±7 ±5	W - -			019
3 A	e	0	W 2.5	Y 6/2	. 0	silty clay.
5 6					10	genitarini gridal
7					All Her Hermites	
9					7	

	Gold Mine District	Soil Sampling Field Data Sheet
Site	M in C S	Date Time 15 May 08 15:30 :
Northing (201NAD63)	Easting (201NAD83)	Site ID Sample Type - Horizon M M - 48 No Yes
Names of	Samplers	RepStat Sampling Depth
Robert Frekkers		0 - 5 cm
Kyon tellenn		Resampled Site No Yes →
Samples Collected 0 - 5 cm Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other. Type of Surface Material Mineral Soil Organic Soil Non-Soil Urban	Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Unvegetated Surface	Contamination None Possible Probable Definite Housing Housing Housing Garbage Other Weather Sunny/Clear Partly cloudy Comments: (E.g., Presence of waste rock, berms, pits, trenches other mining activity) Wester Comments: (E.g., Presence of waste rock, berms, pits, trenches other mining activity) Wester Comments: (E.g., Presence of waste rock, berms, pits, trenches other mining activity) Wester Comments: (E.g., Presence of waste rock, berms, pits, trenches other mining activity) Wester Comments: (E.g., Presence of waste rock, berms, pits, trenches other mining activity) Wester None Comments: (E.g., Presence of waste rock, berms, pits, trenches other mining activity) - We t (swampy) area. Comments: (E.g., Presence of waste rock, berms, pits, trenches other mining activity) - We t (swampy) area. - A bundant waste rock. Comments: (B.g., Presence of waste rock, berms, pits, trenches other mining activity) - We t (swampy) area. - A bundant waste rock. Comments: (B.g., Presence of waste rock. Comments: (E.g., Presence of waste rock. (E.g., Pr
Mineral Surface Expression Mineral Surface Form Blanket Dissected Fan Hummocky Inclined Pitted Level Rolling Rolling Steep Terrace Undulating Veneer	Very rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained	Sunny/Clear Partly cloudy Overcast Rain Sleet Snow Air Temp. 1.2°C Air Temp.

Horizons


D: Lithological discontinuity

Ma. Master horizons (Humus, A. B. C) Suffix: Suffixes M: Modifier (B1, B2, B3)

Horizon Boundary (HB)

S: Smooth W: Wavy I: Irregular B. Broken

Soil Profile Diagram

Colour

Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM)

Y: Visible

N. Not visible

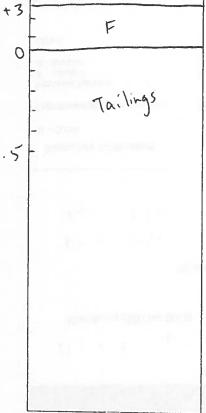
Coarse Fragments (CF) Estimated value in %

Field Texture

Clay, Sandy Clay, Sandy Clay Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

Photo	<u>ış</u>
Pit with Samples	V
Looking North	V
Looking East	
Looking South	Image: Control of the
Looking West	
Others	- 0ET

	Horizo	ns		Depth	HB	Colour	BM	CF	Field
# 25	Ma	Suffix	AL PO	Up Low	1			%	Texture
1	L			+1 +0.	5 W			0	10.61
2	F			40.5				0	org.
3	Н	1		0 -10	B.	10 2.5 y 3/1		0	~g.
4	lock.			-10		- 2-1 - 21 ·		*)	silf/0.9.
5	W 70						10	100	boulders
6							1		
7	AT					*****	- 450		
8	(A) (A) (A)		- *		1 -	. 2			
9						-	** to 12		
10	1		- 1			d. a mare	T ×	*	


	Gold Mine Distr	rict So	il Sampling	Field D	ata Sheet
Meatagael	Minels		Date 15 May 08	16:	Time
Northing (20TNAD83)	Easting (20TNAD83)		' Site ID	Sam	ple Type - Horizon Yes
Names o	f Samplers		RepStat		Sampling Depth
Robert Behkers					0 - 5 cm
Ryan Fellenn			No Yes →	ampled Site	
Samples Collected 0 - 5 cm Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other.	Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Unvegetated Surface		Contamination None Possible Pobable Probable Definite Farming Housing Industry Logging Mining Road Garbage Other Weather	000000	Comments: (Eg. Presence of waste rock, berms, pits, trenches or other mining activity) - Sampled on edge of forest wet area. - Abundant moss / grass cover. - Tailings under moss. - 10m W of road.
Local Surface Expression Mineral Surface Form Blanket Dissected Fan Hummocky Inclined Pitted Level Rolling Ridged Steep Terrace Undulating Vencer	Drainage Very rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained	0000000	Partly cloudy Overcast Rain Sleet Snow		- 10m Wof road. - Stream 10m N.

44

Di Lithological discontinuity
Ma. Master horizons (Humus, A, B. C)
Suffix: Suffixes
M. Modifier (B1, B2, B3)

Horizon Boundary (HB) S Smooth W Wavy L Irregular B Broken

Soil Profile Diagram

Codes for Horizon Description

Colour Munsell colour or descriptive colour using table 1

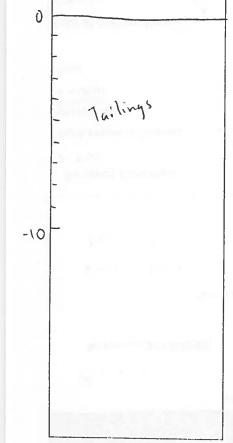
Redoximorphic Features (RM) Y: Visible N: Not visible

Coarse Fragments (CF) Estimated value in %

Field Texture Clay, Sandy Clay, Sandy Clay Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loanny Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

Photos	<u>s</u>
Pit with Samples	Image: Control of the
Looking North	Image: Control of the
Looking East	
Looking South	₽ (
Looking West	
Others	
100000000000000000000000000000000000000	

,,	Horizons	A CONTRACTOR	dB Colour	DM CF	Field
# 75	Ma Suffix	Up Low		%	Texture
1		+4 +3 V		0	org.
2	F	t3 0 1	W_	0	0/9.
3	Tailings	6	I 7.54R 4/3		silty san
4	J.				3.119 3000
5				1	
6		-			
7	**				
8	Special Contraction of				
9					
0		-	- m	11111	


		G	old Mine Dis	trict So	il Sampling Fi	eld Data Sh	eet
	Site				Date	Time	
Montag	.1 6	Int	inels!!			15:40	_:
Northing (20TNAD8	3)		Easting (20TNAD83)		Site ID	Sample Type - Hor	izon
1.0					MM-51	No V Yes	
	Names o	f Samp	lers		RepStat		Sampling Depth
Robert Bekkers	>	3					0 - 5 cm
Kyon Fellows	`		(Calant)		Resampl No Yes →	led Site	
Samples Collected							
0 - 5 cm					Contamination	Comme	ents:
Depth sample (all honzons)					_None _		ce of waste rock, berms, pits, trenches
Horizon Sample A - horizon B - horizon		¥ #	Vegetation Cover Agricultural Crops Coniferous Forest	9800	None	other mining - Tailing	activity)
Other:	(I	*	Deciduous Forest Mixed Forest Meadow, Wet Field	0000000	IndustryLoggingMiningRoad	=/	rea (brook) to
Type of Surface Material			Parkland Shrubland Unvegetated Surface		Other Carparts.	South	(20 m)
Mineral Soil Organic Soil			Onvegetated Surface			- Forest	15m E and
Organic Suil Non-Suil Urban					Weather Sunny/Clear Partly cloudy	40m	
Local Surface Expression			Drainage		Overcast Rain		
Mineral Surface Form Blankel			Very rapidly drained Rapidly drained	g	Sleet Snow	i i	
Dissected			Well drained Moderately well drained				
Hummocky Inclined			Imperfectly drained Poorly drained		Air Temp.		
Inclined Pitted Level	1		Very poorly drained		1.2°C	f.	
Rolling Ridged Steep Terrace	111						
Terrace Undulating						i	
Undulating Undulating Undulating							

D- Lithological discontinuity
Ma: Master horizons (Humus, A. B. C)
Suffix: Suffixes
M: Modifier (B1, B2, B3)

Horizon Boundary (HB)

S: Smooth W: Wavy I: Irregular B: Broken

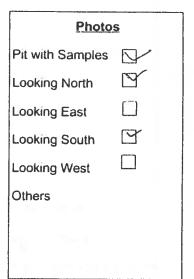
Soil Profile Diagram

Codes for Horizon Description

Colour

Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM)


Y Visible

N: Not visible

Coarse Fragments (CF) Estimated value in %

Field Texture

Clay, Sandy Clay Sandy Clay Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

1 Tailings 0 2.573/1 5 Sand. 2 3 4 5 6 7 8 9 0	ير #	Horizons Ma Suffix	Depth HB Up Low	Colour	CF %	Field Texture
2 3 4 5 6 7 8 9	1	Tailines	0	2543/1		e. 1
4 5 6 7 8 9	2					sand.
5 6 7 8 9	3					
5 6 7 8 9	4			The time that the commence of the contract of	. [59
6 7 8 9	5	gr 228 2 10				
7 8 9	5					Factories Dept.
8		· · · · · · · · · · · · · · · · · · ·			<u>-</u>	3 3 33
9		arustai intern			na Bis - Carrie	
	- 1		: ! ! ! !			

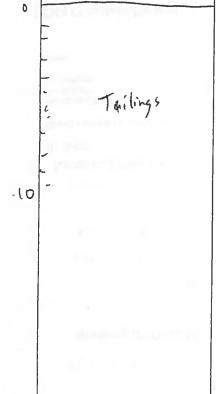
	Gold Mine District S	oil Sampling Field Data She	eet
Site		Date Time	
Montagne	Minels	20 May 08 15:30	•
Northing (20TNAD83)	Easting (20TNAD83)	Site ID Sample Type - Hor	rizon
	1 1 1 1		
Names	of Samplers	RepStat	Sampling Depth 0 - 5 cm
Kyan Pellerin		Resampled Site No Yes →	
Samples Collected			
0 - 5 cm		Comme	ents:
Depth sample (all horizons)			ce of waste rock, berms, pits, trenches
Horizon Sample A - horizon B - honzon Other: Type of Surface Material Mineral Soil Organic Soil Non-Soil Urban	Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Unvegetated Surface	Housing Industry Logging Wining Road Garbage Other Car parts Weather Sunny/Clear	lings area ing) V of forested area is of road.
Local Surface Expression	Drainage	Partly cloudy Overcast Rain Sleet Snow	
Mineral Surface Form Blanket Dissected Fan Hummocky Inclined Pitted Level Rolling Ridged Steep Terrace Undulating Veneer	Very rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained	Air Temp.	

D: Lithological discontinuity

Ma. Master horizons (Humus, A, B, C)

Suffix: Suffixes

M: Modifier (B1, B2, B3)


Horizon Boundary (HB)

S: Smooth W: Wavy

I Irregular

B. Broken

Soil Profile Diagram

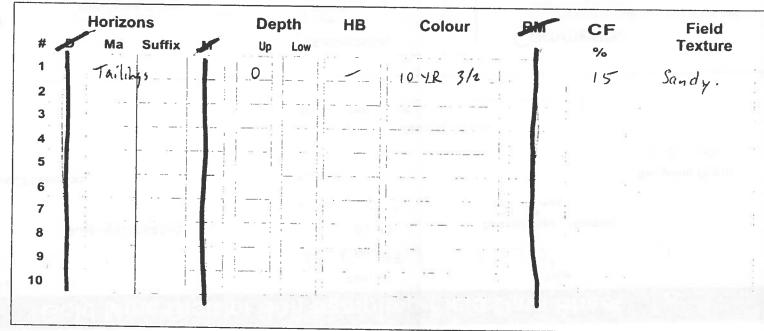
Codes for Horizon Description

Colour

Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM)

Y: Visible


N Not visible

Coarse Fragments (CF) Estimated value in %

Field Texture

Clay, Sandy Clay, Sandy Clay Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand Very Fine Sand Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

Photos	<u>S</u>
Pit with Samples	\square
Looking North	Image: second control of the control
Looking East	
Looking South	\Box
Looking West	
Others	

Site	Gold Mine District Soil Samplir	et Soil Sampling Field Data Sheet
Northing (20TNAD83)	Easting (20TNAD83)	Site ID Sample Type - Horizon
Names of Samplers	Samplers	RepStat
ra i		Resampled Site No Yes →
Samples Collected. 0 - 5 cm Depth sample (all honzons) Horizon Sample A- horizon B- honzon Other:	Vegetation Cover Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet	Contamination None - Possible - Probable - Definite - Farming - Industry - Logging - Road - Garbage
Type of Surface Material Mineral Soit Organic Soil Non-Soil Urban	Parkland Strubland Univegetated Surface	sather ar
urface Expressi Surface Form	Drainage Very rapidly drained Rapidly drained	Snow
ed Jocky	Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained	Air Temp.
arung srs G	Control to the second	

Ridged Steep Terrace Undulating Veneer	Fan Hummocky Inclined Pitted Level Rolling	Local Surface Expression Mineral Surface Form Blanket Dissected	Organic Soil Non-Soil Urban	Type of Surface Material Mineral Soil	I	Depth sample (all honzons) Horizon Sample A - horizon	Samples Collected 0 - 5 cm	Myso Pello	Names of Bakkey	Northing (20TNAD83)	Month of the l
	Moderately well drained Imperfectly drained Poorly drained Very poorly drained	Drainage Very rapidly drained Rapidly drained Well drained Well drained		Parkland Shrubland Unvegetated Surface	Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet	Vegetation Cover			Names of Samplers	Easting (20TNAD83)	M w c
	Air Temp.	Rain D	ear ear udy	concrete -	Farming Housing Logging Logging Mining	None Possible Probable Definite	Contamination	No Yes → Resampled Site	RepStat	Site ID S	15 May 08 14
			Dearse tree cover.	- Concrete structure	10-20 3	nce of waste rock: berms g activity)	Comments:		Sampling Depth 0 - 5 cm	Sample Type - Horizon No Yes /	7 me

D: Lithological discontinuity
Ma: Master horizons (Humus, A, B, C)
Suffix: Suffixes
M: Modifier (B1, B2, B3)

Horizon Boundary (HB)
S: Smooth
W: Wavy
t: Irregular
B. Broken

+-0

Soil Profile Diagram

Colour

Munsell colour or descriptive colour using lable 1

Codes for Horizon Description

Redoximorphic Features (RM) Y: Visible

N. Not visible

Coarse Fragments (CF) Estimated value in %

Field Texture
Clay, Sandy Clay Loam
Sit, Sity Sand, Sit Loam, Sity Clay Loam
Loam, Sandy Loam, Loamy Sand
Sand, Very Fine Sand, Fine Sand, Medium
Sand, Coarse Sand, Very Coarse Sand

Others

Looking South

Looking West

Pit with Samples Looking East Looking North **Photos**

Horizon Description

かうつ

-		B *	Kill warte		77		Ma Suffix
				2.	t0.5 0	14 40.5	Up Low
	1			H	\ <u>\</u>	٤	!
! !				104R 2/1		1	
	P		7,012.0				_ 1
		The state of	80	0	C	0	% 5
			gravel	silty son	014	679,	Texture

aung Sening	Mineral Surface Expression Mineral Surface Form Blanket Dissected Fan Hummocky Inclined Pitted Level		Horizon Sample A. horizon B. horizon	Samples Collected 0 - 5 cm Depth sample (all honzons)	Kyss Fellows	-	Northing (20TNAD83)	Mentagare	
Collegion Participal Collegion Collegio Collegio Collegion Collegio C	Very rapidly drained Rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained	Parkland Shrubland Univegetated Surface	Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field			Samplers	Easting (20TNAD83)	M v C : S :	Gold Mine District Soil Sample
7.3.6	Rain Sleet Snow Air Temp.	ather	Prossible Probable Definite Housing Housing Logging Mining	nation	Resampled Site	RepStat	Site ID Si	15 May 08 13	ing
		Waste rock in	Tures Sof	Comments:	0-5 cm		Sample Type - Horizon No Yes	Time	Field Data Sheet

Rolling Ridged Steep Terrace Undulating Veneer	Surface Expression al Surface Form ed	Type of Surface Material Mineral Soil Organic Soil Non-Soil Urban	Depth sample (all honzons) Horizon Sample A - horizon B - honzon Other: H	Samples Collected 0 - 5 cm	Kyon Pellows	Northing (20TNAD83) Names c	Site
	Very rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained Very poorly drained	Field D Parkland Shrubland D Universitated Surface D	Cover rops rest			Easting (20TNAD83) Names of Samplers	Min cisi District Soll Sallipli
		lear D	-None -Possible -Probable -Definite -Industry -Logging -Mining -Industry -In	ntan	Resampled Site	Site ID Sample Type - Horizon No Yes RepStat	Date Time : 1/5 May 108 1/3:52 :

Local Surface Expression Mineral Surface Form Blanket Dissected Fan Hummocky Inclined Pitted Level Rolling Rudged Steep Terracce Undulating Veneer Distainage Drainage Very rapidly drained Rapidly drained Rapidly drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained	Samples Collected 0 - 5 cm Depth sample (all honzons) Horizon Sample A - horizon B - horizon Coniferous Forest Other: Type of Surface Material Mineral Soil Organic Soil Non-Soil Urban Contamination Vegetation Cover Agricultural Crops Coniferous Forest Deciduous Forest Deciduous Forest Omixed Forest Deciduous Forest Omixed Forest	Northing (20TNAD83) RepStat Fight Billion No Yes
Air Temp.	ther	Site ID Sample Type - Horizon - 47 No Yes Sampling Depth 0 - 5 cm Resampled Site

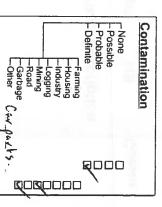
MMILT

Dissected Fan Hummocky Inclined Pitted Level Rolling R	urface Expressi Surface Form	Type of Surface Material Mineral Soil Organic Soil Non-Soil	Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other.	Samples Collected 0 - 5 cm	Kyon Pellona	Names o	J orthing (20TNAD8	Site
Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained Very poorly drained	Drainage Very rapidly drained Rapidly drained	Surface	Vegetation Cover Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet			Names of Samplers	Easting (2	Man casa a la contract soil
Air Temp.	Sunow	ther	- None - Possible - Probable - Definite - Definite - Housing - Industry - Logging - Mining	ntamination	Resampled Site	RepStat		Date 15 May 108 15 May 108 15
	- Very moist.	(boulders).	(Eg., Presence of waste rock berms, pits, trenches o other mining activity) Wet (swampy) area. H bundant waste rock	Comments:	0-5 cm	No Yes I Sampling Depth		Time

Mineral Surface Expression Mineral Surface Form Blanket Dissected Fan Hummocky Inclined Pitted Level Rolling Ridged Steep Terrace Undulating Vencer	Samples Collected 0 - 5 cm Depth sample (all honzons) Horizon Sample A - horizon B - horizon Cother: Type of Surface Material Non-Suil Urban Urban	Site Multing (20TNAD83) Northing (20TNAD83) Names of Samplers Kubari Bakkara Kubari Bakkara Kubari Bakkara
Very rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained	Vegetation Cover Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Unvegetated Surface	Fasting (20TNAD83) Easting (20TNAD83) Easting (20TNAD83) RepStat RepStat No. Yes
Temp.	Contamination Comments: None Possible Possible Probable Probable Probable Posinite Faming Logging Mining Road Garbage Other Weather Sunny/Clear Parity cloudy Overcast Cover	Ct Soil Sampling Field Data Sheet Date

	Resampled Site No Yes →		Kyor Pello.
0 - 5 cm			Char Bakey
Sampling Depth	RepStat	Names of Samplers	Names o
	No. VYes	1) (etc.)	
	Site ID Sample Type - Horizon	Easting (20TNAD83)	Northing (20TNAD83)
	20 May 08 / 5: 11 0	Mr. versi	Mentagael

Mineral Soil Organic Soil Non-Soil	Type of Surface Material	Other	Horizon Sample A - horizon B - horizon	Depth sample (all honzons)	0-000
COR	erial			ons)	


Samples Collected

K

DEOR	urface Material		
		Ξ	00
		-	*

Parkland Shrubland Shrubland Surface	Deciduous Forest Mixed Forest Meadow, Wet Field	Vegetation Cover Agricultural Crops Coniferous Forest

Partly cloudy Overcast Rain Sleet Snow	Weathe
000006	-

HOW

M

* 7 4

000	lion
(E.g., Presence of waste rock, berms, pits, trenches or other mining activity)	Comments:

1 On road. Tailings area.

Wet area (bruck) South (20m)

	1	₽ï	
د	1	Ę	
0	-	3	
C	ر	Ö	

Undulating

Terrace

Level Rolling Ridged Steep

OCCOOORCOOOCO

Inclined Pitted

Fan

Hummocky

Mineral Surface Forns
Blanket
Dissected

Local Surface Expression

Urban

2 2

Pitted Level Rolling Ridged Steep Terrace Undulating Veneer	Surface Express al Surface Form	of Surface Material Soil Soil	Depth sample (all horizons) Horizon Sample A - horizon B - horizon	Samples Collected 0 - 5 cm	-	Names of Samplers	Northing (20TNAD83)	Mont of a site	
Very poorly drained	Drainage Very rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained	Mixed Forest Meadow, Wet Field Parkland Shrubland Unvegetated Surface	1 Cover rrops prest			Samplers	Easting (20TNAD83)	M	Gold Mine District Soil
Air Temp.	Sunny/Clear Parity cloudy Overcast Rain Sleet Snow	Bode		Contamination	Resampled Site No. Yes →	RepStat	Site ID Sample Type - Horizon No V Yes	Date 2b May 08	Soil Sampling Field Data Sheet
		Sm N of forested are 2m S of road.	(E.g., Presence of waste rock, berms, pits, trenche other mining activity) (n failings area ((language)	Comments:	8	Sampling Depth 0 - 5 cm	e - Horizon es	Time	Sheet

331

D: Lithological discontinuity
Ma: Master horizons (Humus, A, B, C)
Suffix: Suffixes
M: Modifier (B1, B2, B3)

Horizon Boundary (HB)
S: Smooth
W: Wavy
t: Irregular
B. Broken

+-0

Soil Profile Diagram

Colour

Munsell colour or descriptive colour using lable 1

Codes for Horizon Description

Redoximorphic Features (RM) Y: Visible

N. Not visible

Coarse Fragments (CF) Estimated value in %

Field Texture
Clay, Sandy Clay Loam
Sit, Sity Sand, Sit Loam, Sity Clay Loam
Loam, Sandy Loam, Loamy Sand
Sand, Very Fine Sand, Fine Sand, Medium
Sand, Coarse Sand, Very Coarse Sand

Others

Looking South

Looking West

Pit with Samples Looking East Looking North **Photos**

Horizon Description

かうつ

-				Cill wate		77		Ma Suffix
					5-0	₹0.5 0 o	14 40.5	Up Low
			1		<u> </u>	-8	٤	-
1 1	1		1		107R 2/1			
-	P				Printer con control			
		100		8	0	C	0	% 5
			3	gravel	silty sand	0/4	679	Texture

aung Sening	Mineral Surface Expression Mineral Surface Form Blanket Dissected Fan Hummocky Inclined Pitted Level	Type of Surface Material Mineral Soil Organic Soil Non-Soil Urban	Horizon Sample A - horizon B - horizon Other: (4)		Rys Fillers		Northing (20TNAD83)	Mentagare	
Collection Particular Collection	Very rapidly drained Rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained	and bland getated Surface	Vegetation Cover Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet	Northwese South		Samplers	Easting (20TNAD83)	M	Gold Mine District Soil Sample
7.5.6	Rain Sleet Snow Air Temp.	ather	Possible Probable Probable Probable Proming Housing Housing Housing Road	mination	Resampled Site No. Yes →	RepStat	Site ID Sa	15 May 08 13	ing
		- Stemp will low W Waste rock in area.	s ng a	Comments:	0-5 cm	Sampling Depth	Sample Type - Horizon No Yes	Time :	Field Data Sheet

Rolling Ridged Steep Terrace Undulating Veneer	Surface Expression al Surface Form ed	Type of Surface Material Mineral Soil Organic Soil Non-Soil Urban	Depth sample (all honzons) Horizon Sample A - horizon B - honzon Other:	Samples Collected 0 - 5 cm	Kyon Pellows	Northing (20TNAD83) Names c	Site
	Very rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained Very poorly drained	Field D Parkland Shrubland D Univergetated Surface	Cover rops rest			Easting (20TNAD83) Names of Samplers	Min cis District Soll Sallipli
		lear D	-None -Possible -Probable -Definite -Industry -Logging -Mining -Industry -In	ntan	Resampled Site	Site ID Sample Type - Horizon No Yes RepStat	Date Time : 1/5 May 108 1/3:52 :

Local Surface Expression Mineral Surface Form Blanket Dissected Fan Hummocky Inclined Pitted Level Rolling Rudged Steep Terracce Undulating Veneer Distainage Drainage Very rapidly drained Rapidly drained Rapidly drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained	Samples Collected 0 - 5 cm Depth sample (all honzons) Horizon Sample A - horizon B - horizon Coniferous Forest Other: Type of Surface Material Mineral Soil Organic Soil Non-Soil Urban Contamination Vegetation Cover Agricultural Crops Coniferous Forest Deciduous Forest Deciduous Forest Omixed Forest Deciduous Forest Omixed Forest	Northing (20TNAD83) RepStat Fight Billion No Yes
Air Temp.	ther	Site ID Sample Type - Horizon - 47 No Yes Sampling Depth 0 - 5 cm Resampled Site

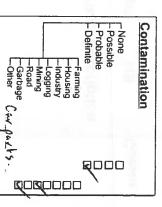
MMILT

Dissected Fan Hummocky Inclined Pitted Level Rolling R	urface Expressi Surface Form	Type of Surface Material Mineral Soil Organic Soil Non-Soil	Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other.	Samples Collected 0 - 5 cm	Kyon Pellona	Names o	J orthing (20TNAD8	Site
Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained Very poorly drained	Drainage Very rapidly drained Rapidly drained	Surface	Vegetation Cover Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet			Names of Samplers	Easting (2	Man casa a la contract soil
Air Temp.	Sunow	ther	- None - Possible - Probable - Definite - Definite - Housing - Industry - Logging - Mining	ntamination	Resampled Site	RepStat		Date 15 May 108 15 May 108
	- Very moist.	(boulders).	(Eg., Presence of waste rock berms, pits, trenches o other mining activity) Wet (swampy) area. H bundant waste rock	Comments:	0-5 cm	No Yes I Sampling Depth		Time

Mineral Surface Expression Mineral Surface Form Blanket Dissected Fan Hummocky Inclined Pitted Level Rolling Ridged Steep Terrace Undulating Vencer	Samples Collected 0 - 5 cm Depth sample (all honzons) Horizon Sample A - horizon B - horizon Cother: Type of Surface Material Non-Suil Urban Urban	Site Multing (20TNAD83) Northing (20TNAD83) Names of Samplers Kubari Bakkara Kubari Bakkara Kubari Bakkara
Very rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained	Vegetation Cover Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Unvegetated Surface	Fasting (20TNAD83) Easting (20TNAD83) Easting (20TNAD83) RepStat RepStat No. Yes
Temp.	Contamination Comments: None Possible Possible Probable Probable Probable Posinite Faming Logging Mining Road Garbage Other Weather Sunny/Clear Parity cloudy Overcast Cover	Ct Soil Sampling Field Data Sheet Date

	Resampled Site No Yes →		Kyor Pello.
0 - 5 cm			Char Bakey
Sampling Depth	RepStat	Names of Samplers	Names c
	No. VYes	1) (etc.)	
	Site ID Sample Type - Horizon	Easting (20TNAD83)	Northing (20TNAD83)
	20 May 08 / 5: 11 0	Mr. versi	Mentagael

Mineral Soil Organic Soil Non-Soil	Type of Surface Material	Other	Horizon Sample A - horizon B - horizon	Depth sample (all honzons)	0-000
COR	erial			ons)	


Samples Collected

K

DEOR	urface Material		
		Ξ	00
		-	*

Parkland Shrubland Shrubland Surface	Deciduous Forest Mixed Forest Meadow, Wet Field	Vegetation Cover Agricultural Crops Coniferous Forest

Partly cloudy Overcast Rain Sleet Snow	Weathe
000006	-

HOW

M

* 7 4

000	lion
(E.g., Presence of waste rock, berms, pits, trenches or other mining activity)	Comments:

1 On road. Tailings area.

Wet area (bruck) South (20m)

	1	₽ï	
د	1	Ę	
0	-	3	
C	ر	Ö	

Undulating

Terrace

Level Rolling Ridged Steep

OCCOOORCOOOCO

Inclined Pitted

Fan

Hummocky

Mineral Surface Forns
Blanket
Dissected

Local Surface Expression

Urban

Blanket Dissected Fan Hummucky Inclined Pitted Level Rolling Rolling Rudged Steep Terrace Undulating Veneer	Type of Surface Material Mineral Soil Organic Soil Non-Suil Urban Local Surface Expression Mineral Surface Form		Names of Samplers Kyan Juliana Samples Collected	Site
Very rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained		Vegetation Cover Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet	Samplers	Gold Mine District Soil Ping (20TNAD83) Easting (20TNAD83)
4 °C	1 1		RepStat Resampled Site No Yes →	Sampling Field Data Date 2b May 08 1/5:30 Site ID Sample Ty No V
	S of road.	Comments: (E.g., Presence of waste rock, berms, pits, trenche other mining activity) - In failings area ((leaving)	Sampling Depth 0 - 5 cm	Time Time ppe-Horizon Yes

Rolling Ridged Steep Terrace Undulating Veneer	Surface Expression al Surface Form ed	Type of Surface Material Mineral Soil Organic Soil Non-Soil Urban	Depth sample (all honzons) Horizon Sample A - horizon B - honzon Other:	Samples Collected 0 - 5 cm	Kyon Pellows	Northing (20TNAD83) Names c	Site
	Very rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained Very poorly drained	Field D Parkland Shrubland D Univergetated Surface	Cover rops rest			Easting (20TNAD83) Names of Samplers	Min cis District Soll Sallipli
		lear D	-None -Possible -Probable -Definite -Industry -Logging -Mining -Industry -In	ntan	Resampled Site	Site ID Sample Type - Horizon No Yes RepStat	Date Time : 1/5 May 108 1/3:52 :

Local Surface Expression Mineral Surface Form Blanket Dissected Fan Hummocky Inclined Pitted Level Rolling Rudged Steep Terracce Undulating Veneer Distainage Drainage Very rapidly drained Rapidly drained Rapidly drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained	Samples Collected 0 - 5 cm Depth sample (all honzons) Horizon Sample A - horizon B - horizon Coniferous Forest Other: Type of Surface Material Mineral Soil Organic Soil Non-Soil Urban Contamination Vegetation Cover Agricultural Crops Coniferous Forest Deciduous Forest Deciduous Forest Omixed Forest Deciduous Forest Omixed Forest	Northing (20TNAD83) RepStat Fight Billion No Yes
Air Temp.	ther	Site ID Sample Type - Horizon - 47 No Yes Sampling Depth 0 - 5 cm Resampled Site

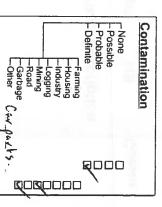
MMILT

Dissected Fan Hummocky Inclined Pitted Level Rolling R	urface Expressi Surface Form	Type of Surface Material Mineral Soil Organic Soil Non-Soil	Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other.	Samples Collected 0 - 5 cm	Kyon Pellona	Names o	J orthing (20TNAD8	Site
Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained Very poorly drained	Drainage Very rapidly drained Rapidly drained	Surface	Vegetation Cover Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet			Names of Samplers	Easting (2	Man casa a la contract soil
Air Temp.	Sunow	ther	- None - Possible - Probable - Definite - Definite - Housing - Industry - Logging - Mining	ntamination	Resampled Site	RepStat		Date 15 May 108 15 May 108
	- Very moist.	(boulders).	(Eg., Presence of waste rock berms, pits, trenches o other mining activity) Wet (swampy) area. H bundant waste rock	Comments:	0-5 cm	No Yes I Sampling Depth		Time

Mineral Surface Expression Mineral Surface Form Blanket Dissected Fan Hummocky Inclined Pitted Level Rolling Ridged Steep Terrace Undulating Vencer	Samples Collected 0 - 5 cm Depth sample (all honzons) Horizon Sample A - horizon B - horizon Cother: Type of Surface Material Non-Suil Urban Urban	Site Multing (20TNAD83) Northing (20TNAD83) Names of Samplers Kubari Bakkara Kubari Bakkara Kubari Bakkara
Very rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained	Vegetation Cover Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Unvegetated Surface	Fasting (20TNAD83) Easting (20TNAD83) Easting (20TNAD83) RepStat RepStat No. Yes
Temp.	Contamination Comments: None Possible Possible Probable Probable Probable Posinite Faming Logging Mining Road Garbage Other Weather Sunny/Clear Parity cloudy Overcast Cover	Ct Soil Sampling Field Data Sheet Date

	Resampled Site No Yes →		Kyor Pello.
0 - 5 cm			Char Bakey
Sampling Depth	RepStat	Names of Samplers	Names c
	No. VYes	1) (etc.)	
	Site ID Sample Type - Horizon	Easting (20TNAD83)	Northing (20TNAD83)
	20 May 08 / 5: 11 0	Mr. versi	Mentagael

Mineral Soil Organic Soil Non-Soil	Type of Surface Material	Other	Horizon Sample A - horizon B - horizon	Depth sample (all honzons)	0-000
COR	erial			ons)	


Samples Collected

K

DEOR	urface Material		
		Ξ	00
		-	*

Parkland Shrubland Shrubland Surface	Deciduous Forest Mixed Forest Meadow, Wet Field	Vegetation Cover Agricultural Crops Coniferous Forest

Partly cloudy Overcast Rain Sleet Snow	Weathe
000006	-

HOW

M

* 7 4

000	lion
(E.g., Presence of waste rock, berms, pits, trenches or other mining activity)	Comments:

1 On road. Tailings area.

Wet area (bruck) South (20m)

	1	₽ï	
د	1	Ę	
0	-	3	
C	ر	Ö	

Undulating

Terrace

Level Rolling Ridged Steep

OCCOOORCOOOCO

Inclined Pitted

Fan

Hummocky

Mineral Surface Forns
Blanket
Dissected

Local Surface Expression

Urban

Blanket Dissected Fan Hummucky Inclined Pitted Level Rolling Rolling Rudged Steep Terrace Undulating Veneer	Type of Surface Material Mineral Soil Organic Soil Non-Suil Urban Local Surface Expression Mineral Surface Form		Names of Samplers Kyan Juliana Samples Collected	Site
Very rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained		Vegetation Cover Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet	Samplers	Gold Mine District Soil Ping (20TNAD83) Easting (20TNAD83)
4 °C	1 1		RepStat Resampled Site No Yes →	Sampling Field Data Date 2b May 08 1/5:30 Site ID Sample Ty No V
	S of road.	Comments: (E.g., Presence of waste rock, berms, pits, trenche other mining activity) - In failings area ((leaving)	Sampling Depth 0 - 5 cm	Time Time ppe-Horizon Yes

Local Surface Expression Mineral Surface Form Blanket Dissected Fan Hummocky Inclined Pitted Level Rolling Rudged Steep Terracce Undulating Veneer Distainage Drainage Very rapidly drained Rapidly drained Rapidly drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained	Samples Collected 0 - 5 cm Depth sample (all honzons) Horizon Sample A - horizon B - horizon Coniferous Forest Other: Type of Surface Material Mineral Soil Organic Soil Non-Soil Urban Contamination Vegetation Cover Agricultural Crops Coniferous Forest Deciduous Forest Deciduous Forest Omixed Forest Deciduous Forest Omixed Forest	Northing (20TNAD83) RepStat Fight Billion No Yes
Air Temp.	ther	Site ID Sample Type - Horizon - 47 No Yes Sampling Depth 0 - 5 cm Resampled Site

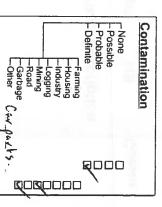
MMILT

Dissected Fan Hummocky Inclined Pitted Level Rolling R	urface Expressi Surface Form	Type of Surface Material Mineral Soil Organic Soil Non-Soil	Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other.	Samples Collected 0 - 5 cm	Kyon Pellona	Names o	J orthing (20TNAD8	Site
Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained Very poorly drained	Drainage Very rapidly drained Rapidly drained	Surface	Vegetation Cover Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet			Names of Samplers	Easting (2	Man casa a la contract soil
Air Temp.	Sunow	ther	- None - Possible - Probable - Definite - Definite - Housing - Industry - Logging - Mining	ntamination	Resampled Site	RepStat		Date 15 May 108 15 May 108
	- Very moist.	(boulders).	(Eg., Presence of waste rock berms, pits, trenches o other mining activity) Wet (swampy) area. H bundant waste rock	Comments:	0-5 cm	No Yes I Sampling Depth		Time

Mineral Surface Expression Mineral Surface Form Blanket Dissected Fan Hummocky Inclined Pitted Level Rolling Ridged Steep Terrace Undulating Vencer	Samples Collected 0 - 5 cm Depth sample (all honzons) Horizon Sample A - horizon B - horizon Cother: Type of Surface Material Non-Suil Urban Urban	Site Multing (20TNAD83) Northing (20TNAD83) Names of Samplers Kubari Bakkara Kubari Bakkara Kubari Bakkara
Very rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained	Vegetation Cover Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Unvegetated Surface	Fasting (20TNAD83) Easting (20TNAD83) Easting (20TNAD83) RepStat RepStat No. Yes
Temp.	Contamination Comments: None Possible Possible Probable Probable Probable Posinite Faming Logging Mining Road Garbage Other Weather Sunny/Clear Parity cloudy Overcast Cover	Ct Soil Sampling Field Data Sheet Date

	Resampled Site No Yes →		Kyor Pello.
0 - 5 cm			Char Bakey
Sampling Depth	RepStat	Names of Samplers	Names c
	No. VYes	1) (etc.)	
	Site ID Sample Type - Horizon	Easting (20TNAD83)	Northing (20TNAD83)
	20 May 08 / 5: 11 0	Mr. versi	Mentagael

Mineral Soil Organic Soil Non-Soil	Type of Surface Material	Other	Horizon Sample A - horizon B - horizon	Depth sample (all honzons)	0-000
COR	erial			ons)	


Samples Collected

K

DEOR	urface Material		
		Ξ	00
		-	*

Parkland Shrubland Shrubland Surface	Deciduous Forest Mixed Forest Meadow, Wet Field	Vegetation Cover Agricultural Crops Coniferous Forest

Partly cloudy Overcast Rain Sleet Snow	Weathe
000006	-

HOW

M

* 7 4

000	lion
(E.g., Presence of waste rock, berms, pits, trenches or other mining activity)	Comments:

1 On road. Tailings area.

Wet area (bruck) South (20m)

	1	₽ï	
د	1	Ę	
0	-	3	
C	ر	Ö	

Undulating

Terrace

Level Rolling Ridged Steep

OCCOOORCOOOCO

Inclined Pitted

Fan

Hummocky

Mineral Surface Forns
Blanket
Dissected

Local Surface Expression

Urban

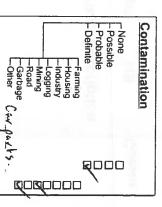
Blanket Dissected Fan Hummucky Inclined Pitted Level Rolling Rolling Rudged Steep Terrace Undulating Veneer	Type of Surface Material Mineral Soil Organic Soil Non-Suil Urban Local Surface Expression Mineral Surface Form		Names of Samplers Kyan Juliana Samples Collected	Site
Very rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained		Vegetation Cover Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet	Samplers	Gold Mine District Soil Ping (20TNAD83) Easting (20TNAD83)
4 °C	1 1		RepStat Resampled Site No Yes →	Sampling Field Data Date 2b May 08 1/5:30 Site ID Sample Ty No V
	S of road.	Comments: (E.g., Presence of waste rock, berms, pits, trenche other mining activity) - In failings area ((leaving)	Sampling Depth 0 - 5 cm	Time Time ppe-Horizon Yes

Dissected Fan Hummocky Inclined Pitted Level Rolling R	urface Expressi Surface Form	Type of Surface Material Mineral Soil Organic Soil Non-Soil	Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other.	Samples Collected 0 - 5 cm	Kyon Pellona	Names o	J orthing (20TNAD8	Site
Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained Very poorly drained	Drainage Very rapidly drained Rapidly drained	Surface	Vegetation Cover Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet			Names of Samplers	Easting (2	Man casa a la contract soil
Air Temp.	Sunow	ther	- None - Possible - Probable - Definite - Definite - Housing - Industry - Logging - Mining	ntamination	Resampled Site	RepStat		Date 15 May 108 15 May 108
	- Very moist.	(boulders).	(Eg., Presence of waste rock berms, pits, trenches o other mining activity) Wet (swampy) area. H bundant waste rock	Comments:	0-5 cm	No Yes I Sampling Depth		Time

Mineral Surface Expression Mineral Surface Form Blanket Dissected Fan Hummocky Inclined Pitted Level Rolling Ridged Steep Terrace Undulating Vencer	Samples Collected 0 - 5 cm Depth sample (all honzons) Horizon Sample A - horizon B - horizon Cother: Type of Surface Material Non-Suil Urban Urban	Site Multing (20TNAD83) Northing (20TNAD83) Names of Samplers Kubari Bakkara Kubari Bakkara Kubari Bakkara
Very rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained	Vegetation Cover Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Unvegetated Surface	Fasting (20TNAD83) Easting (20TNAD83) Easting (20TNAD83) RepStat RepStat No. Yes
Temp.	Contamination Comments: None Possible Possible Probable Probable Probable Posinite Faming Logging Mining Road Garbage Other Weather Sunny/Clear Parity cloudy Overcast Cover	Ct Soil Sampling Field Data Sheet Date

	Resampled Site No Yes →		Kyor Pello.
0 - 5 cm			Char Bakey
Sampling Depth	RepStat	Names of Samplers	Names c
	No. VYes	1) (etc.)	
	Site ID Sample Type - Horizon	Easting (20TNAD83)	Northing (20TNAD83)
	20 May 08 / 5: 11 0	Mr. versi	Mentagael

Mineral Soil Organic Soil Non-Soil	Type of Surface Material	Other	Horizon Sample A - horizon B - horizon	Depth sample (all honzons)	0-000
COR	erial			ons)	


Samples Collected

K

DEOR	urface Material		
		Ξ	00
		-	*

Parkland Shrubland Shrubland Surface	Deciduous Forest Mixed Forest Meadow, Wet Field	Vegetation Cover Agricultural Crops Coniferous Forest

Partly cloudy Overcast Rain Sleet Snow	Weathe
000006	-

HOW

M

* 7 4

000	lion
(E.g., Presence of waste rock, berms, pits, trenches or other mining activity)	Comments:

1 On road. Tailings area.

Wet area (bruck) South (20m)

	1	₽ï	
د	1	Ę	
0	-	3	
C	ر	Ö	

Undulating

Terrace

Level Rolling Ridged Steep

OCCOOORCOOOCO

Inclined Pitted

Fan

Hummocky

Mineral Surface Forns
Blanket
Dissected

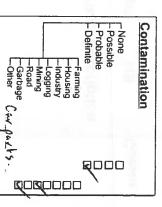
Local Surface Expression

Urban

Blanket Dissected Fan Hummucky Inclined Pitted Level Rolling Rolling Rudged Steep Terrace Undulating Veneer	Type of Surface Material Mineral Soil Organic Soil Non-Suil Urban Local Surface Expression Mineral Surface Form		Names of Samplers Kyan Juliana Samples Collected	Site
Very rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained		Vegetation Cover Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet	Samplers	Gold Mine District Soil Ping (20TNAD83) Easting (20TNAD83)
4 °C	1 1		RepStat Resampled Site No Yes →	Sampling Field Data Date 2b May 08 1/5:30 Site ID Sample Ty No V
	S of road.	Comments: (E.g., Presence of waste rock, berms, pits, trenche other mining activity) - In failings area ((leaving)	Sampling Depth 0 - 5 cm	Time Time ppe-Horizon Yes

	Resampled Site No Yes →		Kyor Pello.
0 - 5 cm			Char Bakey
Sampling Depth	RepStat	Names of Samplers	Names c
	No. VYes	1) (etc.)	
	Site ID Sample Type - Horizon	Easting (20TNAD83)	Northing (20TNAD83)
	20 May 08 / 5: 11 0	Mr. versi	Mentagael

Mineral Soil Organic Soil Non-Soil	Type of Surface Material	Other	Horizon Sample A - horizon B - horizon	Depth sample (all honzons)	0-000
COR	erial			ons)	


Samples Collected

K

DEOR	urface Material		
		Ξ	00
		-	*

Parkland Shrubland Shrubland Surface	Deciduous Forest Mixed Forest Meadow, Wet Field	Vegetation Cover Agricultural Crops Coniferous Forest

Partly cloudy Overcast Rain Sleet Snow	Weathe
000006	-

HOW

M

* 7 4

000	lion
(E.g., Presence of waste rock, berms, pits, trenches or other mining activity)	Comments:

1 On road. Tailings area.

Wet area (bruck) South (20m)

	1	₽ï	
د	1	Ę	
0	-	3	
C	ر	Ö	

Undulating

Terrace

Level Rolling Ridged Steep

OCCOOORCOOOCO

Inclined Pitted

Fan

Hummocky

Mineral Surface Forns
Blanket
Dissected

Local Surface Expression

Urban

Blanket Dissected Fan Hummucky Inclined Pitted Level Rolling Rolling Rudged Steep Terrace Undulating Veneer	Type of Surface Material Mineral Soil Organic Soil Non-Suil Urban Local Surface Expression Mineral Surface Form		Names of Samplers Kyan Juliana Samples Collected	Site
Very rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained		Vegetation Cover Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet	Samplers	Gold Mine District Soil Ping (20TNAD83) Easting (20TNAD83)
4 °C	1 1		RepStat Resampled Site No Yes →	Sampling Field Data Date 2b May 08 1/5:30 Site ID Sample Ty No V
	S of road.	Comments: (E.g., Presence of waste rock, berms, pits, trenche other mining activity) - In failings area ((leaving)	Sampling Depth 0 - 5 cm	Time Time ppe-Horizon Yes

	Gold Mine Distric	t Soil Sampling Field	Data Sheet
Site		20 May 08 15	Time : 1 5 Sample Type - Horizon No Yes
Kyan Pille. 1	of Samplers	RepStat Resampled Site No Yes →	Sampling Depth 0 - 5 cm
Samples Collected 0 - 5 cm Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other: Type of Surface Material Mineral Soil Organic Soil Non-Soil Urban	Vegetation Cover Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Unvegetated Surface	Contamination None Possible Probable Definite Farming Housing Industry Logging Mining Road Garbage Other Cax parts Weather Sunny/Clear Partly cloudy	Comments: (E.g., Presence of waste rock, berms, pits, trenches or other mining activity) - Sampled in ATV race track. - 30 in W of abandoned car. - 40 in N of marsh. - No regetation in area. - 20 in S of M.W.
Local Surface Expression Mineral Surface Form Blanket Dissected Fan Hummocky Inclined Pitted Level Rolling Ridged Steep Terrace Undulating Veneer	Very rapidly drained Rapidly drained Well drained Moderately well drained Poorly drained Poorly drained Very poorly drained	Partly cloudy Overcast Rain Sleet Snow	Jor M.W.

D: Lithological discontinuity

Ma: Master horizons (Humus, A, B, C) Suffix: Suffixes M: Modifier (B1, B2, B3)

Horizon Boundary (HB)

S Smooth W Wavy ti Irregular B. Broken

Soil Profile Diagram

0 10

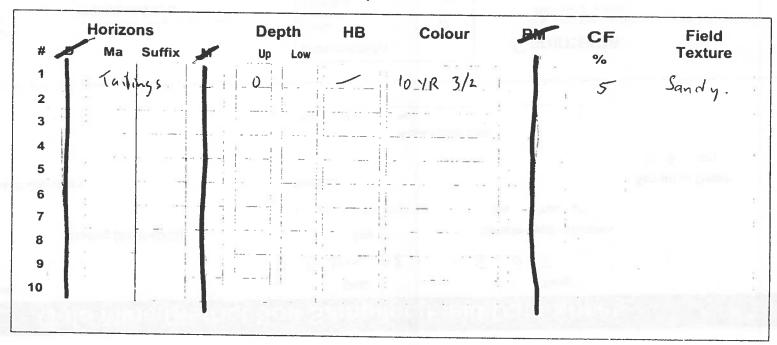
Codes for Horizon Description

Colour

Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM)

Y: Visible

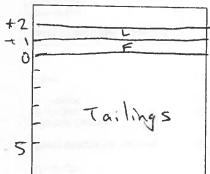

N: Not visible

Coarse Fragments (CF) Estimated value in %

Field Texture

Clay, Sandy Clay, Sandy Clay Loani Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

<u>Photos</u>		
Pit with Samples	1	
Looking North	9	
Looking East		
Looking South	V	
Looking West		
Others		



	Gold Mine District	Soil Sampling Field	Data Sheet
Site		Date 20 May 08 15	Time O S ample Type - Horizon No Yes
Robert Filters	of Samplers	RepStat Resampled Site	Sampling Depth 0 - 5 cm
Samples Collected		No: Yes →	
O - 5 cm Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other: Type of Surface Material Mineral Soil Organic Soil Non-Soil Urban Local Surface Expression	Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Unvegetated Surface Drainage	Contamination None Possible Probable Definite Farming Housing Industry Logging Mining Road Garbage Other Weather Sunny/Clear Partly cloudy Overcast Rain Sleet Snow	Comments: (E.g., Presence of waste rock, berms, pits, trenches or other mining activity) - Sample on forested "island" between two upen spaces - Tailings abundant - Grass covered. Open.
Mineral Surface Form Blanket Dissected Fan Humniocky Inclined Pitted Level Rolling Ridged Steep Terrace Undulating Veneer	Very rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained	Sleet Snow	

D. Lithological discontinuity
Ma. Master horizons (Humus, A, B, C)
Suffix: Suffixes
M: Modifier (B1, B2, B3)

Horizon Boundary (HB) S: Smooth W: Wavy I: Irregular B: Broken

Soil Profile Diagram

Codes for Horizon Description

Colour

Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM)

Y Visible

N Not visible

Coarse Fragments (CF) Estimated value in %

Field Texture

Clay, Sandy Clay Sandy Clay Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Cuarse Sand

Photos			
Pit with Samples			
Looking North			
Looking East			
Looking South			
Looking West			
Others			
(m)			

Horizons Ma Suffix	Depth HB Up Low	Colour	CF %	Field Texture
1 2 F	+2 +1 -5		6	0.5
3 Tailings	0 5	10 YR 3/1	0	silt.
5		_(*_1K), [] ·
6		- 0	a (1)	
7				
9				
			1,000	

	old wille District 3	on Sampling Fleid	Data Sneet
Site Morthing (20TNAD83) 44° 42' 58.861"N Names of Sample of Sa	Easting (20TNAD83) 63°31 00.634"W	A SECTION OF SECTION S	Sampling Depth 0 - 5 cm
Samples Collected 0 - 5 cm Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other: Type of Surface Material Mineral Soil Organic Soil Non-Soil Urban	Vegetation Cover Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Unvegetated Surface	Contamination None Possible Probable Probable Pefinite Farming Housing Industry Logging Mining Road Garbage Other Weather Sunny/Clear Partly cloudy	Comments: (E.g., Presence of waste rock, berms, pits, trenches or other mining activity) - At tox of up slope - Large trace fall 2m to E. - Open area. - Vealy vegetation
Local Surface Expression Mineral Surface Form Blanket Dissected Fan Hummocky Inclined Pitted Level Rolling Ridged Steep Terrace Undulating Veneer	Drainage Very rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained	Sunny/Clear Partly cloudy Overcast Rain Sleet Snow	- Boulders in area. - Washe rock 20 m to W. - Abandoned vehicles 15 m to E.

Gold Mine District Call Carrell

Codes for Horizon Description

Horizons

S: Smooth W: Wavy I: Irregular B: Broken

D Lithological discontinuity
 Ma: Master horizons (Humus, A, B, C)
 Suffix: Suffixes

M: Modifier (B1, B2, B3)

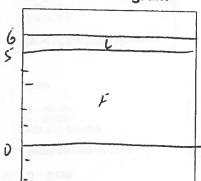
Colour Munsell of

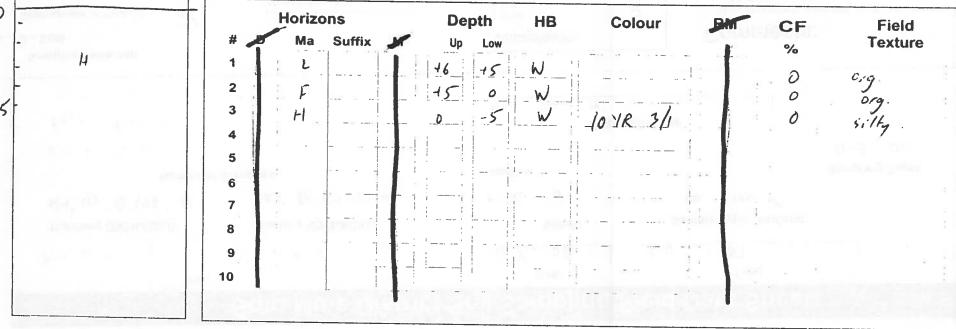
Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM)

Y: Visible N: Not visible

Coarse Fragments (CF) Estimated value in %


Field Texture


Clay, Sandy Clay Sandy Clay Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

<u>Photos</u>				
Pit with Samples	U			
Looking North	'			
Looking East				
Looking South	2 ′			
Looking West				
Others				
Y. A				

Soil Profile Diagram

Horizon Boundary (HB)

Mineral Surface Form Blanket Dissected Fan Humniocky Inclined Pitted Level Rolling Ridged Steep Terrace Undulating Very rapidly drained Rapidly drained Well drained Imperfectly drained Imperfectly drained Poorly drained Very poorly drained Very poorly drained Very poorly drained	Type of Surface Material Mineral Soil Organic Soil Non-Soil Urban Local Surface Expression Drainage	Samples Collected 0 - 5 cm Depth sample (all honzons) Horizon Sample A - horizon B - honzon Other. Depth sample I Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Mixed Forest Mixed Forest	Names of Samplers	Site V	Gold Mine District Soil
Snow Snow Air Temp.	Carbage Weather Sunny/Clear Parily cloudy Overcast Rain	To make make make make make make make make	RepStat Sampling Depth 0 - 5 cm Resampled Site	Date 20 May C	trict Soil Sampling Field Data Sheet

Blanket Dissected Fan Hummocky Inclined Pitted Level Rolling Rudged Steep Undulating Veneer	Mineral Soil Organic Scil Non-Soil Urban Local Surface Expression Mineral Surface Form	Horizon Sample A - horizon B - horizon Cher:	(in 1)	Names of	Northing (20TNAD83) 44° 412' 58.861"N	Site
Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained		Vegetation Cover Agnicultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shruhland		Names of Samplers	6 3° 31 00 634 W	Mincs
Air Temp. 15 m	Weather Sunny/Clear Partly cloudy Overcast Rain Sleet Snow		Yes + Resam	RepStat Duplicake "MM-58	Site ID Sample Type - Horizon No Yes V	Date Time
Abandoned vehicles 15 m to E.	Realy regalation Boulders in area. Washe rock 20 m to W		lents:	Sampling Depth 0 - 5 cm	torizon	

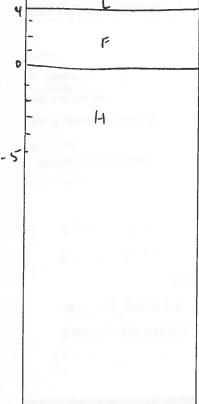
W W - 6

Mineral Surface Form Blanket Dissected Fan Humniocky Inclined Pitted Level Rolling Ridged Steep Terrace Undulating Very rapidly drained Rapidly drained Well drained Imperfectly drained Imperfectly drained Poorly drained Very poorly drained Very poorly drained Very poorly drained	Type of Surface Material Mineral Soil Organic Soil Non-Soil Urban Local Surface Expression Drainage	Samples Collected 0 - 5 cm Depth sample (all honzons) Horizon Sample A - horizon B - honzon Other. Depth sample I Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Mixed Forest Mixed Forest	Names of Samplers	Site V	Gold Mine District Soil
Snow Snow Air Temp.	Carbage Weather Sunny/Clear Parily cloudy Overcast Rain	To make make make make make make make make	RepStat Sampling Depth 0 - 5 cm Resampled Site	Date 20 May C	trict Soil Sampling Field Data Sheet

Blanket Dissected Fan Hummocky Inclined Pitted Level Rolling Rudged Steep Undulating Veneer	Mineral Soil Organic Scil Non-Soil Urban Local Surface Expression Mineral Surface Form	Horizon Sample A - horizon B - horizon Cher:	(in 1)	Names of	Northing (20TNAD83) 44° 412' 58.861"N	Site
Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained		Vegetation Cover Agnicultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shruhland		Names of Samplers	6 3° 31 00 634 W	Mincs
Air Temp. 15 m	Weather Sunny/Clear Partly cloudy Overcast Rain Sleet Snow		Yes + Resam	RepStat Duplicake "MM-58	Site ID Sample Type - Horizon No Yes V	Date Time
Abandoned vehicles 15 m to E.	Realy regalation Boulders in area. Washe rock 20 m to W		lents:	Sampling Depth 0 - 5 cm	torizon	

W W - 6

	Gold Mine District So	oil Sampling Field D	ata Sheet
Northing (20TNAD83) 44° 42' 56, 998" N	40	Date / 0:	ole Type - Horizon
Names o	f Samplers	RepStat	Sampling Depth
Ryen Pellerin		Resampled Site No Yes →	0 - 5 cm
Samples Collected 0 - 5 cm Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other. Type of Surface Material Mineral Soil Organic Soil Non-Soil Urban	Vegetation Cover Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Unvegetated Surface	None Possible Probable Definite Farming Housing Industry Logging Mining Road Garbage Other Weather	Comments: (E.g., Presence of waste rock, berms pits, trenches or other mining activity) - 10 m W of road (trail) 7 m S of waste rock pile i trench. - Boulders in area. - Moderate tree cover.
Mineral Surface Expression Mineral Surface Form Blanket Dissected Fan Hummiocky Inclined Pitted Level Rolling Ridged Steep Terrace Undulating Veneer	Very rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained	Partly cloudy Overcast Rain Sleet Snow	


D: Lithological discontinuity
Ma: Master horizons (Humus, A, B, C)
Suffix: Suffixes
M: Modifier (B1, B2, B3)

Horizon Boundary (HB)

S Smooth W Wavy

I. Irregular B. Broken

Soil Profile Diagram

Codes for Horizon Description

Colour

Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM)

Y: Visible N: Not visible

Coarse Fragments (CF) Estimated value in %

Field Texture

Clay, Sandy Clay Sandy Clay Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

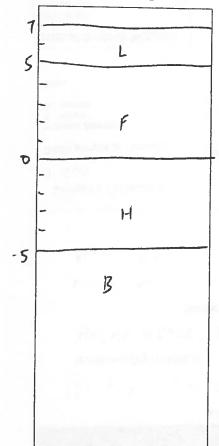
Photos									
Pit with Samples	4								
Looking North	4								
Looking East									
Looking South	回								
Looking West									
Others									
di l									

# 20	Horizon Ma S	S Suffix		De _l	Low	нв	Co	lour	AM	Jus	CF %		ield xture
2				75	44	_ N_				Ţ.:	0	org	
3	Н		'	0		5	10.110	7/1		-	6	ورد	
4					->		10 YR		1		10	self	7
5										39			
6				:			11						
7			- !				i:			i			
9	2				1		-		E	11			
0		= j			!			W g			ė,		
								-					

	old Mine District S	ioil Sampling Field	l Data Sheet
Site		Date	Time
Montagaelp	lines	11. Jun 08 10	: 40 :
Northing (20TNAD83)	Easting (20TNAD83)	Site ID	Sample Type - Horizon
44 43'04. 958" N	63° 10' 56.032" W	M M - 62	No Yes V
Names of San		RepStat	Sampling Depth
Robert Robbers			0 - 5 cm
Kyon Fellenn		Resampled Si No Yes →	te The second se
Samples Collected			
0 - 5 cm		Contamination	Comments:
Depth sample (all honzons) Horizon Sample A - honzon B - horizon Other:	Vegetation Cover Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Unvegetated Surface	None Possible Probable Probable Pefinite Farming Housing Industry Logging Mining Road Garbage Other Weather Sunny/Clear Partly cloudy	(E.g. Presence of waste rock, berms, pits, trenches or other mining activity) - House 20m to W. - Trench and waste rock pile 5m to 5 and E. - Lenfy regetation. - Moderate tree cover.
Local Surface Expression Mineral Surface Form Blanket	Very rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained	Partly cloudy Overcast Rain Sleet Snow	- Garbage in area (debiis)

D: Lithological discontinuity

Ma: Master horizons (Humus, A, B, C)


Suffix: Suffixes

M: Modifier (B1, B2, B3)

Horizon Boundary (HB)

S: Smooth
W: Wavy
I: Irregular
B. Broken

Soil Profile Diagram

Codes for Horizon Description

Colour

Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM)

Y: Visible N: Not visible

Coarse Fragments (CF) Estimated value in %

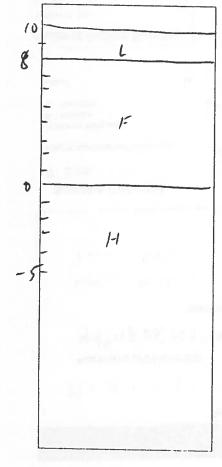
Field Texture

Clay, Sandy Clay, Sandy Clay Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

Photos										
Pit with Samples	Image: Control of the									
Looking North	'									
Looking East										
Looking South										
Looking West										
Others										

# 25	Horizo Ma	ons Suffix			pth	НВ	Colour	DM	CF	Field
1 2	L F			Up +7 +5	Low × 5	W			% 0 0	Texture
3 4 5	H . B .			-5_	-5	5	10 YR 3/1		10	silly sand
6	•			i — i		!				
9		- 1	i	· i						

	G	old Mine Distr	ict So	il Sampling	Field D	ata Sheet
Northing (20TNAD83	Site			Date 11 Jun 08 Site ID	Sam	Time
	ames of Samp			RepStat	sampled Site	Sampling Depth 0 - 5 cm
Samples Collected 0 - 5 cm Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other: Type of Surface Material Mineral Soil Organic Soil Non-Soil Urban		Vegetation Cover Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Unvegetated Surface		Contamination None Possible Probable Definite Farming Housing Industry Logging Minng Road Garbage Other Weather Sunny/Clear Partly cloudy	0000000	Comments: (E.g., Presence of waste rock, berms, pits, trenches or other mining activity) Toe of slope. - Wet aren 7m to W. - Boulderi in area. - Mod. free corer.
Local Surface Expression Mineral Surface Form Blanket Dissected Fan Hummocky Inclined Pitted Level Rolling Ridged Steep Terrace Undulating Veneer		Drainage Very rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained	000000	Overcast Rain Sleet Snow		- Montague Rd. 20m to N Trench 10m E.


>

D: Lithological discontinuity
Ma: Master horizons (Humus, A, B, C)
Suffix: Suffixes
M: Modifier (B1, B2, B3)

Horizon Boundary (HB)

S: Smooth W: Wavy I: Irregular B. Broken

Soil Profile Diagram

Codes for Horizon Description

Colour

Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM)

Y: Visible

N: Not visible

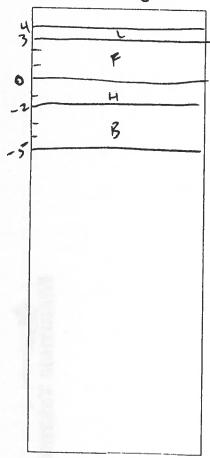
Coarse Fragments (CF) Estimated value in %

Field Texture

Clay, Sandy Clay, Sandy Clay Loam Salt, Sitty Sand, Sitt Loam, Sitty Clay Loam Loam, Sandy Loam, Loamy Sand Sand Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

<u>Photos</u>										
也										
w										

# 25	Horizo Ma	Suffix	N.	Depth Up Low	НВ	Colour		CF %	Field Texture
1 2 3 4 5	F. 4			+ 10 + 8 +8 0 0 -5	W S	_LOYR 2/1		0 0 5	org. org. siltylorg.
6 7 8							er i Alia Gode Sen emi		
9		1	- -						


	Sold Mine District	Soil Sampling Field Data Sheet
Site Mantagnel M Northing (20TNAD83) 44*43'05.729" N		Date Time 11 Jun 08 11:20 : Site ID Sample Type - Horizon No Yes
Names of San	0.00 8. 2.5 9	
Ryon Fellenn		RepStat Sampling Depth O - 5 cm Resampled Site No Yes
Samples Collected 0 - 5 cm Depth sample (all horizons) Horizon Sample A - horizon B - horizon Other: Type of Surface Material Mineral Soil Organic Soil Non-Soil Urban	Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Unvegetated Surface	Contamination Comments: (E.g., Presence of waste rock, berms, pits, trenches or other mining activity) - Probable - Probable - Definite - Farming - Housing - Industry - Logging - Mining - Road - Garbage - Other Weather Sunny/Clear
Local Surface Expression Mineral Surface Form Blanket Dissected Fan Hunmocky Inclined Pitted Level Rolling Ridged Steep Terrace Undulating Vencer	Drainage Very rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained	Partly cloudy Overcast Rain Sleet Snow Air Temp.

D: Lithological discontinuity
Ma: Master horizons (Humus, A, B, C)
Suffix: Suffixes
M: Modifier (B1, B2, B3)

Horizon Boundary (HB) S Smooth

S: Smooth
W: Wavy
t: Irregular
B: Broken

Soil Profile Diagram

Codes for Horizon Description

Colour

Munsell colour or descriptive colour using table 1

Redoximorphic Features (RM)

Y: Visible

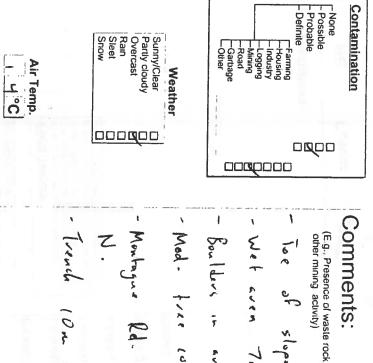
N: Not visible

Coarse Fragments (CF) Estimated value in %

Field Texture

Clay, Sandy Clay Sandy Clay Loam Silt, Silty Sand, Silt Loam, Silty Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium Sand, Coarse Sand, Very Coarse Sand

<u>Photos</u>							
Pit with Samples	더						
Looking North	D'						
Looking East							
Looking South	回						
Looking West							
Others							


# 25	Horizo Ma	Suffix	-	Depth Up Lo	HB	Colour	, DAY	CF %	Field Texture	
1 2	L			· · · · ·	3 w		1.	0	019.	
3	1	D	-		6 B	(10 YR 3/1	. 1	υ	org.	
4	H		- - ·· · · ;		2 B	(10 YR 3/3 and	104R 5/8	10	21/2	
5	B			1-2	- :			20	gilty.	
6	•		H- i		- i		2.24		,	
7	•		7			ii				
в		1251	- 60 t Å	·		1	± 1			
9		-			- x seec	1 -	2 8 8			
	Ř			! !	(1707)		1			

No Yes → Resampled Site	Names of Samplers RepStat	Northing (20TNAD83) Easting (20TNAD83) Site ID 44 43 04. 458" N 63° 50' \$6.032" W	Date Date In a street of the organization of t	-
led Site		Sample Type - Horizon No Yes	Time : 4 0	
	Sampling Depth 0 - 5 cm			

Samples Collected 0 - 5 cm Depth sample (all honzons) Horizon Sample A - honzon B - horizon Corganic Soil Organic Soil	Northing (20TNAD83) 44 43 04. 458" N Names (Lb. 1 Fill
Vegetation Cover Agricultural Crops Conferous Forest Deciduous Forest Mixed Forest Meadow, Wet Field Parkland Shrubland Unvegetated Surface Very rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained Very poorly drained Very poorly drained Very poorly drained	Easting (20TNAD83) 8" N 63° 50' 56.032" W Names of Samplers
Contamination None Possible Probable Definite Garbage Garbage Other Weather Sunny/Clear Partly cloudy Overcast Rain Sleet Snow Air Temp. Air Temp.	Date In Jun 08 16 Site ID S RepStat Resampled Site
Comments: (E.g., Prosence of waste rock, berms, pits, trenches or other mining activity) House 20 m to W. Threach and waste rock pite some to Sand E. Leafy regetation. Moderate tree cover. Garbage in area (debin)	Time : 4 0 Sample Type - Horizon No Yes Sampling Depth 0 - 5 cm

Site Site Pic n t s y s e processing (20TNAD83) Northing (20TNAD83) Heating (20TNAD83) Site Date Fine Sample Type - Horizon No. 1	7		. 7	<u></u>	
Date Jun 08 Jin 1 Sheet Jun 08 Jin 2 Site ID Sample Type - Horizon Ap2 "w RepStat No Yes - Resampled Site No Yes		7.4	lorthing (20TNAE 44° 43` 07.61	6 s + s 5	
Date Date Time Time Data Sheet Data Da	2	. y	083)	· · · · ·	
Time Time Sample Type - Horizon No Yes mpled Site		in piers	6 3° 30' 56, 992" W	17.70 0 2	Joia Wilne District
	No Yes ♣ Resampled Site	RepStat		Date 08	
Sampling Depth 0 - 5 cm			Yes Yes	Time	ata Sheet
		Sampling D			

Non-Soil Urban	Mine	Typ	Other		Hor	Deg	0 - S		T.					
Non-Soil Print		Type of Surface Material	er.	B-horizon	ample	Depth sample (all horizons)	Samples Collected 0 - 5 cm		Kyun Pello	Robert Fickting	Names of Samplers	44. 43, 07.608 " N	Northing (20TNAD83)	Site Min than the site
			a		i.						f Sam			M
	Unvegetated Surface	Parkland Shrubland	Mixed Forest Meadow, Wet Field	Agricultural Crops Coniferous Forest	Vegetation Cover			10			plers	6 3° 30' 56.992"W	Easting (20TNAD83)	7 C V
		<u> </u>	2005	(E)				4 1100		-		٤		j.

Mineral Surface Form
Blanket
Dissected
Fan
Hummocky
Inclined
Pitted
Level
Rolling
Ridged
Steep
Terrace
Undulating
Veneer

Very rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained

0000000

Local Surface Expression

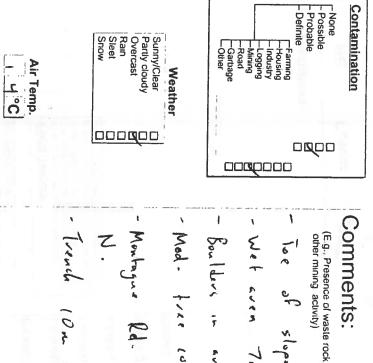
Drainage

	7		`\	(2/2)	·- \		Q (E	((
Trench		Montague	Med -	Boulders	Wet aven	Joe of	(E.g., Presence of was other mining activity)	
10 n E.		Rd. 20m	fire laver.	in avec.	7m	f slope.	(E.g., Presence of waste rock, berms, pits, trenches or other mining activity)	1160.
1	Ŧ				7 2		pits, trenches or	

	N.
	\subseteq
	Ω
ı	2
	W
	District Soil S
	<u> </u>
	¥
	co
	Ö
	=
	co
	a)
	5
	묽.
	\succeq
	3.
1	Ω
,	_
	<u>D</u>
	O.
P	a
3	
	Gold Mine District Soil Sampling Field Data Sheet
	S
	7
5	D D
	4

Terrace (1) Undulating (4) Vencer	Pitted Level Rolling Ridged	urface Expressi	Surface Material	Depth sample (all honzons) Horizon Sample A - honzon B - honzon Other:	Samples Collected 0 - 5 cm	Kyon Fillion A	Names of Samplers	Northing (20TNAD83) 44 43 05, 729 " N	Mcnt hy y ne
	Well drained Moderately well drained Inperfectly drained Poorly drained Very poorly drained	Drainage Very rapidly drained Rapidly drained	Field Parkland Shrubland Unvegetated Surface	Vegetation Cover Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet			Samplers	Easting (20TNAD83) 63°30'55.300" W	M - m c S
	Air Temp.	Weather Sunny/Clear Parily cloudy Overcast Rain Sleet Snow	i de	-None -Possible -Probable -Definite -Housing -Industry -Logging -Mirang	Contamination	Resampled Site No Yes →	RepStat Dup. \$59 "+	Site ID Sampl	Date 1 1 1 1 1 1 1 1 1
			Open aver.	(E.g., Presence of waste rock, berms, pits, trenches or other mining activity) Markagne Rd. 30 m. N.	Comments:		Sampling Depth 6 B . 0 - 5 cm	Sample Type - Horizon No Yes	Time :

3, 12 0 D: Lithological discontinuity


Ma: Master horizons (Humus, A, B, C) S: Smooth W: Wavy Soil Profile Diagram M: Modifier (B1, B2, B3) Horizons l: Irregular B: Broken Suffix: Suffixes Horizon Boundary (HB) I S 5 Munsell colour or descriptive colour using table 1 Colour **Codes for Horizon Description** Horizons Ma B I Suffix (RM) N: Not visible Redoximorphic Features Y: Visible Depth **Horizon Description** MOT HB 3 10 YR 3/3 and loye 10 YR 3/1 Clay, Sandy Clay Sandy Clay Loam Sill, Silly Sand, Sill Loam, Silly Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium, Sand, Coarse Sand, Very Coarse Sand Colour Coarse Fragments (CF)
Estimated value in % **Field Texture** CF C Others Looking East Pit with Samples Looking South Looking West **Looking North** Texture Field Q Q

3

3

Site Site Pic n t s y s e processing (20TNAD83) Northing (20TNAD83) Heating (20TNAD83) Site Date Fine Sample Type - Horizon No. 1	7		. 7	<u></u>	
Date Jun 08 Jin 1 Sheet Jun 08 Jin 2 Site ID Sample Type - Horizon Ap2 "w RepStat No Yes - Resampled Site No Yes		7.4	lorthing (20TNAE 44° 43` 07.61	6 s + s 5	
Date Date Time Time Data Sheet Data Da	2	. y	083)	· · · · ·	
Time Time Sample Type - Horizon No Yes mpled Site		in piers	6 3° 30' 56, 992" W	17.70 0 2	Joia Wilne District
	No Yes ♣ Resampled Site	RepStat		Date 08	
Sampling Depth 0 - 5 cm			Yes Yes	Time	ata Sheet
		Sampling D			

Non-Soil Urban	Mine	Typ	Other		Hor	Deg	0 - S		T.					
Non-Soil Print		Type of Surface Material	er.	B-horizon	ample	Depth sample (all horizons)	Samples Collected 0 - 5 cm		Kyun Pello	Robert Fickting	Names of Samplers	44. 43, 07.608 " N	Northing (20TNAD83)	Site Min than the site
			a		i.						f Sam			M
	Unvegetated Surface	Parkland Shrubland	Mixed Forest Meadow, Wet Field	Agricultural Crops Coniferous Forest	Vegetation Cover			10			plers	6 3° 30' 56.992"W	Easting (20TNAD83)	7 C V
		<u> </u>	2005	(E)				4 1100		-		٤		j.

Mineral Surface Form
Blanket
Dissected
Fan
Hummocky
Inclined
Pitted
Level
Rolling
Ridged
Steep
Terrace
Undulating
Veneer

Very rapidly drained Rapidly drained Well drained Moderately well drained Imperfectly drained Poorly drained Very poorly drained

0000000

Local Surface Expression

Drainage

	7		`\	(2/2)	·- \		Q (E	((
Trench		Montague	Med -	Boulders	Wet aven	Joe of	(E.g., Presence of was other mining activity)	
10 n E.		Rd. 20m	fire laver.	in avec.	7m	f slope.	(E.g., Presence of waste rock, berms, pits, trenches or other mining activity)	1160.
1	Ŧ				7 2		pits, trenches or	

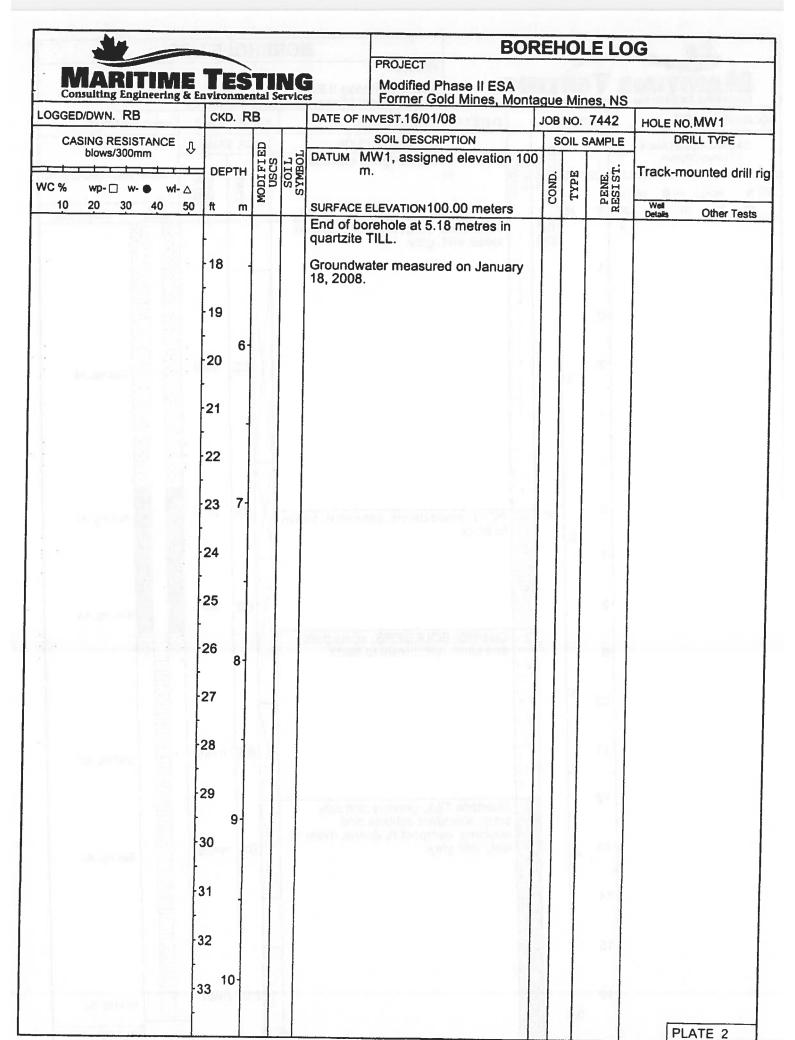
	N.
	\subseteq
	Ω
ı	2
	W
	District Soil S
	<u> </u>
	¥
	co
	Ö
	=
	co
	a)
	5
	묽.
	\succeq
	3.
1	Ω
,	_
	<u>D</u>
	O.
P	a
3	
	Gold Mine District Soil Sampling Field Data Sheet
	S
	7
5	D D
	4

Terrace (1) Undulating (4) Vencer	Pitted Level Rolling Ridged	urface Expressi	Surface Material	Depth sample (all honzons) Horizon Sample A - honzon B - honzon Other:	Samples Collected 0 - 5 cm	Kyon Fillion A	Names of Samplers	Northing (20TNAD83) 44 43 05, 729 " N	Mcnt hy y ne
	Well drained Moderately well drained Inperfectly drained Poorly drained Very poorly drained	Drainage Very rapidly drained Rapidly drained	Field Parkland Shrubland Unvegetated Surface	Vegetation Cover Agricultural Crops Coniferous Forest Deciduous Forest Mixed Forest Meadow, Wet			Samplers	Easting (20TNAD83) 63°30'55.300" W	M - m c S
	Air Temp.	Weather Sunny/Clear Parily cloudy Overcast Rain Sleet Snow	i de	-None -Possible -Probable -Definite -Housing -Industry -Logging -Mirang	Contamination	Resampled Site No Yes →	RepStat Dup. \$59 "+	Site ID Sampl	Date 1 1 1 1 1 1 1 1 1
			Open aver.	(E.g., Presence of waste rock, berms, pits, trenches or other mining activity) Markagne Rd. 30 m. N.	Comments:		Sampling Depth 6 B . 0 - 5 cm	Sample Type - Horizon No Yes	Time :

3, 12 0 D: Lithological discontinuity

Ma: Master horizons (Humus, A, B, C) S: Smooth W: Wavy Soil Profile Diagram M: Modifier (B1, B2, B3) Horizons l: Irregular B: Broken Suffix: Suffixes Horizon Boundary (HB) I S 5 Munsell colour or descriptive colour using table 1 Colour **Codes for Horizon Description** Horizons Ma B I Suffix (RM) N: Not visible Redoximorphic Features Y: Visible Depth **Horizon Description** MOT HB 3 10 YR 3/3 and loye 10 YR 3/1 Clay, Sandy Clay Sandy Clay Loam Sill, Silly Sand, Sill Loam, Silly Clay Loam Loam, Sandy Loam, Loamy Sand Sand, Very Fine Sand, Fine Sand, Medium, Sand, Coarse Sand, Very Coarse Sand Colour Coarse Fragments (CF)
Estimated value in % **Field Texture** CF C Others Looking East Pit with Samples Looking South Looking West **Looking North** Texture Field Q Q

3


3

Appendix D

Explanation of Symbols and Terms Monitor Well and Borehole Logs

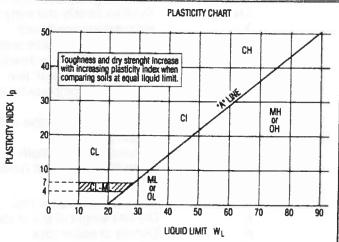
	4	17								BOREHOLE LOG					
Cor	IA	RI7 g Eng	l III	ME ing & E		ES	TI ntal S	N (PROJECT Modified Phase II ESA Former Gold Mines, Mont	adili	o Mi	nes NS			
LOGGE				Ĥ.		D. R			DATE OF INVEST.16/01/08			. 7442	HOLE NO.MW1		
CA	SING F	RESIS 3/300n	TANC	E Î			G	,,	SOIL DESCRIPTION DATUM MW1, assigned elevation 100		SOIL	SAMPLE	DRILL TYPE		
WC %	wp-[wl- \triangle	DE	PTH	MODIFIED USCS	SOIL	m.	COND.	TYPE	PENE. RESIST.	Track-mounted drill ri		
10	20	30	40	50	ft	m			SURFACE ELEVATION 100.00 meters	ŭ	H	PI	Well Details Other Tests		
				Δ̈́	-		SP SM		TAILINGS, sand, trace silt, layered, loose, wet, grey.						
· .					1										
					2							jul .			
					-3	1-				$\ $	ss	n=0	Soil Hg, As.		
					4					$ / \! / \! $		ĸ,			
				10	-5							15			
					6		РТ		PEAT, wood debris, saturated, brown		ss	n=5	Soil Hg, As.		
					7	2-			to black.			he.			
					-8						SS	n=5	Soil Hg, As.		
					9			10 al	Quartzite BOULDERS, some peat and sand, wet, brown to black.			_ ==			
					10	3-		000							
					-11	-		0000			SS	n=16	Soil Hg, As		
					12		2000	00	Quartzite TILL, gravelly and silty and, abundant cobbles and						
					-13	4-	ST ST STOR	%	oulders, compact to dense, moist to yet, light grey.	X	ss	n=35	Soil Hg, As.		
					-14		Man Wan Y					PE.			
					15		1000000					Sell-			
					16	5-	218/8/20				ss	n=41	Soil Hg, As		
		YALI					2			/		The state of	PLATE 1		

BOREHOLE LOG)G					
· Co	nsulti	R ng En	Tigin	ering	E & E	nviro	ES	TI ntal S	N (PROJECT Modified Phase II ESA Former Gold Mines, Monta	agu	e Mi	nes. NS	
LOGGE	D/DW	N. R	В			СК	D. F	RB		DATE OF INVEST.17/01/08			7442	HOLE NO.MW2
CA	ASING	RESI	STA	NCE	Û			a		SOIL DESCRIPTION	T	SOIL	SAMPLE	DRILL TYPE
WC W	L	vs/300	_			DE	PTH	MODIFIED USCS	SOIL	DATUM MW1, assigned elevation 100 m.		TYPE	PENE. RESIST.	Track-mounted drill rig
WC %	wp 20	-□ v 30	V- •	40	- △ 50	ft	m	Q.	0	SURFACE ELEVATION99.93 meters	CNO	E E	PEN	Well
		- 00			<u>V</u>	"	111	SP	+	TAILINGS, sand, trace silt, layered,	+		DE,	Details Other Tests
					Ā.	1		SM		loose, wet, grey.			Á	
					3	-2	BIS					ss	n=3	Soil Hg, As.
						-3	1.	PT		PEAT, saturated, brown to black.			Y	
						-4					X	SS	n=17	Soil Hg, As.
								il di	000	Quartzite BOULDERS, some peat and sand, compact, wet, brown.	1			
						6	2-	7	000000	The main sated to the account of	IX	ss	n=33	Soll Hg, As.
						7	-		°0 =	Overhile Tit I will like				
						8				Quartzite TILL, silt, light grey.Quartzite TILL, gravelly and silty sand, abundant cobbles and boulders, compact to dense, moist to wet, light grey.	\bigvee	SS	n=20	Soil Hg, As.
						9								
						10	3-			in term of every 1.87 all terms of every 1.87 all term	\bigvee	SS	n=49	Soil Hg, As.
					}	11								
						12							312	
					ŀ	13	4-	180000			X	IGEF		
					}	14		445 191 AC						
					-	15			1	End of borehole at 4.6 metres in quartzite TILL.				
					1	6	5-			Groundwater measured on January 8, 2008.				PLATE 3

	15	17				_				PROJECT BOREHOLE L)G	
Co	A	RI g Eng	TIM Ineering	E & E		ES		N (ervice		Modified Phase II ES Former Gold Mines, I		que	Min	es. NS		
LOGGE	D/DWN	. RB			СК	D. R	RB		DATE OF				NO.MW3			
CA	SING F	RESIS	TANCE	Û			Q			SOIL DESCRIPTION		S	OIL S	AMPLE		DRILL TYPE
WC %	WD- [7 W-		<u> </u>	DE	PTH	DIFI	SOIL		MW1, assigned elevation.	n 100	COND.	TYPE	PENE. RESIST.	Track	mounted drill r
10	20	30	40	50	ft	m	M	0,	SURFACE	ELEVATION100.23 meter	rs	ស	H	PE	Well Details	Other Tests
				Δ	-1		SP SM			S, sand, trace silt, layer					Details	Culti Tests
					-2	ura						\setminus	SS	n=3		Soil Hg, As.
					-3 -4	1-						V	SS	n=2		0-111
					-5		РТ	₩	PEAT, w	ood debris, saturated, bi	rown	$\left. \right $				Soil Hg, As.
					6				to yellow- Quartzite brown.	BOULDERS, peat, wet,	,	\bigvee	ss	n=26		Soil Hg, As.
					7	2-		00000								
					8	-		00000								
					9	3+			grey.Quai sand, abu	TILL, silt, light rtzite TILL, gravelly and indant cobbles and	silty					
					10			166	ooulders, wet, light	compact to dense, mois	st to					
					12									ar l		
					13	4-						AL.	GER			Soil Hg, As.
					14			333	nd of bor uartzite T	rehole at 4.3 metres in ILL.						on rig, ra.
					15				Froundwa 8, 2008.	ter measured on Januar	ry			8)		
					16	5-								- 84	١	PLATE 4

SOIL CLASSIFICATION SYSTEM (MODIFIED U.S.C.)

MAJOR DIVISION			GROUP SYMBOL	GRAPHIC SYMBOL	COLOR	TYPICAL DESCRIPTION	LABOR CLASSIF CRIT	CATION						
	HIGHLY ORGANIC SOILS		HIGHLY ORGANIC SOILS		HIGHLY ORGANIC SOILS		HIGHLY ORGANIC SOILS		Pt		ORANGE	PEAT AND OTHER HIGHLY ORGANIC SOILS	STRONG COLOR OR ODOR, AND FIBROUS TEXTURE	
	W =	CLEAN GRAVELS	GW	14	RED	WELL-GRADED GRAVELS, GRAVEL-SAND MIXTURES, <5% FINES	$Cu = \frac{D_{ma}}{D_{10}} > 4 Cc = \frac{1}{D_1}$	$\frac{{{{D}_{10}})^2}}{{_{0}}{_{0}}} = 1103$						
ENE SOZE)	W MO. 200 SEVE SZE) GRAVELS MORE THAN HALF COARSE FRACTION LAFER THAN NO.4 SIEVE SZE	00044 0104550	GP		RED	POORLY-GRADED GRAVELS, AND GRAVEL- SAND MOXTURES, <5% FINES	NOT MEETIN ABOVE REQUI							
NO. 200 SR		DIRTY GRAVELS	GM		YELLOW	SILTY GRAVELS, GRAVEL-SAND-SILT MDXTURES >12% FINES	ATTERBERG BELOW "A" LI Ip < 4	INE OR						
LANGER THAN N	_		GC		YELLOW	CLAYEY GRAVELS, GRAVEL-SAND-CLAY MIXTURES > 12% FINES	ATTERBERG ABOVE "A" LI Ip > 7	NE OR						
(MDRE THAN HALF BY WEIGHT LANGER THAN HOL 200 SEVE SOZE) SAMOS MADRE THAN HALF COARSE RACTION SAMLER THAN HALF CO FRACTION SAMLER THAN NO.4 SEVE SOZE NO.4	Ма	CLEAN SANDS	5W	4.4.6.0.4 .4.6.0.4	RED	WELL-GRADED SANDS, GRAVELLY SANDS, <5% FINES	$Cu = \frac{D_{tot}}{D_{10}} > 6 \ Cc = \frac{\{i}{D_{10}}$	$\frac{{\rm D}_{10})^2}{{\rm px}{\rm D}_{10}}=1$ to 3						
	HALF COARE MALLER THA FRE SIZE		SP		RED	POORLY-GRADED SANDS, OR GRAVELLY SANDS, <5% FINES	NOT MEETING ALL ABOVE REQUIRMENTS							
	SA MORE THAN FRACTION SI NO.4 SI	DIRTY SANDS	SM		YELLOW	SILTY SANDS, SAND-SILT MIXTURES >12% FINES	ATTERBERG LIMITS BELOW "A" LINE OR p < 4							
	a a bin(15A		SC		YELLOW	CLAYEY SANDS, SAND-CLAY MOXTURES > 12% FINES	ATTERBERG LIMITS ABOVE "A" LINE OR Ip > 7							
	SILTS BELOW "A" LINE ON		ML		GREEN	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY SANDS OF SLIGHT PLASTICITY	W _L < 50							
SEVE SZE)	NEGL	PLASTICITY CHART; NEGLIGIBLE ORGANIC CONTENT			BLUE	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS, FINE SANDY OR SILTY SOILS	₩ _L > 50							
SSES NO 200		CLAYS			GREEN	INORGANIC CLAYS OF LOW PLASTICITY, GRAVELLY, SANDY, OR SILTY CLAYS, LEAN CLAYS	W _L < 30							
FINE - GRANKED SOUS INORE THAN HALF BY WEIGHT PASSES NO.200 SIENE SZE)	ABOVE "A" LINE ON PLASTICITY CHART; NEGLIGIBLE ORGANIC CONTENT		CI		GREEN- BLUE	INORGANIC CLAYS OF MEDIUM PLASTICITY SILTY CLAYS	W _L > 30, < 50	SEE CHART BELOW						
			СН		BLUE	INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS	W _L > 50							
(MORE TH		TS & ORGANIC CLAYS	OL		GREEN	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY	W _L < 50							
		DW 'A' LINE ON STICITY CHART	0H		BLUE	ORGANIC CLAYS OF HIGH PLASTICITY	W _L > 50							



- 1. All sieve sizes mentioned on this chart are U.S. Standard, ASTM E11.
- Boundary classifications possessing characteristics of two groups are given combined group symbols eg GW-GC is a well-graded gravel-sand mbœure with clay binder between 5% and 12%.
- Soil fractions and limiting textural boundaries are in accordance with the Unilied Soil Classification System, except that an inorganic clay of medium plasticity (CI) is recognized.
- The following adjectives may be employed to define percentage ranges by weight of minor components:

and	50 - 36%
gravelly, sandy, silty, clayey, ect.	35 - 21%
some	20 - 11%
trace	10 - 1%

SOIL SAMPLES

CONDITION - This column graphically indicates the depth and condition of the sample:

TYPE - The type of sample is indicated in this column as follows:

- A auger sample
- B block sample
- C rock core, or frozen soil core
- D drive sample
- G grab sample
- SS split spoon
- P Pitcher tube sample
- U tube sample (usually thin-walled)
- W wash or air return sample
- O other (see report text)

PENETRATION RESISTANCE — Unless otherwise noted this column refers to the number of blows (N) of a 140 pound (63.5 kg) hammer freely dropping 30 inches (0.76 m) required to drive a 2 inch (50.8 mm) O.D. open-end sampler 0.5 feet (0.15 m) to 1.5 feet (0.45 m) into the soil, or until 100 blows have been applied, in which case, the penetration is stated. This is the standard penetration test referred to in ASTM D 1586.

OTHER TESTS

In this column are tabulated results of other laboratory tests as indicated by the following symbols:

*C	Consolidation test
Fines	Percentage by weight smaller than #200 sieve
D_R	Relative density (formerly specific gravity)
k	Permeability coefficient
*MA	Mechanical grain size analysis and hydrometer test (if appropriate)
рр	Pocket pentrometer strength
*q	Triaxial compression test
qu	Unconfined compressive strength
*SB	Shearbox test
SO ₄	Concentration of water-soluble sulphate
*ST	Swelling test
TV	Torvane shear strength
VS	Vane Shear Strength (undistrubed-remolded)
εf	Unit strain at failure
γ	Unit weight of soil or rock
γd	Dry unit weight of soil or rock
ρ	Density of soil or rock
ρ_d	Dry density of soil or rock

^{*} The results of these tests usually are reported separately

SYMBOLS AND TERMS USED ON THE BOREHOLE AND TEST PIT RECORDS

SOIL DESCRIPTION

Behavioural properties (i.e. plasticity, permeability) take precedence over particle gradation in describing soils.

Terminology describing soil structure:

Desiccated	- having visible signs of weathering by oxidation
	of clay minerals, shrinkage cracks etc.
Fissured	- having cracks, and hence a blocky structure
Varved	-composed of regular alternating layers of silt and clay
Stratified	 composed of alternating layers or different soil types, e.g. silt and sand or silt and clay
Well Graded	 having wide range in grain sizes and substantial amounts of all intermediate particle sizes
Uniformly Graded	- predominantly of one grain size.

Terminology used for describing soil strata based upon the proportion of individual particle size present:

Trace, or occasional	Less than 10%
Some	10-20%
Adjective (e.g. silty or sandy)	20-35%
And (e.g. silt and sand)	35-50%

The standard terminology to describe cohesionless soils includes the relative density, as determined by laboratory test or by the Standard Penetration Test 'N' - value: the number of blows of 140 pound (64 kg) hammer falling 30 inches (760 mm), required to drive a 2 inch (50.8 mm) O.D. split spoon sampler one foot (305 mm) into the soil.

Relative Density	'N' Value	Relative Density %
Very loose	<4	<15
Loose	4-10	15-35
Compact	10-30	35-65
Dense	30-50	65-85
Very Dense	>50	>85

The standard terminology to describe cohesive soils includes the consistency, which is based on undrained shear strength as measured by insitu vane tests, penetrometer tests, unconfined compression test, or occasionally by standard penetration tests.

Consistency	Undrained Shear S	'N' Value	
	Kips/sq.ft.	kPa	
Very Soft	<0.25	<12.5	<2
Soft	0.25-0.5	12.5-25	2-4
Firm	0.5-1.0	25-50	4-8
Stiff	1.0-2.0	50-100	8-15
Very Stiff	2.0-4.0	100-200	15-30
Hard	>4.0	>200	>30

Appendix E

Laboratory Analytical Results
Mercury, Arsenic and Total Organic Carbon

TABLE E2: Mercury, Arsenic and Total Organic Carbon Results in <2mm Soil Fraction

Client: NS Department of Transportation and Infrastructure Renewal

Site: Former Gold Mine Site, Montague Mines, NS Date Sampled: January 16, January 17, 2008

MTL Project No. 7442

F	arameter	Mercury ¹	Arsenic ¹	Total Organic Carbon
	Units	mg/kg	mg/kg	g/kg
CCME Res	sidential Guidelines	6.6	12	indicate - depth
	MW1/1 (0.3-1.5 m)	0.7	5,300	-
	MW1/2 (1.5-2.1 m)	4.4	1,700	-
	MW1/3 (2.1-2.7 m)	0.41	900	
	MW1/4 (3.0-3.7 m)	0.04	190	-
	MW1/5 (3.7-4.3 m)	0.22	510	•
	MW1/6 (4.7-5.2 m)	0.03	25	
	MW2/1 (0.3-0.9 m)	3.3	8,900	-
	MW2/2 (0.9-1.5 m)	0.07	30	•
	MW2/3 (1.5-2.1 m)	0.09	290	-
	MW2/4 (2.1-2.7 m)	0.05	120	
	MW2/5 (2.7-3.4 m)	0.05	76	
	MW3/1 (0.3-0.9 m)	0.96	2,400	
	MW3/2 (0.9-1.5 m)	1.9	2,800	-
	MW3/3 (1.5-2.1 m)	0.69	1,900	-
Sample ID (depth)	MW3/4 (4.0-4.3 m)	0.03	78	-
	MM-1 (0-5 cm)	0.14	16	70
	MM-1 (0-3.5 cm)	0.19	18	280
	MM-1 (3.5-5 cm)	0.04	7	27
	MM-2 (0-5 cm)	0.08	66	33
	MM-2 (0-5 cm) LAB DUP		66	
	MM-2 (0-3 cm)	0.25	34	170
	MM-2 (3-5 cm)	0.04	24	15
	MM-3 (0-5 cm)	3.6	32	180
	MM-4 (0-5 cm)	7.6	3,500	3.1
	MM-4 (0-5 cm) LAB DUP		3,500	
	MM-5 (0-5 cm)	1.6	320	61
	MM-7 (0-5 cm)	1.9	220	53
	MM-7 (0-3 cm)	2.1	290	130
	MM-7 (3-5 cm)	0.47	390	33

Notes:

¹ Criteria published in 2007 Update of CCME Canadian Environmental Quality Guidelines for residential land use.

TABLE E2 (cont'd): Mercury, Arsenic and Total Organic Carbon Results in <2mm Soil Fraction

Client: NS Department of Transportation and Infrastructure Renewal

Site: Former Gold Mine Site, Montague Mines, NS

Date Sampled: May 15 and June 2, 2008

MTL Project No. 7442

r	arumeter	Mercury ¹	Arsenic ¹	Total Organic Carbon
	l'nits	mg/kg	mg/kg	g/kg
CCME Res	sidential Guidelines	6,6	12	
	MM-8 (0-5 cm)	16	4,100	18
	MM-9 (0-5 cm)	0.63	340	250
	MM-10 (0-5 cm)	0.09	45	47
	MM-10 (0-1.5 cm)	0.21	11	230
	MM-10 (1.5-5 cm)	0.1	67	26
	MM-11 (0-5 cm)	0.16	130	70
	MM-11 (0-2 cm)	0.23	10	230
	MM-11 (2-5 cm)	0.17	150	46
	MM-12 (0-5 cm)	0.26	12	350
	MM-12 (0-5 cm) LAB DUP	-		340
	MM-13 (0-5 cm)	0.15	9	320
	MM-14 (0-5 cm)	0.31	25	290
	MM-15 (0-5 cm)	0.38	55	310
	MM-16 (0-5 cm)	0.24	12	240
County ID (do-sh)	MM-17 (0-5 cm)	0.22	14	310
Sample ID (depth)	MM-18 (0-5 cm)	0.22	18	320
	MM-19 (0-5 cm)	0.28	26	310
	MM-20 (0-5 cm)	0.33	23	330
	MM-21 (0-5 cm)	0.25	20	200
	MM-22 (0-5 cm)	0.29	- 43	330
	MM-23 (0-5 cm)	0.17	98	68
	MM-23 (0-5 cm) LAB DUP	0.15	•	-
	MM-23 (0-3 cm)	0.32	110	250
	MM-23 (3-5 cm)	0.13	64	43
	MM-23 (3-5 cm) LAB DUP	•	67	
	MM-24 (0-5 cm)	0.16	98	73
	MM-25 (0-5 cm)	0.24	160	110
	MM-26 (0-5 cm)	0.12	17	76
	MM-26 (0-2 cm)	0.2	22	210
	MM-26 (2-5 cm)	0.02	16	11

Notes:

¹ Criteria published in 2007 Update of CCME Canadian Environmental Quality Guidelines for residential land use.

TABLE E2 (cont'd): Mercury, Arsenic and Total Organic Carbon Results in <2mm Soil Fraction

Client: NS Department of Transportation and Infrastructure Renewal

Site: Former Gold Mine Site, Montague Mines, NS Date Sampled: May 15, May 20 and June 2, 2008

MTL Project No. 7442

	Parameter	Mercury ¹	Arsenic	Total Organic Carbon	
	Units	mg/kg	mg/kg	g/kg	
CCME R	esidential Guidelines	6.6	12		
	MM-27 (0-5 cm)	021	50	340	
	MM-28 (0-5 cm)	0.15	2,100	64	
	MM-28 (0-5 cm) LAB DUP			71	
	MM-28 (0-3 cm)	0.44	1,100	210	
	MM-28 (3-5 cm)	0.19	2,200	79	
	MM-28 (3-5 cm) LAB DUP	11.	2,100		
	MM-29 (0-5 cm)	0.32	77	390	
	MM-30 (0-5 cm)	0.31	31	210	
	MM-31 (0-5 cm)	0.13	40	400	
	MM-32 (0-5 cm)	0.46	270	190	
	MM-33 (0-5 cm)	1.1	11,000	140	
	MM-34 (0-5 cm)	0.48	220	350	
	MM-35 (0-5 cm)	0.2	610	22	
	MM-36 (0-5 cm)	0.7	580	250	
Sample ID (depth)	MM-38 (0-5 cm)	2.4	780	67	
sample ID (depth)	MM-39 (0-5 cm)	3.2	1,200	21	
	MM-40 (0-5 cm)	0.56	330	73	
	MM-41 (0-5 cm)	1.2	2,400	9	
	MM-42 (0-5 cm)	2.1	890	110	
	MM-43 (0-5 cm)	0.67	250	94	
	MM-44 (0-5 cm)	0.9	640	110	
	MM-47 (0-5 cm)	25	63	24	
	MM-48 (0-5 cm)	2,8	1,000	70	
	MM-50 (0-5 cm)	4.4	2,500	27	
	MM-50 (0-5 cm) LAB DUP			24	
	MM-51 (0-10 cm)	0.94	1,800	1.4	
	MM-51 (0-10 cm) LAB DUP			1.6	
	MM-52 (0-10 cm)	0.58	17,000	1.1	
	MM-53 (0-10 cm)	0.3	2,600	0.3	
	MM-54 (0-10 cm)	8.1	2,600	70	

Notes:

¹Criteria published in 2007 Update of CCME Canadian Environmental Quality Guidelines for residential land use.

TABLE E2 (cont'd): Mercury, Arsenic and Total Organic Carbon Results in <2mm Soil Fraction

Client: NS Department of Transportation and Infrastructure Renewal

Site: Former Gold Mine Site, Montague Mines, NS Date Sampled: May 20, June 2 and June 11, 2008

MTL Project No. 7442

Parameter		Mercury ¹	Arsenic ¹	Total Organic Carbon	
	Units	mg/kg	mg/kg	g/kg	
CCME Residential Guidelines		6.6	12		
	MM-55 (0-5 cm) MTL DUP of MM-33 (0-5 cm)	1.1	12,000	170	
	MM-55 (0-5 cm) LAB DUP	-		200	
	MM-56 (0-5 cm) MTL DUP of MM-26 (0-5 cm)	0.16	16	120	
	MM-57 (0-5 cm) MTL DUP of MM-23 (0-5 cm)	0.15	140	71	
	MM-58 (0-5 cm) MTL DUP of MM-60 (0-5 cm)	0.38	51	280	
	MM-59 (2-5 cm) MTL DUP of MM-64 (2-5 cm)	0.17	110	39	
Sample ID (depth)	MM-59 (2-5 cm) LAB DUP	0.16	•	-	
Sample 1D (deptu)	MM-60 (0-5 cm)	0.37	48	250	
	MM-61 (0-5 cm)	0.4	37	310	
	MM-62 (0-5 cm)	0.33	25	310	
	MM-63 (0-5 cm)	0.28	17	360	
	MM-64 (0-5 cm)	0.22	110	110	
	MM-64 (0-2 cm)	0.27	32	330	
3 - 10 - 20	MM-64 (2-5 cm)	0.16	120	52	

Notes:

¹Criteria published in 2007 Update of CCME Canadian Environmental Quality Guidelines for residential land use.

TABLE E3: Arsenic and Total Organic Carbon Results in <150 µm Soil Fraction

Client: NS Department of Transportation and Infrastructure Renewal

Site: Former Gold Mine Site, Montague Mines, NS Date Sampled: May 15, May 20 and June 2, 2008

MTL Project No. 7442

	Parameter Units		Total Organic Carbon
			g/kg
CCME R	esidential Guidelines	12	•
	MM-1 (0-5 cm)	10	46
	MM-1 (0-3.5 cm)	30	150
	MM-1 (0-3.5 cm) LAB DUP	-	150
	MM-1 (3.5-5 cm)	6	22
	MM-2 (0-5 cm)	76	70
	MM-2 (0-3 cm)	40	250
	MM-2 (3-5 cm)	13	13
	MM-3 (0-5 cm)	28	190
	MM-4 (0-5 cm)	3,600	2.8
	MM-5 (0-5 cm)	520	49
	MM-7 (0-5 cm)	460	53
	MM-7 (0-3 cm)	210	120
	MM-7 (3-5 cm)	440	32
	MM-8 (0-5 cm)	3,900	30
Sample ID (depth)	MM-9 (0-5 cm)	230	260
	MM-9 (0-5 cm) LAB DUP	-	260
	MM-10 (0-5 cm)	29	30
	MM-10 (0-1.5 cm)	11	230
	MM-10 (1.5-5 cm)	86	31
	MM-10 (1.5-5 cm) LAB DUP	86	T
	MM-11 (0-5 cm)	130	45
	MM-11 (0-2 cm)	8	160
	MM-11 (2-5 cm)	170	36
	MM-12 (0-5 cm)	10	300
	MM-13 (0-5 cm)	10	240
	MM-14 (0-5 cm)	31	300
	MM-15 (0-5 cm)	54	240
	MM-16 (0-5 cm)	23	430
	MM-17 (0-5 cm)	17	320

Notes:

[value] - Exceeds applicable guideline

¹Criteria published in 2007 Update of CCME Canadian Environmental Quality Guidelines for residential land use.

TABLE E3 (cont'd): Arsenic and Total Organic Carbon Results in <150 µm Soil Fraction

Client: NS Department of Transportation and Infrastructure Renewal

Site: Former Gold Mine Site, Montague Mines, NS Dates Sampled: May 15, May 20 and June 2, 2008

MTL Project No. 7442

Parameter		Arsenic ¹	Total Organic Carbon
	Units	mg/kg	g/kg
CCME Residential Guidelines		12	
***************************************	MM-18 (0-5 cm)	27	350
	MM-19 (0-5 cm)	23	360
	MM-20 (0-5 cm)	17	320
	MM-21 (0-5 cm)	19	160
	MM-22 (0-5 cm)	62	240
	MM-23 (0-5 cm)	120	68
	MM-23 (0-3 cm)	70	220
	MM-23 (3-5 cm)	70	42
	MM-23 (3-5 cm) LAB DUP	-	39
	MM-24 (0-5 cm)	110	55
	MM-24 (0-5 cm) LAB DUP	120	
	MM-25 (0-5 cm)	190	91
	MM-26 (0-5 cm)	20	91
	MM-26 (0-2 cm)	22	210
Sample ID (depth)	MM-26 (2-5 cm)	19	7.1
	MM-27 (0-5 cm)	40	210
	MM-28 (0-5 cm)	2,600	53
	MM-28 (0-5 cm) LAB DUP	•	57
	MM-28 (0-3 cm)	770	230
	MM-28 (3-5 cm)	2,500	54
	MM-29 (0-5 cm)	100	350
	MM-30 (0-5 cm)	32	230
	MM-31 (0-5 cm)	47	400
	MM-32 (0-5 cm)	240	190
	MM-33 (0-5 cm)	12,000	95
	MM-34 (0-5 cm)	250	290
	MM-35 (0-5 cm)	520	29
	MM-36 (0-5 cm)	640	220
	MM-38 (0-5 cm)	980	57

Notes:

¹Criteria published in 2007 Update of CCME Canadian Environmental Quality Guidelines for residential land use.

TABLE E3 (cont'd): Arsenic and Total Organic Carbon Results in <150 µm Soil Fraction

Client: NS Department of Transportation and Infrastructure Renewal

Site: Former Gold Mine Site, Montague Mines, NS

Dates Sampled: May 15, May 20, June 2 and June 11, 2008

MTL Project No. 7442

	Parameter	Arsenic ¹	Total Organic Carbon
	Units		g/kg
CCME Residential Guidelines		12	•
	MM-38 (0-5 cm) LAB DUP	1,000	-
	MM-39 (0-5 cm)	1,600	19
	MM-40 (0-5 cm)	290	75
	MM-41 (0-5 cm)	3,000	32
	MM-42 (0-5 cm)	1,000	110
	MM-43 (0-5 cm)	350	52
	MM-44 (0-5 cm)	630	94
	MM-47 (0-5 cm)	54	18
	MM-48 (0-5 cm)	860	66
	MM-50 (0-5 cm)	2,700	18
	MM-51 (0-10 cm)	3,500	3.8
	MM-52 (0-10 cm)	35,000	2.6
	MM-53 (0-10 cm)	5,700	0.4
ample ID (depth)	MM-54 (0-10 cm)	5,700	54
ampie ID (depin)	MM-55 (0-5 cm) MTL DUP of MM-33 (0-5 cm)	12,000	120
	MM-56 (0-5 cm) MTL DUP of MM-26 (0-5 cm)	15	110
	MM-57 (0-5 cm) MTL DUP of MM-23 (0-5 cm)	110	57
	MM-58 (0-5 cm) MTL DUP of MM-60 (0-5 cm)	73	230
	MM-59 (2-5 cm) MTL DUP of MM-64 (2-5 cm)	130	45
	MM-59 (2-5 cm) LAB DUP	130	-
	MM-60 (0-5 cm)	41	270
	MM-60 (0-5 cm) LAB DUP	-	270
	MM-61 (0-5 cm)	51	290
	MM-62 (0-5 cm)	31	340
	MM-63 (0-5 cm)	21	300
	MM-64 (0-5 cm)	120	110
	MM-64 (0-2 cm)	39	300
	MM-64 (2-5 cm)	130	60

N	ot	29
1.4	Uŧ	63

¹Criteria published in 2007 Update of CCME Canadian Environmental Quality Guidelines for residential land use.

TABLE E4: Dry Weight Calculations and Moisture Results in Soil Client: NS Department of Transportation and Infrastructure Renewal

Site: Former Gold Mine Site, Montague Mines, NS Date Sampled: May 15, 2008 - June 11, 2008

MTL Project No. 7442

Parameter Units		< 2mm	< 150 μm	Moisture
		(% passing)	(% passing)	(%)
	MM-1 (0-5 cm)	88	29	44
	MM-1 (0-3.5 cm)	94	24	65
	MM-1 (3.5-5 cm)	81	30	24
	MM-2 (0-5 cm)	88	30	41
	MM-2 (0-3 cm)	91	40	60
	MM-2 (3-5 cm)	86	36	25
	MM-3 (0-5 cm)	96	27	68
	MM-4 (0-5 cm)	100	99	30
	MM-5 (0-5 cm)	83	45	36
	MM-7 (0-5 cm)	80	37	41
	MM-7 (0-3 cm)	97	46	57
	MM-7 (3-5 cm)	91	52	29
Sample ID	MM-8 (0-5 cm)	96	42	35
Sample 12	MM-9 (0-5 cm)	64	12	74
	MM-10 (0-5 cm)	84	17	37
	MM-10 (0-1.5 cm)	99	49	66
	MM-10 (1.5-5 cm)	98	41	29
and the second	MM-11 (0-5 cm)	73	23	34
	MM-11 (0-2 cm)	99	22	64
	MM-11 (2-5 cm)	68	18	34
	MM-12 (0-5 cm)	100	31	67
141	MM-13 (0-5 cm)	97	25	75
	MM-14 (0-5 cm)	95	23	71
	MM-15 (0-5 cm)	99	30	73
	MM-16 (0-5 cm)	90	20	79
96	MM-17 (0-5 cm)	96	36	75

TABLE E4 (Con't): Dry Weight Calculations and Moisture Results in Soil Client: NS Department of Transportation and Infrastructure Renewal

Site: Former Gold Mine Site, Montague Mines, NS Date Sampled: May 15, 2008 - June 11, 2008

MTL Project No. 7442

Parameter		< 2mm	< 150 μm	Moisture
	Units		(% passing)	(%)
	MM-18 (0-5 cm)	96	28	73
	MM-18 (0-5 cm) LAB DUP	95	31	
	MM-19 (0-5 cm)	95	29	74
	MM-20 (0-5 cm)	91	23	74
	MM-21 (0-5 cm)	81	27	78
	MM-22 (0-5 cm)	93	20	67
	MM-23 (0-5 cm)	92	42	37
	MM-23 (0-3 cm)	95	40	64
	MM-23 (3-5 cm)	93	35	35
	MM-24 (0-5 cm)	85	41	41
	MM-25 (0-5 cm)	99	40	50
	MM-26 (0-5 cm)	95	34 :	35
	MM-26 (0-2 cm)	98	38	56
Sample ID	MM-26 (2-5 cm)	94	34	19
	MM-27 (0-5 cm)	96	26	74
	MM-28 (0-5 cm)	90	25	44
	MM-28 (0-3 cm)	96	44	73
	MM-28 (3-5 cm)	74	25	47
	MM-29 (0-5 cm)	85	25	78
	MM-30 (0-5 cm)	96	49	69
	MM-31 (0-5 cm)	100	36	77
	MM-32 (0-5 cm)	96	45	60
	MM-33 (0-5 cm)	94	34	58
	MM-34 (0-5 cm)	89	31 .	69
	MM-35 (0-5 cm)	94	57	29
	MM-36 (0-5 cm)	61	32	53
	MM-38 (0-5 cm)	97	50	38

TABLE E4 (Con't): Dry Weight Calculations and Moisture Results in Soil

Client: NS Department of Transportation and Infrastructure Renewal

Site: Former Gold Mine Site, Montague Mines, NS Date Sampled: May 15, 2008 - June 11, 2008

MTL Project No. 7442

Parameter Units		< 2mm	< 150 μm	Moisture
		(% passing)	(% passing)	(%)
	MM-39 (0-5 cm)	81	27	18
	MM-40 (0-5 cm)	100	40	43
	MM-41 (0-5 cm)	93	40	21
	MM-42 (0-5 cm)	84	27	41
	MM-43 (0-5 cm)	96	27	41
	MM-44 (0-5 cm)	99	42	42
	MM-47 (0-5 cm)	100	9.2	41
	MM-48 (0-5 cm)	100	33	45
	MM-50 (0-5 cm)	100	38	42
	MM-51 (0-10 cm)	100	17	15
	MM-52 (0-10 cm)	100	21	16
	MM-53 (0-10 cm)	100	24	16
	MM-54 (0-10 cm)	100	47	73
Sample ID	MM-55 (0-5 cm) DUP of MM-33 (0-5 cm)	95	42	55
Sample 1D	MM-56 (0-5 cm) DUP of MM-26 (0-5 cm)	64	39	40
	MM-57 (0-5 cm) DUP of MM-23 (0-5 cm)	92	44	40
	MM-58 (0-5 cm) DUP of MM-60 (0-5 cm)	69	16	57
	MM-59 (2-5 cm) DUP of MM-64 (2-5 cm)	82	44	32
	MM-59 (2-5 cm) LAB DUP	83	49	•
	MM-60 (0-5 cm)	92	14	66
	MM-61 (0-5 cm)	97	47	69
	MM-62 (0-5 cm)	95	27	68
	MM-63 (0-5 cm)	98	24	69
	MM-64 (0-5 cm)	91	38	44
	MM-64 (0-2 cm)	99	57	61
	MM-64 (2-5 cm)	80	37	35

TABLE E5: 1F-MS and Group 7AR Mercury and Arsenic Results in Tailings

Client: NS Department of Transportation and Infrastructure Renewal

Site: Former Gold Mine Site, Montague Mines, NS

Date Sampled: May 20, 2008 MTL Project No. 7442

Parameter		Mercury ¹	Arsenic ¹	Arsenic	
	Units	ppm	ppm	%	
CCME Residential Guidelines		6.6	12	•	
	MW-51 - May 20/08	1.45	[2178]	n/a	
Sample ID/Date	MW-52 - May 20/08	0.821	[>10,000 J	2.1	
	MW-53 - May 20/08	0.511	[3141]	n/a	

	Fig. 1	
Notes:	[value]	- Exceeds applicable guideline
	n/a	- Not analyzed
	ppm = mg/kg	

¹ Criteria published in 2007 Update of CCME Canadian Environmental Quality Guidelines for residential land use.

TABLE E6: Mercury and Arsenic Results in Groundwater

Client: NS Department of Transportation and Infrastructure Renewal

Site: Former Gold Mine Site, Montague Mines, NS Date Sampled: January 18, 2008 and May 20, 2008

MTL Project No. 7442

Parameter Units CCME Residential Guidelines		Mercury	Arsenic
		μg/L	μg/L
		1	10
	MW1 - Jan. 18/08	0.02	400
C. I IDD	MW2 - Jan. 18/08	0.15	250
Sample ID/Date	MW3 - Jan. 18/08	0.02	570
	MW3 - May 20/08	0.57	3,100

	AND REAL PROPERTY OF THE PROPE	
Notes:	[value]	- Exceeds applicable guideline

Criteria published in 2007 Update of CCME Canadian Environmental Quality Guidelines for residential land use.

Appendix F

Laboratory Certificates of Analysis and Chain of Custody Forms

Laboratory ID:			Client ID:		
Sieve Size mm PHI	Beaker Weight (grams)	Beaker + Sediment (grams)	Sediment Weight (grams)	Pas PHI	ssing %
2 -1 0.15 2.74 Pan				-1 2.74	#DIV/0! #DIV/0!
		Total Sediment Weight =	0		
Laboratory ID:			Client ID:		
Sieve Size mm PHI	Beaker Weight (grams)	Beaker + Sediment (grams)	Sediment Weight (grams)	Pas PHI	ssing %
2 -1 0.15 2.74 Pan				-1 2.74	#DIV/0! #DIV/0!
		Total Sediment Weight =	0		
Laboratory ID:			Client ID:		
Sieve Size mm PHI	Beaker Weight (grams)	Beaker + Sediment (grams)	Sediment Weight (grams)	Pas PHI	sing %
2 -1 0.15 2.74 Pan			i 3 lesconomia i	-1 2.74	#DIV/0! #DIV/0!
		Total Sediment Weight =	0		
Laboratory ID:			Client ID:		
Sieve Size mm PHI	Beaker Weight (grams)	Beaker + Sediment (grams)	Sediment Weight (grams)	Pas PHI	sing %
2 -1 0.15 2.74 Pan				-1 2.74	#DIV/0! #DIV/0!
		Total Sediment Weight =	0		
Laboratory ID:	Z22334-01		Client ID:	MM-4 (0-5C	M)
Sieve Size mm PHI	Beaker Weight (grams)	Beaker + Sediment (grams)	Sediment Weight (grams)	Pas PHI	sing %
2 -1 0.15 2.74 Pan			0 0.21 16.9	-1 2.74	100.0 98.8
		Total Sediment Weight =	17.11		

Laboratory ID:	Z22335-01	(chross)	Client ID:		MM-8 (0-5CM)	project
Sieve Size mm PHI	Beaker Weight (grams)	Beaker + Sediment (grams)	Sediment We (grams)	ight	Passing PHI	%
2 -1 0.15 2.74 Pan				0.31 4.48 3.51	-1 2.74	96.3 42.3
		Total Sediment Weight =	8.3			
Laboratory ID:	<u>722336-01</u>	Dames Campa	Client ID:	T I	MM-39 (0-5CM)	11.00
Sieve Size mm PHI	Beaker Weight (grams)	Beaker + Sediment (grams)	Sediment We (grams)		Passing PHI	%
2 -1 0.15 2.74 Pan				1.65 4.74 2.38	-1 2.74	81.2 27.1
		Total Sediment Weight =	8.77			
Laboratory ID:	<u>Z22337-01</u>	(21e)	Client ID:	1.5	MM-50 (0-5CM)	
Sieve Size mm PHI	Beaker Weight (grams)	Beaker + Sediment (grams)	Sediment We (grams)	ight	Passing PHI	%
2 -1 0.15 2.74 Pan				0 6.67 4	-1 2.74	100.0 37.5
		Total Sediment Weight =	10.67			
Laboratory ID:	<u>Z22338-01</u>	20 tary 123	Client ID:		MM-51 (0-10CM)	y and
Sieve Size mm PHI	Beaker Weight (grams)	Beaker + Sediment (grams)	Sediment We (grams)		Passing PHI	%
2 -1 0.15 2.74 Pan				0 15.42 3.06	-1 2.74	100.0 16.6
		Total Sediment Weight =	: 18.48			
Laboratory ID:	<u>Z22339-01</u>	Stradits	Client ID:	.:-	MM-52 (0-10CM)	
Oierre Oime	Beaker Weight	Beaker + Sediment	Sediment We	eight	Passing PHI	%
Sieve Size mm PHI	(grams)	(grams)	(grams)		1 111	
		(grams)	(grams)	0 13.26 3.52	-1 2.74	100.0 21.0

Laboratory ID:	<u>Z22340-01</u>	A STATE OF THE STA	Client ID:	MM-53 (0)-10CM)
Sieve Size mm PHI	Beaker Weight (grams)	Beaker + Sediment (grams)	Sediment Weigh (grams)	nt I PHI	Passing %
2 -1 0.15 2.74 Pan			12. 3.	0 07 -1 73 2.74	100.0 23.6
		Total Sediment Weight =	: 15.8		
Laboratory ID:	<u>Z22341-01</u>	Minalis	Client ID:	MM-54 (0)-10CM)
Sieve Size mm PHI	Beaker Weight (grams)	Beaker + Sediment (grams)	Sediment Weigh (grams)	nt i PHI	Passing %
2 -1 0.15 2.74 Pan	T GA Vis Re		3.	01 58 -1 18 2.74	99.9 47.0
		Total Sediment Weight =	6.77		
Laboratory ID:	Z22342-01		Client ID:	MM-41 (0)-5CM)
Sieve Size mm PHI	Beaker Weight (grams)	Beaker + Sediment (grams)	Sediment Weigh (grams)	nt I PHI	Passing %
2 -1 0.15 2.74 Pan			6	91 6.6 <i>-1</i> 91 2.74	92.7 39.5
		Total Sediment Weight =	: 12.42		
Laboratory ID:	n re-mile	II Inesse	Client ID:		O galano
Sieve Size mm PHI	Beaker Weight (grams)	Beaker + Sediment (grams)	Sediment Weigh (grams)	nt F	Passing %
2 -1 0.15 2.74 Pan	to bed'			-1 2.74	#DIV/0! #DIV/0!
		Total Sediment Weight =	. 0		
Laboratory ID:		U Jyphi3	Client ID:		-Si giotimos
Sieve Size mm PHI	Beaker Weight (grams)	Beaker + Sediment (grams)	Sediment Weigh (grams)	nt I PHI	Passing %
2 -1 0.15 2.74 Pan	1- 100 E7 95.00 100 E			-1 2.74	#DIV/0! #DIV/0!
		Total Sediment Weight =	. 0		

	Traine T	Client ID:		I Trede in
Beaker Weight (grams)	Beaker + Sediment (grams)	Sediment Weight (grams)	Pa: PHI	ssing %
n 25			-1 2.74	#DIV/0! #DIV/0!
	Total Sediment Weight =	0		
7 10 10 10 10 10 10 10 10 10 10 10 10 10		Client ID:		
Beaker Weight (grams)	Beaker + Sediment (grams)	Sediment Weight (grams)	Pas PHI	ssing %
			-1 2.74	#DIV/0! #DIV/0!
	Total Sediment Weight =	0		
		Client ID:		
Beaker Weight (grams)	Beaker + Sediment (grams)	Sediment Weight (grams)	Pas PHI	ssing %
			-1 2.74	#DIV/0! #DIV/0!
	Total Sediment Weight =	0		
<u>Z23443-01</u>	a production	Client ID:	MM-2 (0-5C	M)
Beaker Weight (grams)	Beaker + Sediment (grams)	Sediment Weight (grams)	Pas PHI	ssing %
V		1.07 5.41 2.74	-1 2.74	88.4 29.7
	Total Sediment Weight =	9.22		
Z23451-01		Client ID:	MM-2 (0-3C	M)
Beaker Weight (grams)	Beaker + Sediment (grams)	Sediment Weight (grams)	Pas PHI	ssing %
		0.55 3.07	-1 2.74	90.8 39.5
	Total Sadiment Weight -			
	Beaker Weight (grams) Beaker Weight (grams) Z23443-01 Beaker Weight (grams)	Total Sediment Weight = Beaker Weight (grams) Total Sediment Weight = Beaker Weight (grams) Total Sediment Weight = Z23443-01 Beaker Weight (grams) Beaker + Sediment (grams) Total Sediment Weight = Z23451-01 Beaker Weight (grams) Total Sediment Weight = Z23451-01 Beaker Weight (grams)	Beaker Weight (grams) Total Sediment Weight = 0 Client ID: Beaker Weight (grams) Total Sediment Weight = 0 Total Sediment Weight = 0 Client ID: Beaker Weight (grams) Total Sediment Weight = 0 Client ID: Sediment Weight (grams) Client ID: Sediment Weight (grams) Client ID: Sediment Weight (grams) Total Sediment Weight = 0 Z23443-01 Beaker Weight (grams) Total Sediment Weight = 0 Client ID: Sediment Weight (grams) 1.07 5.41 2.74 Total Sediment Weight = 9.22 Z23451-01 Beaker Weight (grams) Client ID: Sediment Weight (grams) 1.07 5.41 2.74 Total Sediment Weight = 9.22 Client ID: Sediment Weight (grams) 1.07 5.41 2.74	Beaker Weight (grams) Beaker + Sediment (grams) Past (grams)

t Beaker + Sediment (grams) Total Sediment Weight = t Beaker + Sediment (grams) Total Sediment Weight =	Client ID: Sediment Weight (grams) 0.22 3.86 1.53	MM-3 (0-5CM) Passing PHI % -1 96.
t Beaker + Sediment (grams)	5.52 3.98 = 11.02 Client ID: Sediment Weight (grams) 0.22 3.86 1.53 = 5.61	-1 86. 2.74 36. MM-3 (0-5CM) Passing PHI % -1 96.
t Beaker + Sediment (grams)	Client ID: Sediment Weight (grams) 0.22 3.86 1.53	Passing
(grams)	Sediment Weight (grams) 0.22 3.86 1.53	Passing
(grams)	(grams) 0.22 3.86 1.53	PHI %
Total Sediment Weight =	3.86 1.53 = 5.61	-1 96.
Total Sediment Weight =		
Offices (1)	Client ID:	
		MM-5 (0-5CM)
Beaker + Sediment (grams)	Sediment Weight (grams)	Passing PHI %
	1.04 2.38 2.81	
Total Sediment Weight =	= 6.23	
Office Control	Client ID:	mass. (ill gratere
Beaker + Sediment (grams)	Sediment Weight (grams)	Passing PHI %
		-1 #DIV/0! 2.74 #DIV/0!
Total Sediment Weight =	. 0	
	Client ID:	-
Beaker + Sediment (grams)	Sediment Weight (grams)	Passing PHI %
		-1 #DIV/0! 2.74 #DIV/0!
:t	(grams)	nt Beaker + Sediment Sediment Weight

Laboratory ID:	<u>Z23455-01</u>	at therefore	Client ID:	MM-7(0-5CM)	
Sieve Size mm PHI	Beaker Weight (grams)	Beaker + Sediment (grams)	Sediment Weight (grams)	Passing PHI	%
2 -1 0.15 2.74 Pan	NAME OF THE STREET		1.61 3.35 2.95	-1	79.6 37.3
		Total Sediment Weight =	7.91		
Laboratory ID:	Z23456-01	A SHOULD	Client ID:	MM-7(0-3CM)	
Sieve Size mm PHI	Beaker Weight (grams)	Beaker + Sediment (grams)	Sediment Weight (grams)	Passing PHI	%
2 -1 0.15 2.74 Pan	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.17 2.66 2.39	-1	96.7 45.8
		Total Sediment Weight =	5.22		
Laboratory ID:	Z23457-01		Client ID:	MM-7(3-5CM)	
Sieve Size	Beaker Weight (grams)	Beaker + Sediment (grams)	Sediment Weight (grams)	Passing PHI	%
2 -1 0.15 2.74 Pan			1 4.52 5.95	-1	91.3 51.9
		Total Sediment Weight =	11.47		
Laboratory ID:	Z23458-01	h Westernal	Client ID:	MM-42(0-5CM)	NO TOO
Sieve Size mm PHI	Beaker Weight (grams)	Beaker + Sediment (grams)	Sediment Weight (grams)	Passing PHI	%
2 -1 0.15 2.74 Pan	1 25		1.14 4.16 1.95	-1	84.3 26.9
		Total Sediment Weight =	7.25		
_aboratory ID:	Z23459-01	in Phanes	Client ID:	MM-38(0-5CM)	
Sieve Size mm PHI	Beaker Weight (grams)	Beaker + Sediment (grams)	Sediment Weight (grams)	Passing PHI	%
2 -1 0.15 2.74 Pan			0.22 3.26 3.47	-1	96.8 49.9
		Total Sediment Weight =	6.95		

and a state of						Mary .
Laboratory ID:	<u>Z23460-01</u>	Lansero.	Client ID:		MM-40(0-5CM)	
Sieve Size mm PHI	Beaker Weight (grams)	Beaker + Sediment (grams)	Sediment We (grams)	_	Passing PHI	%
2 -1		- DE SERVAN		0	_	
0.15 2.74		*		4.64		100.0
Pan				3.08	2.74	39.9
		Total Sediment Weight =	7.72			
_aboratory ID:	<u>Z23461-01</u>	II January	Client ID:	10-7	MM-44(0-5CM)	
Sieve Size	Beaker Weight	Beaker + Sediment	Sediment We	eight	Passing	
mm PHI	(grams)	(grams)	(grams)	_	PHI	%
2 -1				0.07		
0.15 2.74				3.15		98.7
Pan				2.28	2.74	41.5
		Total Sediment Weight =	5.5			
Laboratory ID:	Z23462-01	M Iresto	Client ID:		MM-48(0-5CM)	mpin_3
Sieve Size	Beaker Weight	Beaker + Sediment	Sediment W	eiaht	Passing	
mm PHI	(grams)	(grams)	(grams)	_	PHI	%
2 -1				0		
0.15 2.74				5.61	-1 1157,41	100.0
Pan				2.76	2.74	33.0
		Total Sediment Weight =	= 8.37			
Laboratory ID:	<u>Z23463-01</u>	H mass	Client ID:	10.	MM-43(0-5CM)	ahawu
Sieve Size	Dooker Weight	Beaker + Sediment	Sediment W	oiabt	Passing	
mm PHI	Beaker Weight (grams)	(grams)	(grams)	_	PHI	%
2 -1	(grams)	(grano)	(3.4.110)	0.49		
0.15 2.74				7.82		95.7
Pan	100			3.05		26.8
		Total Sediment Weight	= 11.36			
Laboratory ID:	Z23464-01	Si Manua	Client ID:	174	MM-1(0-5CM)	an s
Sieve Size	Beaker Weight	Beaker + Sediment	Sediment W		Passing	
mm PHI	(grams)	(grams)	(grams		PHI	%
2 -1				1.12		00.5
0.15 2.74				5.6		88.2 29.3
Pan				2.78	2.74	29.3
		Total Sediment Weight	= 95			
		I JUST JOURNAL A A CIMIL ,	- U.U			

Laboratory ID:	Z23465-01	gill retailing	Client ID:		MM-1(0-3.5CM)	
Sieve Size	Beaker Weight	Beaker + Sediment	Sediment We	iaht	Passing	
mm PHI	(grams)	(grams)	(grams)	giit	PHI	%
2 -1	(9.4)	(0.110)	(3.4)	0.33		
0.15 2.74				3.64	-1	93.6
Pan				1.22		23.5
		Total Sediment Weight =	5.19			
Laboratory ID:	Z23466-01		Client ID:		MM-1(3.5-5CM)	
Edboratory ID.	220400 01				10.0 00.0)	
Sieve Size	Beaker Weight	Beaker + Sediment	Sediment We	ight	Passing	
mm PHI	(grams)	(grams)	(grams)		PHI	%
2 -1				3.39		
0.15 2.74				8.72	-1	80.5
Pan				5.26	2.74	30.3
		Total Sediment Weight =	17.37			
Laboratory ID:	Z23467-01		Client ID:		MM-47(0-5CM)	F-12-2
Sieve Size	Beaker Weight	Beaker + Sediment	Sediment We	iaht	Passing	
mm PHI	(grams)	(grams)	(grams)	igni	PHI	%
2 -1	(3.4)	(5)	(9)	0		
0.15 2.74				13.77	-1	100.0
Pan				1.4		9.2
		Total Sediment Weight =	15.17			
Laboratory ID:	Z23468-01	menal O	Client ID:		MM-33(0-5CM)	in digre
Sieve Size	Beaker Weight	Beaker + Sediment			Passing	
mm PHI	(grams)	(grams)			PHI	%
				0.39		
2 -1						044
				3.98	-1	94.1
0.15 2.74						94.1 33.5
0.15 2.74		Total Sediment Weight =	6.57	3.98		
0.15 2.74	Z23469-01	Total Sediment Weight =	6.57 Client ID:	3.98		
0.15 2.74 Pan Laboratory ID:	Z23469-01	OF STABILITY OF	Client ID:	3.98 2.2	2.74 MM-34(0-5CM)	33.5
0.15 2.74 Pan		Total Sediment Weight = Beaker + Sediment (grams)		3.98 2.2	2.74	33.5
0.15 2.74 Pan Laboratory ID: Sieve Size	Z 23469-01 Beaker Weight	Beaker + Sediment	Client ID:	3.98 2.2	2.74 MM-34(0-5CM) Passing PHI	33.5
0.15 2.74 Pan Laboratory ID: Sieve Size mm PHI	Z 23469-01 Beaker Weight	Beaker + Sediment	Client ID:	3.98 2.2	2.74 MM-34(0-5CM) Passing PHI	33.5
0.15 2.74 Pan Laboratory ID: Sieve Size mm PHI 2 -1	Z 23469-01 Beaker Weight	Beaker + Sediment	Client ID:	3.98 2.2 sight	2.74 MM-34(0-5CM) Passing PHI -1	33.5
0.15 2.74 Pan Laboratory ID: Sieve Size mm PHI 2 -1 0.15 2.74	Z23469-01 Beaker Weight (grams)	Beaker + Sediment	Client ID: Sediment We (grams)	3.98 2.2 eight 0.46 2.29	2.74 MM-34(0-5CM) Passing PHI -1	% 88.5

				_			
Laboratory I	D:	<u>Z23470-01</u>	(Henri)	Client ID:		MM-55(0-50	CM)
Sieve Size	e PHI	Beaker Weight (grams)	Beaker + Sediment (grams)	Sediment Wei	ght	Pas PHI	ssing %
2	-1				0.41		
0.15 2.	.74				4.09	-1	94.
Pan					3.22	2.74	41.
			Total Sediment Weight =	7.72			
Laboratory I	D:		Inelia	Client ID:			
Sieve Size	•	Beaker Weight	Beaker + Sediment	Sediment Weig	aht	Pas	ssing
mm P	HI	(grams)	(grams)	(grams)	J	PHI	%
2 -	-1				0		
0.15 2.	.74				0	-1	#DIV/0!
Pan					0	2.74	#DIV/0!
			Total Sediment Weight =	. 0			
Laboratory II	D:		Danilo	Client ID:			H ynafethy
Sieve Size		Beaker Weight	Beaker + Sediment	Sadiment Wais	nh4	Doo	ain.
	HI	(grams)	(grams)	Sediment Weig (grams)	gnt	PHI	sing "
	1	(grams)	(grams)	(grains)	0	FRI	%
	74				0	-1	#DIV/0!
Pan					0	2.74	#DIV/0!
			Total Sediment Weight =	0			
Laboratory II	D:	TEAMS IT	Umplia!	Client ID:		outes 3	N Imolina
Sieve Size		Beaker Weight	Beaker + Sediment	Sediment Weig			sing
	HI	(grams)	(grams)	(grams)		PHI	<u> %</u>
	1 74				0		
Pan	14				0	-1 2.74	#DIV/0!
ı an					U	2.14	#DIV/0!
			Total Sediment Weight =	0			
_aboratory II	D:		Line(IC)	Client ID:	10-1		Il ynofesoc
Sieve Size		Beaker Weight	Beaker + Sediment	Sediment Weig	wht	Dog	oina
	HI	(grams)	(grams)	(grams)	3111	PHI	sing %
	1	\3	(3.2)	(3.4110)	0		70
	74				0	-1	#DIV/0!
Pan 2.					0	2.74	#DIV/0!
			Fotal Sediment Weight =	0			

Your Project #: 7442 Your C.O.C. #: B 30972

Attention: Robert Bekkers
Maritime Testing (1985) Limited
900 Windmill Rd
Suite 116
Dartmouth, NS
B3B 1P7

Report Date: 2008/06/20

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A861395 Received: 2008/06/12, 11:09

Sample Matrix: Soil # Samples Received: 9

		Date	Date	Method
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Reference
Metals Solid Avail. MS - N-per, <150 um	6	N/A	2008/06/18 ATL SOP 00024 R3	Based on EPA6020A
Metals Solid Avail. MS - N-per, <150 um	3	N/A	2008/06/19 ATL SOP 00024 R3	Based on EPA6020A
Particle size in solids (dry sieves)	9	N/A	2008/06/18 ATL SOP 00012 R2	based on MSAMS-1978
Total Organic Carbon in Soil (<150 um)	9	N/A	2008/06/18 ATL SOP 00044 R2	LECO 203-601-224

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

TROY MACKAY, Project Manager

Email: troy.mackay.reports@maxxamanalytics.com

Phone# (902) 420-0203 Ext:266

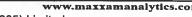
Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

Total cover pages: 1

Maritime Testing (1985) Limited Client Project #: 7442

RESULTS OF ANALYSES OF SOIL

Maxxam ID		Z22334		
Sampling Date		2008/05/15	11	The Republic
COC Number		B 30972		
Registration #				
	Units	MM-4 (0-5CM) PREV#Y72291	RDL	QC Batch


Inorganics				
< 150 um Organic Carbon (TOC)	g/kg	2.8	0.2	1541417
< -1 Phi (2 mm)	%	100	0.1	1540594
< PHI +2.7 (0.15 mm)	%	99	0.1	1540594

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID Sampling Date		Z22335 2008/05/15	Z22336 2008/05/15		
COC Number Registration #		B 30972	B 30972		
	Units	MM-8 (0-5CM) PREV#Y72296	MM-39 (0-5CM) PREV#Y72297	RDL	QC Batch

Inorganics					
< 150 um Organic Carbon (TOC)	g/kg	30	19	2	1540283
< -1 Phi (2 mm)	%	96	81	0.1	1540594
< PHI +2.7 (0.15 mm)	%	42	27	0.1	1540594

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maritime Testing (1985) Limited Client Project #: 7442

	Z22337		
	2008/05/15		
	B 30972		
Units	MM-50 (0-5CM) PREV#Y72299	RDL	QC Batch
g/kg	18	2	1540283
%	100	0.1	1540594
%	38	0.1	1540594
	g/kg %	2008/05/15 B 30972 Units MM-50 (0-5CM) PREV#Y72299 g/kg 18 % 100	2008/05/15 B 30972

2008/05/15			
2000/03/13	2008/05/15		
B 30972	B 30972		
MM-51 (0-10CM) PREV#Y72998	MM-52 (0-10CM) PREV#Y72299	RDL	QC Batch
3.8	2.6	0.2	1541417
100	100	0.1	1540594
17	21	0.1	1540594
	MM-51 (0-10CM) PREV#Y72998 3.8 100	MM-51 (0-10CM) PREV#Y72998 PREV#Y72299 3.8 2.6 100 100	MM-51 (0-10CM) (0-10CM) PREV#Y7299 PREV#Y72299 3.8 2.6 0.2 100 100 0.1

Maritime Testing (1985) Limited Client Project #: 7442

RESULTS OF ANALYSES OF SOIL

Maxxam ID		Z22340		
Sampling Date		2008/05/15		
COC Number		B 30972		
Registration #				
-0.918	Units	MM-53 (0-10CM) PREV#Y72300	RDL	QC Batch
Inorganics				
< 150 um Organic Carbon (TOC)	g/kg	0.4	0.2	1541417
< -1 Phi (2 mm)	%	100	0.1	1540594
	%	24	0.1	1540594

Registration #	Units	MM-54 (0-10CM) PREV#Y72301	RDL	QC Batch
COC Number		B 30972		
Sampling Date		2008/05/15		
Maxxam ID		Z22341		

Inorganics				
< 150 um Organic Carbon (TOC)	g/kg	54	5	1540283
< -1 Phi (2 mm)	%	100	0.1	1540594
< PHI +2.7 (0.15 mm)	%	47	0.1	1540594

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maritime Testing (1985) Limited Client Project #: 7442

Maxxam ID		Z22342		
Sampling Date	1000	2008/05/15		
COC Number	1514	B 30972		
Registration #				<u> </u>
	Units	MM-41 (0-5CM) PREV#Y72303	RDL	QC Batch
Inorganics		Telephone	16	
< 150 um Organic Carbon (TOC)	g/kg	32	3	1540283
< -1 Phi (2 mm)	%	93	0.1	1540594
				1540594

Maritime Testing (1985) Limited Client Project #: 7442

Maxxam ID		Z22334		
Sampling Date		2008/05/15		
COC Number Registration #		B 30972		
Registration #	Units	MM-4 (0-5CM) PREV#Y72291	RDL	QC Batch
Metals				
available (<150 um) Aluminum (Al)	mg/kg	15000	10	1541389
available (<150 um) Antimony (Sb)	mg/kg	ND	2	1541389
available (<150 um) Arsenic (As)	mg/kg	3600	2	1541389
available (<150 um) Barium (Ba)	mg/kg	48	5	1541389
available (<150 um) Beryllium (Be)	mg/kg	ND	2	1541389
available (<150 um) Boron (B)	mg/kg	ND	5	1541389
available (<150 um) Cadmium (Cd)	mg/kg	0.5	0.3	1541389
available (<150 um) Chromium (Cr)	mg/kg	18	2	1541389
available (<150 um) Cobalt (Co)	mg/kg	14	1	1541389
available (<150 um) Copper (Cu)	mg/kg	120	2	1541389
available (<150 um) Iron (Fe)	mg/kg	35000	50	1541389
available (<150 um) Lead (Pb)	mg/kg	61	0.5	1541389
available (<150 um) Manganese (Mn)	mg/kg	330	2	1541389
available (<150 um) Molybdenum (Mo)	mg/kg	ND	2	1541389
available (<150 um) Nickel (Ni)	mg/kg	34	2	1541389
available (<150 um) Selenium (Se)	mg/kg	ND	2	1541389
available (<150 um) Silver (Ag)	mg/kg	ND	0.5	1541389
available (<150 um) Strontium (Sr)	mg/kg	11	5	1541389
available (<150 um) Thallium (TI)	mg/kg	0.4	0.1	1541389
available (<150 um) Uranium (U)	mg/kg	0.5	0.1	1541389
available (<150 um) Vanadium (V)	mg/kg	22	2	1541389
available (<150 um) Zinc (Zn)	mg/kg	160	5	1541389
available (<150 um) Zinc (Zn) ND = Not detected RDL = Reportable Detection Limit QC Batch = Quality Control Batch	mg/kg	160		5

Maritime Testing (1985) Limited Client Project #: 7442

Maxxam ID		Z22335		
Sampling Date		2008/05/15		
COC Number		B 30972		
Registration #	Units	MM-8 (0-5CM) PREV#Y72296	RDL	QC Batch
Metals				
available (<150 um) Aluminum (Al)	mg/kg	8400	10	1541389
available (<150 um) Antimony (Sb)	mg/kg	ND	2	1541389
available (<150 um) Arsenic (As)	mg/kg	3900	2	1541389
available (<150 um) Barium (Ba)	mg/kg	29	5	1541389
available (<150 um) Beryllium (Be)	mg/kg	ND	2	1541389
available (<150 um) Boron (B)	mg/kg	ND	5	1541389
available (<150 um) Cadmium (Cd)	mg/kg	ND	0.3	1541389
available (<150 um) Chromium (Cr)	mg/kg	12	2	1541389
available (<150 um) Cobalt (Co)	mg/kg	3	1	1541389
available (<150 um) Copper (Cu)	mg/kg	38	2	1541389
available (<150 um) Iron (Fe)	mg/kg	29000	50	1541389
available (<150 um) Lead (Pb)	mg/kg	190	0.5	1541389
available (<150 um) Manganese (Mn)	mg/kg	230	2	1541389
available (<150 um) Molybdenum (Mo)	mg/kg	ND	2	1541389
available (<150 um) Nickel (Ni)	mg/kg	13	2	1541389
available (<150 um) Selenium (Se)	mg/kg	ND	2	1541389
avaitable (<150 um) Silver (Ag)	mg/kg	ND	0.5	1541389
available (<150 um) Strontium (Sr)	mg/kg	5	5	1541389
available (<150 um) Thallium (TI)	mg/kg	0.2	0.1	1541389
available (<150 um) Uranium (U)	mg/kg	0.3	0.1	1541389
11 11 (450)) (11 00	mg/kg	24	2	1541389
available (<150 um) Vanadium (V)		58	5	1541389

Maritime Testing (1985) Limited Client Project #: 7442

Maxxam ID		Z22336		- 1 -
Sampling Date COC Number		2008/05/15 B 30972		
Registration #		D 30972		
registration #	Units	MM-39 (0-5CM) PREV#Y72297	RDL	QC Batch
Metals				
available (<150 um) Aluminum (Al)	mg/kg	8400	10	1541389
available (<150 um) Antimony (Sb)	mg/kg	ND	2	1541389
available (<150 um) Arsenic (As)	mg/kg	1600	2	1541389
available (<150 um) Barium (Ba)	mg/kg	23	5	1541389
available (<150 um) Beryllium (Be)	mg/kg	ND	2	1541389
available (<150 um) Boron (B)	mg/kg	ND	5	1541389
available (<150 um) Cadmium (Cd)	mg/kg	ND	0.3	1541389
available (<150 um) Chromium (Cr)	mg/kg	13	2	1541389
available (<150 um) Cobalt (Co)	mg/kg	9	1	1541389
available (<150 um) Copper (Cu)	mg/kg	39	2	1541389
available (<150 um) Iron (Fe)	mg/kg	21000	50	1541389
available (<150 um) Lead (Pb)	mg/kg	130	0.5	1541389
available (<150 um) Manganese (Mn)	mg/kg	290	2	1541389
available (<150 um) Molybdenum (Mo)	mg/kg	ND	2	1541389
available (<150 um) Nickel (Ni)	mg/kg	16	2	1541389
available (<150 um) Selenium (Se)	mg/kg	ND	2	1541389
available (<150 um) Silver (Ag)	mg/kg	ND	0.5	1541389
available (<150 um) Strontium (Sr)	mg/kg	5	5	1541389
available (<150 um) Thallium (TI)	mg/kg	0.2	0.1	1541389
available (<150 um) Uranium (U)	mg/kg	0.3	0.1	1541389
available (<150 um) Vanadium (V)	mg/kg	25	2	1541389
available (<150 um) Zinc (Zn)	mg/kg	86	5	1541389

Maritime Testing (1985) Limited Client Project #: 7442

Maxxam ID		Z22337		May 3103
Sampling Date		2008/05/15		
COC Number Registration #	111111111111111111111111111111111111111	B 30972		
registration #	Units	MM-50 (0-5CM) PREV#Y72299	RDL	QC Batch
Metals				
available (<150 um) Aluminum (Al)	mg/kg	8400	10	1541389
available (<150 um) Antimony (Sb)	mg/kg	ND	2	1541389
available (<150 um) Arsenic (As)	mg/kg	2700	2	1541389
available (<150 um) Barium (Ba)	mg/kg	14	5	1541389
available (<150 um) Beryllium (Be)	mg/kg	ND	2	1541389
available (<150 um) Boron (B)	mg/kg	ND	5	1541389
available (<150 um) Cadmium (Cd)	mg/kg	ND	0.3	1541389
available (<150 um) Chromium (Cr)	mg/kg	12	2	1541389
available (<150 um) Cobalt (Co)	mg/kg	3	1	1541389
available (<150 um) Copper (Cu)	mg/kg	29	2	1541389
available (<150 um) Iron (Fe)	mg/kg	22000	50	1541389
available (<150 um) Lead (Pb)	mg/kg	62	0.5	1541389
available (<150 um) Manganese (Mn)	mg/kg	190	2	1541389
available (<150 um) Molybdenum (Mo)	mg/kg	ND	2	1541389
avaitable (<150 um) Nickel (Ni)	mg/kg	12	2	1541389
available (<150 um) Selenium (Se)	mg/kg	ND	2	1541389
available (<150 um) Silver (Ag)	mg/kg	ND	0.5	1541389
available (<150 um) Strontium (Sr)	mg/kg	6	5	1541389
available (<150 um) Thallium (TI)	mg/kg	0.1	0.1	1541389
available (<150 um) Uranium (U)	mg/kg	0.3	0.1	1541389
available (<150 um) Vanadium (V)	mg/kg	24	2	1541389
available (<150 um) Zinc (Zn)	mg/kg	63	5	1541389

Maritime Testing (1985) Limited Client Project #: 7442

Maxxam ID		Z22338		
Sampling Date COC Number		2008/05/15 B 30972		
Registration #		D 30972		
	Units	MM-51 (0-10CM) PREV#Y72998	RDL	QC Batch
Metals				
available (<150 um) Aluminum (Al)	mg/kg	10000	10	1541389
available (<150 um) Antimony (Sb)	mg/kg	ND	2	1541389
available (<150 um) Arsenic (As)	mg/kg	3500	2	1541389
available (<150 um) Barium (Ba)	mg/kg	34	5	1541389
available (<150 um) Beryllium (Be)	mg/kg	ND	2	1541389
available (<150 um) Boron (B)	mg/kg	ND	5	1541389
available (<150 um) Cadmium (Cd)	mg/kg	ND	0.3	1541389
available (<150 um) Chromium (Cr)	mg/kg	13	2	1541389
available (<150 um) Cobalt (Co)	mg/kg	13	1	1541389
available (<150 um) Copper (Cu)	mg/kg	82	2	1541389
available (<150 um) Iron (Fe)	mg/kg	27000	50	1541389
available (<150 um) Lead (Pb)	mg/kg	35	0.5	1541389
available (<150 um) Manganese (Mn)	mg/kg	400	2	1541389
available (<150 um) Molybdenum (Mo)	mg/kg	ND	2	1541389
available (<150 um) Nickel (Ni)	mg/kg	30	2	1541389
available (<150 um) Selenium (Se)	mg/kg	ND	2	1541389
available (<150 um) Silver (Ag)	mg/kg	ND	0.5	1541389
available (<150 um) Strontium (Sr)	mg/kg	11	5	1541389
available (<150 um) Thallium (TI)	mg/kg	0.2	0.1	1541389
available (<150 um) Uranium (U)	mg/kg	0.4	0.1	1541389
available (<150 um) Vanadium (V)	mg/kg	15	2	1541389
available (<150 um) Zinc (Zn)	mg/kg	130	5	1541389

Maritime Testing (1985) Limited Client Project #: 7442

Maxxam ID		Z22339		
Sampling Date	W	2008/05/15		
COC Number Registration #		B 30972		
Negistration #	Units	MM-52 (0-10CM) PREV#Y72299	RDL	QC Batch
Metals				
available (<150 um) Aluminum (Al)	mg/kg	8300	10	1541389
available (<150 um) Antimony (Sb)	mg/kg	20	2	1541389
available (<150 um) Arsenic (As)	mg/kg	35000	20	1541389
available (<150 um) Barium (Ba)	mg/kg	26	5	1541389
available (<150 um) Beryllium (Be)	mg/kg	ND	2	1541389
available (<150 um) Boron (B)	mg/kg	ND	5	1541389
available (<150 um) Cadmium (Cd)	mg/kg	ND	0.3	1541389
available (<150 um) Chromium (Cr)	mg/kg	11	2	1541389
available (<150 um) Cobalt (Co)	mg/kg	3	1	1541389
available (<150 um) Copper (Cu)	mg/kg	19	2	1541389
available (<150 um) Iron (Fe)	mg/kg	65000	500	1541389
available (<150 um) Lead (Pb)	mg/kg	150	0.5	1541389
available (<150 um) Manganese (Mn)	mg/kg	150	2	1541389
available (<150 um) Molybdenum (Mo)	mg/kg	ND	2	1541389
available (<150 um) Nickel (Ni)	mg/kg	15	2	1541389
available (<150 um) Selenium (Se)	mg/kg	ND	2	1541389
available (<150 um) Silver (Ag)	mg/kg	ND	0.5	1541389
available (<150 um) Strontium (Sr)	mg/kg	7	5	1541389
available (<150 um) Thallium (TI)	mg/kg	0.3	0.1	1541389
available (<150 um) Uranium (U)	mg/kg	0.3	0.1	1541389
available (<150 um) Vanadium (V)	mg/kg	14	2	1541389
available (<150 um) Zinc (Zn)	mg/kg	44	5	1541389

Maritime Testing (1985) Limited Client Project #: 7442

Maxxam ID		Z22340		
Sampling Date		2008/05/15		
COC Number		B 30972		
Registration #	Units	MM-53 (0-10CM) PREV#Y72300	RDL	QC Batch
Metals				
available (<150 um) Aluminum (Al)	mg/kg	11000	10	1541389
available (<150 um) Antimony (Sb)	mg/kg	ND	2	1541389
available (<150 um) Arsenic (As)	mg/kg	5700	2	1541389
available (<150 um) Barium (Ba)	mg/kg	25	5	1541389
available (<150 um) Beryllium (Be)	mg/kg	ND	2	1541389
available (<150 um) Boron (B)	mg/kg	ND	5	1541389
available (<150 um) Cadmium (Cd)	mg/kg	ND	0.3	1541389
available (<150 um) Chromium (Cr)	mg/kg	12	2	1541389
available (<150 um) Cobalt (Co)	mg/kg	24	1	1541389
available (<150 um) Copper (Cu)	mg/kg	89	2	1541389
available (<150 um) Iron (Fe)	mg/kg	32000	500	1541389
available (<150 um) Lead (Pb)	mg/kg	29	0.5	1541389
available (<150 um) Manganese (Mn)	mg/kg	540	2	1541389
available (<150 um) Molybdenum (Mo)	mg/kg	ND	2	1541389
available (<150 um) Nickel (Ni)	mg/kg	52	2	1541389
available (<150 um) Selenium (Se)	mg/kg	ND	2	1541389
available (<150 um) Silver (Ag)	mg/kg	ND	0.5	1541389
available (<150 um) Strontium (Sr)	mg/kg	26	5	1541389
available (<150 um) Thallium (TI)	mg/kg	0.2	0.1	1541389
available (<150 um) Uranium (U)	mg/kg	0.3	0.1	1541389
available (<150 um) Vanadium (V)	mg/kg	12	2	1541389
available (<150 um) Zinc (Zn)	mg/kg	160	5	1541389

Maritime Testing (1985) Limited Client Project #: 7442

Maxxam ID		Z22341		
Sampling Date		2008/05/15		ULI UL
COC Number		B 30972		
Registration #	Units	MM-54 (0-10CM) PREV#Y72301	RDL	QC Batch
Metals				
available (<150 um) Aluminum (Al)	mg/kg	19000	10	1541389
available (<150 um) Antimony (Sb)	mg/kg	2	2	1541389
available (<150 um) Arsenic (As)	mg/kg	5700	2	1541389
available (<150 um) Barium (Ba)	mg/kg	110	5	1541389
available (<150 um) Beryllium (Be)	mg/kg	2	2	1541389
available (<150 um) Boron (B)	mg/kg	ND	5	1541389
available (<150 um) Cadmium (Cd)	mg/kg	2.8	0.3	1541389
available (<150 um) Chromium (Cr)	mg/kg	17	2	1541389
available (<150 um) Cobalt (Co)	mg/kg	76	1	1541389
available (<150 um) Copper (Cu)	mg/kg	120	2	1541389
available (<150 um) Iron (Fe)	mg/kg	55000	500	1541389
available (<150 um) Lead (Pb)	mg/kg	190	0.5	1541389
available (<150 um) Manganese (Mn)	mg/kg	780	2	1541389
available (<150 um) Molybdenum (Mo)	mg/kg	ND	2	1541389
available (<150 um) Nickel (Ni)	mg/kg	150	2	1541389
available (<150 um) Selenium (Se)	mg/kg	2	2	1541389
available (<150 um) Silver (Ag)	mg/kg	ND	0.5	1541389
available (<150 um) Strontium (Sr)	mg/kg	11	5	1541389
available (<150 um) Thallium (TI)	mg/kg	0.6	0.1	1541389
available (<150 um) Uranium (U)	mg/kg	1.3	0.1	1541389
available (<150 um) Vanadium (V)	mg/kg	60	2	1541389
available (<150 um) Zinc (Zn)	mg/kg	430	5	1541389

Maritime Testing (1985) Limited Client Project #: 7442

ELEMENTS BY ICP/MS (SOIL)

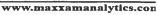
Maxxam ID		Z22342		170
Sampling Date		2008/05/15		
COC Number Registration #		B 30972		
Registration #	Units	MM-41 (0-5CM) PREV#Y72303	RDL	QC Batch
Metals			T	
available (<150 um) Aluminum (Al)	mg/kg	13000	10	1541389
available (<150 um) Antimony (Sb)	mg/kg	ND	2	1541389
available (<150 um) Arsenic (As)	mg/kg	3000	2	1541389
available (<150 um) Barium (Ba)	mg/kg	190	5	1541389
available (<150 um) Beryllium (Be)	mg/kg	ND	2	1541389
available (<150 um) Boron (B)	mg/kg	ND	5	1541389
available (<150 um) Cadmium (Cd)	mg/kg	1.1	0.3	1541389
available (<150 um) Chromium (Cr)	mg/kg	19	2	1541389
available (<150 um) Cobalt (Co)	mg/kg	14	1	1541389
available (<150 um) Copper (Cu)	mg/kg	75	2	1541389
available (<150 um) Iron (Fe)	mg/kg	33000	500	1541389
available (<150 um) Lead (Pb)	mg/kg	630	0.5	1541389
available (<150 um) Manganese (Mn)	mg/kg	370	2	1541389
available (<150 um) Molybdenum (Mo)	mg/kg	ND	2	1541389
available (<150 um) Nickel (Ni)	mg/kg	36	2	1541389
available (<150 um) Selenium (Se)	mg/kg	ND	2	1541389
available (<150 um) Silver (Ag)	mg/kg	ND	0.5	1541389
available (<150 um) Strontium (Sr)	mg/kg	18	5	1541389
available (<150 um) Thallium (TI)	mg/kg	0.3	0.1	1541389
available (<150 um) Uranium (U)	mg/kg	0.5	0.1	1541389
available (<150 um) Vanadium (V)	mg/kg	35	2	1541389
available (<150 um) Zinc (Zn)	mg/kg	440	5	1541389

QC Batch = Quality Control Batch

Maritime Testing (1985) Limited Client Project #: 7442

GEN	ER4	\L	CO	MM	EN.	TS.

Results relate only to the items tested.



Maritime Testing (1985) Limited Attention: Robert Bekkers Client Project #: 7442 P.O. #: Project name:

Quality Assurance Report Maxxam Job Number: DA861395

QA/QC Batch			Date Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Limits
1540283 CAC	QC STANDARD	< 150 um Organic Carbon (TOC)	2008/06/18	91	%	75 - 125
	Method Blank	< 150 um Organic Carbon (TOC)	2008/06/18	ND, RDL=0.2	g/kg	70 - 120
	RPD	< 150 um Organic Carbon (TOC)	2008/06/18	1.5	9/kg %	35
1540594 BAN	RPD	< -1 Phi (2 mm)	2008/06/18	1.2	%	
וואם דפנטדנו	IN D					25
1541200 DLD	MATRIX CRIVE	< PHI +2.7 (0.15 mm)	2008/06/18	10.8	%	25
1541389 DLB	MATRIX SPIKE	available (<150 um) Aluminum (Al)	2008/06/18	NC	%	75 - 125
		available (<150 um) Antimony (Sb)	2008/06/18	8.0		75 - 12
		available (<150 um) Arsenic (As)	2008/06/18	NC	%	75 - 12
		available (<150 um) Barium (Ba)	2008/06/18	NC	%	75 - 12
		available (<150 um) Beryllium (Be)	2008/06/18	91	%	75 - 12
		available (<150 um) Boron (B)	2008/06/18	56		75 - 12
		available (<150 um) Cadmium (Cd)	2008/06/18	97	%	75 - 12
		available (<150 um) Chromium (Cr)	2008/06/18	NC	%	75 - 12
		available (<150 um) Cobalt (Co)	2008/06/18	99	%	75 - 12
		available (<150 um) Copper (Cu)	2008/06/18	NC	%	75 - 12
		available (<150 um) Iron (Fe)	2008/06/18	NC	%	75 - 12
		available (<150 um) Lead (Pb)	2008/06/18	NC	%	75 - 12
		available (<150 um) Manganese (Mn)	2008/06/18	NC	%	75 - 12
		available (<150 um) Molybdenum (Mo)	2008/06/18	93	%	75 - 12
		available (<150 um) Nickel (Ni)	2008/06/18	NC	%	75 - 12
		available (<150 um) Selenium (Se)	2008/06/18	87	%	75 - 12
		available (<150 um) Silver (Ag)	2008/06/18	94	%	75 - 12
		available (<150 um) Strontium (Sr)	2008/06/18	97	%	75 - 12
		available (<150 um) Thallium (TI)	2008/06/18	96	%	75 - 12
		available (<150 um) Uranium (U)	2008/06/18	92	%	75 - 12
		available (<150 um) Vanadium (V)	2008/06/18	NC	%	75 - 12
		available (<150 um) Zinc (Zn)	2008/06/18	90	%	75 - 12
	QC STANDARD	available (<150 um) Aluminum (Al)	2008/06/18	78	%	75 - 12
		available (<150 um) Arsenic (As)	2008/06/18	111	%	75 - 12
		available (<150 um) Barium (Ba)	2008/06/18	114	%	75 - 12
		available (<150 um) Chromium (Cr)	2008/06/18	89	%	75 - 12
		available (<150 um) Cobalt (Co)	2008/06/18	97	%	75 - 12
		available (<150 um) Copper (Cu)	2008/06/18	98	%	75 - 12
		available (<150 um) Iron (Fe)	2008/06/18	84	%	75 - 12
		available (<150 um) Lead (Pb)	2008/06/18	98	%	75 - 12
		available (<150 um) Manganese (Mn)	2008/06/18	98	%	75 - 12
		available (<150 um) Nickel (Ni)	2008/06/18	103	%	75 - 12
		available (<150 um) Strontium (Sr)	2008/06/18	91	%	75 - 12
		available (<150 um) Vanadium (V)	2008/06/18	88	%	75 - 12
		available (<150 um) Zinc (Zn)	2008/06/18	97		75 - 12
	Spiked Blank	available (<150 dm) Aluminum (Al)			%	
	Spiked blank	, , , , , , , , , , , , , , , , , , , ,	2008/06/18	111	%	75 - 12
		available (<150 um) Antimony (Sb)	2008/06/18	101	%	75 - 12
		available (<150 um) Arsenic (As)	2008/06/18	96	%	75 - 12
		available (<150 um) Barium (Ba)	2008/06/18	102	%	75 - 12
		available (<150 um) Beryllium (Be)	2008/06/18	98	%	75 - 12
		available (<150 um) Boron (B)	2008/06/18	98	%	75 - 12
		available (<150 um) Cadmium (Cd)	2008/06/18	95	%	75 - 12
		available (<150 um) Chromium (Cr)	2008/06/18	104	%	75 - 12
		available (<150 um) Cobalt (Co)	2008/06/18	100	%	75 - 12
		available (<150 um) Copper (Cu)	2008/06/18	105	%	75 - 12
		available (<150 um) Iron (Fe)	2008/06/18	107	%	75 - 12
		available (<150 um) Lead (Pb)	2008/06/18	102	%	75 - 12
		available (<150 um) Manganese (Mn)	2008/06/18	103	%	75 - 12 75 - 12
		available (<150 um) Molybdenum (Mo)	2008/06/18			
		, , ,		100	%	75 - 12
		available (<150 um) Nickel (Ni)	2008/06/18	102	%	75 - 12

Maritime Testing (1985) Limited Attention: Robert Bekkers Client Project #: 7442 P.O. #: Project name:

Quality Assurance Report (Continued)

Maxxam Job Number: DA861395

QA/QC Batch Num Init	QC Type	Parameter	Date Analyzed yyyy/mm/dd	Value Recovery	Units	OC Limite
1541389 DLB	Spiked Blank	available (<150 um) Selenium (Se)	2008/06/18	93	%	QC Limits 75 - 125
1041003 DEB	Opined Dialin	available (<150 um) Silver (Ag)	2008/06/18	98	%	75 - 125 75 - 125
		available (<150 um) Strontium (Sr)	2008/06/18	101	%	75 - 125 75 - 125
		available (<150 um) Thallium (TI)	2008/06/18	100	%	75 - 125 75 - 125
		available (<150 um) Uranium (U)	2008/06/18	100	%	75 - 125 75 - 125
		available (<150 um) Vanadium (V)	2008/06/18	104	%	75 - 125 75 - 125
		available (<150 um) Zinc (Zn)	2008/06/18	88	%	75 - 125 75 - 125
	Method Blank	available (<150 um) Aluminum (Al)	2008/06/19	ND, RDL=10	mg/kg	75 - 125
	WELTIOG DIATIK	available (<150 um) Antimony (Sb)	2008/06/19	ND, RDL=10	mg/kg	
		available (<150 um) Arsenic (As)	2008/06/19	ND, RDL=2	mg/kg	
		available (<150 um) Barium (Ba)	2008/06/19	ND, RDL=5	mg/kg	
		available (<150 um) Beryllium (Be)	2008/06/19	ND, RDL=2	mg/kg	
		available (<150 um) Boron (B)	2008/06/19	ND. RDL=5	mg/kg	
		available (<150 um) Cadmium (Cd)	2008/06/19	ND, RDL=0.3	mg/kg	
		available (<150 um) Chromium (Cr)	2008/06/19	ND, RDL=2	mg/kg	
		available (<150 um) Cobalt (Co)	2008/06/19	ND, RDL=1	mg/kg	
		available (<150 um) Copper (Cu)	2008/06/19	7. RDL=2 (3)	mg/kg	
		available (<150 um) Iron (Fe)	2008/06/19	ND, RDL=50	mg/kg	
		available (<150 um) Lead (Pb)	2008/06/19	ND, RDL=0.5	mg/kg	
		available (<150 um) Manganese (Mn)	2008/06/19	ND. RDL=2	mg/kg	
		available (<150 um) Molybdenum (Mo)	2008/06/19	ND, RDL=2	mg/kg	
		available (<150 um) Nickel (Ni)	2008/06/19	ND, RDL=2	mg/kg	
		available (<150 um) Selenium (Se)	2008/06/19	ND. RDL=2	mg/kg	
		available (<150 um) Silver (Ag)	2008/06/19	ND, RDL=0.5	mg/kg	
		available (<150 um) Strontium (Sr)	2008/06/19	ND, RDL=5	mg/kg	
		available (<150 um) Thallium (TI)	2008/06/19	ND, RDL=0.1	mg/kg	
		available (<150 um) Uranium (U)	2008/06/19	ND, RDL=0.1	mg/kg	
		available (<150 um) Vanadium (V)	2008/06/19	ND, RDL=2	mg/kg	
		available (<150 um) Zinc (Zn)	2008/06/19	ND, RDL=5	mg/kg	
	RPD	available (<150 um) Arsenic (As)	2008/06/18	3.5	%	35
1541417 CAC	QC STANDARD	< 150 um Organic Carbon (TOC)	2008/06/19	88	%	75 - 125
	Method Blank	< 150 um Organic Carbon (TOC)	2008/06/19	ND, RDL=0.2	g/kg	10 - 120
	RPD	< 150 um Organic Carbon (TOC)	2008/06/19	6.3	% %	35

ND = Not detected

NC = Non-calculable

RPD = Relative Percent Difference

QC Standard = Quality Control Standard

SPIKE = Fortified sample

(1) Low recovery due to digestion efficiency.(2) Low recovery due to sample matrix.

(3) Low level lab contamination. Minimal impact on data quality.

Your Project #: 7442 Your C.O.C. #: B 30970

Attention: Robert Bekkers
Maritime Testing (1985) Limited
900 Windmill Rd
Suite 116
Dartmouth, NS
B3B 1P7

Report Date: 2008/06/18

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A861676 Received: 2008/06/12, 10:36

Sample Matrix: Soil # Samples Received: 21

Analyses Date Date Method

Analyses Quantity Extracted Analyzed Laboratory Method Reference

Particle size in solids (dry sieves) 21 N/A 2008/06/18 ATL SOP 00012 R2 based on MSAMS-1978

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

TROY MACKAY, Project Manager

Email: troy.mackay.reports@maxxamanalytics.com

Phone# (902) 420-0203 Ext:266

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

Total cover pages: 1

Maritime Testing (1985) Limited Client Project #: 7442

Maxxam ID		Z23443	Z23451		20111111111111
Sampling Date		2008/05/15	2008/05/15		
COC Number		B 30970	B 30970		
Registration #					
	Units	MM-2(0-5CM) (P#Y72464)	MM-2(0-3CM) (P#Y72484)	RDL	QC Batch
Inorganics					E JI II I
< -1 Phi (2 mm)	%	88	91	0.1	1540594
< PHI +2.7 (0.15 mm)	%	30	40	0.1	1540594

Maxxam ID	- 11	Z23452	Z23453		H H P
Sampling Date		2008/05/15	2008/05/15		
COC Number		B 30970	B 30970	D	
Registration #					
	Units	MM-2(3-5CM) (P#Y72485)	MM-3(0-5CM) (P#Y72519)	RDL	QC Batch
Inorganics					
< -1 Phi (2 mm)	%	86	96	0.1	1540602

Maxxam ID		Z23454	Z23455		
Sampling Date		2008/05/15	2008/05/15		N 11
COC Number		B 30970	B 30970		
Registration #					
	Units	MM-5(0-5CM) (P#Y72520)	MM-7(0-5CM) (P#Y72541)	RDL	QC Batch
Inorganics					целиц
< -1 Phi (2 mm)	%	83	80	0.1	1540602
< PHI +2.7 (0.15 mm)	%	45	37	0.1	1540602

Maritime Testing (1985) Limited Client Project #: 7442

Maxxam ID		Z23456	Z23457		
Sampling Date		2008/05/15	2008/05/15		
COC Number		B 30970	B 30970		
Registration #					4
	Units	MM-7(0-3CM) (P#Y72548)	MM-7(3-5CM) (P#Y72552)	RDL	QC Batch
Inorganics					
< -1 Phi (2 mm)	%	97	91	0.1	1540602
< PHI +2.7 (0.15 mm)	%	46	52	0.1	1540602

Maxxam ID		Z23458	Z23459		47
Sampling Date		2008/05/15	2008/05/15		
COC Number		B 30970	B 30970		
Registration #				- 4	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Units	MM-42(0-5CM) (P#Y72553)	MM-38(0-5CM) (P#Y72554)	RDL	QC Batch
Inorganics					
< -1 Phi (2 mm)	%	84	97	0.1	1540602
< PHI +2.7 (0.15 mm)	%	27	50	0.1	1540602

Maxxam ID	The state of	Z23460	Z23461		
Sampling Date		2008/05/15	2008/05/15		
COC Number		B 30970	B 30970		
Registration #					
The said that	Units	MM-40(0-5CM) (P#Y72564)	MM-44(0-5CM) (P#Y72572)	RDL	QC Batch
Inorganics					
< -1 Phi (2 mm)	%	100	99	0.1	1540602
< PHI +2.7 (0.15 mm)	%	40	42	0.1	1540602

Maritime Testing (1985) Limited Client Project #: 7442

Maxxam ID		Z23462	Z23463		
Sampling Date		2008/05/15	2008/05/15		
COC Number		B 30970	B 30970		
Registration #					1-0
	Units	MM-48(0-5CM) (P#Y72573)	MM-43(0-5CM) (P#Y72574)	RDL	QC Batch
Inorganics	П				
< -1 Phi (2 mm)	%	100	96	0.1	1540602
< PHI +2.7 (0.15 mm)	%	33	27	0.1	1540602

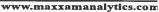
Maxxam ID		Z23464	Z23465	713 Hall	
Sampling Date		2008/05/15	2008/05/15		i
COC Number		B 30970	B 30970	1000	i
Registration #				1000	
	Units	MM-1(0-5CM) (P#Y72576)	MM-1(0-3.5CM) (P#Y72585)	RDL	QC Batch
Inorganics			1.0	1 / 100	
	0/	88	94	0.1	1540602
< -1 Phi (2 mm)	%	00	0.7	10.1	

Maxxam ID		Z23466	Z23467		
Sampling Date		2008/05/15	2008/05/15		
COC Number		B 30970	B 30970		
Registration #					
	Units	MM-1(3.5-5CM) (P#Y72590)	MM-47(0-5CM) (P#Y72592)	RDL	QC Batch
Inorganics				\top	
< -1 Phi (2 mm)	%	81	100	0.1	1540602
< PHI +2.7 (0.15 mm)	%	30	9.2	0.1	1540602

Maritime Testing (1985) Limited Client Project #: 7442

- 12
QC Batch
1540602
1540602
-

Maxxam ID		Z23470		
Sampling Date		2008/05/15		
COC Number		B 30970		
Registration #				
	Units	MM-55(0-5CM) (P#Y72595)	RDL	QC Batch
Inorganics				
< -1 Phi (2 mm)	%	95	0.1	1540602
< PHI +2.7 (0.15 mm)	%	42	0.1	1540602



Maritime Testing (1985) Limited Client Project #: 7442

GENERAL COMMENTS

Results relate only to the items tested.

Maritime Testing (1985) Limited Attention: Robert Bekkers Client Project #: 7442 P.O. #: Project name:

Quality Assurance Report Maxxam Job Number: DA861676

QA/QC Batch Num Init	QC Type	Peremeter	Date Analyzed	Value	N. C.	11-14-	001:-
		Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
1540594 BAN	RPD	< -1 Phi (2 mm)	2008/06/18	1.2		%	25
		< PHI +2.7 (0.15 mm)	2008/06/18	10.8		%	25

Your Project #: 7442 Site: MONTAGUE MINES Your C.O.C. #: B 39881

Attention: Robert Bekkers
Maritime Testing (1985) Limited
900 Windmill Rd
Suite 116
Dartmouth, NS
B3B 1P7

Report Date: 2008/06/20

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A861171 Received: 2008/06/12, 12:50

Sample Matrix: Soil # Samples Received: 47

		Date	Date	Method
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Reference
Metals Solid Avail. MS - N-per, <150 um	38	N/A	2008/06/17 ATL SOP 00024 R3	Based on EPA6020A
Metals Solid Avail. MS - N-per, <150 um	9	N/A	2008/06/18 ATL SOP 00024 R3	Based on EPA6020A
Particle size in solids (dry sieves)	47	N/A	2008/06/18 ATL SOP 00012 R2	based on MSAMS-1978
Total Organic Carbon in Soil (<150 um)	19	N/A	2008/06/17 ATL SOP 00044 R2	LECO 203-601-224
Total Organic Carbon in Soil (<150 um)	24	N/A	2008/06/18 ATL SOP 00044 R2	LECO 203-601-224
Total Organic Carbon in Soil (<150 um)	4	N/A	2008/06/19 ATL SOP 00044 R2	LECO 203-601-224

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

TROY MACKAY, Project Manager Email: troy.mackay.reports@maxxamanalytics.com Phone# (902) 420-0203 Ext:266

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

Total cover pages: 1

Maritime Testing (1985) Limited Client Project #: 7442 Project name: MONTAGUE MINES

RESULTS OF ANALYSES OF SOIL

	Units	MM-9 (0-5CM)	MM-9 (0-5CM) Lab-Dup	RDL	MM-10 (0-5CM)	RDL	QC Batch
Registration #							90
COC Number		B 39881	B 39881		B 39881		Thin the
Sampling Date						11	
Maxxam ID		Z21112	Z21112		Z21113		

Inorganics						ľ	
< 150 um Organic Carbon (TOC)	g/kg	260	260	2	30	0.6	1538399
< -1 Phi (2 mm)	%	64	74 N.W.	0.1	84	0.1	1540554
< PHI +2.7 (0.15 mm)	%	12		0.1	17	0.1	1540554

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

	Units	MM-10 (0-1.5CM)	RDL	MM-10 (1.5-5CM)	RDL	QC Batch
Registration #						45-10- TEU
COC Number		B 39881		B 39881		
Sampling Date						
Maxxam ID		Z21114		Z21115		

Inorganics						
< 150 um Organic Carbon (TOC)	g/kg	230	2	31	0.6	1538399
< -1 Phi (2 mm)	%	99	0.1	98	0.1	1540554
< PHI +2.7 (0.15 mm)	%	49	0.1	41	0.1	1540554

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maritime Testing (1985) Limited Client Project #: 7442 Project name: MONTAGUE MINES

RESULTS OF ANALYSES OF SOIL

	Units	MM-11 (0-5CM)	RDL	MM-11 (0-2CM)	RDL	QC Batch
Registration #						
COC Number	التعبية الطاعات	B 39881		B 39881		
Sampling Date						
Maxxam ID		Z21116		Z21117	-	

Inorganics						
< 150 um Organic Carbon (TOC)	g/kg	45	0.5	160	2	1538399
< -1 Phi (2 mm)	%	73	0.1	99	0.1	1540554
< PHI +2.7 (0.15 mm)	%	23	0.1	22	0.1	1540554

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Venice of the	Units	MM-11 (2-5CM)	RDL	MM-12 (0-5CM)	MM-13 (0-5CM)	RDL	QC Batch
Registration #							
COC Number		B 39881		B 39881	B 39881		1.00
Sampling Date							
Maxxam ID		Z21118		Z21119	Z21120		

Inorganics						-	
< 150 um Organic Carbon (TOC)	g/kg	36	0.5	300	240	2	1538399
< -1 Phi (2 mm)	%	68	0.1	100	97	0.1	1540554
< PHI +2.7 (0.15 mm)	%	18	0.1	31	25	0.1	1540554

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID		Z21121	Z21122		
Sampling Date				\top	
COC Number		B 39881	B 39881		
Registration #				1 1	
	Units	MM-14	MM-15	RDL	QC Batch
		(0-5CM)	(0-5CM)		

Inorganics					
< 150 um Organic Carbon (TOC)	g/kg	300	240	2	1538399
< -1 Phi (2 mm)	%	95	99	0.1	1540554
< PHI +2.7 (0.15 mm)	%	23	30	0.1	1540554

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maritime Testing (1985) Limited Client Project #: 7442 Project name: MONTAGUE MINES

RESULTS OF ANALYSES OF SOIL

Hallan Strain	Units	MM-16 (0-5CM)	RDL	QC Batch	MM-17 (0-5CM)	RDL	QC Batch
Registration #							
COC Number		B 39881			B 39881		
Sampling Date							
Maxxam ID		Z21123			Z21124		TE T

Inorganics							
< 150 um Organic Carbon (TOC)	g/kg	430	5	1540283	320	2	1538399
< -1 Phi (2 mm)	%	90	0.1	1540554	96	0.1	1540554
< PHI +2.7 (0.15 mm)	%	20	0.1	1540554	36	0.1	1540554

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID		Z21125	Z21125	Z21126		
Sampling Date				-11		
COC Number		B 39881	B 39881	B 39881		Trabaga
Registration #						
198.8 553 158.	Units	MM-18 (0-5CM)	MM-18 (0-5CM) Lab-Dup	MM-19 (0-5CM)	RDL	QC Batch

Inorganics						
< 150 um Organic Carbon (TOC)	g/kg	350		360	2	1538399
< -1 Phi (2 mm)	%	96	95	95	0.1	1540554
< PHI +2.7 (0.15 mm)	%	28	31	29	0.1	1540554

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maritime Testing (1985) Limited Client Project #: 7442 Project name: MONTAGUE MINES

RESULTS OF ANALYSES OF SOIL

Maxxam ID		Z21127	Z21128	Z21129		
Sampling Date						
COC Number	12.00	B 39881	B 39881	B 39881		
Registration #						
	Units	MM-20	MM-21	MM-22	RDL	QC Batch
		(0-5CM)	(0-5CM)	(0-5CM)		
Inorganics		(0-5CM)	(0-5CM)	(0-5CM)		
Inorganics < 150 um Organic Carbon (TOC)	g/kg	(0-5CM) 320	(0-5CM)	(0-5CM) 240	2	1538399
	g/kg %				2 0.1	1538399 1540554

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID		Z21130			Z21131		11=1=1
Sampling Date		I S EV. I -		Her and			
COC Number		B 39881			B 39881		
Registration #							
	Units	MM-23 (0-5CM)	RDL	QC Batch	MM-23 (0-3CM)	RDL	QC Batch
		(0-00111)			(0-30M)		
Inorganics		(0-0011)			(0-3011)		

92

42

0.1

0.1

1540554

1540554

95

40

0.1

0.1

1540579

1540579

%

%

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

< -1 Phi (2 mm)

< PHI +2.7 (0.15 mm)

Maritime Testing (1985) Limited Client Project #: 7442 Project name: MONTAGUE MINES

Maxxam ID		Z21132	Z21132	Z21134		
Sampling Date						an earlie
COC Number		B 39881	B 39881	B 39881		
Registration #						3-111
special control of the same	Units	MM-23 (3-5CM)	MM-23 (3-5CM) Lab-Dup	MM-24 (0-5CM)	RDL	QC Batch
Inorganics						
. 450 0 1 0 1 (700)	g/kg	42	39	55	0.7	1539266
< 150 um Organic Carbon (TOC)						
< 150 um Organic Carbon (TOC) < -1 Phi (2 mm)	%	93		85	0.1	1540579

	Z21135	Z21136		Z21137	- (6)	
	B 39881	B 39881		B 39881		
			11 (4.16)			
nits	MM-25 (0-5CM)	MM-26 (0-5CM)	RDL	MM-26 (0-2CM)	RDL	QC Batch
					T	
/kg	91	91	1	210	2	1539266
%	99	95	0.1	98	0.1	1540579
%	40	34	0.1	38	0.1	1540579
/	kg	B 39881 MM-25 (0-5CM) kg 91 99	B 39881 B 39881 nits MM-25 (0-5CM) (0-5CM) kg 91 91 99 95	B 39881 B 39881 nits MM-25 MM-26 (0-5CM) kg 91 91 1 6 99 95 0.1	B 39881 B 39881 B 39881 MM-25 (0-5CM) (0-5CM) RDL (0-2CM) kg 91 91 1 210 6 99 95 0.1 98	B 39881 B 39881 B 39881 MM-25 (0-5CM) (0-5CM) RDL MM-26 (0-2CM) kg 91 91 1 210 2 6 99 95 0.1 98 0.1

Maritime Testing (1985) Limited Client Project #: 7442

Project name: MONTAGUE MINES

RESULTS OF ANALYSES OF SOIL

Maxxam ID		Z21138	3 1 - 1	Z21139		
Sampling Date						
COC Number		B 39881		B 39881		
Registration #			_			
	Units	MM-26 (2-5CM)	RDL	MM-27 (0-5CM)	RDL	QC Batch
Inorganics						
< 150 um Organic Carbon (TOC)	g/kg	7.1	0.6	210	2	1539266
< -1 Phi (2 mm)	%	94	0.1	96	0.1	1540579
(=)			0.1	26	0.1	1540579

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID		Z21140	Z21140		Z21141		
Sampling Date				_			
COC Number		B 39881	B 39881		B 39881	1	G 11
Registration #							
	Units	MM-28 (0-5CM)	MM-28 (0-5CM) Lab-Dup	RDL	MM-28 (0-3CM)	RDL	QC Batch
Inorganics				I ex.	neid de		
Inorganics < 150 um Organic Carbon (TOC)	g/kg	53	57	2	230	5	1541417
	g/kg %	53 90		2 0.1	230 96	5 0.1	1541417 1540579

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maritime Testing (1985) Limited Client Project #: 7442

Project name: MONTAGUE MINES

RESULTS OF ANALYSES OF SOIL

1830000000000	Units	MM-28 (3-5CM)	RDL	QC Batch	MM-29 (0-5CM)	RDL	QC Batch
Registration #		S 110					
COC Number		B 39881			B 39881		
Sampling Date							
Maxxam ID		Z21142			Z21143		11111

Inorganics							
< 150 um Organic Carbon (TOC)	g/kg	54	5	1541417	350	2	1539266
< -1 Phi (2 mm)	%	74	0.1	1540579	85	0.1	1540579
< PHI +2.7 (0.15 mm)	%	25	0.1	1540579	25	0.1	1540579

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

	Units	MM-30 (0-5CM)	MM-31 (0-5CM)	RDL	QC Batch
Registration #					
COC Number		B 39881	B 39881		
Sampling Date					
Maxxam ID		Z21144	Z21145		

Inorganics					
< 150 um Organic Carbon (TOC)	g/kg	230	400	2	1539266
< -1 Phi (2 mm)	%	96	100	0.1	1540579
< PHI +2.7 (0.15 mm)	%	49	36	0.1	1540579

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID		Z21146			Z21147		
Sampling Date							
COC Number		B 39881			B 39881	-	
Registration #							
	Units	MM-32	RDL	QC Batch	MM-35	RDL	QC Batch
		(0-5CM)			(0-5CM)		

Inorganics							
< 150 um Organic Carbon (TOC)	g/kg	190	5	1541417	29	0.5	1539266
< -1 Phi (2 mm)	%	96	0.1	1540579	94	0.1	1540579
< PHI +2.7 (0.15 mm)	%	45	0.1	1540579	57	0.1	1540579

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maritime Testing (1985) Limited Client Project #: 7442 Project name: MONTAGUE MINES

RESULTS OF ANALYSES OF SOIL

11-12-41-23-	Units	MM-36 (0-5CM)	RDL	MM-56 (0-5CM)	RDL	QC Batch
Registration #					_	
COC Number		B 39881		B 39881		
Sampling Date					_	
Maxxam ID		Z21148	L	Z21149		

Inorganics						
< 150 um Organic Carbon (TOC)	g/kg	220	2	110	0.8	1539266
< -1 Phi (2 mm)	%	61	0.1	64	0.1	1540579
< PHI +2.7 (0.15 mm)	%	32	0.1	39	0.1	1540579

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Calling Com	Units	MM-57 (0-5CM)	RDL	MM-58 (0-5CM)	RDL	QC Batch
Registration #						1
COC Number		B 39881		B 39881		
Sampling Date						
Maxxam ID		Z21150		Z21151		

Inorganics				-	4-	
< 150 um Organic Carbon (TOC)	g/kg	57	0.5	230	2	1539266
< -1 Phi (2 mm)	%	92	0.1	69	0.1	1540579
< PHI +2.7 (0.15 mm)	%	44	0.1	16	0.1	1540579

Maritime Testing (1985) Limited Client Project #: 7442 Project name: MONTAGUE MINES

RESULTS OF ANALYSES OF SOIL

13 100 11	Units	MM-59 (2-5CM)	MM-59 (2-5CM) Lab-Dup	RDL	QC Batch
Registration #					
COC Number		B 39881	B 39881		
Sampling Date					
Maxxam ID		Z21152	Z21152		

Inorganics					
< 150 um Organic Carbon (TOC)	g/kg	45		0.5	1539266
< -1 Phi (2 mm)	%	82	83	0.1	1540594
< PHI +2.7 (0.15 mm)	%	44	49	0.1	1540594

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID		Z21153	Z21153		Z21154		
Sampling Date			0.0			3 2 30	A COLOR
COC Number		B 39881	B 39881		B 39881		
Registration #			DECEMBER 11				
	Units	MM-60 (0-5CM)	MM-60 (0-5CM) Lab-Dup	RDL	MM-61 (0-5CM)	RDL	QC Batch

Inorganics					100		
< 150 um Organic Carbon (TOC)	g/kg	270	270	5	290	4	1540283
< -1 Phi (2 mm)	%	92		0.1	97	0.1	1540594
< PHI +2.7 (0.15 mm)	%	14		0.1	47	0.1	1540594

Maritime Testing (1985) Limited Client Project #: 7442 Project name: MONTAGUE MINES

RESULTS OF ANALYSES OF SOIL

The Hell State Could	Units	MM-62 (0-5CM)	MM-63 (0-5CM)	MM-64 (0-5CM)	RDL	QC Batch
Registration #						
COC Number		B 39881	B 39881	B 39881		
Sampling Date						
Maxxam ID		Z21155	Z21156	Z21157		

Inorganics						
< 150 um Organic Carbon (TOC)	g/kg	340	300	110	5	1540283
< -1 Phi (2 mm)	%	95	98	91	0.1	1540594
< PHI +2.7 (0.15 mm)	%	27	24	38	0.1	1540594

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

	Units	MM-64 (0-2CM)	RDL	MM-64 (2-5CM)	RDL	QC Batch
Registration #			4			
COC Number		B 39881		B 39881		
Sampling Date						
Maxxam ID		Z21158		Z21159		9.00

Inorganics				er Elevan	-	
< 150 um Organic Carbon (TOC)	g/kg	300	5	60	2	1540283
< -1 Phi (2 mm)	%	99	0.1	80	0.1	1540594
< PHI +2.7 (0.15 mm)	%	57	0.1	37	0.1	1540594

Maritime Testing (1985) Limited Client Project #: 7442

Project name: MONTAGUE MINES

Maxxam ID		Z21112	Z21113	Z21114		
Sampling Date	-11					
COC Number		B 39881	B 39881	B 39881	1	LL DIVIN
Registration #	7175					
med SALMA	Units	MM-9 (0-5CM)	MM-10 (0-5CM)	MM-10 (0-1.5CM)	RDL	QC Batch
	·					·
Metals						

Maxxam ID		Z21115	Z21115	Z21116		
Sampling Date COC Number		B 39881	B 39881	B 39881	+	
Registration #						
	Units	MM-10 (1.5-5CM)	MM-10 (1.5-5CM) Lab-Dup	MM-11 (0-5CM)	RDL	QC Batch
Metals						
	T T		86	130	\neg	1539823

Maxxam ID		Z21117	Z21118	Z21119		
Sampling Date						
COC Number		B 39881	B 39881	B 39881		
Registration #						
	Units	MM-11 (0-2CM)	MM-11 (2-5CM)	MM-12 (0-5CM)	RDL	QC Batch
Metals					T	
	mg/kg	8	170	10	2	1539823

Maritime Testing (1985) Limited Client Project #: 7442 Project name: MONTAGUE MINES

Maxxam ID		Z21120	Z21121	Z21122		
Sampling Date						
COC Number		B 39881	B 39881	B 39881		
Registration #						
	Units	MM-13 (0-5CM)	MM-14 (0-5CM)	MM-15 (0-5CM)	RDL	QC Batch
Metals						

Maxxam ID		Z21123	Z21124	Z21125		
Sampling Date						
COC Number		B 39881	B 39881	B 39881		
Registration #						
Language Capture	Units	MM-16 (0-5CM)	MM-17 (0-5CM)	MM-18 (0-5CM)	RDL	QC Batch
Metals					Т	
available (<150 um) Arsenic (As)	mg/kg	23	17	27	2	1539823

Maxxam ID		Z21126	Z21127	Z21128		
Sampling Date						
COC Number		B 39881	B 39881	B 39881		
Registration #	14					
PARAMETER IN THE REAL	Units	MM-19 (0-5CM)	MM-20 (0-5CM)	MM-21 (0-5CM)	RDL	QC Batch
Metals				7		

Maritime Testing (1985) Limited Client Project #: 7442 Project name: MONTAGUE MINES

ELEMENTS BY ICP/MS (SOIL)

QC Batch
1539869
1

Maxxam ID		Z21132	Z21134	Z21134		17.7.1
Sampling Date						
COC Number		B 39881	B 39881	B 39881		(2) The same
Registration #						
Vising Big July Visited	Units	MM-23 (3-5CM)	MM-24 (0-5CM)	MM-24 (0-5CM) Lab-Dup	RDL	QC Batch
Metals					Т	
available (<150 um) Arsenic (As)	mg/kg	70	110	120	2	1539869
RDL = Reportable Detection Limit					ė.	

Maxxam ID		Z21135	Z21136	Z21137		
Sampling Date						
COC Number		B 39881	B 39881	B 39881		
Registration #						
	Units	MM-25 (0-5CM)	MM-26 (0-5CM)	MM-26 (0-2CM)	RDL	QC Batch
Metals	4					
available (<150 um) Arsenic (As)	mg/kg	190	20	22	2	1539869

Maritime Testing (1985) Limited Client Project #: 7442

Project name: MONTAGUE MINES

ELEMENTS BY ICP/MS (SOIL)

Maxxam ID		Z21138	Z21139	Z21140		
Sampling Date						
COC Number	11 12	B 39881	B 39881	B 39881		
Registration #		المحالية المحالمة				
	Units	MM-26 (2-5CM)	MM-27 (0-5CM)	MM-28 (0-5CM)	RDL	QC Batch
Metals						
available (<150 um) Arsenic (As)	ma/ka	19	40	2600	2	1539869

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID		Z21141	Z21142	Z21143		
Sampling Date						
COC Number		B 39881	B 39881	B 39881		
Registration #						
	Units	MM-28 (0-3CM)	MM-28 (3-5CM)	MM-29 (0-5CM)	RDL	QC Batcl
Metals					T	
available (<150 um) Arsenic (As)	ma/ka	770	2500	100	2	1539869

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID		Z21144	Z21145	Z21146		
Sampling Date						LEXUPLE I
COC Number		B 39881	B 39881	B 39881		
Registration #					-	111-1-1
	Units	MM-30	MM-31	MM-32	RDL	QC Batch
		(0-5CM)	(0-5CM)	(0-5CM)		

Metals	11					
available (<150 um) Arsenic (As)	mg/kg	32	47	240	2	1539869

Maritime Testing (1985) Limited Client Project #: 7442 Project name: MONTAGUE MINES

Maxxam ID		Z21147	Z21148	Z21149		
Sampling Date	1177					V
COC Number		B 39881	B 39881	B 39881		
Registration #	4 -					
THE ELLIPHIC DESIGNATION OF THE	Units	MM-35	MM-36	MM-56	RDL	QC Batch
		(0-5CM)	(0-5CM)	(0-5CM)		
Metals		(0-3CM)	(U-3CM)	(U-5CM)		

Maxxam ID		Z21150		Z21151	Z21152		
Sampling Date							
COC Number		B 39881		B 39881	B 39881		EFERTION.
Registration #							
man 2 (11 (11 (11 (11 (11 (11 (11 (11 (11 (Units	MM-57 (0-5CM)	QC Batch	MM-58 (0-5CM)	MM-59 (2-5CM)	RDL	QC Batch
Metals						<u> </u>	
	mg/kg	110	1539869	73	130	2	1541389

	Z21152	Z21153	Z21154		
87.17					
	B 39881	B 39881	B 39881		
Units	MM-59 (2-5CM)	MM-60 (0-5CM)	MM-61 (0-5CM)	RDL	QC Batch
	Lab-bup				
	Lab-bup				
	Units	B 39881 Units MM-59 (2-5CM)	B 39881 B 39881 Units MM-59 MM-60 (2-5CM) (0-5CM)	B 39881 B 39881 B 39881 Units MM-59 MM-60 MM-61 (2-5CM) (0-5CM)	B 39881 B 39881 B 39881 Units MM-59 MM-60 MM-61 RDL

Maritime Testing (1985) Limited Client Project #: 7442 Project name: MONTAGUE MINES

ELEMENTS BY ICP/MS (SOIL)

Maxxam ID		Z21155	Z21156	Z21157		
Sampling Date						
COC Number		B 39881	B 39881	B 39881		
Registration #						
	Units	MM-62	MM-63	MM-64	RDL	QC Batch
		(0-5CM)	(0-5CM)	(0-5CM)	1	

Metals						
available (<150 um) Arsenic (As)	mg/kg	31	21	120	2	1541389

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

	Units	MM-64 (0-2CM)	MM-64 (2-5CM)	RDL	QC Batch
Registration #					
COC Number		B 39881	B 39881		
Sampling Date					
Maxxam ID		Z21158	Z21159		

Metais					
available (<150 um) Arsenic (As)	mg/kg	39	130	2	1541389

Maritime Testing (1985) Limited Client Project #: 7442 Project name: MONTAGUE MINES

		GI	ENERAL COMME	ENTS						
Results relate only to the	esults relate only to the items tested.									
					MHU.					

Maritime Testing (1985) Limited Attention: Robert Bekkers Client Project #: 7442

P.O. #:

Project name: MONTAGUE MINES

Quality Assurance Report Maxxam Job Number: DA861171

QA/QC			Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Limits
1538399 CAC	QC STANDARD	< 150 um Organic Carbon (TOC)	2008/06/17	94	%	75 - 125
	Method Blank	< 150 um Organic Carbon (TOC)	2008/06/17	ND, RDL=0.2	g/kg	
	RPD [Z21112-01]	< 150 um Organic Carbon (TOC)	2008/06/17	0.8	%	35
1539266 CAC	QC STANDARD	< 150 um Organic Carbon (TOC)	2008/06/18	91	%	75 - 125
	Method Blank	< 150 um Organic Carbon (TOC)	2008/06/18	ND, RDL=0.2	g/kg	
1539823 DLB	RPD [Z21132-01] MATRIX SPIKE	< 150 um Organic Carbon (TOC)	2008/06/18	6.7	%	35
	[Z21115-01]	available (<150 um) Arsenic (As)	2008/06/17	NC	%	75 - 125
	QC STANDARD	available (<150 um) Arsenic (As)	2008/06/17	100	%	75 - 125
	Spiked Blank	available (<150 um) Arsenic (As)	2008/06/17	91	%	75 - 125
	Method Blank	available (<150 um) Arsenic (As)	2008/06/17	ND, RDL=2	mg/kg	
1539869 DLB	RPD [Z21115-01] MATRIX SPIKE	available (<150 um) Arsenic (As)	2008/06/17	0.7	%	35
1000000 BLB	[Z21134-01]	available (<150 um) Arsenic (As)	2008/06/17	NC	%	75 - 125
	QC STANDARD	available (<150 um) Arsenic (As)	2008/06/17	111	%	75 - 125
	Spiked Blank	available (<150 um) Arsenic (As)	2008/06/17	91	%	75 - 125
	Method Blank	available (<150 um) Arsenic (As)	2008/06/17	ND, RDL=2	mg/kg	75-120
	RPD [Z21134-01]	available (<150 um) Arsenic (As)	2008/06/17	6.2	%	35
1540283 CAC	QC STANDARD	< 150 um Organic Carbon (TOC)	2008/06/18	91	%	75 - 125
	Method Blank	< 150 um Organic Carbon (TOC)	2008/06/18	ND. RDL=0.2	g/kg	70-120
	RPD [Z21153-01]	< 150 um Organic Carbon (TOC)	2008/06/18	1.5	% %	35
1540554 SBK	RPD [Z21125-01]	<-1 Phi (2 mm)	2008/06/18	1.3	%	25
	[< PHI +2.7 (0.15 mm)	2008/06/18	11.4	%	25
1540594 BAN	RPD [Z21152-01]	<-1 Phi (2 mm)	2008/06/18	1.2	%	25
	[< PHI +2.7 (0.15 mm)	2008/06/18	10.8	%	25
1541389 DLB	MATRIX SPIKE		200700710	10.0	70	20
	[Z21152-01]	available (<150 um) Arsenic (As)	2008/06/18	NC	%	75 - 125
	QC STANDARD	available (<150 um) Arsenic (As)	2008/06/18	111	%	75 - 125
	Spiked Blank	available (<150 um) Arsenic (As)	2008/06/18	96	%	75 - 125
	Method Blank	available (<150 um) Arsenic (As)	2008/06/19	ND, RDL=2	mg/kg	
	RPD [Z21152-01]	available (<150 um) Arsenic (As)	2008/06/18	3.5	%	35
1541417 CAC	QC STANDARD	< 150 um Organic Carbon (TOC)	2008/06/19	88	%	75 - 125
	Method Blank	< 150 um Organic Carbon (TOC)	2008/06/19	ND, RDL=0.2	g/kg	
	RPD [Z21140-01]	< 150 um Organic Carbon (TOC)	2008/06/19	6.3	%	35

ND = Not detected

NC = Non-calculable

RPD = Relative Percent Difference

QC Standard = Quality Control Standard

SPIKE = Fortified sample

Your Project #: 7442 Site: MONTAGUE MINES Your C.O.C. #: B 39881

Attention: Robert Bekkers Maritime Testing (1985) Limited 900 Windmill Rd Suite 116 Dartmouth, NS **B3B 1P7**

Report Date: 2008/06/18

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A861150 Received: 2008/06/11, 12:50

Sample Matrix: Soil # Samples Received: 47

Analyses Mercury (CVAA) Metals Solid Avail. MS - N-per Metals Solid Avail. MS - N-per Total Organic Carbon in Soil	Quantity 47 24 23 7	N/A N/A N/A N/A	Date Analyzed Laboratory Method 2008/06/17 ATL SOP 00026 R3 2008/06/13 ATL SOP 00024 R3 2008/06/16 ATL SOP 00024 R3 2008/06/13 ATL SOP 00044 R2 2008/06/16 ATL SOP 00044 R2	Method Reference Based on EPA245.5 Based on EPA6020A Based on EPA6020A LECO 203-601-224 LECO 203-601-224
Total Organic Carbon in Soil	19 20 1	N/A N/A N/A	2008/06/16 ATL SOP 00044 R2 2008/06/17 ATL SOP 00044 R2 2008/06/18 ATL SOP 00044 R2	LECO 203-601-224 LECO 203-601-224

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

TROY MACKAY, Project Manager

Email: troy.mackay.reports@maxxamanalytics.com

Phone# (902) 420-0203 Ext:266

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

Total cover pages: 1

Maritime Testing (1985) Limited Client Project #: 7442 Project name: MONTAGUE MINES

RESULTS OF ANALYSES OF SOIL

	Units	MM-9 (0-5CM)	RDL	MM-10 (0-5CM)	RDL	QC Batch
Registration #					-	
COC Number		_ B 39881		B 39881		
Sampling Date		2008/06/02		2008/06/02		
Maxxam ID		Z20996		Z20997		

Inorganics						
Organic Carbon (TOC)	g/kg	250	4	47	1	1536810

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

The state of	Units	MM-10 (0-1.5CM)	RDL	MM-10 (1.5-5CM)	MM-11 (0-5CM)	RDL	QC Batch
Registration #							5.0
COC Number		B 39881		B 39881	B 39881		100
Sampling Date		2008/06/02	3.6	2008/06/02	2008/06/02		BIL
Maxxam ID		Z20998		Z20999	Z21000		

Inorganics							T-1
Organic Carbon (TOC)	g/kg	230	5	26	70	1	1536810

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

	Units	MM-11 (0-2CM)	RDL	MM-11 (2-5CM)	RDL	QC Batch
Registration #				1,655,1		
COC Number		B 39881		B 39881		
Sampling Date		2008/06/02		2008/06/02		
Maxxam ID		Z21001		Z21002		

Inorganics						
Organic Carbon (TOC)	g/kg	230	5	46	1	1536810

Maritime Testing (1985) Limited Client Project #: 7442

Project name: MONTAGUE MINES

Maxxam ID		Z21003	Z21003		Z21004		
Sampling Date		2008/06/02	2008/06/02		2008/06/02		100
COC Number		B 39881	B 39881		B 39881		
Registration #							
	Units	MM-12 (0-5CM)	MM-12 (0-5CM) Lab-Dup	RDL	MM-13 (0-5CM)	RDL	QC Batch
Inorganics							
Organic Carbon (TOC)	g/kg	350	340	3	320	4	1538215

008/06/02 B 39881 MM-15 F	201	
	201	
MM-15 F	101	
MM-15 F	101 k	
(0-5CM)	SDL C	QC Batch
	_	
310	3	1538215
	310	310 3

Maxxam ID		Z21007	Z21008	4	Z21009		
Sampling Date		2008/06/02	2008/06/02		2008/06/02		-
COC Number		B 39881	B 39881		B 39881		
Registration #					income and a second		7-11
	Units	MM-16 (0-5CM)	MM-17 (0-5CM)	RDL	MM-18 (0-5CM)	RDL	QC Batch
				T			_
Inorganics							

Maritime Testing (1985) Limited Client Project #: 7442

Project name: MONTAGUE MINES

1538215

RESULTS OF ANALYSES OF SOIL

	Units	MM-19 (0-5CM)	RDL	QC Batch	MM-20 (0-5CM)	RDL	QC Batch
Registration #							
COC Number		B 39881			B 39881		
Sampling Date		2008/06/02			2008/06/02		
Maxxam ID		Z21010			Z21011		

2

310

1538397

330

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

g/kg

Organic Carbon (TOC)

Maxxam ID		Z21012	S. Name	Z21013		
Sampling Date		2008/06/02		2008/06/02		
COC Number		B 39881		B 39881	-	
Registration #						MI A
	Units	MM-21 (0-5CM)	RDL	MM-22 (0-5CM)	RDL	QC Batch
Inorganics					Т	

Maxxam ID		Z21014		Z21015		
Sampling Date		2008/06/02		2008/06/02		4 (6-31)
COC Number		B 39881		B 39881		
Registration #					-	
	Units	MM-23 (0-5CM)	RDL	MM-23 (0-3CM)	RDL	QC Batch
Inorganics						
Organic Carbon (TOC)	g/kg	68	0.9	250	2	1538215

Maritime Testing (1985) Limited Client Project #: 7442

Project name: MONTAGUE MINES

RESULTS OF ANALYSES OF SOIL

Sampling Date COC Number		2008/06/02 B 39881		2008/06/02 B 39881	2008/06/02 B 39881		
Registration #							
	Units	MM-23 (3-5CM)	RDL	MM-24 (0-5CM)	MM-25 (0-5CM)	RDL	QC Batcl
Inorganics							

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID		Z21019		Z21020		
Sampling Date		2008/06/02		2008/06/02		1.70
COC Number	OC Number B 3			B 39881		27
Registration #						
finited the prior	Units	MM-26	RDL	MM-26	RDL	QC Batch
		(0-5CM)		(0-2CM)		
Inorganics		(U-3CM)		(U-2CM)		

PRINCE NO	Units	MM-26 (2-5CM)	RDL	MM-27 (0-5CM)	RDL	QC Batch
Registration #						
COC Number		B 39881		B 39881		
Sampling Date		2008/06/02		2008/06/02		
Maxxam ID	and the second	Z21021		Z21022		

Inorganics						
Organic Carbon (TOC)	g/kg	11	0.3	340	5	1538215

Maritime Testing (1985) Limited Client Project #: 7442

Project name: MONTAGUE MINES

RESULTS OF ANALYSES OF SOIL

Maxxam ID		Z21023	Z21023		
Sampling Date		2008/06/02	2008/06/02		
COC Number		B 39881	B 39881		
Registration #					
	Units	MM-28 (0-5CM)	MM-28 (0-5CM) Lab-Dup	RDL	QC Batch

Inorganics	14			NET.	
Organic Carbon (TOC)	g/kg	64	71	1	1539215

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

	Units	MM-28 (0-3CM)	RDL	MM-28 (3-5CM)	RDL	QC Batch
Registration #				IIII - N		
COC Number		B 39881		B 39881		
Sampling Date		2008/06/02		2008/06/02		
Maxxam ID		Z21024		Z21025		

Inorganics						
Organic Carbon (TOC)	g/kg	210	2	79	1	1538397

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

	Units	MM-29 (0-5CM)	RDL	MM-30 (0-5CM)	MM-31 (0-5CM)	RDL	QC Batch
Registration #							
COC Number		B 39881		B 39881	B 39881		10000
Sampling Date		2008/06/02		2008/06/02	2008/06/02		
Maxxam ID		Z21026		Z21027	Z21028		

Inorganics				ning .	was didn't		
Organic Carbon (TOC)	g/kg	390	2	210	400	3	1538397

Maritime Testing (1985) Limited Client Project #: 7442 Project name: MONTAGUE MINES

RESULTS OF ANALYSES OF SOIL

	Units	MM-32 (0-5CM)	RDL	MM-35 (0-5CM)	RDL	QC Batch
Registration #						
COC Number	7.40	B 39881		B 39881		
Sampling Date		2008/06/02		2008/06/02		Jim to the
Maxxam ID		Z21029		Z21030		

Inorganics						
Organic Carbon (TOC)	g/kg	190	2	22	0.5	1538397

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

	Units	MM-36 (0-5CM)	RDL	MM-56 (0-5CM)	MM-57 (0-5CM)	RDL	QC Batch
Registration #			-				
COC Number	ed E = 1 1 e	B 39881		B 39881	B 39881		HECT III
Sampling Date		2008/06/02		2008/06/02	2008/06/02		
Maxxam ID		Z21031		Z21032	Z21033		

Inorganics							
Organic Carbon (TOC)	g/kg	250	2	120	71	1	1538397

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

	Units	MM-58 (0-5CM)	RDL	MM-59 (2-5CM)	RDL	QC Batch
Registration #	W 10	111 201 11				
COC Number		B 39881		B 39881		
Sampling Date		2008/06/11		2008/06/11		
Maxxam ID		Z21034		Z21035		

Inorganics						
Organic Carbon (TOC)	g/kg	280	2	39	0.9	1538397

Maritime Testing (1985) Limited Client Project #: 7442

Project name: MONTAGUE MINES

RESULTS OF ANALYSES OF SOIL

	Units	MM-60 (0-5CM)	RDL	MM-61 (0-5CM)	RDL	QC Batch
Registration #						
COC Number		B 39881		B 39881		
Sampling Date		2008/06/11		2008/06/11	W U	
Maxxam ID		Z21036		Z21037		

Inorganics					- 1	
Organic Carbon (TOC)	g/kg	250	4	310	5	1538397

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

	Units	MM-62 (0-5CM)	QC Batch	MM-63 (0-5CM)	RDL	QC Batch
Registration #						
COC Number		B 39881		B 39881		
Sampling Date		2008/06/11		2008/06/11		
Maxxam ID	=5	Z21038		Z21039		

Inorganics						
Organic Carbon (TOC)	g/kg	310	1539215	360	5	1538397

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID		Z21040		Z21041		
Sampling Date		2008/06/11		2008/06/11		
COC Number		B 39881		B 39881		
Registration #				160		
	Units	MM-64 (0-5CM)	RDL	MM-64 (0-2CM)	RDL	QC Batch

Inorganics	- 11 11					
Organic Carbon (TOC)	g/kg	110	1	330	3	1538397

Maritime Testing (1985) Limited Client Project #: 7442 Project name: MONTAGUE MINES

RESULTS OF ANALYSES OF SOIL

	Units	MM-64 (2-5CM)	RDL	QC Batch
Registration #				
COC Number		B 39881		
Sampling Date		2008/06/11		
Maxxam ID		Z21042		

Inorganics				
Organic Carbon (TOC)	g/kg	52	1	1538397

Maritime Testing (1985) Limited Client Project #: 7442 Project name: MONTAGUE MINES

MERCURY BY COLD VAPOUR AA (SOIL)

Maxxam ID		Z20996	Z20997	Z20998	Z20999		1 60 10
Sampling Date	- 24	2008/06/02	2008/06/02	2008/06/02	2008/06/02		II I See Y'
COC Number		B 39881	B 39881	B 39881	B 39881		LESSE
Registration #					4-1		11 12 12 12 12
	Units	MM-9 (0-5CM)	MM-10 (0-5CM)	MM-10 (0-1.5CM)	MM-10 (1.5-5CM)	RDL	QC Batch
Metals							

Maxxam ID		Z21000	Z21001	Z21002	Z21003		
Sampling Date		2008/06/02	2008/06/02	2008/06/02	2008/06/02		
COC Number		B 39881	B 39881	B 39881	B 39881		
Registration #							Jie g - H
	Units	MM-11 (0-5CM)	MM-11 (0-2CM)	MM-11 (2-5CM)	MM-12 (0-5CM)	RDL	QC Batch
Metals							
				0.17	0.26	0.01	1539279

Maxxam ID		Z21004	Z21005	Z21006	Z21007		
Sampling Date		2008/06/02	2008/06/02	2008/06/02	2008/06/02		-11 11 11
COC Number		B 39881	B 39881	B 39881	B 39881		
Registration #			HERCE ST.	Lotter of the last	J. 110 (85 - 1)		
	Units	MM-13 (0-5CM)	MM-14 (0-5CM)	MM-15 (0-5CM)	MM-16 (0-5CM)	RDL	QC Batch
Metals							

Maritime Testing (1985) Limited Client Project #: 7442

Project name: MONTAGUE MINES

MERCURY BY COLD VAPOUR AA (SOIL)

Maxxam ID		Z21008	Z21009	7.7	Z21010	Z21011		
Sampling Date	11-11-1	2008/06/02	2008/06/02		2008/06/02	2008/06/02		
COC Number		B 39881	B 39881	- 4 - 10	B 39881	B 39881		
Registration #							1 4 4	
	Units	MM-17 (0-5CM)	MM-18 (0-5CM)	QC Batch	MM-19 (0-5CM)	MM-20 (0-5CM)	RDL	QC Batch
Metals								
Mercury (Hg)	mg/kg	0.22	0.22	1539279	0.28	0.33	0.01	1539280

Maxxam ID	15 10 15	Z21012	Z21013	Z21014	Z21014		
Sampling Date		2008/06/02	2008/06/02	2008/06/02	2008/06/02		
COC Number		B 39881	B 39881	B 39881	B 39881		300 - 70
Registration #							
rimali 661 J	Units	MM-21 (0-5CM)	MM-22 (0-5CM)	MM-23 (0-5CM)	MM-23 (0-5CM)	RDL	QC Batch
					Lab-Dup		
Metals					Lab-Dup		

	Z21015	Z21016	Z21017	Z21018		
	2008/06/02	2008/06/02	2008/06/02	2008/06/02		
	B 39881	B 39881	B 39881	B 39881		
	er-sage Trans					
Units	MM-23 (0-3CM)	MM-23 (3-5CM)	MM-24 (0-5CM)	MM-25 (0-5CM)	RDL	QC Batch
						- 41-
mg/kg	0.32	0.13	0.16	0.24	0.01	1539280
		2008/06/02 B 39881 Units MM-23 (0-3CM)	2008/06/02 2008/06/02 B 39881 B 39881 Units MM-23 MM-23 (0-3CM) (3-5CM)	2008/06/02 2008/06/02 2008/06/02 B 39881 B 39881 B 39881 B 39881 B 39881 Units MM-23 MM-23 (0-3CM) (3-5CM) (0-5CM)	2008/06/02 2008/06/02 2008/06/02 2008/06/02 2008/06/06/02 2008/06/06/06/06/06/06/06/06/06/06/06/06/06/	2008/06/02 2008/06/02 2008/06/02 2008/06/02

Maritime Testing (1985) Limited Client Project #: 7442 Project name: MONTAGUE MINES

MERCURY BY COLD VAPOUR AA (SOIL)

Maxxam ID		Z21019	Z21020	Z21021	Z21022		
Sampling Date		2008/06/02	2008/06/02	2008/06/02	2008/06/02	4112	
COC Number	101	B 39881	B 39881	B 39881	B 39881		122 11 23
Registration #							
	Units	MM-26 (0-5CM)	MM-26 (0-2CM)	MM-26 (2-5CM)	MM-27 (0-5CM)	RDL	QC Batch
Metals							

Maxxam ID		Z21023	Z21024	Z21025	Z21026		
Sampling Date		2008/06/02	2008/06/02	2008/06/02	2008/06/02		
COC Number		B 39881	B 39881	B 39881	B 39881		
Registration #							
	11-14-	MM-28	MM-28	B484 00	MM-29	RDL	QC Batch
	Units	(0-5CM)	(0-3CM)	MM-28 (3-5CM)	(0-5CM)	KUL	UC Batch
Metals	Units					KUL	QC Batch

Maxxam ID		Z21027	Z21028	Z21029		Z21030		
Sampling Date		2008/06/02	2008/06/02	2008/06/02		2008/06/02		
COC Number		B 39881	B 39881	B 39881		B 39881	The sale	
Registration #		4 - 4 - 11 - 11 - 11 - 11 - 11 - 11 - 1						
	Units	MM-30 (0-5CM)	MM-31 (0-5CM)	MM-32 (0-5CM)	QC Batch	MM-35 (0-5CM)	RDL	QC Batch
Metals								
Mercury (Hg)	mg/kg	0.31	0.13	0.46	1539280	0.20	0.01	1539282

Maritime Testing (1985) Limited Client Project #: 7442

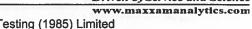
Project name: MONTAGUE MINES

MERCURY BY COLD VAPOUR AA (SOIL)

Maxxam ID		Z21031	Z21032	Z21033	Z21034		
	_						
Sampling Date		2008/06/02	2008/06/02	2008/06/02	2008/06/11		
COC Number		B 39881	B 39881	B 39881	B 39881		111
Registration #	EF						
1000	Units	MM-36 (0-5CM)	MM-56 (0-5CM)	MM-57 (0-5CM)	MM-58 (0-5CM)	RDL	QC Batch
		(0-2Cist)	10-20101	[0-30141]	[0-3CH]		
Metals		(0-3014)	(0-3011)	(0-3014)	(0-30181)		

Maxxam ID		Z21035	Z21035	Z21036	Z21037		
Sampling Date		2008/06/11	2008/06/11	2008/06/11	2008/06/11		272 -
COC Number		B 39881	B 39881	B 39881	B 39881		
Registration #							100
alian tar.	Units	MM-59 (2-5CM)	MM-59 (2-5CM) Lab-Dup	MM-60 (0-5CM)	MM-61 (0-5CM)	RDL	QC Batch
Metals							

Maxxam ID		Z21038	Z21039	Z21040	Z21041		
Sampling Date	10010	2008/06/11	2008/06/11	2008/06/11	2008/06/11		
COC Number		B 39881	B 39881	B 39881	B 39881		
Registration #							
	Units	MM-62 (0-5CM)	MM-63 (0-5CM)	MM-64 (0-5CM)	MM-64 (0-2CM)	RDL	QC Batch
Metals							
Mercury (Hg)	mg/kg	0.33	0.28	0.22	0.27	0.01	1539282
RDL = Reporta QC Batch = Qu	ble Detec	ction Limit	0.20	0.22	Will be	II HERAIL	1000202



Maritime Testing (1985) Limited Client Project #: 7442 Project name: MONTAGUE MINES

MERCURY BY COLD VAPOUR AA (SOIL)

5. T N	Units	MM-64 (2-5CM)	RDL	QC Batch
Registration #				
COC Number		B 39881		
Sampling Date	15 15	2008/06/11		
Maxxam ID		Z21042		

Metals				
Mercury (Hg)	mg/kg	0.16	0.01	1539282

Maritime Testing (1985) Limited Client Project #: 7442 Project name: MONTAGUE MINES

Maxxam ID		Z20996	Z20997	Z20998	Z20999		
Sampling Date		2008/06/02	2008/06/02	2008/06/02	2008/06/02	1 4	
COC Number		B 39881	B 39881	B 39881	B 39881		
Registration #							
	Units	MM-9 (0-5CM)	MM-10 (0-5CM)	MM-10 (0-1.5CM)	MM-10 (1.5-5CM)	RDL	QC Batch
	<u> </u>					1	
Metals		1					

	Z21000	Z21001	Z21002	Z21003		
	2008/06/02	2008/06/02	2008/06/02	2008/06/02		
\neg	B 39881	B 39881	B 39881	B 39881		
Units	MM-11 (0-5CM)	MM-11 (0-2CM)	MM-11 (2-5CM)	MM-12 (0-5CM)	RDL	QC Batch
ng/kg	130	10	150	12	2	1537371
		2008/06/02 B 39881 Jnits MM-11 (0-5CM)	2008/06/02 2008/06/02 B 39881 B 39881	2008/06/02 2008/06/02 2008/06/02 B 39881 B 39881 B 39881 B 39881 B 39881	2008/06/02 200	2008/06/02 2008/06/02 2008/06/02 2008/06/02 B 39881 B

Maxxam ID		Z21004	Z21005	Z21006	Z21007		
Sampling Date		2008/06/02	2008/06/02	2008/06/02	2008/06/02		
COC Number		B 39881	B 39881	B 39881	B 39881		
Registration #							
	Units	MM-13 (0-5CM)	MM-14 (0-5CM)	MM-15 (0-5CM)	MM-16 (0-5CM)	RDL	QC Batch
Metals							

Maritime Testing (1985) Limited Client Project #: 7442 Project name: MONTAGUE MINES

Maxxam ID		Z21008	Z21009	Z21010	Z21011		
Sampling Date		2008/06/02	2008/06/02	2008/06/02	2008/06/02		
COC Number		B 39881	B 39881	B 39881	B 39881		
Registration #						17.4	
	Units	MM-17 (0-5CM)	MM-18 (0-5CM)	MM-19 (0-5CM)	MM-20 (0-5CM)	RDL	QC Batch
Metals						T	Jan B
Available Arsenic (As)	ma/ka	14	18	26	23	2	1538268

Maxxam ID		Z21012	Z21013	Z21014	Z21015		
Sampling Date		2008/06/02	2008/06/02	2008/06/02	2008/06/02		
COC Number		B 39881	B 39881	B 39881	B 39881		
Registration #	15.00						
	Units	MM-21 (0-5CM)	MM-22 (0-5CM)	MM-23 (0-5CM)	MM-23 (0-3CM)	RDL	QC Batch
Metals							ne.
Available Arsenic (As)	ma/ka	20	43	98	110	2	1538268

	Z21016	Z21016	Z21017	Z21018		E E HOLL
U =	2008/06/02	2008/06/02	2008/06/02	2008/06/02		
	B 39881	B 39881	B 39881	B 39881		
Units	MM-23 (3-5CM)	MM-23 (3-5CM) Lab-Dup	MM-24 (0-5CM)	MM-25 (0-5CM)	RDL	QC Batch
mg/kg	64	67	98	160	2	1538268
		2008/06/02 B 39881 Units MM-23 (3-5CM)	2008/06/02 2008/06/02 B 39881 B 39881 Units MM-23 MM-23 (3-5CM) (3-5CM) Lab-Dup	2008/06/02 2008/06/02 2008/06/02 B 39881 B 39881 B 39881 B 39881 Units MM-23 MM-24 (3-5CM) (2-5CM) Lab-Dup (0-5CM) C C C C C C C C C	2008/06/02 2008/06/02 2008/06/02 2008/06/02 2008/06/02 2008/06/02 2008/06/02 2008/06/02 2008/06/02 2008/06/02 2008/06/02 2008/06/02 2008/06/02 2008/06/02 2008/06/02 2008/06/0	2008/06/02 2008/06/02 2008/06/02 2008/06/02

Maritime Testing (1985) Limited Client Project #: 7442

Project name: MONTAGUE MINES

Maxxam ID		Z21019		Z21020	Z21021		
Sampling Date		2008/06/02		2008/06/02	2008/06/02		
COC Number		B 39881		B 39881	B 39881		
Registration #						1	
	Units	MM-26 (0-5CM)	QC Batch	MM-26 (0-2CM)	MM-26 (2-5CM)	RDL	QC Batch
Metals							
			1111111				
Available Arsenic (As)	mg/kg	17	1538268	22	16	2	1538766
RDL = Reportable Dete	action Lir	nit					
	SCHOIL EII	1111					

Maxxam ID		Z21022	Z21023	Z21024	Z21025		
Sampling Date		2008/06/02	2008/06/02	2008/06/02	2008/06/02		
COC Number		B 39881	B 39881	B 39881	B 39881		
Registration #							1
Jesphille Inter	Units	MM-27 (0-5CM)	MM-28 (0-5CM)	MM-28 (0-3CM)	MM-28 (3-5CM)	RDL	QC Batch
Metals						T	
Available Arsenic (As)	ma/ka	50	2100	1100	2200	2	1538766

Maxxam ID		Z21025	Z21026	Z21027	Z21028		
Sampling Date		2008/06/02	2008/06/02	2008/06/02	2008/06/02		
COC Number		B 39881	B 39881	B 39881	B 39881		
Registration #							
() () () () () () () () () ()	Units	MM-28 (3-5CM) Lab-Dup	MM-29 (0-5CM)	MM-30 (0-5CM)	MM-31 (0-5CM)	RDL	QC Batch
Metals						Т	
Available Arsenic (As)	mg/kg	2100	77	31	40	2	1538766

Maritime Testing (1985) Limited Client Project #: 7442

Project name: MONTAGUE MINES

ELEMENTS BY ICP/MS (SOIL)

	Units	MM-32 (0-5CM)	MM-35 (0-5CM)	MM-36 (0-5CM)	MM-56 (0-5CM)	RDL	QC Batch
Registration #							
COC Number		B 39881	B 39881	B 39881	B 39881		
Sampling Date		2008/06/02	2008/06/02	2008/06/02	2008/06/02		
Maxxam ID		Z21029	Z21030	Z21031	Z21032		

Metals					- 10		
Available Arsenic (As)	mg/kg	270	610	580	16	2	1538766

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

	Units	MM-57 (0-5CM)	MM-58 (0-5CM)	MM-59 (2-5CM)	MM-60 (0-5CM)	RDL	QC Batch
Registration #					L		
COC Number		B 39881	B 39881	B 39881	B 39881		
Sampling Date		2008/06/02	2008/06/11	2008/06/11	2008/06/11		
Maxxam ID		Z21033	Z21034	Z21035	Z21036		

Metals							
Available Arsenic (As)	mg/kg	140	51	110	48	2	1538766

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

	Units	MM-61 (0-5CM)	MM-62 (0-5CM)	MM-63 (0-5CM)	MM-64 (0-5CM)	RDL	QC Batch
Registration #							
COC Number		B 39881	B 39881	B 39881	B 39881		
Sampling Date		2008/06/11	2008/06/11	2008/06/11	2008/06/11		
Maxxam ID		Z21037	Z21038	Z21039	Z21040		

Metals							
Available Arsenic (As)	mg/kg	37	25	17	110	2	1538766

Maritime Testing (1985) Limited Client Project #: 7442 Project name: MONTAGUE MINES

ELEMENTS BY ICP/MS (SOIL)

	Units	MM-64 (0-2CM)	MM-64 (2-5CM)	RDL	QC Batch
Registration #	1				
COC Number		B 39881	B 39881		
Sampling Date		2008/06/11	2008/06/11		
Maxxam ID		Z21041	Z21042		

Metals					
Available Arsenic (As)	mg/kg	32	120	2	1538767

Maritime Testing (1985) Limited Client Project #: 7442 Project name: MONTAGUE MINES

GENERAL COMMENTS

Results relate only to the items tested.

Maritime Testing (1985) Limited Attention: Robert Bekkers Client Project #: 7442

P.O. #:

Project name: MONTAGUE MINES

Quality Assurance Report Maxxam Job Number: DA861150

QA/QC			Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Limit
1536810 CAC	QC STANDARD	Organic Carbon (TOC)	2008/06/13	94	%	75 - 12
	Method Blank	Organic Carbon (TOC)	2008/06/13	ND, RDL=0.2	g/kg	
	RPD	Organic Carbon (TOC)	2008/06/13	1.5	%	3
1537371 MPT	QC STANDARD	Available Arsenic (As)	2008/06/13	112	%	75 - 12
	Spiked Blank	Available Arsenic (As)	2008/06/13	99	%	75 - 12
	Method Blank	Available Arsenic (As)	2008/06/13	ND, RDL=2	mg/kg	
1538215 CAC	QC STANDARD	Organic Carbon (TOC)	2008/06/16	94	%	75 - 12
	Method Blank	Organic Carbon (TOC)	2008/06/16	ND, RDL=0.2	g/kg	
	RPD [Z21003-01]	Organic Carbon (TOC)	2008/06/16	1.8	%	3
1538268 MPT	MATRIX SPIKE					
	[Z21016-01]	Available Arsenic (As)	2008/06/13	NC	%	75 - 12
	QC STANDARD	Available Arsenic (As)	2008/06/13	113	%	75 - 12
	Spiked Blank	Available Arsenic (As)	2008/06/13	95	%	75 - 12
	Method Blank	Available Arsenic (As)	2008/06/13	ND, RDL=2	mg/kg	
	RPD [Z21016-01]	Available Arsenic (As)	2008/06/13	5.2	g.\.g	3
1538397 CAC	QC STANDARD	Organic Carbon (TOC)	2008/06/17	97	%	75 - 12
1000007 070	Method Blank	Organic Carbon (TOC)	2008/06/17	ND, RDL=0.2	g/kg	70 12
1538766 DLB	MATRIX SPIKE	Organic Carbon (100)	2000/00/17	14B, 11BE-0.2	gring	
1330700 DLB	[Z21025-01]	Available Arsenic (As)	2008/06/16	NC	%	75 - 12
		Available Arsenic (As)	2008/06/16	104	%	75 - 12
	QC STANDARD			93	%	75 - 12 75 - 12
	Spiked Blank	Available Arsenic (As)	2008/06/16			75 - 12
	Method Blank	Available Arsenic (As)	2008/06/16	ND, RDL=2	mg/kg	
4500707 DI D	RPD [Z21025-01]	Available Arsenic (As)	2008/06/16	4.3	%	75 40
1538767 DLB	QC STANDARD	Available Arsenic (As)	2008/06/17	105	%	75 - 12
	Spiked Blank	Available Arsenic (As)	2008/06/16	85	%	75 - 12
	Method Blank	Available Arsenic (As)	2008/06/17	ND, RDL=2	mg/kg	4
1539215 CAC	QC STANDARD	Organic Carbon (TOC)	2008/06/18	100	%	75 - 12
	Method Blank	Organic Carbon (TOC)	2008/06/18	ND, RDL=0.2	g/kg	
	RPD [Z21023-01]	Organic Carbon (TOC)	2008/06/18	10.8	%	3
1539279 SSI	MATRIX SPIKE	Mercury (Hg)	2008/06/17	111	%	75 - 12
	QC STANDARD	Mercury (Hg)	2008/06/17	93	%	75 - 12
	Spiked Blank	Mercury (Hg)	2008/06/17	100	%	75 - 12
	Method Blank	Mercury (Hg)	2008/06/17	ND, RDL=0.01	mg/kg	
	RPD	Mercury (Hg)	2008/06/17	3.6	%	3
1539280 SSI	MATRIX SPIKE					
	[Z21014-01]	Mercury (Hg)	2008/06/17	NC	%	75 - 12
	QC STANDARD	Mercury (Hg)	2008/06/17	96	%	75 - 12
	Spiked Blank	Mercury (Hg)	2008/06/17	102	%	75 - 12
	Method Blank	Mercury (Hg)	2008/06/17	ND, RDL=0.01	mg/kg	
	RPD [Z21014-01]	Mercury (Hg)	2008/06/17	14.4	%	3
1539282 SSI	MATRIX SPIKE	3 . 3,				
	[Z21035-01]	Mercury (Hg)	2008/06/17	91	%	75 - 12
	QC STANDARD	Mercury (Hg)	2008/06/17	99	%	75 - 12
	Spiked Blank	Mercury (Hg)	2008/06/17	102	%	75 - 12
	Method Blank	Mercury (Hg)	2008/06/17	ND, RDL=0.01	mg/kg	
	RPD [Z21035-01]	Mercury (Hg)	2008/06/17	6.1	g/kg	

ND = Not detected

NC = Non-calculable

RPD = Relative Percent Difference

QC Standard = Quality Control Standard

SPIKE = Fortified sample

Your Project #: 7442 Your C.O.C. #: B 53301

Attention: Robert Bekkers Maritime Testing (1985) Limited 900 Windmill Rd Suite 116 Dartmouth, NS **B3B 1P7**

Report Date: 2008/06/05

This report supersedes all previous reports with the same Maxxam job number

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A850952 Received: 2008/05/20, 17:41

Sample Matrix: Soil # Samples Received: 21

		Date	Date	Method
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Reference
Mercury (CVAA)	1	N/A	2008/05/26 ATL SOP 00026 R3	Based on EPA245.5
Mercury (CVAA)	20	N/A	2008/05/28 ATL SOP 00026 R3	Based on EPA245.5
Metals Solid Avail. MS - N-per, <150 um	21	N/A	2008/06/02 ATL SOP 00024 R3	Based on EPA6020A
Metals Solid Avail. MS - N-per	21	N/A	2008/05/26 ATL SOP 00024 R3	Based on EPA6020A
Total Organic Carbon in Soil (<150 um)	4	N/A	2008/05/23 ATL SOP 00044 R2	LECO 203-601-224
Total Organic Carbon in Soil (<150 um)	17	N/A	2008/06/02 ATL SOP 00044 R2	LECO 203-601-224
Total Organic Carbon in Soil	4	N/A	2008/05/23 ATL SOP 00044 R2	LECO 203-601-224
Total Organic Carbon in Soil	14	N/A	2008/05/30 ATL SOP 00044 R2	LECO 203-601-224
Total Organic Carbon in Soil	3	N/A	2008/06/02 ATL SOP 00044 R2	LECO 203-601-224

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

TROY MACKAY, Project Manager

Email: troy.mackay.reports@maxxamanalytics.com

Phone# (902) 420-0203 Ext:266

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

Total cover pages: 1

Page 1 of 13

This document is in electronic format, hard copy is available on request.

Maritime Testing (1985) Limited Client Project #: 7442

					-	
Maxxam ID		Y72464		Y72484		
Sampling Date		2008/05/15		2008/05/15	1 - 11	
COC Number		B 53301		B 53301		101
Registration #						
	Units	MM-2 (0-5 CM)	RDL	MM -2 (0-3 CM)	RDL	QC Batch
Inorganics					T	
Organic Carbon (TOC)	g/kg	33	0.6	170	2	1519149
3						

Maxxam ID		Y72485		Y72519		
Sampling Date		2008/05/15		2008/05/15		
COC Number		B 53301		B 53301		
Registration #						
	Units	MM-2	RDL	MM	RDL	QC Batch
		(3-5 CM)	<u> </u>	-3 (0-5 CM)		
Inorganics		(3-5 CM)		-3 (0-5 CM)		
Inorganics Organic Carbon (TOC)	g/kg	(3-5 CM)	0.3	-3 (0-5 CM)	2	1525320

	Y72520	Y72541	1 2	
	2008/05/15	2008/05/15		
1 = 1	B 53301	B 53301		
Units	MM-5 (0-5 CM)	MM-7 (0-5 CM)	RDL	QC Batch
			Т	<u> </u>
g/kg	61	53	1	1525320
g/kg	49	53	3	1519547
	g/kg	2008/05/15 B 53301 Units MM-5 (0-5 CM) g/kg 61	2008/05/15 2008/05/15 B 53301 B 53301 Units MM-5 MM-7 (0-5 CM) g/kg 61 53	2008/05/15 2008/05/15 B 53301 B 53301 Units MM-5 (0-5 CM) (0-5 CM) g/kg 61 53 1

Maritime Testing (1985) Limited Client Project #: 7442

Maxxam ID		Y72548		Y72552		
Sampling Date		2008/05/15		2008/05/15		
COC Number		B 53301	111.17	B 53301		
Registration #						
	Units	MM-7 (0-3 CM)	RDL	MM-7 (3-5 CM)	RDL	QC Batch
Inorganics			1		T	
Organic Carbon (TOC)	g/kg	130	2	33	0.9	1525320
< 150 um Organic Carbon (TOC)	g/kg	120	3	32	1	1526925
RDL = Reportable Detection Limit QC Batch = Quality Control Batch				La Caracteria		

Maxxam ID		Y72553		Y72554		
Sampling Date		2008/05/15		2008/05/15		
COC Number	W	B 53301		B 53301		
Registration #						
Maril 1495 F	Units	MM-42 (0-5 CM)	RDL	MM-38 (0-5 CM)	RDL	QC Batch
Inorganics						
Organic Carbon (TOC)	g/kg	110	2	67	5	1526928
	g/kg	110	2	57	2	1526925

	Y72564		Y72572		
	2008/05/15		2008/05/15		
	B 53301		B 53301		
Units	MM-40 (0-5 CM)	RDL	MM-44 (0-5 CM)	RDL	QC Batch
g/kg	73	1	110	2	1519149
g/kg	75	2	94	2	1526925
	g/kg	B 53301 Jnits MM-40 (0-5 CM) g/kg 73	B 53301 Jnits MM-40 (0-5 CM) g/kg 73 1	2008/05/15 2008/05/15 B 53301 B 53301	2008/05/15 2008/05/15 B 53301 B 53301

Maritime Testing (1985) Limited Client Project #: 7442

Y72573	Y72573	1	Y72574		
2008/05/15	2008/05/15		2008/05/15		
B 53301	B 53301		B 53301		
					3/3/11
MM-48 (0-5 CM)	MM-48 (0-5 CM) Lab-Dup	RDL	MM-43 (0-5 CM)	RDL	QC Batch
70		1	94	2	1525320
66	66	2	52	1	1526925
	B 53301 MM-48 (0-5 CM)	B 53301 B 53301 MM-48	B 53301 B 53301 MM-48 (0-5 CM) (0-5 CM) Lab-Dup	B 53301 B 53301 B 53301 MM-48 (0-5 CM) (0-5 CM) Lab-Dup 70 1 94	B 53301 B 53301 B 53301 MM-48 (0-5 CM) (0-5 CM) Lab-Dup RDL MM-43 (0-5 CM) (0-5 CM) TO 1 94 2

	Y72576		Y72585	Y72585		
	2008/05/20		2008/05/20	2008/05/20		
	B 53301		B 53301	B 53301		
	I I be to					
Units	MM-1 (0-5 CM)	RDL	MM-1 (0-3.5 CM)	MM-1 (0-3.5 CM) Lab-Dup	RDL	QC Batch
		077	1.0004	TO YOUR DAY		
g/kg	70	0.7	280	0.100,000	1	1525320
g/kg	46	141	150	150	2	1519547
	g/kg	2008/05/20 B 53301 Units MM-1 (0-5 CM)	2008/05/20 B 53301 Units MM-1 (0-5 CM) g/kg 70 0.7	2008/05/20 2008/05/20 B 53301 B 53301 B 53301 Consideration B 53301 Consideration Considerat	2008/05/20 2008/05/20 2008/05/20 B 53301 B 53301 B 53301 B 53301 B 53301 B 53301 Colored C	2008/05/20 2008/05/20 2008/05/20 B 53301 B 533

	Y72590		Y72592		
	2008/05/20		2008/05/20		
100	B 53301		B 53301		
					u su.
Inits	MM-1 (3.5-5 CM)	RDL	MM-47 (0-5 CM)	RDL	QC Batch
				a The	
J/kg	27	0.2	24	0.2	1525320
/kg	22	0.8	18	0.9	1526925
]	/kg	B 53301 nits	B 53301 nits	B 53301 B 53301 nits MM-1 (3.5-5 CM) RDL MM-47 (0-5 CM) /kg 27 0.2 24	B 53301 B 53301 nits MM-1 (3.5-5 CM) RDL MM-47 (0-5 CM) /kg 27 0.2 24 0.2

Maritime Testing (1985) Limited Client Project #: 7442

RESULTS OF ANALYSES OF SOIL

	Units	MM-33 (0-5 CM)	RDL	MM-34 (0-5 CM)	RDL	QC Batch
Registration #						
COC Number	1/	B 53301	- 1111/	B 53301		
Sampling Date		2008/05/20	4	2008/05/20		Marie and St
Maxxam ID		Y72593		Y72594	11.10	10000

inorganics					2	
Organic Carbon (TOC)	g/kg	140	5	350	5	1525320
< 150 um Organic Carbon (TOC)	g/kg	95	3	290	5	1526925

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID		Y72595	Y72595		
Sampling Date		2008/05/20	2008/05/20		
COC Number		B 53301	B 53301		
Registration #			100 2 (4.11)	1	11 20 - 1
	Units	MM-55 (0-5 CM)	MM-55 (0-5 CM) Lab-Dup	RDL	QC Batch

Inorganics					
Organic Carbon (TOC)	g/kg	170	200	5	1526928
< 150 um Organic Carbon (TOC)	g/kg	120		3	1526925

Maritime Testing (1985) Limited Client Project #: 7442

MERCURY BY COLD VAPOUR AA (SOIL)

Maxxam ID		Y72464	THE RESERVE	Y72484	Y72485		
Sampling Date		2008/05/15		2008/05/15	2008/05/15	1	
COC Number		B 53301	1	B 53301	B 53301	-	
Registration #							
	Units	MM-2 (0-5 CM)	QC Batch	MM -2 (0-3 CM)	MM-2 (3-5 CM)	RDL	QC Batch
Metals						T	10.1

	Units	MM -3 (0-5 CM)	MM-5 (0-5 CM)	MM-7 (0-5 CM)	MM-7 (0-3 CM)	RDL	QC Batch
Registration #		17 - 17 - 17 - 16 - 16					KL _
COC Number	=1=5	B 53301	B 53301	B 53301	B 53301		
Sampling Date		2008/05/15	2008/05/15	2008/05/15	2008/05/15		
Maxxam ID		Y72519	Y72520	Y72541	Y72548		

Metals							
Mercury (Hg)	mg/kg	3.6	1.6	1.9	2.1	0.1	1523017

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

	Units	MM-7 (3-5 CM)	RDL	MM-42 (0-5 CM)	MM-38 (0-5 CM)	RDL	QC Batch
Registration #							
COC Number		B 53301		B 53301	B 53301		
Sampling Date		2008/05/15		2008/05/15	2008/05/15		
Maxxam ID		Y72552		Y72553	Y72554		

Metals							
Mercury (Hg)	mg/kg	0.47	0.01	2.1	2.4	0.1	1523017

Maritime Testing (1985) Limited Client Project #: 7442

MERCURY BY COLD VAPOUR AA (SOIL)

	Units	MM-40 (0-5 CM)	RDL	QC Batch	MM-44 (0-5 CM)	RDL	QC Batch
Registration #			- 1				
COC Number		B 53301			B 53301		
Sampling Date		2008/05/15			2008/05/15		
Maxxam ID	1 1 1	Y72564		1 11000	Y72572		

Metals			1	1			
Mercury (Hg)	mg/kg	0.56	0.01	1523017	0.90	0.02	1523019

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

	Units	MM-48 (0-5 CM)	RDL	MM-43 (0-5 CM)	MM-1 (0-5 CM)	MM-1 (0-3.5 CM)	RDL	QC Batch
Registration #								
COC Number		B 53301		B 53301	B 53301	B 53301		
Sampling Date		2008/05/15		2008/05/15	2008/05/20	2008/05/20		
Maxxam ID		Y72573		Y72574	Y72576	Y72585		

Metals								
Mercury (Hg)	mg/kg	2.8	0.1	0.67	0.14	0.19	0.01	1523019

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

	Units	MM-1 (3.5-5 CM)	RDL	MM-47 (0-5 CM)	RDL	MM-33 (0-5 CM)	RDL	QC Batch
Registration #								
COC Number		B 53301		B 53301		B 53301		
Sampling Date		2008/05/20		2008/05/20		2008/05/20		
Maxxam ID		Y72590		Y72592		Y72593		

Metals								
Mercury (Hg)	mg/kg	0.04	0.01	25	0.5	1.1	0.02	1523019

Maritime Testing (1985) Limited Client Project #: 7442

MERCURY BY COLD VAPOUR AA (SOIL)

	Units	MM-34 (0-5 CM)	RDL	MM-55 (0-5 CM)	RDL	QC Batch
Registration #						
COC Number		B 53301		B 53301		
Sampling Date		2008/05/20		2008/05/20		
Maxxam ID		Y72594		Y72595		

Metals						
Mercury (Hg)	mg/kg	0.48	0.01	1.1	0.02	1523019

Maritime Testing (1985) Limited Client Project #: 7442

ELEMENTS BY ICP/MS (SOIL)

registration #	Units	MM-2 (0-5 CM)	MM-2 (0-5 CM) Lab-Dup	MM -2 (0-3 CM)	RDL	QC Batch
COC Number Registration #		B 53301	B 53301	B 53301		
Sampling Date		2008/05/15	2008/05/15	2008/05/15		
Maxxam ID		Y72464	Y72464	Y72484		

available (<150 um) Arsenic (As) mg/kg 2 1527859 40 Available Arsenic (As) mg/kg 66 66 34 2 1521198

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

	Units	MM-2 (3-5 CM)	MM -3 (0-5 CM)	MM-5 (0-5 CM)	RDL	QC Batch
Registration #						
COC Number		B 53301	B 53301	B 53301		
Sampling Date		2008/05/15	2008/05/15	2008/05/15		
Maxxam ID		Y72485	Y72519	Y72520		

Metals						110
available (<150 um) Arsenic (As)	mg/kg	13	28	520	2	1527859
Available Arsenic (As)	mg/kg	24	32	320	2	1521198

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

	Units	MM-7 (0-5 CM)	MM-7 (0-3 CM)	MM-7 (3-5 CM)	RDL	QC Batch
Registration #						
COC Number	THE THE WAY	B 53301	B 53301	B 53301		PHER LEVEL
Sampling Date		2008/05/15	2008/05/15	2008/05/15		
Maxxam ID		Y72541	Y72548	Y72552		

Metals	1					
available (<150 um) Arsenic (As)	mg/kg	460	210	440	2	1527859
Available Arsenic (As)	mg/kg	220	290	390	2	1521198

Maritime Testing (1985) Limited Client Project #: 7442

ELEMENTS BY ICP/MS (SOIL)

Maxxam ID		Y72553	Y72554	Y72554		
Sampling Date		2008/05/15	2008/05/15	2008/05/15		
COC Number		B 53301	B 53301	B 53301		
Registration #						
THE REAL PROPERTY.	Units	MM-42 (0-5 CM)	MM-38 (0-5 CM)	MM-38 (0-5 CM) Lab-Dup	RDL	QC Batch
Metals						
available (<150 um) Arsenic (As)	mg/kg	1000	980	1000	2	1527859

Maxxam ID	2-12-11-1	Y72564	Y72572	Y72573		
Sampling Date		2008/05/15	2008/05/15	2008/05/15		
COC Number		B 53301	B 53301	B 53301		
Registration #	11/4					
	Units	MM-40 (0-5 CM)	MM-44 (0-5 CM)	MM-48 (0-5 CM)	RDL	QC Batch
Metals					Т	
available (<150 um) Arsenic (As)	mg/kg	290	630	860	2	1527859
Available Arsenic (As)	mg/kg	330	640	1000	2	1521198

Maxxam ID		Y72574	Y72576	Y72585		
Sampling Date		2008/05/15	2008/05/20	2008/05/20		
COC Number		B 53301	B 53301	B 53301		
Registration #						1.4
THE ROLL NOW	Units	MM-43 (0-5 CM)	MM-1 (0-5 CM)	MM-1 (0-3.5 CM)	RDL	QC Batch
Metals						
available (<150 um) Arsenic (As)	mg/kg	350	10	30	2	1527859
Available Arsenic (As)	mg/kg	250	16	18	2	1521198

Maritime Testing (1985) Limited Client Project #: 7442

ELEMENTS BY ICP/MS (SOIL)

Registration #	Units	MM-1	MM-47	RDL	QC Batch
Sampling Date COC Number		2008/05/20 B 53301	2008/05/20 B 53301		
Maxxam ID		Y72590	Y72592		T.

Metals					
available (<150 um) Arsenic (As)	mg/kg	6	54	2	1527859
Available Arsenic (As)	mg/kg	7	63	2	1521198

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID		Y72593		Y72594		
Sampling Date		2008/05/20		2008/05/20		
COC Number		B 53301		B 53301		
Registration #						
	Units	MM-33	RDL	MM-34	RDL	QC Batch
		(0-5 CM)		(0-5 CM)		

Metals						
available (<150 um) Arsenic (As)	mg/kg	12000	20	250	2	1527859
Available Arsenic (As)	mg/kg	11000	20	220	2	1521198

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

	Units	MM-55 (0-5 CM)	RDL	QC Batch
Registration #				
COC Number		B 53301	1	
Sampling Date	1 1 1	2008/05/20		
Maxxam ID		Y72595		

Metals				
available (<150 um) Arsenic (As)	mg/kg	12000	20	1527859
Available Arsenic (As)	mg/kg	12000	20	1521198

Maritime Testing (1985) Limited Client Project #: 7442

			GENERA	L COMME	NTS	
tesults relate only to the	items tes	ted.				

Maritime Testing (1985) Limited Attention: Robert Bekkers Client Project #: 7442

P.O. #: Project name:

Quality Assurance Report Maxxam Job Number: DA850952

QA/QC			Date			2
Batch	112-1-	_	Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recover		QC Limits
1519149 CAC	QC STANDARD	Organic Carbon (TOC)	2008/05/23	9.	%	75 - 125
	Method Blank	Organic Carbon (TOC)	2008/05/23	ND, RDL=0.2	g/kg	
	RPD	Organic Carbon (TOC)	2008/05/23	0.4	%	35
1519547 CAC	QC STANDARD	< 150 um Organic Carbon (TOC)	2008/05/23	9	1 %	75 - 125
	Method Blank	< 150 um Organic Carbon (TOC)	2008/05/23	ND, RDL=0.2	g/kg	
	RPD [Y72585-02]	< 150 um Organic Carbon (TOC)	2008/05/23	0.5	%	39
1520889 SSI	MATRIX SPIKE	Mercury (Hg)	2008/05/26	114	1 %	75 - 129
	QC STANDARD	Mercury (Hg)	2008/05/26	10	3 %	75 - 125
	Spiked Blank	Mercury (Hg)	2008/05/26	10		75 - 125
	Method Blank	Mercury (Hg)	2008/05/26	ND, RDL=0.01	mg/kg	
	RPD	Mercury (Hg)	2008/05/26	NC	%	35
1521198 MPT	MATRIX SPIKE	(,			1202	
	TY72464-011	Available Arsenic (As)	2008/05/26	NO	%	75 - 125
	QC STANDARD	Available Arsenic (As)	2008/05/26	10		75 - 125
	Spiked Blank	Available Arsenic (As)	2008/05/26	9		75 - 125
	Method Blank	Available Arsenic (As)	2008/05/26	ND, RDL=2	mg/kg	75-12
	RPD [Y72464-01]	Available Arsenic (As)	2008/05/26	0.01	//////////////////////////////////////	35
1523017 SSI	MATRIX SPIKE	Mercury (Hg)	2008/05/28	10:		75 - 125
1023017 331	QC STANDARD	, , , ,		9.		
		Mercury (Hg)	2008/05/28	_		75 - 125
	Spiked Blank	Mercury (Hg)	2008/05/28	10:		75 - 125
	Method Blank	Mercury (Hg)	2008/05/28	ND, RDL=0.01	mg/kg	0.5
4500040 001	RPD	Mercury (Hg)	2008/05/28	NC	%	35
1523019 SSI	MATRIX SPIKE	Mercury (Hg)	2008/05/28	10		75 - 125
	QC STANDARD	Mercury (Hg)	2008/05/28	9		75 - 125
	Spiked Blank	Mercury (Hg)	2008/05/28	10		75 - 125
	Method Blank	Mercury (Hg)	2008/05/28	ND, RDL=0.01	mg/kg	
	RPD	Mercury (Hg)	2008/05/28	1.2	%	35
1525320 CAC	QC STANDARD	Organic Carbon (TOC)	2008/05/30	9.	1 %	75 - 125
	Method Blank	Organic Carbon (TOC)	2008/05/30	ND, RDL=0.2	g/kg	
	RPD	Organic Carbon (TOC)	2008/05/30	NC	%	35
1526925 CAC	QC STANDARD	< 150 um Organic Carbon (TOC)	2008/06/02	9	1 %	75 - 125
	Method Blank	< 150 um Organic Carbon (TOC)	2008/06/02	ND, RDL=0.2	g/kg	
	RPD [Y72573-02]	< 150 um Organic Carbon (TOC)	2008/06/02	0.2	%	35
1526928 CAC	QC STANDARD	Organic Carbon (TOC)	2008/06/02	9.	1 %	75 - 125
	Method Blank	Organic Carbon (TOC)	2008/06/02	ND, RDL=0.2	g/kg	
	RPD [Y72595-01]	Organic Carbon (TOC)	2008/06/02	19.5	%	35
1527859 MPT	MATRIX SPIKE					
	[Y72554-02]	available (<150 um) Arsenic (As)	2008/06/02	No	%	75 - 125
	QC STANDARD	available (<150 um) Arsenic (As)	2008/06/02	10		75 - 125
	Spiked Blank	available (<150 um) Arsenic (As)	2008/06/02	9		75 - 125
	Method Blank	available (<150 um) Arsenic (As)	2008/06/02	ND, RDL=2	mg/kg	70 120
	RPD [Y72554-02]	available (<150 um) Arsenic (As)	2008/06/02	2.8	//////////////////////////////////////	35

ND = Not detected

NC = Non-calculable

RPD = Relative Percent Difference

QC Standard = Quality Control Standard

SPIKE = Fortified sample

Your Project #: 7442E Site: DART

Your C.O.C. #: B 14711

Attention: Robert Bekkers
Maritime Testing (1985) Limited
900 Windmill Rd
Suite 116
Dartmouth, NS
B3B 1P7

Report Date: 2008/01/31

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A808017 Received: 2008/01/25, 8:47

Sample Matrix: Soil # Samples Received: 3

			Date	Date		Method
Analyses	TO THE REAL	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Mercury (CVAA)	17-610	3	N/A	2008/01/31	ATL SOP 00026 R2	Based on EPA245.5
Metals Solid Avail. MS - N-per		3	N/A	2008/01/29	ATL SOP 00024 R3	Based on EPA6020A

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

KERI MACKAY, Project Manager Email: keri.mackay.reports@maxxamanalytics.com Phone# (902) 420-0203 Ext:233

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

Total cover pages: 1

Maxxam Job #: A808017 Report Date: 2008/01/31

Maritime Testing (1985) Limited Client Project #: 7442E Project name: DART Sampler Initials:

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Maxxam ID		W92708			W92709	W92710		
Sampling Date		2008/01/17			2008/01/17	2008/01/17		
COC Number	1211	B 14711			B 14711	B 14711		
Registration #								
	Units	MW3/S2	RDL	QC Batch	MW3/S3	MW3/S4	RDL	QC Batch

ELEMENTS								
Mercury (Hg)	mg/kg	1.9	0.1	1450305	0.69	0.03	0.01	1450308
Elements (ICP-MS)								
Available Arsenic (As)	mg/kg	2800	2	1449366	1900	78	2	1449366

www.maxxamanalytics.com

Maxxam Job #: A808017 Report Date: 2008/01/31 Maritime Testing (1985) Limited Client Project #: 7442E Project name: DART Sampler Initials:

GENERA	COM	MENTS
--------	-----	-------

Results relate only to the items tested.

Maritime Testing (1985) Limited Attention: Robert Bekkers Client Project #: 7442E

P.O. #:

Project name: DART

Quality Assurance Report Maxxam Job Number: DA808017

QA/QC Batch			Date			(if) pligh	
			Analyzed		200.0		
Num Init	QC Type	Parameter	yyyy/mm/dd	Value I	Recovery	Units	QC Limits
1449366 DLB	MATRIX SPIKE	Available Arsenic (As)	2008/01/29		93	%	75 - 125
	QC STANDARD	Available Arsenic (As)	2008/01/29		115	%	75 - 125
	Spiked Blank	Available Arsenic (As)	2008/01/29		98	%	75 - 125
	Method Blank	Available Arsenic (As)	2008/01/29	ND, RDL	=2	mg/kg	
1450305 SSI	MATRIX SPIKE	Mercury (Hg)	2008/01/31		N/C	%	75 - 125
	QC STANDARD	Mercury (Hg)	2008/01/31		98	%	75 - 125
	Spiked Blank	Mercury (Hg)	2008/01/31		102	%	75 - 125
	Method Blank	Mercury (Hg)	2008/01/31	ND, RDL	=0.01	mg/kg	
	RPD	Mercury (Hg)	2008/01/31	5.2		%	35
1450308 SSI	MATRIX SPIKE	Mercury (Hg)	2008/01/31		94	%	75 - 125
	QC STANDARD	Mercury (Hg)	2008/01/31		93	%	75 - 125
	Spiked Blank	Mercury (Hg)	2008/01/31		100	%	75 - 125
	Method Blank	Mercury (Hg)	2008/01/31	ND, RDL	=0.01	mg/kg	
	RPD	Mercury (Hg)	2008/01/31	NC		%	35

ND = Not detected

NC = Non-calculable

RPD = Relative Percent Difference

QC Standard = Quality Control Standard SPIKE = Fortified sample

Your Project #: 7442 E Site: DARTMOUTH Your C.O.C. #: B 14710

Attention: Robert Bekkers
Maritime Testing (1985) Limited
900 Windmill Rd
Suite 116
Dartmouth, NS
B3B 1P7

Report Date: 2008/01/31

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A808012 Received: 2008/01/25, 8:47

Sample Matrix: Soil # Samples Received: 12

		Date	Date	Method
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Reference
Mercury (CVAA)	12	N/A	2008/01/31 ATL SOP 00026 R2	Based on EPA245.5
Metals Solid Avail. MS - N-per	12	N/A	2008/01/29 ATL SOP 00024 R3	Based on EPA6020A

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

KERI MACKAY, Project Manager Email: keri.mackay.reports@maxxamanalytics.com Phone# (902) 420-0203 Ext:233

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025;2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

Total cover pages: 1

Maritime Testing (1985) Limited Client Project #: 7442 E Project name: DARTMOUTH Sampler Initials:

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

ELEMENTS								
	Units	MW1/S1	RDL	MW1/S2	RDL	MW1/S3	RDL	QC Batch
Registration #				VI III				
COC Number		B 14710		B 14710		B 14710	OLE	
Sampling Date		2008/01/16		2008/01/16		2008/01/16		
Maxxam ID		W92753		W92780		W92781		

Mercury (Hg) mg/kg 0.70 0.01 4.4 0.1 0.41 0.01 | 1450305 Elements (ICP-MS) Available Arsenic (As) mg/kg 5300 2 1700 2 900 2 1448967

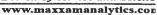
RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID		W92782		W92783	W92784		1
Sampling Date		2008/01/16		2008/01/16	2008/01/16		
COC Number		B 14710		B 14710	B 14710		
Registration #							
	Units	MW1/S4	QC Batch	MW1/S5	MW1/S6	RDL	QC Batch

ELEMENTS							
Mercury (Hg)	mg/kg	0.04	1450305	0.22	0.03	0.01	1450305
Elements (ICP-MS)							
Available Arsenic (As)	mg/kg	190	1448967	510	25	2	1449366

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

	Units	_MW2/S1	RDL	MW2/S2	MW2/S3	MW2/S4	RDL	QC Batch
Registration #		Ш,						
COC Number		B 14710		B 14710	B 14710	B 14710		
Sampling Date		2008/01/16		2008/01/16	2008/01/16	2008/01/16		
Maxxam ID		W92785		W92786	W92787	W92788		


ELEMENTS								
Mercury (Hg)	mg/kg	3.3	0.1	0.07	0.09	0.05	0.01	1450305
Elements (ICP-MS)								
Available Arsenic (As)	mg/kg	8900	2	30	290	120	2	1449366

Maritime Testing (1985) Limited Client Project #: 7442 E Project name: DARTMOUTH Sampler Initials:

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Maxxam ID		W92789		W92790	l la m	
Sampling Date		2008/01/16		2008/01/16		
COC Number		B 14710		B 14710		
Registration #						
	Units	MW2/S5	RDL	MW3/S1	RDL	QC Batch
ELEMENTS						
Mercury (Hg)	mg/kg	0.05	0.01	0.96	0.05	1450305
Elements (ICP-MS)						1 1400
Available Arsenic (As)	mg/kg	76	2	2400	2	1449366

Maritime Testing (1985) Limited Client Project #: 7442 E Project name: DARTMOUTH Sampler Initials:

CEN	CDAL	COMMENTS	
GEN	CKAL	COMMENIS	

Results relate only to the items tested.

Maritime Testing (1985) Limited Attention: Robert Bekkers Client Project #: 7442 E

P.O. #:

Project name: DARTMOUTH

Quality Assurance Report Maxxam Job Number: DA808012

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
1448967 DLB	MATRIX SPIKE	Available Arsenic (As)	2008/01/29		NC	%	75 - 125
	QC STANDARD	Available Arsenic (As)	2008/01/29		110	%	75 - 125
	Spiked Blank	Available Arsenic (As)	2008/01/29		95	%	75 - 125
	Method Blank	Available Arsenic (As)	2008/01/29	ND, R	DL=2	mg/kg	
	RPD	Available Arsenic (As)	2008/01/29	25.4		%	35
1449366 DLB	MATRIX SPIKE	Available Arsenic (As)	2008/01/29		93	%	75 - 125
	QC STANDARD	Available Arsenic (As)	2008/01/29		115	%	75 - 125
	Spiked Blank	Available Arsenic (As)	2008/01/29		98	%	75 - 125
	Method Blank	Available Arsenic (As)	2008/01/29	ND, R	DL=2	mg/kg	
1450305 SSI	MATRIX SPIKE	Mercury (Hg)	2008/01/31		N/C	%	75 - 125
	QC STANDARD	Mercury (Hg)	2008/01/31		98	%	75 - 125
	Spiked Blank	Mercury (Hg)	2008/01/31		102	%	75 - 125
	Method Blank	Mercury (Hg)	2008/01/31	ND, R	DL=0.01	mg/kg	
	RPD	Mercury (Hg)	2008/01/31	5.2		%	35

ND = Not detected

NC = Non-calculable

RPD = Relative Percent Difference
QC Standard = Quality Control Standard
SPIKE = Fortified sample

Your Project #: 7442 Site: MONTAGUE MINE Your C.O.C. #: B 30997

Attention: Robert Bekkers
Maritime Testing (1985) Limited
900 Windmill Rd
Suite 116
Dartmouth, NS
B3B 1P7

Report Date: 2008/07/10

This report supersedes all previous reports with the same Maxxam job number

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A872514 Received: 2008/07/07, 12:37

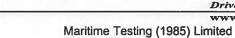
Sample Matrix: Soil # Samples Received: 77

		Date	Date		Method
Analyses	Quantity	Extracted	Analyzed Laborator	y Method	Reference
Moisture	2	N/A	2008/07/08 ATL SOP	00001 R2	MOE Handbook 1983
Moisture	70	N/A	2008/07/09 ATL SOP	00001 R2	MOE Handbook 1983
Moisture	5	N/A	2008/07/10 ATL SOP	00001 R2	MOE Handbook 1983

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.


TROY MACKAY, Project Manager

Email: troy.mackay.reports@maxxamanalytics.com

Phone# (902) 420-0203 Ext:266

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

Total cover pages: 1

Client Project #: 7442
Project name: MONTAGUE MINE

Maxxam Job #: A872514 Report Date: 2008/07/10

Maxxam ID		Z71027	Z71050	1	
Sampling Date		2008/07/07	2008/07/07		5 1/11
COC Number		B 30997	B 30997		
Registration #					
	Units	MM-9(0-5CM)	MM-10(0-5CM)	RDL	QC Batch
		(P#Z21112)	(P#Z21113)		1.
Inorganics		(P#Z21112)	(P#Z21113)		
Inorganics Moisture	%	(P#Z21112)	(P#Z21113)		1555833

Maxxam ID		Z71051	Z71052		
Sampling Date		2008/07/07	2008/07/07		
COC Number		B 30997	B 30997		
Registration #					
	Units	MM-10(0-1.5CM) (P#Z21114)	MM-10(1.5-5CM) (P#Z21115)	RDL	QC Batch
		Control of the state of the sta	100		
inorganics					

Maxxam ID		Z71053	Z71054		
Sampling Date		2008/07/07	2008/07/07		-
COC Number		B 30997	B 30997		
Registration #					
	Units	MM-11(0-5CM) (P#Z21116)	MM-11(0-2CM) (P#Z21117)	RDL	QC Batch
Inorganice					
Inorganics					110

Maritime Testing (1985) Limited Client Project #: 7442 Project name: MONTAGUE MINE

Maxxam ID	11,427-1,11	Z71055	Z71056		
Sampling Date		2008/07/07	2008/07/07		21
COC Number		B 30997	B 30997		The Lord
Registration #					
	Units	MM-11(2-5CM) (P#Z21118)	MM-12(0-5CM) (P#Z21119)	RDL	QC Batch
					4
Inorganics					
Moisture	%	34	67	1	1555833

Maxxam ID		Z71057	Z71058		
Sampling Date		2008/07/07	2008/07/07		
COC Number	_4_	B 30997	B 30997		
Registration #					
	Units	MM-13(0-5CM) (P#Z21120)	MM-14(0-5CM) (P#Z21121)	RDL	QC Batch
Inorganics					

Maxxam ID		Z71059	Z71060		
Sampling Date		2008/07/07	2008/07/07		
COC Number		B 30997	B 30997		
Registration #					
	Units	MM-15(0-5CM) (P#Z21122)	MM-16(0-5CM) (P#Z21123)	RDL	QC Batch
Inorganics					

Maritime Testing (1985) Limited Client Project #: 7442 Project name: MONTAGUE MINE

RESULTS OF ANALYSES OF SOIL

		Z71061	Z71062		
Sampling Date		2008/07/07	2008/07/07		
COC Number		B 30997	B 30997		
Registration #					
U	Jnits	MM-17(0-5CM) (P#Z21124)	MM-18(0-5CM) (P#Z21125)	RDL	QC Batch
Inorganics					
Moisture	%	75	73	1	1555786

Maxxam ID		Z71063	Z71064		
Sampling Date		2008/07/07	2008/07/07		
COC Number		B 30997	B 30997		
Registration #					
100.54	Units	MM-19(0-5CM) (P#Z21126)	MM-20(0-5CM) (P#Z21127)	RDL	QC Batch
Inorganics					

COMPANIE D	Units	MM-21(0-5CM) (P#Z21128)	MM-22(0-5CM) (P#Z21129)	RDL	QC Batch
Registration #					
COC Number		B 30997	B 30997		
Sampling Date		2008/07/07	2008/07/07		
Maxxam ID		Z71065	Z71066		

67

1555786

78

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

%

Moisture

Maritime Testing (1985) Limited

Client Project #: 7442
Project name: MONTAGUE MINE

Maxxam ID		Z71067	Z71068		
Sampling Date		2008/07/07	2008/07/07		
COC Number		B 30997	B 30997		
Registration #					111111
	Units	MM-23(0-5CM) (P#Z21130)	MM-23(0-3CM) (P#Z21131)	RDL	QC Batch
Inorganics					
Moisture	%	37	64	1	1555786

Maxxam ID		Z71069	Z71070		
Sampling Date		2008/07/07	2008/07/07		
COC Number		B 30997	B 30997		Malilla 20
Registration #					
	Units	MM-23(3-5CM) (P#Z21132)	MM-24(0-5CM) (P#Z21134)	RDL	QC Batch
Inorganics					ши
illorganics					

Maxxam ID		Z71071	Z71072		****
Sampling Date	100	2008/07/07	2008/07/07		
COC Number		B 30997	B 30997		
Registration #					
	Units	MM-25(0-5CM) (P#Z21135)	MM-26(0-5CM) (P#Z21136)	RDL	QC Batch
Inorganics					3-SAIN

Maritime Testing (1985) Limited Client Project #: 7442 Project name: MONTAGUE MINE

Maxxam ID		Z71073	Z71074		
Sampling Date		2008/07/07	2008/07/07		
COC Number		B 30997	B 30997		
Registration #					
	Units	MM-26(0-2CM) (P#Z21137)	MM-26(2-5CM) (P#Z21138)	RDL	QC Batch
Inorganics					
Moisture	%	56	19	1	1555786

Maxxam ID		Z71075	Z71076		
Sampling Date		2008/07/07	2008/07/07		
COC Number		B 30997	B 30997		
Registration #					
1000000	Units	MM-27(0-5CM) (P#Z21139)	MM-28(0-5CM) (P#Z21140)	RDL	QC Batch
Inorganics					
					1555786

Maxxam ID		Z71077	Z71078		
Sampling Date		2008/07/07	2008/07/07		
COC Number		B 30997	B 30997		
Registration #					
	100 00	1414 00/0 00141	1414 00/0 FOAN	DDI	DC Betel
	Units	MM-28(0-3CM) (P#Z21141)	MM-28(3-5CM) (P#Z21142)	RDL	QC Batch
inorganics	Units			RDL	QC Batch

Maritime Testing (1985) Limited Client Project #: 7442

Project name: MONTAGUE MINE

Maxxam ID		Z71079	Z71080		
Sampling Date		2008/07/07	2008/07/07		
COC Number	4 =	B 30997	B 30997		
Registration #					
	Units	MM-29(0-5CM) (P#Z21143)	MM-30(0-5CM) (P#Z21144)	RDL	QC Batch
Inorganics					

Maxxam ID		Z71081	Z71082		Marie I
Sampling Date		2008/07/07	2008/07/07		
COC Number		B 30997	B 30997		
Registration #					
	Units	MM-31(0-5CM) (P#Z21145)	MM-32(0-5CM) (P#Z21146)	RDL	QC Batch
Inorganics					

Maxxam ID		Z71083	Z71084		
Sampling Date		2008/07/07	2008/07/07		
COC Number		B 30997	B 30997		
Registration #					
	Units	MM-35(0-5CM) (P#Z21147)	MM-36(0-5CM) (P#Z21148)	RDL	QC Batch
		10 10 10 10 1			
Inorganics		(

Maritime Testing (1985) Limited Client Project #: 7442 Project name: MONTAGUE MINE

	Z71085	Z71086		
	2008/07/07	2008/07/07		
	B 30997	B 30997		
Units	MM-56(0-5CM) (P#Z21149)	MM-57(0-5CM) (P#Z21150)	RDL	QC Batch
				THE REAL PROPERTY.
%	40	40	1	1555913
		1		1000010
de Detection	on Limit			
	%	2008/07/07 B 30997 Units MM-56(0-5CM) (P#Z21149)	2008/07/07 2008/07/07 B 30997 B 30997 Units MM-56(0-5CM) MM-57(0-5CM) (P#Z21149) (P#Z21150) % 40 40	2008/07/07 2008/07/07 B 30997 B 30997 Units MM-56(0-5CM) MM-57(0-5CM) RDL (P#Z21149) (P#Z21150) % 40 40 1

Maxxam ID		Z71087	Z71088		
Sampling Date		2008/07/07	2008/07/07		7
COC Number		B 30997	B 30997		
Registration #			- 11 - 10 - 10 - 10 - 10 - 10 - 10 - 10		
Yacuttist ,	Units	MM-58(0-5CM) (P#Z21151)	MM-59(2-5CM) (P#Z21152)	RDL	QC Batch
Inorganice					
Inorganics Moisture					1555913

Maxxam ID		Z71089	Z71090		
Sampling Date		2008/07/07	2008/07/07		
COC Number		B 30997	B 30997		
Registration #					
	Units	MM-60(0-5CM) (P#Z21153)	MM-61(0-5CM) (P#Z21154)	RDL	QC Batch
				1	
Inorganics					

Maritime Testing (1985) Limited Client Project #: 7442 Project name: MONTAGUE MINE

RESULTS OF ANALYSES OF SOIL

Maxxam ID		Z71091	Z71092		
Sampling Date	LEAN III	2008/07/07	2008/07/07		10
COC Number		B 30997	B 30997		
Registration #					
	Units	MM-62(0-5CM) (P#Z21155)	MM-63(0-5CM) (P#Z21156)	RDL	QC Batch
Inorganics					

Maxxam ID		Z71093	Z71094	للدر لينا	
Sampling Date	<u> </u>	2008/07/07	2008/07/07		
COC Number		B 30997	B 30997		
Registration #				1	
STATE OF STATE	Units	MM-64(0-5CM)	MM-64(0-2CM)	RDL	QC Batch
		(P#Z21157)	(P#Z21158)		
Inorganics		(P#Z2115/)	(P#ZZ1158)		

COC Number Registration #	Units	B 30997 MM-64(2-5CM)	B 30997 MM-4(0-5CM)	PNI	QC Batch
	Office	(P#Z21159)	(P#Z22334)	NDE.	QC Batci
Inorganics					E

Maritime Testing (1985) Limited Client Project #: 7442 Project name: MONTAGUE MINE

Maxxam ID		271097	Z71098	Z71099	-	
Sampling Date		2008/07/07	2008/07/07	2008/07/07		
COC Number		B 30997	B 30997	B 30997		
Registration #						
	Units	MM-8(0-5CM) (P#Z22335)	MM-39(0-5CM) (P#Z22336)	MM-50(0-5CM) (P#Z22337)	RDL	QC Batch
Inorganics						

Maxxam ID		Z71100	Z71101		
Sampling Date		2008/07/07	2008/07/07		
COC Number		B 30997	B 30997		
Registration #					- 1-4
	Units	MM-51(0-10CM) (P#Z22338)	MM-52(0-10CM) (P#Z22339)	RDL	QC Batch
Inorganics					

Inorganics		(P#Z22340)	(P#Z22341)	
Moisture	%	16	73	1555833

Maritime Testing (1985) Limited Client Project #: 7442

Project name: MONTAGUE MINE

Maxxam ID		Z71104	271105	Z71106		
Sampling Date		2008/07/07	2008/07/07	2008/07/07		
COC Number		B 30997	B 30997	B 30997		
Registration #						
	Units	MM-41(0-5CM) (P#Z22342)	MM-2(0-5CM) (P#Z23443)	MM-2(0-3CM) (P#Z23451)	RDL	QC Batch
Inorganics						

Maxxam ID		Z71107	Z71108	Z71109		
Sampling Date		2008/07/07	2008/07/07	2008/07/07	20 7.5	
COC Number		B 30997	B 30997	B 30997		
Registration #						
	Units	MM-2(3-5CM) (P#Z23452)	MM-3(0-5CM) (P#Z23453)	MM-5(0-5CM) (P#Z23454)	RDL	QC Batch
Inorganics						i.
inorganics						

Maxxam ID		Z71110	Z71111	Z71112	4-1	
Sampling Date		2008/07/07	2008/07/07	2008/07/07		
COC Number		B 30997	B 30997	B 30997		101
Registration #						Callerin
	Units	MM-7(0-5CM) (P#Z23455)	MM-7(0-3CM) (P#Z23456)	MM-7(3-5CM) (P#Z23457)	RDL	QC Batch
		(F#ZZ3433)	(P#ZZ3430)	[(P#ZZ3437)		
Inorganics		(F#ZZ3455)	(P#223430)	(F#ZZ3437)		Life

Maritime Testing (1985) Limited Client Project #: 7442 Project name: MONTAGUE MINE

inorganics					
	Units	MM-42(0-5CM) (P#Z23458)	MM-38(0-5CM) (P#Z23459)	RDL	QC Batch
Registration #					
COC Number	1 1	B 30997	B 30997	11	
Sampling Date		2008/07/07	2008/07/07		
Maxxam ID		Z71113	Z71114		

Maxxam ID Sampling Date		Z71115 2008/07/07	Z71116 2008/07/07		
COC Number Registration #		B 30997	B 30997		
	Units	MM-40(0-5CM) (P#Z23460)	MM-44(0-5CM) (P#Z23461)	RDL	QC Batch
Inorganics					

Maxxam ID		Z71117	Z71118	Z71119		
Sampling Date		2008/07/07	2008/07/07	2008/07/07		
COC Number		B 30997	B 30997	B 30997		1000
Registration #	- T	لحارو ومروي والماسين والمنا				
1457 184	Units	MM-48(0-5CM) (P#Z23462)	MM-43(0-5CM) (P#Z23463)	MM-1(0-5CM) (P#Z23464)	RDL	QC Batch
inorganics						

Maritime Testing (1985) Limited Client Project #: 7442 Project name: MONTAGUE MINE

RESULTS OF ANALYSES OF SOIL

		Z71120		Z71121		
Sampling Date		2008/07/07		2008/07/07		
COC Number		B 30997		B 30997		
Registration #						
Uni	its	MM-1(0-3.5CM) (P#Z23465)	QC Batch	MM-1(3.5-5CM) (P#Z23466)	RDL	QC Batch
Inorganics						
Illorganics						
Moisture %	6	65	1555833	24	1	1555923

Maxxam ID		Z71122	Z71123		
Sampling Date		2008/07/07	2008/07/07		
COC Number		B 30997	B 30997		
Registration #					
	Units	MM-47(0-5CM) (P#Z23467)	MM-33(0-5CM) (P#Z23468)	RDL	QC Batch
inorganics					

Maxxam ID		Z71124	Z71125		
Sampling Date		2008/07/07	2008/07/07		
COC Number		B 30997	B 30997		- 1
Registration #					
	Units	MM-34(0-5CM)	MM-55(0-5CM)	RDL	QC Batch
		(P#Z23469)	(P#Z23470)		
Inorganics		(P#Z23469)	(P#Z23470)		

QC Batch = Quality Control Batch

Maritime Testing (1985) Limited Client Project #: 7442 Project name: MONTAGUE MINE

		GENERAL C	COMMENTS	
Results relate only	y to the items tested.			
		There's to	Para Sall M Sall Sall M	er me

Your Project #: 7442 Your C.O.C. #: B 53302

Attention: Robert Bekkers
Maritime Testing (1985) Limited
900 Windmill Rd
Suite 116
Dartmouth, NS
B3B 1P7

Report Date: 2008/05/29

This report supersedes all previous reports with the same Maxxam job number

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A850902 Received: 2008/05/20, 17:36

Sample Matrix: Soil # Samples Received: 9

		Date	Date	Method
<u>Analyses</u>	Quantity	Extracted	Analyzed Laboratory Method	Reference
Mercury (CVAA)	8	N/A	2008/05/22 ATL SOP 00026 R3	Based on EPA245.5
Mercury (CVAA)	1	N/A	2008/05/26 ATL SOP 00026 R3	Based on EPA245.5
Metals Solid Avail. MS - N-per	9	N/A	2008/05/22 ATL SOP 00024 R3	Based on EPA6020A
Total Organic Carbon in Soil	4	N/A	2008/05/27 ATL SOP 00044 R2	LECO 203-601-224
Total Organic Carbon in Soil	5	N/A	2008/05/29 ATL SOP 00044 R2	LECO 203-601-224

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

TROY MACKAY, Project Manager

Email: troy.mackay.reports@maxxamanalytics.com

Phone# (902) 420-0203 Ext:266

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

Total cover pages: 1

Page 1 of 8

This document is in electronic format, hard copy is available on request.

200 Bluewater Rd, Suite 105, Bedford, Nova Scotia Canada B4B 1G9 Tel:902-420-0203 Toll-free:800-565-7227 Fax:902-420-8612 www.maxxamanalytics.com

Maritime Testing (1985) Limited Client Project #: 7442

Maxxam ID		Y72291	Y72296	Y72297		
Sampling Date		2008/05/15	2008/05/15	2008/05/15	1 1 1	-,0-1-4
COC Number		B 53302	B 53302	B 53302		913
Registration #						
	Units	MM-4 (0-5CM)	MM-8 (0-5CM)	MM-39 (0-5CM)	RDL	QC Batch
	- 17			1		
Inorganics						
Inorganics Organic Carbon (TOC)	21 1					

Maxxam ID		Y72298	Y72298		
Sampling Date		2008/05/15	2008/05/15		
COC Number		B 53302	B 53302		
Registration #					
	Units	MM-50 (0-5CM)	MM-50 (0-5CM) Lab-Dup	RDL	QC Batch
Inorganics					
Organic Carbon (TOC)	g/kg	27	24	0.6	1521188
Organic Carbon (TOC) RDL = Reportable Dete QC Batch = Quality Cor	ction Lin	nit	24	0.6	1521188

Maxxam ID		Y72299	Y72299	Y72300	Y72301		
Sampling Date		2008/05/20	2008/05/20	2008/05/20	2008/05/20		
COC Number		B 53302	B 53302	B 53302	B 53302		
Registration #							
	Units	MM-51 (0-10CM)	MM-51 (0-10CM) Lab-Dup	MM-52 (0-10CM)	MM-53 (0-10CM)	RDL	QC Batch
Inorganics							100
Organic Carbon (TOC)	g/kg	1.4	1.6	1.1	0.3	0.2	1524045

Maritime Testing (1985) Limited Client Project #: 7442

RESULTS OF ANALYSES OF SOIL

	Units	MM-54 (0-10CM)	RDL	MM-41 (0-5CM)	RDL	QC Batch
Registration #			1		1	
COC Number		B 53302		B 53302		
Sampling Date	FIFE FIRE	2008/05/20		2008/05/15	4 4 4	
Maxxam ID		Y72302		Y72303		

 Inorganics
 0
 0.5
 9.0
 0.3
 1524045

Maritime Testing (1985) Limited Client Project #: 7442

MERCURY BY COLD VAPOUR AA (SOIL)

Maxxam ID	T	Y72291		Y72296	Y72296		
Sampling Date		2008/05/15		2008/05/15	2008/05/15	I	
COC Number		B 53302		B 53302	B 53302		
Registration #							
(Tesu (S	Units	MM-4 (0-5CM)	RDL	MM-8 (0-5CM)	MM-8 (0-5CM) Lab-Dup	RDL	QC Batch
Metals							

Maxxam ID		Y72297	Y72298		Y72299		
Sampling Date		2008/05/15	2008/05/15		2008/05/20		
COC Number		B 53302	B 53302		B 53302		
Registration #			Ī				
-	Units	MM-39 (0-5CM)	MM-50 (0-5CM)	RDL	MM-51 (0-10CM)	RDL	QC Batch
Metals						Т	
Mercury (Hg)	mg/kg	3.2	4.4	0.1	0.94	0.02	1518672

Maxxam ID Sampling Date		Y72300 2008/05/20	Y72301 2008/05/20		Y72302 2008/05/20		
COC Number		B 53302	B 53302		B 53302		
Registration #	Units	MM-52	MM-53	RDL	MM-54	RDL	QC Batch
	Ullita	(0-10CM)	(0-10CM)	INDE	(0-10CM)	INDE	QO Daton
	T T						1
				1 1			
Metals							<u> </u>
Metals Mercury (Hg)	mg/kg	0.58	0.30	0.01	8.1	0.2	1518672

Maxxam Job #: A850902 Report Date: 2008/05/29

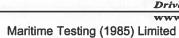
Maritime Testing (1985) Limited Client Project #: 7442

MERCURY BY COLD VAPOUR AA (SOIL)

	Units	MM-41 (0-5CM)	RDL	QC Batch
Registration #			4	
COC Number		B 53302	1	
Sampling Date	LIE IFA	2008/05/15		7000
Maxxam ID		Y72303		

Metals				
Mercury (Hg)	mg/kg	1.2	0.04	1520889

RDL = Reportable Detection Limit QC Batch = Quality Control Batch


Maxxam Job #: A850902 Report Date: 2008/05/29 Maritime Testing (1985) Limited Client Project #: 7442

ELEMENTS BY ICP/MS (SOIL)

Maxxam ID		Y72291	Y72291	Y72296	Y72297	\top	
Sampling Date		2008/05/15	2008/05/15	2008/05/15	2008/05/15		
COC Number		B 53302	B 53302	B 53302	B 53302		
Registration #							
	Units	MM-4 (0-5CM)	MM-4 (0-5CM)	MM-8 (0-5CM)	MM-39 (0-5CM)	RDL	QC Batch
			Lab-Dup				<u> </u>
Metals			Lab-Dup				

Maxxam ID		Y72298	Y72299		Y72300		
Sampling Date		2008/05/15	2008/05/20		2008/05/20		
COC Number		B 53302	B 53302		B 53302		
Registration #							
	Units	MM-50 (0-5CM)	MM-51 (0-10CM)	RDL	MM-52 (0-10CM)	RDL	QC Batch
Metals			<u> </u>				

Maxxam ID		Y72301	Y72302	Y72303		
Sampling Date		2008/05/20	2008/05/20	2008/05/15		
COC Number		B 53302	B 53302	B 53302		
Registration #						
	Units	MM-53 (0-10CM)	MM-54 (0-10CM)	MM-41 (0-5CM)	RDL	QC Batch
Metals					T	
	mg/kg	2600	2600	2400	2	1519217

Client Project #: 7442

Maxxam Job #: A850902 Report Date: 2008/05/29

GENERAL COMMENTS

Results relate only to the items tested.

Maritime Testing (1985) Limited Attention: Robert Bekkers Client Project #: 7442 P.O. #: Project name:

Quality Assurance Report Maxxam Job Number: DA850902

QA/QC Batch			Date Analyzed				in wheels
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
1518672 SSI	MATRIX SPIKE						
	[Y72296-01]	Mercury (Hg)	2008/05/22		N/C	%	75 - 125
	QC STANDARD	Mercury (Hg)	2008/05/22		92	%	75 - 125
	Spiked Blank	Mercury (Hg)	2008/05/22		98	%	75 - 125
	Method Blank	Mercury (Hg)	2008/05/22	ND, R	DL=0.01	mg/kg	
	RPD [Y72296-01]	Mercury (Hg)	2008/05/22	1.6		%	35
1519217 MPT	MATRIX SPIKE						
	[Y72291-01]	Available Arsenic (As)	2008/05/22		NC	%	75 - 125
	QC STANDARD	Available Arsenic (As)	2008/05/22		112	%	75 - 125
	Spiked Blank	Available Arsenic (As)	2008/05/22		96	%	75 - 125
	Method Blank	Available Arsenic (As)	2008/05/22	ND, R	DL=2	mg/kg	
	RPD [Y72291-01]	Available Arsenic (As)	2008/05/22	0.9		%	35
1520889 SSI	MATRIX SPIKE	Mercury (Hg)	2008/05/26		114	%	75 - 125
	QC STANDARD	Mercury (Hg)	2008/05/26		103	%	75 - 125
	Spiked Blank	Mercury (Hg)	2008/05/26		104	%	75 - 125
	Method Blank	Mercury (Hg)	2008/05/26	ND, R	DL=0.01	mg/kg	
	RPD	Mercury (Hg)	2008/05/26	NC		%	35
1521188 CAC	QC STANDARD	Organic Carbon (TOC)	2008/05/27		91	%	75 - 125
	Method Blank	Organic Carbon (TOC)	2008/05/27	ND, R	DL=0.2	g/kg	
	RPD [Y72298-01]	Organic Carbon (TOC)	2008/05/27	10.7		%	35
1524045 CAC	QC STANDARD	Organic Carbon (TOC)	2008/05/29		91	%	75 - 125
	Method Blank	Organic Carbon (TOC)	2008/05/29	ND, R	DL=0.2	g/kg	
	RPD [Y72299-01]	Organic Carbon (TOC)	2008/05/29	14.6		%	35

ND = Not detected

NC = Non-calculable

RPD = Relative Percent Difference

QC Standard = Quality Control Standard

SPIKE = Fortified sample

Your Project #: 7442 Your C.O.C. #: B 53303

Attention: Robert Bekkers
Maritime Testing (1985) Limited
900 Windmill Rd
Suite 116
Dartmouth, NS
B3B 1P7

Report Date: 2008/05/27

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A850953 Received: 2008/05/20, 17:22

Sample Matrix: Water # Samples Received: 1

		Date	Date	Method
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Reference
Mercury - Total (CVAA,LL)	1	N/A	2008/05/27 ATL SOP 00026 R3	Based on EPA245.1
Metals Water Diss. MS	1	N/A	2008/05/22 ATL SOP 00024 R3	Based on EPA6020A

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

TROY MACKAY, Project Manager Email: troy.mackay.reports@maxxamanalytics.com Phone# (902) 420-0203 Ext:266

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

Total cover pages: 1

Maxxam Job #: A850953 Report Date: 2008/05/27 Maritime Testing (1985) Limited Client Project #: 7442

MERCURY BY COLD VAPOUR AA (WATER)

	Units	MW3	RDL	QC Batch
Registration #				
COC Number		B 53303		
Sampling Date	l	2008/05/20		
Maxxam ID		Y72457		

Metals				
Total Mercury (Hg)	ug/L	0.57	0.01	1521887

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam Job #: A850953 Report Date: 2008/05/27 Maritime Testing (1985) Limited Client Project #: 7442

ELEMENTS BY ICP/MS (WATER)

	Units	MW3	RDL	QC Batch
Registration #				
COC Number		B 53303		
Sampling Date	T X	2008/05/20		
Maxxam ID		Y72457		

Metals				
Dissolved Arsenic (As)	ug/L	3100	2	1518863

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam_____

Maxxam Job #: A850953 Report Date: 2008/05/27 Maritime Testing (1985) Limited Client Project #: 7442

	GENERAL COMMENTS	
Results relate only to the items tested.	0.07	

Maritime Testing (1985) Limited Attention: Robert Bekkers Client Project #: 7442

P.O. #: Project name:

Quality Assurance Report Maxxam Job Number: DA850953

QA/QC Batch	00.7		Date Analyzed			0011
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Limits
1518863 MPT	MATRIX SPIKE	Dissolved Arsenic (As)	2008/05/22	99	%	80 - 120
	QC STANDARD	Dissolved Arsenic (As)	2008/05/22	94	%	80 - 120
	Spiked Blank	Dissolved Arsenic (As)	2008/05/22	94	%	80 - 120
	Method Blank	Dissolved Arsenic (As)	2008/05/22	ND, RDL=2	ug/L	
	RPD	Dissolved Arsenic (As)	2008/05/22	NC	%	25
1521887 SSI	MATRIX SPIKE	Total Mercury (Hg)	2008/05/27	110	%	N/A
	QC STANDARD	Total Mercury (Hg)	2008/05/27	107	%	80 - 120
	Spiked Blank	Total Mercury (Hg)	2008/05/27	106	%	80 - 120
	Method Blank	Total Mercury (Hg)	2008/05/27	ND, RDL=0.013	ug/L	
	RPD	Total Mercury (Hg)	2008/05/27	NC	%	25

ND = Not detected

N/A = Not Applicable

NC = Non-calculable

RPD = Relative Percent Difference

QC Standard = Quality Control Standard

SPIKE = Fortified sample

Your Project #: 7442 Your C.O.C. #: B 39793

Attention: Robert Bekkers
Maritime Testing (1985) Limited
900 Windmill Rd
Suite 116
Dartmouth, NS
B3B 1P7

Report Date: 2008/01/24

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A806013 Received: 2008/01/18, 13:49

Sample Matrix: Water # Samples Received: 3

		Date	Date	Method
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Reference
Mercury - Total (CVAA,LL)	3	N/A	2008/01/23 ATL SOP 00026 R2	Based on EPA245.1
Metals Water Diss. MS	3	N/A	2008/01/23 ATL SOP 00024 R3	Based on EPA6020A

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

KERI MACKAY, Project Manager Email: keri.mackay.reports@maxxamanalytics.com Phone# (902) 420-0203 Ext:233

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

Total cover pages: 1

Maxxam Job #: A806013 Report Date: 2008/01/24

Maritime Testing (1985) Limited Client Project #: 7442 Project name: Sampler Initials:

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

	Units	MW1	MW2	MW3	RDL	QC Batch
Registration #						
COC Number		B 39793	B 39793	B 39793		
Sampling Date		2008/01/18	2008/01/18	2008/01/18		
Maxxam ID		W84625	W84648	W84649		

ELEMENTS						
Total Mercury (Hg)	ug/L	0.02	0.15	0.02	0.01	1445416
Elements (ICP-MS)						
Dissolved Arsenic (As)	ug/L	400	250	570	2	1445707

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam Job #: A806013 Report Date: 2008/01/24 Maritime Testing (1985) Limited Client Project #: 7442 Project name: Sampler Initials:

Results relate only to the items tested.

Maritime Testing (1985) Limited Attention: Robert Bekkers Client Project #: 7442

P.O. #: Project name:

Quality Assurance Report Maxxam Job Number: DA806013

QA/QC Batch			Date Analyzed			ATT MUE	
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
1445416 SSI	MATRIX SPIKE	Total Mercury (Hg)	2008/01/23		99	%	N/A
	QC STANDARD	Total Mercury (Hg)	2008/01/23		98	%	80 - 120
	Spiked Blank	Total Mercury (Hg)	2008/01/23		97	%	80 - 120
	Method Blank	Total Mercury (Hg)	2008/01/23	ND, R	DL=0.013	ug/L	
	RPD	Total Mercury (Hg)	2008/01/23	NC		%	25
1445707 DLB	MATRIX SPIKE	Dissolved Arsenic (As)	2008/01/23		97	%	80 - 120
	QC STANDARD	Dissolved Arsenic (As)	2008/01/23		103	%	80 - 120
	Spiked Blank	Dissolved Arsenic (As)	2008/01/23		97	%	80 - 120
	Method Blank	Dissolved Arsenic (As)	2008/01/23	ND, R	DL=2	ug/L	
	RPD	Dissolved Arsenic (As)	2008/01/23	NC		%	25

ND = Not detected

N/A = Not Applicable

NC = Non-calculable

RPD = Relative Percent Difference QC Standard = Quality Control Standard

SPIKE = Fortified sample

Your Project #: 7442 Your C.O.C. #: B 30972

Attention: Robert Bekkers
Maritime Testing (1985) Limited
900 Windmill Rd
Suite 116
Dartmouth, NS
B3B 1P7

Report Date: 2008/08/29

This report supersedes all previous reports with the same Maxxam job number

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A863251 Received: 2008/06/17, 11:09

Sample Matrix: Soil # Samples Received: 3

		Date	Date		Method	
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference	
Metals Group IF-MS (Sub from Bedford) ()	3	2008/06/17	2008/08/18	3		

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Bedford to ACME Analytical Lab

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

TROY MACKAY-INACTIVE, Project Manager - Inactive Email: troy.mackay.reports@maxxamanalytics.com Phone# (902) 420-0203 Ext:266

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

Total cover pages: 1

Page 1 of 3

This document is in electronic format, hard copy is available on request.

Maxxam Job #: A863251 Report Date: 2008/08/29 Maritime Testing (1985) Limited Client Project #: 7442

RESULTS OF ANALYSES OF SOIL

	Units	MM-51 (0-10CM) (P#Y72299)	MM-52 (0-10CM) (P#Y72300)	RDL	QC Batch
Registration #					
COC Number		B 30972	B 30972		
Sampling Date		2008/05/15	2008/05/15		
Maxxam ID		Z30562	Z30563		

Subcontracted Analysis					
Subcontract Parameter	N/A	ATTACHED	ATTACHED	N/A	1539910

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Registration #	Units	MM-53 (0-10CM)	RDL	QC Batch
COC Number		B 30972		
Sampling Date		2008/05/15		
Maxxam ID		Z30564		

Subcontracted Analysis				
Subcontract Parameter	N/A	ATTACHED	N/A	1539910

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam Job #: A863251 Report Date: 2008/08/29

Maritime Testing (1985) Limited Client Project #: 7442

		GENERAL COM	IMENTS	
ılts relate only to the iten	ns tested.			

www.acmelab.com

Client:

Maxxam Analytics Inc.

200 Bluewater Road

Bedford NS B4B 1G9 Canada

Submitted By:

Canada-Vancouver Receiving Lab:

Received:

June 19, 2008 August 28, 2008

Report Date: Page:

1 of 2

CERTIFICATE OF ANALYSIS

VAN08006634.2

CLIENT JOB INFORMATION

None Given Project: A863251 Shipment ID:

P.O. Number

3 Number of Samples:

SAMPLE DISPOSAL

STOR-PLP Store After 90 days Invoice for Storage

Acme does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Method Code	Number of Samples	Code Description	Test Wgt (g)	Report Status
P200	3	Pulverize to 85% passing 200 mesh		
1FD	3	1:1:1 Aqua Regia digestion Ultratrace ICP-MS analysis	0.5	Completed
7AR	1	1:1:1 Aqua Regia digestion ICP-ES analysis	1	Completed

ADDITIONAL COMMENTS

Ver.2 to include 7AR

Invoice To:

Maxxam Analytics Inc. 200 Bluewater Road Bedford NS B4B 1G9 Canada

CC:

Client:

Maxxam Analytics Inc.

200 Bluewater Road

Bedford NS B4B 1G9 Canada

Project:

None Given

Report Date:

August 28, 2008

www.acmelab.com

Page:

2 of 2

CERTIFICA	TE O	F AN	ALY	'SIS													VA	30 <i>N</i>	006	634	.2	
		Method	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1
		Analyte	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	٧	Ca	- 1
		Unit	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	9
The last		MDL	0.01	0.01	0.01	0.1	2	0.1	0.1	1	0.01	0.1	0.1	0.2	0.1	0.5	0.01	0.02	0.02	2	0.01	0.00
Z30562-01R-MM-51	Sand		0.57	35.96	16.92	87.4	84	23.7	7.9	344	3.08	2178	0.5	1178	4.0	11.5	0.13	1.42	0.33	15	0.12	0.049
Z30563-01R-MM-52	Sand		0.84	15.90	78.04	53.7	192	17.8	2.8	200	4.91	>10000	0.5	397.4	4.6	9.1	0.18	19.11	1.43	15	0.08	0.06
Z30564-01R-MM-53	Sand		0.39	46.82	22.19	112.9	67	37.2	15.5	514	3.15	3141	0.5	61.2	4.1	25.0	0.16	2.28	0.46	15	0.59	0.054

Client:

Maxxam Analytics Inc.

200 Bluewater Road

Bedford NS B4B 1G9 Canada

Project:

None Given

Report Date:

August 28, 2008

www.acmelab.com

Page:

2 of 2

CERTIFICA	TE OF AN	IALY	SIS													VA	30 <i>N</i>	3006	634.2
	Method	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	7AR
	Analyte	La	Cr	Mg	Ва	Ti	В	Al	Na	K	W	Sc	TI	S	Hg	Se	Te	Ga	As
	Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	%	ppb	ppm	ppm	ppm	%
	MDL	0.5	0.5	0.01	0.5	0.001	20	0.01	0.001	0.01	0.1	0.1	0.02	0.02	5	0.1	0.02	0.1	0.01
Z30562-01R-MM-51	Sand	22.5	16.4	0.78	72.6	0.053	32	1.40	0.012	0.52	0.4	1.6	0.26	<0.02	1450	0.2	0.23	4.2	N.A.
Z30563-01R-MM-52	Sand	23.1	16.3	0.73	70.7	0.053	28	1.37	0.010	0.52	1.2	1.7	0.31	<0.02	821	1.1	2.44	4.5	2,10
Z30564-01R-MM-53	Sand	19.0	15.7	1.00	77.8	0.049	30	1.45	0.015	0.59	0.4	1.7	0.26	0.15	511	0.3	0.39	4.3	N.A.

Client:

Maxxam Analytics Inc.

200 Bluewater Road

Bedford NS B4B 1G9 Canada

Project:

None Given

Report Date:

August 28, 2008

www.acmelab.com

Page:

1 of 1

QUALITY CO	ONTROL	REP	OR	Γ												VA	80 <i>N</i>	0066	534.	2	
	Method	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1
	Analyte	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	V	Ca	
	Unit	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	
	MDL	0.01	0.01	0.01	0.1	2	0.1	0.1	1	0.01	0.1	0.1	0.2	0.1	0.5	0.01	0.02	0.02	2	0.01	0.00
Reference Materials																					
STD DS7	Standard	18.15	92.63	61.87	371.2	752	49.2	8.3	554	2.14	51.0	3.7	50.0	3.1	63.1	6.15	4.56	3.93	77	0.80	0.08
STD DS7	Standard	19.99	105.7	68.75	412.0	1096	51.8	9.7	633	2.40	57.0	4.3	53.4	3.8	73.1	6.82	4.96	4.45	83	0.94	0.08
STD SF-3A	Standard																				
STD SF-3A	Standard																				
STD DS7 Expected		20.92	109	70.6	411	890	56	9.7	627	2.39	48.2	4.9	70	4.4	68.7	6.38	5.86	4.51	86	0.93	0.0
STD SF-3A Expected																		1004			
BLK	Blank	<0.01	<0.01	<0.01	<0.1	<2	<0.1	<0.1	<1	<0.01	<0.1	<0.1	<0.2	<0.1	<0.5	<0.01	<0.02	<0.02	<2	<0.01	<0.00
BLK	Blank																				
Prep Wash																					
G1	Prep Blank	0.19	1.92	1.76	46.1	4	3.9	4.2	559	1.87	<0.1	2.3	0.3	3.2	43.8	0.01	< 0.02	0.04	38	0.46	0.10

www.acmelab.com

Client:

Maxxam Analytics Inc.

200 Bluewater Road

Bedford NS B4B 1G9 Canada

Project:

None Given

Report Date:

August 28, 2008

Page: 1 of 1 Part

	Method	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	7AR
	Analyte	La	Cr	Mg	Ba	Ti	В	Al	Na	K	W	Sc	TI	S	Hg	Se	Te	Ga	As
	Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	%	ppb	ppm	ppm	ppm	9
	MDL	0.5	0.5	0.01	0.5	0.001	20	0.01	0.001	0.01	0.1	0.1	0.02	0.02	5	0.1	0.02	0.1	0.01
Reference Materials															a bou				
STD DS7	Standard	12.4	149.0	0.91	424.0	0.094	331	0.94	0.084	0.44	3.4	2.4	3.84	0.19	181	3.7	1.21	4.7	
STD DS7	Standard	13.6	181.9	1.06	448.2	0.109	80	1.00	0.091	0.49	3.4	2.6	4.26	0,20	206	4.1	1.31	5.0	,
STD SF-3A	Standard	HE :																	<0.0
STD SF-3A	Standard																		<0.0
STD DS7 Expected		12.7	163	1.05	370.3	0.124	38.6	0.959	0.073	0.44	3.8	2.5	4.19	0.21	200	3.5	1.08	4.6	
STD SF-3A Expected																			0.0046
BLK	Blank	<0.5	<0.5	<0.01	<0.5	<0.001	264	<0.01	<0.001	<0.01	<0.1	<0.1	<0.02	<0.02	<5	<0.1	<0.02	<0.1	
BLK	Blank																		<0.01
Prep Wash																			
G1	Prep Blank	6.3	6.8	0.62	302.1	0,117	37	0.93	0.054	0.61	<0.1	2.0	0.41	<0.02	<5	<0.1	<0.02	4.9	N.A.

ACME ANALYTICAL LABORATORIES LTD.

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

Report Date: Project:

None Given

Maxxam Analytics Inc.

Client:

Bedford NS B4B 1G9 Canada

200 Bluewater Road

August 28, 2008

www.acmelab.com

Part 2 2 of 2

Page:

VAN08006634.2

CERTIFICATE OF ANALYSIS

	Method	#	4	#	#	4	#	ħ	1	#	#	누	#	મ	Ħ	#	#	#	7AR
	Analyte	2	ວັ	Mg	Ba	F	m	₹	N e	¥	3	Sc	F	S	Hg	Se	Te	Ga	As
	Unit	mdd	mdd	%	mdd	%	mdd	%	*	%	mdd	шдд	mdd	%	qdd	mdd	mdd	mdd	%
	MDL	0.5	9.0	0.01	0.5	0.001	20	0.01	0.001	0.01	0.1	0.1	0.02	0.02	2	0.1	0.02	0.1	0.01
Z30562-01R-MM-51	Sand	22.5 16.4	16.4	0.78	72.6	0.053	32	1.40	0.012	0.52	0.4	1.6	0.26	<0.02	1450	0.2	0.23	4.2	Ϋ́
Z30563-01R-MM-52	Sand	23.1	23.1 16.3	0.73	7.07	0.053	28	1.37	0.010	0.52	1.2	1.7	0.31	<0.02	821	1.1	2.44	4.5	2,10
Z30564-01R-MM-53	Sand	19.0	15.7	1.00	8.77	0.049	30	1.45	0.015	0.59	0.4	1.7	0.26	0.15	511	0.3	0.39	4.3	A.

Acme analytical Laboratories LTD.

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

www.acmelab.com

Maxxam Analytics Inc. 200 Bluewater Road

Client:

Bedford NS B4B 1G9 Canada

None Given Project:

August 28, 2008

Report Date:

												Page:		1 of 1	Ξ	Part	_				
QUALITY CONTROL REPORT	ONTROL	REP	OR	L												VAN	1080	VAN08006634	34.2		
	Method	11	Ħ	Ħ	누	누	1	누	千	1	Ħ	Ħ	Ħ	#	4	#	1F	1F	11	#	부
	Analyte	Mo	D C	Pp	Zn	Ag	Z	ပိ	Min	Fe	As	o	Αn	f	S	P	Sb	10	>	ca	٥
	Unit	mdd	mdd	mdd	mdd	qdd	mdd	mdd	mdd	%	mdd	mdd	qdd	mdd	mdd	mdd	mdd	mdd	mdd	*	%
	MDL	0.01	0.01	0.01	0.1	2	0.1	0.1	-	0.01	0.1	0.1	0.2	0.1	0.5	0.01	0.02	0.02	2	0.01	0.001
Reference Materials																					
STD DS7	Standard	18.15	92.63	61.87	371.2	752	49.2	8.3	554	2.14	51.0	3.7	50.0	3.1	63.1	6.15	4.56	3.93	77	0.80	0.082
STD DS7	Standard	19.99	105.7	68.75	412.0	1096	51.8	9.7	633	2.40	57.0	4.3	53.4	3.8	73.1	6.82	4.96	4.45	83	0.94	0.084
STD SF-3A	Standard																				
STD SF-3A	Standard																				
STD DS7 Expected		20.92	109	9.07	411	890	26	9.7	627	2.39	48.2	4.9	70	4.4	68.7	6.38	5.86	4.51	86	0.93	0.08
STD SF-3A Expected																					
BLK	Blank	<0.01	<0.01	<0.01	<0.1	7	<0.1	<0.1	۲	<0.01	<0.1	<0.1	<0.2	<0.1	<0.5	<0.01	<0.02	<0.02	<2	<0.01 <	<0.001
BLK	Blank																				Ì
Prep Wash																					Ì
61	Prep Blank	0.19	1.92	1.76	46.1	4	3.9	4.2	559	1.87	<0.1	2.3	0.3	3.2	43.8	0.01	<0.02	0.04	38	0.46	0.107

Project:

None Given

Maxxam Analytics Inc.

Client:

Bedford NS B4B 1G9 Canada 200 Bluewater Road

August 28, 2008 Report Date:

VANOROORG3			IALITY CONTROL REPORT
of 1 Part 2	Page: 1		
		www.acmelab.com	
			Phone (604) 253-3158 Fax (604) 253-1716

	Method	#	4	#	#	4	#	#	#	#	누	Ŧ	#	#	Ļ	#	4	4	7AR
	Analyte	La	ວັ	Mg	Ba	F	m	¥	N m	¥	W	Sc	F	Ø	Hg	Se	Te	Ga	As
	Unit	mdd	mdd	%	mdd	%	шфф	%	%	%	mdd	mdd	mdd	%	qdd	mdd	mdd	mdd	%
	MDL	0.5	0.5	0.01	9.0	0.001	20	0.01	0.001	0.01	0.1	0.1	0.02	0.02	2	0.1	0.02	0.1	0.01
Reference Materials	1		1	1	1		a I	Ť	ŗ.						J				
STD DS7	Standard	12.4	149.0	0.91	424.0	0.094	331	0.94	0.084	0.44	3.4	2.4	3.84	0.19	181	3.7	1.21	4.7	
STD DS7	Standard	13.6	181.9	1.06	448.2	0.109	80	1.00	0.091	0.49	3.4	2.6	4.26	0.20	206	4.1	1.31	5.0	
STD SF-3A	Standard																		<0.01
STD SF-3A	Standard																		<0.01
STD DS7 Expected		12.7	163	1.05	370.3	0.124	38.6	0.959	0.073	0.44	3.8	2.5	4.19	0.21	200	3.5	1.08	4.6	
STD SF-3A Expected																			0.0046
BLK	Blank	<0.5	<0.5	<0.01	<0.5	<0.001	264	<0.01	<0.001	<0.01	<0.1	<0.1	<0.02	<0.02	\$	<0.1	<0.02	<0.1	
BLK	Blank																		<0.01
Prep Wash																			
G1	Prep Blank	6.3	8.9	0.62	302.1	0,117	37	0.93	0.054	0.61	<0.1	2.0	0.41	<0.02	<5	<0.1	<0.02	4.9	N.A

Sand

Z30584-01R-MM-53

www.acmelab.com

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

Client

Maxxam Analytics Inc.

200 Bluewater Road

Bedford NS 84B 1G9 Canada

Project:

None Given

Report Date:

July 11, 2008

Tikino (co i) =						VANN	w.acme	lab.co	m			Page:			2 0 1 2	Part	1 1				
			(010													VA	30N	3006	634	, 1 	
CERTIFICA	TE OF AN	AL Y	212						AP.	1F	1F	1F	1F	1F	1F	1F	14	1F	1F	1F	1F
	Method	1F	1F	1F	1F	1F	1F	1F	Mn	Fe	As	U	Au	Th	Sr	Cq	Sb	Bi	V	Ca %	
	Analyte	Mo	Cu	Pb	Zn	Ag	71	Co	ррп	%	ppm	made	ppb	ppm	ppm	bhus	ppm	bbus	bhm	0.01	0.001
	Unit	ppm	hbu	ppm	bhu	ppb	ppm	ррт 6.1	7	0.01	0.1	0.1	6.2	0.1	0.5	0.01	9.02	0,02	- 2	0.12	0.049
	MDL	0.01	0.01	0.01	0,1	2	0.1	7.9	344	3.08	2178	0.5	1178	4.0	11,5	0.13	1.42	0,33	15		0.060
Z30562-01R-MM-51	Sand	0,57	35.98	16.92	87.4	84	23,7	2.8	200		>10000	0,5	397.4	4,6	9,1	0.48	19.11	1.43	15	0.08	0.054
Z30583-01R-MM-52	Sand	0,84	15,90	78,04	53,7	192	17.B	15.5	514	3.15		0.5	61.2	4.1	25.0	0.18	2.28	0.46	15	0.23	V.047
700504 P49 MM4.63	Sand	0,39	46,82	22.19	112.9	67	37.2	13,5	317												

Client:

Maxxam Analytics Inc.

200 Bluewater Road

Bedford NS B48 1G9 Canada

Project:

None Given

Report Date:

July 11, 2008

www.acmelab.com

Page:

2 of 2

			(0)0													VA	$30N_{\nu}$	3006	634.1
CERTIFICAT	re of an	ALY	SIS								45	45	1F	115	1P	1F	1F	1F	
	Method	1F	11	1F	1F	1F	1F	1F	1F	1F K	w	1F Sc	π	s	Hg	Se	To	Ga	
	Analyte	La	Cr	Mg	Ba	Π	B	AL 35	Na &	%	ppm	ppm	ppm	%	bbp	प्रकार	blow	ppm	
	Unft		ppm	%	blem	% 0,001	20 20	0.01	0.001	0,61	0.1	0.1	0.02	0.02	5	0,1	0.02	4.2	
	MOL	0.5	0.5	0,01	72.6	0.053	32	1,40	0,012	0.52	0.4	1.6	0,26	<0.02	1450	0.2	0.23	4.5	
Z30562-01R-MM-51	Sand	22.5	16,4	0.78	70.7	0.053	28	1.37	0.010	0,52	1.2	1.7	0,31	<0.02	821	1.1	0.39	4.3	
Z30563-01R-MM-52	Sand	23.1	18,3	1.00	77.8	0,049	30	1,45	0,015	0,59	0,4	1.7	0.26	0.15	511	0.3	u.35	-7,-	
730584-01R-MM-53	Sand	19.0	15.7	1.00	41.40														

Phone (604) 253-3158 Fax (604) 253-1718

www.acmelab.com

Client:

Maxxam Analytics Inc.

200 Bluewater Road

Bedford NS B4B 1G9 Canada

Project:

None Given

Report Date:

July 11, 2008

Page:		1	of 1	Part	1	-
				VA!	N08	00
15	1F	1F	1F	1F	1F	1
IJ	Au	Th	Sr	Cd	Sb	E
~					nnm.	men

			OD	r	_											VA!	N08	0066	334.	1	
QUALITY CO	Mathed Analyte Unit	1F Mo ppm	1F Cu.	1F Pb ppm	1F Zn ppm	1F Ag ppb	1F Ni ppra	1F Go ppm	1F Min ppm	1F Fe % 0.01	1F As ppm	1F U ppm 0,1	1F Au ppb 0.2	1F Th ppm 0.1	1F Sr ppm 0.5	1F Cd ppm 0,01	1F Sb ppm 0.02	1F Bl ppm 0.92	1F V ppm 2	1F Ca % 6.01	1F P % 0.901
	MDL	0.61	0.01	0.61	0.1	2	0.1	0.1		9.01					63.1	6.15	4.56	3,93	77	0.80	0.082
Reference Meterials		18,15	92,63	61.87	371.2	752	49.2	8,3	554	2.14	51.0	3.7	50.0 63.4	3.1	73.1	6,82	4.96	4.45	83	0.94	0.084
STO DS7	Standard	18.99	105.7	68.75	412.0	1096	51.8	9.7	683	2.40	57.0 48.2	4.8	70	4.4	68.7	6.38	5,86	4.51	88	0,93	80.0
STD DS7 Expected		20.92	109	70.6	411	890	56	9.7	627	<0.01	<0,1	<0.1	<0,2	<0.1	<0.5	<0.01	<0.02	<0.02	<2	<0,01	<0.001
BLK	81ank	<0.01	<0.01	<0.01	<0.1	<2	<0,1	-0.1								0.01	<0.02	0.04	36	0.46	0.107
Frep Wash	Prep Blank	0.19	1.92	1.76	46.1	4	3,9	4.2	559	1.87	<0.1	23	0,3	3.2	43.8	4,01	40.02				

Gŧ

1020 Cordova St. East Vancouver BC V6A 4A3 Canada Phone (604) 253-3158 Fax (604) 253-1716

Prep Blank

6.3

6.8

www.acmetab.com

Client:

Maxxam Analytics Inc.

Part 2

200 Bluewater Road

Bedford NS B48 1G9 Canada

Project.

Nane Given

Report Date:

July 11, 2008

Filding (og i) and a						MANA	acmet	ab.con	π			Page:		1.0	of 1	Part	2	
	ITROL	DED														VAI	N080	006634
UALITY CON	Mathed Analyte Unit	1F La ppm 0,5	1F Cr ppm 0.5	1 F Mg % 6,01	1F Ba ppm 8.5	1F Ti % 0,001	1F 8 ppm 29	1F Al % 6.01	1F No. % 0,001	1F K % 0.01	1F W ppm 0.1	1F 8c pom 0.1	4F Т1 преч 0.02	1F \$ % 6.02	1F Hg ppb 5	1F Se ppm 0,1	1F Te ppm 6.02	1F Ga ppm 0.1
A Alatadala									5 404	0.44	3.4	2.4	3.84	0,19	181	3.7	1.21	4.7
eference Materials	Standard	12.4	149.0	0.91	424.0	0_094	331	0.94	0.084			2.6	4.26	0.20	206	4,1	1,31	5.0
TD DS7	Standard	13.6	181.8	1,08	448,2	0.108	80	1,00	0.091	0.49	3.4	2.5	4.19	0.21	200	3,5	1.08	4.6
TD DS7		12.7	163	1,05	370.3	0.124	38,6	0.959			<0.1	<0.1	<0.02	<0.02	<5	<0.1	<0.02	<0.1
NO OS7 Expedied	Stank	<0.5	<0,5	<0.01	<0.5	<0.001	264	<0.01	<0,001	<0.01	~U.1					-04	<0.02	4.8
rap Wash	Duan Plant	83	6.8	0,62	302.1	0.117	37	0.98	0.054	0,61	<0.1	2.0	0.41	<0.02	<\$	<0.1	30.02	410 1

Laboratory ID:	<u>Z21112-01</u>	A THE RESIDENCE	Client ID:	MM-9 (0-5CM)	
Sieve Size	Beaker Weight (grams)	Beaker + Sediment (grams)	Sediment Weight (grams)	Passing PHI	%
2 -1 0.15 2.74 Pan	(g.a.re)		1.9 2.8 0.6	9 8 -1	63.9 11.8
		Total Sediment Weight =	5.52		
Laboratory ID:	<u>Z21113-01</u>		Client ID:	MM-10 (0-5CM)	Min - Warner
Sieve Size mm PHI	Beaker Weight (grams)	Beaker + Sediment (grams)	Sediment Weight (grams)	Passing	%
2 -1 0.15 2.74 Pan			2.4 10.3 2.6	1 -1	84.1 17.3
	1 1000 1000 - 1 T	Total Sediment Weight =	15.42		
Laboratory ID:	<u>Z21114-01</u>		Client ID:	MM-10 (0-5CM)	
Sieve Size mm PHI	Beaker Weight (grams)	Beaker + Sediment (grams)	Sediment Weight (grams)	Passing	%
2 -1	(g. a.m.)	(J. C.	0.0		
0.15 2.74 Pan			2.0 2.0		98.6 49.2
		Total Sediment Weight =	= 4.19		
Laboratory ID:	Z21115-01		Client ID:	MM-10 (1.5-5CM)
Sieve Size mm PHI	Beaker Weight (grams)	Beaker + Sediment (grams)	Sediment Weight (grams)	Passing	%
2 -1		7313 6	0.1		00.
0.15 2.74 Pan			5.8 4.2		98. 41.
		Total Sediment Weight =	= 10.3		
Laboratory ID:	<u>Z21116-01</u>		Client ID:	MM-11 (0-5CM)	
Sieve Size mm PHI	Beaker Weight (grams)	Beaker + Sediment (grams)	Sediment Weight (grams)	Passing	%
2 -1 0.15 2.74	13		2.7 5.1	'5	73.4
Pan			2.4		23.3
		Total Sediment Weight =	= 10.35		

Laboratory ID:	<u>Z21117-01</u>		Client ID:		MM-11 (0-2CM)	
Sieve Size mm PHI	Beaker Weight (grams)	Beaker + Sediment (grams)	Sediment We	_	PHI	Passing	%
2 -1 0.15 2.74 Pan	1- 185 MS VED			0.1 6.09 1.71	-1		98.7 21.6
		Total Sediment Weight =	7.9				
Laboratory ID:	Z21118-01		Client ID:	THE	MM-11 (2-5CM)	CARRE
Sieve Size mm PHI	Beaker Weight (grams)	Beaker + Sediment (grams)	Sediment We	eight	PHI	Passing	%
2 -1 0.15 2.74 Pan	14 50 m			5.29 8.19 2.98	-1	FTS	67.9 18.1
		Total Sediment Weight =	16.46				
Laboratory ID:	Z21119-01		Client ID:	PW.	MM-12 (0-5CM)	IPTR/ICIO
Sieve Size mm PHI	Beaker Weight (grams)	Beaker + Sediment (grams)	Sediment We	eight	PHI	Passing	%
2 -1 0.15 2.74 Pan	t- 00 t 1 00 t			0.01 2.17 0.97	-1	Was	99.7 30.8
		Total Sediment Weight =	3.15				
Laboratory ID:	Z21120-01		Client ID:		MM-13 (0-5CM)	
Sieve Size mm PHI	Beaker Weight (grams)	Beaker + Sediment (grams)	Sediment We		PHI	Passing	%
2 -1 0.15 2.74 Pan	1- 205			0.11 2.58 0.9	-1		96.9 25.1
		Total Sediment Weight =	3.59				
Laboratory ID:	Z21121-01		Client ID:		MM-14 (0-5CM)	herestate
Sieve Size mm PHI	Beaker Weight (grams)	Beaker + Sediment (grams)	Sediment We	_	PHI	Passing	%
2 -1 0.15 2.74 Pan	19- 19-11-11-11-11-11-11-11-11-11-11-11-11-1			0.21 3.06 0.96	-1	57 S	95.0 22.7
		Total Sediment Weight =	= 4.23				

Laboratory ID:	<u>Z21122-01</u>	II sholl 2	Client ID:		MM-15 (0-5CM)	
Sieve Size mm PHI	Beaker Weight (grams)	Beaker + Sediment (grams)	Sediment We	eight	Passing PHI	%
2 -1 0.15 2.74 Pan				0.05 2.21 0.97	-1 2.74	98.5 30.0
		Total Sediment Weight =	3.23			
Laboratory ID:	<u>Z21123-01</u>	ii trodii	Client ID:		MM-16 (0-5CM)	ilaing
Sieve Size mm PHI	Beaker Weight (grams)	Beaker + Sediment (grams)	Sediment We (grams)		Passing PHI	%
2 -1 0.15 2.74 Pan	142 B 15,0 ° 19 S 19 S			0.25 1.74 0.49	-1	89.9 19.8
		Total Sediment Weight =	2.48			
Laboratory ID:	<u>Z21124-01</u>	al mode	Client ID:		MM-17 (0-5CM)	diguni
Sieve Size	Beaker Weight (grams)	Beaker + Sediment (grams)	Sediment We	eight	Passing PHI	%
2 -1 0.15 2.74 Pan				0.21 3.16 1.91	-1	96.0 36.2
		Total Sediment Weight =	= 5.28			
Laboratory ID:	<u>Z21125-01</u>	al kooto	Client ID:		MM-18 (0-5CM)	
Sieve Size mm PHI	Beaker Weight (grams)	Beaker + Sediment (grams)	Sediment W (grams)	_	Passing PHI	%
2 -1 0.15 2.74 Pan	17 B			0.22 4.02 1.65	-1	96.3 28.0
		Total Sediment Weight =	= 5.89			
Laboratory ID:	Z21125-01 DUP	91 (ES)19	Client ID:	Ш	MM-18 (0-5CM)	45500
Sieve Size mm PHI	Beaker Weight (grams)	Beaker + Sediment (grams)	Sediment W (grams)	_	Passing PHI	%
2 -1 0.15 2.74 Pan				0.23 3 1.48	3 -1	95.1 31.4
		Total Sediment Weight	= 4.71			

Laboratory ID:	<u>Z21126-01</u>		Client ID:		MM-19 (0	-5CM)	
Sieve Size mm PHI	Beaker Weight (grams)	Beaker + Sediment (grams)	Sediment We (grams)	eight	P PHI	assing	%
2 -1 0.15 2.74 Pan				0.2 2.63 1.13	-1		94.9 28.5
		Total Sediment Weight =	3.96				
Laboratory ID:	<u>Z21127-01</u>		Client ID:	7.00	MM-20 (0	-5CM)	
Sieve Size mm PHI	Beaker Weight (grams)	Beaker + Sediment (grams)	Sediment We (grams)	eight	P PHI	assing	%
2 -1 0.15 2.74 Pan	1- 51 1 M.S. 88 5			0.42 3.25 1.1	-1	2.74	91.2 23.1
		Total Sediment Weight =	4.77				
Laboratory ID:	<u>Z21128-01</u>		Client ID:		MM-21 (0	-5CM)	Dy Hoe
Sieve Size	Beaker Weight (grams)	Beaker + Sediment (grams)	Sediment We	eight	PHI	assing	%
2 -1 0.15 2.74 Pan	at s			1.44 4.22 2.06	-1	11.5	81.3 26.7
		Total Sediment Weight =	7.72				
Laboratory ID:	<u>Z21129-01</u>		Client ID:	10	MM-22 (0	-5CM)	77773
Sieve Size	Beaker Weight (grams)	Beaker + Sediment (grams)	Sediment We		PHI	assing	%
2 -1 0.15 2.74 Pan				0.41 3.97 1.1	-1	31 1	92.5 20.1
		Total Sediment Weight =	= 5.48				
Laboratory ID:	<u>Z21130-01</u>		Client ID:		MM-23 (0	-5CM)	
Sieve Size mm PHI	Beaker Weight (grams)	Beaker + Sediment (grams)	Sediment We	mil	PHI	assing	%
2 -1 0.15 2.74 Pan				0.78 4.78 3.99	-1	172	91.8 41.8
		Total Sediment Weight =	= 9.55				

Beaker Weight (grams) 221132-01 Beaker Weight (grams)	Beaker + Sediment (grams) Total Sediment Weight = Beaker + Sediment (grams)	Sediment We (grams) 5.42 Client ID: Sediment We (grams)	0.26 3.01 2.15	PHI -1 2.74		% 95.2 39.7
<u>721132-01</u> Beaker Weight	Total Sediment Weight = Beaker + Sediment	5.42 Client ID: Sediment We	3.01 2.15	2.74 MM-23 (3		
Beaker Weight	Beaker + Sediment	Client ID:	2.15	2.74 MM-23 (3		
Beaker Weight	Beaker + Sediment	Client ID:	eight			80210
Beaker Weight		Sediment We	eight			BUR HOL
			eight	L. L. Jin	Daga!:	
(grams)	(grams)	Turanisi		PHI	Passing	%
		(3.40)	1.13	FILL		70
			9.56	-1		93.1
			5.64	2.74		34.5
	Total Sediment Weight =	16.33				
<u>721134-01</u>	Gu treell)	Client ID:	Tal	MM-24 (0-5CM)	KI=164
Beaker Weight (grams)	Beaker + Sediment (grams)			PHI	Passing	%
			2.15			
						84.5
			5.72	2.74		41.1
	Total Sediment Weight =	13.91				
<u>721135-01</u>	O Ment ID	Client ID:		MM-25 (0-5CM)	
Beaker Weight	Beaker + Sediment	Sediment W	eight		Passing	
(grams)	(grams)	(grams)		PHI		%
	- 18.00.					***************************************
						98.9
			5.68	2.74		39.6
	Total Sediment Weight =	: 14.34				
Z21136-01	OI THINKS	Client ID:	H.	MM-26 (0-5CM)	ing in
Beaker Weight	Beaker + Sediment		_	PHI	_	%
(grains)	(Aigins)	(9.4.110				
						94.5
					100	34.4
	(grams) Z21135-01 Beaker Weight (grams)	Beaker Weight (grams) Total Sediment Weight = Z21135-01 Beaker Weight (grams) Total Sediment Weight = Z21136-01 Beaker Weight (grams) Total Sediment Weight = Z21136-01 Beaker Weight (grams)	Beaker Weight (grams) Total Sediment Weight = 13.91 Z21135-01 Beaker Weight (grams) Total Sediment Weight (grams) Total Sediment Weight (grams) Total Sediment Weight (grams) Total Sediment Weight = 14.34 Z21136-01 Client ID: Beaker Weight (grams) Sediment Weight (grams) Client ID: Sediment Weight (grams)	Beaker Weight (grams) Beaker + Sediment (grams) Sediment Weight (grams)	Beaker Weight (grams) Beaker + Sediment (grams) PHI	Beaker Weight (grams) Beaker + Sediment (grams) Client ID: MM-24 (0-5CM)

<u>Z21137-01</u>	CO PROMISE	Client ID:		MM-26 (0-2CM)	9717191
Beaker Weight (grams)	Beaker + Sediment (grams)	Sediment Weig (grams)	ght	Passing PHI	%
			4.22		98.4 37.5
	Total Sediment Weight =	6.93			
<u>Z21138-01</u>	a mad	Client ID:		MM-26 (2-5CM)	
Beaker Weight (grams)	Beaker + Sediment (grams)	Sediment Weig (grams)	ght	Passing PHI	%
			9.45	-1	93.7 33.5
	Total Sediment Weight =	: 15.7			
Z21139-01	an arterna	Client ID:	10	MM-27 (0-5CM)	
Beaker Weight (grams)	Beaker + Sediment (grams)	Sediment Weig	ght	Passing PHI	%
F= \$0.7			3.58	-1	96.4 25.7
	Total Sediment Weight =	5.06			
<u>Z21140-01</u>		Client ID:		MM-28 (0-5CM)	
Beaker Weight (grams)	Beaker + Sediment (grams)	Sediment Wei	ght	Passing PHI	%
			5.76	-1	90.2 25.4
	Total Sediment Weight =	= 8.89			
<u>Z21141-01</u>	at thresto	Client ID:	M	MM-28 (0-3CM)	iligia
Beaker Weight (grams)	Beaker + Sediment (grams)	Sediment Wei (grams)	ght	Passing PHI	%
			1.91	-1	96.4 44.3
	Total Sediment Weight =	= 3.66			
	Z21138-01 Beaker Weight (grams) Z21139-01 Beaker Weight (grams) Z21140-01 Beaker Weight (grams)	Beaker Weight (grams) Total Sediment Weight = Z21138-01 Beaker Weight (grams) Total Sediment Weight = Z21139-01 Beaker Weight (grams) Beaker + Sediment (grams) Total Sediment Weight = Z21140-01 Beaker Weight (grams) Total Sediment Weight = Z21140-01 Beaker Weight (grams) Beaker + Sediment (grams) Total Sediment Weight = Z21141-01 Beaker Weight (grams) Beaker + Sediment (grams)	Beaker Weight (grams) Total Sediment Weight = 6.93 Z21138-01 Beaker Weight (grams) Total Sediment Weight = 15.7 Z21139-01 Beaker Weight (grams) Total Sediment Weight = 15.7 Z21139-01 Beaker Weight (grams) Total Sediment Weight = 5.06 Z21140-01 Beaker Weight (grams) Total Sediment Weight = 5.06 Z21140-01 Total Sediment Weight (grams) Total Sediment Weight (grams) Total Sediment Weight (grams) Sediment Weight (grams) Client ID: Sediment Weight (grams) Sediment Weight (grams)	Beaker Weight (grams)	Beaker Weight (grams)

Laboratory	ID:	Z21142-01	Clean II	Client ID:		MM-28 (3-	5CM)	
Sieve Siz mm	e PHI	Beaker Weight (grams)	Beaker + Sediment (grams)	Sediment We (grams)	ight	Pa PHI	ssing	%
2	-1	19/			2.36			
	2.74				4.44	-1		74.1
Pan					2.32	2.74		25.4
			Total Sediment Weight =	9.12				
Laboratory	ID:	<u>Z21143-01</u>	Dimito 1	Client ID:		MM-29 (0-	5CM)	DIEIN
Sieve Siz	e	Beaker Weight	Beaker + Sediment	Sediment We	ight	Pa	ssing	
	PHI	(grams)	(grams)	(grams)		PHI		%
2	-1				0.42			
0.15	2.74				1.62	-1		84.6
Pan					0.69	2.74		25.3
			Total Sediment Weight =	2.73				
Laboratory	ID:	<u>Z21144-01</u>	Ol meno	Client ID:	M	MM-30 (0-	5CM)	
Sieve Siz	ze PHI	Beaker Weight (grams)	Beaker + Sediment (grams)	Sediment We (grams)	ight	PHI	assing	%
2	-1			The state of the s	0.14			
0.15	2.74				1.67	-1		96.0
Pan					1.71	2.74		48.6
			Total Sediment Weight =	3.52				
Laboratory	ID:	Z21145-01	a meno	Client ID:		MM-31 (0-	5CM)	Shala
Sieve Si	78	Beaker Weight	Beaker + Sediment	Sediment We	eiaht	P	assing	
mm	PHI	(grams)	(grams)	(grams)	_	PHI	WAI	%
2	-1				0			
	2.74				1.63			100.0
Pan					0.93	2.74		36.3
			Total Sediment Weight =	= 2.56				
Laboratory	ID:	<u>Z21146-01</u>	S. Haliab	Client ID:	13	MM-32 (0	-5CM)	ohilo
Sieve Si mm	ze PHI	Beaker Weight (grams)	Beaker + Sediment (grams)	Sediment We	-	P PHI	assing	%
2	-1	\d	37 1		0.18	}		
	2.74				2.17			95.8
Pan	-				1.94	2.74		45.2
			Total Sediment Weight	= 4.29				

Laboratory ID:	Z21147-01		Client ID:		MM-35 (0-5CM)
Sieve Size mm PHI	Beaker Weight (grams)	Beaker + Sediment (grams)	Sediment We	_	Passir PHI	ng %
2 -1 0.15 2.74 Pan	A SHE			1.2 6.85 10.51	-1	93.5 56.6
		Total Sediment Weight =				
Laboratory ID:	<u>Z21148-01</u>	er Historia.	Client ID:		MM-36 (0-5CM)
Sieve Size mm PHI	Beaker Weight (grams)	Beaker + Sediment (grams)	Sediment We (grams)	-	Passii PHI	ng %
2 -1 0.15 2.74 Pan	8- 8-7 E	Total Sediment Weight =	· 8 76	3.38 2.6 2.78	-1	61.4 31.7
		Total Sediment Weight =				
Laboratory ID:	<u>Z21149-01</u>		Client ID:		MM-56 (0-5CM)
Sieve Size mm PHI	Beaker Weight (grams)	Beaker + Sediment (grams)	Sediment W (grams)	-	Passii PHI	ng %
2 -1 0.15 2.74 Pan	NES CO			4.26 2.86 4.54	-1	63.5 38.5
		Total Sediment Weight =	= 11.66			
Laboratory ID:	Z21150-01	W Ord Solid	Client ID:		MM-57 (0-5CM)
Sieve Size mm PHI	Beaker Weight (grams)	Beaker + Sediment (grams)	Sediment W (grams)	_	Passi PHI	ng %
2 -1 0.15 2.74 Pan	201 +			0.91 5.62 5.19	-1	92.: 44.:
1-11		Total Sediment Weight =		·	1414 FO (0 FOI	N
Laboratory ID: Sieve Size mm PHI	Z21151-01 Beaker Weight (grams)	Beaker + Sediment (grams)	Client ID: Sediment W (grams)	MM-58 (0-5CM Passi PHI	
2 -1 0.15 2.74 Pan				1.84 3.16 0.94	-1	69. 15.
		Total Sediment Weight =	= 5.94			

Sieve Analysis

Laboratory ID:	Z21152-01	II misu(i)	Client ID:		MM-59 (2-5	CM)	
Sieve Size mm PHI	Beaker Weight (grams)	Beaker + Sediment (grams)	Sediment We (grams)	ight	Pa: PHI	ssing	%
2 -1 0.15 2.74 Pan	14 - 50 à 14 - 12 51			2.26 4.83 5.54		13	82.1 43.9
		Total Sediment Weight =	12.63				
Laboratory ID:	Z21152-01 DUP	Namalio Clambill	Client ID:	111	MM-59 (2-5	CM)	o) Base
Sieve Size mm PHI	Beaker Weight (grams)	Beaker + Sediment (grams)	Sediment We (grams)	ight	Pa PHI	ssing	%
2 -1 0.15 2.74 Pan	2 36 2 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			2.37 4.78 6.85	-1	1-1 5 g	83.1 48.9
		Total Sediment Weight =	: 14				
Laboratory ID:	Z21153-01	M results	Client ID:		MM-60 (0-5	iCM)	
Sieve Size mm PHI	Beaker Weight (grams)	Beaker + Sediment (grams)	Sediment We (grams)	eight	Pa PHI	ssing	%
2 -1 0.15 2.74 Pan	05 h 100 c 85.3 ye.s			0.4 3.78 0.7	-1		91.8 14.3
		Total Sediment Weight =	= 4.88				
Laboratory ID:	Z21154-01	Maraida	Client ID:		MM-61(0-5	CM)	
Sieve Size mm PHI	Beaker Weight (grams)	Beaker + Sediment (grams)	Sediment We	_	Pa PHI	ssing	%
2 -1 0.15 2.74 Pan	16 50 3 16 8 81 E			0.12 2.07 1.94	-1	V. 1	97. 47.
		Total Sediment Weight =	= 4.13	12.00			
Laboratory ID:	<u>Z21155-01</u>	H-Injohi J	Client ID:	loa	MM-62 (0-	5CM)	dimin
Sieve Size mm PHI	Beaker Weight (grams)	Beaker + Sediment (grams)	Sediment We (grams)	_	Pa PHI	assing	%
2 -1 0.15 2.74 Pan	247 -1 6-1 1612 400			0.18 2.7 1.07	7 -1		95. 27.
		Total Sediment Weight	= 3.95				

Sieve Analysis

D:	<u>Z21156-01</u>		Client ID:	MM-63 (0-5	CM)
e PHI	Beaker Weight	Beaker + Sediment (grams)		Pas PHI	ssing %
.1				5	
74					98.4
			0.7	6 2.74	24.2
		Total Sediment Weight =	3.14		
D:	<u>Z21157-01</u>		Client ID:	MM-64 (0-5	CM)
•	Beaker Weight	Beaker + Sediment	Sediment Weight	: Pas	ssing
HI	(grams)	(grams)	(grams)	PHI	%
-1					
.74					91.4 38.2
		Total Sediment Weight =	6.59		
D:	<u>Z21158-01</u>		Client ID:	MM-64 (0-2	CM)
э н і	Beaker Weight	Beaker + Sediment			ssing %
	(grains)	(9:4:110)			
					99.1
					57.1
		Total Sediment Weight =	2.19		
D:	<u>Z21159-01</u>		Client ID:	MM-64 (2-5	CM)
e	Beaker Weight	Beaker + Sediment	Sediment Weight		ssing
HI	(grams)	(grams)	(grams)	· · · · · · · · · · · · · · · · · · ·	%
-1					
.74					79.7
			4	.5 2.74	37.2
		Total Sediment Weight =	12.09		
D:		e de la constantina della cons	Client ID:		
	Beaker Weight	Beaker + Sediment	Sediment Weigh	t Pa	ssing
2	_	(grams)	(grams)	PHI	
e PHI	(grams)				
-1	(grams)				4D1/401
PHI	(grams)		4.44.44	-1 2 74	#DIV/0!
-1	(grams)		4444	-1 2.74	#DIV/0! #DIV/0!
	D: HI 1 74 D: HI 1 74	Beaker Weight (grams) 1 74 D: Z21157-01 Beaker Weight (grams) 1 74 D: Z21158-01 Beaker Weight (grams) 1 74 D: Z21159-01 Beaker Weight (grams) 1 74	Beaker Weight (grams) Total Sediment Weight = D: Z21157-01 Beaker Weight (grams) Total Sediment Weight (grams) Total Sediment Weight = D: Z21158-01 Beaker Weight (grams) Total Sediment Weight (grams) Total Sediment Weight = D: Z21159-01 Beaker Weight (grams) Total Sediment Weight = D: Z21159-01 Beaker Weight (grams) Total Sediment Weight = D: Z21159-01 Total Sediment Weight (grams)	Beaker Weight (grams)	Beaker Weight (grams) Beaker + Sediment (grams) Past (grams)

WIF 172/173

CHAIN OF CUSTODY RECORD

Maxxam

200 Bluewater Road, Suite 105, Bedford, Nova Scotla B4B 1G9 Tel: 902-420-0203 Fax: 902-420-8612 Toll Free: 1-800-565-7227 www.maxxamanalytics.com E-mail: Clientservicesbedford@maxxamanalytics.com

INVOICE INFORMATION:		REPOR	RT INFORMA	TION	(if di	ifers f	rom i	nvoic	:e):		-	41.	-						MAXXAM	JOB NU	MBER:	2
Company Name: MARITIME To	ESTINK (1985	Compa	any Name: _								Po	#: oject Nan :	ne -	1.1.	2 /2				1		. ~	o es
Contact Name: Roger Son			t Name:								/#:			77	<u> </u>				118	080	12	Lab Use only
Address: Stell 90 WINDMILL		Addres									Los	cation:	DA	The	17H	-			Client Co	de: 14	10	79
DAKT Postal Coo	,										-	otation#:		_				Ī	ENTERE	BY, Init:	V-	1 23
Email: 1 beklers Committee		Email:										mpled By		RB					Labeled I	by, Init:	our endered	
Ph: 46-6486 x 118 Fax: 40		Ph:			Fa	ex:					Site	e Task #:							Location Bin #:	1		
Specify Guideline Requirements:			4		Requir	e Total or Diss Metals se Total or Diss Metals			Mercury Mercury is not included in Available Medias Digest Available Medias Digest Potant Method AuthOALO.	st - for sediments HCLO ₃	Tin (required for CCME soils)	Selenium (low level) Heq a tor CCME Residential, Parkands, Agricultural Hot Water soluble Boron (required for CCME Agricultural)	TPH MUST (BTEX, Co-C≥) Soil (Potable), TPH MUST, NS Fuel Oil Spill	evel BTEX & CC. Nater	nation			624,8260	For extra Rush an	oue Date	ı, speci ust be	fy Due Date. scheduled
'Specify Matrix: Surface/Salt/Grour Potable/NonPotable			water	Field Filtered	Lab Filtration	RCAp-30 Choose 1 RCAp-MS Choose	Total Diges	Dissolved	Cury Merc Soil o Available N	Total Dige:	Tin (requir	Selenium (Residential Hot Water (required for	MUST (E Potable), TP	Policy Low Level E NB Potable Water RTEX VPH I ow I	Fractionation	s s	3,2	EPA	ľ	ll be con		f Rush date
Sample Identification	Matrix*	Date/Time Sampled	# & type of bottles	Field	Lab	RCA RCA	Me	tals ater	Mer	Met	als S		Soll	NB P	TPH	PAH's	PCB's	VOC's	Other An	alysis or	Comme	nts/Hazards
MWI/SL	Sou	JAN16/03	1x60 /x 150						X	W		275	3						As	(2)	Zmm.	hortin)
mw1/52	\$4								X			\$	30						A3		i_	97
MW (/53	fi	E E							X				31						AS			
MW 1/54	id		V						X				32						AT			
FMW 1/55	k	7	12250						X			1	3						As			
mw 1/56	b C		/x60/x150						X			. 8	34						AT			
MWZ/S1	61		1						X			5	34						As	0000 A		5.50
Hw Z/ S7	,						2.42		X			5	36					E	A3	2360 th	4840	AN STOE
MWZ/53	el el	E I							V				3		1				As			
MW2/54	R.	N/				4			X				38	T					A5		N	
MW2/55	n	4							X				54						L	80° M	N. C.	17
MW3/51	h	fm 17/8	V		15.15	45 47			X				10						A	ili VO	MIT L	3 2
RELINQUISHED BY: (Signature/Print)		0 - / -	DATE / TIME			Re	ceive	& Te	mp chec	k by:	T	emp f T	emp 2	Temp	3							
Keltbelle Ro	BEXT BEXX	E725	JAN	25/	68	1	K				a.	JOC 9.	g.c	940	·C	INTE	GRIT	ſΥ	Inita	<u> </u>	res (N ₉

JUS

200 Bluewater Road, Suite 105. Bedford, Nova Scotia B4B 1G9 Tel: 902-420-0203 Fax: 902-420-8612 Toll Free: 1-800-565-7227 www.maxxamanalytics.com E-mall: Clientservicesbedford@maxxamanalytics.com

INVOICE INFORMATION: Company Name: MTZ Contact Name: RSENT B Address: He IL TOD WINDMILL DART. #S Postal Co Email: Neckhura (= mail Ph: 460-6486 X 1/8 Fax: 46	red ode B3B/H time + ty.	Compa Contac Addres	RT INFORM/ any Name: _ ct Name: _ ss: _		5			rom	Învoi	ce):				/#: Loca Quo Sam	ect N ntion: tation	ı#: By:	DA	144 er. 7.			4		Client Co	O8 loc DBY, Init	01-	
Specify Guideline Requirements: "Specify Matrix: Surface/Salt/Grou Potable/NonPotab		udge/Metal		d Filtered & Preserved	Filtration Required	RCAp-30 Choose Total or Diss Metals	RCAp-MS Choose Total or Diss Metals	Total Digest (Default Method)	Dissolved	rcury Mercury is not included in	Available Metals Digest	Total Digest - for sediments	Tin (required for COME soils)	Selenium (low level) Req'd for CCME	Hesidential, Parkiands, Agricultural Hot Water soluble Boron	TPH MUST (BTEX, CC.2)	Potable), TPH MUST, NS Fuel Oil Spill	NB Potable Water BTEX, VPH, Low Level TEH	TPH Fractionation	S,	3/5	3's EPA 624,8260	Rush and prior to sa	cost rualysis ample	standa 10 day te: ush, specify must be submission ontacted if	y Due Date scheduled
Sample Identification	Matrix*	Date/Time Sampled	# & type of bottles	Field	Lab	HC.	RC.	W	ater	Me	-	M	etals	Soi		TP	1		d F	PAH's	PCB's	VOC's	Other Ana	-	r Commen	
MW3/52 NF MW3/53 P3 MW3/54	SOIL		/x60,1x75		170972	10.052	19832	11113		X	1.3416	1	10,	1	4	10	18		20	2.0			As	(2	Zmnt,	vetin)
MT MW3/53	61	Jan 17/08	10601×150	Miles.		-515				X						0	DC	The second		4.	25		As			
73 mw3/54	h	fr- 17/08	1×250							X							10						As		V	
		,		35.2		7-1-1											100		7		711					
13/4 / 1 (1/4) 100 (100 (100 (100 (100 (100 (100 (10												L.						1.0								
				55.55										7			"									
	4																									
				1.2	14.447				1000			1						2522					2	886 J	AN 25 A	H GIAR
													-							1			CVE TI	M M	3 AM 8:0	1 6
		two ato, management and			4.5	-11			7.5								14.1	2	heli	20000	25		73.38	119 12	<u></u>	
												700					H	\vdash								
/			****	4.4		::::::::::::::::::::::::::::::::::::::	9 1		1.2.	511	ile i	Sarte a			4											11164
RELINQUISHED BY: (Signature/Print)			DATE / TIME				Rece	eivec	1 & Te	mp c	heck	bv:	1	Tem	1	Tomp	2	Temp 3								
Kilf Bille Ro	BONT BOX	LEC	Invi	25/	100			-					0					9,4		INTI	GRIT	ΓΥ (Int: Jus	2	Yes ((on

WIF 156/15 CHAIN OF CUSTODY RECORD

Maxxamanulytics.com E-mail: clientservicesbedford@maxxamanulytics.com

200 Bluewater Road, Suite 105, Bedford, Nova Scotia B4B 109 Tel: 902-420-0203 Fax: 902-420-8612 Toll From: 1-800-565-7227

Analysics III			7/1/12	MAXXAM JOB HUMBEH:
NVOICE INFORMATION:		MATION (il differs from invoice)		ASC (SOC)>
Company Name: MTL	Company Name:		PO # & Phase #:	1/+AC
Contact Name: Rob Bekkers	Contact Name:		Proj Name/Location: Montague M	Client Code: 41009
Address:	Address		Site #:	
Postal Code			Task #:	ENTERED BY, Init: CL
	Email:		Ouotation #: 07-362-KG	by, init by, init
mail: rbekkers Barricheteshing	Ph:	Fax:	Sampled By. RB/RP	Hin #:
Ph: Fax:	Ph.		w \$	DUE STANDARD
Specify Guidoline Requirements:		Metals Metals rod) ded in scan	Send Officer	DATE: 10 day
		ed Diss Notals r Diss Metals r Diss Metals r Method) t Included in metals sonn Qosti.	Paragraphics of the second of	RUSH Due Date:
Ci : spellest @ maritimetesti	ng ca	d & Preserved of P	tor soluble Buron I for CCME Agranduml quired for CCME solit the presented for the forment HENRICH, Agricult HENRICH, Server MUSH, IPP MUST, IS Free Lobe, TPP MUST,	Cor exten cost cush, specify Due Date
		Required Tetal or Di Total or	A COMMING THE PROPERTY OF THE	Rush analysis must be scheduled prior to sample submission.
	-	red & Preserved Honse Total or Diss Metals Hoose Total or Diss Metals Digest (Default Method) Ned Mercury is not included in Method in Watter metals scan able Metals Digest All Method in No./Ho.	Hot Water soluble Beron Applied for CCME for continual Tra (required for CCME solis) Tra (required for CCME solis) Solentum (g.w. level) Rad dis CCME Roudentul, Parkandul, Aglicullumi, Tobal Digest - for sediments The MUST (BTEX, Cr-Cw) TPH MUST (BTEX, Cr-Cw) Soli (Pouble), TPH MUST, NS feel Gis Spill Points With Cow Lovel TEH TPH Fractionation PAH's PCB's	
*Specify Matrix: Surface/Satt/Ground/Tapwotor/Sev Potable/NonPotable/Tissue/Soil/Si	rage/Effluent/Seawater		Hot Water soluble Boron enpuired for CCME Agrandumit Trn (required for CCME soils) Solenium (gw leviel Raq d for CCM Roadentu), Parkandu, Agitaulumi Total Dipost - for sodiments THNO-VIF-MALST, NS-Fee Gail Soil (Pouble), TPH MUST, NS-Fee Gail Foldy Low Level SIEA & G-C- NB Potable Writer TPH Fractionalon PAH's PCB's	Client will be contacted if Rush date cannot be met.
	Date/Time # & type of	Fleid Filtra RCAp-30 C RCAp-30 C Metals Meroury Meroury	Metals Soil Organics	Other Analysis or Comments/Hazard
Sample Identification Matrix*	Sampled bottles	71112	770996	HalAs/TOC on
MM-9 (0-5cm) Soil	Jane 2/08 /x500m	4 4 1 13 111	AS ONLY GT	2 mm Fraction
MM -10 (0-5cm)		13	US q	
MM-10 (0-1.5cm)		14	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	The TOC .
		15		160 0 1
1 5		10	1000	130 pin Fenction
MM-11 (0-5cm)		[7]	(1)	2088 JUN 1.1 pm 3:02
mm-11 (0-2 cm)		18	63	TOBE (17) 114 211
Mm-11 (2-5cm)		14	63	
MM-12 (0-5cm)		20	64	10001
MM -13 (0-5cm)		2	85	11 JUH '08 (412:50
ZMM-14 (0-5cm)		27	66	
1 44 -16 (n-5cm)		7	6	V
1 44 - 14 (n-5 cm)	1 1	100		elead for Data/Tend dirEGRITY
RELINQUISHED BY: (Signature/Print)	Received & Temp check by:	Temp 1 Temp 3 Yeary 7 Time Starraped Matrix as Sed	Singer Ein gestimed Sandel I	they are red on COC Yes
- P.// -	Initial Williams	2 C2 45.4 Bottle types added	This a	Editital form warms
1 -1 4/12	11-1-1		7.07	#16.1 www. www. 17.1 17.1 17.1

WIF157/158

CHAIN OF CUSTODY RECORD

	1	7	b
,4	1		
 M T	00	10	

200 Bluewater Road, Suite 105, Bedford, Nova Scotts 1848 1G9 Tec 912-420-0203 Fact 902-420-8612 Tot Fred: 1-800-565-7227 www.maxxamanalytics.com E-mult: clanteervicesbedford@maxxamanalytics.com

ORMATION:		REPO	RT INFOR	MATI	ON (i	diffe	ers from	m invoice):		Project #:						MAXXAM JOB NL	IMBEA:
any Name:		Compa	any Name: _							PO # & Ph	ase :	#:					
Contact Name:		Contac	t Name: _							Proj Name	/Loc	ation:					
Address:		Addres	is: _			4				Site #:						Client Code:	
Postal Code										Task #:		Approved the first own and the				ENTERED BY, Init	
Email:		Email:								Quotation	A:			T.		Labeled by, Init:	Scanned by, Init:
Ph: Fax:		Ph			Fau	e e				Sampled B	y.					Location/ Bin #:	/
Specify Guideline Requirements:				& Preserved	Hequired Total or Diss Metals	at or Diss Motals	ault Mathad)	Mercury is not included in Mercury is not included in and in water metals acan abbe Metals Digest out Method (HNO/H.O.) Mater solubb Boron and Arbor solubband and Arbor solubb	Agricultural	COME solis) all Regist for CCME rest, Agricultural reclimants	TEX, C+Cu)	Bei (Potable), TPH MUST, NS Fuel Oil Spill Policy Low Level STEX & CC.s NB Potable Worter STEX, VPH, Low Level TEH TPH Fractionariton			4,8260	RUSH Due Date	
*Specify Matrix: Surface/Sall/Ground/ Potable/NonPotable/I	PVioZ\auszl	lludge/Motal		Filtered	RCAD-30 Choose Tatal	RCAp-MS Choose Total or Diss Matala	Total Digest (Default Method)	Avail			TPH MUST (BTEX, C+C2)	Box (Possibe), TPH MUST, IN Policy Low Level BTEX, & C. NB Potable Writer BTEX, VPH, Low Level TPH Fractionalion	PAH's	PCB's	VOC'S EPA 024	For extra cost rust Rush analysia m prior to sample su Client will be con cannot be mot.	bmission.
Sample Identification	Matrix*	Date/Time Sampled	# & type of bottles	1	9 6	낊	Water	E Me	etal	s Soil		Orga	nics			Other Analysis or	Comments/Hazar
MM -17 (0-5cm)	Soil	June 2/08	1 c Sound			44	241				4	21008				Li	
10-10 (0-1							25					05					
nm-18 (0-5cm)						-	ar		1			10					
, /,							26										
mm-19 (0-5 cm)							27						1				
Mm - 19 (0-5cm) Mm - 20 (0-5cm)												12					
MM - 19 (0-5cm) MM - 20 (0-5cm) MM - 21 (0-5cm)							27										
MM - 19 (0-5cm) MM - 20 (0-5cm) MM - 21 (0-5cm) MM - 22 (0-5cm)							27 29										
MM - 19 (0-5 cm) MM - 20 (0-5 cm) MM - 21 (0-5 cm) MM - 22 (0-5 cm) MM - 23 (0-5 cm)							27 29 30									2868 JUN	11 pm 3:0
MM - 19 (0-5 cm) MM - 20 (0-5 cm) MM - 21 (0-5 cm) MM - 22 (0-5 cm) MM - 23 (0-5 cm) MM - 23 (0-3 cm)							27 29									2999-04	11 pm 3:0
MM-19 (0-5cm) MM-20 (0-5cm) MM-21 (0-5cm) MM-22 (0-5cm) MM-23 (0-5cm) MM-23 (0-3cm) MM-23 (3-5cm)							25 25 30 31								1		11 pm 3:0:
MM - 19 (0-5 cm) MM - 20 (0-5 cm) MM - 21 (0-5 cm) MM - 22 (0-5 cm) MM - 23 (0-5 cm) MM - 23 (0-3 cm) MM - 23 (3-5 cm) MM - 24 (0-5 cm)						34	27 29 30 31 32					13 13 17			1.		11 pm 3:0:
MM - 19 (0-5 cm) MM - 20 (0-5 cm) MM - 21 (0-5 cm) MM - 22 (0-5 cm) MM - 23 (0-5 cm) MM - 23 (0-3 cm) MM - 23 (3-5 cm)							25 25 36 31	7							1.		

WIFIS9/16 CHAIN OF CUSTODY RECORD

30	18		- 1	
-	1	- 18		
1297	200			

200 Bluewater Road, Suite 105, Bedford, Nova Scotia B4R 109 Tel: 902-420-0203 Far: 002-420-8612 Tell Free: 1-800-565-7227

AFORMATION:			TINFORM	MATIO	N (if	differs	s from	invoice):	Project #:		ALK.			MAXXAM JOB NUMBER:
pany Name:		Compan	y Name: _						-	PO # & Pha	so #:				
Contact Name:		Contact	Name: _		-		-	-	-	Proj Name/	Location	:			Client Code:
Address:	-	Address								Site #:					
Postal Code	a									Task #:					ENTERED BY, Init: Labeled Scanned
Email:		Email:	_		100-110-					Quotation 4					by, Init: by, Init: Location/
Ph: Fax:		Ph:			Fax					Sampled By					Bin #: DUE / STANDARD
Specify Guideline Requirements: *Specify Matrix: Surface/Salt/Groun-Potable/NonPotable	d/Tepwater/Se	wage/Effluent/Seaw ubdoe/Motal	roter		Lab Filtration Required RCAp-36 Choose Total or Diss Metals	Total o	Total Digost (Default Method) Dissolved	Mercury soli or water metals scan Available Metals Digest Default Rehod (HNO/HO)	Hot Water soluble Boron Jeguno for COME Agricultury	Tin frequired for CCME softs) Solonium fray levity fleq'td fur CC/ME Fleedenlini, Parkhirata, Antechtual Totul Direst - for prediments HNO-VHF /HCLO-)	TPH MUST (BTEX, CC.) Scil (Patabs), TPH MUST, NS Fuel DS Spill Polsy Low Level BTEX & CC.	NB Potable Water BTEX, VPH, Low Level TEH TPH Fractionation	PAH'a PCB's	VOC'8 EPA 624,8260	DUE DATE: 10 day RUSH Due Date: For extra cost rish, specify Due Da Rush analysis must be schedul prior to sample submission. Client will be contacted if Rush de capnot be met.
		Date/Timo	# & type of bottles	plo	RCAD-3	CAp-6	Metals Water	derct	Met	nis Soll	- w.c.	Organic			Other Analysis or Comments/Hazar
Sample Identification	Matrix*	Sampled				221	Water	2			70	1020			
MM-26 (0-2cm)	50:1	June 2/08	1.5000		Ť	CE V	37	70				21			
MM - 26 (2-5 cm)					-		1	1				22			
1.10						1	LA.	IE.				100,000		1	
MM - 27 (0-5 cm)						1 5 2	STATE OF THE PERSON NAMED IN					23			The second secon
							Tr.	(0)				23			
MM -27 (0-5 cm)							46	10				37			
MM - 27 (0-5 cm) MM - 28 (0-5 cm) MM - 28 (0-3 cm)							46	41				24			
MM - 27 (0 - 5 cm) MM - 28 (0 - 5 cm) MM - 28 (0 - 3 cm) MM - 28 (3 - 5 cm)							46	73				24			2000 JUN 11 on 348
MM - 27 (0 - 5 cm) MM - 28 (0 - 5 cm) MM - 28 (0 - 3 cm) MM - 28 (3 - 5 cm) MM - 29 (0 - 5 cm)							46	41 42 44				24 27			2000 JUN 11 pm 388
MM - 27 (0 - 5 cm) MM - 28 (0 - 5 cm) MM - 28 (0 - 3 cm) MM - 28 (3 - 5 cm) MM - 29 (0 - 5 cm) MM - 30 (0 - 5 cm)							46	44				24 24 27 28			
MM - 27 (0 - 5 cm) MM - 28 (0 - 5 cm) MM - 28 (0 - 3 cm) MM - 28 (3 - 5 cm) MM - 29 (0 - 5 cm) MM - 30 (0 - 5 cm) MM - 31 (0 - 5 cm)							46	73				24 24 27 28 24			200 JUN 11 PK 300
MM - 27 (0 - 5 cm) MM - 28 (0 - 5 cm) MM - 28 (0 - 3 cm) MM - 28 (3 - 5 cm) MM - 29 (0 - 5 cm) MM - 30 (0 - 5 cm) MM - 31 (0 - 5 cm) MM - 32 (0 - 5 cm)							46	44				24 24 27 28			
MM - 27 (0 - 5 cm) MM - 28 (0 - 5 cm) MM - 28 (0 - 3 cm) MM - 28 (3 - 5 cm) MM - 29 (0 - 5 cm) MM - 30 (0 - 5 cm) MM - 31 (0 - 5 cm)							14.5555 55 5 TX	44 44 45				24 24 27 28 24			

WIF160/161

CHAIN OF CUSTODY RECORD

malyrics inc

200 Bluewater Road, Suite 105, Redford, Nova Scotia B4B 1G5 Tel: 902-420-02fG Fax: 902-420-8812 Toll Fise: 1-800-565-7227 www.maxxamanalytics.com E-mail: clientpervicesbedford@maxxamanalytics.com

NFORMATION:	REPORT INFORM Company Name:	ATION (if differs from invoice):	Project #: PO # & Phase #:	MAXXAM JOB NUMBER:
Contact Name:	Contact Name:		Proj Name/Location:	Client Code:
Address:	Address:		Site #:	
Postal Code			Task #:	ENTERED BY, Init: Labeled Scanned by, Init: by, Init:
Email:	Email:		Sampled By:	Location/ Bin #:
Ph: Fax:	Ph:	Fave		DUE / STANDARD
Specify Guideline Requirements: Specify Matrix: Surface/Solt/Ground/Tapwat	ster/Sawage/Effluent/Seawnter	Field Filtered & Preservod Lab Filtration Required RCAp-30 Chonse Total or Diss Metals RCAp-MS Chonse Total or Diss Metals RCAp-MS Chonse Total or Diss Metals Tatal Digest (Default Method) Available Metals Digest A	The frequency of the control of the	PATE: 10 day RUSH Due Date: For extra cost rush, specify Due Date: Rush analysis must be schedul prior to sample submission. Cilent will be contacted if Rush di cannot be met.
Potable/NonPotable/Tissue/	520th assoftment.	Availing Mercury	E SEPE F SEE F C C C	Other Analysis or Comments/Hazz
Sample Identification Mat	trix" Date/Time # & type of bottles	TO THE WORLD WATER WATER WATER	etals Soil Organics	
MM-56 (0-5 cm) 40	11 June 2/08 x500,		72032	
Trink J	1.	49 50	1 1 3 1 1 3 1 1 1	
MM - 57 (0-5cm)	- Inne 11/08	50 51		
- · · · · · · · · · · · · · · · · · · ·	1	57 25	35	
W.W.		52 53	36	
MM-60 (0-5m)		1834	1 1 1 1	
MM-61 (0-5cm)		(E SI)	1 38	Mile Line and
MM-62 (0-5cm)		Total Contraction	79	11 THE OF 112:50
MM-63 (0-5cm)		86, 97	40	
MM -64 6-500)		4 1	41	2899 JUN 11 on 34
MM-64 (0-2cm)			Land	
MM-601 (2-5 cm)	V	\$2 85		V
RELINOUISHED BY (Signature/Print)	Received & Temp check by: 19	emp 1 Semp 2 Jamp 3		ted for Date/Time art CBU

WIF RCP 521, 522, 523, 524

200 Bluewater Road, Suite 105, Bedford, Nova Scotla B4B 1G9 Tel: 902-420-0203 Fax: 902-420-8612 Toll Free: 1-800-565-7227 www.maxxamanalytics.com E-mail: cllentservicesbedford@maxxamanalytics.com

Address:	A Section 1	Code_		sting c	REPO Compa Contac Addres Addres Email: Ph:	any Nar	ne:	TAN		(if c	diffe	ers fi	rom	liny	olce]:	Pro Siti	ojeci oj Na oj Na te #: sk #: notat	Pha me/	Loca	etion	3,6		< 0			Client Code: ENTERED BY, In Labeled by, Init: Location/Bin #:	41009
Specify Guideline F		round/Ta	pwater/S	Sewage/Eff /Sludge/Me	luent/Seav			d Filtered & Preserved	Lab Filtration Required	RCAp-30 Circle Total or Dies Metals	RCAp-MS Circle Total or Diss Metals	Total Digest (Default Method)	Dissolved	Mercury Mercury is not included in soil or water metals scen	Available Metals Digest Default Method (HNOv/H-O ₄)	Not Water soluble Boron (required for CCME Agricuftural)	Tin (required for CCME soils)	Selentum (low level) Req'd for CCME Residential, Parklands, Agricultural	Total Dipest - for ocean sediments [HNO-HF/HCLO]	H MUST (BTEX, CC)	Soil Potable), TPH MUST, NS Fuel Oil Spill Policy Low Level STEX & CC.	NB Potable Water BTEX, VPH, Low Level TEH	TPH Fractionation	PAHS	PCB's	VOC's EPA 624,8260	should be sche submission.	STANDARD 10 day Inte: rush. Rush enalysis duled prior to sample ontacted if Rush date
Sample Ide	entification		Matrix*	Dat Sa	e/Time mpled	# & typ	e of	Fleld	a	RCA	₽Ç.	Met Wa	tals ter	M		Met	als S	Soll		_		Org	ganic	28		/	Other Analysis	or Comments/Hazards
Mm-2 (0-5 cm)		Soil	151	ray 03	1x5	00			_				X	K	FY	3	-							24	5	Mercury	, Arsenic,
MM-2- (0-3 cm)	多等于 数据于	# N.	1 1 4 6 4	19.50	3- 11	3 8 4	4 1	# 13	41.		1 6	.4. 1	4	1	4 14		189	30 A	* 1	ft	y.	1	4	10	V	Toc.	
MM - 2	(3-5 cm)	-												1	Ш		-	185					6	100				
MM -3 (D-5cm)	7.p=26 E		10年上	6 7 9	e 11 14	e est	¥ \$	32 H	tok "	15 P	1 /	2 31	1	ir to	A T	, 1	319	1.7	3 5	gr -	# 4	0 7	*	15 an	*9	1	
MM -5 (0-5cm)				1												52¢					1	50	1		Arsenic	TOC.
Mm -7 /	0-5 cm	1	かっ 作り	5 (5 g) K	100	3 . 4 .		4.1		2	2.	100	. 30	115	2	7	4	54	A 3	y)		1.	1	100	Yes	1 10	(20 May 1)	18 PH 5:41
MM -7 (0-3 cm								1							Y	7	54	8									
MM - 7	3-5 cm	- E P	1 2019	J. 20 9	di lian	12	9.4	n e	A. 100	4	1 7	35	10	2 77				55		1	4	好	- 34	9		1		
10 MA - W 7	(0-5 cm	1	4		1		-	6									$\overline{}$	55	5					y				
70			- V	7 r	V.	7	- 42		5	Y .0	3 1	1.0	e in	V	1	-	-	~	14	2-		17- 19		-11	-	4.5	0/	988 MAY 21 AM 8
RELINQUISHED BY:	ARI MRE MF BU	<u>L</u>		<i>x</i> 1	his	Date 726 Time	1	3	Rece	alved 2	by &	Tem	p che	ock b	Al	Ser Ser	de la	1		2	Temp 1 Temp 2 Temp 3		Hold T Matrix Bottle BOD n Time S Storag	adde types noved stamp e Bin	d adde to Fri ed assign	ed d eezer	AK A	Rush availability note added to COC.

CHAIN OF CUSTODY RECORD

VOICE INF	ORMATION:			PORT INFOR				from	invoice):	Project #:	744	2		MAXXAM JOB NUMBER:
Company Nam	ne: MTL		Cor	mpany Name:	>/	tru e				PO # & Ph	ase #:			
Contact Name			Cor	ntact Name:	-4					1	/Location:			
Address:	900 WENDING			dress:						Site #:				Client Code:
Stell 6 ()	MUMSVI Postal Cod	· B7B/	07	W. 1835		ш				Task #:				ENTERED BY, Init:
Email:	whether By	at f	Tyre Em	all:						Quotation	#: 07.	-362Ka		Labeled Scanned by, init: by, init:
Ph: 468-	-6486 Fax: 46	8-491	9 Ph:			Fax				Sampled I	sy: R	CIRP		Location/ Bin #:
	ine Requirements: Matrix: Surface/Salt/Ground	V/Tapwater/Sc	ewage/Effluent/S	Segwater		Filtration Required	Choose Total or Diss Metals	Dissolved	Mercury is not included in soil or water metals scan able Metals Digest at Metals Digest at Metals difficult_Delay Metals could be sound of the COMF Ancelling	Tin (required for CCME soils) Sefentum (low level) Req'd for CCME Residential, Pandands. Agricultural Those Diges - for sediments Punc.Affect. Co.		Fractionation 's	's EPA 624,8260	DUE STANDARD 10 day RUSH Due Date: For extra cost rush, specify Due Date Rush analysis must be scheduled prior to sample submission. Citent will be contacted if Rush date
	Potable/NonPotable		Słudge/Metal			Lab Filtration RCAp-30 Choose			Mercury Avala Defau	Peside Tin C	Sal Pot Poticy Ly	PAH'S	NOC's	cannot be met.
Sample	e Identification	Matrix*	Date/Time Sampled	# & type of bottles	문	를 ਨੂੰ	A N	letals Vater	Me Me	tals Soil		rganics		Other Analysis or Comments/Hazards
MM - 4	10 (0-5cm)	Soil	15 Ma	4 1x50	2				XX	4725	64			HalAs/Tecon
MM - 4	4 (0-5cm)								11	5	12			1 2montation
MM - u	18 (0-5cm)									5	3 10 57	3		
MM - 4	13 (0-5cm)	V	V	1				1		5	-4			0
MM -1	(0-5cm)		20 May							5:	6			1 Ag/18c an
MM -1	(0-3,5cm)			3.6						58	5			Kountant
hm-1	(35-5cm)									591				
MM - 47	(0-5 cm)							3	711	Sha				201101102 - 151 32
MEET MM	-33 (0-50)									50	13			2 0 MAY '03 = 45:42
MM -34	(0-5 cm)									50				
mm-55	(0-5 cm)	V	1	V					ARSE	Me 50	5			2888 MAY 21 AM 8:56
				1	1			1 /		111				
RELINQUISHED	BY; (Signature/Brint)		Received & Tem	p check by: Te	no 1 Te	emp 2	Temp 3		-0-			Carlo and a second		

Taxiam MIF

WIF 500

BIN: AF

CHAIN OF CUSTODY RECORD

200 Bluewater Road, Suita 105, Bedford, Nova Scotia B4B 1G9 Tel: 902-420-0203 Fax: 902-420-8612 Toll Free: 1-800-565-7227 www.maxxamanalytics.com E-mail: clientservicesbedford@maxxamanalytics.com

B 53302

INVOKE INFORMATION: Company Name:							IATION (if differs from Invoice): Same Fax:								e #: ocati	7-	2 36 (R)		Client Code: 41006 ENTERED BY, Init: 3C Laboled by, Init: 4C Location/ Bin #:			
Specify Guideline Requirements: "Specify Matrix: Surface/Selt/Ground Potable/NonPotable		idge/Metal		id Filtered & Preserved	Filtration Required	p-30 Circle Total or Diss Metals	RCAp-MS Circle Total or Diss Metals	Total Digest (Default Method)	Dissolved	Available Defeat	Not Water soluble Boron (required for CCME Agricultural)	Tin (requi	02-11	(HNO-AFFICE O.)	Soil Potable), TPH MUST, NS Fuel OI Spill	Policy Low Level BTEX & CC.s. NB Potable Water	TPH Fractionation	PAH's	PCB's	VOC's EPA 624,8280	RUSH Due Date: Extra cost for rushould be schedule submission. Client will be conticannot be met.	sh. Rush analysis ad prior to sample acted if Rush date
Sample Identification	Matrix*	Date/Time Sampled	# & type of bottles	Field	음	RCA p	짍	Metals Water	ter	or Z Me		Metals Soil		1	Organ			nics			Other Analysis or C	-
MM-4 (0-5m)	THELINGS	M44 15/08	14500				_			XX	14	ľ	19 10									+ Wercup
MM-8 (0-5am)	4 - A 3 mil	* + * P	2. 1. 4 B F	2 P	A	Ac i	7 %	4 12	h 17	· · · · · · · · · · · · · · · · · · ·	r /	1 .0	4 6	W	27 2	43	1 :		-	4	(on ?	mm action
MM-39 (a-San)														1					-		1	action
MM-50 (0-50)	F + 4 5	114	1 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	s. e.	+ 4	7 7	2 .	14	4 4	3 7	01.5	1 101	C	18	4	4 4	- A	18 1	A	2	5	
Mm-51 (0-10a)		M44 20/01											C	10								
MM-52 (0-10a)	a company	- 4 4	2 4 4 1 2 2 4	3 4		6	* 4		1.	4 - 4	4-		30	5 0	1	gr (= 1	2 2 2	- e e	1 -	9. 1	9	
MM-53 (0-10a)	4									4.1			1	١,								
MM-54 (0-(0m)	2 3 1 4 1 1 1	£ . V	V	š. ".	30 -3	4 4	1 6	17 24	- A	AA	200		- (12		2. 1	2 7k	Of "	2 3	1.	2068 M	AY 21 AM 8:5
MM-41 (0-5a)	V	M49 (5/08	14500							1			(3				14.5			20 348 203	** 13 - W.J.
MAR. 18 V. 18 14 6 1 8	2	Will Was any	25 0 7- 2	4	1		1	,2 /2		APP3	TO!	4				1	b +	-	1.9	. 4		
Print Risent Bolkses		My	20/09 Time 30pm		Recessignat	eived	by 8	Temi	ds.	a No	and a	we	en			P1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Matr Bott BOD Time Store	ix add le typo move Stan age B	es ado ed to l nped	ied Freezo	*	Rush availability note added to COC I

KEENVROCOC Bedford 02/08

Page ____ of __

ATL FCD 00146 / Revision I

CHAIN OF CUSTODY RECORD

B 30972

200 Bluewater Road, Shate 105, Bedford, Nova Sontia 848 1G9 Tel: 902-420-0200 Fax: 902-420-8612 Toll Free 1-800-595-7227 www.marxamanalytics.com E-mail: clientservicesbeaton/@marxamanalytics.com

INVOICE INFORMATION:	AMATION (if differs from Invaice):								Project #/I	7.1	111.		MAXXAM JOB NUMBER:									
Contact Name: Contact Name:											Project #/Name: 7-1/47 Phase #:							A661395 Km				Lab Use only
																			THE RESERVE THE PARTY OF THE PA		- 1	J de
Address: Postal Code Email: Email:												PO #:							A86	4	1000	
												Site Task #: Quotation #: A & 6115							Eliteren en	W also	Re 1.	~~
																		ENTERED BY, Init: Scanned				110
Ph: Fax:		Fax:								Sampled By:						by, Init: Location/ Bin #:						
Specify Guideline Requirements:				Preserved	Required	of or Diss Metah	iteult Method)		vis not included in vator metals acan als Dinest	(HNOvH.O.) sta Bazan E Apricumul		W	(a)	TEK & CC.	ation			4,8260	DUE DATE:	Date:		
'Specify Matrix: Surface/Salt/Grount/Topwater/Sewage/Effluent/Seawater Potable/NonPotable/Tissue/Solt/Studge/Matal Sample Identification Matrix Date/Time # & #				Filtored &	-	PCAp-30 Chocus Total or Diss Metals	Total Digost (Definit Method)	Dissolved	Mercury Mercury Is no Available Metals D	Default Method (HNOJH,O) Hot Water soluble Boron incented for CCME Appointment			Residential Parkinvas, Apromitiva Tokal Digest - for accliments [HNO.AF.HCLC.] TPH MUST (BTEX, CC. Soil Polable), TPH MUST, 18 Fuel Polable, TPH MUST, 18			NB Potable Water BTEK, VPH, Low Lowid TPH Fractionation PAH's PCB's		VOC'S EPA	Hush analysis must be scheduled prior to sample submission. Client will be contacted if Rush date cannot be met.			seduled sh date
Sample Identification	Matrix.*	Sampled	# # type of bottles		-18	-	. 1	1		75	tals	Soil		0	rgani	cs		(Other Analys	is or C	omments/l	lazards
MM-4 (0-5CM)	Sal	May 15	722314	(1	0 10 10 10 10 10 10 10 10 10 10 10 10 10	791		U	TI	53	20	2							As +	700	CA	150cm
MM-8 (0-5CM)	Sul	May 15	35	CY	77	2.29	4)_		11													
MM-39 (0-5CM)	Sc.1	Mysit	34	(Y	72	241	7)		11													
MW-20 (0-2(M)	10	11	37	(4	72	29	(1		11													
MM-51 (0-100M)	16	11	35	11	7	224	9)		1 .	1		Harra	2	16		/F	,uit		Z 30	<	02	
MM 52 (0-10CM)	10	11	34	(V	12	30	Cp		1			> 1	516	2 1	Αc	me	Tel	6.			43	1
MIN 53 (0-10CM)		U	40	(Y	7 :	2.80	1)		11	/		-	3500	Ite	es	Car	de	1	1-		(1	
MM-54 (6-10cm)	10	1/3	41		About the same	3	III E CONTRA		11													
MM-41 (0-5CM)	10	11	1-12			36			11					1								
																			2	ଓଟିଥି ଧ	UN 12	n11:9
RELINQUISHED BY: (Signature/Print)			DATE / TIME			Re	celved	& Ten	np chec	k by:	Ā	Temp t Tr	ivena 2	Terror:								
NEDAGOTO Busines (875)					Da		4	1	1							IHTEG	RITY	< Ini	JVS	Yo	8 No)

> Phone: 902-429-0278 Fax: 902-429-0279

April 28, 2009

Ian MacCallum
Nova Scotia Department of Transportation
and Public Works, Environmental Services
J.W. Johnston Building, 1st Floor
1672 Granville St. Halifax
Nova Scotia, B3J 2N2

Re: Toxicological Advice - Gold Mine Tailings, Montague Mines and Goldenville

Dear Mr. McCallum:

To complete our existing contract related to provision of toxicological advice associated with mine tailings in both the Montague Mines and Goldenville areas, this letter serves to respond to the two questions we were asked to address under our contract:

- Whether sampling should continue on to private lands to ensure complete delineation of contamination sourced from tailings which may represent a human health risk, and if so, where sampling should focus; and,
- 2) Whether human health risk assessment (HHRA) will be of value for identifying costeffective risk management and/or remediation options to ensure human health risks arising from the contaminated tailings are acceptable, and/or for establishing sitespecific target levels for remediation and/or risk management.

A number of specific documents were provided for our review, and a reference list is appended to this letter. All data necessary to conduct this review was received as of April 7, 2009. Our opinion is based on the review of these documents.

This opinion letter has been formulated by several senior toxicologists at Intrinsik Environmental Sciences Inc., all of whom have extensive experience in the fields of arsenic toxicology and risk assessment. The individuals involved include Dr. Don Davies (who holds the DABT designation – Diplomate of the American Board of Toxicology), Elliot Sigal, Rob Willis and myself.

Each site is discussed separately. Mercury was not found to be elevated in soils at either site, and therefore no further study of mercury is recommended for human health risk assessment purposes. The focus of this letter is on arsenic.

> Phone: 902-429-0278 Fax: 902-429-0279

Goldenville, Nova Scotia

QUESTION 1: Whether sampling should continue on to private lands to ensure complete delineation of contamination sourced from tailings which may represent a human health risk, and if so, where sampling should focus.

ANSWER:

We would strongly advise the Province to sample private lands to determine the nature and extent of any arsenic contamination originating from the tailings. In light of measured arsenic concentrations near private lands, there is a need to proceed with this sampling promptly (particularly related to drinking water, if well water is being or could be consumed).

Sampling efforts should focus the following:

- yard soils and garden soils (if present) from residential properties adjacent to, or near the tailings areas, in the top 0 – 5 cm of soils (i.e, the "public health" layer, where exposure potential is highest);
- drinking water, as this is a potentially important pathway of exposure if residents consume well water;
- indoor house dust (via gravimetric vacuum sampling);
- bioaccessibility testing of yard soil; and,
- air monitoring or modeling to predict air concentrations.

These data, if collected in the spring/early summer of 2009, can be used to determine if other supplemental risk management measures (in addition to those previously indicated to the residents) are necessary during the overall assessment timeframe.

QUESTION 2: Whether human health risk assessment (HHRA) will be of value for identifying cost-effective risk management and/or remediation options to ensure human health risks arising from the contaminated tailings are acceptable and/or for establishing site-specific target levels for remediation and/or risk management.

ANSWER:

A HHRA will be required, to assist in developing site-specific risk management and/or remediation options to reduce exposure levels to tailings dusts within the residential area, and the tailings area itself. The data may indicate a need for supplementary risk management of private lands to reduce exposure levels, prior to conducting a HHRA.

> Phone: 902-429-0278 Fax: 902-429-0279

While studies have indicated that the bioaccessibility of the arsenic in tailings is generally low, measured soil arsenic concentrations near private properties are markedly elevated when compared to generic soil quality guidelines and typical background arsenic concentrations in the area, therefore, exposure levels could still be elevated. As a result, nearby residents in Goldenville should be provided with additional, supplementary information on avoidance of the tailings area, and how best to reduce their exposure to arsenic in dusts and soils. There are a number of steps individuals can take to do this, including the following:

- wash your hands and face after working or playing outdoors, and before eating;
- avoid playing in bare soil areas;
- clean your house regularly using a damp mop;
- avoid bringing dirt inside by removing outdoor shoes;
- brush pets outside, to reduce dusts they can bring into the home;
- thoroughly wash vegetables and peel root crops before eating.

For additional steps, we have attached fact sheets from Ontario and ATSDR related to arsenic exposures. It may also be helpful for residents to speak directly with a Department of Health representative, to have their questions answered. If nearby residents are concerned about their health, they should see their family physician. A family physician can make recommendations related to medical tests that can be done to measure arsenic in urine, in order to determine if individuals have been exposed to elevated levels of arsenic.

For the <u>tailings area</u>, a site-specific target level (SSTL) for arsenic in soil should be developed for determining the outer boundaries of the tailings area that require risk management or remediation. A SSTL can be developed using a HHRA approach or a modified soil quality guideline approach, and would consider intermittent exposure to the tailings, and dusts, and would utilize the data on tailings area soil chemistry, background soil concentrations and bioaccessibility. In our opinion, a SSTL is needed irrespective of whether or not the residential properties require risk assessment or risk management.

> Phone: 902-429-0278 Fax: 902-429-0279

Montague Mines, Nova Scotia

<u>QUESTION 1</u>: Whether sampling should continue on to private lands to ensure complete delineation of contamination sourced from tailings which may represent a human health risk, and if so, where sampling should focus.

We would strongly advise the Province to sample private lands to determine the nature and extent of any arsenic contamination originating from the tailings. This sampling program is less urgent than that proposed for Goldenville, as the measured arsenic concentrations near the private properties in Montague Mines are generally more similar to, or less than those occurring naturally (in background) in this area for arsenic, with some exceptions. Due to thick forest cover, there is generally a lower exposure potential. We recommend that this sampling be conducted during the summer of 2009, and should focus on the following:

- yard soils and garden soils (if present) from residential properties adjacent to, or near the tailings areas, in the top 0 – 5 cm of soils (i.e, the "public health" layer, where exposure potential is highest);
- drinking water, as this is a potentially important pathway of exposure if residents are consuming well water;
- indoor house dust (via gravimetric vacuum sampling);
- bioaccessibility testing of yard soils

We understand that additional outdoor air testing is proposed for Montague Mines, which will be helpful in evaluating this exposure pathway.

These data, if collected in the summer of 2009, can be used to determine if any additional risk management measures (in addition to those previously indicated to the residents) are necessary during the overall assessment timeframe.

QUESTION 2: Whether human health risk assessment (HHRA) will be of value for identifying cost-effective risk management and/or remediation options to ensure human health risks arising from the contaminated tailings are acceptable and/or for establishing site-specific target levels for remediation and/or risk management.

ANSWER:

The recommended data collection (see response to Question 1) will provide information which can be used to determine if a HHRA will be of value in identifying whether or not residential properties require risk management or remediation. For example, if residential soil, air and

> Phone: 902-429-0278 Fax: 902-429-0279

drinking water concentrations are less than or equal to relevant soil quality, air quality, and drinking water quality guidelines, and/or background concentrations, then there would be little benefit in proceeding with a HHRA of residential areas. In contrast, if the sampling data suggests a need for further study (i.e, exceedances over soil, air and drinking water quality guidelines and/or background concentrations), then HHRA would be of benefit. The HHRA of residential properties would be used to determine whether or not elevated levels of risk are indicated, to help determine what exposure pathways are most predominant (e.g., ingestion of soils, drinking water consumption, inhalation of air, etc.), and subsequently, to assist in determining the areal extent and nature of remediation or risk management (if any), which may be necessary to reduce exposure and risk levels.

For the <u>tailings area</u>, a site-specific target level (SSTL) for arsenic in soil should be developed for determining the outer boundaries of the tailings areas that require risk management or remediation. A SSTL can be developed using a HHRA approach or a modified soil quality guideline approach and would consider intermittent exposure to the tailings and dusts, and would utilize the data on tailings area soil chemistry, background soil concentrations and bioaccessibility. In our opinion, a SSTL is needed irrespective of whether or not the residential properties require risk assessment.

Additional Guidance:

In our opinion, it is important that the residents of both communities be informed of the results of studies conducted to date and the need for further study, and that they be informed that soils adjacent to the specific tailings areas contain elevated levels of arsenic (particularly the Goldenville area). Residents were provided specific advice previously by the Province to avoid the tailings areas, test their drinking water, and reduce their exposures through hand washing, etc., and these communications should be reiterated, on both sites. For Goldenville, consideration should be given to provide additional advice related to minimizing exposure to the soils near the tailings, in addition to avoidance of the tailings areas. Signage related to the hazards that the tailings pose should be re-posted, as several signs have been vandalized.

In addition, plans should be made to reduce dust generation or dusting events at both of these sites as soon as possible, as this will reduce potential exposure levels. This should include additional signage (or other approaches) to reduce or prevent dirt biking or ATV riding in either the Montague or Goldenville area, due to the dust generation caused by these activities.

> Phone: 902-429-0278 Fax: 902-429-0279

B3J 1K1

Sampling priority should be given to the Goldenville site, due to the higher concentrations reported.

Please do not hesitate to call if you have any questions, or need to discuss these recommendations further.

Yours Sincerely, INTRINSIK ENVIRONMENTAL SCIENCES INC.

Christine Moore, M.Sc. Senior Scientist

Intrinsik Environmental Sciences Inc

Juratine Moores.

Cc: D. Hemsworth, Department of Environment; Elliot Sigal; Dr. Don Davies; Intrinsik Environmental Sciences Inc.

> Phone: 902-429-0278 Fax: 902-429-0279

Documents Reviewed:

C.J. MacLellan & Associates Inc. 2009. Phase II Environmental Site Assessment (Final): Former Gold Mine Site, Goldenville, Guysborough County, Nova Scotia. Prepared for Nova Scotia Department of Transportation and Infrastructure Renewal. January 2009.

Corriveau, M., H. Jamieson, M. Parsons, and J.L. Campbell. 2005. Arsenic Speciation in Mineral Dusts from Mine Tailings. Powerpoint Presentation.

Environmental Sciences Group. 2009. Bioaccessibility of Arsenic from Tailings and Soils of the Gold Mine Districts in Nova Scotia, Canada. Royal Military College. Kingston. Ontario.

Laird, B.D., T.R. Van de Wiele, M.C. Corriveau, H.E. Jamieson, M.B. Parsons, W. Verstraete, and S.D. Siciliano. 2007. Gastrointestinal Microbes Increase Arsenic Bioaccessibility of Ingested Mine Tailings Using the Simulator of the Human Intestinal Microbial Ecosystem. *Environ. Sci. Technol.* 41: 5542 – 5547.

Maritime Testing (1985) Limited. 2009. Modified Phase II Environmental Site Assessment: Former Gold Mine Site Montague Mines, Nova Scotia. Prepared for Nova Scotia Department of Transportation and Infrastructure Renewal. January 2009.

Nova Scotia Department of Transportation and Public Works. 2007. Request for Proposals to Perform a Phase II Environmental Site Assessment at a Former Gold Mine Site, Goldenville, Nova Scotia.

Parsons, M.B., M.E. Little, and T.A. Goodwin. 2009. Background concentrations of arsenic and mercury in forest soils from the Montague and Goldenville gold districts, Nova Scotia. Natural Resources Canada. Geological Survey of Canada. Open File XXXX. Received April 7, 2009.

Royal Roads University. 2007. Analysis and Assessment of the Bioaccessibility of Arsenic in Historic Nova Scotia Gold Mine Tailings using Physiological Based Extraction Tests (PBET). Prepared for Environmental Health Assessment Services, Health Impacts Bureau, Safe Environment Program, Health Canada. March 2007.

Various powerpoint presentations with maps from Montague and Goldenville gold mine sites.

GEOLOGICAL SURVEY OF CANADA OPEN FILE 7150

Environmental geochemistry of tailings, sediments and surface waters collected from 14 historical gold mining districts in Nova Scotia

M.B. Parsons, K.W.G. LeBlanc, G.E.M Hall, A.L. Sangster, J.E. Vaive and P. Pelchat

2012

GEOLOGICAL SURVEY OF CANADA OPEN FILE 7150

Environmental geochemistry of tailings, sediments and surface waters collected from 14 historical gold mining districts in Nova Scotia

M.B. Parsons¹, K.W.G. LeBlanc¹, G.E.M. Hall², A.L. Sangster², J.E. Vaive² and P. Pelchat²

¹Geological Survey of Canada (Atlantic), PO Box 1006, Dartmouth, NS B2Y 4A2 ²Geological Survey of Canada, 601 Booth Street, Ottawa, ON K1A OE8

2012

©Her Majesty the Queen in Right of Canada 2012

doi:10.4095/291923

This publication is available for free download through GEOSCAN (http://geoscan.ess.nrcan.gc.ca/).

Recommended citation

Parsons, M.B., LeBlanc, K.W.G., Hall, G.E.M., Sangster, A.L., Vaive, J.E., and Pelchat, P., 2012. Environmental geochemistry of tailings, sediments and surface waters collected from 14 historical gold mining districts in Nova Scotia; Geological Survey of Canada, Open File 7150. doi:10.4095/291923

Publications in this series have not been edited; they are released as submitted by the author.

ABSTRACT

From 1861 to the mid-1940s, stamp milling at orogenic lode gold mines in Nova Scotia generated more than 3,000,000 tonnes of tailings. Most of the mined gold was recovered using mercury (Hg) amalgamation, and an estimated 10–25% of the Hg used was lost to the tailings and to the atmosphere. Arsenic (As) also occurs naturally in the ore, and is present at high concentrations in the mine wastes. Tailings from these operations were generally slurried into local rivers, swamps, lakes and the ocean. Recent land-use changes (e.g. residential development, recreational activities, shellfish harvesting) in some historical mining districts are increasing the likelihood of human exposure to these tailings. This Open File Report presents the results of a multi-disciplinary investigation of the dispersion, speciation and fate of metal(loid)s in terrestrial and shallow marine environments surrounding 14 abandoned gold mines in Nova Scotia. From 2003 to 2006, samples of tailings, sediment, and water were collected at 14 former gold mines. Field studies reveal that most mine sites contain large volumes of unconfined tailings, and in several districts these have been transported significant distances (>2 km) offsite by streams and rivers. Chemical analyses of 482 tailings and sediment samples show high concentrations of As (10 mg/kg to 31 wt.%; median 2550 mg/kg) and Hg (<5 µg/kg to 350 mg/kg; median 1640 µg/kg). Arsenic is hosted in arsenopyrite and a variety of secondary phases including scorodite (FeAsO₄·2H₂O), amorphous Fe arsenate, and As bound to Fe oxyhydroxides. Mercury is present in elemental form, amalgam (Au_xHg_x), and in secondary phases. Results from this study led to the formation of a Provincial-Federal Historic Gold Mines Advisory Committee in 2005, which has evaluated the ecological and human health risks associated with gold mines throughout Nova Scotia and developed recommendations for management of these tailings sites. This Open File Report provides the most comprehensive summary available of the history, distribution, and geochemistry of tailings at gold mines throughout Nova Scotia. The geographic coordinates provided for each district can be used to quickly explore the tailings deposits via most web-based mapping services. The results can be used to help minimize the environmental impacts associated with past, present, and future gold extraction and to inform land-use decisions.

TABLE OF CONTENTS

ABSTRACT	iii
INTRODUCTION	1
Purpose of Study	
Scope of Report	
Acknowledgements	
GOLD MINING IN NOVA SCOTIA	3
Location and Geological Setting	
Mining, Milling, and Metallurgical History	
Previous Environmental Studies	
STUDY DESIGN	13
Site selection and field sampling	
Field Methods	
Sediments and mine waste	
Surface water	
Laboratory Methods	
Bulk chemistry of sediments and mine waste	
Sequential extraction analysis of sediments and mine waste	
Water analysis	
RESULTS	19
Caribou Gold District	
Mining and milling history	
Distribution of As and Hg in mine tailings	
Cochrane Hill Gold District	24
Mining and milling history	
Distribution of As and Hg in mine tailings and surface waters	
East Rawdon Gold District	
Mining and milling history	34
Distribution of As and Hg in mine tailings and surface waters	
Goldenville Gold District	
Mining and milling history	
Distribution of As and Hg in mine tailings	
Lake Catcha Gold District	
Mining and milling history	52
Distribution of As and Hg in mine tailings and surface waters	
Leipsigate Gold District	
Mining and milling history	
Distribution of As and Hg in mine tailings	
Lower Seal Harbour Gold District	
Mining and milling history	69
Distribution of As and Hg in mine tailings and surface waters	69

Montague Gold District	82
Mining and milling history	82
Distribution of As and Hg in mine tailings	
Mooseland Gold District	
Mining and milling history	
Distribution of As and Hg in mine tailings	89
Mount Uniacke Gold District	95
Mining and milling history	
Distribution of As and Hg in mine tailings and surface waters	
North Brookfield Gold District	
Mining and milling history	105
Distribution of As and Hg in mine tailings and surface waters	
Salmon River (Dufferin) Gold District	
Mining and milling history	
Distribution of As and Hg in mine tailings and surface waters	117
Upper Seal Harbour Gold District	128
Mining and milling history	
Distribution of As and Hg in mine tailings and surface waters	
Whiteburn Gold District	
Mining and milling history	140
Distribution of As and Hg in mine tailings and surface waters	140
DISCUSSION	150
Summary plots of As, Au, Cu, Hg, Ni, Pb, Sb, and Zn in tailings and waters	150
Background concentrations of As and Hg around the Seal Harbour Gold Districts	
Seasonal variability in As and Hg concentrations at the Seal Harbour Gold Districts	168
Sequential extraction results for As and Hg in tailings, Seal Harbour Gold Districts	174
CONCLUSIONS AND RECOMMENDATIONS	180
REFERENCES	181
APPENDICES	192
Appendix A. Sediment and tailings sample site descriptions and geochemical data	193
Appendix B. Water sample site descriptions and geochemical data	
Appendix C. Arsenic speciation data for waters from the Seal Harbour Gold Districts	
Appendix D. Sequential extraction data for tailings from the Seal Harbour Gold Districts	s:
Selected results from As-optimized extraction scheme	
Selected results from As-optimized extraction scheme	s:
Selected results from As-optimized extraction scheme	s: 299

Goldenville Gold District

Goldenville was the most productive gold district in Nova Scotia and is located approximately 3.5 km southwest of Sherbrooke in Guysborough County on the eastern shore of Nova Scotia (Fig. 1; 45.122014°, -62.018956°). The geology of this district was mapped by the GSC in 1898 (Faribault 1898b) and the deposit geology and metallogeny are described in detail by Brunton (1928) and Malcolm (1929). The extensive mining activity in this area has led to surface subsidence in several locations as a result of progressive collapse in the underground workings (Hill *et al.* 1997). The environmental impacts of tailings disposal on stream waters, sediments, vegetation and benthic invertebrates in this district have previously been studied by Wong *et al.* (1999). Beauchamp *et al.* (2002) reported Hg flux measurements for the tailings deposits.

From 2004 to 2010, NRCan partnered with Queen's University, the Royal Military College, Nova Scotia Environment, and Health Canada to evaluate human health risks associated with the tailings at Goldenville. Of particular concern at this site was the annual Goldenville 4X4 Rally, which was held on the tailings from 1994 to 2005 and attracted hundreds of people from across the Atlantic Provinces each year (Fig. 26). Detailed information on the mineralogy and bioaccessibility of As in these tailings can be found in Walker *et al.* (2009), Meunier *et al.* (2010, 2011) and Corriveau *et al.* (2011a, 2011b). The Goldenville Rally was cancelled in 2006 because of uncertainties associated with exposure to the high-As tailings at this site.

Mining and milling history

Mining activity at Goldenville progressed rapidly following the discovery of gold in 1861. Some of the key historical events are summarized in Table 6—this information has been compiled from Malcolm (1929), Henderson (1935) and Moggridge Kuusisto (1978). During peak periods of production as many as 19 different companies were operating simultaneously in this district. Many stamp mills have been erected over time, crushing a total of 540,617 tonnes of ore (Table 1) and leaving large quantities of tailings on the surface. Most of the gold was recovered using stamp mills and Hg amalgamation and a six-ton cyanide batch treatment plant was erected in 1940 to treat stockpiled sulphide concentrates (Roach 1940). Tailings from these mills are located at several locations around Goldenville, but the majority were deposited in Gegogan Brook and are visible on the floodplain for at least 6 km downstream (Wong *et al.* 1999).

Distribution of As and Hg in mine tailings

Samples of near-surface tailings and weathered sulphide concentrate were collected from 35 sites at Goldenville in June 2003, December 2005, and November 2006, primarily for research on the mineralogy and bioaccessibility of As (Fig. 27). Most of the samples were taken from the area used during the Goldenville 4X4 Rally. Tailings in the racetrack area are well-oxidized and show evidence of hardpan formation in some areas (Fig. 28). As shown in Fig. 29 and Table 7, the concentrations of As in tailings are very high, especially in the scorodite-rich weathered sulphide concentrate adjacent to the former mill site (Fig. 4b). The concentrations of Hg are typical for amalgamation tailings, with the highest levels near the stamp mill (Fig. 30). Field observations show that dusty tailings from the racetrack area are occasionally transported toward the north and northeast on windy days and may impact residential properties along Goldenville Road.

a)

Fig. 26. (a) Off-road vehicle races on mine tailings at the 11th Annual Goldenville 4X4 Rally, September 5, 2004. **(b)** Children playing in gold mine tailings at the Goldenville 4X4 Rally.

Table 6. Highlights of mining and milling history, Goldenville Gold District, 1861-present.

Date	Event
1861	Gold discovered in quartz boulders in a small meadow about a mile and a half west of the St. Mary's River by Nelson Nickerson of Sherbrooke
1862–1867	Vigorous prospecting and production of gold by many different companies; in 1862, the first four stamp mills were installed; in 1867, the district records its highest production of gold—9,463 oz.
1868	Five new crushers erected on-site; many companies working throughout the district; three 15-stamp crushers erected in the eastern part of the district
1869	Nineteen companies operating in the district—most of these are short-lived, and by 1872, production drops substantially
1873–1893	Mining properties worked throughout the district, in many cases by tributers (i.e. individual miners and prospectors, who worked the properties for a rental fee); lack of capital and poor mining practices hamper production at most mines; gold production decreases throughout 1880s to less than 200 oz./yr in early 1890s
1894	Improved mining and milling methods, systematic exploration based on the mapping work of E.R. Faribault (GSC), and increased investment capital generate renewed interest in mining lower-grade ores in the Goldenville district
1895–1906	Active mining by various companies, with a peak in production of 5,201 oz. in 1898; many stamp mills are operated during this period, some of which included concentrators (shaking tables, Frue vanners, or Wilfley tables) to treat the tailings from the amalgamation process. Production drops off significantly after 1906.
1909–1930	Intermittent activity by various companies (peak production of 2,215 oz. in 1915)
1935–1942	Guysborough Mines Ltd. produces 170,239 tonnes of ore at a grade of 7.12 g/t Au. Mining ceased in 1942 because of World War II.
1961–1987	Intermittent exploration (diamond drilling, geochemical & geophysical surveys), including open-pit mining of a 3,500 ton sample in 1984 for gravity concentration and a subsample for cyanidation testing.
1988– present	Surface exploration, shaft rehabilitation, and limited underground exploration.

Fig. 27. Location of tailings samples, Goldenville Gold District (geographic centre of map (decimal degrees): 45.122014°, -62.018956°)

a)

4X4
rally
site

Gold mine
tailings on
floodplain

Fig. 28. (a) Aerial photograph of the main mine area at Goldenville showing waste rock piles and mine tailings. Fluvial dispersion by the Gegogan River has transported tailings at least 6 km downstream of the Goldenville mines (photo credit: P.K. Smith). (b) Overview of tailings in main racetrack area showing As-rich hardpan underlying tailings in foreground.

Fig. 29. As concentrations (mg/kg) in Goldenville tailings (maximum and (mean) concentrations; <2 mm size fraction).

Fig. 30. Hg concentrations ($\mu g/kg$) in Goldenville tailings (maximum and (mean) concentrations; <2 mm size fraction).

Table 7. As and Hg concentrations in tailings, Goldenville Gold District ^a

Sample	Tailings	Northing	Easting	Dete	As	Hg
Site	Depth (cm)	(20T, NAD 83)	(20T, NAD 83)	Date	(mg/kg)	μg/kg)
T1	2	4997047	0577356	9-Jun-03	21500	1640
T1	10	4997047	0577356	9-Jun-03	15000	2330
T1	13	4997047	0577356	9-Jun-03	23900	4010
T2	1	4997007	0577358	9-Jun-03	29200	897
T2	3.5	4997007	0577358	9-Jun-03	39400	980
T2	8	4997007	0577358	9-Jun-03	6630	88
Т3	1	4996989	0577361	9-Jun-03	2940	111
Т3	21	4996989	0577361	9-Jun-03	858	219
Т4	1	4996976	0577361	9-Jun-03	3770	325
Т5	1	4996951	0577335	9-Jun-03	796	52
T5	8	4996951	0577335	9-Jun-03	1630	418
Т6	1	4996973	0577315	9-Jun-03	12600	354
Т6	17	4996973	0577315	9-Jun-03	6240	171
Т7	1	4997000	0577293	9-Jun-03	21300	2170
Т7	14	4997000	0577293	9-Jun-03	7420	271
Т8	1	4997037	0577284	9-Jun-03	4090	715
Т8	15	4997037	0577284	9-Jun-03	6470	709
Т9	1	4997015	0577258	9-Jun-03	10600	259
Т9	13	4997015	0577258	9-Jun-03	4300	1580
T10	1	4996990	0577271	9-Jun-03	9220	744
T10	8	4996990	0577271	9-Jun-03	2610	294
T10	20	4996990	0577271	9-Jun-03	47400	330
T11	1	4996966	0577289	9-Jun-03	1090	166
T11	10	4996966	0577289	9-Jun-03	1530	187
T12	1	4996923	0577307	9-Jun-03	2850	1440
T12	5	4996923	0577307	9-Jun-03	3130	1430
T12	19	4996923	0577307	9-Jun-03	1480	1360
T13	1	4996926	0577267	9-Jun-03	1850	168
T13	6	4996926	0577267	9-Jun-03	4710	932
T13	8	4996926	0577267	9-Jun-03	686	1390
T15	1	4996961	0577236	9-Jun-03	39700	1700
T15	5	4996961	0577236	9-Jun-03	3690	165
T15	8	4996961	0577236	9-Jun-03	33300	6360
T16	4	4997024	0577218	9-Jun-03	8260	686
T16	8	4997024	0577218	9-Jun-03	29700	11100
T17	1	4997053	0577362	9-Jun-03	30400	28700

^a Samples from 2005 and 2006 were taken from a single depth and are not included in this table.

Montague Gold District

The Montague gold district is located in the community of Montague Gold Mines near the urban core of Halifax Regional Municipality (Fig. 1; 44.714949°, -63.521709°). The geology of this district was mapped by the GSC in 1902 (Faribault 1902b) and the character of the gold deposits is described in detail by Malcolm (1929). The environmental impacts of tailings disposal on stream waters, sediments, vegetation, fish and aquatic organisms in this district have previously been studied by EPS (1978), Brooks *et al.* (1981, 1982), and Dale and Freedman (1982).

From 2004 to 2010, NRCan partnered with Queen's University, the Royal Military College, Nova Scotia Environment, and Health Canada to evaluate human health risks associated with the tailings at Montague. The tailings at this site are located very close to residential properties and are frequently used for racing off-road vehicles (Fig. 54). Details on the mineralogy and bioaccessibility of As in these tailings can be found in Walker *et al.* (2009), Meunier *et al.* (2010, 2011), Corriveau *et al.* (2011a, 2011b), and DeSisto *et al.* (2011). Other studies have examined the bioaccumulation of As in terrestrial invertebrates (Moriarty *et al.* 2009) and small mammals (Saunders *et al.* 2010, 2011) living near the tailings at Montague. An Environmental Site Assessment was carried out at Montague in 2007-2008 to assess human health risks associated with the tailings and long-term management options are presently under investigation.

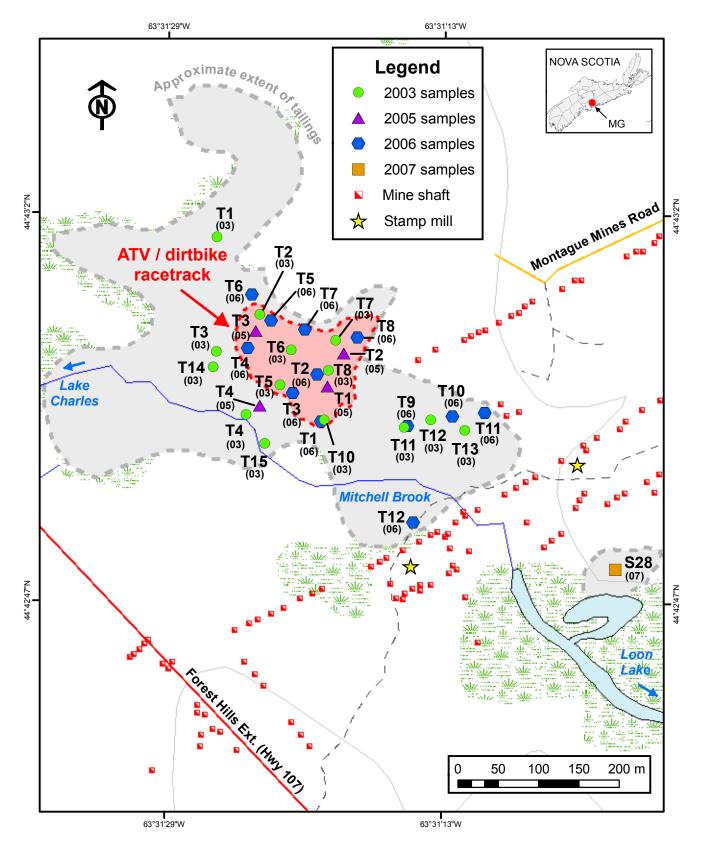
Mining and milling history

Gold was discovered at Montague in 1862 and the first on-site stamp mill was constructed in 1865. Mining was carried out continuously from 1865 to 1928, then intermittently until 1940, and ore was milled on-site using a variety of 5- to 15-stamp mills and Hg amalgamation (Malcolm 1929). In 1938, a six-ton batch treatment cyanide plant was installed at Montague for the treatment of concentrates from the active stamp mills, as well as stockpiled concentrate (Roach 1940). Most of the tailings from these mills were discharged directly into Mitchell Brook, which originates in Lake Loon and drains into Lake Charles (Fig. 55). Previous studies have shown that tailings are present in the various wetland areas along Mitchell Brook, and a layer of fine tailings was found in a sediment core from Lake Charles, approximately 2.5 km downstream of the Montague stamp mills (EPS 1978; Mudroch and Clair 1985). Tailings were also deposited in a wetland along Birch Cove Brook, which drains eastward toward Lake Major (Faribault 1902). Since the 1980s, several companies have investigated the feasibility of extracting gold from the tailings (Jacques Whitford and Associates, Ltd. 1984; Mills 1997).

Distribution of As and Hg in mine tailings

Samples of near-surface tailings and broken-up hardpan material were collected from 31 sites at Montague between 2003 and 2007 (Fig. 55). Tailings in the racetrack area are well-oxidized near the surface and are partially overlain by hardpan (Fig. 56). As shown in Fig. 57 and Table 11, the concentrations of As in the tailings are very high (up to 4.1 wt.%), especially in the broken-up scorodite-rich hardpan in the racetrack area (DeSisto *et al.* 2011). The concentrations of Hg are also high reflecting the long history of Hg amalgamation in this district (Fig. 58). Field observations show that dusty tailings from this site are occasionally transported toward the east and southeast on windy days and may impact residential properties along Montague Mines Road.

a)



b)



Fig. 54. (a) Off-road vehicle jumps constructed from mine tailings in the Montague Gold District.

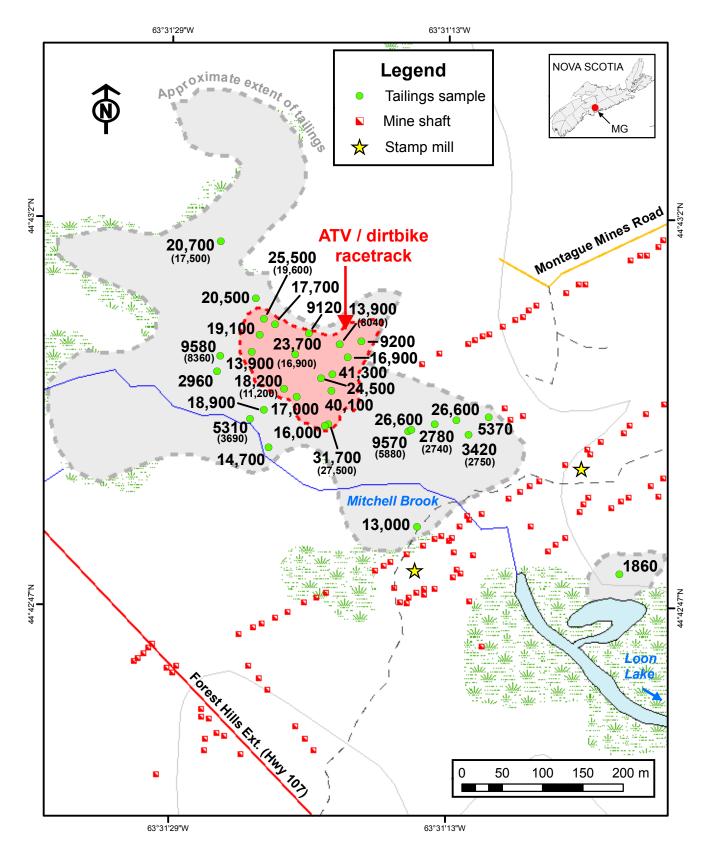

(b) Children racing dirt bikes on dusty tailings near a high-volume particulate sampler at Montague Gold Mines, September 2004 (photo by Madeleine Corriveau, Queen's University).

Fig. 55. Location of tailings samples, Montague Gold District (geographic centre of map (decimal degrees): 44.714949°, -63.521709°)

Fig. 56. (a) Tailings in racetrack area at Montague showing As-rich hardpan underlying tailings in foreground. Layers of arsenopyrite are present in contact with this hardpan, suggesting that it formed from oxidation of sulphide concentrates that were dumped on top of the tailings. (b) Cross-section through the tailings showing layers of hydrous ferric oxide near the surface.

Fig. 57. As concentrations (mg/kg) in Montague tailings (maximum and (mean) concentrations; <2 mm size fraction)

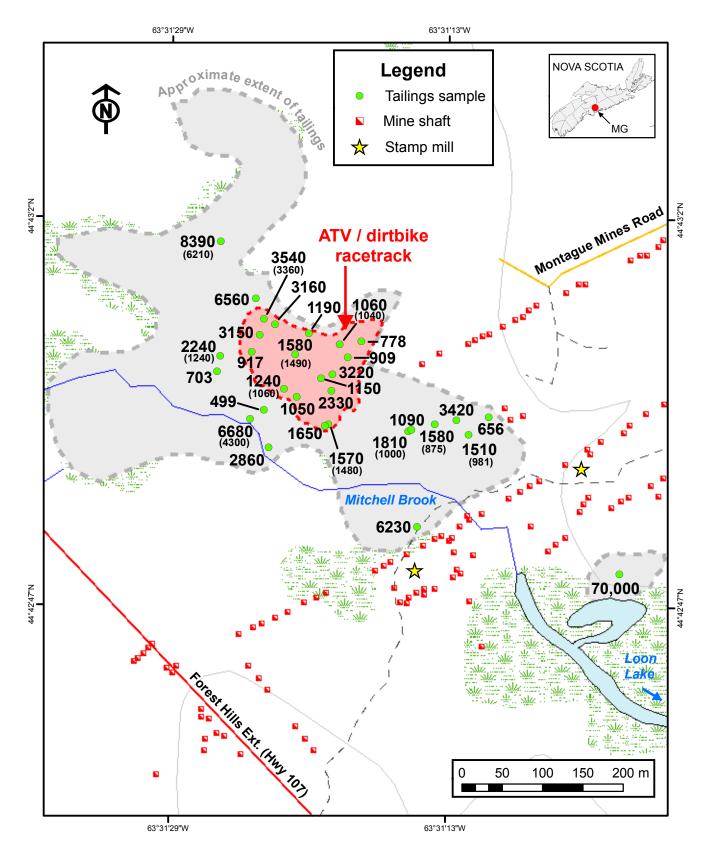


Fig. 58. Hg concentrations (μ g/kg) in Montague tailings (maximum and (mean) concentrations; <2 mm size fraction)

Table 11. As and Hg concentrations in tailings, Montague Gold District ^a

Sample Site	Tailings Depth (cm)	Northing (20T, NAD 83)	Easting (20T, NAD 83)	Date	As (mg/kg)	Hg (µg/kg)
T1	2.5	4951651	0458511	11-Jun-03	20700	4030
T1	10	4951651	0458511	11-Jun-03	14300	8390
Т2	1	4951555	0458564	11-Jun-03	25500	3540
T2	1 5	4951555	0458564	11-Jun-03	25500 13700	3180
T3 T3	0	4951509	0458510	11-Jun-03	7130	245
13	25	4951509	0458510	11-Jun-03	9580	2240
T4	7.5	4951431	0458547	11-Jun-03	5310	6680
T4	20	4951431	0458547	11-Jun-03	2060	1920
T5	1	4951468	0458589	11-Jun-03	18200	1240
T5	6	4951468	0458589	11-Jun-03	4280	873
	•	1051511	0.450000	44 1 00	00700	4000
T6 T6	0 4	4951511 4951511	0458603 0458603	11-Jun-03 11-Jun-03	20700 23700	1390 1590
T6	10	4951511	0458603	11-Jun-03	6230	1500
Т7	5	4951523	0458658	11-Jun-03	13900	1060
Т7	15	4951523	0458658	11-Jun-03	2140	1030
Т8	2.5	4951486	0458649	11-Jun-03	41300	3220
T10	5	4951424	0458644	11-Jun-03	31700	1390
T10	15	4951424	0458644	11-Jun-03	23200	1570
T11	6	4951415	0458743	11-Jun-03	9570	454
T11	15	4951415	0458743	11-Jun-03	2370	746
T11	25	4951415	0458743	11-Jun-03	5700	1810
T12	2.5	4951424	0458776	11-Jun-03	2690	166
T12	2.5 25	4951424	0458776	11-Jun-03	2780	1580
_						
T13	0 15	4951411	0458818	11-Jun-03	1720	450 4510
T13	15	4951411	0458818	11-Jun-03	3420	1510
T14	10	4951490	0458506	8-May-03	2960	703
T15	5	4951395	0458570	8-May-03	14700	2860

^a Samples from 2005-2007 were taken from a single depth and are not included in this table.

REFERENCES

- ASHLEY, R.P. (2002) Geoenvironmental model for low-sulfide gold-quartz vein deposits. Chapter K. *In:* R.R. Seal II and N.K. Foley (eds.) Progress on Geoenvironmental Models for Selected Mineral Deposit Types, U.S. Geological Survey Open-File Report 02-195, Reston, VA, pp. 176-195.
- BACON, J.R., DAVIDSON, C.M. (2008) Is there a future for sequential chemical extraction? *Analyst* 133: 25-46.
- BATES, J.L.E. (1987) Gold in Nova Scotia. Nova Scotia Department of Natural Resources, Mineral Resources Branch, Information Series ME 13, 48 p. (available online at: http://www.gov.ns.ca/natr/meb/pdf/is13.asp).
- BEAUCHAMP, S., TORDON, R., PHINNEY, L., ABRAHAM, K., PINETTE, A., MACINTOSH, A., RENCZ, A., WONG, H., DALZIEL, J. (2002) Air–surface exchange of mercury in natural and anthropogenically impacted landscapes in Atlantic Canada. *Geochemistry: Exploration, Environment, Analysis* 2: 157–165.
- BLAKEMAN, W.B. (1978) An inventory of the known gold mines in Canada which practiced mercury amalgamation, 1855–1975. Unpublished report for Environment Canada, 144 p.
- BLOOM, N.S., PREUS, E., KATON, J., HILTNER, M. (2003) Selective extractions to assess the biogeochemically relevant fractionation of inorganic mercury in sediments and soils. *Analytica Chimica Acta* 479: 233–248
- BOTTOMLEY, D.J. (1984) Origins of some arseniferous groundwaters in Nova Scotia and New Brunswick, Canada. *Journal of Hydrology* 69: 223–257.
- BROOKS, R.R., HOLZBECHER, J., RYAN, D.E. (1981) Horsetails (*Equisetum*) as indirect indicators of gold mineralization. *Journal of Geochemical Exploration* 16: 21–26.
- BROOKS, R.R., FERGUSSON, J.E., HOLZBECHER, J., RYAN, D.E., ZHANG, H.F. (1982) Pollution by arsenic in a gold-mining district in Nova Scotia. *Environmental Pollution* (*Series B*) 4: 109–117.
- BROWN, E.P. (1908) The treatment of stamp mill tailings at the Richardson Mine, Goldboro, N.S. *Canadian Mining Journal* 29: 400–401.
- BRUNTON, S. (1928) Goldenville Gold District. *In* Nova Scotia Department of Public Works and Mines, Annual Report on the Mines, 1927, 425–474.
- CANADIAN COUNCIL OF MINISTERS OF THE ENVIRONMENT (CCME) (1997) Canadian soil quality guidelines for the protection of environmental and human health: Arsenic (inorganic) fact sheet. Canadian Environmental Quality Guidelines, 7 p.

- CANADIAN COUNCIL OF MINISTERS OF THE ENVIRONMENT (CCME) (1999) Canadian soil quality guidelines for the protection of environmental and human health: Mercury (inorganic) fact sheet. Canadian Environmental Quality Guidelines, 8 p.
- CANADIAN COUNCIL OF MINISTERS OF THE ENVIRONMENT (CCME) (2012) Canadian Environmental Quality Guidelines and Summary Table. Available online at: http://ceqg-rcqe.ccme.ca/.
- COATES, H.J., FRECKELTON, D.J. (1989) Assessment report on the 1988 exploration program, Development License 0094, Cochrane Hill Property, Guysborough County, Nova Scotia for Novagold Resources, Inc. Nova Scotia Department of Mines and Energy Assessment Report ME 1989-182, 1012 p.
- CORRIVEAU, M.C., JAMIESON, H.E., PARSONS, M.B., CAMPBELL, J.L., LANZIROTTI, A. (2011a) Direct characterization of airborne particles associated with arsenic-rich mine tailings: Particle size, mineralogy and texture. *Applied Geochemistry* 26: 1639–1648.
- CORRIVEAU, M.C., JAMIESON, H.E., PARSONS, M.B., HALL, G.E.M. (2011b) Mineralogical characterization of arsenic in gold mine tailings from three sites in Nova Scotia. *Geochemistry: Exploration, Environment, Analysis* 11: 179–192.
- DALE, J.M., FREEDMAN, B. (1982) Arsenic pollution associated with tailings at an abandoned gold mine in Halifax County, Nova Scotia. *Proceedings of the Nova Scotia Institute of Science* 32: 337-349.
- DESISTO, S.L., JAMIESON, H.E., PARSONS, M.B. (2011) Influence of hardpan layers on arsenic mobility in historical gold mine tailings. *Applied Geochemistry* 26: 2004–2018.
- EPS (1978) Investigation of mercury related environmental effects associated with abandoned amalgamation operations in Nova Scotia. Environmental Protection Service (EPS) Atlantic Region, Environment Canada Report 234, 58 p.
- FARIBAULT, E.R. (1897) Province of Nova Scotia, Halifax County, Sheet Harbour Sheet, No. 40. Geological Survey of Canada, Multicoloured Geological Map 592, 1 sheet.
- FARIBAULT, E.R. (1898a) Plan and Sections, Caribou Gold District, Halifax County, Nova Scotia. Geological Survey of Canada, Multicoloured Geological Map 643, 1 sheet.
- FARIBAULT, E.R. (1898b) Plan and Section, Goldenville Gold District, Guysborough County, Nova Scotia. Geological Survey of Canada, Multicoloured Geological Map 645, 1 sheet.
- FARIBAULT, E.R. (1898c) Plan and Section, Salmon River Gold District, Halifax County, Nova Scotia. Geological Survey of Canada, Multicoloured Geological Map 647, 1 sheet.
- FARIBAULT, E.R. (1899a) Plan and Section, Mooseland Gold District, Halifax County, Nova Scotia. Geological Survey of Canada, Multicoloured Geological Map 648, 1 sheet.

- FARIBAULT, E.R. (1899b) Plan and Sections, Upper Seal Harbour, Guysborough County, Nova Scotia. Geological Survey of Canada, Multicoloured Geological Map 656, 1 sheet.
- FARIBAULT, E.R. (1901) Plan and Section, Mount Uniacke Gold District, Hants County, Nova Scotia. Geological Survey of Canada, Multicoloured Geological Map 709, 1 sheet.
- FARIBAULT, E.R. (1902a) Plan and Section, Lake Catcha Gold District, Halifax County, Nova Scotia. Geological Survey of Canada, Multicoloured Geological Map 765, 1 sheet.
- FARIBAULT, E.R. (1902b) Plan and Section, Montague Gold District, Halifax County, Nova Scotia. Geological Survey of Canada, Multicoloured Geological Map 740, 1 sheet.
- FARIBAULT, E.R. (1904) Plan and Section, Cochran Hill Gold District, Guysborough County, Nova Scotia. Geological Survey of Canada, Multicoloured Geological Map 843, 1 sheet.
- FARIBAULT, E.R. (1906) Plan and Section, Leipsigate Gold District, Lunenburg County, Nova Scotia. Geological Survey of Canada, Multicoloured Geological Map 937, 1 sheet.
- FARIBAULT, E.R. (1908) Plan and Sections, Brookfield Gold District, Queen's County, Nova Scotia. Geological Survey of Canada, Multicoloured Geological Map 1012, 1 sheet.
- FARIBAULT, E.R. (1917) Whiteburn Gold District, Queens County, Nova Scotia. Geological Survey of Canada, Multicoloured Geological Map 1690, 1 sheet.
- FILIPPI, M., DOUŠOVÁ, B., MACHOVIČ, V. (2007) Mineralogical speciation of arsenic in soils above the Mokrsko-west gold deposit, Czech Republic. *Geoderma* 139: 154–170
- FORBES, H.L. (1904) The chlorination of gold ore of the North Brookfield Mine, Nova Scotia. *Journal of the Canadian Mining Institute*, Vol. VII, 308–318.
- FULLER, C.C., DAVIS, J.A. (1989) Influence of coupling of sorption and photosynthetic processes on trace element cycles in natural waters. *Nature* 340: 52-54.
- GAMMONS, C.H., GRANT, T.M., NIMICK, D.A., PARKER, S.R., DEGRANDPRE, M.D. (2007) Diel changes in water chemistry in an arsenic-rich stream and treatment-pond system. *Science of the Total Environment* 384: 433-451.
- GLOVER, J.D., HALE, W.E., NEWMAN, D., WITTE, M.K., 1983. Gold, Forest Hill [and 23 Other Sites], Guysborough County, Nova Scotia. Report on Bulk Sampling, Assays and Meallurgical Testing of Tailings. Wright-Curtis Engineers; Witteck Development Incorporated; Seabright Resources Incorporated; Dawe, J.E.; Ecological and Resources Consultants Limited, Nova Scotia Department of Mines and Energy Assessment Report ME 11F/05B 21-G-13(21), 429 p.
- GOODWIN, W.M. (1935) An interesting Nova Scotia gold mine: The Seal Harbor Mine. *Canadian Mining Journal* 56: 5–7.

- GRAHAM, J.K. (1987) Assessment report, Dufferin Mine Property, Halifax County, Nova Scotia, Exploration license 4579, NTS 11D16C for Jascan Resources, Inc. Nova Scotia Department of Natural Resources Assessment Report AR87-130, 20 p.
- GRANTHAM, D.A., JONES, J.F. (1977) Arsenic contamination of water wells in Nova Scotia. *Journal of the American Water Works Association* 69: 653–657.
- GRAVES, M.C., ZENTILLI, M. (1982) A review of the geology of gold in Nova Scotia. *In* Geology of Canadian Gold Deposits, R.W. Hodder and W. Petruk (eds.), Canadian Institute of Mining and Metallurgy, Special Volume 24, 233–242.
- GRAVES, M.C. (1992) Gold, Lake Catcha, Halifax County, Nova Scotia. Report on the Preliminary Evaluation of Concentration and Leach Tests on Tailings Samples (for Gold Bank Resources Incorporated). Nova Scotia Department of Natural Resources Assessment Report ME 1992-037, 33 p.
- HALL, G.E.M. (1998) Cost-effective protocols for the collection, filtration and preservation of surface waters for detection of metals and metalloids at ppb (μg l⁻¹) and ppt (ng l⁻¹) levels Phase I: Evaluation of Bottle Type, Bottle Cleaning, Filter and Preservation Technique. Aquatic Effects Technology Evaluation Program (Task Force on Water Quality Issues), AETE Project 3.1.3, CANMET, Ottawa.
- HALL, G.E.M. PELCHAT, J.C., GAUTHIER, G. (1999) Stability of inorganic arsenic (III) and arsenic (V) in water samples. *Journal of Analytical Atomic Spectroscopy*, 14: 205–213.
- HALL, G.E.M., PELCHAT, J.C., PELCHAT, P., VAIVE, J.E. (2002) Sample collection, filtration and preservation protocols for the determination of 'total dissolved' mercury in waters. *Analyst*, 127: 674–680.
- HALL, G.E.M., PELCHAT, P., PERCIVAL, J.B. (2005) The design and application of sequential extractions for mercury, Part 1. Optimization of HNO₃ extraction for all non-sulphide forms of Hg. *Geochemistry: Exploration, Environment, Analysis* 5: 107–113.
- HALL, G.E.M., PELCHAT, P. (2005) The design and application of sequential extractions for mercury, Part 2. Resorption of mercury onto the sample during leaching. *Geochemistry: Exploration, Environment, Analysis* 5: 115–121.
- HAYNES, S.J. (1983) Typomorphism of turbidite-hosted auriferous quartz veins, southern Guysborough County. *In* Mines and Minerals Branch, Report of Activities 1982, K.A. Mills (ed.), Nova Scotia Department of Mines and Energy, Report 83-1, 183–224.
- HAYNES, S.J. (1987) Classification of quartz veins in turbidite-hosted gold deposits, greenschist facies, eastern Nova Scotia. *CIM Bulletin* 80, No. 898, 37–51.
- HEATHERINGTON, A. (1868) A Practical Guide for Tourists, Miners, and Investors, and all Persons Interested in the Development of the Gold Fields of Nova Scotia. John Lovell, Montreal, 177 p.

- HENDERSON, E.H. (1935) Stamp-milling and amalgamation practices at Goldenville, N.S. *Canadian Institute of Mining and Metallurgy Bulletin*, 278: 222–242.
- HENDERSON, J.R. & HENDERSON, M.N. (1987) Meguma Gold Deposits: nested saddle reefs or early hydraulic extension fractures? *In* Mines and Minerals Branch Report of Activities 1987, Part A, J.L. Bates & D.R. MacDonald (eds.), Report 87-5, 213–215.
- HILL, J.D., MADDISON, L.A., KAVANAUGH, C. (1997) Surface subsidence associated with abandoned mine workings in the Goldenville mining district, Nova Scotia. *Atlantic Geology* 33, 157–167.
- HIND, H.Y. (1872) Report on the Mount Uniacke, Oldham, and Renfrew gold mining districts, with plans and sections. Charles Annand, Halifax, NS, 136 p.
- HINDMARSH, J.T., MCLETCHIE, O.R., HEFFERNAN, L.P.M., HAYN, O.A., ELLENBERGER, H.A., MCCURDY, R.F., THIEBAUX, H.J. (1977) Electromyographic abnormalities in chronic environmental arsenicalism. *Journal of Analytical Toxicology* 1: 270–276.
- HORNE, R.J., COVEY, G., ALBERT, C. (2004) Geological report on the early stages of development of the Mooseland Gold District (NTS 11D/15), Halifax County. *In* Mineral Resources Branch, Report of Activities 2003, Nova Scotia Department of Natural Resources, Report 2004-1, pp. 25–39.
- HORNE, R.J., JODREY, M. (2002) Geology of the Dufferin Gold Deposit (NTS 11D/16), Halifax County. *In* Minerals and Energy Branch, Report of Activities 2001, Nova Scotia Department of Natural Resources, Report ME 2002-1, pp. 51–67.
- HURST, M.E. (1924) Arsenic resources of Nova Scotia. Nova Scotia Dept. of Mines and Energy, Open File Report 53, 7 p.
- HURST, M.E. (1927) Arsenic-bearing deposits in Canada. Canada Dept. of Mines, Geological Survey (later Geological Survey of Canada), Economic Geology Series No. 4.
- JACQUES WHITFORD AND ASSOCIATES LTD. (1984) Environmental Review of Seabright Resources Inc. Gold Tailings Project, Nova Scotia Department of Mines and Energy Assessment Report ME 1984-030, 122 p.
- JACQUES WHITFORD AND ASSOCIATES LTD. (1985) Gold, Goldenville, Stirling, Seal Harbour, Isaacs Harbour, Country Harbour, Mount Uniacke, South Uniacke and Renfrew Areas, Guysborough, Richmond and Hants Counties, Nova Scotia. Report on Evaluation of Tailings Dumps [for Seabright Resources Inc.], Nova Scotia Department of Mines and Energy Assessment Report ME 1985-031, 386 p.
- JAMIESON, H.E., WALKER, S.R., ANDRADE, C.F., WRYE, L.A., RASMUSSEN, P.E., LANZIROTTI, A., PARSONS, M.B. (2011) Direct identification of arsenic and metal compounds in contaminated soil, mine tailings and house dust using synchrotron-based microanalysis. *Human and Ecological Risk Assessment* 17: 1292–1309.

- KEON, N.E., SWARTZ, C.H., BRABANDER, D.J., HARVEY, C., HEMOND, H.F. (2001) Validation of an arsenic sequential extraction method for evaluating mobility in sediments. *Environmental Science & Technology* 35: 2778-2784.
- KEPPIE, J.D. (compiler) (2000): Geological Map of the Province of Nova Scotia. Nova Scotia Department of Natural Resources, Map ME 2000-1, Scale: 1:500 000.
- KIM, C.S., BLOOM, N.S., RYTUBA, J.J., BROWN, G.E., JR. (2003) Mercury speciation by X-ray absorption fine structure spectroscopy and sequential chemical extractions: A comparison of speciation methods. *Environmental Science & Technology* 37: 5102-5108.
- KOCH, I., MCPHERSON, K., SMITH, P., EASTON, L., DOE, K.G., REIMER, K.J. (2007) Arsenic bioaccessibility and speciation in clams and seaweed from a contaminated marine environment. *Marine Pollution Bulletin* 54: 586–594.
- KONTAK, D.J. & JACKSON, S.J. (1999) Documentation of variable trace- and rare-earthelement abundances in carbonates from auriferous quartz veins in Meguma lode-gold deposits, Nova Scotia. *Canadian Mineralogist* 37: 469–488.
- KONTAK, D.J., SMITH, P.K., KERRICH, R., WILLIAMS, P.F. (1990) Integrated model for Meguma Group lode gold deposits, Nova Scotia, Canada. *Geology* 18: 238–242.
- LAIRD, B.D., VAN DE WIELE, T.R., CORRIVEAU, M.C., JAMIESON, H.E., PARSONS, M.B., VERSTRAETE, W., SICILIANO, S. (2007) Gastrointestinal microbes increase arsenic bioaccessibility of ingested mine tailings using the Simulator of the Human Intestinal Microbial Ecosystem (SHIME). *Environmental Science & Technology* 41: 5542–5547.
- LANE, P.A., CROWELL, M.J., GRAVES, M.C. (1988) Heavy metal removal from gold mining and tailing effluents using indigeneous aquatic macrophytes (Phase 1). *In* Proceedings of the 5th Annual General Meeting of BIOMINET. Edited by R.G.L. McCready. CANMET SP88-23, pp. 3–37.
- LANE, P.A., PETT, R.J., CROWELL, M.J., MACKINNON, D.S., GRAVES, M.C. (1989) Further studies on the distribution and fate of arsenic and mercury at a site contaminated by abandoned gold mine tailings. *In* Proceedings of the 6th Annual General Meeting of BIOMINET. pp. 78–107.
- LARIOS, R., FERNÁNDEZ-MARTÍNEZ, R., RUCANDIO, I. (2012) Comparison of three sequential extraction procedures for fractionation of arsenic from highly polluted mining sediments. *Analytical and Bioanalytical Chemistry* 402: 2909–2921.
- LYNCH, J. (1990) Provisional elemental values for eight new geochemical lake sediment and stream sediment reference materials: LKSD-1, LKSD-2, LKSD-3, LKSD-4, STSD-1, STSD-2, STSD-3 and STSD-4. *Geostandards Newsletter* 14: 153–167.
- LYNCH, J. (1999) Additional provisional elemental values for LKSD-1, LKSD-2, LKSD-3, LKSD-4, STSD-1, STSD-2, STSD-3 and STSD-4. *Geostandards Newsletter* 23: 251–260.

- MACDONALD, B. (1899) Mining plant of the Dufferin Gold Mine. *The Canadian Mining Review* 18: 15–18.
- MACKENZIE, T.G. (1907) Notes on the mining property of the Seal Harbour Mining Company. *Transactions of the Mining Society of Nova Scotia* 12: 63–81.
- MALCOLM, W. (1912) Gold Fields of Nova Scotia. Geological Survey of Canada, Memoir 20-E, 384 p.
- MALCOLM, W. (1929) Gold Fields of Nova Scotia. Geological Survey of Canada, Memoir 156 (reprinted in 1976 as Memoir 385), 253 p.
- MALTBY, P.D.R. (1982) Cochrane Hill Mine, Tailings Disposal and Environmental Protection, Report for Northumberland Mines, Ltd., Nova Scotia Department of Mines and Energy Assessment Report ME 1982-051, 27 p.
- MASSON, M., SCHÄFER, J., BLANC, G., PIERRE, A. (2007) Seasonal variations and annual fluxes of arsenic in the Garonne, Dordogne and Isle Rivers, France. *Science of the Total Environment* 373: 196-207.
- MCCLESKEY, R.B., NORDSTROM, D.K., MAEST, A.S. (2004) Preservation of water samples for arsenic(III/V) determinations: an evaluation of the literature and new analytical results. *Applied Geochemistry* 19: 995-1009.
- MERANGER, J.C., SUBRAMANIAN, K.S., MCCURDY, R.F. (1984) Arsenic in Nova Scotian groundwater. The Science of the Total Environment 39: 49–55.
- MEUNIER, L., WALKER, S.R., WRAGG, J., PARSONS, M.B., KOCH, I., JAMIESON, H.E., REIMER, K.J. (2010a) Effects of soil composition and mineralogy on the bioaccessibility of arsenic from tailings and soil in gold mine districts of Nova Scotia. *Environmental Science & Technology* 44: 2667–2674.
- MEUNIER, L., WRAGG, J., KOCH, I., REIMER, K.J. (2010b) Method variables affecting the bioaccessibility of arsenic in soil. *Journal of Environmental Science and Health Part A* 45: 517–526.
- MEUNIER, L., KOCH, I., REIMER, K.J. (2011) Effect of particle size on arsenic bioaccessibility in gold mine tailings of Nova Scotia. *Science of the Total Environment* 409: 2233–2243.
- MIHALJEVIČ, M., POŇAVIČ, M., ETTLER, V, ŠEBEK, O. (2003) A comparison of sequential extraction techniques for determining arsenic fractionation in synthetic mineral mixtures. *Analytical and Bioanalytical Chemistry* 377: 723–729.
- MILLS, R.F. (1997) Preliminary investigation of abandoned mill tailings at the Montague Gold District, Nova Scotia: Implications for development potential. Nova Scotia Department of Natural Resources, Report of Activities 1997, Report ME 1998-1, pp. 109-113.

- MITCHELL, B. (1988) Assessment report on the 1987–1988 exploration licenses 11818, 12705, 14083, Dufferin, Halifax County, Nova Scotia, Nova Scotia Department of Natural Resources Assessment Report AR88-350, 50 p.
- MOGGRIDGE KUSSISTO, K. (1978) Gold mining and milling in the Sherbrooke Gold District 1861–1906; Unpublished curatorial report for the Nova Scotia Museum (available online at: http://museum.gov.ns.ca/sv/history/goldenville/index.html).
- MORELLI, R.M., CREASER, R.A., SELBY, D., KONTAK, D.J., HORNE, R.J. (2005) Rhenium-osmium geochronology of arsenopyrite in Meguma Group gold deposits, Meguma Terane, Nova Scotia, Canada: Evidence for multiple gold-mineralizing events. *Economic geology* 100: 1229–1242.
- MORIARTY, M.M., KOCH, I., GORDON, R.A., REIMER, K.J. (2009) Arsenic speciation of terrestrial invertebrates. *Environmental Science & Technology* 43: 4818–4823.
- MOSHER, A.L. (2004) Environmental Impacts of Historical Mine Tailings Disposal at Cochrane Hill Gold District, Nova Scotia. Unpublished B.Sc. thesis, Dalhousie University, 96 p.
- MUDROCH, A., CLAIR, T.A. (Editors) (1985) The impact of past gold mining activities on the Shubenacadie River headwaters ecosystem. Environment Canada / N.S. Dept. of the Environment Report, IWD-AR-WQB-85-81, 195 p.
- MUDROCH, A., CLAIR, T.A. (1986) Transport of arsenic and mercury from gold mining activities through an aquatic system. *The Science of the Total Environment* 57: 205–216.
- MUDROCH, A., SANDILANDS, R. (1978) Geochemical analyses of lake bottom sediments in the Shubenacadie headwaters. Shubenacadie-Stewiacke River Basin Technical Report #9, Halifax, N.S., 89 p.
- NOVA SCOTIA DEPARTMENT OF MINES (NSDM) (1961) Annual Report on Mines 1960. Queen's Printer, Halifax, NS, 127 p.
- NIMICK, D.A., GAMMONS, C.H., PARKER, S.R. (2011) Diel biogeochemical processes and their effect on the aqueous chemistry of streams: A review. *Chemical Geology* 283: 3-17.
- NRIAGU, J.O., WONG, H.K.T. (1997) Gold rushes and mercury pollution. *In* Metal Ions in Biological Systems. A. Sigel & H. Sigel (eds.), Chapter 5, 131–160.
- PARENT, G., ETHIER, R. (1989) Assessment of the reserves at the Upper Seal Harbour Deposit, Nova Scotia. Nova Scotia Department of Natural Resources Assessment Report AR 89-250, 643 pp.
- PARSONS, C.S. (1922) An investigation of the tailings and rock dumps at the gold mines of Nova Scotia—with a review of the past mining and milling methods, the present status of the gold industry in the Province, and some suggestions for the revival of the industry. Nova Scotia Dept. of Public Works and Mines, Annual Report on the Mines 1921, pp. 189–201.

- PARSONS, M.B. (2007) Reducing Risks from Metals: Environmental Impacts of Historical Gold Mines. NRCan Making a Difference: 001 (two-page fact sheet available online at: http://gsc.nrcan.gc.ca/org/atlantic/gold-e.php).
- PARSONS, M.B., SMITH, P.K., GOODWIN, T.A., HALL, G.E.M, SANGSTER, A.L., PERCIVAL, J.B. (2004) Distribution, cycling, and fate of mercury and associated elements at historical lode gold mines in Nova Scotia, Canada. *In* Proceedings of the 7th International Conference on Mercury as a Global Pollutant, Ljubljana, Slovenia, June 27–July 2, 2004. M. Horvat, N. Ogrinc, J. Faganeli, and J. Kotnik (eds.), *RMZ Materials and the Geoenvironment*, 51: 185–189.
- PERCIVAL, J.B., WHITE, H.P., GOODWIN, T.A., PARSONS, M.B., SMITH, P.K. (In press) Mineralogy and spectral reflectance of soils and tailings from historical gold mines, Nova Scotia. *Geochemistry: Exploration, Environment, Analysis*. Accepted in November 2011.
- PHILLIPS, J.A. (1867) The mining and metallurgy of gold and silver. E. & F.N. Spon, London, 532 p.
- PLUMLEE, G.S., SMITH, K.S., MONTOUR, M.R., FICKLIN, W.R., MOSIER, E.L., 1999, Geologic controls on the composition of natural waters and mine waters draining diverse mineral-deposit types: in, Filipek, L.H., Plumlee, G.S. (eds.), The Environmental Geochemistry of Mineral Deposits, Part B: Case Studies and Research Topics. Reviews in Economic Geology, Vol. 6B, Society of Economic Geologists, Littleton, CO, pp. 373–432 (Chapter 19).
- RICHARDS, R.H., LOCKE, C.E. (1940) Textbook of ore dressing (3rd ed.); McGraw-Hill Book Co., New York, 608 p.
- RITCHIE, J.N. (1901) Chlorination plant at Brookfield. *Industrial Advocate* 28: 11–15.
- ROACH, A.G. (1937) The Seal Harbour Mill. *Mining Society of Nova Scotia, Transactions* 40: 263–277.
- ROACH, A.G. (1940) Cyanide treatment of auriferous concentrate from Nova Scotia ores. *Mining Society of Nova Scotia, Transactions* 40: 709–731.
- RYAN, R.J., SMITH, P.K. (1998): A review of the mesothermal gold deposits of the Meguma Group, Nova Scotia, Canada. *Ore Geology Reviews* 13: 153–183.
- SANGSTER, A.L. (1990) Metallogeny of the Meguma Terrane, Nova Scotia. *In* Mineral Deposit Studies in Nova Scotia, Volume 1, A.L. Sangster (ed.), Geological Survey of Canada, Paper 90-8, 115–162.
- SANGSTER, A.L., SMITH, P.K. (2007) Metallogenic summary of the Meguma gold deposits, Nova Scotia. *In* Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods. W.D. Goodfellow (ed.), Geological Association of Canada, Mineral Deposits Division, Special Publication No. 5, 723–732.

- SAUNDERS, J.R., KNOPPER, L.D., YAGMINAS, A., KOCH, I., REIMER, K.J. (2009) Use of biomarkers to show sub-cellular effects in meadow voles (*Microtus pennsylvanicus*) living on an abandoned gold mine sites. *Science of the Total Environment* 407: 5548–5554.
- SAUNDERS, J.R., KNOPPER, L.D., KOCH, I., REIMER, K.J. (2010) Arsenic transformations and biomarkers in meadow voles (*Microtus pennsylvanicus*) living on an abandoned gold mine site in Montague, Nova Scotia, Canada. *Science of the Total Environment* 408: 829–835.
- SAUNDERS, J.R., KNOPPER, L.D., KOCH, I., REIMER, K.J. (2011) Inclusion of soil arsenic bioaccessibility in ecological risk assessment and comparison with biological effects. *Science of the Total Environment* 412-413: 132–137.
- SMEDLEY, P.L., KINNIBURGH, D.G. (2002) A review of the source, behaviour and distribution of arsenic in natural waters. *Applied Geochemistry* 17: 517-568.
- SMITH, P.K. (1982) Geology of the Cochrane Hill Gold Deposit, Guysborough County, Nova Scotia. *In* Nova Scotia Department of Mines and Energy, Mines and Minerals Branch, Report of Activities 1982, Report 83-1, 225–256.
- SMITH, P.K. (1983) Geology and lithogeochemistry of the Cochrane Hill Gold Deposit An indication of metalliferous source beds. *In* Nova Scotia Department of Mines and Energy, Mines and Minerals Branch, Report of Activities 1983, Report 84-1, 203–214.
- SMITH, P.K. (1984) Summary of the Caribou Gold District. Nova Scotia Department of Mines and Energy, Open File Report ME 585, 45 p.
- SMITH, P.K., GOODWIN, T.A. (2009) Historical gold mining areas in Nova Scotia map series. Nova Scotia Department of Natural Resources, Open File Map ME 2009-1, 64 Sheets, Scales 1:1000 to 1:10 000 (available online at: http://www.gov.ns.ca/natr/meb/download/mg/ofm/htm/ofm_2009-001.asp).
- SMITH, P.K., KONTAK, D.J. (1987) Meguma gold studies: advances in geological insight as an aid to gold exploration. *In* Program and Summaries, Tenth Annual Open House and Review of Activities; Nova Scotia Department of Mines and Energy, Information Series No. 12, 105–114.
- TETFORD, G. (1999) The problem of mercury in the environment: abandoned gold mines in Nova Scotia. Unpublished B.Sc. thesis, Saint Mary's University, Halifax, NS, 37 p.
- WALKER, S.R., PARSONS, M.B., JAMIESON, H.E., LANZIROTTI, A. (2009) Arsenic mineralogy of near-surface tailings and soils: Influences on arsenic mineralogy and bioaccessibility in the Nova Scotia gold mining districts. *Canadian Mineralogist* 47: 533–556.
- WELFRINGER, B., ZAGURY, G.J. (2009) Evaluation of two in vitro protocols for determination of mercury bioaccessibility: influence of mercury fractionation and soil properties. *Journal of Environmental Quality* 38: 2237–2244.

- WENZEL, W.W., KIRCHBAUMER, N., PROHASKA, T., STINGEDER, T., LOMBI, E., ADRIANO, D.C. (2001) Arsenic fractionation in soils using an improved sequential extraction procedure. *Analytica Chimica Acta* 436: 309–323.
- WHITE, C.E. (2010) Stratigraphy of the Lower Paleozoic Goldenville and Halifax groups in southwestern Nova Scotia. *Atlantic Geology* 46, 136–154.
- WHITELAW, R.W. (1985) Report on Leipsigate Project. Nova Scotia Department of Mines and Energy Assessment Report ME 1985-082, 50 p.
- WINCH, S., FORTIN, D., LEAN, D.R.S., PARSONS, M.B. (2008) Factors affecting methylmercury levels in surficial tailings from historical Nova Scotia gold mines. *Geomicrobiology Journal* 25 (2): 112–129.
- WINCH, S., MILLS, H.J., KOSTKA, J.E., FORTIN, D., LEAN, D.R.S. (2009) Identification of sulfate-reducing bacteria in methylmercury-contaminated mine tailings by analysis of SSU rRNA genes. *FEMS Microbiology Ecology* 68: 94–107.
- WONG, H.K.T., GAUTHIER, A., BEAUCHAMP, S., TORDON, R. (2002) Impact of toxic metals and metalloids from the Caribou gold-mining areas in Nova Scotia, Canada. *Geochemistry: Exploration, Environment, Analysis*, 2: 235–241.
- WONG, H.K.T., GAUTHIER, A., NRIAGU, J.O. (1999) Dispersion and toxicity of metals from abandoned gold mine tailings at Goldenville, Nova Scotia, Canada. *Science of the Total Environment*, 228: 35–47.
- WRYE, L.A. (2008) Distinguishing between natural and anthropogenic sources of arsenic in soils from the Giant Mine, Northwest Territories, and the North Brookfield Mine, Nova Scotia. Unpublished M.Sc. thesis, Queen's University, 241 p.

Gold District	Sample Site	Tailings Depth (cm)	Site description	Easting (20T, NAD 83)	Northing (20T, NAD 83)	Date	Subsample ID	GSCA Lab ID #	Tailings description
Gold	envil	le Gol	d District (GD)						
GD	T1	2	· /	0577356	4997047	9-Jun-03	GD-03-1A	20030101	coarse, brownish sand
GD	T1	10	Surface of wind-blown ATV tracks	0577356	4997047	9-Jun-03	GD-03-1B	20030102	grey, iridescent lenses (2 cm thick), coarse brn sand
GD	T1	13		0577356	4997047	9-Jun-03	GD-03-1C	20030103	reddish-brown oxic layer
GD	T2	1		0577358	4997007	9-Jun-03	GD-03-2A	20030104	loose beige-green sand
GD	T2	3.5	Hardpan crust S of stamp mill foundation	0577358	4997007	9-Jun-03	GD-03-2B	20030105	3cm thick hard pan, beige-green
GD	T2	8		0577358	4997007	9-Jun-03	GD-03-2C	20030106	rusty brown sand lens
GD	T3	1	Pit at edge of tailings field near Gegogan Brook	0577361	4996989	9-Jun-03	GD-03-3A	20030107	coarse, brownish material
GD	T3	21	Fit at edge of tailings field flear Gegogan Brook	0577361	4996989	9-Jun-03	GD-03-3B	20030108	coarse, brownish-grey material
GD	T4	1	Tailings in brook immediately below waste rock road	0577361	4996976	9-Jun-03	GD-03-4A	20030109	sediment from slime pool
GD	T5	1	Coarse surface tails with thick grey lenses	0577335	4996951	9-Jun-03	GD-03-5A	20030110	brown-beige layer
GD	T5	8	Coarse surface tails with trick grey lenses	0577335	4996951	9-Jun-03	GD-03-5B	20030111	2cm thick grey lens
GD	T6	1	Raised area near bales of hay	0577315	4996973	9-Jun-03	GD-03-6A	20030112	grey and brown coarse sand
GD	T6	17	italsed area fiear bales of flay	0577315	4996973	9-Jun-03	GD-03-6B	20030113	oxidized reddish brown layer
GD	T7	1	Racetrack	0577293	4997000	9-Jun-03	GD-03-7A	20030114	beige-brown coarse sand
GD	T7	14	Nacetrack	0577293	4997000	9-Jun-03	GD-03-7B	20030115	reddish-brown oxidized layer
GD	T8	1	Near beer shack and 4x4 Rally sign	0577284	4997037	9-Jun-03	GD-03-8A	20030116	brown-grey coarse sand
GD	T8	15	Near beer strack and 4x4 Italiy sign	0577284	4997037	9-Jun-03	GD-03-8B	20030117	quartz-rich grey layer mixed with brown sand
GD	Т9	1	Between shack and water pit	0577258	4997015	9-Jun-03	GD-03-9A	20030118	coarse brown sand
GD	T9	13	Detween Shack and water pit	0577258	4997015	9-Jun-03	GD-03-9B	20030119	2 cm thick grey lens
GD	T10	1		0577271	4996990	9-Jun-03	GD-03-10A	20030120	coarse brown sand
GD	T10	8	Middle of racetrack	0577271	4996990	9-Jun-03	GD-03-10B	20030121	reddish-brown layer
GD	T10	20		0577271	4996990	9-Jun-03	GD-03-10C	20030122	brown-yellow hard pan
GD	T11	1	Middle of racing circle in a low dip	0577289	4996966	9-Jun-03	GD-03-11A	20030123	moist muck
GD	T11	10	ivilidate of racing circle in a low dip	0577289	4996966	9-Jun-03	GD-03-11B	20030124	reddish-brown lens
GD	T12	1		0577307	4996923	9-Jun-03	GD-03-12A	20030125	mucky, grey clay-like material
GD	T12	5	Edge of racetrack near stream and wetland	0577307	4996923	9-Jun-03	GD-03-12B	20030126	reddish-brown muck
GD	T12	19		0577307	4996923	9-Jun-03	GD-03-12C	20030127	grey clay-like material

Gold District	Sample Site	Tailings Depth (cm)	Site description	Easting (20T, NAD 83)	Northing (20T, NAD 83)	Date	Subsample ID	GSCA Lab ID #	Tailings description
GD	T13	1		0577267	4996926	9-Jun-03	GD-03-13A	20030128	coarse brown-beige sand
GD	T13	6	Shallow hole at edge of racetrack near stream and wetland	0577267	4996926	9-Jun-03	GD-03-13B	20030129	reddish-brown oxidized layer
GD	T13	8		0577267	4996926	9-Jun-03	GD-03-13C	20030130	grey, hard clay-like lens
GD	T15	1		0577236	4996961	9-Jun-03	GD-03-15A	20030131	colourful hard pan, reddish-brown surf w/ grn-yellow
GD	T15	5	Harpan near end of racetrack	0577236	4996961	9-Jun-03	GD-03-15B	20030132	grey-purple occurring in lenses
GD	T15	8		0577236	4996961	9-Jun-03	GD-03-15C	20030133	yellow-green pieces
GD	T16	4	Behind water pit	0577218	4997024	9-Jun-03	GD-03-16A	20030134	coarse beige-brown sand
GD	T16	8	'	0577218	4997024	9-Jun-03	GD-03-16B	20030135	yellow-green tails near hard pan
GD	T17	1	Oxidized sulphide concentrate near mill foundation surrounded by plastic bags	0577362	4997053	9-Jun-03	GD-03-17A	20030136	grey-green fine-grained fluffy material
GD	T1	0-5	Mint-green residue on surface immediately NW of the Stuart Shaft between stamp mill foundation and race track.	0577345	4997052	9-Dec-05	GD05-T01	-	mint-green, very fine grained with bits of wood and plastic
GD	T2	0-5	Centre of racetrack, ~2/3 of the way towards finish line.	0577291	4996990	9-Dec-05	GD05-T02	-	dark brown tails with abundant chips of hardpan on the surface
GD	Т3	0-5	Broken-up hardpan at the end of racetrack.	0577239	4996956	9-Dec-05	GD05-T03	-	olive-green to light grey tails with abundant hardpan. Overlies solid hardpan that is ~20 cm thick.
GD	T4	0-5	At the margin of the tails on the northwest side of raceway (~25 m to north) and ~15 m before the beer shack	0577278	4997034	9-Dec-05	GD05-T04	-	light grey, sandy wind-blown tailings overlying brown to light yellow hardpan
GD	T5	0-5	Raised knoll adjacent to Gegogan Brook, ~100 m south of stamp mill foundation.	0577334	4996921	9-Dec-05	GD05-T05	-	greenish, very fine grained green to yellow tails on top of very fine grained grey, clay-rich tails
GD	T1	0-5	Along edge of Gegogan Brook, middle of ATV track	0576920	4996946	23-Nov-06	GD-06-T1	-	dark-grey/brown tails with rusty lenses, silty sand, well saturated; likely higher organic matter
GD	T2	0-5	Along edge of Gegogan Brook, middle of ATV track	0577062	4996891	23-Nov-06	GD-06-T2	-	sandier tails, minor rusty material (coarse sand), medium grey/brown, reasonably well-drained
GD	Т3	0-5	South side of main tails area, north of brook & south of tires	0577282	4996922	23-Nov-06	GD-06-T3	_	olive-green top cm underlying medium grey unoxidized tails
GD	T4	0-5	N of stream; S edge of main tails; tires to W; South edge of parking lot during 4X4 Rally	0577322	4996922	23-Nov-06	GD-06-T4	-	surface silty sand underlying finer clay, medium grey; olive green top 3cm
GD	T5	0-10	Small hill in center of parking lot area, some ATV & dirt bike tracks	0577321	4996966	23-Nov-06	GD-06-T5	-	sandy, roots in tailings, small pieces of hardpan, top cm looks winnowed
GD	Т6	0-10	Northern edge of parking lot, south of tires western end; fluvial erosion	0577296	4996968	23-Nov-06	GD-06-T6	-	homogeneous sandy in top 10cm; brownish grey; thin medium grey silty lenses
GD	T7	0-10	Tailings near west end of race track	0577274	4996989	23-Nov-06	GD-06-T7	-	sandy, greyish brown, well drained, top 0.5cm winnowed, minor scorodite chunks
GD	Т8	0-10	Far end of race track (west) entrance of ATV trails along Gegogan Brook	0577239	4996956	23-Nov-06	GD-06-T8	-	scorodite chunks in hardpan; mostly sandy; well drained; brownish grey
GD	Т9	0-10	Tailings in front of beer shack	0577267	4997022	23-Nov-06	GD-06-T9	-	well homogenized, silty medium grey lenses & minor rusty lense, grey-brown sandy tails
GD	T10	0-10	East end of race track	0577327	4997028	23-Nov-06	GD-06-T10	-	scorodite hardpan at 10 cm, lens of rusty material at 5 cm (iron staining), brown-grey sandy
GD	T11	0-5	Wind-blown tailings accumulation near stamp-mill foundation	0577329	4997076	23-Nov-06	GD-06-T11	-	surface veneer of small slate pebbles, wind blown, small bit of moss, homogeneous greenish-grey, sandy, top winnowed, minor root material
GD	T12	0-5	Mix of tailings and gravel on entrance road to mine site	0577371	4997141	23-Nov-06	GD-06-T12	-	green-grey, sandy with rocks
GD	T13	0-5	Light-green mill residue on surface near mill foundation	0577344	4997050	23-Nov-06	GD-06-T13	-	scorodite-rich, powdery, light pistachio-green varies to grey, slight sulfur odor

Gold District	Sample Site	Tailings Depth (cm)	Site description	Easting (20T, NAD 83)	Northing (20T, NAD 83)	Date	Subsample ID	GSCA Lab ID #	Tailings description
Mont	tague	Gold	District (MG)						
MG	T1	2.5	Bog N of main tails areasfilled with quartzite boulders and	0458511	4951651	11-Jun-03	MG-03-1A	20030137	fine grey sand intermixed with organics
MG	T1	10	thin tailings; many dead tree roots, horsetails	0458511	4951651	11-Jun-03	MG-03-1B	20030138	grey fine clay-like tailings
MG	T2	1	Northern edge of ATV racecourse on tailings with pylons;	0458564	4951555	11-Jun-03	MG-03-2A	20030139	brown fine material
MG	T2	5	standing surface waters over brown, clay-rich tails	0458564	4951555	11-Jun-03	MG-03-2B	20030140	grey, clay-like
MG	T3	0	Disturbed, sandy tails on N edge of racetrack area	0458510	4951509	11-Jun-03	MG-03-3A	20030141	brown coarse sand
MG MG	T3 T4	25 7.5		0458510 0458547	4951509 4951431	11-Jun-03 11-Jun-03	MG-03-3B MG-03-4A	20030142	grey coarse tailings below organic layer >5cm, many rootlets, dk brown
MG	T4	20	Overgrown tailings in wetland adjacent to Mitchell Brook	0458547	4951431	11-Jun-03	MG-03-4A	20030143	wet, coarse grey layer
MG	T5	1	2nd transect over tails; ripped up racetrack area;	0458589	4951468	11-Jun-03	MG-03-5A	20030145	loose crumbly dk brn bits then reddish thin layer
MG	T5	6	puddle in hole filled with red mucky water	0458589	4951468	11-Jun-03	MG-03-5B	20030146	coarse grey material
MG	T6	0	,	0458603	4951511	11-Jun-03	MG-03-6A	20030147	coarse dark brown bits
MG	T6	4	Centre of racetrack near sedge islands	0458603	4951511	11-Jun-03	MG-03-6B	20030148	reddish brown, almost burgandy-rusty color
MG	T6	10		0458603	4951511	11-Jun-03	MG-03-6C	20030149	coarse, grey clay-like material
MG	T7	5	NE edge of racetrack behind ATV jumps with pylons, uniform, med	0458658	4951523	11-Jun-03	MG-03-7A	20030150	brown with coarse bits graduating to greenish-brn
MG	T7	15	grey tails with no obvious oxidation	0458658	4951523	11-Jun-03	MG-03-7B	20030151	coarse grey layer
MG	T8	2.5	Hardpan area not far from jumps	0458649	4951486	11-Jun-03	MG-03-8A	20030152	coarse beige-brown hardpan + tails over solid hardpan
MG	T10	5	Dry deep rutted turn of racetrack behind hardpan brook	0458644	4951424	11-Jun-03	MG-03-10A	20030153	dry coarse beige-brown
MG	T10	15	7	0458644	4951424	11-Jun-03	MG-03-10B	20030154	dark brown material
MG	T11	6		0458743	4951415	11-Jun-03	MG-03-11A	20030155	coarse brown material
MG	T11	15	Older tailings south of racetrack, closer to stamp mill sites	0458743	4951415	11-Jun-03	MG-03-11B	20030156	coarse grey material
MG MG	T11 T12	25 2.5		0458743 0458776	4951415 4951424	11-Jun-03 11-Jun-03	MG-03-11C MG-03-12A	20030157 20030158	grey-green clay-like, fine beige-brown, coarse windblown tailings
MG	T12	2.5	Middle of older tailings, surface is windblown	0458776	4951424	11-Jun-03	MG-03-12A MG-03-12B	20030158	reddish coarse layer
MG	T13	0		0458818	4951411	11-Jun-03	MG-03-12B	20030159	moist brown coarse layers
MG	T13	15	Edge of older tailings near edge of sedges	0458818	4951411	11-Jun-03	MG-03-13B	20030161	coarse dark browm material
MG	T14	10	Disturbed, sandy tails on N edge of racetrack area	0458506	4951490	8-May-03	MG 03 T14A	195981	brown sandy-silty tails
MG	T15	5	Tailings along bank of Mitchell Brook	0458570	4951395	8-May-03	MG 03 T15B	195988	grey sandy tails along streambanks
	T1		Surface tailings that have been disturbed by ATV activity. Sample						Medium brown tailings with abundant chunks of yellow-green hardpan
MG	11	0-6	site is underlain by hardpan material.	0458648	4951466	25-Nov-05	MG05-T01	-	between 1 mm and 1cm in size Light brown, medium grained tails with no larger hardpan chunks. The
MG	T2	0-5	Surface tailings in middle of ATV / dirtbike racetrack. Sample site is underlain by hardpan material.	0458668	4951507	25-Nov-05	MG05-T02	-	underlying hardpan layer is similar to that of site MG05-T1 but has additional reddish material.
MG	Т3	0-15	Sample from the NW corner of the tailings area. These are much finer grained and there is no hardpan developed.	0458559	4951535	25-Nov-05	MG05-T03	-	Sample consists of –30 cm of alternating brown, red and reddish-brown tails with variable amounts of clay size material and fine grained silt. This material sits on medium grey unoxidized tailings.
MG	T4	15-20	SW corner of the tailings area located ~20 m inside the grassed-over, wetland area alongside Mitchell Brook. Surface is waterlogged.	0458564	4951442	25-Nov-05	MG05-T04	-	15 cm of organic-rich dark-brown organic-rich sediments overlying fine grained silty light grey tails. Sample represents the transition from overlying organics to underlying silty tails.
MG	T1	0-10	Bank for ATV's in south corner of main tails area (in ATV track)	0458640	4951422	3-Nov-06	MG-06-T1	-	olive-green sandy tails, scorodite nearby but not obvious in sample
MG	T2	0-10	Sandy, scorodite-rich tails in hardpan area (~5-10cm of re-worked tails over hardpan)	0458635	4951481	3-Nov-06	MG-06-T2	-	olive-green tails, some coarse chunks
MG	T3	0-10	Top of large tails mound in middle of ATV track	0458605	4951458	3-Nov-06	MG-06-T3	-	sandy, grey-green tails
MG	T4	0-10	Small ATV bank on north side of main tails	0458549	4951514	3-Nov-06	MG-06-T4	-	tails are brown, slightly finer grained, no obvious hardpan
MG	T5	0-10	"New" jump/bank in NE corner of tails	0458578	4951548	3-Nov-06	MG-06-T5	-	grey, unoxidized tails mixed with brown oxic tails, no obvious hardpan, tails seem to be quite fine-grained
MG	T6	0-10	Fine-grained tails in NE corner of tails	0458554	4951580	3-Nov-06	MG-06-T6	-	clay-rich surface in ATV track leading to rock-filled tails area
MG	Т7	0-10	Large double-jump with culvert on east edge of main tails near woods	0458620	4951537	3-Nov-06	MG-06-T7	-	olive-green, sandy tails, no hardpan
MG	T8	0-10	Large bank on SE corner of main tails	0458685	4951527	3-Nov-06	MG-06-T8	-	olive-green/brown sandy tails
MG	T9	0-10	Middle of access track on "old" tails	0458747	4951417	3-Nov-06	MG-06-T9	-	dark brown sandy tails
MG	T10	0-10	In center of well-used ATV access track	0458803	4951429	3-Nov-06	MG-06-T10	-	light brown/grey tails with rusty blebs, appears to be some hardpan on surface
MG	T11	0-10	Path leading onto private property, tails visible leading through woods on property, crown boundary line clearly blazed	0458843	4951433	3-Nov-06	MG-06-T11	-	dark brown, sandy tails
MG	T12	0-5	Middle of road near mill foundation	0458754	4951297	3-Nov-06	MG-06-T12	-	light brown tails with dark grey & rusty brown lenses, sample seems heavy, possible sulfides?
MG	T13	0-5	Junction of roads leading past main mill site	0458884	4951363	3-Nov-06	MG-06-T13	-	light-grey, sandy tails, no obvious hardpan/ rusty lenses
MG	T14	0-5	Main access road to mine, ~ 25m away from parking area, on edge of puddle	0458897	4951417	3-Nov-06	MG-06-T14	-	sample is a mix of sandy tails(?) & fine gravel (slate & quartz)
MG	S28	0-5	Overgrown tailings deposit in woods SE of main tailings area and due east of bog along Mitchell Brook	0459005	4951238	27-Aug-07	MG07-S28	20070193	Dark grey sandy tailings buried below spruce needles - appear to have run westward from old stamp mill on hill above wetland.

Gold District	Sample	Tailings Depth (cm)	Site description	(20T,	Northing (20T, NAD 83)	Date	Subsample ID	GSCA Lab ID #	Tailings description
------------------	--------	---------------------------	------------------	-------	------------------------------	------	-----------------	------------------	----------------------

Gold	Sample	Tailings Depth	Total carbon	Organic carbon	Inorganic carbon	Ag ICP-MS	AI ICP-MS		Au ICP-MS	B ICP-MS	Ba ICP-MS	Be ICP-MS	Bi ICP-MS	Ca ICP-MS	Cd ICP-MS	Ce ICP-MS	Co ICP-MS	Cr ICP-MS	Cs ICP-MS	Cu ICP-MS
District	Site	(cm)	LECO (% drv wt.)	LECO (% dry wt.)	LECO (% drv wt.)	(µg/kg) DL = 2	(% dry wt.) 0.01	(mg/kg) 0.1	(µg/kg) 0.2	(mg/kg) 1	(mg/kg) 0.5	(mg/kg) 0.1	(mg/kg) 0.02	(% dry wt.) 0.01	(mg/kg) 0.01	(mg/kg) 0.1	(mg/kg) 0.1	(mg/kg) 0.5	(mg/kg) 0.02	(mg/kg) 0.01
Gold	envil	le Go		rict (GI																
GD	T1	2	0.21	0.21	0.00	356	0.53	21527	747	< 1	18.2	na	1.16	0.07	0.08	na	3.4	8.0	na	12.74
GD	T1	10	0.28	0.22	0.06	408	1.10	15031	387	1	37.2	na	1.27	0.08	0.12	na	4.4	16.4	na	12.67
GD	T1	13	0.45	0.30	0.15	562	0.65	23917	1155	< 1	45.6	na	2.18	0.12	0.09	na	7.6	11.5	na	14.86
GD	T2	1	0.09	0.09	0.00	591	0.44	29196	518	< 1	13.0	na	2.39	0.07	0.09	na	1.6	7.8	na	6.82
GD	T2	3.5	0.12	0.07	0.05	530	0.42	39382	744	< 1	14.7	na	2.08	0.02	0.15	na	1.6	6.8	na	15.18
GD	T2	8	0.04	0.03	0.01	68	0.56	6630	15	< 1	12.0	na	0.27	0.07	0.08	na	1.8	8.8	na	4.02
GD	T3	1	0.20	0.19	0.01	73	0.57	2942	182	< 1	19.5	na	0.31	0.13	0.10	na	4.9	8.3	na	17.38
GD	T3	21	0.09	0.07	0.02	72	0.69	858	20	< 1	17.3	na	0.25	0.20	0.15	na	7.5	10.3	na	29.80
GD	T4	1	0.58	0.50	0.08	74	0.53	3766	116	< 1	16.3	na	0.26	0.10	0.09	na	2.5	6.8	na	10.18
GD	T5	1	0.17	0.06	0.11	21	0.56	796	9	< 1	13.2	na	0.13	0.40	0.05	na	4.0	8.3	na	8.88
GD	T5	8	0.27	0.16	0.11	109	0.99	1630	84	< 1	24.2	na	0.37	0.61	0.26	na	12.3	14.2	na	34.52
GD	T6	1	0.16	0.16	0.00	180	0.91	12600	344	< 1	21.1	na	0.62	0.20	0.28	na	7.1	11.2	na	16.32
GD	T6	17	0.06	0.06	0.00	103	0.66	6239	813	< 1	13.3	na	0.31	0.11	0.04	na	3.2	8.5	na	8.90
GD	T7	1	0.13	0.12	0.01	430	0.53	21299	315	< 1	15.4	na	1.90	0.07	0.10	na	3.9	8.6	na	10.56
GD	T7	14	0.07	0.07	0.00	110	0.58	7424	134	< 1	15.8	na	0.40	0.09	0.02	na	1.5	7.8	na	4.33
GD	T8	1	0.13	0.13	0.00	182	1.13	4087	231	< 1	22.0	na	0.54	0.16	0.17	na	25.7	14.2	na	37.43
GD	T8	15	0.15	0.14	0.01	409	0.58	6469	1976	< 1	13.8	na	0.97	0.09	0.17	na	17.9	8.4	na	14.52
GD	T9	1	0.16	0.14	0.02	202	0.66	10558	803	1	14.6	na	0.72	0.11	0.08	na	5.1	9.2	na	13.85
GD	T9	13	0.21	0.20	0.01	190	1.34	4302	259	1	36.7	na	0.76	0.13	0.41	na	16.8	18.8	na	6.46
GD	T10	1	0.12	0.12	0.00	119	0.59	9217	113	< 1	12.8	na	0.49	0.07	0.06	na	2.4	7.1	na	8.13
GD	T10	8	0.07	0.07	0.00	96	0.66	2609	68	< 1	16.7	na	0.33	0.09	0.09	na	9.0	8.9	na	9.90
GD	T10	20	0.09	0.07	0.02	271	0.45	47414	1252	< 1	18.0	na	0.85	0.01	0.21	na	2.5	11.7	na	12.24
GD	T11	1	0.19	0.08	0.11	56	0.64	1090	61	< 1	16.3	na	0.20	0.49	0.13	na	8.1	9.5	na	25.96
GD	T11	10	0.13	0.06	0.07	84	0.66	1530	51	< 1	17.7	na	0.21	0.28	0.09	na	22.7	10.1	na	22.13
GD	T12	1	0.43	0.13	0.30	135	1.36	2846	379	< 1	33.7	na	0.43	0.94	0.11	na	9.2	16.6	na	27.27
GD	T12	5	0.16	0.12	0.04	143	1.29	3134	170	1	40.9	na	0.46	0.32	0.15	na	10.5	17.4	na	30.98
GD	T12	19	0.40	0.17	0.23	107	1.52	1475	117	1	45.4	na	0.37	0.74	0.10	na	9.5	21.2	na	21.77

		Tailings	Total	Organic	Inorganic	Ag	Al	As	Au	В	Ва	Be	Bi	Са	Cd	Се	Со	Cr	Cs	Cu
Gold District	Sample Site	Depth	carbon LECO	carbon LECO	carbon LECO	ICP-MS (µg/kg)	ICP-MS (% dry wt.)	ICP-MS (mg/kg)	ICP-MS (µg/kg)	ICP-MS (mg/kg)		ICP-MS (mg/kg)	ICP-MS (mg/kg)	ICP-MS (% dry wt.)	(mg/kg)	ICP-MS (mg/kg)		ICP-MS (mg/kg)	ICP-MS (mg/kg)	ICP-MS (mg/kg)
21011101	S.I.G	(cm)	(% dry wt.)			DL = 2	0.01	0.1	0.2	1	0.5	0.1	0.02	0.01	0.01	0.1	0.1	0.5	0.02	0.01
GD	T13	1	0.55	0.37	0.18	51	0.67	1846	238	< 1	16.9	na	0.18	0.68	0.10	na	5.3	8.0	na	17.66
GD GD	T13	6 8	0.36 0.46	0.25 0.20	0.11 0.26	141 110	1.18 1.49	4712 686	260 164	< 1 1	37.7 49.0	na na	0.43	0.74 0.74	0.23	na na	12.1 7.6	15.1 19.7	na na	32.80 22.67
GD	T15	1	0.14	0.14	0.00	231	0.31	39662	322	< 1	11.2	na	1.27	0.03	0.04	na	2.0	4.2	na	12.06
GD	T15	5	0.13	0.13	0.00	53	0.06	3689	171	< 1	3.9	na	0.25	<0.01	<0.01	na	0.5	0.5	na	2.23
GD GD	T15 T16	8	0.45 0.19	0.25 0.15	0.20 0.04	4263 125	0.07 0.72	33264 8256	16990	< 1 1	16.0 17.5	na na	21.69 0.53	0.01 0.11	0.12 0.12	na na	8.1 6.7	5.0 10.0	na	76.22 9.08
GD	T16	8	1.02	0.13	0.40	4774	0.72	29678	118 9414	< 1	6.8	na	15.05	<0.01	0.12	na	19.1	7.6	na na	138.33
GD	T17	1	0.95	0.74	0.21	7314	0.02	30430	5509	< 1	13.7	na	21.54	<0.01	0.29	na	4.1	5.0	na	136.85
GD	T1	0-5	0.20	0.17	0.03	8085	0.04	193200	7609	<1	8.7	<0.1	19.25	<0.01	0.41	5.3	5.4	4.3	0.18	198.39
GD	T2	0-5	0.15	0.14	0.01	217	0.64	13300	177	<1	12.2	<0.1	0.75	0.08	0.13	20.1	3.1	7.8	0.77	11.52
GD	Т3	0-5	0.12	0.12	0.00	2151	0.15	86600	3441	<1	16.5	<0.1	7.24	0.01	0.07	14.5	21.2	5.2	0.43	49.87
GD	T4	0-5	0.12	0.11	0.01	219	0.64	13500	114	<1	11.3	0.1	0.80	0.10	0.10	18.6	4.1	8.3	0.75	7.35
GD	T5	0-5	0.29	0.11	0.18	107	0.97	5373	315	<1	18.2	<0.1	0.34	0.73	0.20	48.3	7.7	10.5	1.19	27.91
GD	T1	0-5	0.17	0.15	0.02	74	0.68	5222	172	<1	13.0	0.1	0.37	0.12	0.17	27.1	3.5	9.9	0.82	11.37
GD	T2	0-5	0.18	0.18	0.00	47	0.60	3144	21	<1	11.7	0.1	0.25	0.08	0.11	21.2	2.7	9.0	0.82	7.55
GD	T3	0-5	0.41	0.16	0.25	123	1.33	1776	160	1	34.2	0.3	0.41	1.02	0.15	59.9	9.5	18.6	1.10	29.29
GD	T4	0-5	0.17	0.13	0.04	92	0.97	6186	187	1	95.6	0.2	0.32	0.39	0.19	48.5	7.4	10.8	1.28	24.74
GD	T5	0-10	0.08	0.08	0.00	61	0.46	7239	41	1	9.9	0.1	0.21	0.05	0.07	11.5	1.1	6.1	0.65	2.21
GD	Т6	0-10	0.16	0.06	0.10	76	0.63	1007	93	2	12.8	0.1	0.21	0.34	0.17	26.9	6.9	8.3	0.79	26.81
GD	T7	0-10	0.08	0.07	0.01	127	0.61	4120	56	<1	14.3	0.1	0.45	0.09	0.21	26.3	8.6	8.3	0.88	19.48
GD	Т8	0-10	0.14	0.12	0.02	186	0.65	8461	175	<1	15.3	0.1	0.77	0.10	0.13	28.3	4.8	9.9	0.91	12.20
GD	Т9	0-10	0.13	0.12	0.01	149	0.67	2698	101	1	12.4	0.2	0.46	0.09	0.15	29.7	10.4	9.1	0.79	23.38
GD	T10	0-10	0.09	0.07	0.02	306	0.63	12600	598	<1	15.9	0.1	1.09	0.08	0.17	27.9	10.2	9.2	0.82	16.92
GD	T11	0-5	0.12	0.11	0.01	86	0.44	4967	41	<1	11.9	0.1	0.38	0.06	0.05	13.5	2.5	6.9	0.59	6.73
GD	T12	0-5	0.58	0.51	0.07	224	1.36	17200	457	2	61.5	0.3	0.65	0.11	0.17	24.4	4.6	24.9	3.10	11.68
GD	T13	0-5	0.10	0.10	0.00	5161	0.01	209000	5574	<1	6.8	<0.1	15.12	<0.01	0.22	4.9	10.9	2.8	0.10	176.20

Gold	Sample	Tailings Depth	Total carbon	Organic carbon	Inorganic carbon	Ag ICP-MS	AI ICP-MS	As ICP-MS		B ICP-MS	Ba ICP-MS	Be ICP-MS		Ca ICP-MS	Cd ICP-MS	Ce ICP-MS	Co ICP-MS	Cr ICP-MS	Cs ICP-MS	
District	Site	(cm)	LECO	LECO (% dry wt.)	LECO	(µg/kg)	(% dry wt.) 0.01	(mg/kg) 0.1	(µg/kg) 0.2	(mg/kg)	(mg/kg) 0.5	(mg/kg) 0.1	(mg/kg) 0.02	(% dry wt.) 0.01	(mg/kg) 0.01	(mg/kg) 0.1	(mg/kg) 0.1	(mg/kg) 0.5	(mg/kg) 0.02	(mg/kg) 0.01
Mon	tague	Gold		ct (MG)	(70 Gily Will)	DE-E	0.01	0.1	0.2		0.0	0.1	0.02	0.01	0.01	0.1	0.1	0.0	0.02	0.01
MG	T1	2.5	1.22	1.22	0.00	351	1.29	20720	516	5	145.6	na	2.34	0.54	0.80	na	37.4	16.1	na	100.18
MG	T1	10	0.46	0.23	0.23	236	1.54	14299	227	1	53.4	na	1.74	0.56	0.31	na	25.4	19.5	na	83.34
MG MG	T2 T2	1 5	0.80 0.51	0.68 0.26	0.12 0.25	377 278	1.42 1.44	25482 13674	763 423	2	98.4 35.7	na na	2.18 1.43	0.64 0.55	0.73 0.46	na na	33.8 22.1	18.0 17.3	na na	124.54 95.07
MG	T3	0	0.12	0.09	0.03	36	0.94	7130	62	1	37.7	na	0.56	0.13	0.19	na	4.3	10.5	na	38.54
MG	T3	25	0.49	0.16	0.33	138	1.04	9580	174	1	23.3	na	0.90	0.51	0.49	na	18.8	12.3	na	75.62
MG MG	T4 T4	7.5 20	15.55 0.39	15.55 0.35	0.00 0.04	334 69	2.64 1.14	5312 2061	793 227	2	116.4 26.5	na na	1.31 0.38	0.38	1.05 0.24	na na	75.6 8.6	21.8 13.4	na na	74.50 40.79
MG	T5	1	0.39	0.33	0.04	147	1.14	18168	275	1	41.0	na	1.05	0.11	0.24	na	21.0	13.4	na	75.27
MG	T5	6	0.36	0.05	0.31	80	1.05	4282	156	2	23.0	na	0.56	0.53	0.14	na	12.1	12.3	na	48.05
MG	T6	0	0.24	0.16	0.08	174	1.08	20707	335	1 1	29.5	na	1.13	0.34	0.34	na	22.7	13.3	na	109.26
MG MG	T6 T6	4 10	0.23 0.38	0.10 0.11	0.13 0.27	185 113	0.94 1.03	23682 6229	225 109	1	28.4 22.6	na na	1.16 0.66	0.53 0.48	0.17 0.24	na na	24.2 17.3	11.5 12.3	na na	43.88 55.10
MG	T7	5	0.23	0.12	0.11	135	1.08	13946	319	1	24.9	na	0.83	0.31	0.22	na	17.4	13.1	na	76.37
MG	T7	15	0.41	0.04	0.37	49	1.13	2139	62	1	26.0	na	0.31	0.71	0.12	na	8.0	13.5	na	30.66
MG MG	T8 T10	2.5 5	0.12 0.09	0.10 0.08	0.02 0.01	719 258	0.70 1.01	41299 31652	1378 411	1	22.3 31.9	na na	4.50 1.69	0.05	0.19 0.23	na na	2.3 3.3	10.9 13.6	na na	33.59 31.23
MG	T10	15	0.06	0.06	0.00	228	1.00	23249	334	1	25.6	na	1.60	0.09	0.23	na	3.4	13.2	na	18.62
MG	T11	6	0.11	0.11	0.00	85	1.24	9574	244	1	30.9	na	0.56	0.13	0.16	na	9.7	14.6	na	30.41
MG	T11	15	0.17	0.07	0.10	61	1.23	2373	167	2	32.0	na	0.42	0.34	0.14	na	16.0	14.7	na	45.28
MG MG	T11 T12	25 2.5	0.10 0.06	0.09 0.06	0.01 0.00	116 103	1.83 1.17	5704 2691	314 1012	1	60.2 27.8	na na	0.71 0.25	0.30 0.11	0.22	na na	23.1 7.6	22.8 13.8	na na	74.87 25.18
MG	T12	25	0.05	0.04	0.01	138	1.21	2783	1256	2	33.7	na	0.47	0.14	0.34	na	18.3	15.7	na	105.97
MG	T13	0	0.11	0.05	0.06	34	1.04	1719	278	1	24.0	na	0.25	0.19	0.08	na	9.8	12.3	na	36.25
MG MG	T13 T14	15 10	0.13 0.11	0.12 0.08	0.01 0.03	101 83	1.19 1.14	3422 2958	244 232	2 1	32.8 29.4	na na	0.65 0.61	0.14 0.14	0.22 0.14	na na	10.9 8.2	14.4 14.0	na na	79.63 59.41
MG	T15	5	0.74	0.74	0.00	251	1.14	14737	409	2	44.1	na	1.57	0.65	0.46	na	23.4	15.0	na	94.72
MG	T1	0-6	0.07	0.06	0.01	465	0.71	40100	2342	3	22.2	<0.1	2.69	0.05	0.14	25.2	1.9	9.5	2.53	34.30
MG	T2	0-5	0.09	0.06	0.03	186	1.13	16900	322	1	29.6	0.3	1.17	0.09	0.16	30.5	6.7	11.7	3.31	51.91
MG	Т3	0-15	0.55	0.06	0.49	404	1.27	19100	673	5	97.6	0.3	1.94	0.42	0.69	38.4	21.4	13.3	3.05	120.37
MG	T4	15-20	0.16	0.15	0.01	367	0.64	18900	1283	<1	13.2	<0.1	1.32	0.06	0.08	15.2	3.4	8.4	0.91	10.69
MG	T1	0-10	0.12	0.12	0.00	289	1.12	16000	589	1	35.7	0.2	2.09	0.09	0.36	45.1	3.9	13.8	2.87	59.76
MG	T2	0-10	0.07	0.07	0.00	210	0.69	24500	472	<1	20.5	0.2	1.32	0.03	0.07	23.1	1.1	8.8	2.58	7.98
MG MG	T3 T4	0-10 0-10	0.08 0.18	0.08 0.18	0.00	145 133	1.07 1.04	17000 13900	224 349	<1 1	27.7 41.6	0.2	1.08 0.95	0.08 0.28	0.25 0.34	29.8 26.5	4.4 9.4	11.8 10.6	3.14 2.60	27.09 82.09
MG	T5	0-10	0.43	0.33	0.10	307	1.37	17700	618	1	61.2	0.3	1.89	0.41	0.65	35.4	25.3	14.2	3.41	110.55
MG	T6	0-10	2.66	2.46	0.20	670	1.62	20500	749	2	171.0	0.7	4.13	0.40	1.63	47.6	80.4	16.2	3.54	153.34
MG	T7	0-10	0.23	0.23	0.00	123	1.15	9117	207	<1	26.5	0.2	0.84	0.33	0.25	28.1	14.3	12.6	3.02	67.49
MG	T8	0-10	0.16	0.08	0.08	110	1.12	9199	296	<1	24.8	0.1	0.70	0.25	0.18	27.9	10.3	12.0	2.80	56.91
MG	Т9	0-10	0.14	0.13	0.01	204	1.08	26600	567	<1	28.2	0.2	1.71	0.08	0.16	40.3	4.4	12.6	3.49	14.51
MG	T10	0-10	0.08	0.07	0.01	141	1.04	26600	235	<1	25.7	0.1	1.13	0.08	0.06	32.0	3.8	12.0	3.22	11.95
MG	T11	0-10	0.63	0.63	0.00	106	1.13	5365	248	<1	27.0	0.3	0.80	0.13	0.17	39.4	10.6	13.1	3.34	45.34
MG	T12	0-5	0.44	0.37	0.07	336	0.67	13000	2710	<1	24.7	0.1	1.59	0.04	0.25	29.7	2.2	10.0	1.96	37.51
MG	T13	0-5	0.09	0.08	0.01	160	1.08	1028	136	<1	22.8	0.2	0.86	0.14	0.38	39.4	8.5	11.2	2.90	101.37
MG	T14	0-5	0.35	0.35	0.00	25	0.84	1001	45	<1	20.7	0.2	0.17	0.12	0.10	30.0	5.2	11.7	1.97	27.61
MG	S28	0-5	1.72	1.12	0.60	914	0.34	1860	3496	<20	5.7	na	3.99	0.02	0.13	na	1.1	2.4	na	32.46

Gold District	Sample Site	Tailings Depth (cm)	Total carbon LECO (% dry wt.)	Organic carbon LECO (% dry wt.)	Inorganic carbon LECO (% dry wt.)	ICP-MS (µg/kg)	AI ICP-MS (% dry wt.) 0.01		-			Be ICP-MS (mg/kg) 0.1	-	Ca ICP-MS (% dry wt.) 0.01		_	Co ICP-MS (mg/kg) 0.1		Cs ICP-MS (mg/kg) 0.02	
		Min.	0.04	0.03	0.00	21	0.01	686	8.5	< 1	3.9	<0.1	0.13	<0.01	<0.01	4.9	0.5	0.5	0.10	2.21
	^	Max.	15.55	15.55	0.60	8085	2.64	209000	16990	5	171.0	0.7	21.69	1.02	1.63	59.9	80.4	24.9	3.54	198.39
1 9	ņ	Mean	0.44	0.37	0.08	504	0.89	16637	901	1	29.9	0.2	1.91	0.25	0.22	28.9	11.0	11.5	1.85	43.09
	2	Median	0.17	0.12	0.02	144	0.96	8789	268	1	22.9	0.2	0.76	0.13	0.16	28.0	7.7	11.4	1.62	28.60
'	3	n	100	100	100	100	100	100	100	47	100	29	100	95	99	36	100	100	36	100
(n	Std Dev	1.56	1.56	0.12	1311	0.43	29468	2181	1	26.8	0.1	4.00	0.23	0.22	12.1	12.3	4.4	1.15	40.86
	5																			
	<u>ק</u>	95th pctl	0.95	0.74	0.31	2257	1.49	40160	3597	3	95.7	0.3	7.63	0.73	0.65	48.4	25.4	19.5	3.43	125.16
1 3	ĭ	90th pctl	0.58	0.50	0.25	565	1.36	30552	1438	2	49.4	0.3	2.42	0.63	0.41	46.4	22.7	17.3	3.33	101.83
l d	0	75th pctl	0.39	0.20	0.11	293	1.14	19450	603	2	33.7	0.3	1.47	0.39	0.24	36.2	12.8	13.9	3.03	59.50
"	•	50th pctl	0.17	0.12	0.02	144	0.96	8789	268	1	22.9	0.2	0.76	0.13	0.16	28.0	7.7	11.4	1.62	28.60
		25th pctl	0.12	0.08	0.00	100	0.63	3142	159	1	15.2	0.1	0.38	0.08	0.10	22.6	3.9	8.4	0.81	12.56

Notes: na = not analyzed; DL = detection limit

Gold	Sample	Tailings Depth						In ICP-MS		La ICP-MS		Mg ICP-MS	Mn ICP-MS		Na ICP-MS		Ni ICP-MS	P ICP-MS		Rb ICP-MS
District	Site	(cm)	(% dry wt.) 0.01	(mg/kg) 0.1	(mg/kg) 0.1	(mg/kg) 0.02	(µg/kg) 5	(mg/kg) 0.02	(% dry wt.) 0.01	(mg/kg) 0.5	(mg/kg) 0.1	(% dry wt.) 0.01	(mg/kg) 1	(mg/kg) 0.01	(% dry wt.) 0.001	(mg/kg) 0.02	(mg/kg) 0.1	(% dry wt.) 0.001	(mg/kg) 0.01	(mg/kg) 0.1
Gold	envil	le Go	ld Dist	rict (0	GD)															
GD	T1	2	3.12	1.7	na	na	1637	na	0.09	7.4	na	0.39	184	0.87	0.002	na	8.3	0.047	94.50	na
GD	T1	10	3.67	3.5	na	na	2332	na	0.17	16.3	na	0.77	346	2.53	0.002	na	12.5	0.048	96.99	na
GD	T1	13	4.12	2.2	na	na	4008	na	0.10	16.3	na	0.47	286	2.00	0.002	na	10.7	0.074	201.29	na
GD	T2	1	3.79	1.6	na	na	897	na	0.08	5.8	na	0.34	112	1.09	0.001	na	9.1	0.055	173.82	na
GD	T2	3.5	4.26	1.5	na	na	980	na	0.07	5.6	na	0.33	101	1.08	0.001	na	9.3	0.039	176.85	na
GD	T2	8	2.29	1.7	na	na	88	na	0.09	6.2	na	0.40	114	0.66	0.001	na	9.0	0.040	28.02	na
GD	T3	1	1.66	1.7	na	na	111	na	0.08	12.0	na	0.42	275	0.51	0.002	na	12.4	0.051	28.90	na
GD	T3	21	1.76	2.1	na	na	219	na	0.14	14.7	na	0.50	487	0.33	0.001	na	20.4	0.052	19.15	na
GD	T4	1	2.06	1.6	na	na	325	na	0.07	9.4	na	0.39	145	0.38	0.002	na	8.1	0.042	28.11	na
GD	T5	1	1.30	1.8	na	na	52	na	0.11	11.4	na	0.41	301	0.62	0.001	na	12.2	0.036	11.07	na
GD	T5	8	2.25	3.0	na	na	418	na	0.19	24.9	na	0.69	474	0.80	0.002	na	42.4	0.071	27.95	na
GD	T6	1	3.40	2.8	na	na	354	na	0.15	22.6	na	0.70	395	0.44	0.002	na	16.2	0.055	33.70	na
GD	T6	17	2.38	1.9	na	na	171	na	0.11	12.5	na	0.48	191	0.40	0.001	na	10.8	0.058	25.81	na
GD	T7	1	3.16	1.9	na	na	2165	na	0.10	7.6	na	0.39	157	0.90	0.001	na	10.0	0.047	95.09	na
GD	T7	14	2.55	2.0	na	na	271	na	0.12	3.6	na	0.42	128	2.17	0.001	na	6.6	0.068	22.87	na
GD	T8	1	2.79	3.2	na	na	715	na	0.14	25.6	na	0.75	596	0.54	0.003	na	28.5	0.063	42.01	na
GD	T8	15	1.91	1.7	na	na	709	na	0.10	20.6	na	0.45	424	0.26	0.001	na	10.7	0.043	59.00	na
GD	T9	1	2.52	2.0	na	na	259	na	0.10	9.8	na	0.47	212	0.47	0.002	na	11.3	0.053	42.97	na
GD	T9	13	2.99	4.1	na	na	1579	na	0.19	18.2	na	0.88	462	0.74	0.003	na	15.7	0.062	61.16	na
GD	T10	1	2.16	1.5	na	na	744	na	0.08	7.5	na	0.42	174	0.56	0.001	na	7.1	0.040	34.17	na
GD	T10	8	1.93	2.0	na	na	294	na	0.12	9.3	na	0.46	222	0.87	0.001	na	11.9	0.050	25.31	na
GD	T10	20	4.82	1.5	na	na	330	na	0.06	8.2	na	0.33	140	2.38	0.001	na	11.7	0.037	51.20	na
GD	T11	1	1.57	1.9	na	na	166	na	0.11	15.3	na	0.46	510	1.09	0.002	na	24.5	0.044	16.05	na
GD	T11	10	1.93	2.0	na	na	187	na	0.11	15.9	na	0.48	566	0.57	0.001	na	47.4	0.049	14.66	na
GD	T12	1	2.68	3.8	na	na	1443	na	0.21	30.2	na	0.91	533	4.28	0.006	na	21.9	0.062	28.31	na
GD	T12	5	3.39	3.7	na	na	1430	na	0.19	31.4	na	0.84	956	3.04	0.005	na	24.6	0.066	30.66	na
GD	T12	19	2.96	4.1	na	na	1357	na	0.20	35.8	na	0.96	682	1.20	0.006	na	26.9	0.053	26.32	na

		Tailings	Fe	Ga	Ge	Hf	Hg	ln	K	La	Li	Mg	Mn	Мо	Na	Nb	Ni	Р	Pb	Rb
Gold District	Sample Site	Depth	ICP-MS (% dry wt.)		ICP-MS (mg/kg)		ICP-MS (µg/kg)	ICP-MS (mg/kg)	ICP-MS (% dry wt.)		ICP-MS (mg/kg)	ICP-MS (% dry wt.)	ICP-MS (mg/kg)	ICP-MS (mg/kg)	ICP-MS (% dry wt.)	ICP-MS (mg/kg)		ICP-MS (% dry wt.)	ICP-MS (mg/kg)	ICP-MS (mg/kg)
		(cm)	0.01	0.1	0.1	0.02	5	0.02	0.01	0.5	0.1	0.01	1	0.01	0.001	0.02	0.1	0.001	0.01	0.1
GD GD	T13	6	1.60 3.19	1.9 3.4	na na	na na	168 932	na na	0.11 0.21	16.4 30.5	na na	0.50 0.84	370 1445	0.71 2.68	0.002	na na	15.1 23.5	0.048 0.078	13.66 29.84	na na
GD	T13	8	2.80	4.1	na	na	1390	na	0.21	35.1	na	0.64	669	3.05	0.006	na	17.1	0.078	22.43	na
GD	T15	1	10.50	1.0	na	na	1696	na	0.05	5.9	na	0.20	107	3.88	0.001	na	4.8	0.039	53.43	na
GD	T15	5	0.37	0.1	na	na	165	na	0.02	8.4	na	0.03	13	0.96	0.002	na	0.8	0.003	5.98	na
GD GD	T15 T16	8 4	16.26 2.54	1.0 2.3	na	na na	6358	na	0.01 0.13	3.3 10.9	na	0.02 0.48	31 291	12.08 0.52	0.002 0.002	na	12.0 9.5	0.070 0.055	533.01 31.41	na
GD	T16	8	20.21	0.5	na na	na	686 11137	na na	0.13	3.1	na na	0.46	38	7.34	0.002	na na	29.6	0.033	797.20	na na
GD	T17	1	17.94	0.3	na	na	28652	na	0.01	3.3	na	0.01	7	3.07	0.002	na	7.6	0.031	1796.79	na
GD	T1	0-5	18.20	0.1	0.2	1.37	48455	0.29	0.01	2.9	0.7	0.02	<1	2.68	0.002	1.33	13.9	0.051	1967.86	1.2
GD	T2	0-5	2.75	1.9	0.1	0.05	1621	< 0.02	0.11	8.5	10.5	0.42	179	0.71	0.001	0.37	7.9	0.050	59.64	7.9
GD	Т3	0-5	12.11	1.1	<0.1	0.18	2481	0.08	0.04	7.5	2.3	0.08	37	9.20	0.001	1.41	33.0	0.066	387.06	3.3
GD	T4	0-5	3.06	2.0	0.1	0.11	243	0.02	0.11	8.3	10.4	0.45	178	0.68	0.001	0.30	10.5	0.052	59.01	8.6
GD	T5	0-5	2.33	2.4	<0.1	0.2	494	<0.02	0.19	22.6	17.0	0.71	510	0.68	0.002	0.16	22.0	0.063	23.43	13.3
GD	T1	0-5	2.08	2.0	0.1	0.08	201	<0.02	0.12	12.7	12.2	0.50	186	0.53	0.002	0.39	11.1	0.067	28.74	7.9
GD	T2	0-5	1.62	2.0	<0.1	0.08	93	<0.02	0.10	9.9	11.8	0.44	156	0.48	0.001	0.36	8.8	0.045	24.44	7.2
GD	Т3	0-5	2.64	3.9	0.1	0.54	1223	<0.02	0.25	29.0	23.6	0.93	551	4.54	0.004	0.10	24.1	0.073	29.35	16.6
GD	T4	0-5	2.38	2.7	0.1	0.33	567	<0.02	0.18	22.1	17.8	0.76	448	0.45	0.002	0.12	19.6	0.062	19.48	12.6
GD	T5	0-10	1.85	1.7	0.1	0.2	68	<0.02	0.10	5.4	8.5	0.36	110	0.25	0.001	0.18	6.6	0.051	11.51	6.5
GD	Т6	0-10	1.55	1.8	<0.1	0.13	145	<0.02	0.11	12.5	12.2	0.46	357	0.64	0.002	0.10	19.7	0.046	18.49	8.1
GD	T7	0-10	1.90	2.1	0.1	0.17	457	<0.02	0.13	11.7	11.5	0.44	326	0.76	0.002	0.14	14.6	0.051	35.09	8.7
GD	Т8	0-10	2.25	2.2	0.1	0.13	715	0.02	0.12	13.0	11.8	0.47	203	1.32	0.001	0.25	9.5	0.062	41.18	8.5
GD	Т9	0-10	1.82	2.0	0.1	0.22	387	<0.02	0.12	13.4	12.7	0.50	419	0.31	0.001	0.12	11.6	0.045	38.88	7.8
GD	T10	0-10	2.49	2.1	<0.1	0.15	1125	0.02	0.13	11.7	12.9	0.44	243	0.89	0.001	0.22	12.9	0.049	61.35	8.6
GD	T11	0-5	1.45	1.5	<0.1	0.12	293	<0.02	0.08	5.9	9.4	0.33	123	0.42	0.001	0.21	6.4	0.037	33.25	6.3
GD	T12	0-5	4.12	5.8	0.1	0.07	143	0.04	0.62	10.9	33.9	0.83	260	0.92	0.010	0.67	11.1	0.051	158.42	47.2
GD	T13	0-5	20.91	0.1	0.2	1.72	37400	0.26	0.01	2.9	0.1	<0.01	5	2.36	0.001	0.79	22.2	0.037	1404.02	0.7

Gold District	Sample Site	Tailings Depth (cm)	Fe ICP-MS (% dry wt.)		(mg/kg)	Hf ICP-MS (mg/kg)	Hg ICP-MS (µg/kg)	In ICP-MS (mg/kg)	K ICP-MS (% dry wt.)	La ICP-MS (mg/kg)	(mg/kg)		Mn ICP-MS (mg/kg)		(% dry wt.)	Nb ICP-MS (mg/kg)	(mg/kg)	P ICP-MS (% dry wt.)		Rb ICP-MS (mg/kg)
Mon	taque		Distri	0.1 Ct (M	0.1 G)	0.02	5	0.02	0.01	0.5	0.1	0.01	1	0.01	0.001	0.02	0.1	0.001	0.01	0.1
MG	T1	2.5	5.12	4.0	na	na	4034	na	0.26	23.4	na	0.89	2144	0.47	0.013	na	76.7	0.061	141.61	na
MG	T1	10	4.47	4.9	na	na	8392	na	0.51	14.4	na	1.21	643	0.39	0.008	na	52.6	0.079	125.90	na
MG MG	T2 T2	<u>1</u> 5	5.98 4.49	4.7 4.6	na na	na na	3537 3177	na na	0.29 0.39	18.7 12.3	na na	1.02 1.22	1653 658	0.46 0.29	0.008 0.004	na na	53.7 51.4	0.078 0.065	131.82 87.57	na na
MG	T3	0	2.80	2.8	na	na	245	na	0.21	17.2	na	0.62	292	0.13	0.005	na	15.0	0.043	34.97	na
MG	T3	25	3.27	3.1	na	na	2243	na	0.28	11.3	na	0.92	482	0.23	0.003	na	40.0	0.046	54.22	na
MG MG	T4 T4	7.5 20	5.22 2.63	4.4 3.6	na na	na na	6684 1916	na na	0.08 0.28	29.6 15.3	na na	0.51 0.78	8284 298	4.18 0.15	0.037 0.005	na na	51.6 21.2	0.121 0.051	167.93 21.92	na na
MG	T5	1	4.91	3.6	na	na	1243	na	0.20	8.8	na	0.83	582	0.13	0.006	na	50.0	0.031	60.48	na
MG	T5	6	2.79	3.2	na	na	873	na	0.32	11.3	na	0.93	479	0.13	0.003	na	28.9	0.045	26.25	na
MG MG	T6 T6	<u>0</u>	4.56 4.59	3.4	na	na	1392	na	0.32	10.1	na	0.80 0.76	706 1079	0.38	0.004 0.002	na	43.2	0.047	65.69	na
MG	T6	10	2.91	3.1	na na	na na	1585 1498	na na	0.30	7.3 10.5	na na	0.76	479	0.33	0.002	na na	41.6 34.6	0.039 0.045	68.36 43.59	na na
MG	T7	5	3.62	3.4	na	na	1058	na	0.32	10.1	na	0.82	500	0.25	0.003	na	36.2	0.049	52.93	na
MG	T7	15	2.72	3.5	na	na	1029	na	0.35	16.7	na	1.01	566	0.10	0.002	na	23.8	0.052	13.80	na
MG MG	T8 T10	2.5 5	7.05 5.32	3.0	na na	na na	3224 1388	na na	0.22	11.5 14.1	na na	0.47 0.72	146 200	1.27 0.55	0.002 0.002	na na	11.4 17.1	0.038 0.047	267.58 101.57	na na
MG	T10	15	4.78	3.5	na	na	1573	na	0.31	12.6	na	0.74	203	0.45	0.002	na	16.9	0.047	98.30	na
MG	T11	6	3.67	3.8	na	na	454	na	0.39	18.8	na	0.86	342	0.23	0.004	na	23.2	0.050	37.11	na
MG MG	T11 T11	15 25	2.96	3.9 5.8	na	na	746	na	0.40	26.0 33.2	na	0.93 1.21	778 734	0.10	0.003	na	53.0	0.051 0.078	15.25	na
MG	T12	2.5	4.16 2.86	3.6	na na	na na	1807 166	na na	0.66 0.35	18.0	na na	0.81	341	0.13	0.004 0.002	na na	61.5 22.5	0.078	35.82 16.57	na na
MG	T12	25	3.03	3.7	na	na	1584	na	0.44	27.5	na	0.81	496	0.14	0.002	na	29.9	0.052	17.24	na
MG	T13	0	2.40	3.2	na	na	450	na	0.32	20.6	na	0.74	411	0.08	0.002	na	23.8	0.045	10.62	na
MG MG	T13 T14	15 10	3.16 2.71	3.7 3.2	na na	na na	1512 703	na na	0.35 0.30	21.6 22.0	na na	0.81 0.77	344 316	0.10 0.10	0.003	na na	29.6 20.9	0.052 0.045	26.55 24.52	na na
MG	T15	5	4.46	3.5	na	na	2861	na	0.32	14.3	na	0.97	1111	0.10	0.003	na	48.6	0.052	107.56	na
MG	T1	0-6	6.01	3.1	0.2	0.24	2328	0.05	0.27	11.9	12.3	0.46	131	0.95	0.002	0.39	11.3	0.041	193.63	22.1
MG	T2	0-5	3.88	3.4	0.2	0.2	909	<0.02	0.35	14.0	21.4	0.74	233	0.31	0.002	0.16	21.2	0.053	70.33	29.4
MG	Т3	0-15	5.32	4.0	0.1	0.2	3146	0.03	0.25	18.6	25.7	0.80	907	0.50	0.006	0.55	38.8	0.061	153.08	22.7
MG	T4	15-20	3.60	2.0	0.1	0.11	499	0.03	0.13	7.0	11.9	0.46	149	1.43	0.001	0.48	12.2	0.050	67.53	9.1
MG	T1	0-10	5.50	3.4	0.1	0.23	1648	0.06	0.29	21.7	17.2	0.73	229	0.75	0.002	0.31	19.3	0.063	129.79	24.7
MG	T2	0-10	3.78	2.6	0.1	0.22	1153	0.02	0.30	11.5	10.0	0.48	119	0.36	0.002	0.29	9.6	0.042	64.98	21.5
MG	T3	0-10	4.14	3.3	0.1	0.23	1050	0.02	0.34	14.9	17.9	0.74	220	0.35	0.002	0.27	17.7	0.049	66.69	26.8
MG	T4	0-10	3.90	3.0	0.1	0.18	917	0.03	0.26	13.2	19.8	0.72	433	0.27	0.007	0.30	25.9	0.050	57.28	21.0
MG	T5	0-10	5.11	4.0	0.1	0.27	3164	0.04	0.34	17.2	26.5	0.99	918	0.35	0.005	0.39	49.0	0.070	109.26	26.2
MG	T6	0-10	7.54	3.6	0.1	0.07	6559	0.08	0.26	24.8	23.9	0.79	2506	0.75	0.011	0.70	71.5	0.089	257.85	20.7
MG	T7	0-10	3.56	3.3	0.1	0.25	1188	0.02	0.35	14.0	23.5	0.88	562	0.20	0.002	0.22	37.3	0.056	49.01	25.9
MG	T8	0-10	3.44	3.2	0.1	0.25	778	0.02	0.34	13.3	22.0	0.83	374	0.27	0.004	0.22	29.2	0.055	41.06	26.0
MG	T9	0-10	5.30	3.3	0.1	0.26	1086	0.05	0.35	19.8	16.9	0.71	195	0.53	0.002	0.41	18.6	0.057	89.02	29.1
MG	T10	0-10	4.08	3.3	0.1	0.23	3416	0.03	0.32	16.0	17.3	0.70	199	0.32	0.002	0.27	15.4	0.050	67.78	28.2
MG	T11	0-10	3.16	3.4	0.1	0.13	656	0.02	0.31	19.1	21.6	0.78	370	0.16	0.002	0.38	25.7	0.056	37.86	29.5
MG	T12	0-5	3.58	2.6	0.1	0.15	6230	0.04	0.20	14.7	11.2	0.45	133	0.51	0.002	0.30	9.0	0.044	51.18	15.2
MG	T13	0-5	2.54	3.0	0.1	0.3	751	<0.02	0.28	19.7	21.4	0.75	317	0.08	0.002	0.18	25.7	0.050	45.59	23.5
MG	T14	0-5	2.27	2.5	0.1	0.11	484	<0.02	0.22	15.1	18.4	0.57	232	0.38	0.003	0.22	17.2	0.050	13.66	18.1
MG	S28	0-5	1.02	1.1	na	na	69953	na	0.03	6.0	na	0.19	76	0.35	<0.001	na	4.1	0.022	356.70	na

Gold District	Sample Site	Tailings Depth (cm)	Fe ICP-MS (% dry wt.) 0.01		Ge ICP-MS (mg/kg) 0.1				K ICP-MS (% dry wt.) 0.01			Mg ICP-MS (% dry wt.) 0.01		Mo ICP-MS (mg/kg) 0.01	-		Ni ICP-MS (mg/kg) 0.1	P ICP-MS (% dry wt.) 0.001		Rb ICP-MS (mg/kg) 0.1
		Min.	0.37	0.1	<0.1	< 0.02	<5	< 0.02	0.01	2.9	0.1	0.01	<1	0.08	< 0.001	< 0.02	8.0	0.003	5.98	0.7
	^	Max.	20.91	5.8	0.2	1.72	69953	0.29	0.66	35.8	33.9	1.22	8284	12.08	0.037	1.41	76.7	0.121	1967.9	47.2
9	?	Mean	4.19	2.7	0.1	0.26	3318	0.06	0.21	14.8	15.5	0.62	495	1.13	0.003	0.37	22.6	0.053	129.59	16.7
	2	Median	3.14	3.0	0.1	0.20	1040	0.03	0.19	13.4	14.9	0.70	317	0.52	0.002	0.30	18.2	0.051	44.59	15.9
	3	n	100	100	30	36	100	22	100	100	36	99	99	100	99	36	100	100	100	36
	<u>0</u>	Std Dev	3.76	1.2	0.0	0.33	9446	0.07	0.13	7.6	7.2	0.27	882	1.81	0.004	0.29	15.5	0.014	303.55	10.2
	ק	95th pctl	12.32	4.4	0.2	0.75	8529	0.25	0.39	30.2	25.9	0.99	1144	4.19	0.008	0.93	52.6	0.078	394.36	29.4
÷	ٽ	90th pctl	5.98	4.0	0.2	0.32	4254	0.08	0.35	25.6	23.8	0.93	804	2.72	0.006	0.69	48.6	0.070	194.40	28.7
Ċ	0	75th pctl	4.46	3.5	0.1	0.24	1834	0.05	0.30	18.9	21.4	0.82	510	0.95	0.003	0.39	29.0	0.061	95.57	25.0
•	-	50th pctl	3.14	3.0	0.1	0.20	1040	0.03	0.19	13.4	14.9	0.70	317	0.52	0.002	0.30	18.2	0.051	44.59	15.9
		25th pctl	2.38	1.9	0.1	0.13	410	0.02	0.11	9.4	11.4	0.45	179	0.31	0.001	0.20	11.1	0.045	26.49	8.1

Notes: na = not analyzed; DL = detection limit

Gold	Sample	Tailings Depth	Re ICP-MS			Sc ICP-MS			_	_			Ti ICP-MS				W ICP-MS			Zr ICP-MS
District	Site	(cm)	(µg/kg) 1	(% dry wt.) 0.02	(mg/kg) 0.02	(mg/kg) 0.1	(mg/kg) 0.1	(mg/kg) 0.1	(mg/kg) 0.5	(mg/kg) 0.05	(mg/kg) 0.02	(mg/kg) 0.1	(% dry wt.) 0.001	(mg/kg) 0.02	(mg/kg) 0.1	(mg/kg) 2	(mg/kg) 0.1	(mg/kg) 0.01	(mg/kg) 0.1	(mg/kg) 0.1
Gold	envil	le Go	ld Di	strict (GD)															
GD	T1	2	na	0.10	19.13	0.6	0.3	na	11.2	na	0.45	3.1	0.021	0.07	0.2	6	3.4	na	26.2	na
GD	T1	10	na	0.03	10.76	1.1	0.3	na	12.8	na	0.36	5.7	0.025	0.10	0.6	12	1.7	na	48.6	na
GD	T1	13	na	0.05	20.14	0.7	0.5	na	15.0	na	1.35	5.8	0.023	0.08	0.3	9	3.5	na	31.0	na
GD	T2	1	na	0.34	34.52	0.5	0.6	na	8.7	na	0.87	3.9	0.021	0.08	0.3	6	9.2	na	25.3	na
GD	T2	3.5	na	0.32	29.54	0.5	0.6	na	2.6	na	0.82	3.7	0.022	0.09	0.2	5	12.7	na	22.8	na
GD	T2	8	na	0.04	1.33	0.4	0.1	na	8.2	na	0.12	2.5	0.020	0.05	0.2	6	0.3	na	31.5	na
GD	T3	1	na	< 0.01	2.64	0.5	0.1	na	16.8	na	0.07	3.6	0.021	0.06	0.3	6	1.0	na	44.1	na
GD	T3	21	na	0.02	0.85	0.7	<0.1	na	23.5	na	0.05	3.3	0.025	0.07	0.3	6	0.4	na	50.6	na
GD	T4	1	na	0.03	4.12	0.5	0.1	na	11.9	na	0.09	2.8	0.020	0.05	0.2	4	0.4	na	33.1	na
GD	T5	1	na	0.01	0.77	0.5	<0.1	na	28.2	na	0.02	2.8	0.020	0.05	0.2	6	0.1	na	33.9	na
GD	T5	8	na	0.20	2.55	1.0	0.1	na	43.9	na	0.06	5.6	0.033	0.12	0.5	11	0.9	na	67.6	na
GD	T6	1	na	0.01	8.54	0.9	0.3	na	26.4	na	0.25	6.8	0.030	0.11	0.4	8	1.7	na	48.9	na
GD	T6	17	na	0.04	5.88	0.6	0.1	na	15.1	na	0.14	4.3	0.023	0.07	0.3	5	0.9	na	36.2	na
GD	T7	1	na	0.21	23.72	0.6	0.4	na	9.9	na	0.58	3.9	0.021	0.07	0.3	5	4.6	na	27.3	na
GD	T7	14	na	0.10	3.24	0.6	0.1	na	16.2	na	0.10	2.7	0.024	0.07	0.2	6	0.9	na	38.2	na
GD	T8	1	na	<0.01	3.76	1.1	0.1	na	23.1	na	0.11	6.5	0.026	0.09	0.5	11	1.4	na	67.6	na
GD	T8	15	na	0.01	6.17	0.6	0.2	na	11.5	na	0.17	4.7	0.021	0.07	0.4	5	0.8	na	31.9	na
GD	T9	1	na	0.09	9.70	0.6	0.2	na	14.6	na	0.21	7.0	0.022	0.07	0.8	7	2.3	na	31.7	na
GD	T9	13	na	0.02	2.90	1.3	0.1	na	17.0	na	0.13	8.9	0.024	0.10	0.7	13	1.8	na	58.4	na
GD	T10	1	na	0.05	7.33	0.5	0.1	na	11.6	na	0.18	3.1	0.021	0.05	0.2	4	2.2	na	23.9	na
GD	T10	8	na	0.02	2.34	0.6	0.1	na	11.5	na	0.11	3.7	0.023	0.06	0.3	5	0.7	na	34.5	na
GD	T10	20	na	0.17	28.49	0.6	0.4	na	2.6	na	0.42	4.1	0.023	0.12	0.2	3	2.2	na	22.3	na
GD	T11	1	na	0.02	1.02	0.6	0.1	na	33.7	na	0.04	3.5	0.023	0.06	0.3	7	0.4	na	47.3	na
GD	T11	10	na	0.05	0.88	0.6	<0.1	na	23.6	na	0.04	3.8	0.023	0.06	0.3	7	0.4	na	84.3	na
GD	T12	1	na	0.08	2.71	1.4	0.2	na	73.2	na	0.08	7.3	0.026	0.10	0.7	12	1.7	na	66.9	na
GD	T12	5	na	0.04	1.69	1.4	0.1	na	36.0	na	0.06	8.1	0.027	0.09	0.7	13	1.5	na	69.8	na
GD	T12	19	na	0.12	0.94	1.4	0.1	na	54.9	na	0.04	8.3	0.021	0.09	1.0	14	0.6	na	67.9	na

		Tailings	Re	S	Sb	Sc	Se	Sn	Sr	Та	Те	Th	Ti	TI	U	V	W	Υ	Zn	Zr
Gold District	Sample Site	Depth	ICP-MS	ICP-MS (% dry wt.)	ICP-MS (mg/kg)		ICP-MS (% dry wt.)		ICP-MS (mg/kg)		ICP-MS (mg/kg)	ICP-MS (mg/kg)		ICP-MS (mg/kg)						
DISTRICT	Site	(cm)	(μg/kg) 1	0.02	0.02	0.1	0.1	0.1	0.5	0.05	0.02	0.1	0.001	0.02	0.1	2	0.1	0.01	0.1	0.1
GD	T13	1	na	0.03	1.56	0.7	0.1	na	51.5	na	0.05	3.9	0.022	0.06	0.3	6	0.7	na	39.8	na
GD GD	T13	6 8	na na	0.03	2.63	1.4 1.6	0.1	na na	72.7 54.6	na na	0.07	7.3 8.1	0.031 0.026	0.11	0.6	12 14	1.9	na na	67.6 64.5	na na
GD	T15	1	na	0.15	65.00	0.4	0.8	na	7.0	na	1.79	2.1	0.013	0.09	0.1	2	0.8	na	12.6	na
GD	T15	5	na	0.03	6.56	0.1	0.2	na	0.6	na	0.25	1.8	0.002	<0.02	0.2	< 2	0.1	na	1.9	na
GD GD	T15 T16	<u>8</u> 4	na na	1.58 0.06	597.39 7.05	0.9	9.5 0.2	na na	1.4 13.0	na na	28.48 0.18	4.8 3.9	0.023 0.024	0.18	0.2	< 2 7	1.6 1.0	na na	14.4 29.0	na na
GD	T16	8	na	2.25	359.19	0.0	6.4	na	3.3	na	8.42	2.8	0.024	0.00	0.3	< 2	30.0	na	13.6	na
GD	T17	1	na	2.19	260.98	0.3	6.0	na	6.5	na	8.88	1.0	0.014	0.22	0.1	< 2	65.8	na	12.9	na
GD	T1	0-5	<1	2.54	291.54	<0.1	5.5	1.9	7.8	<0.05	9.17	0.9	0.013	0.29	0.1	<2	54.8	0.46	36.5	44.4
GD	T2	0-5	<1	0.07	11.68	0.8	0.1	0.2	11.9	<0.05	0.25	3.5	0.020	0.08	0.3	6	5.9	3.48	28.0	3.4
GD	Т3	0-5	<1	1.92	162.50	0.4	2.5	0.2	2.9	<0.05	5.56	3.7	0.022	0.19	0.3	2	1.4	1.44	9.3	6.4
GD	T4	0-5	<1	0.10	14.25	0.6	0.1	0.1	15.4	<0.05	0.36	3.1	0.023	0.07	0.3	7	7.2	3.47	52.3	3.4
GD	T5	0-5	<1	0.11	3.83	1.0	<0.1	0.1	57.1	<0.05	0.06	7.0	0.031	0.10	0.7	9	3.0	6.87	57.8	6.7
GD	T1	0-5	<1	0.01	3.83	0.7	<0.1	0.1	13.0	<0.05	0.13	4.4	0.025	0.08	0.5	8	6.0	3.73	37.2	4.2
GD	T2	0-5	<1	<0.01	2.48	0.6	0.2	0.1	9.9	<0.05	0.06	3.3	0.022	0.07	0.4	7	0.9	3.46	34.3	3.8
GD	T3	0-5	2	0.12	1.50	1.3	0.1	0.2	76.5	<0.05	0.03	6.8	0.030	0.12	0.9	12	1.9	7.70	67.3	17.8
GD	T4	0-5	1	0.15	4.73	0.9	0.1	0.1	40.1	<0.05	0.11	5.6	0.028	0.10	0.6	9	2.3	6.35	57.8	10.6
GD	T5	0-10	<1	0.03	5.06	0.5	0.1	0.1	7.5	<0.05	0.07	2.9	0.019	0.06	0.3	6	1.3	2.49	23.8	6.3
GD	Т6	0-10	<1	<0.01	1.00	0.6	0.2	0.1	28.2	<0.05	0.04	2.9	0.020	0.07	0.3	6	0.4	3.33	43.2	4.3
GD	T7	0-10	<1	<0.01	4.20	0.7	0.2	0.1	11.8	<0.05	0.15	3.3	0.022	0.11	0.4	6	1.8	3.92	36.6	5.9
GD	T8	0-10	<1	0.03	11.01	0.8	0.2	0.1	15.6	<0.05	0.43	3.8	0.023	0.09	0.4	7	2.9	3.74	34.2	5.6
GD	Т9	0-10	1	0.01	2.62	0.7	0.2	0.1	9.8	<0.05	0.06	3.7	0.020	0.07	0.4	6	0.5	3.97	36.2	6.7
GD	T10	0-10	1	0.06	12.38	0.8	0.4	0.2	10.2	<0.05	0.36	3.6	0.022	0.09	0.4	7	2.4	3.67	37.0	5.9
GD	T11	0-5	1	0.02	5.30	0.5	0.1	0.1	8.4	<0.05	0.11	2.3	0.017	0.05	0.3	5	0.6	2.36	25.7	4.8
GD	T12	0-5	<1	0.31	9.36	3.2	0.6	1.2	8.1	<0.05	0.18	3.9	0.085	0.40	0.6	33	0.2	3.62	90.1	3.1
GD	T13	0-5	2	3.83	340.28	0.1	5.4	1.2	5.6	<0.05	6.97	1.0	0.007	0.27	0.2	<2	68.4	0.54	16.8	49.9

Gold District	Sample Site	Tailings Depth (cm)	Re ICP-MS (µg/kg)	S ICP-MS (% dry wt.) 0.02	Sb ICP-MS (mg/kg) 0.02	Sc ICP-MS (mg/kg) 0.1	Se ICP-MS (mg/kg) 0.1	Sn ICP-MS (mg/kg) 0.1	Sr ICP-MS (mg/kg) 0.5	Ta ICP-MS (mg/kg) 0.05	Te ICP-MS (mg/kg) 0.02	Th ICP-MS (mg/kg) 0.1	Ti ICP-MS (% dry wt.) 0.001	TI ICP-MS (mg/kg) 0.02	U ICP-MS (mg/kg) 0.1			Y ICP-MS (mg/kg) 0.01	Zn ICP-MS (mg/kg) 0.1	
Mont	ague	Gold	Dist	rict (M																
MG	T1	2.5	na	0.11	21.60	1.7	1.0	na	43.4	na	2.79	5.5	0.060	0.29	0.6	26	1.0	na	348.0	na
MG	T1 T2	10 1	na	0.87	19.10	2.0	0.7	na	23.2	na	1.55	4.4	0.075	0.34	0.9	19	0.9	na	208.3	na
MG MG	T2	5	na na	0.29 0.83	21.77 21.89	1.8 1.6	0.8	na na	44.5 20.6	na na	2.57 1.73	4.9 4.5	0.077 0.076	0.28	0.6	24 17	1.0 0.9	na na	270.6 237.3	na na
MG	T3	0	na	0.03	7.09	0.9	0.2	na	10.9	na	0.59	4.3	0.042	0.15	0.4	12	0.1	na	62.7	na
MG	T3	25	na	0.66	14.82	1.2	0.6	na	17.9	na	1.07	3.7	0.050	0.20	0.5	12	0.4	na	217.8	na
MG MG	T4 T4	7.5 20	na na	0.22 0.13	2.85 3.25	2.0 1.1	4.5 0.2	na na	18.4 7.3	na na	0.38	2.3 4.0	0.023 0.061	0.28	1.4 0.5	146 15	1.1 0.1	na na	192.2 80.6	na na
MG	T5	1	na	0.56	23.23	1.2	0.8	na	22.2	na	1.77	3.1	0.057	0.22	0.4	14	1.1	na	158.3	na
MG	T5	6	na	0.29	6.29	1.2	0.2	na	17.7	na	0.41	3.6	0.053	0.19	0.4	12	0.1	na	93.3	na
MG MG	T6 T6	0 4	na	0.51 0.68	23.06 22.18	1.2 1.0	0.8	na na	24.2 28.9	na	1.86 1.54	3.1 2.5	0.054 0.049	0.23	0.4	14 11	0.7 0.4	na na	162.4 106.4	na na
MG	T6	10	na na	0.00	8.20	1.1	0.8	na	16.6	na na	0.72	3.5	0.049	0.20	0.4	12	0.4	na	129.2	na
MG	T7	5	na	0.45	16.75	1.2	0.6	na	17.9	na	1.30	3.3	0.054	0.22	0.4	13	0.7	na	134.1	na
MG	T7	15	na	0.09	1.80	1.3	0.1	na	21.5	na	0.15	4.0	0.060	0.19	0.4	14	<0.1	na	83.5	na
MG MG	T8 T10	2.5 5	na na	0.22 0.14	102.10 37.75	1.0 1.3	3.1 1.2	na na	4.4 5.8	na na	6.16 2.57	3.0 3.5	0.042 0.051	0.26	0.3	14 14	0.7 0.9	na na	41.1 54.1	na na
MG	T10	15	na	0.12	32.05	1.2	1.0	na	6.2	na	2.16	3.3	0.053	0.25	0.4	14	0.3	na	51.9	na
MG	T11	6	na	0.03	12.38	1.2	0.3	na	8.3	na	0.82	3.9	0.070	0.25	0.4	17	0.4	na	81.5	na
MG MG	T11 T11	15 25	na na	0.03	3.63 5.35	1.5 2.4	0.1	na na	15.1 20.0	na na	0.20	5.8 6.6	0.072 0.114	0.23	0.5 0.7	15 23	0.2	na na	193.4 248.1	na na
MG	T12	2.5	na	0.03	2.45	1.1	0.1	na	8.4	na	0.33	5.3	0.066	0.23	0.8	17	<0.1	na	77.0	na
MG	T12	25	na	0.02	2.80	1.5	0.2	na	9.1	na	0.21	6.0	0.077	0.28	0.6	15	0.2	na	83.7	na
MG MG	T13	0 15	na	0.01 0.01	1.52 4.11	1.1	0.1	na	10.7 9.1	na	0.14	4.4 4.3	0.056	0.19	0.4	13 16	<0.1	na	75.0	na
MG	T14	10	na na	<0.01	2.86	1.3	0.2	na na	9.1	na na	0.37	5.0	0.068	0.24	0.5 0.5	16	0.4	na na	128.8 79.7	na na
MG	T15	5	na	0.35	18.23	1.4	0.8	na	31.4	na	1.68	4.6	0.061	0.26	0.5	18	1.1	na	228.4	na
MG	T1	0-6	<1	0.18	60.36	1.2	2.3	0.2	4.2	<0.05	4.31	3.8	0.047	0.30	0.4	13	1.6	1.70	38.0	8.1
MG	T2	0-5	2	0.04	15.61	1.3	0.6	0.2	8.0	<0.05	1.37	3.9	0.063	0.28	0.4	14	0.5	2.84	68.9	7.7
MG	Т3	0-15	<1	0.17	17.90	1.5	0.9	0.6	33.9	<0.05	2.35	5.2	0.068	0.27	0.6	21	0.9	4.08	207.5	9.7
MG	T4	15-20	<1	0.20	22.73	0.7	0.3	0.1	6.9	<0.05	0.56	3.5	0.026	0.09	0.3	6	2.1	2.51	39.0	4.1
MG	T1	0-10	<1	0.12	36.50	1.4	1.4	0.9	6.6	<0.05	2.60	6.3	0.051	0.30	0.6	18	3.3	2.74	65.6	10.0
MG	T2	0-10	<1	0.17	24.14	0.8	0.8	0.2	2.2	<0.05	1.88	3.5	0.050	0.24	0.4	13	0.3	1.03	33.4	8.6
MG MG	T3 T4	0-10 0-10	<1 <1	0.08 0.27	21.46 16.69	1.3 1.1	0.7 0.5	0.3	5.8 17.6	<0.05 <0.05	1.62 1.27	4.3 4.1	0.055 0.048	0.29	0.5 0.5	16 16	0.1	2.15 2.48	59.4 119.2	8.8 8.6
MG	T5	0-10	<1	0.41	22.87	1.6	1.0	0.4	29.8	<0.05	1.99	5.5	0.068	0.32	0.7	21	1.8	3.64	240.7	12.5
MG	T6	0-10	<1	0.10	25.40	2.0	1.9	1.3	33.2	<0.05	3.63	5.2	0.053	0.38	1.1	49	0.8	6.14	396.5	6.0
MG	T7	0-10	<1	0.19	12.34	1.3	0.6	0.2	19.8	<0.05	0.96	4.3	0.055	0.26	0.5	16	0.7	2.70	151.2	9.6
MG	T8	0-10	1	0.24	13.11	1.0	0.4	0.2	13.8	<0.05	0.93	4.2	0.053	0.25	0.5	15	0.9	2.25	109.3	9.3
MG	T9	0-10	<1	0.05	38.36	1.2	1.0	0.2	6.7	<0.05	2.27	5.5	0.060	0.32	0.5	19	2.2	2.39	57.0	9.1
MG	T10	0-10	<1	0.10	21.39	1.1	0.6	0.2	5.8	<0.05	1.37	4.5	0.056	0.27	0.5	17	0.4	1.99	51.9	9.5
MG	T11	0-10	<1	0.04	6.57	1.2	0.3	0.2	9.5	<0.05	0.71	4.9	0.061	0.27	0.5	20	0.3	2.70	89.1	7.6
MG	T12	0-5	<1	0.22	23.67	0.9	0.9	0.5	4.4	<0.05	1.61	4.1	0.034	0.19	0.5	13 14	1.4	1.59	47.4 176.1	8.3
MG MG	T13 T14	0-5 0-5	<1 1	0.02	2.56 1.72	0.8	<0.1	8.7 0.5	6.6 7.7	<0.05	0.13	5.3 3.7	0.051	0.22	0.6	12	0.1	2.61	176.1 55.7	12.6 5.2
MG	S28	0-5	na	<0.02	2.00	0.2	1.3	na	2.8	na	0.04	1.3	0.010	0.15	0.1	11	0.5	na	35.6	na
-							_										_			

Gold District	Sample Site	Tailings Depth (cm)	ICP-MS	S ICP-MS (% dry wt.) 0.02			Se ICP-MS (mg/kg) 0.1	_	_			_	Ti ICP-MS (% dry wt.) 0.001		_					Zr ICP-MS (mg/kg) 0.1
		Min.	<1	<0.01	0.77	<0.1	<0.1	0.1	0.6	< 0.05	< 0.02	0.9	< 0.001	< 0.02	<0.1	<2	<0.1	0.46	1.9	3.1
	^	Max.	2	3.83	597.39	3.2	9.5	8.7	76.5	0.00	28.48	8.9	0.114	0.40	1.4	146	68.4	7.70	396.5	49.9
1 2	ί (Mean	1	0.30	32.49	1.0	0.9	0.6	18.1	#DIV/0!	1.43	4.3	0.038	0.17	0.4	13	3.7	3.12	80.2	9.7
2.	2	Median	1	0.10	8.37	1.0	0.3	0.2	12.4	#NUM!	0.36	3.9	0.028	0.15	0.4	12	0.9	2.72	54.9	7.7
-	5	n	9	93	100	99	93	36	100	0	100	100	100	99	100	94	97	36	100	36
	<u>0</u>	Std Dev	0	0.60	84.52	0.5	1.6	1.4	16.0	#DIV/0!	3.29	1.6	0.021	0.10	0.2	15	11.2	1.59	73.9	9.6
†	ומו	95th pctl	2	1.72	167.42	1.8	4.9	1.5	54.6	#NUM!	6.20	7.3	0.075	0.32	0.9	23	9.9	6.48	237.5	24.5
		90th pctl	2	0.64	37.81	1.5	1.8	1.2	40.4	#NUM!	2.62	6.6	0.068	0.29	0.7	19	3.9	5.11	194.8	12.6
Ú	0	75th pctl	2	0.22	21.96	1.3	0.8	0.4	23.1	#NUM!	1.57	5.2	0.054	0.25	0.5	15	1.8	3.69	85.5	9.5
_	•	50th pctl	1	0.10	8.37	1.0	0.3	0.2	12.4	#NUM!	0.36	3.9	0.028	0.15	0.4	12	0.9	2.72	54.9	7.7
		25th pctl	1	0.03	2.84	0.6	0.1	0.1	7.8	#NUM!	0.11	3.3	0.022	0.08	0.3	6	0.4	2.23	34.3	5.5

Notes: na = not analyzed; DL = detection limit

ATTACHMENT E Nova Scotia Lands Inc. Contractors Health and Safety Plan

Nova Scotia Lands Inc. Contractor Health and Safety Program

Site Decommissioning/Redevelopment 2017/2018

Contact: George MacNeil

Health & Safety Coordinator

902-564-7940

Nova Scotia Lands Inc., Written July 2001 Contractor Health and Safety Program

Nova Scotia Lands Inc., 2017/2018 Rev. May 2018

Table of Contents

1. Introduction

- 1-01 Nova Scotia Lands Inc. Health and Safety Policy
- 1-02 Nova Scotia Lands Inc. Contractor Health and Safety Program
 - Figure 1-02(a) Contractor Health and Safety Program Elements

2. Requirements of Contractors

- 2-01 Purpose and Description
- 2-02 Governing Authorities
- 2-03 Record Keeping
- 2-04 Fitness to Work
- 2-05 Site Security and Gate Access
- 2-06 Traffic / Parking Regulations
- 2-07 Mobile Equipment / Cranes and Certification
- 2-08 Embedded Services Locate Request
- 2-09 Equipment and / or Work Area Isolation
- 2-10 Barrier and Barrier Tape
- 2-11 Personal Protective Equipment
- 2-12 Confined Space Entry
- 2-13 Purging Procedures
- 2-14 Emergency Response Plan (ERP)
- 2-15 Communication
- 2-16 Workplace Inspections
- 2-17 Accident Investigations
- 2-18 Regulated Substances
- 2-19 Chemical Management and Transportation of Dangerous Goods (TDG)
- 2-20 Reporting Environmental Incidents
- 2-21 Electrical Equipment Areas
- 2-22 Working On or Near Live Electrical Equipment (750 Volts AC or DC and Below)
- 2-23 Scaffolds
- 2-24 Controlling Air Emissions
- 2-25 Spill Control and Response
- 2-26 Waste Management

3. Commitment and Registration

3-01 Commitment Agreement

Contractor Health and Safety Program

Table of Contents

4. Contractor Employee Orientation4-01 Contractor Employee Orientation

5. Safe Work Permit Meeting & Site Specific Information

5-01 Safe Work Permit Meeting

6. Appendix

6-01 Appendix

- Safe Work Permit
- Acknowledgement of Training

Contractor Health and Safety Program

Nova Scotia Lands Inc., 2016/2017

Introduction

1-01 Nova Scotia Lands Inc. Health and Safety Policy

At Nova Scotia Lands Inc. worksites, there is nothing more important than the health and safety of our employees and the people working on site.

We are committed to:

- Integrating health and safety practices into all aspects of our work on various sites.
- Providing innovative and preventive health and safety programs. We will continually optimize the effectiveness and integrity of our programs through open communications, comprehensive training and education, audits and workplace assessments;
- Developing understanding among those in leadership of their personal responsibilities and their accountability to provide a safe and healthful workplace;
- Developing understanding among all employees, contractors and their employees of their personal responsibility to work safely, their accountability for individual performance and the assignment of appropriate authority to implement these responsibilities, and;
- Meeting or exceeding the requirements of applicable legislation and regulations for performance in health and safety matters.
- At each site controlled by Nova Scotia Lands Inc., there will be a
 designated Health and Safety Representative, a designated
 Environmental Representative as well as a Site Supervisor. Prior to the
 start of work on each site, a site-specific hazard assessment is to be
 conducted and Safe Work Permit completed. Emergency contact numbers
 are to be made available to all workers as well as hospital location and
 direction.

Contractor Health and Safety Program

Nova Scotia Lands Inc., 2016/2017

Introduction

1-02 Nova Scotia Lands Inc. Health and Safety Policy

Background

This procedure manual is designed to provide the practices and procedures to ensure the safety of all employees, contractors, subcontractors, suppliers and their employees who will be working at Nova Scotia Lands Inc. controlled sites during this period.

Nova Scotia Lands Inc. is committed to the Health and Safety of all of its employees, and expects the same commitment by each contractor to its own employees. This program was developed for use by all contractors who perform work or provide services on NSLI Sites. Contractors include all on site service providers, construction contractors, outside carriers and all subcontractors.

The conservation and protection of our natural environment is a fundamental consideration and the responsibility of every employee on the Site. In addition to Health and Safety commitments, environmental assurances are expected by each contractor to its employees.

This program does not cover all of the sites-specific or even project-specific health and safety issues that may arise. This manual is by no means meant to be all inclusive of the requirements of the Occupational Health and Safety Act & Regulations for the province of Nova Scotia or any other applicable regulations.

Contractor Health and Safety Program Elements

The Contractor Health and Safety Program has six elements. These include:

1. Contractor Pre-Qualification

All new contractors must complete the Contractor Pre-Qualification requirements. Prior to doing work at these Sites, all Contractors must provide their Contractor's Health and Safety Program and Safety Policy Statement , W.C.B. experience rating and be members in good standing. Provide proof of Liability Insurance and be a member in good standing with a recognized safety organization. References may also be requested.

2. Requirements of Contractor

This element of our program is a compilation of the specific information that the Contractor needs to know before and be aware of during the performance of work at these sites in order to ensure compliance with our program. Not all information in this section applies to all contractors. It is up to the individual contractors to review this element and understand the applicable sections based on the work or service that they will be providing on these sites.

Nova Scotia Lands Inc., 2016/2017

Introduction

Nova Scotia Lands Inc. Health and Safety Policy

3. Commitment and Registration

This element of our program includes two (2) copies of the "The Site Contractors Health and Safety Program Commitment Agreement". This Commitment Agreement is to be signed and dated (after reviewing the "Requirements of Contractors") by a representative of the Contractor who has the authority to commit the Contractor Company to comply with Nova Scotia Lands Inc. Contractor Health and Safety Program. One copy is to be returned to the Site Health and Safety Coordinator and one copy is to be retained by the Contractor.

4. Contractor Employee Orientation

In this program element, the Contractor is responsible to issue and review the provided orientation with each contractor employee working at the Site at the beginning of work, and review monthly as conditions change. After review of the orientation, the contractor employee will complete and sign the acknowledgment section.

Contractor employees will not be allowed to work at these site unless they have had the provided orientation reviewed with them within the last year. The review of the orientation is the responsibility of the Contractor and must be done by competent persons.

Copies of this Program are available from the Site H & S Coordinator.

Contractor employees must have the orientation review prior to arriving on site, but in no circumstances will they be allowed to commence work without a review.

5. Safe Work Permit Meeting and Site Specific Information

Prior to doing any work at these sites, the Contractor and all Sub Contractors must attend a Safe Work Permit Meeting with Site Management to review the Site specific hazards and requirements necessary to ensure the work will be done in a safe manner. This information must be reviewed prior to starting the job with all contractor employees who will be at the Site. This information will form the basis for the Contractor to perform their own Site Hazard Assessment, Site Specific Health and Safety Plan and Safe Work Procedures.

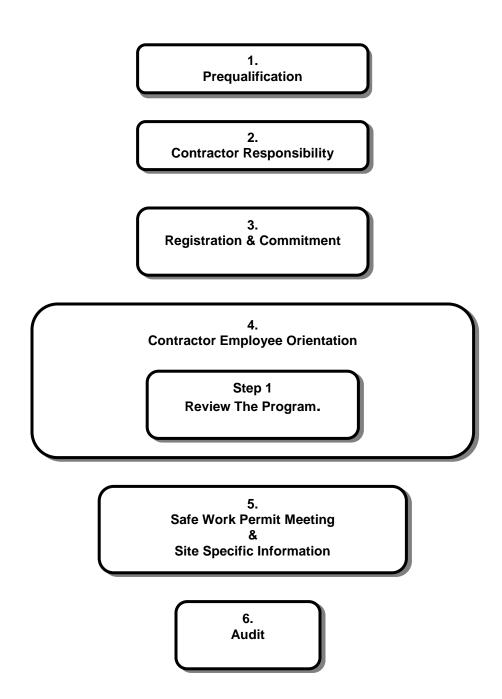
Nova Scotia Lands Inc., 2016/2017

Introduction

Nova Scotia Lands Inc. Health and Safety Policy

In addition, there is to be a review of the Safe Work Permit each day by the Contractor Site Supervisor with his or her employees before commencing work. Where there is an established sector of work, location, conditions, and hazards and they will not change during a month, then a monthly safe work permit meeting can be held.

Outside Carriers, Delivery, Pickup, personnel are generally not required to have a safe work permit and site specific meeting unless the scope of the service that they provide will go beyond the routine delivery / pickup of commodities at approved points within these sites.


6. Audit for Compliance

This element of the Nova Scotia Lands Inc. Contractor Health and Safety Program outlines the specific information that the Contractor needs to know before and be aware of during the performance of work at these sites in order to ensure compliance with our program.

The Site H&S Coordinator will be conducting audits on a regular basis to assess the level of program compliance. The audit will be based upon the rules, responsibilities and safe work practices contained in this Nova Scotia Lands Inc. Contractor Health and Safety Program.

1-02(a) Nova Scotia Lands Inc. Health and Safety Policy

Figure 1-02(a) Contractor Health and Safety Program Elements

Nova Scotia Lands Inc., 2016/2017

Requirements of Contractors

2-01 Purpose and Description

This element of the Nova Scotia Lands Inc. Contractor Health and Safety Program outlines the specific information that the Contractor needs to know before and be aware of during the performance of work at these sites in order to ensure compliance with our program.

It is a clear expectation that all Contractors must comply with all current Federal and Provincial Health and Safety and Environmental Legislation. It is also a clear expectation that Contractors provide competent employees and supervision that are knowledgeable and considered experts at the work they are performing. It should be specifically noted that if at any time while working at these sites a contractor employee is unsure if the work they are doing is safe, they must stop what they are doing and contact their supervisor immediately.

In addition Nova Scotia Lands Inc. has specific requirements of Contractors working at our sites that must be adhered to.

This section of the manual outlines these requirements. As you review these requirements it is imperative to keep in mind that the next section of the manual will require that you formally acknowledge that you are prepared to commit your company to adhere to these requirements when performing work or providing services at these sites.

Nova Scotia Lands Inc., 2016/2017

Requirements of Contractors

2-02 Governing Authorities

Various governing authorities have the authority to inspect or audit the work at the Site. Inspections / investigations may be random or may be prompted by direct complaints received from employees, unions, contractors, or a neighbouring community.

Cooperation with government inspectors and immediate compliance with any directives or orders of these authorities is essential in order to limit the potential for downtime resulting from work stoppages or the assessment of penalties.

The Site H&S Coordinator must be immediately advised of any inspection / investigation by a governing authority on the worksite and be copied on all reports.

Nova Scotia Lands Inc., 2016/2017

Requirements of Contractors

2-03 Record Keeping

There are specific requirements for record keeping in various sections contained within this manual that must be kept on file for a period of two years. These records must reflect the appropriate training for the work that the contractor will be performing. The following lists the minimum requirements:

- Date of Training
- Material Covered
- Name of Employee
- Trade and Certificates
- Signature of trainer
- Signature of trainee

Nova Scotia Lands Inc. also expects that all tradesmen carry all current and valid trade certificates deemed necessary by governing legislation and trade regulation for the nature of work that they perform.

Nova Scotia Lands Inc., 2016/2017

Requirements of Contractors

2-04 Fitness to Work

Background

Every contractor has a responsibility for the health and safety and well being of each person under their direction, including employees, sub-contractors, visitors and other authorized guests.

Impairment

Impairment impacting a person's health and safety on the job site is the issue; such impairment may be due to injury, medical condition, alcohol, drugs, medication or other possible conditions affecting behaviour including stress, fatigue, anger, depression, anxiety, etc.

Persons Found in a Suspected Impaired Condition

Where persons are found in a suspected impaired condition, (eg. behaving in an abnormal or inappropriate manner):

- 1. The person must not be allowed to work or remain on the job site.
- 2. If an employee is suspected of being impaired when entering the premises (e.g., reporting for work, returning from lunch), Security and or Supervision will refuse entry and the employee's Direct Supervisor is to be contacted. Police will be called if necessary and further follow-up action will be taken with the employee's employer.
- 3. The person in question must be offered medical assistance to be arranged through the Site H&S Coordinator. If the offer for assistance is refused the Supervisor must then send the person home. A taxi ride home must be offered by the Supervisor. When necessary, Security or Supervision will notify the police if the person refuses transportation home.
- 4. All employees sent home because of suspected impairment must be reassessed prior to the next working shift. If requested, the Site H&S Coordinator will assist in determining fitness for work and any need for further assessment. The Contractor Employee must be accompanied by his / her Supervisor.

Nova Scotia Lands Inc., 2016/2017

Requirements of Contractors

2-05 Security and Site Access

Access to the sites will not be permitted without prior authorization. All appropriate personal protective equipment and general safety precautions must be adhered to.

Security and or Supervision are required to verify authorization upon entry and exit at work sites. Security and or Supervision will provide directions and general precautions, and will arrange for an escort to the worksite where warranted.

Nova Scotia Lands Inc., 2016/2017

Requirements of Contractors

2-06 Traffic / Parking Regulations

Traffic Regulations

Posted speed limits on all Site roadways and traffic signs (e.g., stop signs) must be adhered to. Maximum speed is 30 km/hr. unless otherwise posted. Passing is not permitted with the exception of slow moving equipment where extreme caution must be taken to ensure it can be done safely and the maximum posted speed limit is not exceeded. Large mobile equipment is not considered to be a slow moving vehicle. Parking violations that are safety related will be treated as a violation of traffic rules.

Driveways, laneways, or emergency vehicle routes must not be blocked or restricted at any time.

Violation of Traffic Rules are considered to be a Major Safety Infraction and progressive discipline will be followed. The first offence results in a written warning; a second offence within a one-year period will result in a one-day suspension or suspension of driving privileges on the property for one (1) month. Depending on the severity of the first offence a written warning may be omitted and an automatic suspension given.

Construction Access and Parking

All construction personnel must use designated routes to access construction parking areas.

All contractors will park their personal vehicles in the area designated by Nova Scotia Lands Inc. Representatives. All vehicles to be backed in when parked around any buildings.

Driveways, laneways, walkways, or emergency vehicle routes must not be blocked or restricted at any time by construction vehicles, machinery, equipment or materials except in the course of demolition or other business activity.

Overnight parking of equipment or vehicles must occur only with permission. The security of equipment or vehicles is the responsibility of the contractor. No vehicle is to be left without appropriate brakes / blocking.

Vehicles must not be left unlocked overnight or with keys in place.

Construction equipment such as zoom booms, scissors lifts, bulldozers, forklifts, etc., must have all moveable parts in their stowed positions when left unattended.

Nova Scotia Lands Inc., 2016/2017

Requirements of Contractors

2-07 Mobile Equipment / Crane(s) and Certification

Background

This section discusses the requirements related to Mobile Equipment and Cranes that may be required to perform the work that you are contracted to do.

All contractors must ensure that all personnel required to operate mobile equipment, e.g., backhoes, trucks, excavators, etc. during the course of their work, are properly trained, possess a current drivers license as well as all other necessary licenses and / or certificates and are competent.

All mobile equipment must be in good operating condition with current maintenance and inspection records available on request. (See current legislation and regulations for mobile equipment.)

Mobile Cranes

- Ensure that you have discussed all necessary arrangements, e.g., crane
 placement, road restrictions, medical, security, and fire department
 notification, lockouts, safety watch, etc. with the appropriate Site
 Representative coordinating your work prior to the Safe Work Permit meeting.
- Discuss the procedure for operation of a mobile crane within the buildings of the facility.

Pendant / Overhead Cranes

 All Contractor personnel who will be operating a pendant / overhead travelling crane during the course of their work at the Site must be in possession of a current certified license for overhead travelling crane operation.

Elevating Work Platforms

- Personnel must be given verbal, visual and hands-on instruction on the safe operation and requirements to operate that specific class of elevating work platform, prior to start of job. Operator Certificate required at all times.
- Review current legislation and regulations for Elevating Work Platforms.

Nova Scotia Lands Inc., 2016/2017

Requirements of Contractors

2-08 Embedded Services Locate Request

An Embedded Services Locate Request is a written approval that must be obtained from Site Representatives prior to any excavation, digging, drilling, grading, piling, boring, or concrete removal.

The Locate Request identifies all embedded services (e.g., electrical conduits, pipelines, telephone lines) located in the area.

The Nova Scotia Lands Representative will acquire this written approval prior to the safe work permit meeting. Any other specific instructions or procedures will be issued prior to starting work.

Note: Never disturb or remove red concrete without a Locate Request.

Nova Scotia Lands Inc., 2016/2017

Requirements of Contractors

2-09 Equipment and/ or Work Area Isolation

Purpose

To prevent uncontrolled movement or flows, accidental starts of process, electrical and mechanical equipment as well as programmable logical controllers (PLC's) and other computerized devices. This also includes isolating the flow of gas, air, hydraulics, steam and hazardous materials.

Isolations may be in the form of lockouts, blocking, pinning, chaining, flagging off or barricading. At the sites, most isolations performed are lockouts.

Everyone has the right to lock-out for themselves, or to work under the protection of their supervision (i.e. Supervisors can lockout for their employee's).

How Do We Isolate?

Before any work is performed, we isolate by:

- a) Identifying the energy sources;
- b) Requiring the hazard(s) to be identified;
- c) Defining the isolations to be taken, and;
- d) Checking for isolation effectiveness.

Note: Isolation of an area should include a sign identifying who is responsible for the isolation and how they can be reached.

- The Nova Scotia Lands Inc. Representative will arrange for Qualified Electrical Personnel to isolate areas as required by contractors.
- The decision on how an isolation is to be performed must be developed by a competent person with knowledge of the equipment, area and process. This can be accomplished as part of a written procedure.
- For simple equipment isolation The Site Representative will arrange for Electrical Contractor to isolate area, and assist Contractors by isolating equipment / services so that the contractor can affix their locks.
- Nova Scotia Lands Inc. Representative will also arrange to isolate high voltage breakers / switches (greater than 750 volts) as per switching procedure. The Contractor to affix locks as per isolation requirements.
- Key points of isolation to be discussed at the Safety Work Permit Meeting:
 - How many locks required?
 - Where to place locks?
 - Who will show contractor where to put locks?
 - Ensure locks are adequately identified (Name / Company or Department / phone#)
 - Safety Locks must have only one key

Nova Scotia Lands Inc., 2016/2017

Requirements of Contractors

Equipment and/ or Work Area Isolation

- For permanent shutdowns Isolation to be performed with an approved written Isolation Procedure and place Isolation Procedure and / or Isolation Checklist along with key in "Lock-out Box". All areas and electrical equipment must be so tagged.
- Ensure copy of the "permanent" Shutdown Isolation Procedure is attached to Safe Work Permit.
- For major shutdowns, Qualified Personnel to place lock on "Lock-out Box or Bar" (in most areas). Some areas may require
- "All" on- site Contractor Personnel to place lock on "Lockout Box/Bar". Please discuss this issue to assure all persons included.
- If the scope of work changes and requires that the isolation be changed, another isolation procedure meeting to be held to document changes. A new Safe Work Permit Meeting is to be held using the new isolation procedure to ensure all personnel on job-site are aware of the changes.
- All safety locks used for isolation purposes are long shanked. Personal Safety Locks must be:
 - individually keyed or keyed alike in multiple sets;
 - b) Supplied with ONE key;
 - c) Identified with name and company of user, on the lock or on a suitable tag, and;
 - d) Used ONLY by person identified on tag.

Written Isolation Procedure

The Supervisor of the person(s) performing the work is responsible for determining when a written isolation procedure is needed to make a job safe.

- 1. All written isolation procedures must be developed by a competent person with knowledge of the equipment, area and process and must include:
 - the equipment, devices or things requiring isolation
 - the method of isolation required
 - blocking, pressure release, purging, physical / electrical disconnects, barricades and testing of equipment
 - to make certain isolations are effective
 - switches, valves or isolating devices required to be locked out
 - the initial approval and subsequent revisions to be approved by the Nova Scotia Lands Inc. Representative using the procedure.
- 2. When no written procedure is required for a job, the job supervisor for the work must determine what is required for isolation at the time.

Nova Scotia Lands Inc., 2016/2017

Requirements of Contractors

Equipment and/ or Work Area Isolation

- 3. When the written isolation procedure is used, the procedure must be:
 - dated and approved by the supervisor/leader making the job safe, and;
 - where lock boxes / bars are used the procedure or listing is to be posted on the job site or lock box and
 - Visible to anyone to review, prior to start of work.

Made Safe

- 4. The person making the job site safe must check that the isolation is effective.
- 5. Prior to the start of work, each person working on a job must check with the job supervisor that the isolation is effective. An additional check is required if there is a return to the job later in the shift.

Locking Out

- 6. Lock(s) are to be placed as to prevent the physical movement of the isolating device(s) switch, valve, lever, etc.
- 7. A supervisor, or person having responsibility over others, may lockout for those they have responsibility for, providing there is an approved written isolation procedure.
- 8. When personal locks are used, the user either affixes them or is present to witness their use.

Nova Scotia Lands Inc., 2016/2017

Requirements of Contractors

Equipment and/ or Work Area Isolation

Inspecting

Inspecting is defined as the act of viewing and / or checking only on the work and does not entail working on the equipment.

A supervisor or staff/technician may inspect only with the approval and accompaniment of the person who has the area locked out.

Lock Removal

NO PERSONAL OR OPERATIONS LOCK CAN BE REMOVED OTHER THAN BY THE PERSON WHO AFFIXED IT UNLESS THAT PERSON IS PRESENT TO WITNESS THE REMOVAL.

All persons must be clear before any lock protecting them is removed. If necessary, isolation of the area is to be maintained during the removal process to prevent entry of any person(s) into the affected area.

When a person leaves a job and their lock(s) are still affixed, that person must be satisfied that the equipment or area they are working in is still properly isolated prior to resuming work.

Periodically, circumstances arise when equipment or a process must be taken out of service for maintenance reasons and the job cannot be immediately completed. Examples of this would be the removal of electrical motors for repair or the removal of a valve for repairs when the valve or motor must be sent out for the repair work to be done. In these circumstances, no locks will be removed unless the equipment or process is completely safe or the responsibility for the isolation is transferred to another person who will replace the original locks with their locks. The responsibility for this belongs to the person performing the work.

Where safety lock(s) are left on and it is ABSOLUTELY IMPERATIVE that the equipment be used, the person responsible for the lock(s) must be contacted to come in for removal. This applies to all applications - personal, supervisor, and operational locks. If the above is not possible, the lock(s) may be removed, after determining that it is safe to do so, by the Site Supervision, Electrical and Mechanical Maintenance personnel.

This includes the operations locking out.

"Lock Removal" must be documented and copies are to be sent to the Health and Safety Coordinator.

Nova Scotia Lands Inc., 2016/2017

Requirements of Contractors

2-10 Barriers and Barrier Tape

Background

Barriers are used to stop the passage of people or vehicles in a restricted area.

A barrier must be installed to warn people of hazards created by demolition, asbestos removal, construction and/or maintenance activities in the area and to direct persons past such hazards.

Guarding (Barricade) is a requirement of the Occupational Health and Safety Act and the Regulations.

All barriers at The Site must be installed in accordance with the requirements outlined in the Occupational Health and Safety Act & Regulations.

All openings, sumps, vessels, bins, hoppers, elevated platforms or pits, other than grease pits, which constitute a hazard, must be fenced or otherwise guarded. (Occupational Health and Safety Act and Regulations).

Types of Barriers Approved For Use at The Site

There are two types of Barriers approved for use at these sites:

Fixed Barricades

Fixed barricades are used to physically prevent entry into a restricted area because a hazard exists. Access may be restricted by using:

- Wooden Barricades
- Concrete Barricades
- · Fabricated structures made from steel or wood
- Fencing

Fixed Barriers should be used to prevent entry of unauthorized people or equipment into areas where a hazard exists. Examples of situations when fixed barricades should be used include:

- Excavations
- Openings in floor, walls, platforms and handrails;
- Tripping hazards such as: Uneven floor or surfaces under repair;
- Fall prevention
- Road closures

Nova Scotia Lands Inc., 2016/2017

Requirements of Contractors

Barriers and Barrier Tape

Barrier Tape

Barrier Tape is used to warn people of a potential hazard and deter entry into a restricted area. This method does not physically prevent entry, but people must not enter the area restricted without authorization from the Site supervisor. It will be considered a major safety infraction for any unauthorized person(s) entering into a barricaded area.

Barrier Tape will be used to warn people of a potential hazard and / or prevent entry into a restricted area. Examples of when barrier tape will be used include:

- Demolition
- Asbestos removal
- Commissioning / Decommissioning of live equipment
- · Restricting access because of a fire line
- Identifying a confined space (work in progress)
- · Cordoning off and accident investigation site, and
- Flagging off floor area because of overhead work in progress

Note: The use of barrier tape as an alternative means to stop/halt physical entry into an area where there is an open pit or missing handrail etc., is strictly prohibited. A fixed barrier must be used in this situation.

The standard barrier tape that is to be used in all applications at the Site is (Yellow) Caution and (Red) "Danger, Authorized Entry Only".

All barrier tape must be removed from the Site at the time the work is complete or at the time the hazard no longer exists.

Barrier Tape Identification Tag

When Barrier Tape is used it is the responsibility of the Site supervisor to ensure that identifying tags are affixed around the perimeter of the barrier tape. As a minimum, an identification tag must be affixed to each point of entry to the barricaded area.

Barriers and Barrier Tape

CAUTION DANGER

Nova Scotia Lands Inc., 2016/2017

Requirements of Contractors

2-11 Personal Protective Equipment

Personal Protective Equipment provides a secondary method of protection for an employee where it is not possible to eliminate or control the hazard.

The personal protective equipment necessary will be discussed at, and stated on the Safe Work Permit Form. Specific protection for the work being performed must be evaluated by the contractor.

All Personal Protective Equipment deemed necessary by the Contractor to protect the health and safety of the contractor employee(s) is to be provided by the contractor.

As a minimum the following Personal Protective Equipment is generally required in all plant areas:

- CSA Approved Hard Hat
- CSA Approved High Impact Safety Glasses (with permanently attached side shields) - Prescription or Non-Prescription
- Safety Boots
- Arms and Legs completely covered as required
- High Visibility Safety Vest/Jacket

All personal protective equipment must be inspected as required regularly and be in a condition that provides the protection it was designed for.

Foot protection, as a minimum must be 6" safety footwear with a Canadian Standards Association (CSA) approval with Grade 1 (i.e., Green Patch) designation may be worn on Site.

Clothing requirements are long-sleeved shirts and long pants as required. This also applies to getting to and from the job site.

Nova Scotia Lands Inc., 2016/2017

Requirements of Contractors

2-12 Confined Space Entry

Definition

A confined space means a space in which, because of its construction, location, contents or work activity therein, the accumulation of a hazardous gas, vapor, dust or fume or the creation of an oxygen-deficient or oxygen enriched atmosphere may occur.

Physical Characteristics of a Confined Space

The physical characteristics of a confined space are:

- A space that is large enough and so configured that an employee can enter and perform assigned work,
- An enclosure that, by design, has limited openings for entry and exit.
- An area or space that has the potential to accumulate a hazardous gas, vapor, dust or fume or become
- An oxygen-deficient or oxygen enriched atmosphere, either from an external source or an internal source.

Confined spaces may include, but are not limited to, sewers, tunnels, manholes, utility vaults, piping, storage tanks, process vessels, pits, excavations, and other similar types of enclosures with limited access and / or without adequate ventilation to eliminate the potential for the accumulation of a contaminant or oxygen depletion or enrichment.

CSE Procedure

A procedure, listing the requirements for safe entry and safe work within a confined space must be written and approved by a competent supervisor before any entry is made. All hazards must be identified, and eliminated or controlled according to the procedure. This procedure must be reviewed with all of the entrants of the confined space.

Legal Requirement

The Occupational Health and Safety Act (OHSA) & Regulations, outline the minimum requirements that must be met before entering a confined space. The Nova Scotia Lands Inc. Confined Space Entry Standard is designed to meet or exceed the legislative requirements of this regulation.

Nova Scotia Lands Inc., 2016/2017

Requirements of Contractors

2-13Purging Procedures

Definition

Purge is the act of replacing the atmosphere within a closed system or vessel (container) by an inert substance in such a manner as to prevent the formation of an explosive mixture with air, prevent a dangerous concentration of an asphyxiate or toxic gas, or in the case of oxygen, to lower the oxygen content to prevent damage to the vessel or to personnel from extremely rapid combustion.

Preparation and Execution of the Purge Procedures

All purge procedures will be prepared and executed by authorized personnel only.

Having completed the purge out procedure, the contractor will lockout isolation points with own locks and proceed to perform the necessary work.

All Purge Procedure related details (e.g., lockouts, special instructions), must be discussed at the Safe Work Permit Meetings.

Nova Scotia Lands Inc., 2016/2017

Requirements of Contractors

2-14 Emergency Response Plan (ERP)

The Emergency Response Plan (ERP) outlines responsibilities, sources and communication relating to the activities on Site. The plan enables coordination of contractor Emergency Response Plan (ERP), as well as providing a ready reference for communications and simple checklists for effective emergency response.

The contractor must ensure that the Site H&S Coordinator reviews the Contractor ERP plan prior to start of work. This is normally done at the Safe Work Permit Meeting.

Nova Scotia Lands Inc., 2016/2017

Requirements of Contractors

2-15 Communication

Safe Work Permit Meetings / Site Specifics

It is of the utmost importance that all information received by the Contractor Supervision at the "Safe Work Permit Meeting" and through "Site Specific Information Packages" is communicated to all contractor employees, sub-contractors and their employees. All communication must be documented and kept on file.

Contractors Toolbox Safety Talks

It is the responsibility of the Contractor to ensure that toolbox safety talks are delivered daily (prior to starting work) to all employees working on the project, as a means of providing regular Health and Safety awareness, and encouraging employees to actively participate in Health and Safety matters.

Documenting the delivery of these safety talks is the responsibility of the contractor. The documentation must include a record of the names (with signatures) of all employees in attendance, date, time, and discussion topics.

Nova Scotia Lands Inc., 2016/2017

Requirements of Contractors

2-16 Workplace Inspections

The contractor is responsible for maintaining a safe work area and must ensure that regular workplace inspections take place. Formal documented workplace inspections must be done weekly by the contractor supervisor accompanied by an employee.

Individual work must be checked daily for:

- Health, safety and ergonomic hazards
- All tools and equipment are safe to use
- Signs and labels are legible

Typically, the types of things to review would include but not be limited to, the condition of:

- Personal Protective Equipment
- Access Stairs and Platforms
- Ladders
- Scaffolds
- Equipment and Tools
- Vehicle
- Housekeeping
- Emergency Eyewash and Showers
- Material Storage
- Material Safety Data Sheets

Nova Scotia Lands Inc., 2016/2017

Requirements of Contractors

2-17 Accident Investigation

Background

Nova Scotia Lands Inc. requires each contractor to have an effective accident reporting system that is understood and implemented by all contractor and subcontractor employees prior to commencing work on the Site premises.

When an Accident Occurs at the former Sydney Steel Site

It is the responsibility of the contractor to ensure that all employees are trained to report all accidents, with or without injuries. When an accident occurs, the contractor's supervisor must:

- Investigate all accidents with or without injury and provide a full report to the Site H&S Coordinator.
- If there is an injury, arrange transportation to the nearest Hospital by calling **911.**

When serious injuries are incurred, emergency communications are required.

- In the case of a critical injury or death, secure the scene of the accident and do not disturb unless disturbance is necessary in order to eliminate danger to other persons. Immediately inform the H&S Coordinator.
- Take all necessary actions to prevent a recurrence of the accident and document the actions taken.

Emergency Communications

Ambulance / Fire - 911

NOTE:

When an Accident Occurs at other Nova Scotia Lands Inc. Controlled Sites

It must be determined at the Safe Work Permit Meeting prior to the start of work, what Emergency Contact Numbers are to be used, Hospital location, emergency routes identified and site maps provided if possible.

Nova Scotia Lands Inc., 2016/2017

Requirements of Contractors

2-18 Regulated Substances

Material Safety Data Sheets outline and will be used to discuss substance hazards and safety requirements, more specifically safety equipment, make, model, filter types, gloves, etc. The locations of Safety Showers and Eyewash Stations must also be reviewed and communicated to all contractors.

In the event of the removal of designated substances such as asbestos, all contractors on the job site must review a written removal procedure at the Safe Work Permit Meeting.

Nova Scotia Lands Inc., 2016/2017

Requirements of Contractors

2-19 Chemical Management and Transportation of Dangerous Goods (TDG)

The contractor must comply with all applicable regulations including The Transportation of Dangerous Goods Act.

Unless otherwise specified in writing by the Contractors and the Site Representatives, the Contractor will:

- Have a list or inventory of all chemicals being brought by the Contractor to the job site, with up-to-date Material Safety Data Sheets (MSDS). The chemical inventory will contain:
 - the name of the material
 - the amount used and stored (e.g., per month, per year or whatever is convenient, and;
 - where the material is used and stored
- 2. Have an up-to-date written emergency response plan, which outlines actions to be taken by the contracting employees in the event of a leak, spill, fire or explosion. Contracting employees must have been properly trained in spill response and control procedures and if expected to respond to a "dangerous goods occurrence", receive Transportation of Dangerous Goods (TDG) training once every three (3) years.
- 3. Ensure that chemical containers (drums/totes) are labelled as to content, in good condition and impermeable to the chemicals they contain. Non-compatible chemicals are to be segregated. All applicable safety marks, labeling, placarding and documentation are used.
- 4. Be in constant attendance when loading / unloading a storage tank.
- 5. Ensure that valves and nozzles are locked in the closed position when not engaged.
- 6. Have all required licenses to purchase, store or use a chemical and comply with all chemical storage and chemical waste regulations.

Nova Scotia Lands Inc., 2016/2017

Requirements of Contractors

2-20 Reporting Environmental Incidents

It is The Site policy to report environmental incidents (or "spills") to the Department of Environment and other authorities.

Under the Environmental Protection Act, a "spill" is defined as a discharge into the natural environment that includes air, a natural watercourse (like a Harbour), groundwater and the ground and may happen out of a structure or container (e.g., tank, piping, valves, vehicle, building, stack vents).

The Contractor must take immediate action to safely stop the emission or contain the discharge and notify the H&S Coordinator of the situation.

The Environmental Officer will report the environmental incident as per Nova Scotia Lands Inc. "Emergency Response Plan".

Nova Scotia Lands Inc., 2016/2017

Requirements of Contractors

2-21 Electrical Equipment Areas

Access to areas that contain "Live" electrical equipment are **restricted** to authorized personnel only. Authorized Personnel are defined as:

- Qualified electrical contractors and personnel;
- Persons accompanied by Qualified electrical personnel, and / or;
- Contractors who have been given "short term" access per their Safe Work Permit

Contractors that require short term "unaccompanied" access into electrical equipment areas must be under the direction of electrical personnel. The Site-Specific health and safety information and tour must detail the specific location, the hazards for the area and any other relative information. This must be given to the contractor as part of the Safe Work Permit Meeting.

While in an electrical equipment area, persons who come within one (1) metre or three (3) feet (or more depending on the voltage level) of **live** exposed electrical equipment must wear the required personal protective equipment or the **live** exposed electrical equipment must be guarded.

For additional details refer to Contractor Requirement "Working on or Near Live Electrical Equipment" on the following three pages.

Nova Scotia Lands Inc., 2016/2017

Requirements of Contractors

2-22 Working On or Near Live Electrical Equipment (750 Volts AC or DC and Below)

Background

At the Nova Scotia Lands Inc. Sites, the method for working on any electrical equipment is to isolate and lockout all sources of energy. However, in certain circumstances it is necessary to test and troubleshoot electrically energized equipment.

At the Nova Scotia Lands Inc. Sites, we do not "repair" or "replace" live equipment. There is only one exception to this statement and that is the changing of or racking in and out of low voltage substation breakers, on a live bus, with the cell door open.

Definitions Near

Near has been defined with respect to live exposed electrical equipment at 750 volts and below as within one meter.

The following list of questions will assist an individual in determining whether they are near and likely to become endangered at distances greater than one meter from the live exposed parts. A qualified electrical person must make this evaluation.

- Are you or the equipment or materials used to perform the job likely to come in physical contact with the energized electrical circuits?
- Are there tripping hazards in the work area?
- Could you lose your balance because the work requires you to reach an excessive distance?
- Do you have adequate lighting to see clearly what you are doing?
- Do you have conductive materials or equipment on your person?
- Is there any possibility of equipment movement?
- Do you think protective barriers should be used?
- Has all your equipment been checked and in good working order?
- Do you have a sense of nervousness about your proximity to live exposed electrics on a specific job?
- Has the voltage and amperage level been considered?
- Have you considered any environmental conditions like water, dust, congestion etc.?
- Any other hazards in the workplace?

Trouble-Shooting and Testing

The action performed on an electrically energized system to determine the existence or cause of a problem.

Nova Scotia Lands Inc., 2016/2017

Requirements of Contractors

Working On or Near Live Electrical Equipment (750 Volts AC or DC and Below)

Working On

To repair, replace, test or trouble-shoot electrical equipment.

Hazard Assessment

Each job will be assessed and the hazards identified by a competent electrical person (i.e., a person, who is, through training and experience, able to recognize electrical hazards and trained in CPR).

Based on the assessment the appropriate procedures and required personal protective equipment will be used.

Personal Protective Equipment

All Personal Protective Equipment deemed necessary by either the Site H&S Coordinator and / or the Contractor to protect the health and safety of the contractor employee(s) is to be provided by the contractor.

If a person approaches within one meter of live exposed electrical equipment at 750 volts or below, the necessary Personal Protective Equipment must be worn.

When working on or near live exposed electrical equipment at 230 volts AC or DC and above or approaching within one meter, the following personal protective equipment **must** be properly worn:

Personal Protective Equipment:

- Hard hat
- Safety glasses with permanent side shields
- Shock Resistant (Omega) Work Boots
- Flame Resistant Clothing System
- Class '0' Rubber Gloves with leather outers for 230 volts (AC/DC) or above
- Face Shield (if arc hazard exists)
- Any other personal protective equipment as determined by the area in which the work is being done (e.g., hearing protection, harness, respirator, etc.,)

Other:

- A second suitably equipped competent person when working with voltage levels at or over 300 Volts, except for testing or trouble-shooting (i.e. changing of or racking in and out of a low voltage substation breaker on a live bus, with the cell door open)
- Testing equipment must be certified by the manufacturer for its intended use

Nova Scotia Lands Inc., 2016/2017

Requirements of Contractors

Working On or Near Live Electrical Equipment (750 Volts AC or DC and Below)

• When working on or near live electrical equipment below 230 volts, the following requirements are optional per hazard assessment.

Personal Protective Equipment:

- Class '0' Rubber Gloves with leather outers for below 230 volts (AC/DC)
- Flame resistant clothing for below 230 volts (AC/DC)

Other:

- A second suitably equipped competent person when working with voltage levels below 300 Volts AC or DC.
- Mats (e.g., insulated rubber)

Nova Scotia Lands Inc., 2016/2017

Requirements of Contractors

2-23 Scaffolds

What is a Scaffold?

A scaffold is an elevated working platform for supporting both people and materials. It is a temporary structure used mainly for construction and / or maintenance work. Scaffolds must be designed to support at least four (4) times the anticipated weight of people and materials that will use them.

Legal Requirement

Proper components, certification in erection, use and disassembly of scaffolds are a requirement of the Occupational Health and Safety Act and Regulations. Also certification in Fall Protection/Fall Arrest is required. For certainty follow The Nova Scotia Labour and Advanced Education Reference Guide To The Fall Protection and Scaffolding Regulations.

Construction / Erection

Operating Services - Carpenters Responsibilities

All types of scaffolding (may or may not include frame scaffolding) must be constructed, erected or assembled by a competent person. During construction and upon completion of the scaffolding, the competent person is responsible to attach the appropriate identification tag.

Overhead Protection

Whenever work is being done on a scaffold over people working below, overhead protection must be provided on the scaffold. This protection will be planking or other strong suitable materials.

Means of Access

A safe and convenient means must be provided to gain access to the working platform level. Means of access may be by a portable ladder, fixed ladder, ramp or runway, or stairway.

Identification of Scaffolds

"DO NOT USE" Scaffold Identification Tag (WHITE Plastic Holder RED Lettering)

During construction, erection or assembly of any scaffold, a "DO NOT USE"
 Scaffold Identification Tag must be affixed by the erectors in a prominent location on the scaffold and / or at each point of potential access to the scaffolds.

Nova Scotia Lands Inc., 2016/2017

Requirements of Contractors

Scaffolds

"USE WITH CAUTION" Scaffold Identification Tag (YELLOW Plastic Insert)

If the scaffold cannot be built strictly to specifications, the erectors must affix a
"USE WITH CAUTION" Scaffold Identification Tag with special instructions at
each point of access. For example, if a guardrail cannot be installed, the
Yellow Tag will indicate this restriction and provide instructions that a safety
harness must also be worn.

"OK TO USE" Scaffold Identification Tag (GREEN Plastic Insert)

 Once construction, erection or assembly of the scaffold has been completed and has been approved for use by the erectors, they must affix an "OK TO USE" Scaffold Identification Tag at each point of access.

Inspection and Maintenance

Contractors Responsibilities

Contractors, who are using scaffolding, must inspect the scaffolding each day prior to use.

Removal, Component Inspection and Storage

Any scaffolding that is no longer being used (i.e., the job is completed), is to be removed by a competent person. Once removed, the competent person is also responsible for inspecting the scaffolding components for any damaged parts or components, discarding or repairing these components and proper storage of all components prepared for future use.

Scaffold Pre-Use Checklist

The following are some items to consider prior to using scaffolding:

- Are scaffold components in safe condition for use?
- Are planks in safe condition for use? For wood planking, the following applies:

Nova Scotia Lands Inc., 2016/2017

Requirements of Contractors

Scaffolds

- Planks must be at least two (2) inches thick by ten (10) inches wide and must meet or exceed the requirements for Number 2 Grade Spruce or better planking rough sawn.
- Must be free of wormholes, cracks, checks, splits, excessive knots, wanes, warps and twists.
- The weight of the plank must be checked. A lightweight plank indicates that it is dry and possibly brittle.
- The surface of the plank must be checked for the possible penetration of potentially damaging substances (e.g., acidic solutions)
- Immediately discard any planks showing these or other defects.
- Do planks overhang their supports by no less than six (6) inches and no more than twelve (12) inches?
- Planks are secured from slipping (e.g., Planks have cleats where required and are properly fastened to the planks)
- Is the frame spacing and sill size capable of carrying the intended load?
- Have competent persons been in charge of erecting the scaffold?
- Are sills properly placed and of adequate size?
- Have screw jacks been used to level and plumb scaffold versus unstable objects such as concrete blocks, loose bricks, etc.?
- Are base plates and / or screw jacks in firm contact with sills and frames?
- Is scaffold level and plumb?
- Is guard railing (complete with top and mid rail and toe board) in place on all open sides?
- Has proper access been provided?
- Has overhead protection or wire screening been provided where necessary?
- Has the ratio of height to least lateral dimension not exceeded three (3) to one (1) (i.e., Three to One Rule). For example, if the base measurements of the scaffold provide a width of five (5) feet and the length of the selected cross braces provide a bay length of ten (10) feet, the maximum height of the scaffold shall not exceed fifteen (15) feet (i.e., 3 x 5 feet = 15 feet).
- Exceptions may include circumstances where:
- The scaffold is tied into the structure:
- The scaffold is properly stabilized by guy wires, and / or;
- The scaffold is secured by outrigger stabilizers sufficient to maintain the ratio.
- Have brackets and accessories been properly placed:
- Brackets?
- Putlogs?
- Tube and Clamp?
- All nuts and bolts tightened?

Nova Scotia Lands Inc., 2016/2017

Requirements of Contractors

Scaffolds

- Is scaffold free of makeshift devices or ladders to increase height?
- Are working platforms fully planked between guardrails?
- Are toe boards installed properly?
- Have precautions been taken to prevent against hazardous conditions such as:
- Power lines?
- Wind loading?
- Possible washout of footings?
- Uplift and overturning moments due to placement of brackets, putlogs, or other causes?

General Safety Rules

The following are some general safety rules for the use of scaffolding:

BEFORE Using Scaffolding, **Check** to ensure that:

- Scaffolding is approved for use (e.g., Review "Identification Tag")
- Base is sound, level and adjusted
- Legs are plumb and all braces are in place
- Locking devices and ties are secured
- Cross members are level
- Planks, Decks and Guardrails are in good condition, installed and secure

DO:

- Follow all instructions / notes on Scaffold Tag (e.g., use harness)
- Remove snow and ice from scaffold platforms, ladders and access areas.
- Use an access ladder to climb on or off a scaffold, not scaffold frame, unless it is specially designed to be climbed.
- Ensure that the scaffold is securely attached to the building structure. The effects from winds increase when scaffolds are covered.
- Protect all planked or working levels with proper guard rails, mid-rails and toe boards along all open sides and at the ends of scaffold platforms.
- Guardrails may be removed for the purpose of lowering or hoisting materials but must be replaced immediately. Fall Protection (i.e., safety harness) must be worn when guardrails are removed.

DO NOT:

- Do not use scaffolding that have a "DO NOT USE" Scaffold Identification Tag affixed anywhere on the scaffolding.
- Do not jump onto planks or platforms.

Nova Scotia Lands Inc., 2016/2017

Requirements of Contractors

Scaffolds

- Do not climb or stand on cross braces or guardrails.
- Do not work on scaffolds during storms or high winds.
- Do not use ladders or makeshift devices on top of scaffolds to increase height.
- Do not overload (i.e., exceed tagged capacity) scaffold frames or platforms.
- Do not rest materials or equipment on guardrails.
- Do not try to repair bent or kinked frames. Immediately discard them.
- Do not use scaffolds near electrical wires.

Nova Scotia Lands Inc., 2016/2017

Requirements of Contractors

2-24 Controlling Air Emissions

Background

Minimizing air emissions from the source is an environmental priority.

Dust, or particulate, from storage piles and open areas is caused by high winds and vehicle traffic.

Minimizing Air Emissions

Contractors must minimize air emissions by following:

Loading Practices

Trucks must not be overloaded with material. Overfilling causes spillage from trucks. The spilled material creates "track out". Track out is carried along the road by the vehicle's tires. It dries on the road and when driven over, is crushed, creating dry dust, or air emissions.

Speed Limits

All speed limits must be obeyed. Following posted traffic speed limits minimizes the amount of dust created on roadways.

Turn off Engines

Drivers must turn off engines while stationary unless the engine is required for a specific reason (e.g., vacuuming in or pumping off load).

Sandblasting

To minimize airborne sandblasting particulate, the contractor must use the lowest dust abrasive available. Where sandblasting of paints may be lead based, the debris generated during the removal of the existing paint will be collected and disposed of properly – the debris cannot be diluted to render it non-hazardous.

Construction and Demolition

Track out from job sites must be controlled and waste / debris from any demolition must be properly disposed.

Nova Scotia Lands Inc., 2016/2017

Requirements of Contractors

2-25 Spill Control and Response

Spill Control and Response

Spill Control The preferred method of controlling spills is to prevent them from happening in the first place.

To prevent spills, a Contractor must use the following individually, or in combination:

- 1. Store oils or chemicals away from sewer grates or where a spill could reach a sewer.
- 2. Inspect the condition of the oil or chemical container, drum, tote etc., transferring the material to a new container if necessary.
- 3. Ensure level controls, alarms and / or standby backup pumps are in working condition.
- 4. Develop and maintain procedures to respond to a spill and instruct their employees in these procedures.

Spill Response The Contractor responds to a spill by:

- 1. If possible, stop the spill, taking into account employee safety first.
- 2. Prevent the spill from entering sewers by stopping the flow, dyking, sealing manhole covers and sewer grates and spreading absorbents.
- 3. Report the spill to the Site Representative immediately, who will follow the "Emergency Response Plan" reporting procedure.
- 4. In the event of a chemical spill, the Material Safety Data Sheet (MSDS) must be consulted. Safe handling procedures, instructions in case of fire, health hazard ratings and summarized spill response procedures are listed on all MSDS sheets. The MSDS sheet must be made available to the Site Representative.

Nova Scotia Lands Inc., 2016/2017

Requirements of Contractors

2-26 Waste Management

Waste Management

The Contractor must comply with Nova Scotia Waste Regulations of The Environmental Protection Act.

Unless otherwise specified in writing by the Contractor and the Site Representative, the Contractor will:

- Restore the job site and any lands affected by it, to an acceptable condition, free of all waste, debris and hazardous materials. The Contractor is responsible for removing any refuse, including empty containers (e.g., drums, cans), left over construction material and packaging.
- No residuals or contaminated water is to be allowed into if any, Site water treatment plants or sewer systems. Liquid industrial waste cannot be dumped down a sink or sewer.
- Segregate any waste generated from a job and identify as either hazardous, liquid, industrial or non-hazardous.
- Waste containers will be dated and labelled as to content. The containers must be in good condition and impermeable to the waste it's receiving. The lid will be kept closed unless adding more of the same waste.
- Prior to shipping off wastes, the Contractor must ensure that shipping documents, labelling and placarding requirements are complied with according to legislation.

Nova Scotia Lands Inc., 2016/2017

Requirements of Contractors

3-01 Commitment Agreement

• (902) 564-7903

Attention: H&S Coordinator

Commitment Agreement

This program has been prepared to assist you in your business dealings with Nova Scotia Lands Inc. The regulations and procedures set out in this manual ARE NOT INTENDED TO REPLACE OR SUPERSEDE ANY LAWS, REGULATIONS OR LIABILITY APPLICABLE TO THE WORK UNDERTAKEN BY YOU. In the event of a conflict, you must act in accordance with the governing law or regulation and report the conflict to the appropriate Site H&S Coordinator. This manual has been registered to:

Company Name:						
Contact Name:						
Address: Street:						
City: Province:						
Postal Code:						
Telephone Number:						
Fax Number:						
Email Address:						
I,	complied with a lova Scotia Lan all our employ	and wil nds Ind yees	ll contii c. Con assign	nue to c tractor ed and	omply: Healtl / or	with, and sub-
Signed:	Date:	:				
Copy "Commitment Agreement" fo original via mail to:	r your records	and	return	signed	and	dated
Nova Scotia Lands Inc. P.O. Box 430, Station 'A' Sydney, Nova Scotia, Canada, B1P 6H2 Or via facsimile to:						

46 of 50

Nova Scotia Lands Inc., 2016/2017

Requirements of Contractors

4-01 Contractor Employee Orientation

Contractor Employee Orientation

This section outlines the training and orientation to the Nova Scotia Lands Inc. Contractor Health and Safety Program that the contractor must give their employees, prior to the start of any work.

Contractors must ensure that all supervisors are trained in the Requirements of the Contractor sections of the Nova Scotia Lands Inc. Contractor Health and Safety program.

Contractors must ensure that all employees and its sub-contractors are trained in the provided orientation. The purpose of the orientation is to provide basic information on the employee's personal responsibilities for Health and Safety.

It is the contractors' responsibility to issue and review the contents of the provided Manual. (Additional copies are available on request). The contractor employee will complete and sign the acknowledgment section and the contractor will record that an employee orientation has taken place. The orientation is valid for one year from the orientation date.

This orientation must be redone on an annual basis. The contractor company must keep a record of all orientations on file.

The following items must also be reviewed:

- Your rights and the Nova Scotia Occupational Health and Safety Act.
- A review of your company's safety policy and program by the H&S Coordinator.
- WHMIS 2015/GHS awareness training, including labels and interpretation.
- A review and training in any "Trade Specific" High Hazard concerns, including Occupational Health and Safety Act and Regulations requirements.

Nova Scotia Lands Inc., 2016/2017

Requirements of Contractors

5-01 Safe Work Permit Meeting & Site Specific Information

Safe Work Permit Meeting

Prior to any "work" being done by a contractor, a Safe Work Permit Meeting must be held to establish and document safe procedures. These meetings are conducted by the Site Representative or the H&S Coordinator. Work must never begin before the Safe Work Permit Meeting has taken place and information conveyed to all employees.

An employee must review the instructions of the safe work permit meeting and sign the acknowledgment form. Where there is an established scope of work, location, conditions, hazards, and they will not change during a month, then a monthly safe work permit can be held.

A Safe Work Permit Meeting is scheduled to:

- Inform the Contractor of the Health and Safety hazards or requirements of the area in which they will be working. The Contractor site supervisor (or appropriate designate) is responsible to convey this information to all contract personnel working on the project.
- Ensure the contractor conforms and complies with any local rules for the area in which they will be working, The Site's Health and Safety Program and the Occupational Health and Safety Act and Regulations.
- Inform appropriate employees of the scope and schedule of the work being performed. Further specific information requirements are outlined on Form 124 "Safety Work Permit".

The contractor must visit the job site with a Site representative prior to the safe work permit meeting.

6-01 Appendix

- Safe Work Permit
- Acknowledgement of Training

Contractor Health and Safety Program Nova Scotia Lands Inc., 2016/2017

Requirements of Contractors

Safe Work Permit

SA	AFE WORK PERMIT (1	Form 124 B)		
Da	ate Held:	P.O.:	Reqn.:	File No.:
Co	ontractor:		_ Sub Contractor:	
De	ept	Scope of Wor	rk:	
NS	SL Coordinator/ ext:	Start Date & Tim	ne:E	st. Comp. Date:
1.	Crane(s) Mobile Equip	ment Required: Yes 🗆 No	o ☐ Type of Equipme	nt
2.	Embedded Services Lo Clearance No	cate Request discussed: Y	Yes □ No □	
3.	Equipment and/or wor	k area to be isolated: Yes	□ No □ If Yes Speci	fy:
4.	Fall Arrest Harness H	learing Protection Respir	atory Protection Ch	ety Boots Safety Glasses nemical Goggles High
5.	contents or work activity there or oxygen-enriched atmospher	in, the accumulation of a hazardo re may occur.)	us gas, vapour, dust or fun	pecause of its construction, location, ne or the creation of an oxygen-deficient lure No.
6.	Area Gas Check Requi	red Specify Type		Contact:
7.	Purging of Pipelines: Y	'es □ No □ If Yes, procedu	re must be attached, I	Procedure No
8.	Additional Protection:	Safety Watch □ Fire Watch	h 🗆 Other	
9.	Road / Rail Restriction	s: Yes \square No \square If Yes, Con	tact	
10	e. ERP Procedures discus	ssed/issued Yes \square No \square		
11		m Discussed Yes □ No □ cident tracking form is to b		cident, environmental or Health te H&S Coordinator)
N	OTES:			

This permit is no longer valid if the contractor/sub contractor does not start within 8 days of permit meeting or leaves the job site for more than 8 days. Any deviation from this permit must be confirmed with the NSLI Coordinator.

ACKNOWLEDGEMENT OF TRAINING

	DATE
PRESENTE	2
SUBJECT	CONTRACTOR EMPLOYEE SITE ORIENTATION
EMPLOYEE:	
1. I HAVE A	TTENDED AN OVERVIEW OF THE NOVA SCOTIA LANDS INC.
SITE CONTR	ACTOR HEALTH AND SAFETY PROGRAM, THE NOVA SCOTIA
LANDS INC.	SITE EMERGENCY RESPONSE PLANS, SITE LOCATION MAPS
AND I UNDE	ERSTAND MY RESPONSIBILITIES FOR HEALTH AND SAFETY
WHILE WOR	KING ON THIS SITE.
2. I HAVE R	ECEIVED AN OVERVIEW AND A COPY OF THE HANDOUT YOUR
RIGHTS, RES	SPONSIBILITIES AND THE NOVA SCOTIA OCCUPATIONAL
HEALTH AN	ND SAFETY ACT.
3. I UNDER	STAND THAT A COPY OF THE OCCUPATIONAL HEALTH AND
SAFETY AC	T AND REGULATIONS, A TELEPHONE NUMBER FOR THE NOVA
SCOTIA LAI	BOUR AND ADVANCED EDUCATION, SITE WORKPLACE HEALTH
AND SAFET	Y POLICY AND PROGRAM, HAVE BEEN MADE AVAILABLE FOR
MY VIEWIN	G.
4. A COPY (OF THIS FORM IS TO BE KEPT ON FILE BY THE CONTRACTOR
AND A COP	Y SENT TO THE SITE HEALTH AND SAFETY COORDINATOR.
	EMPLOYEE SIGNITURE
	EMPLOYER