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A B S T R A C T 

Potential vibrational modes associated with diffuse interstellar bands (DIBs) could be discerned by examining energy differences 
between correlated DIBs. Consequently, ≈ 10 

3 higher correlated DIB pairs ( r − σr ≥ 0 . 8, ≥ 12 sightlines) were extracted from 

the Apache Point Observatory DIB catalogue, and their energy spacings computed. In this first macro exploratory step, a 
histogram possibly reveals chemical bond signatures of C ≡C, C ≡N, S −H, C −O, C = O, Si −H, N −H, C −H (aliphatic), C 

... C 

(in-ring), and aromatics (C −H stretch, C 

... C in-ring, oop C −H bending, o v ertones and combinations). Continued research is 
required to (in)validate the histogram approach, mitigate noise, scrutinize maxima, break degeneracies, and converge upon an 

optimal framework. 

Key words: ISM: molecules. 
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 I N T RO D U C T I O N  

e ger ( 1922 ) observ ed that absorption lines at 5780 and 5797 Å
ere superposed upon the spectra of binary stars, granted they lacked 

he requisite oscillatory Doppler shifting. The molecular source(s) 
ehind those lines are mainly within interstellar clouds along the 
ightline (see also Hartmann 1904 , regarding interstellar calcium). 
 century later several hundred diffuse interstellar bands (DIBs) are 
nown (e.g. Bondar 2012 ; Fan et al. 2019 ). PAHs remain a leading
ypothesis as a principal carrier (e.g. Bondar 2020 ), and for several
IBs C 

+ 

60 is debated (e.g. Campbell et al. 2015 ; Galazutdinov et al.
017 , 2021 ; Schlarmann et al. 2021 ; Nie, Xiang & Li 2022 ; Majaess
t al. 2025 ). Indeed, heterofullerenes and (endo/exo)hedral inclusions 
re likewise being explored as DIB carriers (e.g. Kroto 1987 ; Omont
016 ). 
Here, the objective is to explore whether vibrational transitions 
ay be identified by delineating energy differences between corre- 

ated DIB pairs (e.g. Jenniskens & Desert 1993 ; Moutou et al. 1999 ;
ondar 2020 ). F or e xample, Jenniskens & Desert ( 1993 ) suggested

he energy separation between DIBs 5797 and 6269 Å could be 
ndicative of a PAH C = C vibration (7.7 μm). Moutou et al. ( 1999 )
nderscored that the gap between the correlated 6196 and 6614 Å
IBs is tied to an aromatic mode (9.8 μm). Bondar ( 2020 , their table
) relays that the energy offset between DIBs 5545 and 6614 Å may
e linked to PAH or aliphatic C −H (3.3 μm). DIBs associated with
 E-mail: Daniel.Majaess@msvu.ca 
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 given molecule may represent a vibronic progression (e.g. McCall 
t al. 2010 , and discussion therein). 

 ANALYSI S  

he Fan et al. ( 2019 ) APO catalogue was examined, and the
nalysis was subsequently limited to DIB pairs exhibiting higher 
earson correlated equi v alent widths ( r − σr ≥ 0 . 8, EW /σEW 

≥ 5),
ossessing ≥ 12 sightlines, and whose energy difference falls within 
00 –4000 cm 

−1 . The Pearson correlation, equi v alent width, and their
ncertainties are described by r , σr , EW , and σEW 

. The sightline to
I Cyg 12 was excluded owing to its circumstellar shell and color-
 xcess be yond the field (e.g. Marye v a et al. 2016 ; Xing et al. 2024 ). 

The final sample hosts � 10 3 DIB pairs. Wavenumbers linked 
o the energy spacing between DIB pairs were compiled into a his-
ogram (23 cm 

−1 bin width). Vibrations were identified by relying on
olthup, Daly & Wiberley ( 1990 ), the ChemCompute + GAMESS
uantum chemistry framework (Perri & Weber 2014 ; Barca et al.
020 ), and the NASA Ames PAH IR spectroscopic data base
Boersma et al. 2014 ; Bauschlicher et al. 2018 ; Mattioda et al.
020 ). Tentatively, the peaks in Fig. 1 can be assigned to various
hemical bonds (e.g. C ≡C, C ≡N, S −H, C −O, C = O, Si −H).
 or e xample, the potential aromatic out of plane (oop) bending
 −H vibration may represent the line near 745 cm 

−1 , which is
he most prominent maximum, 1 with an underestimated uncertainty 
 Linearly binned wavelength (rather than wavenumber) would reveal a 
aximum toward small λ. 
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M

Figur e 1. Ener gy differences between higher correlated DIB pairs ( r − σr ≥ 0 . 8, EW/σEW 

≥ 5) may feature histogram maxima that reveal the underlying 
chemical bonds (tentative candidates are suggested, e.g. the principal 745 ± 12 cm 

−1 peak). Degeneracies exist owing to broadening and overlapping 
wav enumbers. Independent inv estigations are needed to e v aluate the histogram approach and spurious maxima. Data were extracted from the APO DIB 

catalogue. 
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formal) being half the bin width (i.e. 745 ± 12 cm 

−1 ). Peaks in
ts vicinity could represent differing aromatic substitution patterns.
he prominence of � 745 cm 

−1 (13.4 μm) in concert with � 697
m 

−1 (14.8 μm) may be indicative of mono-substitution. The feature
ear 606 cm 

−1 (16.5 μm) was identified by Moutou et al. ( 2000 )
s linked to PAHs (see also Bondar 2020 , and their DIB family).
romatics are likewise relayed by the in-ring C 

... C line perhaps
ppearing near 1573 cm 

−1 , and C −H line beyond � 3000 cm 

−1 ,
hile shortward of the latter are aliphatic C −H (or perhaps as

n aliphatic group attachment). Furthermore, o v erdensities near
.25 (FWHM ≈ 0 . 12 μm) and 5.7 μm (FWHM ≈ 0 . 17 μm) can be
onduciv e to PAH o v ertones, combinations, etc. (Boersma et al.
009 , and references therein). The tw o longer w avelength C 

... C
ay be tied to fullerenes, and a de generac y could likewise extend

o the putative 10.8 μm and oop C −H features. The diversity of
ibrational transitions reaffirms prior analyses indicating numerous
olecules give rise to DIBs (e.g. on the basis of correlated equivalent
idths, common correlations relative to reddening, and spectral line
orphology, Cami et al. 1997 ; Smith et al. 2021 , 2022 ; Ebenbichler

t al. 2024 ). 
NRAS 539, 3489–3492 (2025) 
Crucially, artefacts may exist owing to noise (e.g. N −H), and
 balance was sought where sufficient statistics were achieved in
oncert with a reasonable selection of the correlation threshold,
ightline number, and binning. Consequently, a histogram for DIB
airs displaying low correlations was constructed (i.e. | r ± σr | ≤ 0 . 5,
ig. 2 ) as one possible means of assessing the veracity of the
axima. The maxima were expectedly sensitive to the criteria

elected (e.g. r − σr ≥ 0 . 8). The dominant � 745 cm 

−1 line that
haracterized higher correlated DIB pairs (Fig. 1 ) vanishes, and the
nderlying substructure at smaller wavenumbers is likewise absent. A
ubset of vibrational modes potentially remain with less significance
wing to the lower correlation criterion, with only one exceeding
 σ . The red dotted lines in Fig. 2 stem from the bin centers of
ig. 1 . Sample sizes for Figs 1 and 2 are 1143 and 854 DIB pairs,
ccordingly. 

Yet ultimately, the preliminary vibrations designated in Fig. 1
equire further benchmarking and independent vetting. Adjustments
hall likewise proceed as a consensus is achieved over time, since
ibrational modes can o v erlap, their wav elengths can shift owing
o other constituents within the molecule, and broadening and
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Figur e 2. Ener gy dif ferences between lo w correlation DIB pairs ( | r ± σr | ≤ 0 . 5). Relative to the high correlation analysis (Fig. 1 ), the dominant line and 
substructure at smaller wavenumbers are comparatively absent. Expectedly, a lower significance is apparent for a subset of vibrational modes that possibly 
remain. 
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egeneracies occur (e.g. Zapata Trujillo, Pettyjohn & McKemmish 
023 ). 

 C O N C L U S I O N S  

n this brief exploratory note, DIB energy differences (e.g. Fig. 1 )
ay unveil the building blocks inherent to the broader host 
olecules. F or e xample, aromatics (e.g. hydrocarbons and poten- 

ially heterocycles) and fullerenes could represent a subset of DIB 

arriers (Fig. 1 ), as noted previously (e.g. Kroto 1987 ). Subsequent
ey steps moving forward include continuing to isolate DIB families 
i.e. same carrier) on a multidimensional basis of equi v alent widths,
ptical and near-infrared reddening, line profiles, etc. (e.g. Ebenbich- 
er et al. 2024 ). Such ongoing research is required to mitigate the
oise in Fig. 1 , which partly arises from correlated DIB pairs linked
o separate carriers whose abundances are commensurate. A critical 
spect is to correctly unveil the DIB tied to the origin band, which
ay represent the transition to the ground vibration of the first excited

lectronic state 2 . Concurrently, the APO catalogue can be expanded 
 Slight offsets between observed vibrational wavenumbers implied by DIB 

airs relative to those in compilations are expected if the latter are linked to 
he ground electronic state. 

3

(
4

S

y extracting additional EWs from high-quality GOSSS and X- 
hooter spectra (Ma ́ız Apell ́aniz et al. 2013 ; Verro et al. 2022 ), while
imultaneously characterizing the number and properties of dust 
louds along the sightline by utilizing new Gaia DR3 parallax and
� 330 –1050 nm spectroscopic observations (Gaia Collaboration 

023 ; Xing et al. 2024 ). The latter may provide the desirable rationale
ehind outliers amongst Pearson correlation determinations (e.g. 
ircumstellar shell for VI Cyg 12, Xing et al. 2024 , their fig. 1).
oreo v er, viewing a DIB through multiple clouds along the sightline

an be preferable when establishing broad correlations, thereby 
itigating anomalies endemic to any one cloud. 
Future w ork lik ewise includes aw aiting temporally costly ex-

ensive vibrational coupled cluster calculations for an e xpansiv e 
et of neutral and cation species, and undertaking analyses of 
inearly binned wavelength histograms and unidentified infrared 
mission lines (UIEs). 3 DIBs and UIEs should share a subsample 
f molecules, 4 ho we ver, dif ferences are expected (e.g. λ linked
o neutral versus ion species, intensity shifts, separate molecules) 
MNRAS 539, 3489–3492 (2025) 

 Kw ok ( 2022 ) f a v ors mixed aromatic/aliphatic organic nanoparticles 
MAONs) for UIEs rather than canonical PAHs. 
 e.g. Bondar ( 2020 ), and for C 

+ 
60 see Foing & Ehrenfreund ( 1994 , DIBs) and 

adjadi et al. ( 2022 , UIEs). 
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wing to disparate ambient temperatures, densities, neutral and ion
opulation ratios, radiation field, etc. (broader discussions in Peeters
002 and Bondar 2020 and references therein). 
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