
A Near-infrared RR Lyrae Census along the Southern Galactic Plane: The Milky Way’s
Stellar Fossil Brought to Light

István Dékány1 , Gergely Hajdu1,2,3 , Eva K. Grebel1 , Márcio Catelan2,3,8 , Felipe Elorrieta3,4, Susana Eyheramendy3,4,5,
Daniel Majaess6,7, and Andrés Jordán2,3,5

1 Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstr. 12–14, D-69120 Heidelberg, Germany
dekany@uni-heidelberg.de

2 Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, 782-0436 Macul, Santiago, Chile
3 Millennium Institute of Astrophysics, Santiago, Chile

4 Departmento de Estadística, Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, 7820436 Macul, Santiago, Chile
5 Max-Planck-Institut für Astronomie, Königstughl 17, 69117 Heidelberg, Germany

6 Mount Saint Vincent University, Halifax, Nova Scotia, Canada
7 Saint Mary’s University, Halifax, Nova Scotia, Canada

Received 2018 January 23; revised 2018 February 27; accepted 2018 March 2; published 2018 April 13

Abstract

RRLyrae stars (RRLs) are tracers of the Milky Way’s fossil record, holding valuable information on its formation
and early evolution. Owing to the high interstellar extinction endemic to the Galactic plane, distant RRLs lying at
low Galactic latitudes have been elusive. We attained a census of 1892 high-confidence RRLs by exploiting the
near-infrared photometric database of the VVV survey’s disk footprint spanning ∼70° of Galactic longitude, using
a machine-learned classifier. Novel data-driven methods were employed to accurately characterize their spatial
distribution using sparsely sampled multi-band photometry. The RRL metallicity distribution function (MDF) was
derived from their Ks-band light-curve parameters using machine-learning methods. The MDF shows remarkable
structural similarities to both the spectroscopic MDF of red clump giants and the MDF of bulge RRLs. We model
the MDF with a multi-component density distribution and find that the number density of stars associated with the
different model components systematically changes with both the Galactocentric radius and vertical distance from
the Galactic plane, equivalent to weak metallicity gradients. Based on the consistency with results from the ARGOS
survey, three MDF modes are attributed to the old disk populations, while the most metal-poor RRLs are probably
halo interlopers. We propose that the dominant [Fe/H] component with a mean of −1 dex might correspond to the
outskirts of an ancient Galactic spheroid or classical bulge component residing in the central Milky Way. The
physical origins of the RRLs in this study need to be verified by kinematical information.
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1. Introduction

RR Lyrae (RRL) stars are keystone objects of Galactic
archeology. They are truly stellar fossils—being over 10 Gyr
old, they already existed when the primary structures of the
Milky Way formed, thus they are excellent proxies of its
primordial stellar populations and carry precious information
on the early formation history of our Galaxy (e.g., Catelan &
Smith 2015). They follow precise period–luminosity-metalli-
city relations (PLZRs) in the infrared (IR) wavebands (e.g.,
Dall’Ora et al. 2004; Braga et al. 2015; Navarrete et al. 2017,
and references therein), enabling us to employ them as primary
standard candles. Moreover, they can be employed as relatively
precise photometric metallicity indicators in two different
ways. First, the shapes of their light curves are tightly related to
their heavy element abundances (Jurcsik & Kovács 1996;
Smolec 2005); and second, by inverting their near-IR PLZRs,
the metallicities of RRL populations of known distances can be
determined with high precision (Braga et al. 2016; Martínez-
Vázquez et al. 2016).

Since they are fairly bright objects (MK;0.5), their census
has been feasible in all Galactic components, as well as in the
surrounding dwarf satellites and stellar streams (e.g., Drake

et al. 2013; Sesar et al. 2013; Soszyński et al. 2014, 2016;
Martínez-Vázquez et al. 2015; Fiorentino et al. 2017). However,
a deep survey of RRL stars throughout the Galactic disk has
been lacking due to the severe interstellar extinction endemic to
objects lying close to the Galactic plane, thus limiting the RRL
census to within a few kiloparsecs of the solar neighborhood
along low-latitude sightlines (e.g., Layden 1994).
Owing to their exceptional diagnostic value, RRL stars along

the Galactic disk hold the potential to add key pieces of
information to our current understanding of the structural and
chemical evolution of stellar populations in the disk, bulge, and
halo, and the interplay between them. In recent years, there has
been enormous advancement in the characterization of the
metallicity distribution function (MDF) throughout the bulge
and the Galactic disk, which was made possible by the data sets
from large spectroscopic surveys (e.g., Ness et al. 2013;
Nidever et al. 2014; Hayden et al. 2015). While these data
serve as a solid foundation for studies of Galaxy evolution by
providing precise abundances for a very large number of stars,
they are currently unable to put strong constraints on stellar
ages and distances, although the latter issue is well mitigated by
the sheer quantity of data. Consequently, the resulting stellar
parameter space sampled by current spectroscopic surveys
represents a blend of stellar populations with a largely
unknown age distribution, which complicates the interpretation
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of the observations. Complementary data sets from tracer
objects with significant constraints on their ages and positions
are therefore key pieces of the puzzle, even though their sample
sizes can be 1–2 orders of magnitude smaller. In this context,
the census of RRL stars in the Galactic disk is of the utmost
importance because they provide unique access to the oldest
fossil record of the Milky Way.

In a recent pilot study (Minniti et al. 2017), we leveraged
near-IR data from the VISTA Variables in the Vía Láctea
survey (VVV, Minniti et al. 2010) to identify fundamental-
mode RRL (RRab) stars lying in close proximity of the
southern Galactic plane. We presented a sample of 404
candidate RRab stars in a narrow strip of the sky at
−2°.24b−1°.05 running parallel with the Galactic
equator between 295°l350°, covering 25% of the
VVV disk footprint. Based on their J, H, Ks photometry, we
performed a preliminary characterization of the objects. The
present study expands upon this earlier work in several aspects.
We extend our census to the entire area of the southern disk
footprint of the VVV survey, and apply novel methods for the
identification and accurate characterization of the RRL stars
based on near-IR photometry alone.

This paper is organized as follows. In Section 2, we describe
the steps of data processing and the identification of RRab stars
by means of a machine-learned classifier. Section 3 discusses
the methodology for the characterization of the RRab sample
based on near-IR photometry, including the measurement of
accurate mean magnitudes in the JHKs bands, estimating the
extinctions of the stars, the estimation of their iron abundances
from their Ks-band light curves, and the computation of the
distances to the objects. In Section 4, we present their spatial
and metallicity distributions inferred from their light curves.
We compare our results to former studies and discuss their
implications for the early formation history of the Milky Way
in Section 5. We summarize our conclusions in Section 6.

2. The Census of Disk RR Lyrae Stars

2.1. Data

Our study is entirely based on near-IR time-series photo-
metric data from the VVV survey. We analyzed observational
data from the VVV’s disk footprint (fields d001–d151, as
defined in Minniti et al. 2010), an approximately 4°×57°
elongated area running parallel with and nearly symmetrically
to the Galactic equator, covering the mid-plane toward the 4th
Galactic quadrant. The data were acquired between 2010
January 30 and 2015 August 14. Images were taken in the ZY
JHKs broadband filter set of the VISTA photometric system.
Photometric zero-points (ZPs) were calibrated using local
secondary standard stars from the 2MASS survey (Skrutskie
et al. 2006). Each field was observed 50 times in the Ks band,
and a few (1–10) times in the Z, Y, J, and H bands. Since the
tiles slightly overlap, a small fraction of the survey area was
observed in up to 200 epochs.

The analysis presented in the following sections is based on
the standard, public VVV data products provided by the
Cambridge Astronomy Survey Unit (CASU) and available
through the ESO Archive. Observational data were pipeline-
processed by the VISTA Data Flow System (VDFS; see
Emerson et al. 2004). We used ZP-calibrated magnitudes
measured in a series of small, flux-corrected circular apertures.
The VDFS is shown to provide accurate magnitudes in

moderately crowded fields (Irwin et al. 2004). Limiting
magnitudes range from ∼18.5 to ∼17mag in the Ks band,
and between ∼18 and ∼20mag in the J-band, mainly
depending on the interstellar extinction and source crowding
along the line of sight (see also Saito et al. 2012).
Positional cross-matching of the photometric source tables

provided by CASU was performed using software code from
the Starlink Tables Infrastructure Library (STIL, Taylor 2006)
on a tile-by-tile basis. First, fiducial source lists were computed
from individual distortion-corrected source catalogs extracted
from contiguous mosaic images (tiles), generated by the VDFS
from six non-contiguous detector frame stacks (pawprints),
which were acquired sequentially at each observational epoch
by offset pointing. For each field, the 20 highest-quality tile-
based source catalogs were identified in terms of best seeing,
smallest mean source ellipticity, and the lowest atmospheric
foreground flux. These source lists were randomly distributed
into groups of 5, and were reduced into single source lists via
the multi-object positional cross-matching of the objects’
celestial positions with a tolerance of 0 36 (=1 detector pixel),
and keeping the mean positions of the best “friends of friends”
matching groups. The same procedure was then repeated on the
resulting four merged catalogs, producing a single master
source list. We note that this approach is robust against
spurious sources and systematic positional mismatches in
crowded areas due to changing seeing conditions, but has the
drawback of missing transient events and very faint objects that
only occasionally emerge from the background, and cannot
identify objects with high proper motion. But since our goal is
to identify distant RRLs with sufficiently high-quality light
curves enabling their firm classification, these drawbacks are of
no significance in the present study.
The master source catalogs contain 6·105–106 point sources

per field, depending on overall source density and extinction.
Photometric time-series were obtained from pawprint-based
VDFS source catalogs by performing simple one-by-one
pairwise positional cross-matching between the celestial
positions of the objects in these tables and those in the master
source catalog, then sorting the union of the resulting tables by
object identifier and Julian date. We note that although tile- and
pawprint-based photometries are computed by the same VDFS
procedures, we opted to use the latter because, due to fewer
image processing steps, they contain less photometric systema-
tics at the expense of slightly brighter limiting magnitudes.

2.2. Variability Search

The post-processing of the VDFS data products discussed in
Section 2.1 resulted in approximately 2·108 photometric time-
series from the VVV disk area. To find RRLs in this vast
amount of data, we first pre-selected a subset of objects
showing putative light variations by taking advantage of the
correlated sampling of the light curves. Due to the observing
strategy of VISTA, each field is covered by 6 consecutive
exposures at each epoch within a ∼3 minute interval, in order
to obtain offset images for covering the gaps between the
detector’s 16 chips. Since we use pawprint-based photometry,
in the overwhelming majority of the light curves, the
measurements are clustered into 2–6 points per epoch
(depending on the position of the object on the detector),
which originate from the same tile acquisition sequence, and
have a time span that is negligible compared to the timescale of
the light variation of RRLs.
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We utilize this property of the data to search for objects with
coherent light variations by employing two different variability
statistics designed for correlated sampling, namely Stetson’s J
index (Stetson 1996, Equation (1)), and the ratio of the
weighted standard deviation of the time-series σw and a pseudo
von Neumann index (von Neumann et al. 1941) δ. In the
computation of δ, the standard form of mean squared
successive differences (which measure the point-to-point
scatter in the data) was modified by including the squared
inverses of the measurement errors as weights, and by
evaluating the summations for only those successive measure-
ment pairs that belong to the same tile acquisition sequence,
i.e.,
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where N is the number of appropriate measurements, M is the
number of nonzero weights (in practice, N=M), and wi= σi

−2,
where σi

2 is the squared sum of the photometric and ZP errors
of magnitude mi.

Candidate variable stars were selected above the 0.1%
significance level of either J or σw/δ, as estimated from Monte
Carlo simulations based on Gaussian noise. We note that this
first statistical filter is not effective against strong photometric
systematics (a.k.a “colored noise”), but still reduces the objects
of interest to a few percent of all point sources.

In order to mitigate the flux contamination due to source
crowding and maximize the photometric signal-to-noise ratio
(S/N), it is necessary to determine the optimal aperture for each
star. In the first stage of the analysis, the selection of the
optimal aperture at first approximation was done by minimizing
the global scatter of the magnitudes, in conjunction with a basic
iterative 5σ outlier rejection and various parameter-threshold
rejections using metadata computed by CASU (i.e., photo-
metric confidence, source ellipticity, etc.). Based on the
variability statistics, typically ∼104 objects passed this first
candidate selection in each VVV field, and were then
propagated into a period analysis.

2.3. Period Search and Light-curve Model

We searched for periodic signals in the Ks-band time-series
using our own parallelized implementation of the Generalized
Lomb–Scargle periodogram (GLS, Zechmeister & Kür-
ster 2009). For this purpose, individual measurements were
binned to form light curves with one point per epoch, in order
to provide a consistent amplitude scale in frequency space.
Spectral significance levels were estimated analytically (see
Zechmeister & Kürster 2009 for details), and stars with
periodic signals in the [0.35 day, 0.9 day] range with a false
alarm probability (FAP) of <0.1% were selected for further
analysis. Bootstrap simulations with a subset of data showed
that the analytical approximation of the FAP always under-
estimates the significance for our data, thus our sample contains
more false positives compared to a selection based on a star-by-
star bootstrap-based estimation of the FAP. However, the latter
would inflict a dramatic increase in the computational cost, and
would only increase sample purity for low S/N observations.
Since we are interested in RRLs with light curves of
sufficiently high quality (allowing accurate classification), our
simple approach of FAP estimation does not affect the final
sample completeness and purity, but merely increases the

sample size in the latter classification analysis by the inclusion
of noisy data, still resulting in an enormous overall gain in the
computational cost.
Our period analysis resulted in a reduced target sample of

approximately 85,000 candidate objects, which were subjected
to an iterative feature extraction procedure. In the first iteration,
a light curve was fitted in each aperture with a truncated Fourier
series model using the GLS period, and the optimal aperture
was reevaluated by minimizing the reduced χ2. The number of
Fourier terms was optimized following a similar procedure as
described by Kovács & Kupi (2007). In each subsequent
iteration, the period was refitted, followed by a 3σoutlier
rejection around the updated model. The parameters of the final
model solution resulting from this procedure were used as input
features for classification.

2.4. Light-curve Classification

In the next step of the analysis, we employed a machine-
learned classifier developed by Elorrieta et al. (2016) for
identifying fundamental-mode RRLyrae (RRab) stars in our
database. The procedure uses the adaptive boosting algorithm
to assign a score to each light curve, based on a set of 12
features, which are parameters of the light-curve model and
descriptive statistics of the time-series (see Elorrieta et al. 2016
for a full description of the features). The classifier was trained
using data from three fields of the VVV survey’s bulge area
(namely b293, b294, b295) overlapping with the footprint of
the OGLE-IV survey, where the census of RRab stars is close
to complete. The training set consisted of several hundred
RRab stars (with firm classification based on optical light
curves), as well as tens of thousands of non-RRab light curves
from the same fields. The decision boundary (i.e., a score
threshold) that optimizes the classifier performance was
computed by tenfold cross-validation (for a full explanation,
see Elorrieta et al. 2016). In our original analysis (Elorrieta
et al. 2016), we set the decision boundary at a score threshold
of 0.548 by optimizing the classifier based on the so-called
F1-measure, which is the harmonic mean between precision
and recall (in other terms, sample purity and completeness).
This threshold corresponded to a precision of ∼0.97, and a
recall of ∼0.90 (Elorrieta et al. 2016).
Since the observing strategy of the VVV survey was slightly

different for its bulge and disk areas, we found it desirable to
complement earlier measures of classifier performance (which
were based on data from the bulge area) with a performance
estimate based on data from the disk area (which our present
study focuses on). The reason for this is that the photometric
time-series from the disk area have a smaller number of epochs
(∼50) compared to the bulge data (∼100), as well as a slightly
smaller baseline. Since the accuracy of the features used by the
classifier depend on the distribution of data points (see Elorrieta
et al. 2016), these differences in the data properties are
expected to result in a slightly lower classifier performance for
the disk area at any given score threshold compared to our
original estimates. At the same time, we are aiming to study an
area with practically no previous census of RRab stars, thus we
cannot compare our class predictions to already labeled data
(i.e., RRab stars with accurate classifications based on
independent data). We note that the OGLE-III survey identified
RRab stars in a small number of fields along the southern
Galactic disk, but there is only a very small area in overlap with
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the VVV fields, containing only six previously known RRab
stars.

In order to estimate the precision of the classifier on VVV
disk data, first we ran the algorithm on our entire target sample
(see Section 2.3), and applied a score threshold of 0.5, resulting
in a broad selection of 3379 objects. Then we divided this into
groups of 500 objects each by random selection. Each of these
groups was visually inspected by human domain experts, and
labeled as RRab/non-RRab, without knowledge of the score, in
order not to be biased by the result from the classifier. We note
that not every human expert inspected all light curves in the
broad selection, but all light curves were inspected by at least
one human. Based on those objects that were inspected by
multiple humans, we concluded that the results from different
humans had a consistency rate of ∼90%. Using these visual
classifications in combination, we estimated the precision of the
classifier (p′) as a function of varying score threshold by
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> + >
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where N1 and N0 are the number of true and false positives
according to human experts, s is the classifier score, and

Î [ ]x 0, 1 . Figure 1 shows the resulting p′(x) curve from our
visual validation process, together with the kernel density
estimates of true positives, false positives, and all data for our
broad selection. We set our decision boundary to s= 0.6,
which corresponds to a human-estimated precision of p′= 0.9.
The objects that were visually classified as RRL but with
s<0.6 have typically fewer data points, noisy light curves,
and/or strong systematics due to, e.g., source crowding.
Finally, we note that standard measures of classifier perfor-
mance, such as the F1 measure or the receiver operating
characteristic curve, cannot be estimated by human visual
inspection because they require the measurement of false

negatives, which cannot be obtained in the absence of
previously labeled data (i.e., known RRab stars in the
studied area).
Using a score threshold of 0.6 resulted in a narrow selection

of 2147 RRab candidates. Subsequently, we flagged all objects
that were classified as non-RRab by at least one human expert.
By this last step, we further increased the precision in our
sample to probably a few percent, at the expense of lowering
the recall by an unknown (but presumably tiny) amount. The
unflagged objects with s>0.6 form our final, fiducial sample
of 1892 objects, which will serve as the basis of our analyses in
Sections 3–4.
At a first glance, the exclusion of all flagged objects from our

final sample might seem to be a quite drastic and perhaps too
conservative step because the gain of precision might cost a
significant decrease of sample completeness. We argue that this
is not the case because an inspection of the flagged objects
reveals that the human experts had quite objective reasons for
flagging in general, namely suspected blending, large systema-
tics in the photometry, low S/N, and signatures that the
candidate is a contact eclipsing binary. The confusion with
binary light curves is a particularly challenging aspect of RRab
classification based on near-IR data. This is because some
RRab light curves can be symmetric, and resemble the phase
diagrams of contact eclipsing binaries phase-folded with half of
their true periods. Figure 1 of Elorrieta et al. (2016) displays an
excellent illustration of this issue. An increased local scatter
around minimum brightness is a good signature of a binary
being a false positive (due to the different depths of the primary
and secondary minima), and our classifier learned to distin-
guish binaries from RRab stars based on such signatures via the
p2p_scatter_2praw feature (see Elorrieta et al. 2016 for
its definition). However, due to the sparser photometric
sampling of the VVV disk fields, this important signature can
be quite subtle in some cases, in which the judgment of a

Figure 1. Kernel density estimates (KDE) of the true and false positives and their sum (shaded green, red, and gray areas, respectively) as a function of classifier score
for our broad selection of RRab candidates, resulting from visual inspection by domain experts. The black and blue curves show the corresponding precision and
contamination, respectively, multiplied by 10 (see the text).
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human expert’s eye, although not a deterministic inference, can
sometimes be more accurate than a machine-learned classifier.

We compared our results to the catalog of 404 RRab
candidates in the earlier study of Minniti et al. (2017), which
covered 25% of the total disk area of the VVV survey. All
objects were included in all steps of our present analysis, and
their classification scores are shown in Figure 2. Only ∼77% of
the previous candidates, i.e., 312 objects, have scores above
our current threshold, and 295 of them were not flagged in our
analysis (i.e., included in our fiducial sample). We note that
some of the candidates in Minniti et al. (2017) got extremely
low scores from the machine-learned classifier. On the other
hand, our narrow selection contains 673 (593 unflagged)
objects in the region covered by Minniti et al. (2017), 361 (298
unflagged) of which were not included in the Minniti et al.
(2017) sample.

Although both studies involved visual inspection of light
curves for object classification, there is a substantial difference
between their methodologies, which resulted in such a different
performance. In the case of our present study, the human
component was limited to objects with high classifier scores, it
was employed with high redundancy in order to minimize
personal bias, and its purpose was to only fine-tune the decision
boundary of a deterministic method, as well as to slightly
increase the purity of the final sample. On the other hand, the
object classification by Minniti et al. (2017) was completely
based on the visual inspection of ∼104 light curves by a single
human, and included very limited redundancy only in the
inspection of the best-looking ∼700 candidates, leading to poor
performance. We conclude that the visual classification of near-
IR data is very risky, especially when performed on extremely
large data sets without redundancy, because fatigue will lead to
a high error rate and a time-varying decision boundary in the
human brain, thus resulting in both incomplete and contami-
nated samples, which can easily lead to false scientific
conclusions. We stress that a purely visual classification of
light curves in large near-IR time-domain surveys is highly
discouraged.

3. Near-IR Photometric Characterization of the RR Lyrae
Stars

A great advantage of using RRL stars as population tracers is
that their reddenings, distances, and metallicities can be
precisely estimated from parameters derived from photometric
measurements. The simple scheme of RRL parameter estima-
tion from 2 photometric bands is as follows:

1. The [Fe/H] heavy element abundance of the star is
estimated from its light-curve properties. Exactly which
light-curve features are employed in this prediction
depends on the photometric band.

2. The estimated [Fe/H] values are converted into absolute
heavy element content Z. For this conversion, it is
necessary to make an assumption for the star’s helium
content and adopt a heavy element mixture.

3. The period–luminosity-metallicity relations are used to
predict the Mi absolute magnitude of an RRL star in the
IR photometric band i:

= ( ) ( )M f P Zlog , log , 3i

where P is the pulsation period, Z is the total heavy
element content of the object, and f symbolizes the
functional form of the relation.

4. The color excess (i.e., reddening) Eij of the star in the i
and j passbands is then calculated as:

= á ñ - á ñ - -( ) ( )E m m M M , 4ij i j i j

where á ñmi is the observed mean magnitude of the star in
the i band.

5. The absolute extinction Ai is then estimated from Eij,
based on the total-to-selective extinction ratio implied by
an assumed reddening law.

6. Finally, the distance d (in pc) to the object is calculated by:

= + - -· ( ) ( )d m A Mlog 1 0.2 . 5i i i

In the following, we discuss the details of the various steps
of this procedure.

Figure 2. Histogram of the classifier scores of the 404 RRab candidates in the study by Minniti et al. (2017). Data above and below our decision boundary are colored
green and red, respectively.
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3.1. Metallicity Estimation

The empirical relationships between the metallicity and the
optical light-curve shape of RRL stars (e.g., Kovács &
Zsoldos 1995; Jurcsik & Kovács 1996; Smolec 2005) enable
us to employ them as metallicity tracers. However, an empirical
calibration linking spectroscopic metallicities to the near-IR
light-curve parameters of RRLs has been lacking, despite its
key importance in the era of large time-domain photometric
surveys like the VVV, since a large fraction of the newly
discovered distant RRLs are beyond the faint magnitude limit
of optical surveys. This situation arises from the fact that as of
now, RRL stars with both spectroscopic abundance measure-
ments and well-sampled near-IR light curves have not been
available in sufficient numbers. An important step forward in
this context was taken by the discovery of a nonlinear
relationship between the Ks-band light curves of RRab stars
and the photometric metallicities derived from their I-band
counterparts using the relation of Smolec (2005, Equation (3)).
In Hajdu et al. (2018), we trained a predictive model of the
metallicity using a large number of bulge RRab stars
discovered by the OGLE-IV survey in the optical I band,
which also have accurate Ks-band light curves acquired by the
VVV survey. A detailed description of the method is provided
in Hajdu et al. (2018), and here we only briefly summarize the
main properties of this estimator.

First, the Ks light curves in the training data set of this
method were represented by the linear combination of the
Fourier parameters of RRab principal component (PC) light
curves, instead of using the traditional direct Fourier fitting.
The PCs were computed from accurate Fourier models of a
large representative set of high-quality RRab light curves from
the VVV survey, and result from the singular value decom-
position of their phase-folded and phase-aligned light curves,
with their standard-scaled magnitudes in 100 equidistant phase
points used as input features. Hajdu et al. (2018) found that any
RRab light-curve can be accurately modeled with a linear
combination of the Fourier parameters of the first four PCs. The
main advantage of this method when compared to standard
Fourier fitting is that it has many fewer parameters, namely the
period and the coefficients of the PCs (Ui, = { }i 1 ... 4 ), which
makes it more robust in case of relatively few data points or
when the light curve is affected by phase gaps. Subsequently,
the PC-based light-curve model was decomposed into a
truncated Fourier series, in order to also provide a standard
representation of the data.

The prediction formula of [Fe/H] values was determined
from the period and the amplitudes and phases of the first
three Fourier terms via regularized nonlinear regression
performed by a small neural network (see Hajdu et al. 2018
for details). The mean prediction accuracy with respect to
the Smolec (2005) calibration is 0.2dex in the Î[ ]Fe H
 -[ ]1.8, 0 dex range. This was computed via standard cross-
validation procedures and was further verified on various
independent test data sets, which are discussed in Hajdu
et al. (2018).

Concerning the accuracy, it is important to make a note of
the deficiency of low-metallicity objects in the spectroscopic
calibrating samples of both the V-band and I-band [Fe/H]
formulae (i.e., the calibrators behind our training sample),
which leads to a bias in the estimated metallicities. For
example, the [Fe/H] values predicted by the two-parameter
V-band formula are known to be biased for stars with

[Fe/H]<−2 (Jurcsik & Kovács 1996). Hajdu et al. (2018)
have shown that the 3-parameter I-band formula of Smolec
(2005) provides significantly more unbiased [Fe/H] estimates
for low-metallicity, Oosterhoff II RRab stars (Oosterhoff 1939,
see also Catelan & Smith 2015, for a recent review and
references), and made further small corrections in the training
sample. Since our de-biased training sample encompasses a
very wide range of metallicities, our [Fe/H] estimates
determined from Ks-band photometry are free from any strong
regression bias, except for the extremely metal-poor tail of the
distribution at [Fe/H]−1.8. At the same time, we note that
our regression residual may carry some weak nonlinearities at
the ∼0.05dex level (see Hajdu et al. 2018).
The total accuracy of the [Fe/H] values with respect to the

spectroscopic measurements based on which the Smolec (2005)
formula was calibrated, is ∼0.25dex, considering the predic-
tion error of the latter. We note that the predicted [Fe/H] values
are on the Jurcsik (1995) metallicity scale, which is based on
high-dispersion spectroscopic (HDS) measurements. A more
recent HDS-based metallicity scale was established by Carretta
et al. (2009, hereafter C09), using a large number of red giant
stars in globular clusters. Since their measurements do not
include RRLs, it is not possible to directly calibrate
photometric metallicity estimates to the C09 scale. However,
a linear transformation of our predicted [Fe/H] values to the
C09 scale is possible (Hajdu et al. 2018). The offset between
the two scales is [Fe/H]-dependent, and ranges approximately
between 0.02 and 0.1 dex.
We computed photometric metallicities for our fiducial

sample of disk RRab stars by first performing a PC regression
of the post-processed Ks-band light curves, and then applying
the Hajdu et al. (2018) method on the fitted parameters.
Figure 3 shows our fiducial sample of RRab stars on the Bailey
diagram with their metallicities color-coded, and their number
density estimate highlighted with contours. A relatively large
number of metal-rich stars, as well as metal-poor Oosterhoff II
objects, are located at the left and right sides of the main locus,
respectively. The resulting RRL MDF will be discussed in
detail in Section 4.
The absolute heavy element content Z was calculated from

the [Fe/H] values by assuming a helium content of Y= 0.245
and an alpha-element enhancement of [α/Fe]= 0.3, standard
solar chemical composition (Grevesse & Sauval 1998), and
chemical element distributions at a ¹[ ]Fe 0 provided by
Ferguson et al. (2005). We first computed a grid of [Fe/H]
versus log Z values, and obtained the following formula by
linear regression:

= -[ ] ( )Zlog Fe H 1.538, 6

which was used for converting [Fe/H] to Zlog .

3.2. Extinctions and Distances

The absolute magnitudes of the RRLs were estimated using
the theoretical PLZRs of Catelan et al. (2004). Since the
formulae in their original study were computed for different
photometric systems, we first had to convert those into the
VISTA system. This was performed by transforming the JHK
magnitudes for each and every individual synthetic star in the
Catelan et al. (2004) simulations into the VISTA photometric
system, and then recomputing all linear regressions. The
magnitudes were converted using Equations (A1)–(A3) of
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Carpenter (2001), and the formulae provided by the CASU.9

The resulting period–luminosity–metallicity relations in the
VISTA system are as follows:

= - - +· · ( )M P Z0.6365 2.347 log 0.1747 log , 7Ks

= - - +· · ( )M P Z0.5539 2.302 log 0.1781 log , 8H

= - - +· · ( )M P Z0.2361 1.830 log 0.1886 log . 9J

The reddening was estimated by the comparison of the
observed intensity-averaged color index to the intrinsic
theoretical equilibrium color index, computed from the PLZRs,
independently for each star.

RRLs undergo large temperature changes during their
pulsation cycles, hence their color indices change significantly
as a function of pulsation phase. Since the VVV survey
provides only a very limited number of J and H observations, a
direct unbiased estimation of the mean color indices is not
possible. We mitigated this problem by estimating the mean J
magnitude by means of a machine-learned predictive model
discussed by Hajdu et al. (2018). This model is capable of
predicting the relative variations of the J magnitude as a
function of the pulsation phase (i.e., the shapes of the light
curves) from the model parameters of the Ks light curve with a
very high accuracy of ∼0.02mag. The mean H magnitudes
were computed under the assumption that an RRL star’s light-
curve shape is identical in the H and Ks bands (for details, see
Hajdu et al. 2018). The predicted light curves are then fitted to
the actual J-band and H-band measurements (since their
pulsation phases are known), and the intercepts are used as
estimates of á ñJ and á ñH .

Distances were computed from the distance moduli mea-
sured in the Ks filter because among the available photometric
wavebands, the mean magnitude is most accurate, the
metallicity dependence and the intrinsic scatter of the PLZR
are the smallest, and the extinction is the lowest in this band.
The absolute Ks-band extinction of each star was inferred from
the E(J− Ks) or (in the absence of a J-band detection) the

E(H− Ks) color excess, using the mean selective-to-total
extinction ratios of Majaess et al. (2016), namely A(Ks)/
E(J− Ks)= 0.49 and A(Ks)/E(H−Ks)= 1.49. The advantage
of employing the Majaess et al. (2016) relations is that they
were measured using RRLs and Cepheids, therefore they are
free from biases carried by other relations that rely on proxies
with significantly different spectral energy distributions, e.g.,
red clump (RC) stars. Moreover, these relations were obtained
using objects lying at typically low Galactic latitudes, thus our
estimates are less affected by a possibly significant spatial
variation in the extinction curve between high- and low-latitude
sightlines, as found for optical–near-IR extinction ratios (e.g.,
Nataf et al. 2016). At the same time, we note that the existence
of such variations is currently debated (see, e.g., Schlafly
et al. 2016), and our analysis would be only marginally affected
by them (see Section 4).
Errors in the distances have several sources, and in the

following, we provide a brief characterization of each of them.
Photometric errors and ZP errors (determined for each
exposure) cause uncertainties in the mean magnitudes. The
photometric errors have been discussed in detail by Saito et al.
(2012), and range typically from 0.01 for bright stars up to 0.1
magnitudes for our faintest RRLs, near the detection limit;
while ZP errors usually fall between 0.01 and 0.03 mag. Both
have significant contributions in the estimated á ñJ and á ñH , but
ZP errors dominate in á ñKs since there are up to 50 epochs in
that band. Since the mean magnitudes are computed via model
fits, the inaccuracy of the latter brings in additional uncertain-
ties. á ñKs is the intercept of the fitted Fourier series, and its error
is smaller than 0.01 mag. á ñJ and á ñH are computed from
predictive models, which have a mean statistical error of
0.02 mag in both bands (see Hajdu et al. 2018).
Further errors propagate in through the PLZRs: errors in the

estimated [Fe/H] values, possible systematic errors in the Zlog
conversion, and the uncertainties in the PLZ relations them-
selves. The latter can be estimated by comparing distance
estimates using different (empirical or theoretical) period–
luminosity relations. In the case of empirical relations, this is
complicated by several factors: their uncertainties are dominated

Figure 3. Near-infrared Bailey (Ks total amplitude vs. period) diagram of the RRLyrae stars in our study. The contours represent a Gaussian kernel density estimate of
the points with an optimal kernel size, determined by leave-one-out cross-validation, in order to highlight the main locus of stars in this diagram. The color scale shows
the [Fe/H] values of the individual stars estimated from the Ks-band light curves.

9 http://casu.ast.cam.ac.uk/surveys-projects/vista/technical/photometric-
properties/
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by either small sample sizes or small [Fe/H] ranges and different
metallicity scales; they are measured in various different
photometric systems; and empirical near-IR PLZRs are scarcely
derived for bands other than Ks, which would result in a
blending of distance errors arising from the PLZRs with those
arising from the extinctions when lacking a star-by-star estimate
of the intrinsic color. A detailed systematic comparison of
PLZRs is beyond the scope of this paper, thus we point the
reader to the recent works of Muraveva et al. (2015) and Beaton
et al. (2016). In order to give a reasonably good estimate of the
systematic error arising from the uncertainty in the PLZRs, we
compared the distances to the RRL stars to those obtained using
the empirical J and Ks PLZRs of Navarrete et al. (2017), which
are based on the VISTA time-series photometry of RRab stars in
ωCentauri, and thus span a relatively large range in metallicity.
Moreover, we also compare our distances to the theoretical
PLZRs to the ones obtained by Marconi et al. (2015), which are
based on different pulsation models and evolutionary constraints
compared to those of Catelan et al. (2004).

Figure 4 exhibits the contribution of relative distance offsets
and errors propagating from various sources of uncertainties,
computed independently for each RRL by Monte Carlo
simulations. The errors caused by the inaccuracy in the
photometry, [Fe/H] estimation, and light-curve models do
not exceed the 1%–2% level for the vast majority of the

objects. The systematic distance offset between the solutions
obtained by the Catelan et al. (2004) PLZRs with respect to the
Navarrete et al. (2017) and Marconi et al. (2015) PLZRs is also
on the 1%–2% level (depending mainly on the period). We
note that the results presented later in this paper are unaffected
by our use of these other PLZRs. The impact of the extinction
ratio’s uncertainty on the distances is larger roughly by a factor
of 2, and is identified as the most important source of error,
although its effect should be largely systematic, since a large
variation in the near-IR part of the extinction curve over small
angular scales is unlikely, according to the latest studies (see,
e.g., Majaess et al. 2016; Schlafly et al. 2016). The combined
relative distance errors (excluding the uncertainty in the PLZR)
are typically 3%–4%, with ∼90% of the stars falling below the
5% level.
Table 1 presents the coordinates, periods, magnitudes, light-

curve parameters, various descriptive statistics, classification
scores, [Fe/H] estimates and distances for all 1892 objects in
our fiducial sample. Figure 5 shows a small representative
sample of Ks-band light curves from our fiducial sample with
various periods and metallicities. Figure 6 shows the JHKs light
curves of three of our objects with a relatively large number of
J- and H-band observations compared to the rest of the sample,
together with the PC fit in the Ks band and the predicted light
curves in the J and H bands (the latter being identical to the

Figure 4. Relative errors in the distances to the RRLyrae stars (based on the J and Ks measurements) originating from different sources, as a function of the apparent
Ks magnitude. Top left: errors propagated from the photometric and magnitude zero-point uncertainties. Bottom left: errors originating from the nominal uncertainty of
the Majaess et al. (2016) mean selective-to-total extinction ratio. Top right: errors arising from the error in the [Fe/H] estimates (black), from the light-curve models
(red), and the relative offset in distances when using the PLZRs of Navarrete et al. (2017, N17) and Marconi et al. (2015, M15) instead of those from Catelan et al.
(2004, C04) (blue and orange, respectively). Bottom right: combined errors, excluding the uncertainty in the PLZRs.
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Table 1
Parameters of the RR Lyrae Stars in Our Fiducial Sample

ID R.A. [h:m:s] Decl. [d:m:s] Scorea Period[day] ap.b á ñKs
c σd S/N aK ,tot.s

e á ñJ c á ñH c U1
f U2

f U3
f U4

f [ ]Fe H Ks E(J − Ks) d [kpc]

1 11:38:55.83 −63:22:37.8 0.778 0.456029 3 13.966 0.019 128.4 0.254 15.009 14.165 0.774 0.134 0.002 −0.005 −0.28 0.844 5.51
2 11:40:13.71 −62:34:28.7 0.771 0.525924 2 15.007 0.049 68.3 0.342 16.971 14.815 1.007 −0.158 0.009 −0.048 −0.95 1.742 8.20
3 11:41:08.07 −62:57:22.4 0.734 0.627923 3 14.122 0.019 108.1 0.213 15.257 14.398 0.638 0.237 −0.035 −0.044 −0.94 0.874 7.21
4 11:41:19.57 −62:46:45.3 0.663 0.898821 4 13.517 0.017 103.4 0.187 14.401 12.924 0.556 0.306 −0.033 −0.047 −1.64 0.552 7.34
5 11:42:24.58 −62:00:41.2 0.670 0.507736 3 14.607 0.026 93.7 0.212 15.627 14.941 0.583 0.235 −0.040 −0.050 −0.41 0.799 7.95

Notes.
a Classification score (see Section 2.4).
b Optimal aperture (see Section 2.3).
c Magnitudes of the intensity means.
d Standard deviation of the residual.
e Total amplitude in the Ks band.
f Amplitudes of the first four principal components (see Section 3.1 and Hajdu et al. 2018).

(This table is available in its entirety in machine-readable form.)
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Ks-band fit), fitted to the data points (for details, see Hajdu
et al. 2018). The complete data set that serves as the basis of
this study is available in the online edition of the journal.
Table 2 contains the full time-series photometry for all objects
in our fiducial selection in the VISTA JHKs photometric
system.

4. Spatial and Metallicity Distribution

4.1. Three-dimensional Distribution

The spatial distribution of the RRLs projected on the
Galactic plane and on the sky are shown in the top and middle
panels of Figure 7, respectively. It is immediately apparent that
the distributions are dominated by the selection function of the
VVV survey, in particular the variations in the detection
efficiency due to differential extinction. The global maximum
in the density corresponds to the outskirts of the bulge, and its
Galactic X coordinate matches the dynamical estimate of the
distance to the Galactic Center (Gillessen et al. 2009), which
confirms that the outskirts of the bulge RRL distribution are not

barred (e.g., Dékány et al. 2013; Minniti et al. 2017). At
l345°, the source density drops quickly and its variations
become dominated by extinction variations. The bottom panel
of Figure 7 compares the RRL density with the distribution
of optical extinction on the sky based on the reddening map

Figure 5. Phase-folded light curves in the Ks band of RRLyrae stars from our fiducial sample. The phase point 0.2 was defined as the phase of the minimum
brightness for clarity. The numbers in the figure headers from left to right are as follows: object identifier, period (in days), total amplitude, photometric [Fe/H]
estimate, and classification score.

Figure 6. Phase-folded light curves in the J, H, Ks bands of RRLyrae stars from our fiducial sample, from fields with the highest number of J- and H-band
observations. The red lines show the PC fits to the Ks light curves, and the predicted J and H light curves with their intercepts fitted to the measurements. The numbers
in the figure headers have the same meaning as in Figure 5.

Table 2
JHKs Photometric Time-series of the Candidate RRLyrae Stars with a

Score >0.6

ID Filter Julian Datea mag. phot. err. ZP err.

1 Ks 55938.846162 14.056 0.031 0.024
1 Ks 55938.847161 14.067 0.021 0.010
1 Ks 55947.765248 13.923 0.028 0.020
1 Ks 55947.766437 13.931 0.026 0.013
...

Note.
a HJD–2455000.0 are given.

(This table is available in its entirety in machine-readable form.)
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of Schlegel et al. (1998), showing that the small apparent
overdensities qualitatively follow areas of lower extinction.
The projected Galactic (X, Y) distribution is also free from any

immediately evident structure other than the bulge and those
caused by extinction variations. A more detailed analysis of
subtle features in the spatial density would require quantitative

Figure 7. Top: spatial distribution of the RRab stars projected onto the Galactic plane. The brown dots show the position of individual objects, and the color scale and
contour lines represent a kernel density estimate with a kernel size of 400 pc, with a linear density increment between contours. The concentric circles mark
Galactocentric cylindrical distances in 2 kpc increments, whereas the white point marks the Galactic Center. Middle: same as above but for the positions of the objects
on the sky (in Galactic coordinates), using a kernel size of 0°. 75, and with a logarithmic density increment between contours. Bottom: same as above but the color scale
represents the reddening map of Schlegel et al. (1998) in the 1<A(V )<15 range.
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knowledge of the three-dimensional RRL detection efficiency
function of the VVV survey, and is beyond the scope of this
study.

We computed the Galactocentric distance distribution of the
RRLs assuming that the distance to the Galactic Center is
R0= 8.3 kpc (Gillessen et al. 2009; de Grijs & Bono 2016).
Figure 8 compares the heliocentric and Galactocentric margin-
alized spatial distributions. The former is heavily biased by
selection effects mainly due to extinction: RRLs are detected
up to distances of ∼16 kpc toward the high-latitude edges of
the VVV disk footprint, but objects lying in very close
proximity of the Galactic plane remain undetected beyond
∼8–9 kpc. Another, smaller selection effect is a decreased
detection rate of objects at short heliocentric distances: due to
the saturation limit of the VVV survey at around Ks11, the
closest RRLs can remain undetected in the absence of sufficient
extinction. The lack of a marked truncation in the distribution
at short distances is due to the observational cone: objects
closer to the Sun are closer to the Galactic plane as well,
therefore their extinctions tend to be systematically higher.

The marginalized Galactocentric distance distribution also
carries substantial selection biases (Figure 8, bottom right
panel). An obvious feature is the slightly decreased number
density at small dG,proj. and small Z, which is caused by very
high extinction at low-latitude sightlines close to the bulge (cf.
Figure 7, middle panel). Another prominent feature is the
smaller density of stars both far from the Galactic plane and far
from the Galactic Center, but an important caveat is that this is
not an intrinsic physical property of the distribution, but
another selection effect due to the interplay between the conical
geometry of the sample and the limiting magnitude: high-Z
stars are present only at large heliocentric distances, where
completeness is lower due to the stars’ fainter magnitudes, on
average (cf. Figure 8, bottom left panel).

The bottom right panel of Figure 8 shows the strong
correlation between an object’s location on the (dG, Z) plane
and heliocentric distance dh, arising from a combination of all
the factors discussed above. In Section 4.2, we will analyze the
metallicity distribution of the objects in subsamples drawn
from different marginalized Galactocentric distance ranges.
Despite the strong selection effects in dh, this is meaningful
under the assumption that the [Fe/H] distribution of RRLs is
circularly symmetric around the Galactic Center and along the
Galactic plane over large spatial scales.

Finally, Figure 9 shows the histogram of the Galactocentric
cylindrical distances of the RRL stars. The strong change in the
derivative of the density at around 5.5–6 kpc arises from
the limited longitude range of the VVV, in combination with
the survey’s faint and bright limiting magnitudes. This is
because the contribution of objects lying beyond 5.5–6 kpc
from the Galactic Center becomes systematically smaller for
regions both at the far side of the disk and in the solar
neighborhood, due to incompleteness.
In summary, due to the geometry of the surveyed volume,

limiting magnitudes, and the selection effects due mainly to
extinction, the current sample does not allow us to trace either
the Galactocentric density profile of the RRL stars at high
Galactocentric radii or their vertical density profile. These
would require a more extended survey area in both longitude
and latitude, and possibly a higher detection efficiency toward
fainter magnitudes. We note that the former requirements will
be met by both the OGLE-IV (Udalski et al. 2015) and the
VVV Extended (VVVX, Minniti 2018) surveys. In the
following, due to the data limitations discussed above, we will
constrain our analysis to spatial divisions made only in the
marginalized projected (i.e., cylindrical) Galactocentric dis-
tance distribution of our stellar sample.

Figure 8. Bottom left: marginalized heliocentric distance distribution of the RRLs. The color scale represents the E(J − Ks) color excesses of the stars. Bottom middle:
same as above, but marginalized around the Galactic Center. Bottom right: same as the bottom middle panel, but the color scale represents the heliocentric distances of
the objects. Top left: histogram of the reddening values of the RRLs. Top middle: histogram of the apparent mean Ks magnitudes of the RRLs.

Figure 9. Histogram (gray bars) and kernel density estimate (black curve) of
the Galactocentric cylindrical distances of the RR Lyrae stars.
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4.2. Metallicity Distribution Function

The MDF of the RRLs estimated from their Ks-band light-
curve parameters (see Section 3.1), after removing the poorest
∼10 % of the data in terms of light-curve fitting accuracy, is
shown in Figure 10 (black curve). We show it in direct
comparison with the MDF of the same high-quality subset of
OGLE-IV bulge RRab stars (Pietrukowicz et al. 2015) that
were used as training data for the Ks-band metallicity predictor
(6193 objects, Hajdu et al. 2018, see Section 3.1). The striking
difference between the two MDFs is immediately evident,
namely the MDF of the VVV disk RRL sample has much
lower kurtosis, in contrast with the sharply peaked, narrow
MDF of bulge RRab stars. At the same time, both distributions
show clear signs of multi-modality.

We split our sample from the VVV disk field into two
subsamples based on the objects’ projected (cylindrical)
Galactocentric distances, using a threshold of dG= 4 kpc,
which roughly halves our sample. The corresponding MDFs
are shown in Figure 10 with different colors. While the MDFs
of both samples show the same phenomenological differences
with respect to the MDF of the bulge RRLs, there is a relative
excess of metal-rich objects (i.e., with [Fe/H]−0.8) farther
away from the Galactic Center compared to the inner part of the
disk, showing signs of two distinct metal-rich modes. The
overwhelming majority of the RRLs in the OGLE-IV bulge
sample, on the other hand, are located at dG<4 kpc and at
higher Galactic latitudes, i.e., most of them reside within the
bulge volume, with only a few percent of the objects lying in
the foreground Galactic disk (Pietrukowicz et al. 2015). In spite
of the fact that they are sampled in rather different Galactic
regions, signs of structural similarities can be observed between
all MDFs, measured both toward the bulge, and toward the
inner and outer parts of the disk, namely, they exhibit a strong
global maximum close to −1dex, and the modes of the
distributions are centered at similar [Fe/H] values.

In order to enable a quantitative comparison of the RRL
MDFs observed toward the bulge and the southern disk with
each other, and with independent results later in Section 4.4, we

used a mixture of Gaussian distribution functions as their
common mathematical representation. The Gaussian mixture
models (GMMs) were fitted to the data with the maximum
likelihood method, via the expectation maximization algorithm
(Ivezić et al. 2014, see their Chapter 4.4 and references therein)
implemented in the scikit-learn software package (Pedregosa
et al. 2011). We optimized the model complexity (i.e., the
number of Gaussian components) by two different approaches.
First, we took a classical information theory approach, the

Akaike information criterion (AIC, Akaike 1974). The AIC
measures relative information loss in an asymptotic approx-
imation, and has the form:

= - +
+

- -
ˆ ( ) ( ) ( )( )k L

k k

N k
AIC 2 2 ln M

2 1

1
, 10M

M M

M

where k is the number of parameters, ˆ ( )L M is the maximum
value of the likelihood function of model M, and N is the length
of the data (in our case, the number of [Fe/H] values). In
Equation (10), the first term penalizes model complexity
against the goodness of fit measured through the log-likelihood
in the second term, while the third term is a correction for the
finite number of data points (see, e.g., Liddle 2007). The best
model representation is identified by minimizing the value of
AIC as a function of k for a certain family of models.
The optimal numbers of Gaussian components in the GMMs

were also assessed by a standard K-fold cross-validation (CV)
procedure. In this procedure, the data are randomly divided into
K folds, and each fold is used as a validation data set. The
prediction score (in our case, the log-likelihood) is computed
for each fold by training the model with the data in the other
K–1 folds. This is done K times, and the resulting average score
is used as a performance metric of the model. This procedure is
repeated for each model complexity (in our case, each value of
k), and the model that yields the highest CV score is accepted
as optimal. We performed this analysis with K= 20, in order to
ensure that the model parameters derived in each fold do not
become biased due to holding out too much data for the
validation set.

Figure 10. MDFs of the RRLs stars, normalized to their maximum value. The gray histogram shows the [Fe/H] values of our full sample derived from the Ks light-
curve parameters, while the black curve is a KDE. The red and blue curves show KDEs of the [Fe/H] of subsamples lying within and beyond a threshold of 4 kpc
Galactocentric radius, respectively. The green shaded area shows the KDE of the [Fe/H] of the 6193 bulge RRab stars from Hajdu et al. (2018), derived from their
I-band light-curve parameters (Smolec 2005, his Equation (3)).
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Figure 11 shows the value of AIC and the relative CV score
against the number of components k in the GMMs fitted to the
[Fe/H] values of our sample of RRLs observed toward the
southern Galactic disk. As explained above, the optimal model
corresponds to the minimum AIC value and the maximum CV
score. The optimal number of components is found to be 6 by
both methods when objects from our full Galactocentric
distance range are considered. We note that for subsamples
of the data, the optimal number of GMM components varies
between 4 and 6 due to the combined effect of the varying
weights of the MDF modes with dG, and the noisiness and
limited sizes of the subsamples. The MDF is phenomenologi-
cally similar within all Galactocentric distance ranges and it
does not become truncated with respect to the MDF of the full
sample, therefore we fitted a six-component GMM in all
subsamples.

We performed similar AIC and twentyfold CV analyses to
determine the optimal GMM complexity for the OGLE-IV

bulge RRL sample. The results are shown in Figure 12. In both
cases, a seven-component GMM was found to be optimal. We
note that the weak and long metal-poor and metal-rich tails of
the bulge RRL MDF give rise to rather shallow extrema in both
kinds of complexity analyses, thus not all seven components
are readily identifiable by eye in Figure 10.
Figure 13 visualizes the results of the GMMs for the same

data sets as in Figure 10. We show histograms of the [Fe/H]
values, overlaid by the mixture models evaluated at the data
points (in green), and kernel density estimates (in red) of the
different model components using Gaussian kernels, with
optimal kernel sizes evaluated via a twentyfold CV. We
performed Monte Carlo (MC) simulations to determine the
errors in the GMM parameters of the MDFs using Gaussian
random noise. In every MC realization, each [Fe/H] value was
modified by being drawn from a Gaussian distribution centered
at the original [Fe/H] value, and with its standard deviation
made equal to the [Fe/H] prediction error of 0.2 and 0.14dex

Figure 11. Top row: the AIC as a function of the number of components in the GMM of the RRL MDF, for the entire sample (left), and for objects within (middle)
and beyond a (right) 4kpc Galactocentric radius. Bottom row: same as above, but showing the relative CV scores on the vertical axes.

Figure 12. AIC (left) and relative CV scores (right) plotted against the number of components in the Gaussian mixture model of the bulge RRL MDF.
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in case of the VVV disk and OGLE-IV bulge samples,
respectively (see Section 3.1). The errors in the parameters of
the GMM components were determined from 1000 realiza-
tions. Tables 3 and 4 present the parameters of the GMM
components obtained for the various RRL subsamples
observed toward the southern Galactic disk (VVV fields) and
the Galactic bulge (OGLE fields), together with their errors,
labeled with “v” and “o,” respectively, and numbered with
decreasing metallicity. We note that although the errors in the
weights are relatively large, they are not independent for a
given subsample.

4.3. Spatial Variations in the Metallicity Distribution

The top left and top right panels of Figure 14 show the
weights of the resulting GMM components against their means
for the RRL MDFs observed toward the disk and the bulge,
respectively. The means of the former are very stable against
dG, well within their errors, which is remarkable, considering
that the two subsamples are from distinct dG ranges (i.e., they
have no common objects). In all three MDFs obtained for the

VVV disk fields, the global maxima fall to [Fe/H];−0.9,
and the corresponding mode has the largest weight at all values
of dG. The relative weights of both metal-rich components with
[Fe/H]>−1 become larger with increasing distance from the
Galactic Center, with respect to the weights of the more metal-
poor modes. This is consistent with a small positive
Galactocentric metallicity gradient along the disk. Likewise,
the weights of the metal-poor ([Fe/H]<−1) modes system-
atically decrease with increasing dG, except for the weakest
metal-poor mode at [Fe/H];−1.70. This trend consistently
extrapolates toward the bulge: inside the bulge volume (i.e., in
case of the OGLE bulge RRLs), the metal-rich modes of the
MDF dissolve into a weak tail, while the metal-poor tail
remains relatively more significant.
Although only a small fraction of RRLs in the OGLE bulge

fields contribute to the metal-poor and metal-rich wings of the
MDF, the means of the corresponding GMM modes match
those in the VVV disk field MDFs with very high precision (cf.
Tables 3 and 4), capturing a significant structural similarity
between the distributions. Namely, the positions (i.e., the
means) of components v1, v2, v5, and v6 match components

Figure 13. MDFs of the OGLE-IV RRab stars in the bulge (top left) compared to the RRL MDFs obtained in this study, for samples taken from different ranges of
Galatocentric distance (as marked in the figure headers). The gray bars show the histogram of photometric [Fe/H] estimates, while the black curves denote their kernel
density estimates (KDEs), both normalized to their integrals. The green lines show the GMMs fitted to the data, and the red curves show the KDEs of the objects in the
distinct GMM components.
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Table 3
Parameters of the GMM Components of the RRL MDFsa Observed toward the Southern Galactic Disk

All dG dG<4 kpc dG>4 kpc

Component Mean [Fe/H] σ Weight Mean [Fe/H] σ Weight Mean [Fe/H] σ Weight

v1 −0.30±0.05 0.130±0.007 0.10±0.03 −0.36±0.10 0.129±0.010 0.08±0.03 −0.29±0.08 0.132±0.009 0.12±0.04
v2 −0.62±0.06 0.115±0.002 0.17±0.03 −0.64±0.09 0.107±0.003 0.15±0.04 −0.62±0.09 0.120±0.004 0.20±0.04
v3 −0.90±0.07 0.101±0.002 0.25±0.02 −0.89±0.09 0.089±0.002 0.26±0.03 −0.92±0.09 0.108±0.003 0.24±0.03
v4 −1.17±0.07 0.100±0.002 0.21±0.02 −1.16±0.09 0.099±0.002 0.26±0.03 −1.18±0.10 0.093±0.003 0.16±0.03
v5 −1.44±0.07 0.103±0.003 0.15±0.03 −1.45±0.10 0.109±0.004 0.16±0.04 −1.43±0.10 0.092±0.004 0.14±0.03
v6 −1.72±0.06 0.141±0.007 0.11±0.03 −1.72±0.12 0.147±0.011 0.09±0.04 −1.71±0.11 0.140±0.010 0.13±0.04

Note.
a [Fe/H] values are on the Jurcsik (1995) metallicity scale (see Section 3.1).
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o1, o2, o6, and o7, well within the statistical uncertainties.
Components v3 and v4 can be associated with a mixture of
components o3, o4, and o5. Although nearly half of the RRLs in
the OGLE bulge sample correspond to component o4, it is the
narrowest one with σ= 0.05 dex. Importantly, when associating
the GMM modes between the different MDFs around −1dex,
we must take into consideration the following caveats: (i) the
MDF of the OGLE RRLs toward the bulge has a higher
precision (∼0.14 dex), since it was derived from the I-band light
curves; (ii) at the same time, components o3–o5 are heavily
blended, perhaps due to the dominance of component o4 and/or
the non-normality of the underlying physical MDF components;

and finally, (iii) the Ks-band [Fe/H] prediction may be slightly
biased toward higher metallicities around −1dex (see Hajdu
et al. 2018). Consequently, more precise metallicity estimates are
required to study the fine structure of the MDF around its global
maximum.
Finally, we note that for a very small number of stars,

extremely low metallicities ([Fe/H]<−2) were estimated
from their Ks-band light curves. Owing to the lack of extensive
training data, our predictive model becomes unreliable for [Fe/
H]−1.8 (Hajdu et al. 2018), therefore these estimates
should be treated with due caution. At the same time, there
should be a weak metal-poor part in the MDF, since the
spectroscopically identified most metal-deficient RRL stars in
the field have [Fe/H];−2.7 (Hansen et al. 2011). This is
reinforced by the visual inspection of the light curves of the
RRLs with the lowest metallicities, i.e., they are clearly not
spurious [Fe/H] estimates from low-quality data. However, the
limitations of our current [Fe/H] predictor do not allow us to
further expound the properties of these objects, which are
therefore not subjects of our main discussion.
We further investigate the dependence of the metallicity on

the Galactocentric distance and the distance from the Galactic
plane by splitting the data into subsets according to their MDF
components, based on the probability density function of the
fitted GMM. Figure 15 shows the Galactocentric distance
distribution of the RRLs found in the VVV disk field,
constituting the MDF components v1–v6 by means of kernel

Table 4
Parameters of the GMM Components of the RRL MDFa Observed toward the

Galactic Bulge

Component Mean [Fe/H] σ Weight

o1 −0.30±0.05 0.148±0.005 0.03±0.01
o2 −0.63±0.05 0.120±0.002 0.08±0.01
o3 −0.92±0.03 0.078±0.001 0.11±0.03
o4 −1.05±0.03 0.049±0.001 0.49±0.01
o5 −1.17±0.03 0.074±0.001 0.16±0.03
o6 −1.42±0.03 0.111±0.001 0.12±0.02
o7 −1.79±0.05 0.194±0.006 0.02±0.01

Note.
a [Fe/H] values are on the Jurcsik (1995) metallicity scale (see Section 3.1).

Figure 14. Weights and means of the GMM components of the RRL MDFs observed toward the VVV disk fields (left) and the OGLE-IV bulge fields (right). In the
left panels, different colors show model parameters obtained for objects lying in different ranges of Galactocentric distances (dG) as indicated in the figure keys. The
error bars represent statistical errors derived by MC simulations (see the text). The top panels show the results on the Jurcsik (1995) metallicity scale (on which the
[Fe/H] prediction is performed), while the bottom panels show the model parameters derived from the [Fe/H] distributions transformed to the C09 metallicity scale,
using the transformation equation of Hajdu et al. (2018). The gray vertical lines mark the values of the GMM component means identified in the MDF of the ARGOS
bulge sample at b = −5°, l = ±15° and dG�3.5 kpc (Ness et al. 2013, see their Table 3; the values are provided on their own metallicity scale). Their statistical
errors are indicated by vertical shaded areas, while their identifiers are shown at the top of the panels, following the notation of Ness et al. (2013).
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density estimates. A Gaussian kernel was used and the
bandwidth (kernel size) was optimized for each data subset
via a twentyfold CV. While the metal-poor components v3–v6
follow the distribution of the full sample, the relative positions
of maximum density of components v1 and v2 are clearly
offset, showing that the relative number density of stars with
higher metallicities increases with Galactocentric distance, and
conversely, metal-poor stars are concentrated toward the inner
Galaxy. We interpret this as a positive mean metallicity
gradient of the RRLs along the Galactic disk. The number
density distribution along the perpendicular spatial dimension,
i.e., as a function of the Z distances from the Galactic plane, is
shown in Figure 16. The kernel density estimates were
computed in the same way as for Figure 15. We can clearly
observe a dependence on metallicity: stars that correspond to
the metal-rich components v1 and v2 are more concentrated
toward the plane than the rest of the sample.

4.4. Comparison of the MDF to Independent Results

In the following, we compare our results to a recent
measurement of the MDFs in the southern disk and the inner
Galaxy based on data from the ARGOS survey, analyzed by Ness
et al. (2013). Their MDFs are based on spectroscopic observations
of a large sample of stars consisting of mainly RC giants. Their

measurements were carried out at a relatively high resolution of
R;11,000 (see Freeman et al. 2013, for details), resulting in
individual [Fe/H] values that are precise to ∼0.09dex. The
footprint of their survey covered several fields toward the bulge,
and also the southern disk (where their target density was
significantly smaller). They measured a multi-modal MDF, which
was subjected to a Gaussian decomposition analysis similar to
ours. It is instructive, therefore, to perform a quantitative, direct
comparison of the results from the two analyses, which are based
on entirely independent [Fe/H] measurements.
The relative fraction of metal-rich stars in the ARGOS

sample is much larger compared to the RRab stars in our study.
The ARGOS MDFs are dominated by objects with [Fe/
H]>−0.5, and contain a relatively minor fraction of metal-
poor stars at [Fe/H]<−1. However, the ARGOS and the RRL
MDFs show a remarkable similarity as far as the positions of
the distribution’s modes, i.e., the means of the GMM
components, are concerned.
Figure 14 compares our results with the ARGOS MDF

components, by visualizing the means of the Ness et al. (2013)
GMM model components labeled as A–E and their errors for
stellar samples in the bulge at low Galactic latitudes. We note
that the component means from their disk field are the same to
within their uncertainties (see also Section 5.3), but their disk

Figure 15. Galactocentric cylindrical distance (dG,proj.) distributions of the RRL subsamples from the VVV disk fields corresponding to the different components of
their MDF. Curves in different colors show kernel density estimates of the various components as indicated in the figure key. The histogram of all stars in our analysis
is shown in gray.

Figure 16. Same as Figure 15, but showing the distributions of the distances from the Galactic plane (Z).
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MDF consists of many fewer stars. There is a precise match
between the positions of the two metal-rich components of the
models, namely the ARGOS components B and C and the RRL
components v1, v2, and o1, o2, respectively. The metal-poor
ARGOS components D and E match our RRL MDF
components v4, v6 and o5, o7 with similarly high precision.
These matches are especially remarkable if we consider the
very different weights with which the metal-poor components
are present in the three data sets, and the fact that the matches
are well within the combined statistical errors. For most of the
ARGOS subsamples, component B is the most prominent, with
a weight varying between 0.4 and 0.5, while it gives a ∼30%
and ∼90% smaller relative contributions to our VVV disk and
OGLE bulge RRL MDFs, respectively. In spite of this, the
agreement is better than 0.05dex in case of the OGLE bulge
RRLs, and the full VVV disk RRL sample and outer disk
subsample. The position of component C, which also has a
large weight in the ARGOS MDFs, has a similarly good match
with the RRL data. Importantly, the most metal-rich ARGOS
component A is not present in either the VVV disk, or the
OGLE bulge RRL MDFs.

Despite the fact that component E is weak in both the
ARGOS and the RRL MDFs, the position of this mode also
matches well in the three data sets, while our components v5
and the corresponding o6 do not have a counterpart in the
ARGOS MDF. The main difference in the modes of the two
MDF decompositions is observed for metallicities close to [Fe/
H]≈−1 dex. The strongest mode in the VVV disk RRL MDF
(component v3) falls between ARGOS components C and D,
peaking at [Fe/H];−0.9, and likely corresponding to the
blend of components o3+o4; it is identified as the counterpart
of the center of the bulge RRL MDF.

We emphasize that the methods used for the determination of
[Fe/H] in the two studies are completely different, hence a
systematic offset of ∼0.1dex is not unexpected between the
ARGOS and the J95 metallicity scales. Unfortunately, a
transformation between the ARGOS and other, commonly used
metallicity scales is not established. For completeness, we
transformed our metallicities from the J95 scale to the C09
scale using the transformation formula provided by Hajdu et al.
(2018), and show the parameters of the corresponding GMMs
in the lower panel of Figure 14. The resulting MDFs are very
similar, with an increasing systematic offset in the component
means toward smaller metallicities. The match between the
ARGOS and the RRL GMM modes is preserved for the VVV
disk MDF, remaining within the combined statistical errors,
while component o4 in the OGLE bulge RRL MDF becomes
shifted to nearly match ARGOS component D.

5. Discussion

5.1. The Ages of RRLyrae Stars

In Section 4.3, we compared the MDF of the RRL stars,
resulting from our study, to the MDF of RC giants based on the
ARGOS survey. RC stars span an age range of 1–10Gyr, and
correspondingly a wide range of masses (and metallicities)
(Girardi & Salaris 2001; Girardi 2016). In the bulge though, we
may assume that most of them are close to the older age range
(e.g., Ortolani et al. 1995; Brown et al. 2010). Their frequency
peaks at ages of a few Gyr in galaxies with extended star
formation histories (Girardi 2016). In contrast, the advantage of
RRLs compared to other tracer objects, such as RC stars, is that

the ages of RRLs are better constrained, and they represent true
stellar fossils. Glatt et al. (2008) studied the age of the globular
cluster NGC 121 based on very deep Hubble Space Telescope
observations, and found ages ranging between 10.5±0.5 and
11.8±0.5Gyr, depending on the stellar evolution models and
the photometric diagnostics used. As pointed out by Catelan
(2009), this is the youngest globular cluster known to contain
RRLs, and is 2–3Gyr younger than the oldest globular clusters
in the Milky Way, the Large Magellanic Cloud, and the Fornax
and Sagittarius dwarf galaxies, suggesting that 10Gyr is a
good assumption for the (empirical) lower age limit for RRL
stars. Due to the systematic age difference between the RC and
RRL stars, the differences in the weights of their MDF
components must be, at least to first order, resulting from the
age differences of the underlying stellar populations.

5.2. The RRLyrae Production Efficiency

In attributing the differences between the RRL and ARGOS
MDFs to the differences in the age ranges of the tracer objects
used, we must take into account the production efficiency of the
two types of stars, as a function of the various stellar
parameters, other than the age. The MDF that we observe
using RRL stars as tracers is the convolution of the true MDF
of the old stellar populations, to which the RRL stars belong,
and the RR Lyrae production efficiency function (RPEF) of
those populations. The RPEF depends on several factors,
including metallicity, age, and also helium abundance, mass-
loss, etc. In general, one expects maximum RRL production for
that combination of parameters that produces an even
horizontal branch (HB) morphology, meaning with similar
numbers of red and blue HB stars (e.g., Lee 1992; Catelan & de
Freitas Pacheco 1993).
It is also important to emphasize that the RPEF may well be

different in the halo, the bulge and the disk, depending on how
their constituent stars are distributed in terms of the aforemen-
tioned physical parameters. To achieve the same RPEF, older
stellar ages are required for a metal-rich population, and
younger ages are required for a metal-poor population, at least
in the absence of systematic differences in mass-loss efficiency
and/or helium abundance (Catelan & Smith 2015). Comparing
the numbers of observed local RRLs to their progenitors,
Layden (1995) estimated the RPEF for various Galactic
components. Taking the halo as reference, he found the RPEF
is reduced by a factor of 1/40 in the metal-rich thick disk ([Fe/
H]>−1), by a factor of 1/25 in the metal-poor thick disk
([Fe/H]<−1), and by 1/800 in the thin disk. Therefore, we
can expect the MDFs observed for the RRLs to be always
skewed toward lower [Fe/H] for a generally metal-rich stellar
population. As an illustration, one can consider a certain
population dominated by ∼12Gyr old stars with relatively
high metallicities of [Fe/H]∼−0.5, and having a long low-
metallicity tail. The MDF of the resulting RRL population will
not peak at −0.5dex (since those give rise mostly to RC stars),
but rather at [Fe/H]<−1. Following the same considerations,
it is clear that the ARGOS MDF, being based on mostly RC
stars, also represents a “biased” version of the underlying
populations’ true MDF.
If the HB morphology behaves similarly in the field and in

globular clusters, then we expect that the RPEF at very low
metallicities is governed by the non-monotonic nature of the
HB morphology observed in halo globular clusters (Catelan &
Smith 2015, and references therein). Clusters with the bluest

19

The Astrophysical Journal, 857:54 (22pp), 2018 April 10 Dékány et al.



HB types are not those at the extreme metal-poor end, but
rather at [Fe/H]∼−1.8. This leads to a paucity of RRL-rich
clusters at around that metallicity, since stars in clusters with
very blue HBs can only become RRLs at advanced
evolutionary stages of HB evolution, where they rapidly cross
the instability strip, hence the probability of their observation
diminishes. In contrast, several halo clusters with [Fe/H]<−2
produced sizable numbers of RRL, (e.g., NGC 7078,
NGC 4590, and NGC 5053). It is not completely clear what
causes the observed dependency of HB morphology on [Fe/H]
(and thus the non-monotonic RPEF) at low metallicities—for a
discussion of the possible physical causes, see, e.g., Dotter
(2008) and VandenBerg et al. (2016, and references therein).

Despite the aforementioned qualitative observational and
theoretical constraints on the RPEF, the current state of the art
does not enable us to calibrate out its effects from the observed
metallicity distribution (i.e., to deconvolve the RPEF from the
RRL MDF), not just because of the lack of its quantitative
description as a function of the various physical parameters, but
also due to the unknowns about the distribution of those
parameters in the various Galactic components. Therefore, this
study does not aim to uncover the MDF of the underlying
stellar populations from that of the RRL sample observed
toward the southern disk, even though the primary difference
between them must be due to age differences. In the future, a
well-characterized RPEF will eventually allow us to quantita-
tively attribute the observed differences between the ARGOS
and RRL MDFs to the chemical enrichment history of the
Milky Way.

In Section 4.2, we concluded that the MDF of the RRLs
determined by our analysis is structurally similar to the MDF
traced by RC stars. Our implicit assumption behind this
comparison was that the composite RPEF (and similarly, the
production efficiency function of RC stars) behind the observed
RRL sample is monomodal, and thus its convolution with the
underlying real stellar MDF cannot induce multi-modality in
the observed tracer MDF. Although we previously discussed
that the RPEF that governed the formation of our RRL sample
is suspected to have a local minimum at [Fe/H]∼−1.8
(assuming the underlying HB population with which field RRL
stars are associated behaves similarly to the trends seen among
Galactic globular clusters), we argue that this cannot influence
the observed means of the GMM components, since one of
those lies very close to that metallicity. Therefore, under the
above assumption, the observed MDF cannot be dominated by
the RPEF, as far as the positions of its modes are concerned. At
the same time, we must consider that if the RPEF is sharply
peaked, it can induce one extra mode in the observed MDF.

5.3. The Possible Origins of the Observed RRLyrae Stars

Various considerations lead us to expect numerous RRLs in
our sample to be part of disk populations, i.e., physically
originate from the Galactic disk. Based on the observed
properties of the stellar populations in the solar neighborhood,
the thick disk covers an age range of 13.5–8.5 Gyr and has a
metal-poor tail in its abundance distribution (Haywood
et al. 2015), so it would be surprising if the thick disk did
not contain RRLs and the observed sample were instead
entirely made up by interlopers from the halo. This is consistent
with the existence of globular clusters on orbits confined to the
Galactic disk, and abundant in RRLs (e.g., NGC 6121 and
NGC 6626; see Cudworth & Hanson 1993; and NGC 6266;

Dinescu et al. 2003). It might be possible that some such
clusters may have long ago dissolved into the disk field, due to
tidal effects, also contributing to the observed RRL population.
The structural similarity between the RRL and the ARGOS

(RC) MDFs also holds clues about the origins of the objects. It
seems clear that the absence of the ARGOS component A from
our data, i.e., the component consistent with a population
originating from the metal-rich thin disk (Ness et al. 2013), is
the result of its suspected younger age (e.g., Haywood
et al. 2013) combined with the increasing suppression of the
RPEF at high metallicities. The consistency between compo-
nents B, C, and D of the ARGOS MDFs and components v1,
v2, and v4 in the RRL MDF, respectively, suggests a common
origin, i.e., the old thin disk and the thick disk (Haywood et al.
2013; Ness et al. 2013). The metallicity dependence of their
Galactocentric distance distributions, equivalent to a radial
metallicity gradient along the plane (see Section 4.3),
substantiates their suggested equivalency with populations
emerging from the inside-out formation of the disk, as
proposed by Brook et al. (2012) and confirmed by Bovy
et al. (2012). The increased concentration of components v1
and v2 toward the Galactic plane, which could be a result of
their smaller scale height compared to lower-metallicity stars, is
in line with this hypothesis. Also, component v4 has a mean
metallicity consistent with the metal-poor extreme of the thick
disk stars in the solar neighborhood (Haywood et al. 2013),
which were suggested to form a distinct population based on
kinematical properties by, e.g., Carollo et al. (2010). The
absence of an ARGOS MDF mode consistent with our
component v5 is puzzling, but we note that the most metal-
poor ARGOS components contain tiny amounts of stars, and
therefore have very low S/N. Finally, given its very low mean
metallicity, stars in component v6 probably originate from
interloping stellar populations, and do not physically belong to
the disk. We tentatively interpret them as halo stars crossing the
Galactic plane on their orbits.
The presence and dominance of component v3 (and its

equivalents o3+o4) with a mean metallicity of approximately
−0.9 dex in the VVV disk RRL MDF, together with its
complete absence from the ARGOS MDF, seem intriguing. We
propose two hypotheses for the origin of this component: it
may or may not be the consequence of an underlying separate
stellar population. In the former case, it would result from an
RPEF (see Section 5.2) that is very sharply peaked at [Fe/
H];−1. Since the observed RRL MDF is a convolution of
the parent population’s MDF and the RPEF, an additional
mode can appear in the former due to the functional form of the
latter (assuming that the RPEF has only one significant
extremum). A detailed quantitative characterization of the
RPEF by means of population synthesis would be required to
properly assess the possibility of this scenario. Alternatively,
component v3 may arise from an underlying stellar population.
In this second hypothesis, its absence from the ARGOS MDF
must then be the result of the physical underrepresentation of
this population in the ARGOS stellar sample (which is
dominated by RC stars). This could be the case if the stars
that constitute component v3 originate from a stellar population
with a rather different star formation rate and age–metallicity
distribution compared to the disk, resulting in a weak RC, or its
complete absence in case of purely old stellar ages (see, e.g.,
Girardi 2016).
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Concerning the possibility of component v3 corresponding
to a separate stellar population, an important feature is the
dependence of its weight on the Galactocentric distance. Let us
assume that the RRL MDF components v1, v2, and v4 are
indeed the equivalents of components B, C, and D in the
ARGOS MDF. Ness et al. (2013) clearly showed that their
MDF decompositions consistently present the same compo-
nents (with varying weights) when various subsamples of bulge
and disk stars are concerned. This important property of the
MDF has been attributed to the formation of the bulge via the
dynamical instabilities of the surrounding disk (Di Matteo et al.
2014). During this process, the stellar populations of the disk
flare up into a peanut-shaped configuration observed in the
central region of the Milky Way, while preserving the multi-
modality of their MDF. The efficiency of this spatial
redistribution depends on the initial dynamical conditions in
the sense that a dynamically hotter population will be less
perturbed, and this will manifest itself as the spatial dependence
in the weights of the observed MDF components. Following
this bulge formation scenario, the disk RRL populations that
correspond to components v1, v2, and v4 must have also
witnessed the same perturbations, which must have happened
at a rather early epoch, given the fact that the RRLs are more
than 10Gyr old. As a result of this, the bulge RRL MDF must
contain contributions from these populations, which are
observed as the GMM components o1, o2, and o5, identified
in the weak tails of the distribution. Their very small weights in
the MDF may arise from the fact that the population pertaining
to the GMM component o4 at [Fe/H];−1 suppresses the
other components, on account of its large relative fraction in
the bulge sample, which gradually diminishes further away
from the Galactic Center. Such a population of stars could
possibly originate from a primordial gravitational collapse or
hierarchical merging of protogalactic fragments, commonly
referred to as an “inner halo” and a “classical spheroid” (see,
e.g., Babusiaux et al. 2010). In the bulge, observational
evidence for the existence of a spheroidal component has been
provided by the structural and kinematical properties of its
constituent RRL stars, namely that they are systematically
different from those of the RC giants (Dékány et al. 2013;
Kunder et al. 2016). Stars contributing to component 3 in the
RRL MDF observed toward the disk might be the weak outer
part of this spheroid, overlapping the inner disk populations.

Further evidence for the origin of the various components of
the RRL sample presented here could be provided by time-
series photometric studies of the disk covering a more extended
range in Galactic latitude. Those RRLs that belong to the thick
disk should show the same Galactic spatial distribution as the
red giants that were used to trace the thick disk. Conversely,
stars belonging to the spheroid would not show a higher
density along the disk plane. Our current sample is constrained
well below the scale height of the thick disk, but the OGLE-IV
survey and the ongoing VVVX survey have wider footprints,
so the RRL census from those will provide additional key
information about the origin of the RRLs observed toward the
disk. Kinematical information will also be crucial for
confirming the provenance of the RRLs, since the orbital
motions of stars that physically belong to different Galactic
components, such as disk, bulge, and halo, are systematically
different. The VVV survey yielded a database of proper
motions (VIRAC, Smith et al. 2018), which will provide useful
kinematic information for a considerable fraction of our

sample. The astrometry to be provided by future Gaia data
releases will be complementary, and parallax measurements for
objects lying at the near side of the disk will enable us to
decrease the error in the distance distribution. We will extend
our analysis of RRLs by incorporating kinematical data in a
forthcoming paper.

6. Summary

By performing a deep census of RRL stars along the
southern Galactic disk, we uncovered invaluable tracers of the
Milky Way’s stellar fossil, which provide important constraints
on our Galaxy’s early evolution history. The strong constraint
on the ages of RRLs helps us to better understand the formation
and chemical enrichment history of the Milky Way’s disk
populations. Although the current lack of a quantitative
understanding of the RRL production efficiency function
hinders a direct measurement of the MDF of the underlying
stellar populations, the comparison of the observed [Fe/H]
distribution to independent abundance measurements of clump
giants by the ARGOS survey revealed significant similarities,
which hints at multiple RRL populations toward the disk,
probably originating from different Galactic components.
In contrast to the intermediate-age sample from ARGOS,

their most metal-rich and prominent component at a mean
metallicity of [Fe/H];+0.1dex, which they attribute to the
metal-rich disk (and its heated progeny in the bulge), is
essentially invisible in the RRL population. The populations
indicated by the two metal-rich modes in the RRL metallicity
distribution at [Fe/H];−0.3 and [Fe/H];−0.6 were
presumably associated with the metal-poor thin disk and the
thick disk, respectively, while the metal-poor mode at [Fe/
H];−1.2 could possibly be the equivalent of a distinct metal-
poor thick disk population. Similar to the bulge, stars with
metallicities of [Fe/H];−1 dominate the MDF at all Galactic
distances in our disk sample, which may belong to a classical
spheroid, while the small number of metal-poor ([Fe/
H]−1.4) RRL might be halo stars on orbits currently
crossing the disk. New kinematical data on the objects from the
VVVX and the Gaia surveys, the extension of the present
census by the OGLE-IV survey, and accurate spectroscopic
abundance measurements from upcoming spectroscopic sur-
veys will enable us to scrutinize our current, tentative
interpretation of the RRL stars. Ultimately, the RRL stars
presented here will enable us to put key constraints on the
evolution models of the Milky Way’s bulge and disk and better
understand their various aspects, such as the chemical
enrichment and structural evolution through dynamical
instabilities.
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