ZEUS-3D 2-D Gallery #6:
The Orszag-Tang Magnetic Vortex
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The Orszag-Tang magnetic vortex (1998, J. Fluid Mech., 90, 129) has become a standard 2-D test problem
for MHD codes. Shown above from left to right are: (i) density with velocity vectors superposed; (i) the
normal component of the vorticity, w,; (i) the velocity divergence, V - v, useful for mapping out shocks;
(iv) magnetic pressure (pp) with magnetic field lines superposed; and (v) the total energy density, er.
Links to the respective animations are provided below each image.

The simulation was done on a 256 x 256 Cartesian grid with periodic boundary conditions using CMoC,
FIT (Finely Interleaved Transport) using the conservative total energy equation, artificial viscosity qcon=1
and qlin=0.1, second order (van Leer) interpolation (iord=2), and Courant number courno=0.75.

In developing FIT (trnvrsn=1), this test problem was instrumental in determining what density had
to be used in evaluating the emfs. In using Legacy transport (trnvrsn=0), which lacks consistency when
the primitive variables are updated, there was often a battle to suppress unwanted behaviour in various
test problems which occasionally led to seemingly arbitrary algorithmic design. In particular, when the
old MoC algorithm was introduced into ZEUS-2D by Stone & Norman (1992, ApJS), the emfs had to be
evaluated using the density before the transport step, lest unwanted oscillations be excited in test problems
such as this. Indeed, the original MoC was a combined Eulerian-Lagrangian algorithm with the Lorentz
force update being the only portion done in a Lagrangian frame of reference for similar reasons.

In hindsight, this was because of the coarseness of the operator splitting in ZEUS at the time, and the
sequence in which certain operations were performed. While I didn’t realise it then, the development of
CMoC (Clarke, 1996, ApJ) where I was able to make the MHD algorithm fully Eulerian was the beginning
of the resequencing of the operator splitting in ZEUS that ultimately led to FIT. More recently when the
benefit of consistently using updated primitive variables was appreciated (see the 2-D advection page for
a discussion), the requirement of using the pre-transport density disappeared. In fact, the O-T problem
was the first test problem I found to be sensitive to what density was used in computing the emfs. Once
the main principle of FIT was adopted, namely that velocity and magnetic field be updated as soon and
often as they can be, the O-T vortex made it clear that the density had to be fully updated as well.

Finally, looking carefully at the V - ¢ and w, animations, one can see one very brief time in each
where highly localised low-level oscillations are triggered, then disappear. Whether these are glimmers
of the “shear instability” discussed on the Kelvin-Kelmholtz instability page is unclear. First, the shear
instability was very prominent in animations of primitive variables such as the density; here it is only
apparent and only very briefly in variables constructed from differences of primitive variables, which poses
a very stringent test on the numerics. At this point, I am not particularly concerned with these oscillations.
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