
ZEUS-3D 2-D Gallery #4:

The Hydrodynamical Kelvin-Helmholtz Instability
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Figure 1: A shear layer.

Two layers of fluid sliding past each other with relative speed 2v0
form a shear layer (Fig. 1) which is subject to the Kelvin-Helmholtz

instability (KHI) for certain ranges of the relative Mach number,
2M , where M = v0/cs and cs is the sound speed. To approach this
problem analytically, one examines perturbations to the linearised
fluid equations, from which the following conclusions may be drawn:

1. Where the shear layer is unstable, the perturbation growth rate is ∝ 1/λ, where λ is the wavelength;

2. The shear layer is most unstable for 2M = 31/2 ∼ 1.73;

3. For 2M > 23/2 ∼ 2.83, the shear layer is unconditionally stable to perturbations.

The first conclusion cannot be true indefinitely since, at some point, the effects of viscosity and/or surface
tension damp out the perturbations before they can grow.

To compare numerical results with the predictions from linear theory, twelve dzeus36 simulations of a
shear layer with ρ0 = 1, cs = 1, ~B = 0, and 0.25 ≤ 2M ≤ 3.0 in increments of 0.25 were performed on a 2-D
domain (x, y) = (−0.5 :0.5,−0.5 :0.5) on a 500 × 500 uniform zone Cartesian grid. Two “buffer regions”,
(x, y) = (−0.5 : 0.5,−10.0 :−0.5) and (x, y) = (−0.5 : 0.5, 0.5 : 10.0), each resolved by 500 (uniform) × 150
(ratioed) zones, were included to insulate the domain from unwanted reflections from the upper and lower
boundaries1. Periodic boundary conditions were imposed on the left and right boundaries.

The shear layer is established by setting vx = v0 tanh(y/ys) where ys = 0.02 domain widths, for a
total shear layer “thickness” of 0.04 resolved with 20 zones. The non-zero thickness of the shear layer is to
prevent minute numerical perturbations from breaking up an under-resolved shear layer into small vortex
tubes. Once established, the shear layer is perturbed with a sinusoidal transverse velocity of amplitude
0.001 and wavelengths ranging from 0.25 to 1. Simulations are carried on to t = 12 and performed with
CMoC, FIT (Finely Interleaved Transport ; see the 2-D advection page) using the internal energy equation,

Figure 2: ZEUS-3D images showing the development of the
KHI for 2M = 1.5 at t = 0.75, where t = 1 is the time
for a sound wave to travel a distance L = 1 (the width of
the grid). These results agree qualitatively with the first of
the predictions from linear theory given above, namely that
the growth rate is inversely proportional to the wavelength.
Note that non-linear effects are already apparent in the λ =
L/4 case.

1Others have used reflecting boundary conditions at y = ±0.5 with success (e.g., Ryu et al., 2000, ApJ, 545, 474), but
this works only for Mach numbers 2M < 1.2. At higher speeds, shocks are excited and the region above and below the shear
layer become dynamically important.
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http://www.ap.smu.ca/~dclarke/zeus3d/version3.6/gallery/2dprob/problem.04/linear/linear.pdf
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http://www.adsabs.harvard.edu/abs/2000ApJ...545..475R
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Figure 3: ZEUS-3D images showing the development of the KHI after t = 2.6 for the relative Mach
numbers indicated. Highest growth rate is for 1.25 < 2M < 1.5, whereas linear theory predicts highest
growth rate at 2M = 1.73 (second prediction above). This discrepancy may result from the non-zero
thickness of the numerical shear layer, as opposed to the infinitesimally thin shear layer assumed by
linear theory. Not shown are 2M = 2.5 and 2.75 which grow too slowly to be seen at t = 2.6 (but
develop by t = 12), and 2M = 3.0 which remains stable through t = 12. Linear theory predicts
stability at 2M = 2.83 (third prediction above).

artificial viscosity qcon=2 and qlin=0.2, and Courant number courno=0.75 for 0.25 ≤ 2M ≤ 1.75 and
courno=0.5 for 2.0 ≤ 2M ≤ 3.0. The lower Courant number at higher relative Mach numbers is to
suppress a peculiar numerical “instability” discussed below.

Figures 2 and 3 above show contour images of the normal component of the vorticity (ω⊥; effective at
visualising the shear layer) for many of these simulations before the onset of non-linearity. Discussion and
comparison of these results with the three predictions from linear theory are found in the figure captions.

Non-linear Regime

Figure 4 shows colour contours of ω⊥ at t = 12 (well beyond the linear regime) for each of the twelve
simulations with relative Mach numbers as indicated. Each image is hyper-linked to its animation.

For 2M > 1 (supersonic relative speeds), shocks are excited above and below the shear plane which
engage much more of the external medium than when 2M ≤ 1 (hence the “buffer zones”). As initialised
(top half moving right, bottom left), ω⊥ = ∂xvy − ∂yvx < 0 in the shear layer (red through blue with deep
blue being the most negative), and ω⊥ = 0 above and below the shear layer (salmon). Lighter shades of
salmon through white correspond to regions of positive ω⊥, possible only when strong shocks are excited.

The formation of a “cat’s eye” (a sustained vortex tube prominent near the end of most simulations)
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Figure 4: End-states of ZEUS-3D simulations showing colour contours of ω⊥ (click on an image for
its animation). Salmon through white indicate ω⊥ > 0; red through blue ω⊥ < 0, with blue being the
most negative.

is a well-known effect which has been observed for decades in simulations performed by finite-difference
codes2. It is the end state for all unstable Mach numbers, with the most rapid growth at 2M ∼ 1.5.
However, by 2M = 2.75, the growth rate of the perturbation has slowed sufficiently that the shear layer
has only begun to trip into forming the vortex by t = 12 and, at 2M = 3, the original shear layer is still
completely intact, in keeping with the third prediction above from linear theory.

Periodic Boundary Conditions

Figure 5: Two periods of
the 2M = 1 shear layer, ω⊥

top, density bottom.

Unlike an unsplit scheme where boundary conditions must be ap-
plied only at the end of each MHD cycle, boundary conditions must
be applied frequently during each MHD cycle in ZEUS-3D owing to
its operator and directionally/planar split methods. A significant
effort has been made to ensure that boundary conditions are applied
as often as needed (but only as often as needed) so that periodicity
is maintained to machine accuracy. The same is true for all flavours
of the reflecting boundary conditions.

Figure 5 shows the end results of a simulation for the 2M = 1
shear layer initialised identically to the one above except with two
full periods of the perturbation, and thus a grid width of L = 2.
Shown are ω⊥ (top) and density (bottom), each hyper-linked to its
animation. To within machine accuracy, each period is identical to
the other in all variables, indicating the left- and right-boundary
zones behave exactly as the central column of zones.

2Historically, SPH codes have had great difficulty in simulating the KHI. However, relatively recent progress in SPH
design has led to significant improvements (e.g., Price, 2008, J. Comput. Phys., 2008, 227, 10040).
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http://www.ap.smu.ca/~dclarke/zeus3d/version3.6/gallery/2dprob/problem.04/figures/fig5/2m=1per_wn.mp4
http://www.ap.smu.ca/~dclarke/zeus3d/version3.6/gallery/2dprob/problem.04/figures/fig5/2m=1per_d_.mp4


An Unexplained Numerical Instability

Figure 6 shows the 2M = 2.25 simulation at t = 7.5 (just before the strong shocks above and below the
shear layer are triggered) performed with four different transport algorithms and three different Courant
numbers, to illustrate a peculiar (read: I don’t understand it yet) numerical shear “instability” that I’ve
seen only in these shear layer simulations. The “instability” is obvious in the itote=1, courno=0.75
panels and, upon close examination of the itote=0, courno=0.75 and itote=1, courno=0.5 panels, one
can see rather fine, nearly vertical striping in the salmon-coloured regions as well. These oscillations are
rather well resolved (about ten zones per period regardless of the resolution of the simulation), form more
rapidly at higher 2M , saturate in amplitude (and thus why I have “instability” in quotations as most
numerical instabilities grow without bound), and are stabilised once the strong shocks form. Thus, despite
its dependence on the Courant number, I do not believe this to be a CFL violation. Note that in panels
itote=0, courno=0.5 and itote=1, courno=0.25, there is no sign of the shear instability whatever.

The first point to make is regardless of 2M and for courno low enough to avoid the shear instability,
it matters very little whether the non-conservative internal energy equation (itote=0) or the conserva-
tive total energy equation (itote=1) is solved. Examining the end-state of the animations for itote=0,
courno=0.5 and itote=1, courno=0.25 shows only the slightest of quantitative differences between the
two. A more detailed comparison (e.g., of integrated conserved quantities over the course of the simula-
tions) verifies this impression. That said, the total energy equation is clearly more susceptible to the shear
instability than the internal energy equation, and thus the reason itote=0 was used for Fig. 4.

Second point: both Legacy transport and FIT seem to be equally susceptible to the shear instability,
and thus I conclude it is unrelated to the “striping instability” documented in the 2-D advection page for
which FIT provides a total cure. Indeed, what seems to “cure” the shear instability is a sufficiently low
value of courno. Unlike the striping instability for which a lower Courant number merely delays its onset
and slows its growth, a sufficiently low value for courno seems to completely rid the simulation of the
shear instability, as illustrated in Fig. 6.

Third point: increasing either form of artificial viscosity can also “cure” the problem, but this is
probably because, as a consequence, the time step is decreased. Thus, I don’t believe this to be an
upwindedness problem either, which artificial viscosity is supposed to stabilise.

itote=0 itote=1

courno=0.75 courno=0.5 courno=0.75 courno=0.5 courno=0.25

Legacy
(trnvrsn=0)

FIT

(trnvrsn=1)

Figure 6: The normal vorticity of the 2M = 2.25 shear layer at t = 7.5, just before the onset of
the shocks and the formation of the vortex, using various dzeus36 algorithms and Courant numbers.
Click any image for the corresponding animation which goes to t = 12.
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It is clearly hydrodynamical in nature— ~B = 0 in these simulations—and clearly agitated by the pend-
ing formation of the shocks. Other than that, I can offer little insight into the origin of this phenomenon
and would be delighted to hear from anyone who may be able to help. In the meantime, users should
consider themselves duly warned!

Kelvin-Helmholtz Instabilities in Nature

Figure 7: Clouds forming along shear layers sep-
arating air masses of differing moisture and tem-
perature are subject to the K-H instability (photo
credit: Brooks Martner, NOAA/ETL).

The atmosphere surrounding a rapidly rotat-
ing planet is a particularly good natural lab-
oratory for the KHI since the Coriolis effect
is forever driving shear layers with relative
speeds comparable to the rotation speed of
the planet. On the Earth, low relative Mach
number KHI are occasionally observed in high
clouds (Fig. 7). By comparison and with its
higher rotation speed, the Jovian atmosphere
is replete with KHI including the Great Red
Spot (observed since Galileo’s time), the most
spectacular example of a sustained cat’s eye
in the solar system (Fig. 8).

Figure 8: Jupiter’s Great Red Spot is a “cat’s eye” sustained by transonic shear layers in the planet’s
atmosphere. Note the numerous other examples of KHI in the red spot’s vicinity. (photo credit:
NASA).
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