
ZEUS-3D 2-D Gallery #1: 2-D Advection

e1 eT v⊥ B⊥

−0.2

−0.1

0.0

0.1

0.2

x
2

−0.2

−0.1

0.0

0.1

0.2

x
2

−0.2 −0.1 0.0 0.1 0.2

−0.2

−0.1

0.0

0.1

0.2

x1

x
2

−0.2 −0.1 0.0 0.1 0.2

x1

−0.2 −0.1 0.0 0.1 0.2

x1

−0.2 −0.1 0.0 0.1 0.2

x1

Legacy
(courno=0.5)

FIT

(courno=0.5)

FIT

(courno=
√
3)

New to Version 3.6 is the Finely Interleaved Transport algorithm—FIT—which is engaged by setting the
dzeus36 parameter trnvrsn=1. FIT cures a number of long-standing numerical issues with ZEUS, but
does so without introducing any new numerical techniques, per se, such as CT or CMoC did. Rather FIT is a
rearrangement of the overall structure of the ZEUS transport algorithm used in all known versions of the
code up to and including my own Version 3.5 (which I now refer to as Legacy Transport ; trnvrsn=0) into
more finely resolved modules. I’ll return to the algorithmic details of FIT at the end of this document.

This particular test problem—advection in 2-D—is an excellent exemplar of the utility of FIT. A
uniform 100×100 Cartesian grid on a domain (x1, x2) = (−0.25:0.25,−0.25:0.25) with periodic boundary

conditions is initialised with ρ = v1 = v2 = cs = 1 and v⊥ = ~B = 0. A 40 × 40 zone square pulse with
amplitude 0.001 is initialised in each of e1, v⊥, B⊥ (and thus eT) at the grid centre and, since v1 = v2 = 1,
the pulses are advected 45◦ relative to the grid axes (bottom left to top right). All tests are run to t = 0.5
and, with periodic boundaries, the pulses cycle through the grid once and return to the centre where they
began. Click on any image in the table above for an animation.

Being a test in pure advection, all source terms (e.g., ∇p, ~J × ~B, etc.) are set to zero, including
artificial viscosity (qcon=0, qlin=0). In principle, all non-advected quantities such as ρ, v1, etc., could be
reset to their initial values after each MHD step, though with the small amplitudes of the pulses, this is
not necessary. The length of the time step is controlled by the Courant number (courno) given in the left
column of the table above. The top row of images is the result using legacy transport (trnvrsn=0), the
second row with FIT (trnvrsn=1), and the third row with FIT and a CFL-limited timestep.

1

http://ap.smu.ca/~dclarke/zeus3d/version3.6/gallery/2dprob/problem.01/animations/zikr_e1.mp4
http://ap.smu.ca/~dclarke/zeus3d/version3.6/gallery/2dprob/problem.01/animations/zikr_et.mp4
http://ap.smu.ca/~dclarke/zeus3d/version3.6/gallery/2dprob/problem.01/animations/zikr_vn.mp4
http://ap.smu.ca/~dclarke/zeus3d/version3.6/gallery/2dprob/problem.01/animations/zikr_bn.mp4
http://ap.smu.ca/~dclarke/zeus3d/version3.6/gallery/2dprob/problem.01/animations/ziks_e1.mp4
http://ap.smu.ca/~dclarke/zeus3d/version3.6/gallery/2dprob/problem.01/animations/ziks_et.mp4
http://ap.smu.ca/~dclarke/zeus3d/version3.6/gallery/2dprob/problem.01/animations/ziks_vn.mp4
http://ap.smu.ca/~dclarke/zeus3d/version3.6/gallery/2dprob/problem.01/animations/ziks_bn.mp4
http://ap.smu.ca/~dclarke/zeus3d/version3.6/gallery/2dprob/problem.01/animations/ziks_e1_cfl.mp4
http://ap.smu.ca/~dclarke/zeus3d/version3.6/gallery/2dprob/problem.01/animations/ziks_et_cfl.mp4
http://ap.smu.ca/~dclarke/zeus3d/version3.6/gallery/2dprob/problem.01/animations/ziks_vn_cfl.mp4
http://ap.smu.ca/~dclarke/zeus3d/version3.6/gallery/2dprob/problem.01/animations/ziks_bn_cfl.mp4


Unbeknownst to anyone, I believe, until I stumbled upon it in 2010, no version of ZEUS from Stone &
Norman’s ZEUS-2D up to and including my own Version 3.5 has been able to properly advect a 2-D square
wave in perpendicular vector components! The left two panels in the top row shows that Legacy transport
is capable of returning pulses of scalars intact to the grid centre (with perfectly acceptable diffusion for
a second-order algorithm) but not v⊥ and B⊥ (top right two panels). After once around the grid, both
show a pronounced “striping instability” perpendicular to the direction of advection which get worse with
time leading to the ultimate destruction of the square wave. The only way to delay (but not prevent) this
problem using Legacy transport is to reduce courno.

On the other hand FIT (second row) cures the problem completely and, as seen in the third row,
advection using FIT is CFL-limited1 which, among other things, means the square pulse is advected
through the grid with virtually no diffusion. Legacy transport is most certainly not CFL-limited.

Curiously, if advection is along one of the coordinate axes, Legacy transport does not produce any
striping. It is only when advection is at some angle relative to the grid axes does the problem show up,
and indeed this clue was instrumental in designing FIT. I would point out that in a typical simulation where
fluid flow is not in one prominent direction, these first-order errors tend to cancel out, and the striping
instability is unlikely to show up. In fact, I have never seen anything in any of my production runs over
the past 25 years that I would, even in hindsight, identify as being related to this numerical artefact.

So what is FIT?

From the beginning, ZEUS’ algorithmic design was based on principles of operator- and directional-
splitting, where the source terms (∇p, p∇·~v, viscosity) are treated in a separate module from the transport

terms (∇ · ρ~v, etc.). In its earliest form (before the introduction of ~B and eT), the code would:

1. apply source terms to velocity components and internal energy density;

2. compute momentum components from the face-centred density and partially-updated velocity;

3. transport density and internal energy density;

4. transport momentum components;

5. update velocities from fully-updated momentum and density;

6. go to 1.

In this algorithm, the velocity components are not updated until ρ and all momentum components are
fully transported. Thus, and for example, If ρ and s1 were transported in the x1-direction, v1 used to
transport s2 in the x1-direction still has the value it had before the x1-transport of ρ and s1.

When the magnetic terms were introduced—first by myself for my Ph.D. thesis, and then a much better
algorithm by Stone & Norman (1992)—this same “coarse” operator splitting was adopted. Thus, and for
example, in all versions of ZEUS before and including my own Version 3.5, no magnetic field component
is updated until all induced electric field components (a.k.a., emfs) are computed.

The striping instability is a direct result of this coarse modularity.

1The CFL condition requires that the numerical time step, δtZ, be no larger than the smallest time scale of any physical
process in any zone. In this problem, with all speeds v1 = v2 = cs = 1 and δx = 0.005, the CFL-limited time-step is
δtCFL = δx/vmax = 0.005. However, the way ZEUS calculates the time step is to add all physical time steps in reciprocal
square, then take the square root and inverse. Thus, (δtZ)

−1 =
√

(δtv1)
−2 + (δtv2)

−2 + (δtcs)
−2 ⇒ δtZ = 0.005/

√
3 for

this problem. Therefore, the maximum “Courant number” (the factor by which one can multiply δtZ and still be CFL
compliant) is

√
3. Note that taking courno even one part in 106 beyond

√
3 breaks up the advected pulse into unrecognisable

zone-to-zone oscillations even by t = 0.5; the transition from CFL stable to unstable is stunningly sudden.

2



FIT seeks to apply the “finest” degree of operator splitting possible by adopting the following principle:

A primitive variable must be updated as soon as quantities affecting it have been updated.

Thus, instead of waiting until all momentum components are updated before updating the velocity compo-
nents, FIT updates v1 as soon as ρ and s1 have been transported in the x1-direction. That way, the value
of v1 used to transport s2 in the x1-direction has benefit of a partial transport step. It is this modification
that cured the algorithm of the striping instability in this 2-D advection problem. Similarly, as soon as
ε1 is evaluated, B2 and B3 are partially updated with ∂3ε1 and −∂2ε1 respectively. That way, when ε2
(= v3B1 − v1B3) is evaluated, it has benefit of a partially updated B3. It is this step that cured the
algorithm of striping in the 2-D Alfvén wave transport problem.

In hindsight, by not updating the primitive variables as often as possible renders incomplete the time-
centring of the algorithm. Indeed, FIT also fixes the problem of rarefaction shocks, which Sam Falle (2002,
ApJ, 577, L123) suggested were caused by an imbalance in the order of accuracy of the code (second order
space; only first order time). If this is true, FIT is an important step—maybe the last step—in rendering
ZEUS a truly second order code.

As it turns out, there are numerous opportunities to interleave Legacy transport more finely and, until
every one is exploited, certain flavours of the striping instability persist. In this regard, there are at least
two aspects of FIT that remain unsettled in this release.

1. While the current implementation of FIT cures the rarefaction shock problem when the internal
energy equation is used, rarefaction shocks are still an issue for the total energy equation, though to
a much lesser extent than with Legacy transport.

2. The one test problem I know of where Version 3.6 is still vulnerable to the striping instability is flux
loop advection (Gardiner & Stone, 2005, J. Comput. Phys., 205, 509). While I know what has to be
done to fix the problem, I haven’t figured out yet how to implement it efficiently in ZEUS.

On the former, there evidently remain some unexploited opportunities for fine interleaving in the total
energy equation algorithm, or perhaps some of the steps already there are out of proper sequence. This is
still an open question.

On the latter, it turns out that the computation of a single component of the emf is not the finest
possible modularity of the algorithm. In fact, ε1 = v2B3 − v3B2 ≡ ε23 − ε32 has two distinct terms and,
in principle, one could update B2 with ε23 even before computing ε32 that depends upon B2. Doing this
exploits the finest “interleavability” of the algorithm that I can identify, and is the last step needed to cure
the problem of flux-loop advection striping. I know this because I’ve written a small, bare-bones induction
code that demonstrates this; I just haven’t found a way yet to install it into ZEUS without disrupting the
even-more-critical CMoC algorithm.

D. Clarke, May 2016.

3

http://ap.smu.ca/~dclarke/zeus3d/version3.6/gallery/2dprob/problem.02/alfven_2D.pdf
http://ap.smu.ca/~dclarke/zeus3d/version3.6/gallery/1dprob/problem.21/fig2_falle.pdf

