
ZEUS-3D 1-D Gallery #21: Rarefaction Shocks
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Falle (2002, ApJ, 577, L123) pointed out that for certain 1-D shock tube problems, the transport algorithm
in the version of ZEUS available at the time could break up a rarefaction fan into discrete steps, as seen in
some of the panels above. Falle referred to these unphysical features as rarefaction shocks, and attributed
them to ZEUS’ operator split momentum transport scheme whose design led to an imbalance in the order
of accuracy: second-order in space; first-order in time. Typically, rarefaction shocks arise in problems
where the ratio between the propagation speed of the rarefaction through the grid and the drop in speed
across the fan itself is large. In the problem depicted above, this ratio is about seven.

The panels above are based on Falle’s Fig. 2, in which an MHD shock tube (domain 0 ≤ x1 ≤ 1)
is set with a left state (ρ, v1, v2, v3, B2, B3, p1) = (1,−4.6985,−1.085146, 0, 1.9680, 0, 0.2327), right state
(0.7270,−4.0577,−0.8349, 0, 1.355, 0, 0.1368), B1 = −0.7, γ = 5/3, and the discontinuity at x1 = 0.8. The
panels show only the portion of the domain containing the rarefaction fan at t = 0.1. Open circles are the
dzeus36 solution for v1 using 1,000 zones across the entire domain, CMoC, and second-order interpolation,
with a different transport algorithm for each row. dzeus36 parameters controlling the time step and
artificial viscosity are: courno=0.5, qcon=0.0, and qlin as indicated at the top of each column of panels.
Lines are the results from the non-linear Riemann solver described in Ryu & Jones (1995, ApJ, 442, 228).
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The top two rows show results using what I now refer to as legacy transport (trnvrsn=0), the coarsely
operator-split transport algorithm used in all versions of ZEUS up to and including my own version 3.5.
The first row shows the results when the non-conservative internal energy (e1) equation is solved (itote=0),
and the second row when the conservative total energy (eT) equation is solved instead (itote=1). While
the rarefaction shocks are still problematic in the second row, these results are considerably “cleaner” than
those presented with the dzeus35 solution, owing to modifications made to the total energy algorithm
between versions 3.5 and 3.6. As noted on the version 3.5 page, the rarefaction shocks could be attenuated
by higher linear artificial viscosity (as demonstrated in the panels above), by resolving the rarefaction fan
with far fewer zones, or by performing the appropriate Galilean transformation so that the propagation
speed of the fan through the grid is comparable to the drop in speed across the fan.

As serendipity would have it, the new (to version 3.6) Finely Interleaved Transport algorithm (FIT;
trnvrsn=1)—designed to eliminate transverse striping of wave forms transported diagonally across a 2-D
grid—seems to address rarefaction shocks as well. The cure appears to be complete when the internal
energy equation is used, as panels in the third row show no sign of rarefaction shocks even for qlin=0.1.
Indeed, FIT with e1 seems to be CFL limited, as computing the third row with courno=0.9 instead of
courno=0.5 gives virtually identical results for all values of qlin.

On the other hand, FIT as implemented in version 3.6 doesn’t seem to completely cure rarefaction
shocks when the total energy equation is used. As the fourth row shows, there still remain vestiges of
rarefaction shocks that do not disappear until qlin>0.5. Evidently, there remains some degree of freedom
in the sequencing and/or modularisation of the total energy equation algorithm not yet exploited that
would give solutions as clean as those provided by the internal energy algorithm. Completing the fine
interleaving of the total energy equation algorithm remains an open task.
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http://ap.smu.ca/~dclarke/zeus3d/version3.5/documents/fig2_f.pdf
http://ap.smu.ca/~dclarke/zeus3d/version3.5/documents/fig2_f.pdf
http://ap.smu.ca/~dclarke/zeus3d/version3.6/gallery/2dprob/problem.01/advect_2D.pdf

