ZEUS-3D 1-D Gallery \#12:"3-D field"

This is Fig. $2 b$ from Ryu \& Jones (1995, ApJ, 442, 228; RJ95), showing the solution of the MHD shock tube problem with the left state $\left(\rho, v_{1}, v_{2}, v_{3}, B_{2}, B_{3}, p_{1}\right)=\left[1,0,0,0,6 /(4 \pi)^{1 / 2}, 0,1\right]$ and the right state $\left[0.1,0,2,1,1 /(4 \pi)^{1 / 2}, 0,10\right]$ with $B_{1}=3 /(4 \pi)^{1 / 2}$ and $\gamma=5 / 3$ at time $t=0.035$. At $t=0$, the discontinuity is at $x_{1}=0.5$. Plots show from left to right: (1) fast shock, (2) rotational discontinuity (at $x_{1} \sim 0.425$), (3) slow shock (at $x_{1} \sim 0.426$), (4) contact discontinuity (at $x_{1} \sim 0.44$), (5) slow rarefaction (at $x_{1} \sim 0.54$), (6) rotational discontinuity (at $x_{1} \sim 0.55$), and (7) fast rarefaction.

Open circles are the dzeus36 solution using 512 zones, CMoC, the total energy equation, and third-order interpolation with the contact steepener disengaged. dzeus36 parameters controlling the time step and artificial viscosity are: courno=0.75, qcon=1.0, and qlin=0.2. Lines are the results from the non-linear Riemann solver described in Ryu \& Jones.

There are no significant differences between the dzeus36 and dzeus35 solutions. The left-moving rotational discontinuity and slow shock are nearly degenerate and, since dzeus36 needs several zones to resolve the structure, the "spike" in v_{3} and B_{3} are not resolved. Ryu \& Jones' TVD scheme requires only a few zones to resolve this structure and yields a few numerical values within the spike. Similar to Fig. 1b from RJ95, this problem could not be done by any release of ZEUS-3D previous to Version 3.5.

