
ZEUS-3D 1-D Gallery #3:

Advection in Spherical Polar Coordinates

19.6

19.8

20.0

20.2

ρ

5

10

15

20

e
1

−0.8

−0.6

−0.4

−0.2

−0.0

v
1

0.5

1.0

1.5

2.0

2.5

v
2

0.5

1.0

1.5

2.0

2.5

v
3

0.0 0.2 0.4 0.6 0.8 1.0

x1

−0.5

0.0

0.5

1.0

B
1

0.0 0.2 0.4 0.6 0.8 1.0

x1

0.0

2.0

4.0

6.0

8.0

B
2

0.0 0.2 0.4 0.6 0.8 1.0

x1

0.0

2.0

4.0

6.0

8.0

B
3

This is an advection problem1 in spherical polar coordinates, where a square wave in each of e1, v2, v3,
B2, and B3 of amplitude 1 is initialised in 0.6 ≤ x1 ≤ 0.9 and allowed to migrate on a 1-D (radial) grid
toward r = x1 = 0 with an imposed velocity profile v1 = −x1. Density also evolves but as a uniform
background quantity rather than a pulse which would interfere with the advection of velocity waves.
Analytical expectations are ρ, e1 ∼ e3t, B⊥ ∼ e2t, and v⊥ ∼ et, with pulse widths narrowing as e−t. Issues
to be concerned with include monotonicity, widths and levels of pulses, and diffusion of discontinuities.

Open circles are the dzeus36 solution using 100 zones, CMoC, FIT, no artificial viscosity, and courno=0.5.
Third-order interpolation (iords=3) with discontinuity steepening (istp=1) is used for the scalars (e1),
and second order van Leer interpolation (iord=2) is used for the vector components, which is the highest
order of interpolation compatible with CMoC. Dashed lines are the expected levels of the pulses at t = 1.
Disagreement between numerical and analytical solution is most apparent on the density plot (note ordi-
nate scale), and is due to second-order temporal discretisation errors which are most apparent in advection
problems. The origin of these errors is discussed on the next page.

These solutions are virtually identical to those from all versions of ZEUS since zeus04.

1See the page for Cartesian advection for a working definition of advection.

1

http://ap.smu.ca/~dclarke/zeus3d/version3.6/gallery/1dprob/problem.01/advect_XYZ.pdf


Origin of second-order temporal discretisation errors

Consider the continuity equation,
∂ρ

∂t
+∇ · ~vρ = 0. (1)

For this 1-D (in r) advection problem, it is assumed ρ = ρ(t) and ~v = −rêr, the latter of which causes
features to drift self-similarly toward the origin. Thus, in spherical polar coordinates, equation (1) reduces
to:

∂ρ(t)

∂t
= −

1

r2
∂r2vrρ(t)

∂r
=

ρ(t)

r2
∂r3

∂r
= 3ρ(t) ⇒ ρ(t) = ρ0e

3t, (2)

is the analytical expectation for ρ(t), as stated on the previous page. Thus, at time t+ δt,

ρ(t+ δt) = ρ0e
3(t+δt) = ρ0e

3te3δt = ρ(t)e3δt

⇒ ρ(t + δt) = ρ(t)
(

1 + 3δt+ 1
2
(3δt)2 + · · ·

)

, (3)

making explicit the zeroth, first, and higher order terms of the advanced value for ρ.

ZEUS, like many explicit finite difference codes, does not use a true second-order accurate in time transport
algorithm. For this problem, ZEUS’ difference form of equation (1) reduces to:

δρ

δt
=

ρn+1
i − ρni

δt
= 3ρni ⇒ ρn+1

i = ρni + 3ρni δt = ρni (1 + 3δt), (4)

where the super/subscripts, n and i, are the temporal and spatial indices respectively2. Since equation (4)
includes only the zeroth- and first-order terms in equation (3), the transport algorithm in dzeus36 is just
first-order accurate in time for this particular problem (but up to third order accurate in space, as attested
to by the sharpness of the discontinuities in the e1 pulse on the previous page). It is the lack of the second
order terms that gives rise to the second-order discretisation errors.

For m time steps after n, equation (4) evidently requires:

ρn+m
i = ρni (1 + 3δt)m. (5)

Thus, for n = 0, ρ0i = ρ0 = 1, m = 198 (number of time steps taken by this advection problem), and
tmax = 1, δt = tmax/m = 1/198 and equation (5) can be evaluated to give:

ρ(1) = ρ198i = (1)

(

1 +
3

198

)198

= 19.64,

precisely the level of the open circles on the density plot. Using equation (2), the analytically expected value
is ρ(1) = (1)e3(1) = 20.09, the level of the dashed line. The 2.2% difference is then entirely attributable to
second-order temporal discretisation errors.

A true second-order in time algorithm requires twice as much CPU and memory as a first-order
algorithm. Approximate second order algorithms, like the one implemented in ZEUS, can get away with
less, but the price paid is that in some problems—such as this advection problem—the algorithm reduces
to first-order accuracy in time.

2That is, ρn
i
represents the value of ρ in the ith zone after n time steps.

2



One example of a true second-order algorithm is extrapolation-integration. Here, we extrapolate forward
in time by just 1/2 of a time step using the first-order scheme in equation (5):

ρ
n+1/2
i = ρni

(

1 + 3
δt

2

)

,

and then use these half-time step values to integrate the solution to a full time step:

δρ

δt
=

ρn+1
i − ρni

δt
= 3ρ

n+1/2
i ⇒ ρn+1

i = ρni + 3ρ
n+1/2
i δt = ρni

(

1 + 3δt+ 1
2
(3δt)2

)

. (6)

Since equation (6) now includes the second-order term in equation (3), this algorithm is second-order
accurate in time, and therefore would exhibit third -order discretisation errors. Thus, after m timesteps
after n,

ρn+m
i = ρni

(

1 + 3δt+ 1
2
(3δt)2

)m
= 20.0833,

for the values used above. By comparison, e3 = 20.0855, and the now minuscule 0.011% error is why
second-order algorithms are so desirable.

3


