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ABSTRACT

Recent and not-so-recent critiques of the widely used magnetohydrodynamics (MHD) code, ZEUS-3D, challenge
its reliability and efficiency suggesting that its MHD algorithm is capable of “significant errors” in some simple
one-dimensional shock-tube problems. I show that these concerns are either inapplicable in multi-dimensional
astrophysical applications, or result from a misuse of the code rather than “flaws” in its design. I also describe
a few multi-dimensional test problems including one for super-Alfvénic turbulence, and highlight some recent
innovations and improvements to the code now available online.
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1. INTRODUCTION

Reports by Balsara (2001), Falle (2002; hereafter F02)
and, more recently, Tasker et al. (2008; hereafter T08) have
questioned the reliability of the ZEUS family of codes (Stone &
Norman 1992a, 1992b, 1992c; Clarke 1996) and, in particular,
suggest that its magnetohydrodynamics (MHD) algorithms can
result in significant shock and rarefaction errors. This paper
seeks to address these concerns. Indeed, as ZEUS-3D is probably
the most widely used MHD code in astrophysics with hundreds
of publications based on its results, this paper is perhaps long
overdue.

Part of the problem is that since its first release in 1992,
numerous versions of the code have been developed, including
Michael Norman’s ZEUSMP and the ZEUS module in ENZO,1

Jim Stone’s ZEUS-2D and his version of ZEUS-3D,2 and a
myriad of other versions modified by users some of which are
available online. None of these codes are accountable to another,
and it is difficult to determine whether a reported problem is
peculiar to a particular version, or general to the underlying
staggered-grid approach that defines the ZEUS family of codes.

The results presented herein were computed by my own
version, dzeus353, where the “d” indicates “double precision”
and the “35” indicates “version 3.5.” This is a direct descendant
of version 3.2 that Michael Norman and I released 18 years
ago and from which he and Robert Fiedler developed ZEUSMP,
still probably the most widely used member of the ZEUS family
of codes today. dzeus35 is a static-grid code (no Adaptive
Mesh Refinement; AMR) and parallelized for OpenMP, not MPI
(Message Passing Interface). A version incorporating AMR and
MPI is currently under development. As a matter of notation, I
shall use “ZEUS” in discussions about the codes in general, and
“dzeus35” when I wish to refer to my own brand of the code.

I suggest that “rarefaction shocks” reported in F02 arising in
some one-dimensional (1D) Riemann test problems are exceed-
ingly unlikely to arise in actual multi-dimensional astrophysical
applications and, even if they did, the physics is left unharmed.
The so-called shock errors reported in one dimension by F02 and
in three dimensions by T08 stem from comparing the results of
a non-conservative (of mechanical energy) algorithm with an-

1 http://lca.ucsd.edu/portal/software/enzo
2 http://www.astro.princeton.edu/∼jstone
3 http://www.ica.smu.ca/zeus3d

alytical solutions of the conservative equations, and nothing to
do with the integrity of the underlying (M)HD methods. Indeed,
when the conservative algorithm suggested by Clarke (1996) to
solve the total energy equation is used, these so-called shock
errors disappear. I present conservative dzeus35 solutions to
the full suite of 1D test problems given in Ryu & Jones (1995,
hereafter RJ95; some of these problems first appeared in Dai &
Woodward 1994); the first time any such ZEUS solutions have
appeared publicly. For reasons unrelated to published criticism
of the code, all versions of ZEUS of which I am aware—except
dzeus35—give an oscillatory solution to two of these 1D test
problems, and I outline the simple fix that may be retrofitted to
any version of ZEUS in current use.

I describe a few selected multi-dimensional test problems
including a 2D test designed to demonstrate the utility of the
MHD boundary conditions, two of the 2D tests suggested by
Gardiner & Stone (2005), the 3D Sedov blast wave, and 3D
super-Alfvénic turbulence.

Finally, the claim made by F02 that ZEUS is somehow slower
than a fully upwinded code is also shown to be unfounded,
particularly when compared with a Godunov-type code that is
as accurate in 3D as it is in 1D (e.g., Stone et al. 2008). Indeed,
the advantages of the ZEUS algorithm have been and remain
its speed, its robustness in multi-dimensions, and its ability to
accommodate additional physics such as viscosity, radiation,
self-gravity, etc., without adversely affecting its underlying
(M)HD algorithm.

2. “RAREFACTION SHOCKS”

The ZEUS family of codes is upwinded in the entropy and
Alfvén waves, and stabilized in the compressional (fast and
slow) waves, with stabilization accomplished by the use of
two flavors of von Neumann–Richtmyer artificial viscosity (von
Neumann & Richtmyer 1950). The so-called quadratic term,
controlled by the ZEUS parameter qcon, is applied only to
regions of strong compression and effectively captures shocks,
typically within qcon+2 zones. The “linear term,” controlled
by the ZEUS parameter qlin, is applied throughout the grid
and stabilizes continuous structures such as magnetoacoustical
and rarefaction waves. Typical values for qcon are 1–2 in all
applications, and 0.1–0.2 for qlin in 1D shock-tube problems.
For multi-dimensional applications, qlin is often set to zero
relying on grid diffusion for stabilization.
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Figure 1. Fast rarefaction at t = 0.1 from the Riemann problem with left and right states (ρ, v1, v2, v3, B2, B3, p) = (1,−4.6985,−1.085146, 0, 1.9680, 0, 0.2327)
and (0.7270,−4.0577, −0.8349, 0, 1.355, 0, 0.1368), B1 = −0.7 and γ = 5/3. The grid domain of [0, 1] is resolved with 1000 zones, although only the portion of
the grid containing the rarefaction (resolved with ∼100 zones) is shown. The variable shown is v1 for three different values of qlin.

Figure 2. Same as Figure 1 except (left) with a Galilean transformation of
Δv1 = 4.0 applied, and (right) with the rarefaction resolved with only five
zones (δx1 = 0.02) and with no Galilean transformation applied. Both are run
with qlin = 0.25.

Figures 1 and 2 show the fast rarefaction in Figure 2 of F02.
The “rarefaction shocks” (the discontinuities in the left panel
of Figure 1) are, according to F02, a result of the operator-
split momentum equation in ZEUS, resulting in second-order
accuracy in space but only first order in time. While it is
possible to recast the momentum equation in dzeus35 (or
any other code in the ZEUS family) to an unsplit form, this
rather invasive design change has yet to be undertaken. Thus,
“rarefaction shocks” remain a technical problem for dzeus35,
but not necessarily a practical one. For example, Figures 1 and
2 allow us to draw the following observations, some of which
were pointed out in F02:

1. “Rarefaction shocks” can be eliminated with an appropriate
(but sometimes undesirably high) linear viscosity term
(Figure 1).

2. “Rarefaction shocks” are typically tripped in the rather
contrived situation shown where the difference between
the upwind and downwind speeds is small compared to
the average speed across the fan. Performing a Galilean
transformation toward the comoving frame of the fan (e.g.,
Δv1 = 4.0, the left panel of Figure 2) eliminates the
“rarefaction shocks” without increasing the linear viscosity.

3. In multi-dimensional applications, it is highly unlikely that
one would have 100 zones to resolve a rarefaction fan! At
more typical resolutions of, say, five zones (e.g., the right
panel of Figure 2), “rarefaction shocks” disappear without
increasing the linear viscosity and without performing a
Galilean transformation.

4. Regardless of whether “rarefaction shocks” appear within
the rarefaction region, the upstream state remains unaf-
fected.

Of the numerous papers based on calculations performed by
one form of ZEUS or another, F02 is the first I am aware of to
exhibit “rarefaction shocks.” These features seem to be reserved
to a few pedagogical cases in highly resolved 1D test problems
and are unlikely to pose any significant concern to the multi-
physics, multi-dimensional simulations for which ZEUS has
become renowned.

3. THE INTERNAL VERSUS TOTAL ENERGY
EQUATIONS AND “SHOCK ERRORS”

Most codes bearing the ZEUS moniker solve only the internal
energy equation, namely,

∂te + ∇ · (e�v) = −p ∇ · �v − Q :∇�v, (1)

where Q is the von Neumann–Richtmyer artificial viscous
stress tensor (see Equation (A3) in Appendix A) and where all
other symbols have their usual meanings. Without the artificial
viscous term, Equation (1) is formally isentropic. Thus, in
addition to stabilizing MHD waves, the artificial viscous term
helps ensure the correct entropy jump across shocks.

The principal advantage of Equation (1) is that in its dif-
ferenced form, one can show that the Courant condition (C ≡
v δt/δx < 1) is sufficient to guarantee a positive-definite e.
In multi-dimensions, positive-definiteness is also guaranteed so
long as the integrations are directionally split; in an unsplit
scheme, one requires C < 1/2 in 2D, and C < 1/3 in 3D.

However, Equation (1) is not in conservative form, since the
right-hand side is an imperfect divergence. As a result, algorith-
mic truncation errors introduce an effectively non-conservative
term which, in some situations, can lead to significant devia-
tions from the analytical conservative solutions, such as the 1D
shock-tube examples shown in Figures 5 and 6 of F02, and in
the Sedov blast wave described in T08.

Clarke (1996) shows how ZEUS can be fit with the total
energy equation. It would seem, however, that F02 and T08
only considered the internal energy equation in performing their
tests. As currently solved in dzeus35, the total energy equation
is

∂teT + ∇ · (�v (eH + p) + �v · Q + �S) = 0, (2)

where eH = e + 1
2ρv2 is the total hydrodynamical energy

density,4 eT = eH + B2/2 is the total energy density,5 and

4 In fact, dzeus35 includes two more terms in eH, namely e2 for the second
(diffusive) fluid and ρφ for the gravitational potential. However and for
simplicity, discussion here remains limited to a single fluid with no gravity.
5 The magnetic field, B, is in units where μ0 = 1.
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Figure 3. Density at t = 0.06 from the Riemann problem with left
and right states (ρ, v1, v2, v3, B2, B3, p) = (0.5, 0, 2.0, 0, 2.5, 0, 10) and
(0.1,−10, 0, 0, 2, 0, 0.1) with B1 = 2 and γ = 5/3. The grid domain [0, 1] is
resolved with 1000 zones, with the original discontinuity at x1 = 0.5. Open cir-
cles are dzeus35 solutions using the internal energy equation (left) and the total
energy equation (right). In both cases, C = 0.75, qcon = 2, and qlin = 0.2.
Lines are the analytical solution using the Riemann solver described by RJ95.
From left to right, the features are (1) fast shock, (2) slow rarefaction (x1 ∼ 0.33),
(3) contact discontinuity (x1 ∼ 0.47), (4) slow shock (x1 ∼ 0.56), and (5) fast
shock.

�S = �E × �B is the Poynting vector (where �E = −�v × �B is
the induced electric field). Details of how this is implemented
in dzeus35, which has evolved somewhat since Clarke (1996),
are given in Appendix A.

Equation (2) is in conservative form, and renders ZEUS
as much a conservative code as the zone-centered Godunov
methods since the continuity and momentum equations (in
Cartesian coordinates) have always been solved by ZEUS
in conservative form. However, unlike the internal energy
equation, solving the total energy equation does not guarantee
a positive-definite e, and thus pressure, p = (γ − 1)e. This
problem is rarely apparent in 1D test problems, but can be
rampant in multi-dimensional applications.

Figure 3 shows essentially the same two plots in Figure 6
of F02. In the left panel, the solution to the Riemann problem
using the non-conservative internal energy Equation (1) clearly
disagrees with the analytical conservative solution (lines). Dis-
agreements include both the levels attained in quiescent regions
and distances traveled by shocks. On the other hand, the so-
lution in the right panel using the total energy Equation (2) is
at least as good as the solution in F02 using a fully upwinded,
“shock-capturing” code. In fact, there should be no surprise that
the solution obtained by solving a (numerically) lossy energy
equation does not always agree with the analytical solution that
assumes perfect conservation of mechanical energy. Indeed, the
conclusions in F02 point more to an inappropriate use of the code
than it does to any inherent “flaw” in its design and claims that
results like these somehow make ZEUS “just about acceptable
for pure gasdynamics [sic]” but “not satisfactory for adiabatic
MHD” are unfounded.

Similarly, the finding in T08 that ZEUS (as manifest in ENZO;
O’Shea et al. 2004) “fails” to get the shock speed right in a Sedov
blast wave also stems from comparing the numerical solution
using the lossy internal energy equation with the analytical
conservative results. And while it is true that in 3D Cartesian
coordinates and with an ill-advised setting of certain parameters,
ZEUS will produce an anisotropic blast front particularly at
early times, this has nothing to do with how far the blast wave
propagates, as T08 claims.

To set up the Sedov blast wave, I initialize a quiescent region
of gas with ρ = 1 and p = 10−5 everywhere, and add 105 units
of internal energy to a sphere of radius r0 = 0.0875 centered

Table 1
Maximum Pressure and Shock Position of the Sedov Blast Front

qcon 0 1 2 4 8

e: pmax 1740 3380 3900 4250 4580
rsh 1.28 1.74 1.84 1.95 2.00

eT: pmax 3880 3850 3810 3770 3750
rsh 1.81 1.81 1.82 1.82 1.82

Notes. The maximum pressure behind the Sedov shock front (pmax) and its
radius (rsh) at t = 0.01 tabulated against qcon for the 1D spherical polar
dzeus35 solutions with 1250 zones using the internal (top) and total (bottom)
energy equations. The analytical solution is pmax = 3960 and rsh = 1.83, all
in units described in the text. Note that with the internal energy equation, it
is possible to get values both greater than and less than the analytical values,
whereas with the total energy equation, results are largely independent of qcon.

Figure 4. One-dimensional profiles of density (left) and pressure (right) at
t = 0.1 for the Sedov blast wave described in the text. Lines are the “analytical”
solution while circles (crosses) are 1D slices through the 3D Cartesian solutions
using the total (internal) energy equation.

at the origin of the grid.6 Two problems are set up, each with
qlin = 0.2, C = 0.75, and second-order interpolation. The
first is in spherical polar coordinates with ϑ- and ϕ-symmetry,
and 5000 uniform radial zones in 0 � r � 5. The second is in
Cartesian coordinates with 0 � x, y, z � 5 on a 2003 grid with
reflecting boundary conditions on the x = 0, y = 0, and z = 0
planes. In dzeus35, both reflecting boundary conditions and
preservation of octal symmetry are good to machine round-off,
and there is no need to do the entire −5 � x, y, z � 5 box.
Note that the 2003 octant reproduces the effective resolution of
the AMR codes used by T08.

The choice of qcon warrants some comment. I find that when
the total energy equation is used, the numerical solution—
whether in 1D spherical polar coordinates or 3D Carte-
sian coordinates—is virtually independent of qcon, including
qcon = 0. Because the time step is dictated by the exceedingly
high temperature at the core, the shock takes many time steps
to cross a single zone and the inherent grid viscosity is suffi-
cient to stabilize it and achieve the correct entropy jump. On
the other hand and as noted by T08, the nature of the solution
(e.g., distance propagated by the shock and peak values behind
the shock—but not shock stability) depends very heavily on the
value of qcon when the internal energy equation is used. Illus-
trative examples for 1D spherical polar coordinates solutions
at t = 0.01 are given in Table 1. Thus, I have chosen to use
qcon = 0 for the total energy equation, and qcon = 2 for the
internal energy equation, the latter corresponding to T08.

Figure 4 shows, at t = 0.1, the density and pressure profiles
of the 1D spherically symmetric solution (lines, taken as the
“analytic” solution) along with the 3D Cartesian solutions

6 The initial pressure jump of 2.4 × 1012 means that machine accuracy may
be a concern even with double precision.
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using the total (circles) and internal (crosses) energy equations.
Evidently, dzeus35 with the total energy equation reproduces
the conservative analytical result as well as or better than any of
the upwinded codes used by T08 (e.g., their Figure 6), while the
internal energy equation clearly does not. In this problem, use of
the total energy equation conserves the total energy to machine
accuracy and, except for a very brief time at the beginning of
the simulation where the blast front accelerates the ambient
medium, the internal and kinetic energies remain constant as
well. With the internal energy equation, about a third of the total
energy is lost and both the internal and kinetic energies decline
throughout the simulation. It is this loss of energy that results in
the lower peak in the pressure profile and the slower advance of
the shock.

Panels (a) and (b) of Figure 5 show density slices for the
internal and total energy solutions at t = 0.1. Both exhibit
highly spherical shock fronts whose diameter is perceptibly
smaller for the internal energy equation (panel (a)), as already
discussed. Departure from spherical symmetry is seen in the
lowest contour levels (about 1% of peak), particularly in panel
(a), though contrary to the conclusion drawn by T08, this has
nothing to do with the loss of energy in the non-conservative
solution.

Panels (c) and (d) of Figure 5 both show the total energy
equation solution at t = 0.01 for qcon = 0 (c), and qcon = 2
((d); as used by T08). It is immediately apparent that the
quadratic viscosity is largely responsible for the anisotropic
contours described by T08 as an “asymmetrical diamond
shape.” Most ZEUS codes, including dzeus35, use the diagonal
form of the von Neumann–Richtmyer artificial viscosity which
is known to behave anisotropically. Only after the blast front
is well resolved (e.g., >50 zones) will the anisotropy begin
to dissipate. This problem may be reduced by setting qcon as
small as possible (e.g., Figure 5(c)), or by installing a proper
tensor artificial viscosity into the code, such as those described
in Shultz (1964), Richtmyer & Morton (1967) or, more recently,
Campbell & Shashkov (2001). (See also Stone & Norman
(1992a), who installed tensor artificial viscosity in ZEUS-2D.)
However, the anisotropic symptoms of the diagonal viscosity are
apparent only in spherically symmetric applications, in which
case the simulation should be done as a 1D problem in (r, ϑ, ϕ)
coordinates where the anisotropy is, of course, completely
absent.

As a final comment on this Sedov blast test, the initial
pressure jump of 12 orders of magnitude is a very unusual initial
condition, and I note that for more “normal” shock strengths,
the internal energy equation does just fine, losing a percent or
less of the total energy in many applications. Thus, one should
not dismiss outright the use of the internal energy equation

based on these very extreme results; they serve as a caution
only.

So why would one choose one energy equation over the
other? Where conservation of mechanical energy is critical,
one must use the total energy equation. However, because it
does not guarantee a positive-definite pressure particularly in
multi-dimensions, this can pose a severe problem for some
applications. (See Section A.1 for a discussion on how negative
pressures are minimized in dzeus35.) In this case, one might
have to consider using the internal energy equation, receiving
solace in the fact that there are few astrophysical systems in
which mechanical energy is strictly conserved.

4. A FULL SUITE OF 1D TEST PROBLEMS

Figures 6–17 present the conservative dzeus35 solutions to
the complete set of 1D test problems given in RJ95. Each figure,
including profiles for the total energy density (omitted here for
space) and additional commentary, is also available online3.

Each test problem was run with the total energy equation
(γ = 5/3) using 512 zones and, unless otherwise noted, with
C = 0.75, qcon = 1.0, qlin = 0.2, and Colella & Woodward’s
(1984) third-order piecewise parabolic interpolation with the
contact steepener engaged. The initial discontinuity is placed at
x1 = 0.5. Circles show the dzeus35 solution at the indicated
time while lines are the analytical solution using the Riemann
solver described in RJ95.

This is the first time a complete set of ZEUS solutions have
been presented for this test suite, since no version of ZEUS
previous to dzeus35 of which I am aware could solve the
Riemann problems in Figures 7 and 9. The original ZEUS
code (zeus04 developed in 1986) inherited a technique known
as Consistent Advection (CA; Norman et al. 1980) that was
applied to all hydrodynamical variables. CA was invented and
originally applied to angular momentum transport to settle
a numerical controversy in the late 1970s on whether self-
gravitating, rotating adiabatic gas would collapse to form a thick
accretion disk or a torus. It was so successful in solving this
debate (in favor of disks) that by the time ZEUS was developed,
it had been applied to the remaining variables, namely, the linear
momentum components and energy. See Clarke (1996) for the
most recent exposition of how CA is applied in most existing
3D versions of ZEUS.

However, applying CA to the energy equation in particular
was never fully tested (M. L. Norman 2007, private communi-
cation), and no deleterious consequences were discovered until
very recently. As the left panel of Figure 18 shows, ZEUS with
CA applied to the energy equation (either internal or total) ex-
cites severe ringing in the v1-profile (as well as most other

(a) (b) (c) (d)

Figure 5. Two-dimensional slices of density for the Sedov blast wave described in the text. Panels (a) and (b) are solutions at t = 0.1 for the internal and total energy
equations, respectively. Panels (c) and (d) are solutions at t = 0.01 using the total energy equation with qcon = 0 and 2, respectively.
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Figure 6. Solution to the Riemann problem at time t = 0.08 with initial left and right states given by (ρ, v1, v2, v3, B2, B3, p) = [1, 10, 0, 0, 5/(4π )1/2, 0, 20] and
[1,−10, 0, 0, 5/(4π )1/2, 0, 1] respectively, with B1 = 5/(4π )1/2 (Figure 1(a) from RJ95). Plots show from left to right: (1) fast shock, (2) slow rarefaction (x1 ∼ 0.5),
(3) contact discontinuity (x1 ∼ 0.55), (4) slow shock (x1 ∼ 0.62), and (5) fast shock.

Figure 7. Solution to the Riemann problem at time t = 0.03 with initial left and right states given by (ρ, v1, v2, v3, B2, B3, p) = [1, 0, 0, 0, 5/(4π )1/2, 0, 1] and
[0.1, 0, 0, 0, 2/(4π )1/2, 0, 10], respectively, with B1 = 3/(4π )1/2 (Figure 1(b) from RJ95). Plots show from left to right: (1) fast shock, (2) slow shock (x1 ∼ 0.43),
(3) contact discontinuity (x1 ∼ 0.45), (4) slow rarefaction (x1 ∼ 0.53), and (5) a fast rarefaction. The contact steepener is disengaged.

Figure 8. Solution to the Riemann problem at time t = 0.2 with initial left and right states given by (ρ, v1, v2, v3, B2, B3, p) =
[1.08, 1.2, 0.01, 0.5, 3.6/(4π )1/2, 2/(4π )1/2, 0.95] and [1, 0, 0, 0, 4/(4π )1/2, 2/(4π )1/2, 1], respectively, with B1 = 2/(4π )1/2 (Figure 2(a) from RJ95). Plots show
from left to right: (1) fast shock, (2) rotational discontinuity (x1 ∼ 0.53), (3) slow shock (x1 ∼ 0.55), (4) contact discontinuity (x1 ∼ 0.61), (5) slow shock (x1 ∼ 0.68),
(6) rotational discontinuity (x1 ∼ 0.71), and (7) fast shock.
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Figure 9. Solution to the Riemann problem at time t = 0.035 with initial left and right states given by (ρ, v1, v2, v3, B2, B3, p) = [1, 0, 0, 0, 6/(4π )1/2, 0, 1] and
[0.1, 0, 2, 1, 1/(4π )1/2, 0, 10], respectively, with B1 = 3/(4π )1/2 (Figure 2(b) from RJ95). Plots show from left to right: (1) fast shock, (2) rotational discontinuity
(x1 ∼ 0.425), (3) slow shock (x1 ∼ 0.426), (4) contact discontinuity (x1 ∼ 0.44), (5) slow rarefaction (x1 ∼ 0.54), (6) rotational discontinuity (x1 ∼ 0.55), and (7)
fast rarefaction. The contact steepener is disengaged.

Figure 10. Solution to the Riemann problem at time t = 0.01 with initial left and right states given by (ρ, v1, v2, v3, B2, B3, p) =
[0.1, 50, 0, 0, −1/(4π )1/2,−2/(4π )1/2, 0.4] and [0.1, 0, 0, 0, 1/(4π )1/2, 2/(4π )1/2, 0.2], respectively, with B1 = 0 (Figure 3(a) from RJ95). Plots show from left to
right: (1) magnetoacoustical shock, (2) tangential discontinuity (x1 ∼ 0.75), and (3) magnetoacoustical shock. Second-order piecewise linear interpolations with no
contact steepener (van Leer 1977) are used.

Figure 11. Solution to the Riemann problem at time t = 0.1 with initial left and right states given by (ρ, v1, v2, v3, B2, B3, p) = [1, −1, 0, 0, 1, 0, 1] and
[1, 1, 0, 0, 1, 0, 1], respectively, with B1 = 0 (Figure 3(b) from RJ95). Plots show from left to right two oppositely moving magnetoacoustical (B1 = 0) rarefactions.
To suppress “rarefaction shocks,” qlin = 0.4.
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Figure 12. Solution to the Riemann problem at time t = 0.15 with initial left and right states given by (ρ, v1, v2, v3, B2, B3, p) = [1, 0, 0, 0, 1, 0, 1] and
[0.2, 0, 0, 0, 0, 0, 0.1], respectively, with B1 = 1 (Figure 4(a) from RJ95). Plots show from left to right: (1) fast rarefaction, (2) slow rarefaction (at x1 ∼ 0.45), (3)
contact discontinuity (at x1 ∼ 0.64), (4) slow shock (at x1 ∼ 0.75), and (5) “switch-on” fast shock. This is an example of a problem in which no linear viscosity is
required for stabilization, and qlin = 0.

Figure 13. Solution to the Riemann problem at time t = 0.15 with initial left and right states given by (ρ, v1, v2, v3, B2, B3, p) =
[0.4,−0.66991, 0.98263, 0, 0.0025293, 0, 0.52467] and [1, 0, 0, 0, 1, 0, 1], respectively, with B1 = 1.3 (Figure 4(b) from RJ95). Plots show from left to right:
(1) contact discontinuity (x1 ∼ 0.4), and (2) “switch-off” fast rarefaction (0.63 < x1 < 0.78). The Riemann solver failed to give an analytical solution for this problem.

Figure 14. Solution to the Riemann problem at time t = 0.15 with initial left and right states given by (ρ, v1, v2, v3, B2, B3, p) = [0.65, 0.667,−0.257, 0, 0.55, 0, 0.5]
and [1, 0.4,−0.94, 0, 0, 0, 0.75], respectively, with B1 = 0.75 (Figure 4(c) from RJ95). Plots show from left to right: (1) fast (weak) shock (x1 ∼ 0.38), (2) “switch-off”
slow shock (x1 ∼ 0.46), (3) contact discontinuity (x1 ∼ 0.56), and (4) hydrodynamical shock (x1 ∼ 0.73).
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Figure 15. Solution to the Riemann problem at time t = 0.16 with initial left and right states given by (ρ, v1, v2, v3, B2, B3, p) = [1, 0, 0, 0, 0, 0, 1] and
[0.3, 0, 0, 1, 1, 0, 0.2], respectively, with B1 = 0.7 (Figure 4(d) from RJ95). Plots show from left to right: (1) hydrodynamical rarefaction, (2) “switch-on” slow
rarefaction (0.4 < x1 < 0.45), (3) contact discontinuity (x1 ∼ 0.55), (4) slow shock (x1 ∼ 0.64), (5) rotational discontinuity (x1 ∼ 0.7), and (6) fast rarefaction. To
suppress “rarefaction shocks” in feature (6), qlin = 0.4. The Riemann solver failed to give an analytical solution for this problem.

Figure 16. Solution to the Riemann problem at time t = 0.1 with initial left and right states given by (ρ, v1, v2, v3, B2, B3, p) = [1, 0, 0, 0, 1, 0, 1] and
[0.125, 0, 0, 0, −1, 0, 0.1], respectively, with B1 = 0.75 (Figure 5(a) from RJ95). This is the Brio & Wu (1988) problem with γ = 5/3 instead of 2. Plots
show from left to right: (1) fast rarefaction, (2) slow compound wave (x1 ∼ 0.47), (3) contact discontinuity (x1 ∼ 0.56), (4) slow shock (x1 ∼ 0.63), and (5) fast
rarefaction. To stabilize the compound wave, qlin = 0.5.

Figure 17. Solution to the Riemann problem at time t = 0.16 with initial left and right states given by (ρ, v1, v2, v3, B2, B3, p) = [1, 0, 0, 0, 1, 0, 1] and
[0.4, 0, 0, 0,−1, 0, 0.4], respectively, with B1 = 1.3 (Figure 5(b) from RJ95). Plots show from left to right: (1) fast compound wave, (2) slow shock (x1 ∼ 0.38), (3)
contact discontinuity (x1 ∼ 0.55), (4) slow shock (x1 ∼ 0.7), and (5) a fast rarefaction.
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Figure 18. v1-profile for the problem depicted in Figure 9 with CA applied to
the total energy equation (left) and without (right). Solutions using the internal
energy equation are qualitatively identical.

variables) between the slow waves in the problem shown in
Figure 9. With CA removed from the energy equations (but still
applied to the momenta), the right panel of Figure 18 shows the
dzeus35 solution with no oscillations at all.

CA fails in this pedagogical case because of a juxtaposition
of two rather unusual events. In both the problems depicted in
Figures 7 and 9, the specific energy density (eT/ρ)—which CA
requires be interpolated rather than eT directly—is practically
continuous across the slow shock (at x1 ∼ 0.43) since both eT
and ρ rise by a factor of ∼1.5. With little or no discontinuity
in the specific energy, the monotonizers are not engaged and
any oscillations creeping into eT are left undamped. Where
do these oscillations come from? The huge jump in density
across the contact at x1 ∼ 0.45—only several zones away
from the shock—severely challenges the monotonizers in the
interpolation routines because, while eT drops by a modest factor
of 1.6 across the contact, eT/ρ jumps by a factor of well over
100. The resulting and unchecked oscillations in eT persist and
contaminate the remaining variables.

These tests do not necessarily mean that CA must be removed
from the energy equation for all applications. One could, for
example, imagine CA being useful in preventing an artificial
redistribution of temperatures in a region where the internal
energy density varies more strongly than the density. Thus,
should it be suspected that an application might benefit from
the removal of CA from the energy equation, Appendix B gives
details on how this may be done.

Finally, a comment is given on the overall efficiency of ZEUS.
By doing a simple count, dzeus35 requires, in aggregate, ∼ 140
zones to resolve the 34 discontinuities in the 12 test problems
shown in Figures 6–17, while the conservative and upwinded
TVD scheme used by RJ95—which does not use a contact
steepener—requires ∼200. Figure 6 in F02 shows ∼16 zones
in the four discontinuities, whereas dzeus35 requires ∼20
(Figure 3). If the definition of a “shock-capturing” algorithm is
based on the number of zones required to resolve and stabilize
a discontinuity, dzeus35 is as much a “shock-capturing” code
as any fully upwinded scheme. Indeed, zone for zone, dzeus35
can generally provide just as crisp a solution to a 1D Riemann
problem as most “upwinded schemes” despite formal measures
that show ZEUS converges to first order while upwinded
schemes converge to second order. But even if ZEUS does
require more zones than an upwinded code to obtain a given
result to a similar accuracy, it can update those zones at a
significantly faster rate than a typical Godunov scheme (e.g.,
Stone 2009) partially or completely offseting the cost of any
additional resolution. Claims, therefore, that suggest ZEUS
needs twice the resolution and thus, in 3D, 16 times the cpu

time to compute the same problem to the same accuracy as
an upwinded scheme (e.g., F02) are completely unproven,
particularly when directionally split upwinded schemes reduce
to first order in multi-dimensions anyway.

In practice and not including I/O, dzeus35 requires about
1500, 2200, and 3000 floating point operations (FLOPs) per
MHD zone update (no self-gravity) for 1D, 2D, and 3D
simulations, respectively. Thus, a 2563 simulation carried to
25,000 time steps (typical for the 3D turbulence run discussed
in Section 6) requires about 1015 FLOPs to complete. On a 2
GHz chip with 50% efficiency, this means about 350 cpu hr or,
with a 12.5 speed-up factor on a 16-way SMP,7 28 wall-clock
hours.

5. A PARTIAL SUITE OF 2D TEST PROBLEMS

Three 2D test problems are described here. These and
additional test problems, as they are prepared, will appear on
the ZEUS-3D Web site3.

5.1. Launching an Alfvén Wave from a Boundary

An MHD code is only as good as its boundary conditions,
and a great deal of effort has been spent in ensuring the variety
of MHD boundary conditions in dzeus35 (reflecting, periodic,
flow-in, and flow-out being the primary examples), are stable
and preserve the solenoidal condition to machine round-off.
Further, as many practical applications require more than one
boundary type along the same boundary (e.g., launching a jet
into a grid requires flow-in conditions in the jet orifice, but
reflecting or flow-out conditions on the rest of the boundary),
zones of “mixed boundary type” are unavoidable particularly
on a staggered grid, and must be dealt with carefully.

Consider the problem of launching an Alfvén wave on an
axisymmetric cylindrical grid from the r > 1 portion of the
z = 0 boundary. Thus, the point (z, r) = (0, 1) is a “mixed
boundary point” where “flow-in” conditions for r > 1 abut
with “reflecting” conditions for r < 1. Previous to dzeus35, no
ZEUS code I am aware of (including versions of ZEUS-2D and
ZEUSMP, as well as earlier versions of my own code) could do
this problem without over-specifying the boundary conditions
(since a zero in-flow speed is clearly sub-slow, one can only
set four of the seven characteristics) and getting a completely
incorrect solution on the grid.

Under the assumption of incompressibility, the ϕ components
of the MHD equations (e.g., Clarke 1996) in axisymmetric
cylindrical coordinates reduce to

∂tvϕ + vz∂zvϕ − az∂zaϕ = 0,

∂taϕ + vz∂zaϕ − az∂zvϕ = 0,

where ai = Bi/
√

ρ is the Alfvén speed associated with Bi , i =
z, ϕ. Adding and subtracting these equations in the comoving
frame (vz = 0) yield the usual characteristic equations:

D±
t (vϕ ∓ aϕ) = 0, (3)

where the Lagrangian derivatives, D±
t = ∂t ± az∂z have been

introduced. With the initial conditions,

vϕ(r, t = 0) =
{
vϕ,0(r), z � 0,
0, z > 0,

aϕ(r, t = 0) = 0, (4)

7 dzeus35 is written for OpenMP commands, but not MPI.



128 CLARKE Vol. 187

Figure 19. Profiles of vϕ (left) and Bϕ (right) at r = 5 (last active zone before the
outflow boundary conditions) and t = 4 for the Alfvén wave launched from the
z = 0 boundary, as described in the text. Open circles are the dzeus35 solutions,
with the two left-most markers indicating the imposed boundary values.

and with these conditions maintained in z < 0, Equations (3)
are differenced and solved for vϕ(r, t) and aϕ(r, t) to get

vϕ(r, t) =
⎧⎨
⎩

vϕ,0(r), z � 0,
1
2vϕ,0(r), 0 < z < azt,

0, z � azt,

aϕ(r, t) =

⎧⎪⎨
⎪⎩

0, z � 0,

− 1
2vϕ,0(r), 0 < z < azt,

0, z � azt.

This is the analytical solution for an Alfvén wave launched from
the z = 0 boundary with the initial and boundary conditions
described by Equations (4).

To test the ability of dzeus35 to launch such an Alfvén wave,
I set a 50 × 50 2D axisymmetric grid in cylindrical coordinates
with (z, r) = (0 : 5, 0 : 5), and initialize ρ = p = Bz = 1 with
all remaining vector components zero. At the z = 0 boundary, I
additionally set

vϕ,0(r) =
{

0, r < 1,

10−6r, r � 1.

Such an azimuthal velocity will be a perturbation on the
otherwise quiescent initial conditions, and thus the assumption
of incompressibility will hold approximately. So that it holds
exactly, one could reset all variables except vϕ and Bϕ to their
initial values during and at the end of each MHD step.

At t = 4, the Alfvén wave (with Alfvén speed 1) propagates
to z = 4, as shown in Figure 19. Plotted are the z-profiles of vϕ

and Bϕ just inside r = 5, and thus the last active row of zones
before the outflow conditions.

Commenting on the performance of the boundary conditions,
I note the following:

1. The outflow boundary conditions at r = 5 have zero
measurable effect on the solution shown in Figure 19;

2. The “mixed boundary zone” at (z, r) = (0, 1) has zero
measurable effect on the solution at r = 1 (not shown in
Figure 19);

3. As seen in Figure 19, the Alfvén wave moves onto the grid
with a “perfect” discontinuity (i.e., no diffusion) between
the maintained boundary conditions and the first active
zone on the grid. (Meanwhile, the leading edge of the
Alfvén wave is spread over several zones, consistent with
the second-order accuracy of the MHD algorithm.8);

4. The values for vϕ and Bϕ immediately to the right of z = 0
differ from the analytical values by less than one part in
106, with the error decreasing quadratically in time.

5.2. 2D MHD Blast

Gardiner & Stone (2005) suggest a few 2D problems to test
a code’s bias along the grid coordinate directions. In particular,
they point out that in a directionally split Godunov scheme,
the omission of the compressional magnetic terms (i.e., ∂iBi ,
i = x, y, z) which is justified in 1D by the solenoidal condition
is carried forward to the multi-dimensional algorithm where
this justification no longer holds (see also Balsara & Spicer
1999). They demonstrate that the omission of compressional
magnetic terms leads to directional biases in calculations such
as an MHD blast wave, which amounts to a 2D Riemann problem
in axisymmetric coordinates.

Shown in Figure 20 is the result of the 2D test, with the
particulars given in the figure caption. In this case, the magnetic
field is oriented at 45◦ relative to the grid, with no discernible
differences from similar simulations done with the field aligned
with one of the coordinate axes, or at any other angle. This is
because ZEUS, not being dependent on 1D Godunov solvers, has

8 With the hydrodynamics effectively squelched as in this problem, dzeus35
is second order in both space and time.

Figure 20. 200 × 200 zone 2D Cartesian grid with domain (x1, x2) = (−0.5:0.5,−0.5:0.5) is initialized with (ρ, �v, B1, B2, B3) = (1, �0, 5
√

2, 5
√

2, 0) everywhere.
A disk of radius r = 0.125 centered at the origin is over-pressured (p = 100) relative to the rest of the grid (p = 1). Shown from left to right are density, gas pressure,
magnetic pressure, and magnetic field lines at t = 0.02 as solved by dzeus35 using the total energy equation with qcon = 1.0, qlin = 0.1, C = 0.5, and third-order
interpolation with the contact steepener engaged. White (black) indicates high (low) values. Extrema of the variables at the epoch shown are 0.200 < ρ < 3.22,
0.771 < p < 32.0 and 24.9 < pB < 76.0 (cf. 0.192 < ρ < 3.31, 1.00 < p < 32.1 and 23.5 < pB < 77.7 for ATHENA).
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(a) (b) (c)

Figure 21. Contours of A3 (and thus magnetic field lines) in the inner 64 × 64 half of a 128 × 64 periodic grid at t = 2 with: (a) (v1, v2) = (0, 0), C = 0.5; (b)
(v1, v2) = (2, 1), C = 0.5; and (c) (v1, v2) = (2, 1), C = 0.1. The non-zero velocity moves the flux loop diagonally across the grid twice.

always accounted for the compressional magnetic terms. These
solutions are qualitatively identical and quantitatively similar
to those performed by ATHENA, an “unsplit” Godunov solver
(Gardiner & Stone 2005).

5.3. A Difficult Problem for dzeus35: Flux Loop Advection

A well-known problem that smoothed particle hydrodynam-
ics (SPH) can do much better than finite-volume codes is simple
advection. Because of their Lagrangian design, SPH codes can
move around “blobs” of material with effectively zero numeri-
cal dissipation, whereas finite-volume codes always suffer some
dissipation as dynamically static features are moved across a
stationary grid.

This problem can be even worse in MHD. Gardiner & Stone
(2005) use the advection of a passive magnetic flux loop with
negligible internal dynamics as a discriminator for a number
of variations of their grid-based MHD module in ATHENA, and
find only one is capable of both “holding onto” a static flux loop,
and moving it diagonally across their 2D grid. Algorithms they
rejected were either too diffusive and caused a standing flux
loop to dissipate too rapidly, or not diffusive enough, in which
case an advected flux loop broke up into stripes orthogonal to
the direction of propagation.

To perform the passive flux loop test, I initialize a 128 × 64
zone 2D Cartesian grid with domain (x1, x2) = (−1.0 :
1.0,−0.5 : 0.5) and periodic boundary conditions with ρ =
p = 1 everywhere. The 3-component of the vector potential is
set to

A3 =
{

10−3(rl − r), r < rl = 0.3,

0, r � rl,

where r is the radial distance from the origin and rl is the radius
of the loop. This gives a uniform azimuthal (about the origin)
magnetic field of 10−3. Second-order interpolation is used and,
since the dynamical effects are negligible, qcon and qlin are
set to 0.

Figure 21(a) shows the static flux loop (zero advection
velocity) after t = 2 and 350 time steps, using a Courant
number C = 0.5. Qualitatively, this image is identical to the
initial conditions (not shown) while quantitatively, the total
magnetic energy drops by 0.15% and the maximum magnetic
field strength (right at the center of the loop) rises by 0.35%
(because of the minute dynamical effects of the non-zero
magnetic field).

With an advection velocity (v1, v2) = (2, 1), Figure 21(b)
shows the flux loop at t = 2 (C = 0.5, 681 time steps) after
it has been moved diagonally across the grid twice. Here, the
flux loop has developed pronounced “stripes” orthogonal to �v,
the magnetic energy density has fallen by 36%, and the peak
magnetic field strength has risen by 4.3%.

A much improved result can be achieved with a smaller
Courant number. Panel (c) of Figure 21 is the same as panel (b)
except with C = 0.1 (3325 time steps by t = 2). The striping is
gone (indeed, there is no striping with C = 0.25 either), although
the entire flux loop is flattened slightly in a direction orthogonal
to �v (which can be reduced by further reducing C). In this case,
the total magnetic energy density has fallen by 20.5% and the
peak magnetic field strength has risen by 1.1%.

There are numerous problems involving passive magnetic
fields that dzeus35 can handle just fine; indeed, the main
algorithm in the code to compute the induced electric fields
(the Consistent Method of Characteristics (CMoC); Clarke
1996) was designed specifically for problems in super-Alfvénic
turbulence, as discussed in the following section. It would seem,
however, that something as “simple” as advecting a passive
magnetic flux loop is problematic for dzeus35. I note that the
“striping instability” manifest in dzeus35 does not seem to
be a diffusion problem as was concluded in Gardiner & Stone
(2005) for ATHENA, since one needs only to reduce the Courant
number to obtain a stable solution without having to increase
qlin or qcon. This, therefore, remains an area of investigation.

6. A 3D TEST PROBLEM: SUPER-ALFVÉNIC
TURBULENCE

With few exceptions (notably, Padoan et al. 2004, and
references therein, who also use a staggered-mesh code like
ZEUS), 3D super-Alfvénic turbulence has proven to be a vexing
problem for many MHD schemes, including the Method of
Characteristics (MoC; Stone & Norman 1992b) available in
ZEUSMP and dzeus35, as well as some recently developed
“unsplit Godunov methods” (M. L. Norman 2007, private
communication; R. I. Klein 2008, private communication).
When MHD algorithms fail in such simulations, they seem to
do so catastrophically exhibiting what can only be described as
an “explosive instability” in either or both of �B and �v.

In the case of ZEUS’ MoC algorithm, a completely passive
magnetic field can be boosted locally to dynamically important
strengths within a single time step, thereby destroying the
integrity of the simulation. This problem is completely cured
by the CMoC9 (Clarke 1996), found in some versions of ZEUS
including dzeus35.

Following Mac Low (1999) (whose simulations are for trans-
and sub-Alfvénic turbulence), a 3D Cartesian grid with a domain
(x1, x2, x3) = (−1.0 : 1.0,−1.0 : 1.0,−1.0 : 1.0) and volume
V = 8 is initialized with an isothermal weakly magnetized
gas (ρ = 1, cs = 0.1, �B = 10−7x̂1), and a supersonic

9 The so-called HSMoC algorithm described in Hawley & Stone (1995) also
cures the explosive instability, though must be run with half the Courant
number as CMoC to preserve stability in the transport of Alfvén waves.
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Figure 22. Left panel shows the magnetic pressure at t = 0.7tcs of a 1283 MoC run. The bright spot near the top right of the box is the “magnetic explosion” that
brought the simulation to a halt. The right panel shows the 2563 CMoC run at t = 2tcs with no signs of the explosive instability.

ultra-Alfvénic turbulent velocity distribution whose initial rms
velocity is 5 (M = 50, MA = 5 × 107). The turbulent
velocity profile is set in Fourier space, where the independent
variable is �k = (kx, ky, kz). Each component, ki , is an integer
1 � ki � ni , where ni is the number of zones in the i-direction.
If Vi(�k) = FT[vi(�r)] is the Fourier transform of the i-component
of the velocity, it is a complex number whose real and imaginary
parts are given by

V (�k) =
⎧⎨
⎩

kαN
(

cos(2πR), sin(2πR)
)

kmin � k � kmax,

(0, 0) otherwise,

where α = 5/3, k = |�k|, 0 < R � 1 is a random deviate,
and N is a normal deviate with unit standard deviation. So that
FT−1[Vi(�k)] is real, Vi(−�k) = V ∗

i (�k) (complex conjugate) is
enforced. Power is restricted to a specific range in k by kmin and
kmax, chosen here as 3 and 4, respectively. In this way, three
arrays Vi(�k) are filled and their inverse FTs are taken to yield
three real velocity components, vi(�r), which are normalized to
give the desired initial rms velocity of 5.

To maintain the turbulence, one counters the numerical
dissipation of kinetic energy (modeled here as e−t/τd , where τd
is the e-folding time for numerical dissipation of kinetic energy)
with a driving power, Pdr (chosen here to be 1), applied at each
time step. One can then show that the kinetic energy asymptotes
to Kasym = Pdrτd. The driving power is applied by adding to the
velocity components a fraction of the initial velocity arrays at
each time step, δt , so that δK = Pdr δt . FORTRAN subroutines
to initialize and drive the turbulence are available from the
ZEUS-3D Web site3.

The left panel of Figure 22 shows the magnetic energy
density (integrated along the line of sight) in a 1283 run
after t = 14 = 0.7tcs (where tcs = 20 is the sound-crossing
time) using ZEUS’ MoC algorithm. A 2563 run crashed almost
immediately, and is not shown. The bright spot in the top right
of the image is a magnetic field “explosion” in which the local
Alfvén Mach number, MA, is brought from ∼106 to unity within
a single time step. This causes an immediate evacuation of the
zone (total pressure is now much higher than in the neighboring

zones in which the explosion did not happen), reducing the local
Alfvén time step to near zero and bringing the simulation to a
halt. Of course, such spikes in the magnetic field are completely
unphysical.

The right panel of Figure 22 represents a 2563 run at
t = 40 = 2tcs using CMoC with no evidence of the explosive
instability whatever. Indeed, a 1283 simulation taken to t =
160 = 8tcs remains perfectly stable as well, and shows that
the total magnetic energy grows exponentially until it saturates
(Figure 23(a)), in this case at t ∼ 110 = 5.5tcs . For the
reason explained in Appendix C, saturation occurs when the
rms Alfvén speed is comparable to the constant sound speed
(Figure 23(b)), and not when the energies are in equipartition.
Figure 23(c) shows the Fourier spectra of various variables for
the 2563 simulation at t = 40 = 2tcs , well before the magnetic
energy density has saturated. The profiles of the density and
kinetic energy are well approximated by −3/2 power laws (e.g.,
Maron & Goldreich 2001) inside a modest “inertial range”
of 4 � k � 32. True Kolmogorov −5/3 spectra are not
normally observed until resolutions of 10243 (e.g., Müller &
Biskamp 2000), 20483, and now 40963 (Kaneda & Ishihara
2006). Additional figures and animations of these simulations
can be found at the ZEUS-3D Web site3.

These simulations are not presented to study super-Alfvénic
turbulence at a physically realistic resolution, but as a 3D test
problem. As such, the exponential growth rate of the magnetic
energy is a practical comparator among algorithms. One can
see from Figure 23(a) that while the magnetic field remains
passive, EB(t) ∼ et/τB , where τB is the e-folding time of the
magnetic energy (see Appendix C for a theoretical explanation
for the exponential growth of a weak field). Measured directly
from Figure 23(a), τB ∼ 4.7. At other resolutions (not shown),
τB ∼ 15 (323) and 4.9 (643). The 2563 simulation was not taken
to saturation, and thus no value for τB is quoted from it. Clearly,
a threshold was passed between the 323 and 643 simulations,
where the former is under-resolved in some fundamental way.
The fact that the e-folding times for the 643 and 1283 simulations
agree (∼5 = 0.25tcs ) suggests that convergence to a physical
solution has begun, although these resolutions are insufficient
to establish a credible inertial range.
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(a) (b) (c)

Figure 23. (a) Energy density integrated over the grid as a function of time. Solid line is total energy, long dashed line is kinetic energy (∼1), short dashed line is the
constant thermal energy (0.12), and dotted line is magnetic energy (saturating at ∼0.038, up from its initial value of 4 × 10−14). (b) rms velocities as a function of
time. Solid line is flow speed (∼0.5), long dashed line is the constant sound speed (0.1), and short dashed line is the rms Alfvén speed (starting at 10−7, saturating at
∼0.1). (c) Fourier spectra for the 2563 simulation at t = 40. While the turbulence is driven in the range 3 � k � 4, spectra approximate power laws in 4 < k < 32
(“inertial range”). Spectral indices as measured directly from the figure are: ρ (solid fine line): −3/2; v (long dashed line): −2; K (kinetic energy density, short-dashed
line): −3/2; EB (magnetic energy density): −1. The heavy solid line is the Kolmogorov −5/3 spectrum included for comparison. Note that at t = 40, EB has another
6 orders of magnitude to grow before reaching saturation.

(A color version of this figure is available in the online journal.)

Other practical comparators include the saturation level of
the magnetic energy and τd . When the rms Alfvén speed
reaches the sound speed, the magnetic energy saturates at
log EB ∼ −1.6 for the 643 simulation, and ∼− 1.4 for the 1283

simulation. Since Kasym ∼ 1, the e-folding time for numerical
dissipation is τd = Kasym/Pdr ∼ 1. Finally, and even though
a Kolmogorov spectrum was not actually obtained, the spectra
given in Figure 23(c) with the power indices in the caption may
also serve as useful comparators.

7. DISCUSSION

Contrary to claims made elsewhere, I have shown that—used
as designed—ZEUS can obtain satisfactory results to virtually
any 1D Riemann MHD test problem including the Sedov blast
wave in spherical coordinates. Discontinuities are tracked with
similar accuracy (propagation speed, upwind levels, number of
zones required for capture) as any published results for fully
upwinded schemes. “Rarefaction shocks” remain a technical
problem for the algorithm and appear in some pedagogical test
problems, but I have argued that these are very unlikely to cause
any concern for published or future results generated by ZEUS.

These test results were achieved, in part, because of two
algorithmic augmentations for ZEUS which I describe in detail.
These include a modification to CA (Norman et al. 1980) in
which CA is no longer applied to the energy equation, and an
algorithm for the total energy equation that has been modified
somewhat from the original scheme described in Clarke (1996).

Multi-dimensional tests are also presented which show that
ZEUS does not suffer from the grid biases exhibited by some
upwinded schemes that ignore compressional magnetic terms
(Gardiner & Stone 2005). ZEUS satisfies the solenoidal condi-
tion trivially, and can be (largely) inoculated against negative
pressures even when the conservative total energy equation is
solved. Finally, ZEUS can be used successfully for the important
problem of super-Alfvénic turbulence which has vexed many
upwinded schemes.

One of ZEUS’ great strengths is its ability to incorporate
additional physics (e.g., radiation, self-gravity, viscosity, etc.)
without revising the underlying MHD scheme or compromising
its accuracy. Still, each algorithm including ZEUS, however ro-
bust and stable it may be in the realm in which it is developed,
can be “broken” by a sufficiently well-aimed counterexample.
The important question is, are such counterexamples relevant

to the intended astrophysical application? More particularly, is
mechanical energy conservation or a positive-definite pressure
paramount? Is multi-dimensional stability important, or will
simulations be performed in only one or possibly two dimen-
sions? Is the order of convergence of the algorithm critical and
is the stated order of convergence in 1D test problems the same
as that delivered in multi-dimensional applications? Answers
to these questions will help determine which code, among the
many available, is best-suited to a particular problem.

I thank Jim Stone and Elizabeth Tasker for useful comments
on the manuscript. Development of ZEUS and, in particular,
dzeus35 is supported, in part, by the Natural Sciences and En-
gineering Research Council (NSERC). Some of the simulations
were performed using the facilities at ACEnet, funded by the
Canada Foundation for Innovation (CFI), the Atlantic Canada
Opportunities Agency (ACOA), and the provinces of Nova
Scotia, Newfoundland and Labrador, and New Brunswick.

APPENDIX A

DIFFERENCING THE TOTAL ENERGY EQUATION

Figure 24 reminds the reader of the variable locations
on a staggered grid. I use a “generic” set of coordinates,
(x1(i), x2(j ), x3(k)), which, in dzeus35, could be Cartesian,
cylindrical, or spherical polar. For simplicity, I omit the metric
factors that account for the curvilinear coordinates, and thus
the discussion here is peculiar to Cartesian coordinates.10 The
indices (i, j, k) label the zone center as well as all zone faces,
edges, and corners that are half a zone closer in one or more
directions to the (left, bottom, back) corner of the grid.

In dzeus35, the total energy equation is unsplit, at least
in 1D. In multi-dimensions, the fluxes are accounted for in a
directionally and planar-split fashion, as is the design of CMoC.
In difference form and considering only the 1-derivatives,
Equation (2) becomes

en+1
T (i, j, k) = en

T(i, j, k) − δtn

δx1

(
Fn+ 1

2
e (i + 1, j, k)

− Fn+ 1
2

e (i, j, k) +Gn+ 1
2

e (i + 1, j, k) −Gn+ 1
2

e (i, j, k)

)
,

10 The reader may download the code (see footnote 3) or refer to Stone &
Norman (1992a) to see how the metric factors are incorporated.
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Figure 24. (i, j, k)th zone on a staggered grid, showing in each case the
locations of the (i, j, k)th element of the zone-centered scalars (ρ, e, p, eT),
l-face-centered l-components of the primary vectors (�v, �B), and the l-edge-
centered l-components of the secondary vectors ( �E = �v× �B), where l = 1, 2, 3.
The dashed lines diagonally through the zone and dotted lines across the i-, j-,
and k-faces are there to guide the eye.

where the superscript n indicates the nth time step, and where

Fn+ 1
2

e (i, j, k) = [
(eT

i + pi − pB
i + Q11

i
) v1

]
(i,j,k), (A1)

Gn+ 1
2

e (i, j, k) = [〈E2〉3〈B3
i〉3 − 〈E3〉2〈B2

i〉2
]

(i,j,k), (A2)

are the compressional energy fluxes (Fe) and transverse (Poynt-
ing) energy fluxes (Ge) respectively11. The superscript n + 1

2 in-
dicates time-centering, as required for a finite-volume code. The
artificial viscosity, Q, is a diagonal tensor whose (1, 1)-element
is given by

Q11(i, j, k) = ρ(i, j, k) δ1v1(q2 min(0, δ1v1) − q1 cs(i, j, k)),
(A3)

where δ1v1 = v1(i + 1, j, k) − v1(i, j, k), cs = √
γp/ρ is

the sound speed, and where q1 and q2 are coefficients for the
linear and quadratic viscous terms corresponding, respectively,
to the dzeus35 parameters qlin and qcon defined in Section 2.
Thus, Q11 is a cleanly zone-centered quantity, with no averages
necessary to make it so.

For the compressional fluxes in Equation (A1), “overbars”
with leading indices ( i) indicate monotonic upwinded (in the
flow velocity) time-centered interpolations of the quantity in
the i-direction to the face center. Thus, pi is the i-interpolation
of the zone-centered p to the 1-face (Figure 24), where it is
needed to construct the 1-flux; see Clarke (1996) for details on
how the interpolations are performed. Note that the total energy
density (eT), pressure (p), magnetic pressure (pB = B2/2), and
the artificial viscous stresses (Q11) are separately interpolated
before they are added and multiplied with v1 (which is already
centered at the 1-face and thus needs no interpolation). The
decision to sum the interpolations (including treating eT − pB

as two separate terms instead of combining them as eH; see
Equation (2)) rather than interpolate the sums was arrived at
by direct experimentation. While the latter is computationally
more economical, it causes undue ringing in many of the 1D
tests problems in Section 4. Conversely, the former—in which
the monotonizers can work directly on eT—results in the clean
solutions presented.

11 Compressional terms contain derivatives of the form ∂if or ∂iwi , where f is
a scalar and wi is a vector component. Transverse terms include
cross-derivatives (∂iwj , i 
= j ) only.

For the transverse fluxes in Equation (A2), the induced
electric field components are given by

E2(i, j, k) = v1
kB3

i − v3
iB1

k
,

(A4)

E3(i, j, k) = v2
iB1

j − v1
jB2

i
,

where the overbars in Equations (A2) and (A4) indicate mono-
tonic upwinded (in both Alfvén characteristics) time-centered
interpolations of the quantity in the indicated direction (i, j,
or k) to the edge center. Thus, v3

i is the i-interpolation of the
3-face-centered v3 to the 2-edge (Figure 24), where it is needed
to construct E2. To get face-centered fluxes then requires the
additional step of two-point averages in the appropriate direc-
tion, as indicated by the 〈 〉l notation in Equation (A2), where
l = 2, 3. Note that I have explicitly used the product of the aver-

ages (e.g., 〈E2〉3〈B3
i〉3) rather than the equally plausible average

of the product (e.g., 〈E2 B3
i〉3). I know of no discriminator to

choose between these possibilities—1D tests give identical re-
sults for both since the averaging is moot. In dzeus35, I have
arbitrarily chosen the former.

In evaluating E2 in Equation (A4), i-interpolations of v3 and
B3 and k-interpolations of v1 and B1 are required. Unique to the
CMoC algorithm, these four interpolations are performed simul-
taneously and implicitly so that the bases of the characteristics
at which the quantities are interpolated are placed using char-
acteristic speeds computed from the same interpolated values.
This step, necessary to prevent the magnetic field explosions
discussed in Section 6, is technically rather complex. It is de-
scribed at length in Clarke (1996) and rendered in FORTRAN
in the CMOC* (*=1,2,3) routines in dzeus35.

The algorithm described is for 1-fluxes only. A completely
analogous algorithm can be constructed for the 2-fluxes by
permuting (i, j, k) → (j, k, i) and (1, 2, 3) → (2, 3, 1), and
then for the 3-fluxes by permuting (j, k, i) → (k, i, j ) and
(2, 3, 1) → (3, 1, 2). Whether CMoC or some other edge-
centering technique is used to evaluate the induced electric
field, �E, and the edge-centered velocity and magnetic field
components used to compute it, these quantities can be used
for numerous purposes in a staggered-grid algorithm, including
the following:

1. evaluating the Poynting flux in the total energy equation, as
described above;

2. updating the magnetic field with the induction equation
(∂t

�B + ∇ × �E = 0);
3. evaluating the transverse component of the Lorentz force

( �J × �B = (∇ × �B) × �B = −∇(B2/2) + ( �B · ∇) �B, where
the second term is the transverse component);

4. providing the interpolated velocities necessary to perform
the transverse momentum transport (e.g., ∂1s2) steps.

This is how dzeus35 is designed. Thus, while CMoC may
account for half of the cpu used per MHD cycle, its products are
well-used and renders dzeus35 an efficient and fully Eulerian
code. By comparison, some versions of ZEUS still use the
(HS)MoC scheme in which a hybrid Eulerian–Lagrangian step
is used to update the magnetic field and Lorentz forces, and a
separate step is then taken to perform the transverse momentum
transport (Stone & Norman 1992b; Hawley & Stone 1995).
My own tests show that despite its algorithmic complexity, the
fully Eulerian CMoC step is significantly less computationally
expensive than (HS)MoC.
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Figure 25. Depicted are the few zones surrounding a 1D shock propagating into
a cold and quiescent medium (essentially zero eT), where the shock has reached
face i but not zone-center i. Arrows represent velocity vectors while the level of
the open circles indicate total energy density.

A.1. Curtailing Negative Pressures

One of the first problems encountered when differencing the
total energy equation is evaluating the thermal pressure, given
by

p = (γ − 1)e = (γ − 1)
(
eT − 1

2ρv2 − 1
2B2

)
.

Both eT and p are zone-centered, and thus so must be the
kinetic and magnetic energy densities (eK and eB). It is therefore
necessary to construct eK, for example, from face-centered
vector components, and how one does this can have enormous
effects on the quality of the algorithm.

An Occam’s razor approach might be to take two-point
averages. Thus, for v1,

〈v1〉i = 1
2 (v1(i + 1, j, k) + v1(i, j, k)), (A5)

with the other vector components done likewise. For the 2003

Sedov blast wave problem described in Section 3, averaging
the velocities to construct the kinetic energies caused some 350
million negative pressures, or about 1 negative pressure per 100
zone updates.

The origin of the negative pressures can be understood from
Figure 25, which depicts the few zones across a 1D shock
moving through a quiescent medium. The levels of the open
circles represent the values of the zone-centered eT, and the
lengths of the arrows represent the magnitudes of the face-
centered v1. Here, I have depicted the shock as having just
reached face i (and thus v1(i) is non-zero), but not having
reached zone center i (and thus eT(i) remains at the floor
level). By averaging v1, the zone-centered estimate of eK(i)
includes the shock-accelerated velocity, v1(i), and yet eT(i)
itself has not yet been affected by the shock. Thus, eT(i) − eK(i)
becomes negative at the base of strong shocks where shock
acceleration boosts the kinetic energy over the quiescent internal
energy.

The fix is clear. Considering data only from the current time
step, zone center i cannot yet be aware of the upwind velocity,
v1(i). On the other hand, the downwind velocity, v1(i + 1)
(depicted here as 0), is representative of what v1 must have been
at zone-center i in the very recent past. Thus, a zone-centered
estimate of the velocity that obeys the principle of causality
is a downwinded interpolation whose order of accuracy can
be controlled much like the upwinded interpolations used to
construct the time-centered fluxes in the transport step (e.g.,

Clarke 1996). Thus, a “donor-cell” downwinded interpolation
is given by

iv1 =
{

v1(i, j, k), 〈v1〉i � 0,

v1(i + 1, j, k), 〈v1〉i > 0,
(A6)

where 〈v1〉i is given by Equation (A5), and where “overbars”
with trailing indices ( i) denote downwinded interpolation. A
second- and third-order downwind interpolation can be con-
structed from piecewise linear (van Leer 1977) or quadratic
(Colella & Woodward 1984) interpolation functions, and de-
tails are omitted for brevity. dzeus35 uses second-order down-
winded interpolations to estimate zone-centered velocities12

when computing the pressure from the total energy density. For
the 2003 Sedov blast wave problem, this reduces the number of
negative pressures from 350 million to zero.

Still, this does not prove that downwinding renders the total
energy equation positive-definite, and one must be prepared to
deal with negative pressures should they arise. In dzeus35, I
simply reset them to a small positive quantity, keep track of
where and when such resets occur, and report the accumulated
internal energy added to the grid13 at the end of the simula-
tion. An alternate approach, known by some as the dual-energy
method, solves both the internal and total energy equations,
and computes the pressure from the internal energy equation
whenever the total energy equation yields a negative pressure
(e.g., ENZO; O’Shea et al. 2004). Such a scheme still effec-
tively adds an arbitrary amount of internal energy density to
troublesome zones and, unlike simply setting negative pres-
sures to a small positive value, can lead to square wave pres-
sure profiles over time, as the pressure switches back and forth
between the near-zero values from the total energy equation,
and the possibly not-so-small values from the internal energy
equation.

It is worth noting that the 1D shock-tube tests in Section 4
cannot distinguish between averaging and downwinding the
velocities; both sets of solutions are equal in quality with no
negative pressures in either case. However, the “other” option,
namely, upwinding (as one might naı̈vely jump to given its role
in evaluating fluxes) is clearly ruled out by the 1D tests, as it
excites severe ringing in several of the problems.

Finally, while downwinding avoids negative pressures much
better than averaging in the Sedov blast wave problem, there
seems to be no measurable difference in the two solutions
otherwise. Resetting all 350 million negative pressures back
to essentially zero required adding the equivalent of ∼1.8%
of the internal energy density on the grid and created a final
state indistinguishable in any other way from the downwinded
solution (e.g., advance of shock, isotropy, peak levels behind
shock, etc.). Resetting a negative pressure back to zero is a
stabilizing act. It can only reduce the local pressure gradient,
thereby accelerating the fluid less, rendering the next estimate
of the kinetic energy lower and thus making it less likely for
a negative pressure to reoccur. Thus, while it is clearly well to
avoid negative pressures where one can, it is not necessarily a
bad thing simply to reset them to zero when one must.

12 Magnetic fields are still averaged to the zone-centers since downwinding
them relative to �v causes negative pressures in the MHD blast wave
(Section 5.2). It is likely �B needs to be downwinded relative to the Alfvén
speeds.
13 Note that this addition is made to the pressure only, and not to the total
energy. Thus, the effects are local, not global.
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APPENDIX B

REMOVING CONSISTENT ADVECTION FROM THE
ENERGY EQUATION

In this Appendix, I outline a simple procedure to existing
ZEUS codes to disengage CA from the (internal) energy equa-
tion. Discussion is necessarily specific to the structure and cod-
ing conventions of most ZEUS codes.

In the “transport” step, and in particular in routine TRANX1,
the energy is updated by statements resembling:

mflx1(i+1,j,k) = v1 (i+1,j,k) * dtwid1(i+1,j,k) * dt

dflx1(i+1 ) = mflx1(i+1,j,k) * dar1b (i+1)

eflx1(i+1 ) = dflx1(i+1 ) * etwid1(i+1,j,k)

e (i ,j,k) = e(i,j,k) + ( eflx1(i) - eflx1(i+1) ) / dvl1a(i)

It is the use of the mass flux (mflx1) to construct the 1-fluxes of
momentum and energy that is the embodiment of CA in ZEUS.
In this snippet of coding, the mass flux, with units mass per area,
is the product of v1, the interpolation of density to the 1-face
(dtwid1), and the time step. The density flux (dflx1) is then the
mass flux times the area of the 1-face (dar1b), with units mass.
Finally, the energy flux (eflx1) is the product of the density
flux and the 1-interpolation of the specific energy, e/ρ (and not
e), giving a quantity with units energy. The difference in energy
fluxes on either side of the zone divided by the zone volume
(dvl1a) then gives the change in energy density, e, resulting
from 1-transport during the time step.

To remove CA from the algorithm, one must change the third
line evaluating eflx1 to:

eflx1(i+1) = v1(i+1,j,k) * etwid1(i+1,j,k) * dt * dar1b(i+1)

where etwid1 is now the 1-interpolation of the energy density, e
(and not e/ρ). This last step is critical, and will require another
small change earlier in the routine. Before the triple do-loop
(double do-loop for ZEUS-2D) containing this piece of coding,
there should be a call to the interpolator, e.g., X1ZC3D, which
will include in its argument list the specific energy. Change this
to the energy density, e.

Similar modifications to the other transport routines, TRANX2
and TRANX3, are necessary to complete the task for 3D. Note
that these changes do nothing to interfere with CA from being
applied to the momentum fluxes (by use of the 3D arrays mflx1,
etc.) which was its original intent and for which there is ample
evidence of benefit.

APPENDIX C

EXPONENTIAL GROWTH OF A WEAK MAGNETIC
FIELD

To understand why the magnetic energy, EB = ∫
1
2B2 dV ,

should undergo exponential growth in a sustained super-
Alfvénic turbulent medium, start with the induction equation:

∂t
�B = ∇ × (�v × �B) = ( �B · ∇)�v − (�v · ∇) �B − �B(∇ · �v)

⇒ dt
�B = ( �B · ∇)�v − �B(∇ · �v),

where ∇ · �B = 0 has been explicitly assumed, and where
dt = ∂t + �v · ∇. Thus,

�B · dt
�B = 1

2dtB
2 = �B · [( �B · ∇)�v] − B2(∇ · �v). (C1)

To get an evolution equation for EB , we integrate Equation (C1)
over the volume of the grid, V. Doing this, the first term
on the right-hand side vanishes to within statistical noise
since, in a turbulent medium, the integrand is equally likely
to be positive or negative with no bias from the sign to
its magnitude. The second term, however, is different. When
integrated over V, it represents a grid sum of ∇ · �v weighted
by B2 which, for a passive magnetic field, is typically greater
in regions of compression (where ∇ · �v < 0) than in regions
of expansion (where ∇ · �v > 0). Thus, the volume-integrated
right-hand side of Equation (C1) is positive and proportional
to EB , yielding the observed exponential growth of EB with
the e-folding time, τB , varying inversely with the weighted
sum of ∇ · �v. Therefore, the higher the rms velocity of the
turbulence, the greater the average magnitude of ∇ · �v, and the
shorter τB .

When the plasma beta reaches order unity (i.e., arms ∼ cs),
the magnetic field ceases to be slave to the hydrodynamics, and
the correlation between B2 and the sign of ∇ · �v disappears.
Thus, the volume integral of the second term in Equation (C1)
becomes zero (to within statistical noise) as well, rendering EB

independent of time thereafter. This is precisely the behavior
observed in Figures 23(a) and (b).
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