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Preface

Most, if not all of the astrophysical MHD codes used around the world bearing the name
ZEUS can trace their roots to the original 2-D code developed by Michael Norman and myself
in 1986. Of these, this manual describes a version of the code that I have been developing
and maintaining ever since. The interested reader will find a complete history of this code
from its inception to the present release in the “history deck” of the source code.

The pervasiveness of ZEUS throughout the world is in large part due to the generous
spirit of Michael Norman whose vision included “astrophysical community codes” to serve
theorists much like AIPS serves radio astronomers. ZEUS-3D was first developed at the
National Center for Supercomputing Applications (NCSA) between 1988 and 1990, and in
1992 version 3.2 was made available to the public. A few years later, MLN released the
MPI version of the code (ZEUSMP) and use of the code spread. Many versions of the code
now exist and have been significantly modified by various users to perform simulations from
comet-planet collisions to cosmology.

While the ZEUS-family of codes are not fully-upwinded (like a Godunov scheme, for
example), they have proven to be flexible and robust. One can add almost any physical
process to the code without worrying too much about its effects on the underlying MHD
scheme. It has therefore found a niche amongst numerically literate, though perhaps not
expert, astrophysicists who have a computational problem to investigate but neither the time
nor the resources to develop their own code.

One of the roles of the Institute for Computational Astrophysics (ICA) at Saint Mary’s
University is to provide and, in some cases, support code to the astrophysical community. To
this end, the ICA web page (www.ica.smu.ca/zeus3d) now places into the public domain
this author’s double-precision version of ZEUS-3D (version 3.6; dzeus36). This code is dis-
tinct from the NCSA/UCSD/LCA version of the code (ZEUSMP; http://lca.ucsd.edu)
which has not enjoyed significant algorithm development in more than a decade. As evi-
dent in §1, version 3.6 has undergone significant code development and bears little resem-
blance algorithmically to version 3.2 released around 20 years ago and, for that matter, to
ZEUSMP. This includes, for example, a “planar-split” MHD algorithm, fully conservative
in 3-D, self-consistent boundary conditions, an “N–logN” Poisson solver, and a full suite
of graphics. The code now runs under OpenMP with 98% parallelism [yielding a speed-up
factor of 12.5 (20) with 16 (32) processors] and AZEuS1, an AMR version of the code and
still under development at the time of this writing, will become available from a parallel site
(www.ica.smu.ca/azeus) in the near future.

Conditions for use of this code are on the next page. The proper citations for referencing
the algorithms used in dzeus36 are:

Clarke, D. A., A Consistent Method of Characteristics for Multidimensional MHD , 1996,
ApJ, 457, 291.

Clarke, D. A., On the Reliability of ZEUS-3D, 2010, ApJS, 187, 119.

It is requested that any publication reporting results performed by dzeus36 or any of its

1Adaptive Zone Eulerian Scheme
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derivatives include the following acknowledgement:

Use of ZEUS-3D, developed by D. A. Clarke at the Institute for Computational
Astrophysics (www.ica.smu.ca) with financial support from the Natural Sciences
and Engineering Research Council of Canada (NSERC), is hereby acknowledged.

If length is an issue, the following will also suffice:

Use of ZEUS-3D, developed by D. A. Clarke at the ICA (www.ica.smu.ca) with
support from NSERC, is acknowledged.

Inquiries about this software, constructive criticism, bug reports, etc., should be directed to
the author at the address below.

David Clarke, March, 2015
Institute for Computational Astrophysics
Saint Mary’s University
Halifax, NS, Canada B3H 3C3
dclarke@ap.smu.ca

http://www.ica.smu.ca
http://www.ica.smu.ca
mailto:dclarke@ap.smu.ca


Implicit user agreement

In what follows, this software refers to “ZEUS-3D, version 3.6” (dzeus36), and the author
refers to David A. Clarke, ICA, Halifax. It is assumed that anyone using this code has read,
understood, and agreed to the following conditions of use:

1. Distribution of this software shall remain the purview of the author. A user is free to
share this software with students and co-workers, but requests from those not working
directly with the user should be directed to www.ica.smu.ca/zeus3d.

2. This software shall be used exclusively for education, research, non-profit, and non-
military purposes. Specific written permission from the author must be obtained before
any commercial use of this software is undertaken.

3. The banner and history decks (first two modules of the source code) shall remain with
this software and any descendent developed from and still based substantially upon
this software.

4. The name(s) of the institution(s) with which the author is or has been affiliated shall
not be used to publicise any data and/or results generated by this software. All findings
and their interpretations are the opinions of the user and do not necessarily reflect those
of the author nor the institution(s) with which the author is or has been affiliated.

The author makes no representations about the suitability of this software for any purpose.
Subject to the above conditions, this software and accompanying manual are provided “as
is” without expressed or implied warranty.
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ZEUS-3D USER MANUAL
Version 3.6, David A. Clarke, ICA, March 2015

1 Introduction

1.1 VERSION 3.0

ZEUS-3D is a 3-D magnetohydrodynamics (MHD) solver, and although it was designed with
astrophysical applications in mind, fluid dynamic problems in the other physical sciences
can be addressed with this code too. The code is now about 35,000 lines of FORTRAN and
growing, and represents many years of work by many people. During the past two years, I
have been the primary developer of the code, although algorithms and structures developed
by many others over the past 20 years have been freely used. These include Philip Colella,
Chuck Evans, John Hawley, Michael Norman, Larry Smarr, Jim Stone, Bram van Leer, Jim
Wilson, Karl-Heinz Winkler, Paul Woodward, and others.

ZEUS-3D was created as part of the ZEUS development project, begun and headed by
Dr. Michael Norman at the NCSA (National Center for Supercomputing Applications). It
has been Mike’s continuing efforts to support this project, both financially and intellectually,
that have made the development of ZEUS-3D possible. Dr. Jim Stone, also a member of
the ZEUS development project, was the principle creator of ZEUS-2D, the predecessor to
ZEUS-3D. Although the two codes now differ substantially, the efforts that Jim and Mike
made to develop the magnetic field algorithm and the modularity of the code are still very
evident in ZEUS-3D.

In its present incarnation, ZEUS-3D is a three-dimensional ideal (non-resistive, non-
viscous, adiabatic) non-relativistic magnetohydrodynamical (MHD) fluid solver which solves
the following coupled partial differential equations as a function of time and space:

∂ρ

∂t
+∇ · (ρ~v) = 0; (1)

∂~s

∂t
+∇ · ( ~sv) = −∇p− ρ∇Φ + ~J × ~B; (2)

∂e

∂t
+∇ · (e~v) = −p∇ · ~v; (3)

∂ ~B

∂t
= ∇× (~v × ~B). (4)

where:
ρ = matter density
~v = velocity flow field
~s = ρ~v = momentum density vector field
p = thermal pressure

1



Introduction 2

Φ = gravitational potential
~B = magnetic induction
~J = current density (∇× ~B)
e = internal energy density (per unit volume)

The code possesses the following numerical attributes:

1. finite differencing on an Eulerian mesh (but possibly moving in an average sense with
the fluid);

2. fully explicit in time and therefore subject to the CFL limit;

3. operator and directional splitting of the MHD equations;

4. can be used efficiently for 1-D and 2-D simulations with any of the coordinates reduced
to symmetry axes;

5. Cartesian geometry for 3-D simulations, Cartesian and cylindrical coordinates for 2-D
simulations, Cartesian, cylindrical, and spherical coordinates for 1-D simulations;

6. written in a “covariant” fashion to minimise the effects of the different coordinate
systems on the structure of the code;

7. fully staggered grid, with scalars (density and internal energy) zone-centred and vec-
tor components (velocity and magnetic field) face-centred [derived vector components
(current density and emf s) are edge-centred];

8. von-Neumann Richtmyer artificial viscosity to smear shocks;

9. upwinded, monotonic interpolation using one of donor cell (first order), van Leer (sec-
ond order), or piecewise parabolic interpolation—PPI (third order) algorithms;

10. Consistent Advection used to evolve internal energy and momenta; and

11. Constrained Transport modified with the Method of Characteristics used to evolve the
magnetic fields.

This code is strictly Newtonian. Relativistic astrophysics cannot be simulated in any
way with this version. No explicit account for relativistic particles is incorporated either.
The code assumes strict charge neutrality at all times—it is not a plasma code. It is assumed
that the fluid is thermal, and is coupled to the magnetic fields via collisions with an ionised
component which never undergoes charge separation. Pressure is assumed to be isotropic
and gravitation is limited to the specification of a point mass. A fully three-dimensional
Poisson-solver is planned for the next version (3.1) which will account for the self-gravity of
the fluid.

The purpose of this manual is not to educate the potential user on numerical techniques,
physical justification of the assumptions inherent to the code, or even what the potential
problems to be solved are. Instead, it is assumed that the user is intimately familiar with the



Introduction 3

fundamentals of MHD and has come up with a complex problem to solve which is completely
described by equations 1 through 4. It is also assumed that the user has a working knowledge
of UNIX . In this spirit, this manual is designed to instruct the user on the mechanics of using
ZEUS-3D to solve the equations that pen and paper cannot attempt.

D. Clarke, February 1991

1.2 VERSION 3.2

The code has undergone numerous changes since the release of version 3.0 and has grown
to nearly 45,000 lines of FORTRAN and more than 160 subroutines. Version 3.1 was never
actually released as such, and so there is no corresponding manual. This, then, is the first
revision of the user manual. The major differences between versions 3.0 and 3.2 include:

1. Line-of-sight integrations through the data volume for a variety of variables, including
the Stokes parameters (see §3.9) are possible in both XYZ and ZRP coordinates. The
EDITOR definition RADIO (§2.2.1) must be set to invoke this display option.

2. An option has been added to generate time slice plots. The EDITOR definition TIMESL

has been added which now must be set in order to get time slice output.

3. Subroutines peculiar for generating polar pixel dumps (written by Carol Song) have
been expunged. ZEUS-3D now converts polar slices to Cartesian slices “on the fly”
before generating pixel dumps.

4. 2-D NCAR graphics have been enhanced with better annotation. Polar contours and
vector plots now work properly.

5. An EDITOR alias FINISH has been added which represents a subroutine called after
the main loop of the main program zeus3d. This gives the user a slot in which to
perform various tasks at the end of the run.

6. The code can be micro-tasked for the Crays. Tests indicate that for typical runs, a
real-time speed-up of 3.9 can be achieved with 4 dedicated processors.

7. The code will now run efficiently (i.e., it vectorises) as a uni-tasked process on the
Convex. This is done by defining the EDITOR definition CONVEXOS. Multi-tasking on
a Convex using the -O3 option can be done, but yields a real-time speed-up of only
about 2.5 on a four processor machine. For runs on the Crays, UNICOS must now be
defined.

8. More combinations of dimension and geometry are now known to work. The list now
includes Cartesian (XYZ) with any two, any one, or no symmetry flag(s) set, cylindrical
(ZRP) with either JSYM+KSYM or KSYM set, spherical polar (RTP) with either JSYM+KSYM
or KSYM set. Other combinations will be debugged as needed.

9. One can now select an isothermal equation of state. A new EDITOR definition ISO

has been added to take advantage of the reduction in memory and computation re-
quirements for isothermal systems.
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10. Yu Zhang (NCSA) has implemented a 3-D self-gravity module using the so-called
DADI (Dynamical Alternating Direction Implicit) scheme. The EDITOR definition
GRAV must be set if self-gravity is to be invoked.

11. One now has the choice of solving either the total energy equation or the internal
energy equation (the only choice in previous versions). The toggle itote has been
introduced to the namelist hycon to specify which of these formalisms is to be used
(Byung-Il Jun, NCSA).

12. Pixel, Voxel and RADIO dumps may now be made in HDF format. This avoids the
cumbersome process of “bracketing” the images, but at the cost of more than four
times the disc space requirements.

13. The common blocks have been radically restructured, and the way restart dumps are
generated has been overhauled entirely. It is now possible to read a restart dump, for
example, that was generated by a compiled version of the code with different EDITOR

macro settings and different values for the array parameters.

14. Ragged boundaries are no longer available. This feature has been expunged from the
code for lack of use and because of the increasing effort necessary to incorporate it into
new features. Boundaries must now be regular.

Users of version 3.0 will be happy to note that there are no major changes in the way
ZEUS-3D is compiled or executed, and the namelist parameters have remained more or less
fixed. Still, there are enough subtle changes that it might do the experienced user some good
to review these notes before attempting to run a job with this new version. Also note that
version 3.2 cannot read restart dumps created by version 3.0, and vice versa.

D. Clarke, August, 1992

1.3 VERSION 3.3

The NCSA, under the auspices of the Laboratory for Computational Astrophysics and the
leadership of Dr. Michael Norman, has developed zeus32 into an MHD-cosmology code and
continues to make their code available to the community. Independent of the NCSA effort,
I and my co-workers have developed zeus32 into an CR-MHD (CR ≡ cosmic rays) code
(zeus33). This manual, therefore, describes the first non-NCSA version of the code and was
developed at the Harvard-Smithsonian Center for Astrophysics. This version contains more
than 52,000 lines of source code and is the most extensive re-write of the code since version
3.0 was first generated from the 2-D template. Most of the routines in the PHYSICS group—
including the hydrodynamics—have been rewritten in order to implement the new Consistent
Method of Characteristics (CMoC). The CMoC was developed to solve the chronic problem
of magnetic field explosions in previous MHD algorithms. While substantive to the code,
these changes are mostly transparent to the user. Changes of significance to the user include:

1. The EDITOR alias MOC has been removed, since the MoC algorithm has been replaced
with the CMoC algorithm. The option to use the original CT scheme has also been
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eliminated since, unlike MoC, CMoC reduces to the original CT scheme in the weak
field limit. The EDITOR alias FASTCMOC has been added to activate the more efficient
version of CMoC for cases where the ratio of the flow and Alfvén velocities is not
expected to exceed 108 for 64-bit words, and 104 for 32-bit words.

2. A two-fluid approximation for a relativistic fluid has been installed (Byung-Il Jun,
NCSA). It is turned on by specifying the EDITOR macro TWOFLUID. The two-fluid
approximation takes after Jones & Kaing (1991, ApJ, 363, 499) and can reproduce all
of their results. The diffusion coefficient is determined by a subroutine linked with the
EDITOR alias DIFFUSION. The diffusion operator is performed using a time-centred,
sub-cycling algorithm which allows the CFL limit to be specified independently of the
diffusion time scale.

3. A time-centred subcycling option for the artificial viscosity has been installed and is
activated by setting iscyqq=1 in namelist hycon. This renders the CFL limit indepen-
dent of the viscous time scale. For applications with strong shocks, this can reducing
computational time by a factor of 2 or more.

4. An additional option for ARTIFICIALVISC has been introduced (gasdiff) by Byung-Il
Jun. This routine uses ordinary gas diffusion to stabilise shocks. It does so without
any excess heating often associated with viscosity, but tends to render the solution
very smooth since it is applied everywhere.

5. The variables iordd, iorde, etc. and istpd, istpe, etc. have been expunged. In this
release, iord and istp specify respectively the order of the interpolation algorithm
and whether the steepener is to be applied in the third order PPI algorithm for all
variables.

6. The I/O has been updated with the two-fluid variables. In addition, the conventions
used in the various I/O routines have been standardised. In particular, with the
exception of RADIO variables, virtually all variables available for output in any one
I/O routine are available in all. By necessity, the RADIO variables remain limited.

7. A “pseudogravity” option has been added. The pseudogravity “holds onto” artifi-
cial pressure gradients (e.g., a King atmosphere) much like ordinary gravity was used
in ZEUS04 (the predecessor to ZEUS-2D). The pseudogravity is activated by set-
ting the EDITOR macro PSGRAV which is mutually exclusive with GRAV. The pseudo-
gravitational potential has the same units as pressure (i.e., ρv2) rather than the usual
units of gravitational potential (i.e., v2). The pseudo-gravitational acceleration is given
by dv/dt = −(∇φ)/ρ and is treated exactly as a pressure in the source term routines.
Thus, to “hold onto” an artificial atmosphere in a problem initialisation routine, simply
define PSGRAV and set gp(i,j,k) = p(i,j,k).

8. Bremsstrahlung emission has been added to the RADIO dumps.

9. The code has been generalised to run on SUN SPARCstations. The EDITOR macro
SUNOS must be specified for either SUNOS or SOLARIS operating systems.

D. Clarke, December 1993
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1.4 VERSION 3.4

It has been more than a decade since version 3.3 was completed. Except for one bug found
in the CMoC algorithm (to do with density, and described below), it has proven to be an
extremely robust algorithm. The main problem with the code is its boundary conditions, and
this version has seen numerous rewrites and experimentation with its boundary condition
routines, none satisfactory.

The main problem is that as released, version 3.3 could not do something as simple as
launch an Alfvén wave from an inflow boundary. As released, version 3.4 can, but at the cost
of introducing monopoles at an inflow boundary in some circumstances (such as Ouyed-type
jets from problem generator CORONA), and numerous patches have been installed to prevent
or at least limit these. In particular, inflow/outflow boundary conditions should be used with
great caution. On the plus side, with help form Pierre-Yves Longaretti, periodic boundary
conditions are now exact, with both sides of a periodic grid committing identical machine
round-off errors.

Other changes to the code include:

1. The code has been upgraded to double precision, and is now called dzeus34. Cre-
ating the executable xdzeus34 now requires linking the double precision libraries:
dnamelist.a and dsci01.a.

2. The problem generator for launching jets from accretion discs (à la Ouyed and Pudritz)
has been added (corona). A new EDITOR definition POLYTROPE has been added if the
results of solving the internal energy equation are to be set aside in favour of a strict
polytrope (p = κργ). This feature should be used with extreme caution as a polytrope
is not physically equivalent to an adiabatic equation of state (the former forbidding
irreversible processes).

3. The problem generator for Couette type flows (Longaretti) has been added.

4. PSGRAV and GRAVmay now be set simultaneously, if needed. A new 3-D array, psgp,
has been added to keep the pseudo-gravity separate from the physical gravitational
potential, gp.

5. Yu Zhang’s DADI gravity routines, which never worked properly, have all been ex-
punged and two new Poisson solvers have been installed by A. Men’shchikov: SOR
(Successive Over-Relaxation), and FMG (Full Multi-Grid). The algorithm is chosen
by setting gravalg to 1 or 2 for SOR or FMG. Only SOR is fully debugged.

6. The code is now portable to AIX (IBM) and LINUX .

7. A bug in the CMoC algorithm was fixed. The original scheme used four-point averages
of the density to the location of the emf when estimating the characteristic velocities.
However, it was found that at steep density gradients, this proved disastrous. A degree
of freedom overlooked in the original CMoC implementation was exploited to allow
the density to be upwinded too, thus preventing steep gradients from over- or under-
estimating emf s.
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8. Kinematic viscosity has been added to the code (constant viscosity only), and is trig-
gered by specifying a non-zero value for “nu”, a global variable, in namelist HYCON. “nu”
is the kinematic viscosity defined by ν = V L/R, where R is the Reynolds number of
the flow and L and V are length and velocity scales of the problem.

9. A. Men’shchikov has introduced PSPLOT2 to the plotting library grfx03.a. Three
namelist parameters (norppl1, norppl2, norptsl) will allow for publication-quality
graphics with colour without linking any NCAR libraries. Two additional user-creat-
able libraries psplot.a and noncar.a must be linked instead for this option to work.

10. The subroutines CURRENT* have been replaced with CURL*, which compute components
of the curl. It is a generalisation that may be used to compute the vorticity as well.

11. Vector potentials are now available in all graphics options (e.g., §B.19, §B.20, §B.21,
etc.). To allow this, “inverse curl” routines have been added (following Arfken, ed. 5,
pp. 73–74) that compute a vector potential from a given magnetic field.

D. Clarke, September, 2005

1.5 VERSION 3.5

Modifications to the code from version 3.4 are numerous and invasive, and needed to correct
long-standing problems with boundary conditions and to complete the installation of the
total energy equation. The code now has more that 90,000 lines of FORTRAN and 350
subroutines.

A self-consistent framework for setting magnetic boundary conditions has been developed
and installed in this release. In particular, inflow and outflow boundary conditions, while still
not perfect, are now much cleaner than in dzeus34, and can be used with some confidence.
For the user, the visible consequences are four-fold:

1. A distinction is now made between the skin values (e.g., variables on the i=is face
at the inner-i boundary) and proper boundary values (e.g., variables, face-centred or
zone-centred, at i=ism1 and i=ism2 at the inner-i boundary). For inflow conditions,
the user must now set the skin values of the transverse (to the boundary normal)
components of the emf (thus, ε2 and ε3 at the inner-i boundary), and the boundary
values of the transverse magnetic field components (thus, B2 and B3 at the inner-i
boundary). Note that there are no skin values for the transverse magnetic field and
the boundary values of the transverse emf s are set directly by a new routine BVALEMFS
called at the top of CT.

2. Arrays containing desired inflow values for the normal (to the boundary) magnetic field
components (e.g., b1iib1, b2ijb1, etc.) are no longer available. Instead, the normal
magnetic field component is now set by the solenoidal condition and therefore “floats”.

2with kind permission from its author, Kevin Kohler. Please see Acknowledgements for the full citation.
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3. Routines BVALB1, BVALB2, and BVALB3 used to set magnetic boundary values in pre-
vious versions are no longer available. Instead, the user must initialise every element
of the magnetic field arrays (b1, b2, and b3) in their problem generator including

boundary zones making sure that ∇ · ~B = 0 at t = 0 everywhere.

4. Boundary type 8, a selective inflow boundary condition, can now be set and is suitable
for sub-magnetosonic inflow conditions. At a given inflow boundary, as many bound-
ary conditions may be set as there are characteristics pointing into the grid (e.g., see
Bogovalov, 1997, A&A, 323, 634). For supermagnetosonic flow, this means all seven
variables, namely ρ, p (or e), all three components of the velocity, and the two trans-
verse components of the magnetic field (the normal component being determined by
the solenoidal condition). On the other hand, for sub-slowmagnetosonic inflow, only
four characteristics point into the grid, and three of the inflow variables must be al-
lowed to “float”. A variable floats if one sets the boundary type [e.g., niib(j,k)] to
8, and if the inflow array for that variable [e.g., diib1(j,k) for density, etc.] is set to
“huge” (a global parameter; see §C.6).

Complete details are given in §B.8. Other changes made to this release include:

1. A new parameter, iords (§B.7), now lets one specify the order of interpolation for
the scalars (e.g., ρ, e, etc.) separately from the vector components, which are still
controlled by iord. The default value for iords is iord, whose default is still 2 (van
Leer). Note that with the scalars interpolated with PPI (iords=3) and the contact
steepener activated (istp=2), contacts in most 1-D Riemann problems are as steep as
fast shocks—two or three zones.

2. Additional interpolation schemes have been partially added (i.e., available for scalars
only), most notably a velocity-corrected second-order van Leer scheme (iord=-2). See
§B.7 for details.

3. The new boundary conditions fix many problems, including a long standing one with
3-D toroidal fields in propagating jets. Previously, it was noted that such a field
introduced a strong axial field from the i=is skin, and tapering the magnetic profile
to zero before the jet radius was necessary to avoid this. 3-D toroidal fields now leave
the i=is skin perfectly cleanly, with zero (to machine round off errors) B1 left on the
skin itself.

4. Stone’s MOC and the Hawley-Stone variation, HSMOC , have been installed to allow
for comparisons among the various algorithms. New EDITOR aliases MOC and HSMOC

are used to engage these algorithms (§2.2.1).

5. Parameter ijkn is now ijkx (x ⇒ maximum) and a new parameter ijkn (n ⇒
minimum) has been added. Confusion between the old and new uses of ijkn is min-
imised as these are now set automatically and no longer need to be set by the user in
the script file, dzeus35.s (§2.3).
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6. Installation of the total energy equation is complete, and is now the default (itote=1).
This has mitigated numerous changes throughout the code, including removal of con-
sistent advection from the energy equations, and the introduction of a new global
variable, et, that always contains the total energy density, regardless of which energy
equation is being solved. The old energy variable, e, and its related inflow variables,
e.g., eiib1, etc., have been changed to e1 and e1iib1, etc., and always contains the
internal energy density, regardless of which energy equation is being solved. See §B.7
for further details.

7. Tom Jones’ “Reimann solver” has been included, and is compiled when the EDITOR

macro RIEMANN is defined. Its purpose is strictly to provide the “analytical” solution
for the suite of 1-D Riemann test problems, and is controlled via namelist pl1con

(§3.2).

8. EDITOR macro VECPOT has been added to allow the vector potential to be used as
the primary magnetic variables instead of the magnetic field. In principle, this should
cause differences only at the machine round-off level, and other than setting the macro,
requires no changes by the user. For example, the user would still initialise the magnetic
field components everywhere. With VECPOT set, the code would then use the “anticurl”
routines, ACURL*, *=1,2,3, to compute the initial vector potential from the initial
magnetic field.

9. Toru Okuda’s flux-limited diffusion algorithm for radiation HD has been included,
though in an incomplete and untested form. It is activated by setting the EDITOR

macro RADIATION.

10. The code has been tuned for OpenMP, and its directives can be inserted automatically
by setting iutask=2 in EDITOR’s input deck inedit (part of dzeus35.s; see §2.3).

D. Clarke, September, 2007

1.6 VERSION 3.6

The most significant change to the code is a new “finely interleaved transport” (FIT) algo-
rithm which retains most of the algorithmic details of CMoC (planar split, fully Eulerian
transport, etc.), but rearranged into finer modules, with more frequent updates to v and B.
As such, the code is now largely impervious to a “striping instability” (affecting 2-D shear
Alfvén waves and 2-D advection) to which the code has been vulnerable since zeus04.

The code is now over 130,000 lines of FORTRAN with nearly 500 subroutines and
functions.

1. GRFX03 has been overhauled. All 1-D plotting routines have been merged to a new
GRFX1D which now does single and multiple plots using lines or one of a variety of
symbols. For 2-D plots, the user may now select as many as two scalars and three
vector fields (along with “corks”; see change 3 below) for each plot in this “buffet-
style” of plotting. (See §B.20.)
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Also for 2-D plots, one may now rebin the 2-D data-slices to a lower resolution grid
before plotting. e.g., for high-resolution runs, one doesn’t always need contour plots of
the full-resolution data which, for PSPLOT , can require significant cpu, memory, and
disc resources to generate.

2. Nick MacDonald’s “aging” module has been added to track the synchrotron age of a
zone, thereby allowing spectral indices to be calculated. This should still be considered
experimental.

3. Nick MacDonald’s and Mark Richardson’s Lagrangian particle (“corks”) routine has
been added. These tracer particles can be initialised by the problem generator and/or
injected during the simulation, and carry with them a whole host of measurables. To
engage, EDITOR macro CORKS must be set. See namelist crkcon.

4. From the outset (zeus30), differences among compilers were inaccurately attributed to
the operating system (OS) rather than the compiler. As such, a longish list of EDITOR

macros for OSs (e.g., SUNOS, CTSS, etc.) had accumulated which couldn’t cleanly accom-
modate different compilers running under the same OS. In this release (and in version
2.2 of EDITOR), all EDITOR OS macros have been replaced with compiler macros.
The user now specifies in the dzeus36.s file (rather than the zeus36.mac file where the
OS used to be set) a supported compiler with the compiler option (coption) “debug”,
“optimise” or “openmp”, and EDITOR creates the appropriate makezeus file. Sup-
ported compilers include: cf77 (Cray), f90 (Sun), g95 (g95.org), gfortran (Gnu),
ifort (Intel), pgf77, pgfortran (Portland Group), and xlf (IBM).

The compilers g95 and gfortran can give numerous inscrutable warning messages
from the loader which seem to be entirely innocuous:

ld: warning for symbol _g01wdt_ tentative definition of size 16 from ...

There is some discussion of these on various web forums, none of which reveals the
origin or cause. Further, the g95 compiler does not seem to be ANSI-standard, as
some test problems (e.g., Fig. 3b from Ryu & Jones, 1995) exhibits noise in v2 at the
10−17 level which is entirely absent with all other compilers.

In the 1-D tests with optimisation turned on, ifort is 75% faster than gfortran which
is 67% faster than g95.

5. Slip periodic boundary conditions have been added (see *gp boundary).

6. The old voxel dumps have been purged out of complete disuse.

7. Stephen Campbell (B.Sc. 2014) has introduced a new animation-making option in
the pixel dump routine (morppix=1). All images are stored as real*4 (instead of
character*1) and assembled at the end of the run into mpeg files. The original
real*4 frames are gathered in a tarball to allow the user to remake the animation
with different palette, bracketing, etc., without having to rerun the simulation. See
PIXDMP for further details.

A similar feature is available for the radio dumps (RADDMP).
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8. Logan Francis (B.Sc. 2014) has added an FFT/FST gravity solver (grvalg=3) which
can handle all types of boundary conditions (periodic by using a Fourier transform,
Dirichlet conditions by using a sine transform). As with the full multi-grid algorithm
(grvalg=2), active grid dimensions must be powers of 2. See GRAVFFT for further
details.

9. The long-standing problem of 2-D shear Alfven wave “wings” has been resolved, result-
ing in a nearly complete overhaul of the transport step. ZEUS can now perform 2-D
shear Alfvén wave propagation, 2-D advection, and vortex ring transport totally free
from what I call the “striping instability” using “Finely Interleaved Transport” (FIT;
trnvrsn=1). The traditional transport algorithm (“legacy transport”) is still available
by setting trnvrsn.le.0.

FIT represents the most significant overhaul of the transport step since the introduction
of CMoC in 1993. There are no new algorithms per sé, rather the granularity of existing
algorithms has been reduced and the order in which quantities are updated altered.
Thus, and for example, for various values of ix1x2x3, v2 is updated from 3-transport
of s2 before 2-transport of s1 (using v2). Likewise, b2 and b3 are updated from emf1

before emf2 is computed from b1 and b3, etc. With these changes, dzeus36 is not
vulnerable to the “striping instability” (which it has been since zeus04), and 2-D
transport is now CFL-limited for the first time.

10. The one-fluid ambipolar diffusion algorithm described by Duffin & Pudritz (2008, MN-
RAS, 391, 1659) has been implemented by Chris MacMackin (B.Sc 2015). It should
still be considered experimental and be used only in the limit of low ionisation. For a
highly ionised fluid, one needs a two-fluid approach. Chris has also implemented the
super-stepping (Runga-Kutta) method of Meyer, Balsara, & Aslam (2012, MNRAS,
422, 2102) to address the exceedingly short time step ambipolar diffusion otherwise
requires. This allows an AD problem to be evolved on the CFL-limited MHD time
scale.

D. Clarke, December, 2015



2 Running ZEUS-3D

2.1 Overview

At the time of this writing, ZEUS-3D may be compiled with any one of cf77 (Cray), ifort
(Intel), f90 (Sun), g95 (g95.org), gfortran (Gnu), pgf77, pgfortran (Portland Group),
and xlf (IBM). Other compilers can be used with only minor changes required to the code,
and the user is referred to the installation instructions in the document install_dz36.txt3

for details.
This manual is written assuming the use of Gnu’s gfortran4, the most recent and

still-supported version of this most-commonly used publicly available FORTRAN compiler,
though differences with other compilers are mostly minor and transparent. For those familiar
with versions 3.5 of ZEUS-3D and earlier, the OS-specific EDITOR macros AIX, CONVEXOS,
LINUX, SUNOS, and UNICOS have been replaced with the compiler-specific macros listed above.
This long-overdue change was made to correct an early and incorrect notion that FORTRAN

differences were necessary to accommodate differences in the operating system rather than
the compiler. The move to compiler-specific macros affects primarily the installation in-
structions and introduces minor changes to the zeus36.mac and dzeus36.s files; all other
aspects of using ZEUS-3D remain unchanged.

With the code installed, the user controls what simulation is performed by editing the
two files zeus36.mac and dzeus36.s. These are relatively short and painless to edit, and
their complete descriptions are included in the next two subsections. Once edited to the
user’s satisfaction, the ZEUS-3D executable is created by running the dzeus36.s script file
which is done by typing:

csh -v dzeus36.s

Running this file performs sequentially the following tasks:

1. sets the FORTRAN compiler;

2. retrieves all necessary files from user-specified home directories;

3. creates a directory called dzeus3.6 within the user’s present working directory (pwd)
to store all the source and object files created during compilation;

4. creates a change deck for dzeus36 containing preprocessor macros and aliases (zeus36.
mac, next subsection), and changes to the source code (if any) required for the appli-
cation (the most common and often the only changes necessary to the source code are
to the parameter statements which set the size of the arrays needed for the run.);

5. fires up the EDITOR preprocessor;

6. creates the input deck for the dzeus36 run; and finally

3Available from the ICA web site www.ica.smu.ca/zeus3d
4gcc.gnu.org/fortran

12
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7. makes the executable xdzeus36 (using the UNIX facility MAKE).

A description of the file naming convention is required at this point. ZEUS-3D refers
in a general way to the package and its capabilities while dzeus36 is more specific, and is a
mnemonic for “double precision ZEUS-3D, version 3.6”. zeus36 is the common denominator
for the names of the principle files required to create the executable. Thus, the source code
itself is dzeus36, the script file is dzeus36.s, the macro file is zeus36.mac (there is no
leading “d” since no changes were needed in this file during migration to double precision),
and the executable is xdzeus36. However, to confuse matters, the minor files don’t follow
this convention. The input deck is inzeus and the change deck is chgzeus—no “36” suffix—
and the libraries don’t even have ZEUS as part of their names. And so it goes. The bottom
line, though, is that if the only changes to be made to the source code are the values of the
parameters which set the array dimensions, then there are only two files to be concerned
with: dzeus36.s and zeus36.mac. The rest is automatic.

2.2 The macro file zeus36.mac

Below is an example of a zeus36.mac file. A similar file can be downloaded from the ICA
web site. It is suggested that this file be copied and used as a general template since all the
macros used by dzeus36 are listed in this example.

**--+----1----+----2----+----3----+--+----3----+----2----+----1----+----
** **
****************** CONDITIONAL COMPILATION SWITCHES ******************
** **
** 1) symmetry axes: ISYM, JSYM, KSYM
**
*define JSYM, KSYM
**
** 2) geometry: XYZ, or ZRP, or RTP
**
*define XYZ
**
** 3) physics: AGING, AMBIDIFF, GRAV, ISO, MHD, POLYTROPE, PSGRAV,
** RADIATION, TWOFLUID
**
*define MHD
**
** 4) data output modes: CORKS, DISP, HDF, PIX, PLT1D, PLT2D, RADIO,
** TIMESL
**
*define PLT1D, TIMESL
**
** 5) other: DEBUG, FASTCMOC, HSMOC, MOC, NOMOC, RIEMANN, VECTORISE
**
*define FASTCMOC, RIEMANN
** **
************************* MODULE NAME ALIASES ************************
** **
** The modules "BNDYUPDATE", "SPECIAL", "SPECIALSRC", "SPECIALTRN",
** "FINISH", "PROBLEM", PROBLEMRESTART", "USERSOURCE", and "USERDUMP"
** are slots available for user-developed subroutines.
**
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*alias BNDYUPDATE empty
*alias EXTENDGRID empty
*alias GRAVITY empty
*alias SPECIAL empty
*alias SOURCE srcstep
*alias SPECIALSRC empty
*alias TRANSPORT trnsprt
*alias SPECIALTRN empty
*alias NEWTIMESTEP newdt
*alias NEWGRID empty
*alias FINISH empty
**
*alias PROBLEM shkset
*alias ATMOSPHERE empty
*alias PROBLEMRESTART empty
*alias USERSOURCE empty
*alias ARTIFICIALVISC viscous
*alias DIFFUSION empty
*alias USERDUMP empty
** **
************************ ERROR CRITERIA ALIASES **********************
** **
*alias GRAVITYERROR 1.0e-6
*alias GRIDERROR 1.0e-6
*alias PDVCOOLERROR 1.0e-6
*alias NEWVGERROR 1.0e-10
*alias RADIATIONERROR 1.0e-6
** **
*********************** ITERATION LIMITS ALIASES *********************
** **
*alias GRAVITYITER 600
*alias GRIDITER 20
*alias PDVCOOLITER 20
*alias NEWVGITER 20
*alias RADIATIONITER 20

These are all preprocessor commands (the preprocessor used here is called EDITOR—
also developed by the author—and for those familiar with the old Cray OS CTSS, it has the
“look and feel” of HISTORIAN), and become part of the “change deck” chgzeus created by
the script file dzeus36.s, described in the next subsection. A change deck is a file which is
merged with the source code during the preprocessing step of dzeus36.s. Both the source
code and the change deck can contain preprocessor commands which are interpreted, carried
out, and then expunged from the code by EDITOR before the code is compiled by the
FORTRAN compiler. All preprocessor commands have an asterisk (*) in column 1; two
asterisks (**) in columns 1 and 2 indicate a comment. When the preprocessor has finished,
the result is a pure FORTRAN source code tailored specifically for the problem to be solved.
Therefore, in order to customise the code, it is necessary to set the EDITOR “definitions”
and “aliases” (generically referred to as “macros”) found in zeus36.mac.

The combined effect of the macros is two-fold. First, they determine what parts of the
code are activated and what parts are ignored. Thus, it is possible to eliminate the compu-
tations and the memory requirements necessary to evolve the magnetic fields, for example,
by not defining the MHD macro [this can be done by “commenting out” (double asterisk) the
*define MHD statement in the example above]. The preprocessor will then remove all coding
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peculiar to the magnetic field including the declarations of the magnetic field arrays during
the preprocessing step. The compiler never sees the magnetic stuff, and the executable is
streamlined for the hydrodynamical problem. Of course, the original source code is not al-
tered by preprocessing it. Rather, the preprocessor creates a precompiled version of the code
and stores each subroutine into its own file (to facilitateMAKE and debuggers such as DBX)
in the directory dzeus3.6 which is created by the script file dzeus36.s. Second, the alias
macros can be used to substitute any character string in the code during the preprocessing
step.

This manual discusses only those aspects of the EDITOR preprocessor necessary for the
user to make changes to the code, compile it, and then execute it. A full account of EDITOR

is given in the manual, edit22_man.ps, found in the manuals directory of dzeus36.tar from
www.ica.smu.ca/zeus3d.

2.2.1 The EDITOR definitions

A description of the definition macros (called “Conditional Compilation Switches” at the
top of the given example of zeus36.mac above) follows:

1. The code can be streamlined (optimised) for 1-D and 2-D problems by setting the
appropriate symmetry macros. If symmetry along any of the i (x1), j (x2), or k (x3)
axes is desired, then set the ISYM, JSYM, or KSYM macros. If the macros are not set and
a 1-D or 2-D calculation is initialised by the input deck, ZEUS-3D will still carry out
the sub 3-D computation correctly, but will do so less efficiently.

2. The geometry is set by setting one of the XYZ (Cartesian), ZRP (cylindrical), or RTP
(spherical polar) macros. Obviously, these macros are mutually exclusive.

3. AGING activates the subroutines and define an additional scalar array necessary to track
the “age” of high-energy electrons required for calculations of synchrotron emissivity.
AMBIDIFF turns on the single-fluid approximation for ambipolar diffusion described by
Duffin & Pudritz (2008, MNRAS, 391, 1659). Defining GRAV and setting the EDITOR

alias GRAVITY to gravity will turn on the Poisson solver and one of three algorithms
(SOR, FMG, FFT) will be used to solve the self-gravitational potential. The ISO

macro should be set if an isothermal equation of state is desired. With ISO defined,
an isothermal equation of state is presumed and the energy variables are not declared
saving both computational time and memory. By setting the MHD macro, the algorithm
for evolving the magnetic fields is activated. With MHD on, additional field arrays are
declared and the code peculiar to updating the magnetic field is compiled. POLYTROPE
forces a strict polytropic equation of state. PSGRAV (no longer mutually exclusive with
GRAV) activates the pseudo-gravity feature used to hold onto artificial atmospheres.
The macro RADIATION enables the (incomplete) flux-limited diffusion algorithm for
RMHD. Defining TWOFLUID will activate the arrays and coding necessary to solve the
energy equation for the second thermal fluid. Note that partial densities and momenta
are not tracked for the second fluid; only partial internal energies (and thus partial
pressures). The second fluid may be subjected to diffusion, if desired.

http://www.ica.smu.ca/zeus3d
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4. The graphics enabled during a run are set by the graphics macros. Set CORKS to activate
Lagrangian tracer particles and their output dumps, set DISP for display dumps, set
HDF for HDF dump files, set PIX to enable 2-D pixel dumps, set PLT1D for 1-D line
plots, set PLT2D for 2-D contour and/or vector plots, set RADIO for RADIO dump files,
and set TIMESL for time slice dumps. As many as these may be set simultaneously as
necessary. See §3 for a discussion of the various ZEUS-3D dump files.

5. The DEBUG macro turns on portions of the code designed for development and debug-
ging, and will send all sorts of messages to the terminal and may even cause the code
to crash. It should be invoked only by developers of the code. The faster CMoC algo-
rithm may be invoked by setting the macro FASTCMOC. This macro should be set only
if the accuracy of the smallest of the flow and Alfvén speeds is unimportant when it
falls below 10−8 (10−4) times the largest of the speeds for 64-bit (32-bit) words. Other-
wise, the general CMoC algorithm (activated by not setting the FASTCMOC macro) can
handle arbitrarily small Alfvén and/or flow speeds accurately, but at the cost of 25%
more computational time. The macros HSMOC, MOC, and NOMOC invoke other MHD algo-
rithms which are available for comparison, but are not recommended for general use.
The macro RIEMANN is needed if 1-D analytical solutions are to be overlaid with the
results of 1-D shock-tube tests, and VECTORISE invokes special “vectorised” versions of
the CMoC routines generally used only in debugging.

2.2.2 The EDITOR aliases

The alias macros allow phrases in the code to be substituted for other phrases during the
precompiling step. Thus, “Module Name Aliases” (in the middle of the given example of
zeus36.mac above) give the user control over what subroutines are called during execution.
As an example, in the main program of the source code, there is a statement: call SOURCE

which becomes call srcstep after preprocessing using the given example of zeus36.mac.
Note that there is no subroutine called SOURCE but there is a subroutine in the source code
called srcstep. Thus, the user is free, in principle, to create their own subroutine to manage
the source terms instead of srcstep, and this new routine can be linked into the code by
altering the alias setting for SOURCE from srcstep to the name of the new routine. Note that
by setting any of the Module Name Aliases to empty (a subroutine in dzeus36 which does
nothing but return to the calling routine), a Module Name Alias can be effectively “turned
off”.

Aliases can also be used to set parameters in various parameter statements scattered
throughout the source code. These are the “Error Criteria Aliases” and “Iteration Limits
Aliases” at the bottom of the given example of zeus36.mac above. Thus the EDITOR

statement:

alias GRAVITYERROR 1.0e-6

sets the maximum convergence error in the self-gravity module to 10−6. Somewhere in the
code is the statement parameter ( errmax = GRAVITYERROR ) and the preprocessor makes
the substitution. However, the majority of the parameters (array dimensions, for example)
are set directly in dzeus36.s which is described in the next subsection.



Running ZEUS-3D 17

To understand better the descriptions of the “Module Name Aliases” which follow, the
reader should examine the flow charts in App. A (ZEUS-3D Skeleton) which indicate the
order in which the Module Name Aliases are called. Some subroutines are charged with
reading the input data from the input deck inzeus. A description of all the input namelist
parameters is given in App. B.

1. BNDYUPDATE: This module is called at the beginning of each loop and allows inflow
boundary conditions to be evolved in time should this be necessary for the simulation.
Examples of evolving inflow boundary conditions include helically perturbing the inflow
at a jet orifice to break the symmetry (wiggle), generating magnetic field at the
boundary (bgen), or empty if no inflow boundary update is desired. The user can,
of course, supply a subroutine for this alias. See §5.1 for discussion on how to add a
subroutine to the code.

2. EXTENDGRID: This module will allow the grid to be extended as a disturbance (shock)
propagates into initially quiescent zones. Currently, the only options are extend and
empty. The subroutine extend will prevent quiescent zones from being updated un-
til the disturbance comes within five zones, potentially saving significant amounts of
computational time. Care should be exercised in its use, however. If the subroutine is
unsuccessful in determining when the disturbance gets close to an edge of the current
computational domain, the results can be disastrous.

3. GRAVITY: This module updates the self-gravitational potential. Currently, the only
choices are empty and gravity. If gravity is selected, the user will have to choose a
Poisson solver (grvalg in namelist grvcon), as well as a method to determine boundary
values (giib, etc. in namelist iib, etc.).

4. SPECIAL: This is a simplistic solution to the potentially complex problem of the user
desiring to add a whole new type of physics to the code. It assumes that changes do not
need to be intertwined into existing modules, which in practise, often will be necessary.
The three accompanying “plugs” SPECIALSRC (for “special” source terms to be added
after the artificial viscous step), USERSOURCE (for source terms to be added before the
artificial viscous step), and SPECIALTRN (for “special” transport terms) allow for some
flexibility in installing new physics within the current structure, but this still may not
be enough for any type of sophisticated addition. Currently, all four macros are set to
empty.

5. SOURCE: This is the module in which source terms are incorporated. For full dynamics,
this should be set to srcstep (or the user’s module if need be) while for problems of
pure advection, this should be set to empty.

6. SPECIALSRC: See SPECIAL.

7. TRANSPORT: This is the module for the transport of variables across zone boundaries
and should be set to trnsprt or to the user’s equivalent module. It is unlikely that
empty should ever be used here.
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8. SPECIALTRN: See SPECIAL.

9. NEWTIMESTEP: This module determines how the next time step is computed. Since
ZEUS-3D is an explicit code, all algorithms should incorporate the CFL limit. Current
choices are newdt for full (M)HD problems, and advectdt for pure advection problems.

10. NEWGRID: This module adjusts the grid should grid velocities be set to follow the flow,
at least partially. Current choices are newgrid and empty. In practise, the user will
have to provide their own prescription for evaluating the grid velocities, as most of the
available methods are untested. This will require replacing or adding to the subroutine
newvg. See §5 for discussion on how to add or modify a subroutine in the code.

11. FINISH: This is a “plug” available to the user to have any user-supplied subroutine
called once at the end of execution. This could, for example, be a routine to generate
diagnostics and/or graphics for data the user may have been accumulating in USERDUMP.

12. PROBLEM: This macro is used to link the user-supplied “problem generating” subroutine
that initialises all flow variables and boundary values. It is called by the subroutine
setup, which is called by mstart. Alternately, a number of problem generators for
a variety of applications already exist in the source code. In the present example,
PROBLEM is set to shkset, an existing problem generator which initialises the variables
for a 1-D Riemann problem (“shock tube”); in this case, the so-called Brio and Wu
problem.

13. PROBLEMRESTART: This macro allows the specifications of the problem to be altered
should the job be restarted from a restart dump. Set the macro to empty if no alteration
of the problem is desired (as, for example, to simply extend the evolution time).

14. USERSOURCE: See SPECIAL.

15. ARTIFICIALVISC: This macro specifies which artificial viscosity algorithm should be
used. Current options are viscous, which uses the von-Neumann Richtmyer artificial
viscosity algorithm, and gasdiff which invokes ordinary gas diffusion.

16. DIFFUSION: This macro specifies the subroutine to use to compute the diffusion coef-
ficient for the two-fluid model. Currently, the only options are empty and diffco.

17. USERDUMP: This macro allows the user to link their own I/O routine if additional I/O
capacity is needed other than what is currently available in dataio (1-D and 2-D plot
files, pixel dumps, HDF files, time slice dumps, cork dumps, display files, RADIO

dumps, and full-precision restart dumps, all created at user-set time intervals; §3).

It is unlikely that the “Error Criteria Aliases” or the “Iteration Limits Aliases” should
ever have to be changed.

Finally, in addition to the aliases listed above is module name alias ATMOSPHERE called
by problem generator jetinit which allows a user to specify their own routine to initialise
an atmosphere through which a jet is launched. Existing atmosphere routines include cloud
(to set up a jet-cloud collision) and king, which sets up a King atmosphere.
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2.3 The script file dzeus36.s

Below is a reproduction of the script file dzeus36.s found in the zeus directory of the file
dzeus36.tar downloaded from www.ica.smu.ca/zeus3d. It can be run by typing: csh -v

dzeus36.s.

#---+----1----+----2----+----3----+--+----3----+----2----+----1----+---#
#============== SOURCE FILE TO CREATE THE ZEUS EXECUTABLE =============#
# #
# B R I O W U . X 1 #
# #
#---------------------------------------------> Select FORTRAN compiler.
# Supported compilers include:
# cf77 (Cray), f90 (Sun), g95 (g95.org), gfortran (Gnu), ifort
# (Intel), pgf77, pgfortran (Portland Group), xlf (IBM)
#
setenv FCOMP gfortran
#=======================================> Get files from home directory.
if(! -e ./xedit22) cp ../editor/xedit22 .
if(! -e ./dnamelist.a) cp ../nmlst/dnamelist.a .
if(! -e ./dsci01.a) cp ../sci/dsci01.a .
if(! -e ./grfx03.a) cp ../grfx/grfx03.a .
if(! -e ./psplot.a) cp ../grfx/psplot.a .
if(! -e ./noncar.a) cp ../grfx/noncar.a .
#=======================> If necessary, create the directory "dzeus3.6".
if(! -e ./dzeus3.6) mkdir ./dzeus3.6
#----------------------------------------------> Create the change deck.
rm -f ./chgzeus
cat << EOF > ./chgzeus
*read zeus36.mac
*define $FCOMP
*d par.44,45

parameter ( in = 555, jn = 1, kn = 1 )
parameter ( nxpx = 1, nypx = 1, nxrd = 1, nyrd = 1 )

**read chguser
EOF
#=======================> Create the input deck for EDITOR, and execute.
rm -f ./inedit
cat << EOF > ./inedit
\$editpar inname=’dzeus36’, chgdk=’chgzeus’, idump=1, job=3

, ipre=1, inmlst=1, iupdate=1, iutask=0, safety=0.20
, branch=’dzeus3.6’, xeq=’xdzeus36’, makename=’makezeus’
, compiler=’$FCOMP’

c , coptions=’debug’
, coptions=’optimise’

c , speccopt=’-O0’, specdk=’corona’,’phistv’,’nmlsts’,’plot1d’
, libs=’checkin.o dnamelist.a dsci01.a grfx03.a psplot.a

noncar.a’ \$
c , libs=’checkin.o dnamelist.a dsci01.a grfx03.a psplot.a
c noncar.a -L/opt/local/hdf4/$FCOMP/lib -ldf -ljpeg -lz -lsz’ \$
c , libs=’checkin.o dnamelist.a dsci01.a grfx03.a psplot.a
c -L/opt/local/hdf4/$FCOMP/lib -ldf -ljpeg -lz -lsz
c -L/opt/local/ncarg/$FCOMP/lib -lncarg -lncarg_gks -lncarg_c
c -lX11 -lcairo -lfreetype’ \$
EOF
chmod 755 ./xedit22
./xedit22
#--------------------------------------> Create the input deck for ZEUS.

http://www.ica.smu.ca/zeus3d
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rm -f ./inzeus
cat << EOF > ./inzeus
\$iocon iotty=6, iolog=2 \$
\$rescon dtdmp=0.0, idtag=’xd’ \$
\$ggen1 nbl=550, x1min=0.0,x1max=550., igrid=1, x1rat=1.0, lgrid=.t.\$
\$ggen2 \$
\$ggen3 \$
\$pcon nlim= 999999, tlim=-80.0, ttotal=900.0, tsave=10.0 \$
\$hycon qcon=1.0, qlin=0.2, courno=0.75, iord=2, iords=3, istp=2

, itote=1, iscyqq=0 \$
\$iib niib(1,1)=9 \$
\$oib noib(1,1)=9 \$
\$ijb \$
\$ojb \$
\$ikb \$
\$okb \$
\$grvcon \$
\$ambcon \$
\$eqos gamma=2.0 \$
\$gcon \$
\$extcon \$
\$pl1con dtpl1=80.0, pl1dir=1, corl=1, aspect=1.0, npl1h=2, npl1v=2

, norppl1=2, pl1soln=12*1, xdiscpl1=200.0
, pl1var= ’d ’, ’se’, ’p ’, ’et’, ’v1’, ’v2’, ’v3’, ’ma’

, ’b1’, ’b2’, ’b3’, ’bd’ \$
\$pl2con \$
\$pixcon \$
\$usrcon \$
\$hdfcon \$
\$tslcon \$
\$crkcon \$
\$discon \$
\$radcon \$
\$pgen idirect=1, n0=200, d0=1.000, e10=1.0, v10=0.0, b10=0.75

, b20=0.6, b30=0.8 \$
\$pgen idirect=1, n0=350, d0=0.125, e10=0.1, v10=0.0, b10=0.75

, b20=-0.6, b30=-0.8 \$
EOF
#============================================> MAKE the ZEUS executable.
make -f ./makezeus
#===================================================> Tidy up directory.
rm -f ./editlp ./inedit ./output ./xedit22 ./*.a

Note that a # in column 1 indicates a comment in a script file. In this example, two
flavours of comment lines are used. Comments led with a double dashed line (=======>)
indicate portions of the script file which rarely, if ever, need to be changed by the user.
Comments with a single dashed line (------->) indicate portions of the script file that will
probably need to be changed with every simulation. Below are descriptions of the eight
segments found in the script file dzeus36.s.

2.3.1 Select FORTRAN compiler

The first segment sets the environment variable FCOMP to the desired FORTRAN compiler
(e.g., gfortran). This may be one of the compilers already supported within dzeus36

(cf77, f90, g95, gfortran, ifort, pgf77, pgfortran, or xlf), or to a compiler the user has
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introduced into dzeus36, as per the installation instructions install_dz36.txt.

2.3.2 Get files from home directory

The second segment retrieves the files necessary to create the ZEUS-3D executable and are
retrieved only if they do not already exist on disc [if (! -e filename)]. This example
assumes that the script file is launched from the directory zeus created when dzeus36.tar

from www.ica.smu.ca/zeus3d is unpacked. Files already in this directory and thus not
retrieved include:

dzeus36 the nearly 130,000 lines of source code divided up into more than 450
subroutines

zeus36.mac file containing all the EDITOR macros (§2.2)
checkin.o the object file of the C-routine checkin.c (the only C-routine used by

ZEUS-3D) which allows interrupt messages to be read from the terminal
during interactive runs (§4)

while those retrieved from other directories include:

xedit22 the preprocessor executable
dnamelist.a the double precision library of subroutines which emulate the namelist

feature (§2.3.6)
dsci01.a the double precision library of four specialised max-min subroutines
grfx03.a library of subroutines calling routines in external graphics libraries

(NCAR and PSPLOT)
psplot.a library of routines for PSPLOT graphics
noncar.a library of dummy NCAR routines used when NCAR graphics are not

installed at the site

2.3.3 If necessary, create the directory dzeus3.6

The third segment creates the directory dzeus3.6 on condition that it does not already
exist. The precompiled source files (one subroutine per file) and the compiled object files
are put here.

2.3.4 Create the change deck

The fourth segment creates the change deck chgzeus which is merged with the source code
dzeus36 during the preprocessing step. The first line in chgzeus reads the EDITOR macros
in zeus36.mac using the EDITOR command *read. This command replaces the statement
with the contents of the named file. Thus, the macros in zeus36.mac become part of the
change deck chgzeus, and get merged with the source code.

The second line uses the environment variable set in the first segment to set the appro-
priate EDITOR FORTRAN macro.

The third line is the EDITOR *delete (or *d for short) command used to replace lines
44 and 45 in the common deck par in the main source code dzeus36 with the two following
parameter statements which set the parameters to the desired values for the simulation.

http://www.ica.smu.ca/zeus3d
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This is where the user should indicate the size of the arrays required for the simulation to
be performed. The parameters set in the given example of the script file dzeus36.s are all
described in §C.6.

Finally, should the user have their own changes to the code, these can be most con-
veniently put into a file called chguser, for example, and the statement **read chguser

would then be “de-commented” by deleting one of the asterisks. This will ensure that the
user’s changes will be incorporated just like those in zeus36.mac and the two parameter
statements discussed above. Changes should be specified using the language of EDITOR

(code prepared for the old CTSS precompiler HISTORIAN can be processed by EDITOR),
and would include additional subroutines such as the problem generator which need to be
compiled with the rest of the source code. Full description of how to do this is found in §5.

2.3.5 Create the input deck for EDITOR, and execute

The fifth segment creates the input deck for the preprocessor EDITOR and then fires it up.
Changes to this segment should be needed rarely. If it becomes necessary to change the
name of the main source file from dzeus36, or to change the name of the change deck from
chgzeus, or to change the name of the directory created for the precompiled and compiled
subroutine files from dzeus3.6, or to change the name of the makefile from makezeus, or to
change the name of the ZEUS-3D executable from xdzeus36, or to specify compiler options
other than the default “debug” or “optimise” settings, these changes should be made in the
EDITOR input deck inedit.

On the latter, by setting coptions=’optimise’, EDITOR will insert the appropriate
compiler options for the selected compiler (FCOMP) so long as the selected compiler is one of
the eight compilers supported by EDITOR5. Similarly if coptions=’debug’, the appropriate
debugging compiler options are set including array size and over-flow checking. For any
other compiler, the user will have to set coptions explicitly. Similarly, loader options can
be specified in loptions.

On occasion and depending on the compiler, a few subroutines can cause a run to generate
significantly different results when compiled with full optimisation than with little or no
optimisation [often traceable to exponentiation (**)]. For example, Sun’s old f77 compiler
generated errant object code when compiling the routines corona, phistv, and couette with
full optimisation. Other routines, such as plot1d, plot2d, and nmlsts compiled correctly,
but took forever to optimise. For such occasions, EDITOR allows one to specify troublesome
routines in specdk (a 1-D character*8 array) and the special compiler options to be used for
these routines in speccopt. Thus, “de-commenting” the line:

c , speccopt=’-O0’, specdk=’corona’,’phistv’,’nmlsts’,’plot1d’

in the sample file dzeus36.s above would apply no optimistation (-O0) to the four routines
listed, and full optimisation (-O2) to the rest. For additional details, the reader is referred
to the EDITOR user manual: edit22_man.ps.

5At the time of the writing, this list is the same as those supported by dzeus36, namely cf77, f90, g95,

gfortran, ifort, pgf77, pgfortran, and xlf.
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For parallel processing at the do-loop level, set iutask (second line of the namelist
editpar) to 1 for Cray microtasking, or 2 for OpenMP. This will cause EDITOR to insert
the appropriate scoping commands at the beginning of the major do-loops in the code. One
then has to set the appropriate compiler options for your compiler to compile the code for
multiple processors. If the user is using OpenMP and one of the eight supported compilers,
one can set coptions=’openmp’ to let EDITOR set the appropriate compiler options.

Libraries are specified by setting libs, of which three examples are given in the sample
file dzeus36.s above. The first and uncommented setting of libs requires only libraries in-
cluded in dzeus36.tar (from www.ica.smu.ca/zeus3d); no systems or third-party libraries
such as NCAR (for graphics, e.g., §3.2, §3.3) or HDF (§3.5) are required. By virtue of the
PSPLOT library, publication-quality and full-colour graphics are possible without NCAR

(originally, the only graphics capability ZEUS posessed). The second libs command (com-
mented out) is the variation used at the ICA for HDF libraries, while the third (also com-
mented out) is when both HDF and NCAR are linked. Additional libraries may be linked
by appending them to whatever libs list is used. Note that lines “commented out” in a
namelist are echoed on the CRT as the input deck is read, which is a feature of the EDITOR

namelist. (See §2.3.6 and App. B for a discussion of the EDITOR namelist feature.)
With this input deck, the preprocessor will merge the change deck chgzeus with dzeus36,

carry out the precompiler commands according to the aliases and definitions in the macro file
zeus36.mac, split up the precompiled source code (now containing nothing but FORTRAN

syntax) into separate files for each subroutine, search the directory dzeus3.6 and write to
disc only those files which do not already exist or have been changed, and finally create the
makefile makezeus, described in §2.3.7.

2.3.6 Create the input deck for ZEUS

The sixth segment is where the input deck for the ZEUS-3D executable is created (inzeus)
and so the user should set all input parameters here (described fully in App. B). In this
example, inzeus is set up for the 1-D MHD Brio and Wu shock tube problem. ZEUS-3D

uses namelists to specify input parameters but does not use the standard namelist utility.
Historically, the first versions of namelist available under UNICOS were horrid (character
variables could not be set, vectors could only be set one element at a time, error messages were
unreadable), and so a more useful namelist utility was incorporated into the preprocessor
EDITOR. Thus, as one of its duties, EDITOR can be instructed (inmlst=1) to replace all
references to namelists with calls to subroutines found in the library dnamelist.a which
is linked to the executable during the MAKE process. This step is entirely transparent to
the user. Namelists can be used as always, with the usual (more or less) syntax, bearing in
mind that once defined, a namelist must be read before the next namelist is defined. Since
this time, namelist has become a standard feature of Fortran90 and has been significantly
improved. Should the user prefer to use the namelist utility of the local OS, then the input
parameter inmlst in the EDITOR input deck inedit should be set to 0 (§2.3.5). Be warned
that doing this may make some of the namelists in the dzeus36.s (inzeus) file unreadable
and generate run-time error messages. Syntactic errors may even arise during compilation.

One major difference between the Fortran90 namelist and the EDITOR namelist is
the latter allows for rank 2 arrays to be specified in an extremely intuitive fashion. For

http://www.ica.smu.ca/zeus3d
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example, to set ((diib1(i,j),i=20,30),j=70,80) to 1.0, while setting the rest of the 100
by 100 array to 0.1, one merely needs to type:

diib1(1:100,1:100)=0.1, diib1(20:30,70:80)=1.0

where the order is important. This capacity is not supported by Fortran90, and so some of
the namelist syntax will have to be changed in the input decks inzeus and inedit should
the user wish to use the standard namelist. If using the EDITOR namelist feature, remember
not to allow any of the namelist lines to extend beyond the 72nd column. The first column
in each line can be a blank or a ‘c’ (to comment out the line) and nothing else. The second
column may contain a blank or a ‘$’ and nothing else. (Note that because dzeus36.s is a
script file, the $ must be “protected” by a \. Otherwise, the script file will try to interpret
the $ as a control character rather than treating it as a character to be written to a disc
file. The user will note that a \ does not precede the $ in the input deck inzeus once it is
written to disc by dzeus36.s.) Text specifying the input parameters may start in column
3. If a character string is too long to fit in the 72 column format, one simply types as much
as one can in the first line (i.e., up to and including the 72nd column), then resumes typing
the character string on the next line, beginning in column 3. A single quote must appear
before the first character in the first line of the character string and after the last character
in the last line of the character string only.

A detailed description of all the namelist parameters is contained in App. B.

2.3.7 Make the ZEUS executable

The seventh segment fires up the makefile makezeus created by the preprocessor EDITOR.
The makefile will compile only those FORTRAN files in the directory dzeus3.6 which have
been written since the last time they were compiled, then link all the object files together
with the specified libraries to create the executable xdzeus36.

2.3.8 Tidy up directory

The eighth and final segment deletes the temporary files no longer needed.

2.4 Executing ZEUS-3D

Once the script file has completed successfully, simply type xdzeus36 followed by a carriage
return, and ZEUS-3D will begin running. In general, one can move the two files xdzeus36
and inzeus to any other directory and the executable can be launched from that directory
simply by typing xdzeus36, followed by a carriage return (enter).

Alternatively, one can run ZEUS-3D in batch mode, and for this the user should consult
their systems administrator as batch facilities are highly system and installation dependent.



3 Output from ZEUS-3D

A variety of methods for dumping data to disc during execution are available in ZEUS-3D.
Each of these methods has their specific use, and at times all types are used simultaneously.
In this section, a brief description of each method is given, along with a list of the most vital
statistics. These include: the EDITOR definition (if any) which enables the data dump, the
logical unit to which the dumps are attached during execution, the namelist which controls
the data dump (App. B), the convention used for naming the disc file for this type of data
dump, and the format of the data in the disc file created.

3.1 Restart dumps

These are full precision dumps of all flow variables at specified time intervals suitable for
resuming a simulation. Execution can be instructed to overwrite the previous even (odd)
numbered dump with the new even (odd) numbered dump should disc space be limited.
Thus, only two restart dumps would exist at any one time. For MHD runs, the size of a
restart dump is about 10× in× jn× kn words, while for HD runs, 6.5× in× jn× kn words.

The first data written to a restart dump are the array dimensions and parameters that
indicate which EDITOR macros are defined. Values of EDITOR aliases are not stored.
These, then, are the first data read from a restart dump and are used to allow a restart
dump to be read regardless of the differences between the array dimensions and EDITOR

definition settings in the new executable (that which is reading the restart dump) and the old
executable (that which created the restart dump). Thus, it is possible to resume an MHD
run without the MHD definition set (and thus resume the calculation hydrodynamically), to
read the inner eighth of a 643 data volume into any part of a new 1283 grid, etc.

EDITOR definition: none
logical unit: iodmp

namelist: rescon

filename: zrnnnid, where zr is the common prefix to all restart dumps, nnn
is a three digit integer distinguishing the multiple dumps created
during a run, and id is a two character, user-specified problem tag.

format: binary, one word (8 bytes) per datum

3.2 1-D plot files

These are metacode (NCAR) or postscript (PSPLOT) files containing publication-quality
1-D plots for every variable selected. A separate file is created for each slice specified.

EDITOR definition: PLT1D

logical unit: iopl1

namelist: pl1con

filename: zpnnnid.mm, where zp is the common prefix to all 1-D plot files,
nnn and id are as defined for restart dumps, and mm is an exten-
sion indicating the slice number. For PSPLOT , the suffix .ps is
added to the filename.

25
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format: metacode—use idt to read NCAR-generated metafiles
postscript—use mgv/gv to read PSPLOT-generated postscript files

If, after the run is complete, the user needs 1-D plots of variables that were not selected
before execution, these can be created after the run using the stand-alone ancillary program
PLOTZ , provided the user has created a total HDF dump at or near the desired prob-
lem time. See the User Manual for ZEUS Ancillaries found in the manuals directory of
dzeus36.tar from www.ica.smu.ca/zeus3d for details.

3.3 2-D plot files

These are metacode (NCAR) or postscript (PSPLOT) files containing publication-quality
2-D plots of a user-specified combination of variables (colour contours, line contours, and/or
vectors) using the so-called buffet-style plotting introduced in this version (§B.20). A separate
file is created for each slice specified.

EDITOR definition: PLT2D

logical unit: iopl2

namelist: pl2con

filename: zqnnnid.mm, where zq is the common prefix to all 2-D plot files,
nnn and id are as defined for restart dumps, and mm is an exten-
sion indicating the slice number. For PSPLOT , the suffix .ps is
added to the filename.

format: metacode—use idt to read NCAR-generated metafiles
postscript—use mgv/gv to read PSPLOT-generated postscript files

See the note at the end of §3.2 if, after the run is complete, the user needs 2-D plots of
variables that were not selected before execution.

3.4 Pixel dumps/movie frames

These are “binned” 2-D slices through the data volume of a single variable designed for
animation. Files are written in one, two, or all three of three formats: real*4 “movie”
(new to version 3.6); Mike Norman’s char*1 “pixel dumps”; and HDF4.

Movie frames (pixfmt=1, default) are 4-byte unformatted files written with a header
that includes grid dimensions, grid, and data extrema. If this format is selected then, at
the end of the run, they are automatically converted to PPM format then assembled into an
mpeg file assuming FFmpeg (ffmpeg.org) is available on the user’s platform. The PPM files
may then be deleted, and the original real*4 movie frames are assembled into a compressed
tarball which can be used by the stand-alone ancillary program ANIM8Z to re-render the
animation if the bracketing was not chosen to the user’s satisfaction.

Pixel dumps (pixfmt=2) are unformatted files just one byte deep (one ascii character per
datum) and include no header whatever, not even array dimensions. These were designed
for use with Carol Song’s IMAGETOOL, long since abandoned by the NCSA. To render these
into an animation, one has to convert each to a PPM file (e.g., Dave Lane’s RAW2PPM) and
then assemble the PPM files into an mpeg using FFmpeg.
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In either movie or pixel format, polar plots are rebinned to a Cartesian plane, then
dumped as a regular movie frame or pixel plot. Both formats are designed to create anima-
tions, though with the passage of IMAGETOOL, the movie frames are more straight-forward
to use. Multiple slices per variable may be requested so that the number of animations per
run can be substantial (e.g., four slices of six variable means 24 animations).

Finally, HDF4 files are written for pixfmt=3.

EDITOR definition: PIX

logical unit: iopix

namelist: pixcon

filename zi**nnnid.mm{.f}, where zi is the common prefix to all image
frames, ** is a two-character representation of the variable (see
Table 3.1 in §3.12), nnn and id are as defined for restart dumps,
mm is an extension indicating the slice number, and f is one of m
for movie format (pixfmt=1), blank for pixel format (pixfmt=2),
or h for HDF4 (pixfmt=3). On exit, movie files (pixfmt=1) are
converted to PPM, used to create an mpeg file zi**id.mm.mpg,
and assembled in a tarball zi**id.mm.tar.gz.

format: pixfmt=1: unformatted, four bytes per datum plus header
pixfmt=2: unformatted, one byte per datum, no header
pixfmt=3: HDF4

3.5 HDF4 files

HDF4 (Hierarchical Data Format; version 4) files contain 3-D data of one or more variables
in the HDF format developed at the NCSA. The data are written in four byte words which is
adequate for quantitative graphical study but not for checkpointing (see §3.1). All graphical
software packages from the NCSA use this format for data dumps, as do many other com-
mercially available products (e.g., IDL). HDF files contain header information which include
array dimensions, data extrema, and grid coordinates. The size of an HDF file containing a
single variable is a little more than the number of active zones times 4 bytes. For a “total”
dump (all primary variables to the same HDF file) with none of GRAV, PSGRAV, or TWOFLUID
defined, the size is the number of active zones times 32 bytes for MHD runs, or times 20
bytes for HD runs.

EDITOR definition: HDF

logical unit: none
namelist: hdfcon

filename: zh**nnnid, where zh is the common prefix to all HDF files, **,
nnn, and id are as defined for pixel dumps.

format: HDF4, four bytes per datum

If, after the run is complete, the user needs 1-D, 2-D, or RADIO dumps that were not created
during the simulation, these can be created after the run using the stand-alone ancillary
programs PLOTZ and RADIO, which use HDF “total dumps” as input (see §B.23). For
this reason, it is recommended that HDF total dumps be created at least as often as 1-D
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and 2-D plots and, if disc space is not a problem, as often as RADIO dumps. See the
User Manual for ZEUS Ancillaries found in the manuals directory of dzeus36.tar from
www.ica.smu.ca/zeus3d for details on how to install and use PLOTZ and RADIO.

3.6 Time slice dumpfiles

There are two types of time slice dumps, and either, both, or neither may be selected. The
first is a single ascii file which contains values of various scalars at specified time intervals such
as the total mass, angular momenta, magnetic monopoles, energy, etc., as well as extrema of
quantities such as density, pressure, divergence of magnetic field, etc. The second is a plot
file (metacode or postscript) containing 1-D plots of these scalars as a function of time. The
user selects the time interval for the ascii and plot dumps independently.

EDITOR definition: TIMESL

logical units: iotsl and iotsp

namelist: tslcon

filenames: ztnnnid (ascii file), where zt is the common prefix to all time slice
ascii files, nnn and id are as defined for restart dumps.
ztpnnnid (plot file), where ztp is the common prefix to all time
slice plots.

formats: ascii and metacode/postscript

3.7 Cork dumpfiles

New to version 3.6, one can specify a set of Lagrangian (tracer) particles scattered through-
out the grid at t = 0 as well request others to be injected onto the grid at specified time
intervals. These particles (a.k.a. “corks”) are completely passive in nature, and gather user-
specified information about their local conditions as the simulation progresses. At each time
step where cork information is dumped, a single line of data for each cork is appended to an
accumulating ascii file which can be used by the user for post-processing to display the data
as desired. In addition, the location of the corks (but not their accumulated data) may be
added to the 2-D NCAR/PSPLOT files.

EDITOR definition: CORKS

logical unit: iocrk

namelist: crkcon

filename: zcnnnid, where zc is the common prefix to all cork files, nnn and
id are as defined for restart dumps.

format: ascii

3.8 Display dumpfiles

Display dumps are single ascii files (maximum of 80 characters per line) which contains a
quantitative display (matrix format) of a specified portion of various 2-D slices through any
of many variables at evenly spaced time slices during a simulation. The data are scaled and
converted to integers before being written to the ascii file. The dynamic range of the scaled
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data depends on the specified “width” of the field of view (no more than 38), and ranges from
102 to 106. For very small widths (≤ 8), the data are not scaled and written as real numbers,
with three or four significant figures. This utility is much like PRTIM in AIPS, for those
familiar with the Astronomical Image Processing System. Its primary use is in debugging,
or when one needs to view a small portion of data quantitatively and simultaneously.

EDITOR definition: DISP

logical unit: iodis

namelist: discon

filename: zdnnnid, where zd is the common prefix to all display files, nnn

and id are as defined for restart dumps.
format: ascii

3.9 RADIO dumps

RADIO6 dumps are similar to the pixel dumps/movie frames (§3.4), but contain line-of-
sight integrations of various quantities rather than 2-D slices through the data volume.
In this release, RADIO dumps are possible in both Cartesian (XYZ) and cylindrical (ZRP)
coordinates, though the latter are not fully tested. The integrands include all three Stokes
parameters and numerous other scalars (e.g., density, Mach numbers, bremsstrahlung, etc.)
and are integrated using a very fast binning algorithm that is as much as 50 times faster
than traditional direct ray-tracing algorithms.

As with pixel/movie files, RADIO files may be written in one, two, or all three of three
formats: real*4 “movie frame” (radfmt=1, new to version 3.6); Mike Norman’s char*1
“pixel dumps” (radfmt=2); and HDF4 (radfmt=3), with the latter suitable for graphical
analysis if desired.

EDITOR definition: RADIO

logical unit: iorad

namelist: radcon

filename: zR**nnnid{.f}, where zR is the common prefix to all RADIO

dumps, and where **, nnn, id, and f are as defined for pixel
dumps (§3.4). On exit, movie files (radfmt=1) are converted to
PPM, used to create a movie file zR**id.mm.mpg, and assembled
in a tarball zR**id.mm.tar.gz.

format: radfmt=1: unformatted, four bytes per datum plus header
radfmt=2: unformatted, one byte per datum, no header
radfmt=3: HDF4

If, after the run is complete, the user needs RADIO dumps at different vantage points than
selected before execution and/or animations of certain stills rotating about an axis, these
can be created after the run using the stand-alone ancillary program RADIO, provided

6The original post-processing program, RADIO, was designed to take line-of-sight integrations through

an MHD datacube to compute the Stokes parameters, and thus mimic radio observations from telescopes

such as the VLA, whence the name.
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the user has created a total HDF dump at or near the desired problem time. See the
User Manual for ZEUS Ancillaries found in the manuals directory of dzeus36.tar from
www.ica.smu.ca/zeus3d for details.

3.10 Message log files

The message log file contains all the messages that are written to the terminal by the code
during execution. In addition, the grid and all the values of the namelist parameters specified
in the file inzeus are dumped here. It serves as the log for the execution.

EDITOR definition: none
logical unit: iolog

namelist: none

filename: zlnnnid, where zl is the common prefix to all log files, nnn and
id are as defined for restart dumps.

format: ascii

3.11 Userdump

USERDUMP is an EDITOR alias available for the user to include their own special type of I/O
which may be desired in addition to those currently available. See §5 for details on how to
add subroutines to the code.

EDITOR definition: none
logical unit: iousr

namelist: usrcon

filename: zunnnid, where zu is the common prefix to all user dump files,
nnn and id are as defined for restart dumps.

format:

3.12 Recognised plotting variables

Table 3.1 below and continued on the following page lists the two-character variable repre-
sentations [corresponding to the double asterisks (**) used in §3.4, §3.5, and §3.9 above] used
for generating the filenames for pixel (P), HDF (H), and RADIO (R) dumps. These two-
character representations are identical to those used to specify the variables to be dumped
(see pixvar in namelist pixcon, hdfvar in namelist hdfcon, and radvar in namelist radcon,
App. B) with the exception that variables specified by a single character (e.g., d) appear
with a trailing underscore (e.g., d_) in the dump file name. The third column indicates the
I/O types in which the variable may be dumped.

http://www.ica.smu.ca/zeus3d


Output from ZEUS-3D 31

Table 3.1 Two Character Variable Representations

** Variable Dumps ** Variable Dumps

a_ vector potential norm PH p2 magnetic pressure PH
a1 1-vector potential PH p3 1st thermal + mag. pres. PH
a2 2-vector potential PH p4 2nd thermal pressure PH
a3 3-vector potential PH p5 1st + 2nd thermal pres. PH
ag synchrotron age PH p6 2nd thermal + mag. pres. PH
an normal vector pot. P p7 1st + 2nd + mag. pres. PH
ap poloidal vector pot. P pa pitch angle; tan−1(B1/Bφ) P
b_ magnetic field norm PH pg pseudo-grav. potential PH
b1 1-magnetic field PH s1 1-momentum PH
b2 2-magnetic field PH s2 2-momentum PH
b3 3-magnetic field PH s3 3-momentum PH
bP φ-magnetic field P sd skew-density P
bR radial magnetic field P sn normal momentum P
bn normal magnetic field P sp poloidal momentum P
bp poloidal magnetic field P sy synchrotron emissivity P
bt plasma beta = 2p/B2 PH to all field arrays H
cs sound speed P u1 1st specific int. energy PH
d_ density PH u2 2nd specific int. energy PH
da synchrotron density-age PH v_ velocity norm (speed) PH
e1 first internal energy PH v1 1-velocity PH
e2 second internal energy PH v2 2-velocity PH
er radiation energy density PH v3 3-velocity PH
et total energy density PH vA Alfvén speed P
fn normal flux function P vf fast magnetosonic speed P
gp gravitational potential PH vn normal velocity P
j_ current density norm PH vp poloidal velocity P
j1 1-current density PH vs slow magnetosonic speed P
j2 2-current density PH vv ∇ · ~v PH
j3 3-current density PH w_ vorticity norm PH
jn normal current density P w1 1-vorticity PH
jp poloidal current density P w2 2-vorticity PH
k1 first specific entropy PH w3 3-vorticity PH
k2 second specific entropy PH wn normal vorticity P
ka averaged specific entropy PH wp poloidal vorticity P
lu radiative luminosity PH A_ pol’n position angle R
m_ Mach number PH AV A with pol’n vectors R
ma Alfvénic Mach number PH B_ magnetic field strength R
mf fast magnetosonic number PH BR bremsstrahlung R
ms slow magnetosonic number PH D_ density R
nb break frequency P E1 1st internal energy R
p1 1st thermal pressure PH F_ fractional pol’n R
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Table 3.1, continued. Two Character Variable Representations

** Variable Dumps ** Variable Dumps

FV F with pol’n vectors R P_ polarised intensity R
I_ total intensity R PV P with pol’n vectors R
IV I with pol’n vectors R SH scalar velocity shear R
M_ Mach number R U1 1st specific int. energy R
MA Alfvénic Mach number R V_ pol’n vectors (black) R
MF fast magnetosonic num. R VR pol’n vectors (white) R
MS slow magnetosonic num. R VV ∇ · ~v R



4 Interacting with ZEUS-3D

During an interactive execution (as opposed to batch), the user may probe ZEUS-3D for
its status, change select input parameters, and submit instructions to create a dump, stop,
pause, resume, etc. This is done by typing a recognised three-character “interrupt message”
followed by a carriage return. Once every “time step”, ZEUS-3D “glances” at the terminal
buffer (by virtue of the lone C routine checkin.c introduced in §2.3.2). If an interrupt
message has been entered, ZEUS-3D will carry out the instruction. If no interrupt message is
found, execution proceeds without pause. Below is a list of the interrupt messages recognised
by ZEUS-3D, along with a brief description of their function. Only the first three characters
of each command (those in typewriter font) need be entered. Note that there are several
synonyms for a number of the commands, which are separated by commas.

On some batch systems, having the code checking the terminal buffer can interfere with
execution. In this icase, one can turn this feature off by setting intractv=0 in namelist
iocon (App. B).

Controlling execution:

• time, cycle, status, t, n, ?
prints a time and cycle report, then resumes execution

• quit, abort, crash, break
immediate emergency termination, no final dumps are made

• stop, end, exit, finish, terminate
clean stop—all final dumps are made

• halt, pause, wait, interrupt
halt execution and wait for a message from the crt or controller.

• restart, go
restarts execution after a halt

• tlimit, tfinish (followed by a real number)
resets the physical (problem) time limit (when computation will stop)

• nlimit, nfinish (followed by an integer)
resets the cycle limit

• ttotal, tcpu (followed by an integer number of seconds)
resets maximum cpu time to consume.

• tsave, treserve (followed by an integer number of seconds)
resets the save time reserved for cleanup and termination

Controlling data output:

• dump
creates a restart dump at current time

33
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• dtdmp (followed by a real time interval)
resets the problem time interval between restart dumps

• pl1

creates a 1-D plot at current time

• dt1 (followed by a real time interval)
resets the problem time interval between 1-D plots

• pl2

creates a 2-D plot at current time

• dt2 (followed by a real time interval)
resets the problem time interval between 2-D plots

• pixel
creates a pixel dump at current time

• dtpix (followed by a real time interval)
resets the problem time between pixel dumps

• usr

creates a user dump (calls USERDUMP) at current time

• dtusr (followed by a real time interval)
resets the problem time between user dumps

• hdf

creates an HDF dump at current time

• dth (followed by a real time interval)
resets the problem time between HDF dumps

• tslice
adds a time slice dump at current time to time slice file

• dttslice (followed by a real time interval)
> 0 ⇒ resets the problem time between time slice ascii dumps
< 0 ⇒ resets the problem time between time slice plot dumps

• display
adds a display dump at current time to display dump file

• dty (followed by a real time interval)
resets the problem time between display dumps

• radio
creates a radio dump at current time

• dtradio (followed by a real time interval)
resets the problem time between radio dumps

• corks
creates a cork dump at current time
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• dtcorks (followed by a real time interval)
resets the problem time between cork dumps

• 1ddiagnostics
creates a 1-D diagnostic dump at current time (for programmers only)

• 1dt (followed by a real time interval)
resets the problem time between 1-D diagnostic dumps

• 2ddiagnostics
creates a 2-D diagnostic dump at current time (for programmers only)

• 2dt (followed by a real time interval)
resets the problem time between 2-D diagnostic dumps



5 Adding source code to ZEUS-3D

5.1 Adding an entire subroutine

Adding source code to the ZEUS-3D package is not as difficult as one might think, especially
if all one wants to do is add new subroutines or replace existing ones. Below is the subroutine
myprob which can be used as a template to create a problem generator. A soft copy of myprob
may be found in the zeus directory of dzeus36.tar from www.ica.smu.ca/zeus3d. The
style is that which is used for all subroutines currently in dzeus36.

*insert zeus3d.9999
*deck myprob
c=======================================================================
c
c \\\\\\\\\\ B E G I N S U B R O U T I N E //////////
c ////////// M Y P R O B \\\\\\\\\\
c
c=======================================================================
c

subroutine myprob
c
c abcd:zeus3d.myprob <------------------------ initialises my problem
c september, 1990
c
c written by: A Busy Code Developer
c modified 1: July, 2006 by ABCD; updated for dzeus35
c modified 2: October, 2010 by ABCD; updated for dzeus36
c modified 3: November, 2014 by ABCD; added div(B) check.
c
c PURPOSE: Initialises all the flow variables for my problem. More
c description of my problem can go here. Boundary values are set in
c the calling routine immediately after MYPROB is called.
c
c INPUT VARIABLES:
c
c OUTPUT VARIABLES:
c
c LOCAL VARIABLES:
c
c EXTERNALS:
c DIVERG
c
c-----------------------------------------------------------------------
*call comvar
c

integer i , j , k
real*8 da , db , e1a , e1b , e2a

1 , e2b , v1a , v1b , v2a , v2b
2 , v3a , b1a , b1b , b2a , v3b
3 , b2b , b3a , b3b , sumdivb

*if def,MHD
4 , q11 , q12 , q2 , q3

*endif MHD
c
c The 1-D and 2-D arrays "array1d" and "array2d" are never used and
c are included only to show how arrays can be declared and equivalenced
c to "global worker arrays". The 3-D array "divb" is used at the end

36
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c of the template to check on whether the magnetic field as set up
c satisfies the solenoidal condition.
c

real*8 array1d (ijkx)
real*8 array2d (idim,jdim)
real*8 divb ( in, jn, kn)

c
equivalence ( array1d , wa1d )
equivalence ( array2d , wa2d )
equivalence ( divb , wa3d )

c
external diverg

c
c-----------------------------------------------------------------------
c
c Input parameters:
c
c da , db array and boundary values for density
c e1a, e1b array and boundary values for first internal energy
c e2a, e2b array and boundary values for second internal energy
c v1a, v1b array and boundary values for 1-velocity
c v2a, v2b array and boundary values for 2-velocity
c v3a, v3b array and boundary values for 3-velocity
c b1a, b1b array and boundary values for 1-magnetic field
c b2a, b2b array and boundary values for 2-magnetic field
c b3a, b3b array and boundary values for 3-magnetic field
c

namelist / pgen /
1 da , db , e1a , e1b , e2a
2 , e2b , v1a , v1b , v2a , v2b
3 , v3a , b1a , b1b , b2a , b2b
4 , b3a , b3b

c
c Default values
c

da = 1.0d0
db = 0.1d0
e1a = 0.9d0
e1b = 0.9d0
e2a = 0.0d0
e2b = 0.0d0
v1a = 0.0d0
v1b = 0.0d0
v2a = 0.0d0
v2b = 0.0d0
v3a = 0.0d0
v3b = 0.0d0
b1a = 0.0d0
b1b = 0.0d0
b2a = 0.0d0
b2b = 0.0d0
b3a = 0.0d0
b3b = 0.0d0

c
c Read namelist pgen, and store contents to log file.
c

read (ioin , pgen)
write (iolog, pgen)

c
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c Set field arrays. Metric factors in the magnetic field settings
c are necessary to preserve the solenoidal condition.
c

do 30 k=ksm2,kep3
do 20 j=jsm2,jep3
do 10 i=ism2,iep3
d (i,j,k) = da
v1(i,j,k) = v1a
v2(i,j,k) = v2a
v3(i,j,k) = v3a

*if -def,ISO
e1(i,j,k) = e1a

*endif -ISO
*if def,TWOFLUID

e2(i,j,k) = e2a
*endif TWOFLUID
*if def,MHD

b1(i,j,k) = b1a
b2(i,j,k) = b2a
b3(i,j,k) = b3a

*endif MHD
10 continue
20 continue
30 continue
*if -def,ISYM
c
c Set inflow boundary arrays. Setting niib=10 imposes inflow
c boundary conditions, for which quantities such as diib1, etc., set
c the desired inflow variable values.
c
*if def,MHD

q11 = ( v2b * b3b - v3b * b2b ) * dx1a(ism1)
q12 = ( v2b * b3b - v3b * b2b ) * dx1a(ism2)
q2 = ( v3b * b1b - v1b * b3b ) * h2a (is )
q3 = ( v1b * b2b - v2b * b1b ) * h31a(is )

*endif MHD
do 50 k=ksm2,kep3

do 40 j=jsm2,jep3
niib (j,k) = 10
diib1 (j,k) = db
diib2 (j,k) = db
v1iib1 (j,k) = v1b
v1iib2 (j,k) = v1b
v1iib3 (j,k) = v1b
v2iib1 (j,k) = v2b
v2iib2 (j,k) = v2b
v3iib1 (j,k) = v2b
v3iib2 (j,k) = v2b

*if -def,ISO
e1iib1 (j,k) = e1b
e1iib2 (j,k) = e1b

*endif -ISO
*if def,TWOFLUID

e2iib1 (j,k) = e2b
e2iib2 (j,k) = e2b

*endif TWOFLUID
*if def,MHD

b2iib1 (j,k) = b2b
b2iib2 (j,k) = b2b
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b3iib1 (j,k) = b3b
b3iib2 (j,k) = b3b
emf1iib1(j,k) = q11
emf1iib2(j,k) = q12
emf2iib1(j,k) = q2 * dx2a(j)
emf3iib1(j,k) = q3 * dx3a(k) * h32a(j)

*endif MHD
40 continue
50 continue
*endif -ISYM
*if def,MHD
c
c As a check, compute div(B), and integrate it over the grid
c ("sumdivb"). The fourth parameter in the calling list for DIVERG is
c set to 1 and thus the returned values "divb" and "sumdivb" will be
c normalised by the specified magnetic field configuration and the
c grid. Therefore, "sumdivb" should be of order 10**-12 or less (e.g.,
c machine round off) for the field to be divergence-free.
c

call diverg ( b1, b2, b3, 1, 1, divb, sumdivb )
*else MHD

sumdivb = 0.0d0
*endif MHD
c

if (iotty .gt. 0) write (iotty, 2010) sumdivb
if (iolog .gt. 0) write (iolog, 2010) sumdivb

c
c-----------------------------------------------------------------------
c----------------------- Write format statements -----------------------
c-----------------------------------------------------------------------
c
2010 format(’MYPROB : Initialisation complete; normalised div(B) = ’

1 ,1pg12.5,’.’)
c

return
end

c
c=======================================================================
c
c \\\\\\\\\\ E N D S U B R O U T I N E //////////
c ////////// M Y P R O B \\\\\\\\\\
c
c=======================================================================
c
c

There are many ingredients to this template which warrant discussion. In order of appear-
ance, these are:

1. Ignoring for the moment the EDITOR statement *insert zeus3d.9999, the first line
of each subroutine must be an EDITOR *deck (*dk for short) statement. Without
this statement, the precompiler won’t put the subroutine into a separate file, inhibiting
the debugger should it be necessary. It is easiest, although not necessary, to give the
deck the same name as the subroutine.

2. Note that there is no parameter list in the subroutine statement. A parameter list
is unnecessary since all variables that need to be used and/or set are accessible via
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the common blocks. In fact, using a parameter list would inhibit the inclusion of a
user-supplied subroutine using the present structure of the code.

3. All of the important variables declared in dzeus36 are in common blocks, and can be
included into a subroutine simply by inserting the EDITOR statement *call comvar

just before the local declarations are made. The EDITOR *call (*ca for short) state-
ment is much like INCLUDE whereby a section of code known as a “common deck”
(called comvar in this case) is inserted at the location of the *call statement. Every
variable of any possible interest is declared in comvar, including many that the user
would never need. (A description of the most widely used variables is given in App.
C.) At the beginning of comvar is an “implicit none” statement, which requires
that the attributes (real*8, integer, etc.) of all variables used in the subroutine be
declared. Note that should the user inadvertently try to use a variable name already
declared in comvar, the compiler will flag the repetition and abort compilation. While
the “implicit none” does not require that all externals called by the program unit be
declared in an external statement, it is still good practise to do so. In fact, if unde-
clared externals appear inside a nested do-loop construct, this may inhibit EDITOR’s
auto-tasking feature (parameter iutask; see §2.3).

4. Should local 1-D arrays be needed to store data at grid points along an axis, it is
best to declare them with dimension (ijkx), such as array1d in the template. The
parameter ijkx is declared and defined in comvar as the largest of in, jn, and kn

(the dimensions of the 3-D arrays), also declared in comvar. So that no additional
memory is occupied by this local array, it can be equivalenced to one of the 26 1-D
scratch arrays declared in comvar, as done in the template. Similarly, local 2-D arrays
(e.g., array2d) should be dimensioned (idim,jdim) (where idim and jdim are set
by comvar to one of in, jn, and/or kn, depending on the defined symmetries) and
equivalenced to one of the 2-D worker arrays. Finally, local 3-D arrays can be declared
and equivalenced as exemplified by divb in the template. The names of all the scratch
arrays (1-D, 2-D, and 3-D) are given in §C.4 and their dimensions are defined in §C.6.

5. The namelist pgen is reserved for the namelist in the Problem GENerator. Of course,
any name other than pgen could be used, so long as it is not already used in the input
deck inzeus and the new name for the namelist is substituted for pgen in inzeus.
Note how default values for the input parameters can be assigned before the namelist
is read.

6. Loop 30 is a typical way the 3-D field variables (d = density, e1 = first internal energy
per unit volume, etc.) are assigned values. In this very simple case, the variables are
assigned to the scalars read from the namelist pgen. Note that all energy variables
(e.g., e1, e1iib1, etc.) should be considered “pressure-like” (energy per unit volume)
and not “temperature-like” (energy per unit mass). Appendix C has a list of all the
variable names and their dimensions. The do-loop indices declared in comvar are all
assigned values in the subroutine nmlsts which is called immediately before the user’s
problem generator (PROBLEM) is called (see App. A) and so they can be used explicitly
in any user-supplied subroutine called thereafter. Thus, the index for loop 30 (k)
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ranges from ksmnm2 (k-start minimum minus 2) to kemxp3 (k-end maximum plus 3),
which includes all boundary zones. This is particularly important for the magnetic
field variables. Similarly for the indices of loops 20 (j) and 10 (i). Note the use of the
EDITOR *if define, *endif (*if def, *ei for short) structure which conditionally
includes or excludes a segment of coding depending on whether, in this case, MHD was
defined during precompilation. Similar conditionals can be based on the “truth” of
any EDITOR definition, and on how aliases are set. For example, one could place an
EDITOR *if alias PROBLEM.eq.myprob just after the subroutine statement, and
the matching *endif just before the return statement. In this way, the subroutine
would be empty (nothing between the subroutine and return statements) unless the
EDITOR alias PROBLEM were set to myprob. This would prevent it from being compiled
when it is not needed.

7. Loop 50 illustrates how inflow boundary values (to be applied only to those boundary
zones where matter is flowing into the grid in a known fashion) can be set for super-
magnetosonic flow. (See §§1.5 and B.8 for variations required for submagnetosonic
inflow conditions.) In this case, the “inner-i-boundary” (iib) values of the flow vari-
ables are being initialised. Alternatively, one could set the in-flow boundary values as
input parameters using the namelists iib, oib, etc. (§B.8, §B.9, etc.). Note the use of
the EDITOR *if define, *endif construct to prevent this loop from being compiled
in the event that ISYM is defined. If ISYM has been defined, the variables niib, etc.
are not declared in comvar. Variables that are conditionally declared (depending on
which EDITOR definitions are set) are noted in App. C.

8. Note the use of the ZEUS-subroutine DIVERG which, in this case, computes the nor-
malised average magnetic field divergence as initialised by the user. This quantity
(sumdivb) should be of the order 10−12 if the initialised magnetic field is to be declared
solenoidal. Note carefully that the MHD algorithm in ZEUS-3D is designed to con-
serve ∇ · ~B to machine round-off error, not to ensure that ∇ · ~B is specifically zero..
Thus, if the user initialises ~B with a non-zero divergence, the MHD algorithm will dili-
gently conserve that divergence to machine round-off error throughout the simulation.
Therefore, if the user wants a divergence-free field, it must be initialised that way.

9. Finally, if desired, the user can write various messages to the terminal (logical unit
iotty) or to the message log file (logical unit iolog). Both iotty and iolog are
declared in comvar and set by the subroutine mstart, and thus available in PROBLEM

so long as this subroutine starts off with *ca comvar as exemplified in myprob.

Once the subroutine is written, it should be placed in its entirety into a change deck
called, for example, chguser and the line **read chguser in the script file dzeus36.s

should be “de-commented” by deleting one of the asterisks (§2.3). Upon its first pass (the
merge step), the preprocessor will, in this case, insert the user’s subroutine into dzeus36

immediately after line 9,999 of the main program zeus3d (by virtue of the EDITOR state-
ment *insert zeus3d.9999 appearing at the top of the subroutine template). Since zeus3d
doesn’t have 9,999 lines, EDITOR will simply stick the subroutine after the last line of the
main program. It doesn’t matter where in dzeus36 the subroutine gets inserted so long as it
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isn’t in the middle of an existing subroutine (deck). Immediately after the main program is
as good a place as any. Upon the second pass, the precompiler will find the user’s subroutines
and treat them as it would any other it encounters. Thus, if there are any EDITOR com-
mands in the user’s routines (such as *call comvar, *if define,MHD), they will be carried
out and then expunged from the working copy of the source code. The user’s subroutine
will then be placed in its own file in the directory dzeus3.6, and the name of the subrou-
tine will be included in the makefile makezeus which will then compile the subroutine and
link it with the rest of the object files and libraries. Provided the EDITOR alias PROBLEM
has been set to myprob (or whatever it’s called) in the macro file zeus36.mac, the user’s
problem generator will be called at the appropriate time during execution. Similarly, if the
subroutine should be called at the location of any of the other available “plugs” in the code,
set the appropriate alias (i.e. SPECIAL, SPECIALSRC, USERSOURCE, SPECIALTRN, USERDUMP,
PROBLEM, PROBLEMRESTART, or FINISH; see §2.2.2 and the ZEUS-3D skeleton in App. A) in
zeus36.mac to the subroutine name.

5.2 Microsurgery using EDITOR

For the truly adventurous, it is possible to alter individual lines of code in dzeus36 without
actually changing the original source code. In this way, the changes made can be kept
separate from the code, and thus not lost in the abyss of dzeus36. In addition, the user’s
changes could, in principle, be incorporated into the master code at a later date and become
part of the next release. To do this, there are two things required: an EDITOR listing of
the code and a short tutorial on how to use EDITOR. For those who have worked with
HISTORIAN, all this should seem very familiar. For those who haven’t, take heart—the
structure is very intuitive. The real problem will be ensuring that the changes made don’t
break something else in the code. This is where the headaches will lie, and those who really
want to change the code do so at their own peril!

To get an EDITOR listing of the code, copy the script file number.s (a soft-copy of which
may be found in the editor directory of dzeus36.tar from www.ica.smu.ca/zeus3d):

#============= SOURCE FILE TO CREATE A NUMBERED LISTING ===============#
#
#=======================================> Get files from home directory.
if(! -e ./xedit22) cp ../editor/xedit22 .
#-----------------------> Create the input deck for EDITOR, and execute.
rm -f ./inedit
cat << EOF > ./inedit
\$editpar inname=’dzeus36’

, ibanner=1, job=1, inumber=3, itable=1, ixclude=1 \$
EOF
chmod 755 ./xedit22
./xedit22
#===================================================> Tidy up directory.
rm -f ./editlp ./inedit ./output ./xedit22

to the directory in which dzeus36 lives, and run it by typing:

csh -v number.s

http://www.ica.smu.ca/zeus3d
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This script file will fire up EDITOR in its numbering mode (job=1), and produce a listing
with a table of contents, and various labels on each line. The numbered file will be called
dzeus36.n, and can be viewed in a wide (132 character) window. Printed copy is not
recommended; at 60 lines per page, there will be more than 1,800 pages of output! The
third column to the right of the source listing is the number of lines since the most recent
EDITOR *deck or *cdeck statement. This is the column needed to perform microsurgery
on the master file.

During preprocessing, EDITOR makes two major passes over the code. The first pass
does the merging of the change deck chgzeus (which contains zeus36.mac and possibly
chguser) into the main code. EDITOR commands performed during this pass include:

1. *insert deckname.n—inserts text immediately following the *insert command into
the source code directly after line n in deck (or cdeck: common deck) deckname. The
value of n is determined from the third column to the right of the source code in the
numbered listing, dzeus36.n.

2. *delete deckname.n,m—deletes lines n through m in deck (or cdeck) deckname, and
replaces it with the text immediately following the *delete command, if any. Note
that m must be greater than n. If m is missing altogether, thenm = n will be assumed.

That’s it. An example:

*delete zeus3d.10,20
a = b
b = c

*insert mstart.100
d(i,j,k) = 1.0

*i zeus3d.100
c = d

*d zeus3d.120

Note that *d and *i are short forms for *delete and *insert respectively. In addition,
*replace (*rp for short) is a synonym for *delete. In the example, lines 10 through 20 in
the main program zeus3d are replaced with the two lines which set a and b, a single line
setting d(i,j,k) is inserted after line 100 in subroutine mstart, a single line setting c is
inserted after line 100 in zeus3d, and line 120 in zeus3d is simply deleted.

To aid the user in deciding what changes to make and where to make them, a flow chart
showing the sequence of the major subroutine calls in ZEUS-3D is given in App. A. This
will be particularly useful once faced with the task of comprehending the source code listing,
dzeus36.n.

If EDITOR detects any merge syntax errors or conflicts during the merge, it will write
the merged file [as best as could be done given the error(s) detected] into a file named
dzeus36.m and insert an error message immediately after each offending line. A merge error
will prevent the second pass of preprocessing (i.e., precompilation) from being executed and
the user will be told what character pattern to search for in the file dzeus36.m in order to
find the generated error messages.

Should the merge step be successful, EDITOR goes through a second pass and performs
all the precompilation commands. These include:
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1. *if define,macro—the following source code is kept provided the macro is defined
by a *define statement somewhere in the file.

2. *if -define,macro—the following source code is kept provided the macro is not
defined by a *define statement somewhere in the file.

3. *if def,.not.macro—same as 2. Note that def is an acceptable short form for
define.

4. *if def,macro1.and.macro2—the following source code is kept provided both mac-
ros are defined by a *def statement somewhere in the file.

5. *if def,macro1.or.macro2—the following source code is kept provided either macro
is defined by a *def statement somewhere in the file.

6. *if alias macro.eq.phrase—the following source code is kept provided the alias
macro has been set to the character string phrase by an *alias statement somewhere
in the file.

7. *if alias macro.ne.phrase—the following source code is kept provided the alias
macro has not been set to the character string phrase by an *alias statement some-
where in the file.

8. *else—the following source code is kept if the truth value of the previous *if is false.

9. *endif—closes the previous *if, *else structure. All source code following the *endif
statement is not affected by the previous *if or *else statements. For every *if

statement, there must be an *endif statement which follows.

10. *call deckname—includes the contents of the common deck deckname at the location
of the *call statement.

These precompiler commands can be used as part of the changes to be inserted into dzeus36
using the EDITOR *delete and *insert commands. All changes should be placed in the
user’s change deck which, in our example, has been called chguser. These changes are then
incorporated into the code by “de-commenting” the line **read chguser in the script file
dzeus36.s by deleting one of the asterisks (§2.3).

Note that during both passes, the *deck and *cdeck statements are used as reference
points, and are then expunged from the source code during the second pass. If any precom-
pilation syntax errors are detected, EDITOR will write the precompiled file [as best as could
be done given the error(s) detected] into a file named dzeus36.f and insert an error mes-
sage immediately after each offending line. EDITOR will abort further processing and the
user will be told what character pattern to search for in the file dzeus36.f in order to find
the generated error messages. On the other hand, if the precompilation pass is successful,
EDITOR will make yet another pass through the code to substitute namelist statements
with subroutine calls, perform auto-tasking, update the files in the directory dzeus3.6, and
create the makefile, makezeus. This makefile compiles only those subroutines affected by the
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changes made, links all the subroutines and libraries together, and creates the new executable
xdzeus36.

A complete discussion of EDITOR’s merge and precompilation features can be found in
the EDITOR user manual edit22_man.ps found in the directory manuals of dzeus36.tar
from www.ica.smu.ca/zeus3d.

5.3 Debugging in ZEUS-3D

It is the author’s experience that virtually no change of significance can be introduced into
the code without tripping up some problems requiring a debugger. And while the vast
majority of these bugs will eventually be traced back to the user’s initialisation routine or
other change made by the user, it will often necessitate probing other parts of the code to
find these problems. To someone not knowing their way around ZEUS-3D, this will come as
a daunting task indeed. Therefore, this section attempts to offer—in a generic way—some
guidance in starting a debugging session.

The debugger DBX, originally a Cray then Sun Microsystems product, can be used with
code compiled with f90 -g (which may be available on non Cray and non-Sun platforms;
check with your sysadmin). The debugger GDB may be used with code compiled with g95 -g

or gfortran -g. Other debuggers are required for other compilers. In any case, to prepare
xdzeus36 for a debugger, it should be compiled with coptions=’debug’; see §2.3. One then
enters the debugging environment by typing:

dbx xdzeus36

(or whatever debugger is being used) at the UNIX prompt. From there the user can set
“breakpoints”, reassign variable values, and navigate pretty well anywhere within the code
probing variable values as one moves along. For the uninitiated, a very short three-page
primer on using dbx, dbxprimer.ps, may be found in the directory manuals of dzeus36.tar
from www.ica.smu.ca/zeus3d. For GDB and other debuggers, the user is directed to on-line
resources.

While not specific to this package, the following discussion assumes dbx to be the default
debugging environment.

1. Stop in your initialisation routine (PROBLEM)

The first task is to make sure all variables are set as you think they should be. Stop at the
return statement of your initialisation routine, and probe all variable values, particularly
those around the periphery of the grid where users often forget to initialise the flow variables.
90% of all bugs a user introduces into the code can be traced to flow variables (density,
velocity, etc.) not being assigned properly or fully. Make sure, for example, that each array
is set from 1:in, 1:jn, and 1:kn and not, for example, simply from is:ie, js:je, and
ks:ke (see App. C for a review of the variable and parameter names and definitions). In
addition, if any boundaries are set to “inflow” (nflo=10), the user will need to set the inflow
boundary arrays such as diib1, diib2, v1iib1, etc. (see the template routine myprob.f in
§5.1).

2. Stop in srcstep

http://www.ica.smu.ca/zeus3d
http://www.ica.smu.ca/zeus3d
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Stopping at the top of routine srcstep (where the source terms are updated; see the dzeus36
“skeleton” in App. A for guidance on how to navigate through the code) will allow you to
make certain that once set in the initialisation routine, all variables have been passed to the
beginning of the first MHD cycle correctly. If execution dies before reaching srcstep, it is
possible there has been a problem in one of the graphics routines, and you should probe the
variable values there.

If execution makes it correctly to the top of srcstep, one can advance through srcstep

one call after the other, making sure that each of stv1, stv2, stv3, viscous, etc., is exe-
cuting correctly.

3. Stop in trnsprt

If srcstep reveals no anomalies, one next ventures into trnsprt, which takes care of the
transport terms (fluxes), the induction equation, and the transverse Lorentz forces. Navigat-
ing through this routine is complicated by the fact that the order in which the constituent
routines (ctran1, ctran1, ctran3, ttran1, ttran2, and ttran2 for FIT; tranx1, tranx2,
tranx3, cmoc1, cmoc2, and cmoc3 for legacy transport) are executed depends on how many
MHD cycles have been run through. This is an attempt to reduce any favouritism among the
directions in the directional- and planar-split algorithms, but it can make debugging more
challenging.

The variable controlling the order in which the constituent routines are called is the inte-
ger ix1x2x3 which can take on any integral value between and including 1 and 6. Knowing
the value of ix1x2x3 will tell you to which segment of trnsprt you have to go.

With any luck, you will not have to venture into the cmoc* routines, as these are long
with many local variables, most of which are scalars which can make debugging all the more
painful.

4. Double-debug sessions

For the really stubborn bugs, often I have to do a “double debug session” in which I have
dzeus36 without the changes compiled and open in a debug session in one window on the
left side of my screen, and the code with the changes opened up in a debug session in another
window on the right side of my screen. From there, I undertake the tedious task of advancing
through the code routine by routine, line by line until I find where the two versions diverge,
and go from there.

5. “Gotchas”

Depending on your installation, dbx is capable of a number of very annoying “gotchas” which
can slow progress markedly. I mention a few below.

While any variable declared either globally or local to the subroutine should, in principle,
be accessible (i.e., their values probed) from within the subroutine, this is not always the case.
In some installations, only variables actually set or modified by the subroutine may be probed
and, if you really need to see these variable values, one either has to go to a routine where
these values are modified or, if that is insufficient, put a “dummy” assignment statement in
the routine (e.g., var = var + 0.0d0), recompile, and restart the debug session.

In my own installation of dbx, local variables that are equivalenced in the subroutine
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to a globally declared variable are often inaccessible by the local variable name—one has to
use the global variable name to probe values. This, like the first “gotcha”, is a completely
stupid design “feature”, but you may be stuck with it. Sometimes using the global variable
name is no big deal. However, in some situations such as in the cmoc* routines where
the local variable is not dimensioned the same as the global array [e.g., in cmoc1, local
variable v2t(kn,jn) is equivalenced to wi2d(ijkx,ijkx) in 3-D], it isn’t always so simple
to determine the indices needed for the global array to retrieve the desired element of the local
array. In these situations, it may be necessary to comment out the equivalence statements
and recompile, hoping that this doesn’t somehow affect the nature of the problems you are
trying to uncover.

Finally, dbx will only report the first 15 decimal places of the variable (for double pre-
cision), and sometimes problems start to occur in the 16th decimal place or beyond. Even
though values beyond the 15th or 16th significant figure are normally considered “noise”,
unlike real noise computer noise is always repeatable and thus can serve as a useful indica-
tor of when deviation from the correct answer begins. In dbx, for example, one can probe
these additional digits by subtracting the reported result from the variable itself. Thus, if
v1(i,j,k) is reported as 3.14159265358979, you could type :

print v1(i,j,k)-3.14159265358979

which may, for example, then report:

v1(i,j,k)-3.14159265358979 = 2.5430056384790e-16

which can be compared to another session to make sure differences aren’t creeping in at this
extremely low but sometimes significant level. It is my experience that if dbx reports two
number to be equal to 15 decimal places, they aren’t always equal. However, if the noises
are also equal then the variable values can safely be taken as identical.

These are only a few general guidelines to debugging within dzeus36, and may cover 95%
of the situations a typical user may encounter. If bugs or “undesired features” are found or
strongly suspected in the code itself that are unrelated to changes introduced by the user,
the user is encouraged to report these to the author at dclarke@ap.smu.ca or at the address
given in the Preface.



6 Quick summary

This final section is intended to serve as a quick reference sheet for those who are already
familiar with running ZEUS-3D.

1. Set the macros in the file zeus36.mac (§2.2 and App. A).

2. Make the necessary changes to the dzeus36.s script file, including the parameters in
the change deck chgzeus (§2.3.4) and the input parameters in the input deck inzeus

(§2.3.6 and App. B).

3. Put the desired source code changes, if any, into the file chguser (§5), and “de-
comment” the line **read chguser in the script file dzeus36.s by deleting one of
the asterisks (§2.3).

4. Run the script file to create the ZEUS-3D executable by typing csh -v dzeus36.s

5. Fire up the executable by either typing xdzeus36, or by submitting the job to the
appropriate batch queue.

48



A The ZEUS-3D skeleton

A.1 Legacy transport

The following flowchart depicts “legacy transport” (hycon namelist parameter trnvrsn=0;
MHD, GRAV on, RADIATION off) as of November, 2013 with no further modifications anticipated.
Modules in upper case are EDITOR aliases set in zeus36.mac, with exemplary choices
(appropriate for the 1-D Brio & Wu problem; §2.2, 2.3) given parenthetically. Modules in
lower case are actual subroutine names in the source code.

mstart ------------------------> greeting .--> gridx*, gridchk
| ____|____ | gsetx*
| | | | defaults
| mget setup --’ nmlsts
| addzx* <------------ alter | slippc
| gsetx* |_________| gridcork
| nmlsts | PROBLEM (shkset)
| slippc coolinit bndychk
| PROBLEMRESTART (empty) dataio bndygrid
| slippc bndyflgs

------->| bndyall slippc
| | bndyall
| BNDYUPDATE (empty) GRAVITY (empty)
| EXTENDGRID (empty) totnrg
| GRAVITY (empty) NEWTIMESTEP (newdt)
| SPECIAL (empty)
| SOURCE (srcstep) -----------------------------> stda
| SPECIALSRC (empty) pres
| TRANSPORT (trnsprto) --> tranx* --> eintx* stv*o
| SPECIALTRN (empty) | specific USERSOURCE (empty)
| | | x*zc3d kinvis
| | vtos <------ snxn ARTIFICIALVISC (viscous)
| | x*fc1d | | |
| | cmoc*o --> x***zc2d | sndspd <--’
| | bvalemfs <-- ct x**zc2d | bvalv*
| | crkpos bvalst* | [bvale1]
| | bvald mom* | bvale2
| | bvalv* svalemf* |
| nhy = nhy + 1 bvale2 {exb*} [pdv/pdvcool]
| prtime = prtime + dt bvalda DIFFUSION (empty)
| NEWTIMESTEP (newdt) [totnrg] bvalv*
| NEWGRID (empty) {bvalet} [bvale1]
| | {intnrg} bvale2
| | bvale1
| |
| dataio ------------------> intchk
| | plot1d
| ___|___ plot2d
| | | pixdmp/makempg
-no-| stop? | USERDUMP (empty)

|_______| hdfdmp
| tslice * = 1,2,3

yes tsplot ** = mod (*+1, 3)
| crkdmp *** = mod (*+2, 3)
| disdmp

FINISH (empty) radio/makempg [module called if itote=0]
msave {module called if itote=1}
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A.2 Finely Interleaved Transport

New to version 3.6: The following flowchart depicts the FIT algorithm (hycon namelist
parameter trnvrsn=1; MHD, GRAV on, RADIATION off; trnvrsn=2 engages the fully conserva-
tive variant of FIT) as of November, 2013, representing the most significant change to ZEUS

transport since the introduction of CMoC in 1993, and designed to address the “striping
instability”. Modules in upper case are EDITOR aliases set in zeus36.mac, with exem-
plary choices (appropriate for the 1-D Brio & Wu problem; §2.2, 2.3) given parenthetically.
Modules in lower case are actual subroutine names in the source code.

mstart ------------------------> greeting .--> gridx*, gridchk
| ____|____ | gsetx*
| | | | defaults
| mget setup --’ nmlsts
| addzx* <------------ alter | slippc
| gsetx* |_________| gridcork
| nmlsts | PROBLEM (shkset)
| slippc coolinit bndychk
| PROBLEMRESTART (empty) dataio bndygrid
| slippc bndyflgs

------->| bndyall slippc
| | bndyall
| BNDYUPDATE (empty) GRAVITY (empty)
| EXTENDGRID (empty) totnrg
| GRAVITY (empty) NEWTIMESTEP (newdt)
| SPECIAL (empty)
| SOURCE (srcstep) -----------------------------> stda
| SPECIALSRC (empty) pres
| TRANSPORT (trnsprt) ---> vtos stv*
| SPECIALTRN (empty) ctran* ---> {pres} USERSOURCE (empty)
| | | {vnrav} kinvis
| | cmoc* <------ ttran* x*zc1d ARTIFICIALVISC (viscous)
| | svalemf* | x*fc1d | |
| | bvalemf* crkpos bvalv1 | sndspd <--’
| | s**tov** bvald {intnrg} | bvalv*
| | bvalv** bvalv* {bvale1} | [bvale1]
| | s***tov*** bvale2 | bvale2
| | bvalv*** bvalda |
| | [totnrg] [pdv/pdvcool]
| nhy = nhy + 1 {bvalet} DIFFUSION (empty)
| prtime = prtime + dt {intnrg} bvalv*
| NEWTIMESTEP (newdt) bvale1 [bvale1]
| NEWGRID (empty) bvale2
| dataio ------------------> intchk
| | plot1d
| ___|___ plot2d
| | | pixdmp
-no-| stop? | makempg

|_______| USERDUMP (empty)
| hdfdmp * = 1,2,3

yes tslice ** = mod (*+1, 3)
| tsplot *** = mod (*+2, 3)
| crkdmp

FINISH (empty) disdmp [module called if itote=0]
radio {module called if itote=1}
makempg
msave
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A.3 EDITOR aliases

The “empty” routine empty (returns immediately to calling routine) is a option for just about
any EDITOR alias macros (other than TRANSPORT, NEWTIMESTEP, and PROBLEM) that effec-
tively “turns them off”. This subsection lists most of the other more substantive subroutines
within ZEUS-3D that can be aliased to each macro, along with their intended purpose.

BNDYUPDATE breset resets flow-in boundary values for some test problems
jetbndy generates magnetic field and wiggles at jet boundary
jetcork injects corks at jet inlet
krasdisc maintains “Krasnopolsky boundary conditions” ( corona)
... user-defined module to maintain boundaries

EXTENDGRID extend to extend computational domain

GRAVITY gravity one of three Poisson solver algorithms may be chosen

SPECIAL ... user-defined module for additional physics

SOURCE empty for advection tests
srcstep standard source term module

SPECIALSRC twinjet sustains two outflowing jets from “fertile zones”
resetalf for launching Alfvén waves from the boundary (ALFVTST)
... user-defined module for additional source terms

TRANSPORT trnsprt standard transport module

SPECIALTRN minden resets density to floor value
... user-defined module for additional transport terms

NEWTIMESTEP newdt full dynamics
advectdt for advection tests

FINISH spectra generates Fourier spectra from gathered data
pertest reports deviations from periodicity
... user-defined module called once at the end of execution

USERSOURCE phistv non-conservative point mass gravity (see corona)
... user-defined module for additional source terms

ARTIFICIALVISC viscous von Neumann-Richtmyer artificial viscosity
gasdiff heat and mass diffusion

DIFFUSION diffuse second fluid diffusion

USERDUMP ... user-defined I/O module

PROBLEM shkset for shock tube tests
corona sets up jet-disc problem
jetinit sets up propagating jet problem
... user-defined module to initialise flow variables

PROBLEMRESTART ... user-defined module to alter variables for restarted job



B The namelists

There are well over 500 namelist parameters to specify a unique initialisation. Take heart—
most defaults can be used for most applications. As a start, use the input deck given in the
dzeus36.s template (§2.3), and then alter as needed.

On the next page begins a complete catalogue of all the input parameters in dzeus36.
The parameters are grouped together in “namelists” and discussion for each namelist is
contained within a segment headed by the name of the namelist and the subroutine in which
the namelist is called. For example, the first namelist is iocon (input/output control) and
is called by the subroutine mstart. After each heading is a discussion of what the namelist
controls, a list of all the parameters which are elements of the namelist, and finally the
syntax used in dzeus36 to declare the namelist.

For the uninitiated, namelist is a non-standard feature of most FORTRAN77 compilers
and a standard feature of Fortran90 which provides a convenient way to specify input data.
Before Fortran90 was released in 1994, each platform had its own namelist with its own
syntax, and this made it difficult to port ZEUS-3D even among different flavours of UNIX .
Thus, a namelist emulator was built into EDITOR which, during one of its many passes
through the code, replaces all namelist references (including reads and writes) with calls
to subroutines in the dnamelist.a library. The following discussion, therefore, reflects the
syntax for the EDITOR namelist, which differs somewhat from the Fortran90 version. If
desired, EDITOR can be instructed not to replace the namelist syntax (inmlst=0), in which
case your compiler’s namelist would be invoked. This may cause syntax errors to be issued
since standard FORTRAN namelists don’t allow variables passed via a subroutine to be
used as a namelist parameter, whereas the EDITOR namelist does.

In order to specify an input parameter, one merely needs to set it to the desired value as
done in the input deck inzeus found in the sample script file dzeus36.s (§2.3). The order
in which the variables appear in the namelist declaration need not be adhered to in the input
deck nor must all the variables be set. So long as the variable specified in the input deck is
a member of the namelist, then namelist will set the variable as specified.

There are a few rules to bear in mind. The namelists (but not necessarily the variables
within a namelist) in the input deck must be in the same order as they are encountered
during execution. If no parameters are to be set, an empty namelist (one with the namelist
name between two $ sentinels) must appear in the correct sequence. There is no problem
with namelists appearing that are never read, but a read to a non-existent namelist will
generate a namelist error message. In this catalogue, the order of the namelists is the same
as the order in which they appear in inzeus and in which they are encountered in dzeus36.

The syntactic rules of setting the variables can be gleaned from the input deck inzeus

(§2.3). Column 1 is reserved for a ‘c’ to “comment out” a namelist line which is then echoed
on the CRT when encountered in the input deck. Column 2 is reserved for the leading $
sentinel. The specification of the namelist may start in column 3 and must terminate with a
second $ sentinel. Until the second $ sentinel is found, all lines will be interpreted as part of
the same namelist. All characters appearing after the 72nd column will be ignored, including
the closing $ sentinel, should it inadvertently be placed there.

52
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B.1 IOCON—I/O CONtrol (subroutine MSTART)

This namelist sets the logical units to be used during execution. Typically, these parameters
will not need to be set to anything other than their default values. These parameters are
not written to the restart dump. Therefore, all non-default values for any of the parameters
in this namelist must be set each time the job is resumed.

parameter description default

iotty logical unit for terminal (standard output) 6
iopl1 logical unit for 1-D plots using NCAR/PSPLOT graphics 99
iopl2 logical unit for 2-D plots using NCAR/PSPLOT graphics 99
iolog logical unit for message log dump 30
iodmp logical unit for restart dumps 31
iopix logical unit for pixel dumps 32
iousr logical unit for user dumps 33
iotsl logical unit for time slice (history) ascii dumps 34
iotsp logical unit for time slice (history) plot dumps 99
iodis logical unit for display dumps 36
iorad logical unit for RADIO dumps 37
iocrk logical unit for cork dumps 38
iotmp logical unit for temporary files; unit should always 39

be closed after using so that other routines can
expect them to be available when needed.

intractv = 1 => interactive mode on (see INTCHK) 1
= 0 => interactive mode off; to prevent batch jobs

from calling CHECKIN at every time step.

WARNING: AVOID LOGICAL UNIT 3. APPARENT CONFLICT WITH NCAR.

NOTE : IOTTY MAY BE SET TO 6 (TO GET CRT OUTPUT) OR 0 (NO OUTPUT).

namelist / iocon /
1 iotty , iopl1 , iopl2 , iolog , iodmp
2 , iopix , iousr , iotsl , iotsp , iodis
3 , iorad , iocrk , iotmp , intractv

B.2 RESCON—REStart dump CONtrol (subroutine MSTART)

This namelist determines if the job is to be started from initial conditions, or if it is to
be restarted from a previous run. These parameters are not written to the restart dump.
Therefore, all non-default values for any of the parameters in this namelist must be set each
time the job is resumed.

The default values are set for starting from initial conditions, which occurs when the
third to fifth characters in resfile are 000. To restart a job, one can usually use the same
input deck as was used for the original run with resfile set to the desired restart dump
name. In addition, parameters in the namelist pcon may have to be changed.

The parameters *getm?; *=i,j,k, ?=n,x are designed so that only a portion of the
restart dump may be read, and/or so that the data may be read into a larger grid. That is,
it is not necessary for the field arrays in a restarted job to be dimensioned the same as those
in the run which generated the restart dump.

Example 1 : For a straight restart without altering the grid or the EDITOR macros, leave
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the values of igetmn, etc. to their defaults and make sure that the parameters in, etc. are
set to the same values as in the run which generated the restart dump.

Example 2 : If the first run was on a 643 grid and the user wishes to read the inner eighth of
the data and position them at the centre of a 1003 grid, and if the new portion of the grid
is to be determined from the existing grid, then the following settings are necessary:

igetmn = 17, jgetmn = 17, kgetmn = 17, iaddz = 1
igetmx = 48, jgetmx = 48, kgetmx = 48, jaddz = 1
iputmn = 35, jputmn = 35, kputmn = 35, kaddz = 1

The desired portion of the restart dump will be read and loaded into the 1003 grid between
i=35,66, j=35,66, k=35,66. In addition, the 1-grid x1a(35:66) (see §C.1 for a discussion of
the naming convention for the grid variables) will be filled by the values of x1a(17:48) in the
restart dump. The code will detect that the grids x1a, x2a, x3a are now incomplete, and will
call the appropriate modules to add zones to the x1-, x2-, and x3-grids. If the user wishes,
(*addz=1, *=i,j,k), the new portion of the grid may be determined automatically from the
existing grid. In this example, x1a(1:34) would be determined (i.e., dx1min, x1rat, etc.,
see namelist ggen1) from x1a(35:37). Similarly, x1a(67:100) would be determined from
x1a(64:66). Alternatively, the user may opt to set the new portion of the grid manually.
In this case, one should set *addz=0 and proceed with setting the namelists ggen1, ggen2,
ggen3. (See discussion in ggen1.) Note that if the user selects the manual option, it is
imperative that the portion of the new grid that overlaps the old grid be, in fact, identical
to the old grid. Next, all arrays will be padded with values at the edges of the portion read.
Thus d(1:34,j,k)=d(35,j,k), d(67:100,j,k)=d(66,j,k) (where d is the density array—
see §C.2), etc. Of course, the user is free to set the values of the padded portion of the
arrays to whatever values they want by linking a user-supplied subroutine to the EDITOR

macro PROBLEMRESTART (§2.2.2).

Finally, a job may be resumed from a restart dump with different EDITOR macros
defined or not. Thus, if a job that began with magnetic fields is to be resumed without them,
the user may recompile dzeus36 without magnetic fields (MHD not defined) and then blindly
read the restart dump which contains magnetic field arrays. There is enough information in
the restart dump that the code can selectively read the non-magnetic part of the dump and
resume the calculation as though there were never any magnetic fields. Of course, whether
suddenly disappearing the magnetic fields is physically realistic is another matter!

parameter description default

dtdmp problem time interval between restart dumps 0.0
= 0 => no restart dumps (probably a bad idea)
> 0 => write each dump to a new file
< 0 => overwrite old even (odd) numbered dump with

new even (odd) numbered dump at time interval
abs(dtdump)

nresdmp the sequential number for the next restart dump -1
< 0 => nresdmp = iresdmp

nlogdmp the sequential number for the next log file -1
< 0 => nlogdmp = ilogdmp
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idtag character*2 problem tag appended to filenames ’aa’
resfile restart dump filename ’zr000aa’
igetmn minimum x1-index (i) to be read from restart dump 1
igetmx maximum x1-index (i) to be read from restart dump in
iputmn i-index at which x1a(igetmn) is stored 1
iaddz < 0 => no new zones are generated 0

= 0 => call GRIDX1 to redo entire grid
> 0 => new zone spacing determined from existing grid

The variables (jgetmn, jgetmx, jputmn, jaddz) and (kgetmn, kgetmx, kputmn, kaddz) are
analogous to (igetmn, igetmx, iputmn, iaddz) for the 2- and 3-directions respectively.

namelist / rescon /
1 dtdmp , nresdmp , nlogdmp , idtag , resfile
2 , igetmn , igetmx , jgetmn , jgetmx , kgetmn
3 , kgetmx , iputmn , jputmn , kputmn , iaddz
4 , jaddz , kaddz

B.3 GGEN1—Grid GENerator for x1 (subroutine GRIDX1)

This namelist controls how the grid is determined in the 1-direction. All the parameters
in this namelist, as well as those in namelists ggen2, ggen3, and those read by subroutine
nmlsts are written to the restart dump. The stored values, therefore, will become the
“default” values of the parameters for any run resumed from the restart dump.

The grid can be created all at once or in several blocks. Each block requires a separate
read of this namelist specifying how that portion of the grid is to be computed. The param-
eter lgrid should be set to .true. (or equivalently .t. for the EDITOR namelist) only
for the last block. (Note that the EDITOR namelist also allows .f. as a short form for
.false..)

There are two types of gridding. The first is “ratioed gridding” where the distance
across a zone is a fixed multiple of the distance across the previous zone. If this multiple is
1, then the zones are uniform. If the multiple is 1.1, then each zone is 10% larger than the
previous one. If the multiple is 0.9, then each zone is 10% smaller than the previous one.
To determine a block of ratioed zones uniquely, one must specify the number of zones in the
block (nbl), the minimum and maximum extent of the block in coordinate units (x1min,
x1max), and either the smallest zone size in the block (dx1min) or the ratio to use between
zones (x1rat). Specifying either dx1min or x1rat will allow the other to be computed.

The second type of gridding is “scaled gridding” where the coordinate value is some
fixed multiple of the previous coordinate value. For ratioed grids, dx(n)=mult*dx(n-1).
For scaled grids, x(n)=mult*x(n-1). For example, scaled gridding would be appropriate for
the r-direction in spherical polar coordinates if the zones were all to have the same shape.
To determine a block of scaled zones uniquely, one must specify the number of zones in the
block (nbl) and the minimum and maximum extent of the block in coordinate units (x1min,
x1max). Neither dx1min nor x1rat are needed.

The grid can be scaled to physical units most conveniently by setting the multiplicative
factor x1scale to the desired scaling value.

For restarted jobs, there is a third gridding option. Setting igrid to zero will cause
the grid generator to skip over the nbl zones specified for this block. Thus, in the second
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example in the discussion for namelist rescon, one could set the new zones for the x1-
direction manually with three ggen1 namelist “cards”. The first card would set zones (1:34)
in whatever manner desired with the condition that the last zone of the new grid ends where
the first zone of the old grid begins. The second card would set igrid=0 and nbl=32. This
would leave zones (35:66) alone since they were set when the restart dump was read. Finally,
the third card would set zones (67:100) in whatever manner desired with the condition that
the first zone of the new grid begins where the last zone of the old grid ends.

Other than remaining within the memory limits of the machine, there are two practical
considerations when choosing the number of zones for each of the three dimensions. First,
if at all possible, the greatest number of zones should be along the 1-direction so that the
vector length of the vectorised loop is as long as possible7. Second, if the code is to be multi-
tasked, the number of zones (including the five boundary zones) in each direction should be
an integral multiple of the number of parallel processors available on the machine. This will
yield the best overall degree of parallelism.

parameter description default

nbl number of active zones in block being generated 1
x1min x1a(imin); bottom position of block 0.0
x1max x1a(imax); top position of block 0.0
x1scale arbitrary scaling factor for "x1min" and "x1max" 1.0
igrid method of computing zones. 1

= 0 => block has already been set (restarted runs only)
=+1 => (ratioed) use input "x1rat" to compute "dx1min".

"dx1min" = size of first zone in block
=-1 => (ratioed) use input "x1rat" to compute "dx1min".

"dx1min" = size of last zone in block
=+2 => (ratioed) use input "dx1min" to compute "x1rat".

"dx1min" = size of first zone in block
=-2 => (ratioed) use input "dx1min" to compute "x1rat".

"dx1min" = size of last zone in block
= 3 => (scaled) compute "x1rat" and "dx1min" from "nbl".

x1rat desired ratio dx1a(i+1) / dx1a(i) 1.0
dx1min size of first (igrid>0) or last (igrid<0) zone in block 0.0
lgrid = .false. => read another block (namelist card). .false.

= .true. => all blocks are read in. Do not look for
another "ggen1" namelist card.

namelist / ggen1 /
1 nbl , x1min , x1max , x1scale , igrid
2 , x1rat , dx1min , lgrid

B.4 GGEN2—Grid GENerator for x2 (subroutine GRIDX2)

See comments for GGEN1.

parameter description default

nbl number of active zones in block being generated 1
x2min x2a(jmin); bottom position of block 0.0
x2max x2a(jmax); top position of block 0.0

7This is an issue only if one is using a vector machine.
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x2scale arbitrary scaling factor for "x2min" and "x2max" 1.0
igrid method of computing zones. 1

= 0 => block has already been set (restarted runs only)
=+1 => (ratioed) use input "x2rat" to compute "dx2min",

"dx2min" = size of first zone in block
=-1 => (ratioed) use input "x2rat" to compute "dx2min",

"dx2min" = size of last zone in block
=+2 => (ratioed) use input "dx2min" to compute "x2rat",

"dx2min" = size of first zone in block
=-2 => (ratioed) use input "dx2min" to compute "x2rat",

"dx2min" = size of last zone in block
= 3 => (scaled) compute "x2rat" and "dx2min" from "nbl".

x2rat desired ratio dx2a(j+1) / dx2a(j) 1.0
dx2min size of first (igrid>0) or last (igrid<0) zone in block 0.0
units sets the angular units (character*2, RTP only) ’rd’

’rd’ => radians, ’pi’ => pi radians, ’dg’ => degrees
lgrid = .false. => read another block (namelist card). .false.

= .true. => all blocks are read in. Do not look for
another "ggen2" namelist card.

namelist / ggen2 /
1 nbl , x2min , x2max , x2scale , igrid
2 , x2rat , dx2min , units , lgrid

B.5 GGEN3—Grid GENerator for x3 (subroutine GRIDX3)

See comments for GGEN1.

parameter description default

nbl number of active zones in block being generated 1
x3min x3a(kmin); bottom position of block 0.0
x3max x3a(kmax); top position of block 0.0
x3scale arbitrary scaling factor for "x3min" and "x3max" 1.0
igrid method of computing zones. 1

= 0 => block has already been set (restarted runs only)
=+1 => (ratioed) use input "x3rat" to compute "dx3min",

"dx3min" = size of first zone in block
=-1 => (ratioed) use input "x3rat" to compute "dx3min",

"dx3min" = size of last zone in block
=+2 => (ratioed) use input "dx3min" to compute "x3rat",

"dx3min" = size of first zone in block
=-2 => (ratioed) use input "dx3min" to compute "x3rat",

"dx3min" = size of last zone in block
= 3 => (scaled) compute "x3rat" and "dx3min" from "nbl".

x3rat desired ratio dx3a(k+1) / dx3a(k) 1.0
dx3min size of first (igrid>0) or last (igrid<0) zone in block 0.0
units sets the angular units (character*2, ZRP and RTP only) ’rd’

’rd’ => radians, ’pi’ => pi radians, ’dg’ => degrees
lgrid = .false. => read another block (namelist card). .false.

= .true. => all blocks are read in. Do not look for
another "ggen3" namelist card.

namelist / ggen3 /
1 nbl , x3min , x3max , x3scale , igrid
2 , x3rat , dx3min , units , lgrid
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B.6 PCON—Problem CONtrol (subroutine NMLSTS)

Determines the criteria for terminating the job.

parameter description default

nlim cycles to run 0
tlim physical (problem) time to stop calculation 0.0

if tlim < 0, problem is stopped at exactly abs(tlim)
ttotal total seconds of execution time permitted for job 0.0
tsave seconds of execution (cpu) time reserved for cleanup 0.0

WARNING: should a job be restarted from a job with tlim<0, the sum of the
first and restarted job will not be identical to machine round-off to a
job that did the simulation in one run. This is because the single-run
job would not have the abbreviated time step in the middle as needed by
the first partial job to finish exactly on "prtime".

namelist / pcon /
1 nlim , tlim , ttotal , tsave

B.7 HYCON—HYdro CONtrol (subroutine NMLSTS)

Sets the parameters which control the hydrodynamics. One of the most important selectors
in this namelist, itote, chooses between the internal (itote=0) and total (itote=1; default)
energy equations, with the latter often but not always giving superior results. Pros and cons
for choosing between the two energy equations include: Execution time is generally faster for
the internal energy equation (by about 20%), and pressures are guaranteed positive definite
for courno<0.5. However, the algorithm is not strictly conservative which, among other
things, causes it to converge on incorrect values (by as much as 20%) in some 1-D shock-
tube tests and lead to qualitatively different results in some multi-dimensional problems. The
total energy equation is conservative and somewhat more stable allowing a slightly larger
Courant number (e.g., courno=0.75) than the internal energy equation in some applications.
However, internal energies are not positive definite and where they become negative, are reset
to e1floor. In the opinion of this author, the requirement that a code be strictly conservative
has been somewhat overblown in the literature. It is true that only conservative codes will
converge correctly on 1-D shock tube problems but, in the messy universe where the sum of
mechanical and thermal energies is known not to be conserved, a strictly conservative code
may less important than the assurance of positive-definite pressures. This version of the
code gives the user both options.

All energy variables should be interpreted as energy per unit volume. In setting up
a problem, the user should always initialise the internal energy density (variable e1 and
boundary values e1iib1, etc.; see §C.2 and §C.3) and not the total energy density, (et),
regardless of (itote). Being a primitive variable, boundary conditions are always applied to
the internal energy density. Note that if ISO is defined, itote is set to 0.

The steepest discontinuities this code can sustain are obtained with iord=2, iords=3,
and istp=2, where the latter assures only contact discontinuities are steepened. istp=1

will cause any discontinuity to be steepened and is intended for advection tests only. These
settings maintain contacts in 2 or 3 zones and most shocks in qcon+1 zones (although some
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slow shocks may be smeared out over as many as ten zones), but can also can cause the
bases of discontinuities or rarefactions to undershoot slightly and even “ring” in some 1-D
shock tube tests. More conservative settings are the defaults, for which the code runs 20%
faster and maintains contacts in 5 to 7 zones, and most shocks to qcon+2 zones.

A note on Consistent Advection: CA is a modification of how fluxes are computed to keep
them consistent with mass flux. Thus, “numerical drift” between angular momentum and
mass, such as that which caused early simulations of mass accretion to form rings rather
than discs, is significantly reduced (see Norman, Barton, and Wilson, 1980, ApJ).

Since its earliest inception, ZEUS has used CA on all flow variables, including all mo-
mentum components and energy, although its original purpose was for angular momentum
transport. In 2006, I discovered that CA applied to energy transport causes significant
ringing in Figures 1b and 2b of Ryu & Jones (1995, ApJ) and subsequently introduced a
parameter into ZEUS-3D (cadvs) to turn off CA for all scalar transport, including energy
density. At the same time, I introduced cadvc and cadvt to turn off CA for compressive
and transverse transport of momenta. I have found no test problem nor application in which
disengaging CA from energy transport has any deleterious consequence and, accordingly, the
default setting for cadvs is 0 (off). Conversely and not surprisingly, numerous tests show
that CA should remain engaged with momentum transport. Accordingly, the default settings
for cadvc and cadvt is 1 (on). Indeed, in a private communication, Mike Norman recalled
there to be no compelling reason at the time to include energy in the CA algorithm, other
than “what’s good for the goose is good for the gander”, and the failure of CA in energy
transport in the two R&J tests was the first evidence he saw of any problems introduced by
the algorithm.

parameter description default

qcon quadratic artificial viscosity (q) constant 2.0
qlin linear artificial viscosity (q) constant 0.0
courno The CFL-determined time step is multiplied by the 0.5

"Courant number", a "safety factor".
dtrat ratio of "dtmin" to initial value of "dt" 0.001

Set to 0.2 for no ramp-up of time step.
dtmax maximum time step to use huge
dtset constant value of "dt" to be set throughout simulation, 0.0

used only for testing; 0 => use computed "dt".
iord order of interpolation 2

= 1 => first order (donor cell) interpolation
=-1 => first order implicit interpolation
= 2 => second order (van Leer) interpolation
=-2 => second order implicit interpolation
= 3 => piecewise parabolic interpolation (PPI)
= 4 => second order velocity-corrected interpolation
= 5 => second order non-harmonic interpolation
= 6 => second order interpolation for non-uniform grid

Implicit interpolations (iord=-1,-2) affect compressive s* transport only;
interpolations for all other transport steps use abs(iord).

iords order of interpolation for scalars to override "iord" iord
istp contact discontinuity steepener (third order only) 0

= 0 => always off, 1 => always on, 2 => on only at
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contact discontinuity
**floor smallest value desired for variable ** scalars tiny

vectors 0.0
icool = 0 => use PDV in SRCSTEP 0

= 1 => use PDVCOOL in SRCSTEP for pdv work with
arbitrary cooling function

itote = 0 => solve the internal energy equation (positive 1
definite pressures but energy not conserved).

= 1 => solve the total energy equation (energy
conserved but pressure not positive definite)

iscydf = 0 => no subcycling on diffusion 0
= 1 => subcycle on diffusion

iscyqq = 0 => no subcycling on artificial viscosity 0
= 1 => subcycle on artificial viscosity (itote=0 only)

ix1x2x3 seed for directional splitting sequence 1
mind minimum value subroutine MINDEN will allow for density dfloor
nu kinematic viscosity (in units of LV) 0.0
isetemf affects flow-in skin values for emf(perp) and flow-in 0

boundary values for emf(par)
= 0 => SVALEMF* and BVALEMFS don’t overwrite (C)MOC*-

computed flow-in emfs with pre-set flow-in
arrays.

= 1 => SVALEMF* overwrite (C)MOC*-computed flow-in
emfs with preset flow-in arrays, but BVALEMFS
doesn’t.

= 2 => Both SVALEMF* and BVALEMFS overwrite (C)MOC*-
computed flow-in emfs with preset flow-in
arrays.

tspinup time to add all the desired angular velocity (SPINUP). 1.0
1.0 is characteristic time scale of the Bondi problem.

delta amplitude of imparted angular velocity (SPINUP) sqrt(2.0)
Default puts centrifugal barrier at critical point
(r=1) for perturbed Bondi flow.

orbchk = 0 => BNDYCHK will abort at a non-physical boundary. 0
= 1 => BNDYCHK issues a warning at a non-physical

boundary, but execution continues (dangerous!).
pjump minimum pressure jump that defines a "strong shock"; 2.0

sets the limit for diffusive shock acceleration
cadvs = 1 => consistent advection (CA) used with scalar 0

(energy) transport
= 0 => CA not used with scalar transport

cadvc = 1 => CA used with compressive momentum transport 1
= 0 => CA not used with compressive momentum transport

cadvt = 1 => CA used with transverse momentum transport 1
= 0 => CA not used with transverse momentum transport

trnvrsn = 0 => use legacy CMoC algorithm (MoC, HSMOC, CT) 1
= 1 => use the FIT algorithm
= 2 => same as 1, but with transverse Lorentz terms

rendered in conservative form.
=-2 => same as 2 but for legacy transport
= 3 => same as 2, but with new source terms in CTRAN*

expressed as a true flux triggering "magnetic
centrifugal" terms in STV*

=-3 => same as 3 but for legacy transport

Toggles for highly experimental "downwinding" algorithm:

uordq = 1 => upwinded interpolations of qq (art. visc.) 1
= 2 => downwinded interpolations of qq
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avordw = 1 => use 2-point averages for v* for et <-> e1 2
= 2 => use downwinded v* for et <-> e1

voutbc = 1 => outflow BC, v1(is) set to min(0,v1(isp1)), 1
original Wilson scheme (same @ other boundaries)

= 2 => outflow BC, v1(is) set to min(0,v1(is)) to
reduce negative pressures at boundaries

The routine SPINUP and the associated namelist variables "tspinup" and "delta"
were designed to perturb Bondi flow to form discs, but can be used in other
applications in which a gradual spin-up of the grid is desired.

namelist / hycon /
1 qcon , qlin , courno , dtrat , dtmax
2 , dtset , iord , iords , istp , dfloor
3 , e1floor , e2floor , v1floor , v2floor , v3floor
4 , b1floor , b2floor , b3floor , dafloor , icool
5 , itote , iscydf , iscyqq , ix1x2x3 , mind
6 , nu , isetemf , tspinup , delta , orbchk
7 , pjump , cadvs , cadvc , cadvt , trnvrsn
8 , uordq , avordw , voutbc

B.8 IIB—Inner I Boundary control (subroutine NMLSTS)

This namelist specifies both the boundary type and the inflow values for the variables that
can be set at the inner-i boundary. These variables are not declared if the EDITOR macro
ISYM is set. Any one of ten MHD boundary conditions may be specified independently at
every boundary zone by setting niib(j,k) to the desired value of btype, as follows:

btype = 1 (-1) => reflecting; grid singularity or symmetry axis
= 2 (1) => reflecting; non-conducting boundary (b_par=0 on bdy)
= 3 (5) => reflecting; conducting boundary (b_perp=0 on bdy)
= 4 (6) => reflecting; no B components change sign across boundary
= 5 (4) => periodic
= 6 => self-computing (for AMR)
= 7 => outflow (not yet functional)
= 8 => selective inflow
= 9 (2) => non-characteristic outflow
= 10 (3) => non-characteristic inflow

where the values of btype used in versions of ZEUS-3D previous to 3.5 are given parenthet-
ically.

The boundary values for the variables are used only in the event that a zone along
the boundary is inflow (btype=8,10). Otherwise, the boundary value is determined from
the flow variables on the active portion of the computational grid. The flow variables are d
(density), e1 (first internal energy density), e2 (second internal energy density), er (radiation
energy density), v1 (1-velocity), v2 (2-velocity), and v3 (3-velocity). In addition, skin values
for the transverse emf components and boundary values for the transverse magnetic field
components can be set (see extensive discussion below). Note that boundary values for the
total energy (et) are not set directly. These are computed (in BVALET) from the boundary
values of the primitive variables

The boundary type for the gravitational potential (gtype) is treated independently of
the MHD boundaries, since the nature of the Poisson equation (elliptical) is different from
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that of the MHD equations (hyperbolic). Gravitational boundary type is specified by setting
giib to the desired value of gtype, as follows:

gtype = 5 (4) => periodic
= 9 (2) => six-term multipole expansion
= 10 (3) => analytical (or preset) boundary values stored in gpiib. Time-

varying boundaries can be updated by a routine aliased to
BNDYUPDATE

where the values of gtype used in versions of ZEUS-3D previous to 3.5 are given parentheti-
cally. Any other value for gtype means the boundaries of φ are never updated, which would
be appropriate for constant boundary values set as part of the initial conditions.

New to version 3.5: Magnetic boundary conditions have been completely revamped, and
a new, stable algorithm has been implemented. To start, a distinction is now made between
the skin (which can receive characteristic information directly from the boundary region
and/or the active grid) and the boundary, which can only receive characteristic information
from the boundary region within a given CFL-limited timestep. For example, at the inner-i
boundary, the i=is face constitutes the “skin”, while all zones—face- or zone-centred—at
i=ism1, ism2 are in the boundary. Because of this distinction, magnetic “skin” values and
“boundary” values are now treated differently in ZEUS-3D. Skin values are set in routines
SVALEMF* which are called by the (C)MOC* routines where the distinction between the two
“terms” in the emf s is needed to set some skin conditions. Boundary values are set by
BVALEMFS called at the top of CT where all components of the emf s are needed to set the
boundary conditions for each.

The main problem with the algorithm used in version 3.4 was that skin values of the
magnetic field were set directly when setting boundary conditions. This is folly, since re-
setting the magnetic flux through the face of a zone lying along the skin changes the net
magnetic flux into the adjacent grid zone, introducing a magnetic monopole. This problem
was particularly acute when setting inflow boundaries, and thus all inflow arrays such as
b1iib1 which allowed the normal (to the boundary) magnetic field to be set directly both
on the skin and inside the boundary have been purged from the code.

In this version, the user must now completely initialise all magnetic field arrays (b1,
b2, and b3) in their problem generator, including all boundaries. For inflow boundaries,
skin values of the parallel field (e.g., B1 at the i-skins) are maintained by user-set arrays
emf2iib1 and emf3iib1 which lie along the inner i-skin. Typically, these components of the
emf are set by physical boundary conditions on the skin (e.g., v2 = v3 = 0; B2 = B3 = 0 ⇒
ε2 ∝ v3B1 − v1B3 = 0; ε3 ∝ v1B2 − v2B1 = 0). Meanwhile, boundary values for the parallel
field [e.g., b1(ism2:ism1)] are determined by the solenoidal condition and thus are allowed
to “float”, regardless of boundary conditions. Accordingly, there are no arrays emf2iib2,
emf3iib2, etc.

As in previous versions of the code, inflow conditions on the transverse magnetic field
components (e.g., B2 and B3 at the i-boundaries) are controlled by the user-set arrays
b2iib1, b2iib2, b3iib1, and b3iib2 at the inner-i boundary. Note that there are no skin
values for the transverse components, only boundary values. Should constant boundary
values be desired, these are most conveniently set to the corresponding initial values of b2
and b3. Should these components need to vary in time, the user must supply updated values
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of b2iib1, b2iib2, b3iib1, and b3iib2 at the current time and proper location at the
beginning of each MHD cycle. For this, the EDITOR alias BNDYUPDATE can be aliased to a
user-supplied routine that sets the boundary arrays as needed (§2.2.2).

Further, the concept of selectively setting inflow conditions depending on whether various
characteristics arrive at the skin from the boundary or grid has been introduced. For the
emf s, selective inflow conditions is controlled by the parameter isetemf, set in namelist
hycon. In general, if one expects the skin to receive information only from the boundary
region (as in super-fast inflow), isetemf should be set to 1 and the user should supply values
for the transverse emf s based on boundary conditions alone. If flow across the boundary is
sub-fast, sub-Alfvén, or even sub-slow, isetemf probably should be set to 0 (in which case, the
skin emf s will remain as computed by the (C)MOC* routines), though there are circumstances
where it still may be best to set isetemf differently (e.g., CORONA). Regardless, care must
be taken not to over-specify the boundary.

Selective inflow conditions are enabled using the new boundary type 8. This behaves just
like boundary type 10 (inflow), except it allows designated variables to “float” at the bound-
ary (take on the nearest grid value) rather than being set to the pre-determined boundary
arrays (e.g., diib1 for density). To specify that a variable float, its boundary array should
be set to the global parameter huge (§C.6), a nonsensical value that triggers logic in the
boundary routines to set the variable according to its value in the nearest active grid zone
(very similar to reflecting boundary type 2, except v1 is not set to zero at i=is). An example
of the use of selective inflow conditions may be found in the problem generator CORONA for the
case where local parameter oork=2. This establishes the so-called Krasnopolsky conditions,
first introduced into an NCSA version of ZEUS-3D by Krasnopolsky, et al. (1999, ApJ, 526,
631) to launch sub-Alfvénic (initially) astrophysical jets from an accretion disc maintained
as a boundary condition.

Additional discussion may be found in §1.5.

parameter description default

niib (j,k) "btype" of inner i boundary on sweep j,k 9
giib "gtype" of entire inner i boundary 2
**iib1(j,k) first inner i boundary value of variable ** **floor

for sweep j,k (flow in only)
**iib2(j,k) second inner i boundary value of variable ** **floor

for sweep j,k (flow in only)
**iib3(j,k) third inner i boundary value of variable ** **floor

for sweep j,k (flow in only)
gpiib*(j,k) analytical or preset values for gp on iib 0.0

for sweep j,k (giib=3 only)
jsli number of zones in j-direction to slip periodic 0

i-boundaries >0 => oib is ahead of the iib.
ksli number of zones in k-direction to slip periodic 0

i-boundaries >0 => oib is ahead of the iib.

namelist / iib /
1 niib , giib , diib1 , diib2 , v1iib1
2 , v1iib2 , v1iib3 , v2iib1 , v2iib2 , v3iib1
3 , v3iib2 , jsli , ksli

*if -def,ISO
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4 , e1iib1 , e1iib2
*endif -ISO
*if def,TWOFLUID

5 , e2iib1 , e2iib2
*endif TWOFLUID
*if def,RADIATION

6 , eriib1 , eriib2
*endif RADIATION
*if def,GRAV

7 , gpiib1 , gpiib2
*endif GRAV
*if def,MHD

8 , emf1iib1, emf1iib2, emf2iib1, emf3iib1, b3iib1
9 , b3iib2 , b2iib1 , b2iib2

*endif MHD
*if def,AGING

1 , daiib1 , daiib2
*endif AGING

Only v1 has three boundary values that can be set (at i=is,ism1,ism2). Since just the skin
values of emf2 and emf3 can be set, there is no second or third boundary variable available.
All remaining variables are zone-centred in the i-direction, and thus have two boundary
values to set (at i=ism1,ism2).

B.9 OIB—Outer I Boundary control (subroutine NMLSTS)

This namelist specifies both the boundary type and the in-flow values of all the flow variables
for the outer-i boundary. These variables are not declared if the EDITOR macro ISYM is
set. See comments for IIB.

parameter description default

noib (j,k) "btype" of outer i boundary on sweep j,k 2
goib "gtype" of entire outer i boundary 2
**oib1(j,k) first outer i boundary value of variable ** **floor

for sweep j,k (flow in only)
**oib2(j,k) second outer i boundary value of variable ** **floor

for sweep j,k (flow in only)
**oib3(j,k) third outer i boundary value of variable ** **floor

for sweep j,k (flow in only)
gpoib*(j,k) analytical or preset values for gp on oib 0.0

for sweep j,k (goib=3 only)

namelist / oib /
1 noib , goib , doib1 , doib2 , v1oib1
2 , v1oib2 , v1oib3 , v2oib1 , v2oib2 , v3oib1
3 , v3oib2

*if -def,ISO
4 , e1oib1 , e1oib2

*endif -ISO
*if def,TWOFLUID

5 , e2oib1 , e2oib2
*endif TWOFLUID
*if def,RADIATION

6 , eroib1 , eroib2
*endif RADIATION
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*if def,GRAV
7 , gpoib1 , gpoib2

*endif GRAV
*if def,MHD

8 , emf1oib1, emf1oib2, emf2oib1, emf3oib1, b3oib1
9 , b3oib2 , b2oib1 , b2oib2

*endif MHD
*if def,AGING

1 , daoib1 , daoib2
*endif AGING

B.10 IJB—Inner J Boundary control (subroutine NMLSTS)

This namelist specifies both the boundary type and the in-flow values of all the flow variables
for the inner-j boundary. These variables are not declared if the EDITOR macro JSYM is
set. See comments for IIB.

parameter description default

nijb (k,i) "btype" of inner j boundary on sweep k,i 2
gijb "gtype" of entire inner j boundary 2
**ijb1(k,i) first inner j boundary value of variable ** **floor

for sweep k,i (flow in only)
**ijb2(k,i) second inner j boundary value of variable ** **floor

for sweep k,i (flow in only)
**ijb3(k,i) third inner j boundary value of variable ** **floor

for sweep k,i (flow in only)
gpijb*(k,i) analytical or preset values for gp on ijb 0.0
kslj number of zones in k-direction to slip periodic 0

j-boundaries >0 => ojb is ahead of the ijb.
islj number of zones in i-direction to slip periodic 0

j-boundaries >0 => ojb is ahead of the ijb.

namelist / ijb /
1 nijb , gijb , dijb1 , dijb2 , v1ijb1
2 , v1ijb2 , v2ijb1 , v2ijb2 , v2ijb3 , v3ijb1
3 , v3ijb2 , kslj , islj

*if -def,ISO
4 , e1ijb1 , e1ijb2

*endif -ISO
*if def,TWOFLUID

5 , e2ijb1 , e2ijb2
*endif TWOFLUID
*if def,RADIATION

6 , erijb1 , erijb2
*endif RADIATION
*if def,GRAV

7 , gpijb1 , gpijb2
*endif GRAV
*if def,MHD

8 , emf2ijb1, emf2ijb2, emf3ijb1, emf1ijb1, b1ijb1
9 , b1ijb2 , b3ijb1 , b3ijb2

*endif MHD
*if def,AGING

1 , daijb1 , daijb2
*endif AGING
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B.11 OJB—Outer J Boundary control (subroutine NMLSTS)

This namelist specifies both the boundary type and the in-flow values of all the flow variables
for the outer-j boundary. These variables are not declared if the EDITOR macro JSYM is
set. See comments for IIB.

parameter description default

nojb (k,i) "btype" of outer j boundary on sweep k,i 2
gojb "gtype" of entire outer j boundary 2
**ojb1(k,i) first outer j boundary value of variable ** **floor

for sweep k,i (flow in only)
**ojb2(k,i) second outer j boundary value of variable ** **floor

for sweep k,i (flow in only)
**ojb3(k,i) third outer j boundary value of variable ** **floor

for sweep k,i (flow in only)
gpojb*(k,i) analytical or preset values for gp on ojb 0.0

namelist / ojb /
1 nojb , gojb , dojb1 , dojb2 , v1ojb1
2 , v1ojb2 , v2ojb1 , v2ojb2 , v2ojb3 , v3ojb1
3 , v3ojb2

*if -def,ISO
4 , e1ojb1 , e1ojb2

*endif -ISO
*if def,TWOFLUID

5 , e2ojb1 , e2ojb2
*endif TWOFLUID
*if def,RADIATION

6 , erojb1 , erojb2
*endif RADIATION
*if def,GRAV

7 , gpojb1 , gpojb2
*endif GRAV
*if def,MHD

8 , emf2ojb1, emf2ojb2, emf3ojb1, emf1ojb1, b1ojb1
9 , b1ojb2 , b3ojb1 , b3ojb2

*endif MHD
*if def,AGING

1 , daojb1 , daojb2
*endif AGING

B.12 IKB—Inner K Boundary control (subroutine NMLSTS)

This namelist specifies both the boundary type and the in-flow values of all the flow variables
for the inner-k boundary. These variables are not declared if the EDITOR macro KSYM is
set. See comments for IIB.

parameter description default

nikb (i,j) "btype" of inner k boundary on sweep i,j 2
gikb "gtype" of entire inner k boundary 2
**ikb1(i,j) first inner k boundary value of variable ** **floor

for sweep i,j (flow in only)
**ikb2(i,j) second inner k boundary value of variable ** **floor

for sweep i,j (flow in only)
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**ikb3(i,j) third inner k boundary value of variable ** **floor
for sweep i,j (flow in only)

gpikb*(i,j) analytical or preset values for gp on ikb 0.0
islk number of zones in i-direction to slip periodic 0

k-boundaries >0 => okb is ahead of the ikb.
jslk number of zones in j-direction to slip periodic 0

k-boundaries >0 => okb is ahead of the ikb.

namelist / ikb /
1 nikb , gikb , dikb1 , dikb2 , v1ikb1
2 , v1ikb2 , v2ikb1 , v2ikb2 , v3ikb1 , v3ikb2
3 , v3ikb3 , islk , jslk

*if -def,ISO
4 , e1ikb1 , e1ikb2

*endif -ISO
*if def,TWOFLUID

5 , e2ikb1 , e2ikb2
*endif TWOFLUID
*if def,RADIATION

6 , erikb1 , erikb2
*endif RADIATION
*if def,GRAV

7 , gpikb1 , gpikb2
*endif GRAV
*if def,MHD

8 , emf3ikb1, emf3ikb2, emf1ikb1, emf2ikb1, b2ikb1
9 , b2ikb2 , b1ikb1 , b1ikb2

*endif MHD
*if def,AGING

1 , daikb1 , daikb2
*endif AGING

B.13 OKB—Outer K Boundary control (subroutine NMLSTS)

This namelist specifies both the boundary type and the in-flow values of all the flow variables
for the outer-k boundary. These variables are not declared if the EDITOR macro KSYM is
set. See comments for IIB.

parameter description default

nokb (i,j) "btype" of outer k boundary on sweep i,j 2
gokb "gtype" of entire outer k boundary 2
**okb1(i,j) first outer k boundary value of variable ** **floor

for sweep i,j (flow in only)
**okb2(i,j) second outer k boundary value of variable ** **floor

for sweep i,j (flow in only)
**okb3(i,j) third outer k boundary value of variable ** **floor

for sweep i,j (flow in only)
gpokb*(i,j) analytical or preset values for gp on okb 0.0

namelist / okb /
1 nokb , gokb , dokb1 , dokb2 , v1okb1
2 , v1okb2 , v2okb1 , v2okb2 , v3okb1 , v3okb2
3 , v3okb3

*if -def,ISO
4 , e1okb1 , e1okb2

*endif -ISO
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*if def,TWOFLUID
5 , e2okb1 , e2okb2

*endif TWOFLUID
*if def,RADIATION

6 , erokb1 , erokb2
*endif RADIATION
*if def,GRAV

7 , gpokb1 , gpikb2
*endif GRAV
*if def,MHD

8 , emf3okb1, emf3okb2, emf1okb1, emf2okb1, b2okb1
9 , b2okb2 , b1okb1 , b1okb2

*endif MHD
*if def,AGING

1 , daokb1 , daokb2
*endif AGING

B.14 GRVCON—GRaVity CONtrol, (subroutine NMLSTS)

Gravitational self-potential is switched on by defining GRAV and aliasing GRAVITY to the
desired gravity routine. If GRAVITY is aliased to gravity, the user must select the desired
Poisson-solver by specifying a value for grvalg.

A point mass potential can be included by specifying a positive value for ptmass. A
point mass potential does not require defining GRAV, does not call the GRAVITY module, and
is not included in the array gp which is strictly used for self -gravity. Its effect is explicitly
added as velocity source terms in the routines stv1, stv2, and stv3. Thus, a point-mass
potential may be used in conjunction with self-gravity or with self-gravity turned off. Note
that ptmass should scale with d*x1**3.

Finally, a uniform background acceleration (as on the surface of the Earth) may be
imposed along one of the grid directions by specifying a non-zero value for gacc (negative
value ⇒ toward inner boundary) and gdir. As with ptmass, gacc is applied directly in
STV* without requiring GRAV to be defined and independent of array gp. Note that gacc

should scale with cs**2/dx1. Thus, on the surface of the Earth and with cs = 331.5 m/s
= 1 (scaled) and dx1 = 1 m = 1 (scaled), g = 9.81 m/s2 = 8.93× 10−5 (scaled).

parameter description default

gcnst gravitational constant 0.25/pi
= 0.25/pi for unitless calculations
= 6.67428d-11 for mks (2006 CODATA value)
= 6.67428d-08 for cgs

ptmass fixed central point mass object. If using scaled 0.0
units, "ptmass" (scaled point mass M) will depend
on "gcnst", the scaling for density, and grid
size. For gcnst = 1/(4 pi), ptmass = (4 pi G M)
/ (ds rs**3), where "ds" is the density scale and
"rs" the length scale. For M = 1 solar mass,
ds = 3.0e5 H atoms per m**3, and rs = 1.0e3 AU,
ptmass ~ 1.

iptmass i index of point mass ismn
jptmass j index of point mass jsmn
kptmass k index of point mass ksmn
gacc uniform background acceleration field 0.0
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< 0 => toward inner boundary
> 0 => toward outer boundary

gdir direction of gacc 1
grvalg self-gravitational algorithm to be used. 1

= 1 => Successive Overrelaxation (SOR)
= 2 => Full Multi-grid (FMG)
= 3 => FFT/FST solvers

gcycle maximum number of iterations for SOR GRAVITYITER
number of V-cycles for FMG

epsgrv maximum tolerance for convergence of GRAVITYERROR
Poisson solvers

namelist / grvcon /
1 gcnst , ptmass , iptmass , jptmass , kptmass
2 , gacc , gdir , grvalg , gcycle , epsgrv

B.15 AMBCON—AMBipolar Diffusion CONtrol, (subroutine NMLSTS)

This namelist includes the parameters to control ambipolar diffusion (AD), and is included
in the precompiled code if the AMBIDIFF macro is defined. Note that if gammaad<0, AD will
not be applied.

Ambipolar diffusion is the physical process by which magnetic field is not fully coupled
to the fluid. If only a portion of the fluid is ionised, the neutral particles are coupled to the
magnetic field only via collisions with the ionised particles which are coupled to the field.
Failure of such collisions to keep the ionised and neutral components together can cause
some mass to “slip” relative to the magnetic field, a process known as ambipolar diffusion.

Done properly, one would track both the neutral and ionised components as two separate
but co-spatial fluids. Given the current capability of ZEUS-3D to track a second fluid, this
may not be terribly difficult to implement though, at the time of this writing, has not been
tried. Instead, the one-fluid approach of Duffin & Pudritz (2008, MNRAS, 391, 1659) has
been implemented which is computationally relatively inexpensive, but does limit its use to
low-ionisation fluids.

As a parabolic term in an otherwise hyperbolic system of equations, the CFL-limited
AD time step is typically much less (by a factor of ∼100) than the MHD time step. Running
the simulation on the AD time step (iscyad = 0), while being the most accurate, can be
prohibitively expensive computationally. Alternately, one can run on the MHD time step and
sub-cycle on the AD time step (iscyad = 1), much like is currently possibly for a diffusive
second fluid (iscydf) and the artificial viscosity (iscyqq). This speeds up the 1-D C-shock
test by a factor of ∼ 5–6. Better still, one can “super-step” on the AD time step (Meyer
et al., 2012, MNRAS, 422, 2102) giving a further factor of ∼ 6 speed-up with little if any
appreciable cost in accuracy over sub-cycling.

The default settings assume that the gas is a mix of 10% He and 90% H, by number of
atoms. The ions are taken to be HCO+ and Na+, which both have masses of approximately
29.0 a.m.u., and hydrogen is assumed to be molecular. gammaad is given by:

γAD =
〈σν〉ni

mi +mn

,

where 〈σν〉ni is the collision rate between neutral and ionized particles (1.7×10−9 cm3 s−1 for
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H2), mi is the mass of an ion, and mn is the mass of a neutral particle. For the gas described
here, γAD = 3.28× 1013 g−1 cm3 s−1.

For further details, the reader is referred to Duffin & Pudritz (2008, MNRAS, 391, 1659),
or the Honours thesis by Chris MacMackin (2015, SMU).

parameter description default

iscyad =0 => no subcycling for AD 1
=1 => subcycling for AD
=2 => super time-stepping for AD

gammaad drag coefficient representing coupling between -1.0
ions and neutrals. <0 => huge, turning off AD.
Default masses => 3.28d13 g^-1 cm^3 s^-1.

betacoef numerator in expression for AD beta. For 10% He, 1.4
90% H, use 1.4. For 100% H, use 1.0.

ionconst =0 => calculate ion density using parameterisation 0
=1 => constant ion density (for C-shock tests)

dscale scaling to convert ion density from ZEUS to cgs 2.0d-18
units.

mion mass of ions in cgs units 4.81d-23
mneutral mass of neutrals in cgs units 3.82d-24

namelist / ambcon /
1 iscyad , gammaad , betacoef, ionconst, dscale
2 , mion , mneutral

B.16 EQOS—EQuation Of State control (subroutine NMLSTS)

This namelist specifies the parameters which control the equation of state. Using all the
defaults is recommended, unless a different adiabatic constant (gamma) is required. Note
that if an isothermal equation of state is desired, setting the EDITOR definition ISO in addi-
tion to setting niso = 1 will allow execution to take advantage of the reduced computations
necessary for isothermal systems. Parameters dimensioned with nmat allow for values to be
set for both fluids if TWOFLUID is set, with the first element reserved for the first fluid (that
which exists when TWOFLUID is not set), and the second element for the second (possibly
diffusive) fluid enabled when TWOFLUID is set.

parameter description default

gamma (nmat) ratio of specific heats 5/3
rgas (nmat) gas constant 1.0
niso (nmat) = 0 => adiabatic eos 0

= 1 => isothermal eos
ciso (nmat) isothermal sound speed 1.0
rmetal (nmat) metallicity => cooling strength M-MML 0.0
diffc1, diffc2 diffusion coefficient (for the second fluid) is 0.0

set to diffc1 / B**diffc2

namelist / eqos /
1 gamma , rgas , niso , ciso , rmetal
2 , diffc1 , diffc2
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B.17 GCON—Grid motion CONtrol (subroutine NMLSTS)

This namelist sets the parameters for grid motion, should a partial tracking of the flow be
required. This feature has been dormant for years, and should this feature be desired, some
code development may be required.

parameter description default

x1fac x1 motion factor 0.0
< 0 gives "Lagrangian" tracking in x1 lines

x2fac x2 motion factor 0.0
< 0 gives "Lagrangian" tracking in x2 lines

x3fac x3 motion factor 0.0
< 0 gives "Lagrangian" tracking in x3 lines

ia i<ia => zone ratio is preserved in x1 lines is=3
ja j<ja => zone ratio is preserved in x2 lines js=3
ka k<ka => zone ratio is preserved in x3 lines ks=3
igcon selects grid treatment: 0

=0 => separate motion
=1 => averaged motion
=2 => tracking x1, x2, and x3 boundaries
=3 => averaged boundary tracking
=4 => input grid boundary speeds

vg1(ie) = x1fac * central sound speed
vg2(je) = x2fac * central sound speed
vg3(ke) = x3fac * central sound speed

namelist / gcon /
1 x1fac , x2fac , x3fac , ia , ja
2 , ka , igcon

B.18 EXTCON—grid EXTension CONtrol (subroutine NMLSTS)

This namelist controls the grid extension feature of the code. This is useful only for prob-
lems in which a shock separates quiescent material (which does not require updating) from
material requiring computations. As the shock propagates across the grid, more zones are
added to the computational domain until the entire domain has been included. Because
quiescent zones are not being updated, a substantial savings in computation time could be
realised. Use this feature with caution; improper use can be disastrous.

parameter description default

istretch(1) .le. 0 => perform computations over entire i-domain 0
.gt. 0 => i-index of first zone in initial i-domain

istretch(2) i-index of last zone in initial i-domain. 0
.le. (1) => istretch(2)=istretch(1)+istretch(3)-1

istretch(3) .le. 0 => 10 0
istretch(4) .le. 0 => istretch(3) 0
jstretch(1,2,3,4) same as "istretch", but for 2-direction.
kstretch(1,2,3,4) same as "istretch", but for 3-direction.
extvar specifies variable used to detect dis- ’d’

turbance in the quiescent ambient medium
(character*2). Legal values are: ’d ’,
’e ’ (pressure), ’se’ (temperature).
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Note that ismn and iemx are the user-imposed limits of the grid in the i-direction, while is
and ie are the i-limits of the do-loops. With grid extension off, is = ismn and ie = iemx.
With grid extension on, is .ge. ismn and ie .le. iemx (§C.1). is is decremented by
istretch(3) and/or ie is incremented by istretch(4) whenever the quiescent value of the
specified variable (extvar) changes by 3% within 5 zones of the current domain boundary.
Note that is will not be permitted to fall below ismn and ie will not be permitted to rise
above iemx. Grid extension in the i-direction is turned off by keeping istretch(1) = 0

(its default value).
An entirely analogous discussion holds for the j- and k-directions.

namelist / extcon /
1 istretch, jstretch, kstretch, extvar

B.19 PL1CON—PLot (1-D) CONtrol (subroutine NMLSTS)

This namelist controls the 1-D graphics. During a run, as many as nios 1-D slices may be
specified for each variable plotted, where nios is a parameter set before compilation. For
every slice chosen, a file (in either metacode or postscript) is created with a plot generated
for each variable specified. These plots may be arranged in the same frame or separate
frames, and can have any rectangular shape desired. All plots are of publication quality.
Each 1-D slice (bounded by x1pl1mn, x1pl1mx, etc.) runs parallel to one of the axes of the
computational grid. To specify the slice uniquely, two of ipl1, jpl1, and kpl1 must be set.
If ipl1mn, etc. is 0, x1pl1mn, etc. is used instead.

For 1-D runs such as shock-tube tests, the analytical solution may be overlaid by setting
EDITOR macro RIEMANN and setting the namelist parameters pl1soln and xdiscpl1. The
Riemann solver (courtesy of Tom Jones) takes the end points of the 1-D run as the left and
right states, and thus the run should stop before the boundaries are reached.

N.B. For restarted runs in which the computation is resumed on a larger or smaller grid
and where the default values for x1pl1mn, x1pl1mx, etc. were used in the initial run, it will
be necessary to set x1pl1mn, x1pl1mx, etc. in the input deck for the restarted run to the
extrema of the new grid if the plots are to extend to the bounds of the new grid. Otherwise,
the plots will be bound by the old grid.

parameter description default

General

dtpl1 physical (problem) time interval between 1-D 0.0
plot dumps. 0.0 => no plots.

npl1dmp the sequential number for the next 1-D plot file -1
< 0 => npl1dmp = ipl1dmp (default)

units sets the units of angular dimensions (character*2) ’rd’
’dg’ => degrees, ’rd’ => radians
’pi’ => units of pi radians

aspect < 1.0 => plots are wide and short 1.0
= 1.0 => square plots
> 1.0 => plots are tall and narrow

pwtpl1 pen weight for 1-D plots 1.0
norppl1 = 1 => use NCAR graphics library for 1-D plots 2

= 2 => use PSPLOT graphics library for 1-D plots
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corl selector for lines and symbols for plots 1
=-6 => open diamonds; one per plot element
=-5 => open pentagrams
=-4 => asterisk (*)
=-3 => open squares
=-2 => open triangles
=-1 => plus signs (+)
= 0 => crosses (x)
= 1 => open circles (o)
= 2 => smooth curve drawn through points
any other value => no plot

npl1h number of frames horizontally per page 1
npl1v number of frames vertically per page 1
allxl = 2 => all x labels/annotations are drawn 2

= 1 => only the x-label/annotations on the bottom
row of plots on the page are drawn.

= 0 => labels aren’t even drawn on the bottom row.
allxl < 0 same as abs(allxl) except last annotation
is not drawn if it falls at right edge of frame.
If plots are assembled a posterori, this is useful
to prevent right-most annotation of left plot from
overwriting left-most annotation of right plot.

allyl = 2 => all y labels/annotations are drawn 2
= 1 => only the y-label/annotations on the left

column of plots on the page are drawn.
= 0 => labels aren’t even drawn on the left column.

pl1hdr = 0 => suppresses header 1
= 1 => header is printed on top of plot

pl1ftr = 0 => suppresses footer 1
= 1 => footer is printed on bottom of plot

Slice control

pl1dir (nios) direction of 1-D plot: 1, 2, or 3 => 1-, 2-, or 0
3-direction. 0 => no plots.

ipl1 (nios) i index of 1-D plot in 2- or 3-direction (is+ie)/2
jpl1 (nios) j index of 1-D plot in 3- or 1-direction (js+je)/2
kpl1 (nios) k index of 1-D plot in 1- or 2-direction (ks+ke)/2
x1pl1mn (nios) minimum x1 of slice; or used by "pl1mean" x1a(is)
x1pl1mx (nios) maximum x1 of slice; or used by "pl1mean" x1a(ie+1)
x2pl1mn (nios) minimum x2 of slice; or used by "pl1mean" x2a(js)
x2pl1mx (nios) maximum x2 of slice; or used by "pl1mean" x2a(je+1)
x3pl1mn (nios) minimum x3 of slice; or used by "pl1mean" x3a(ks)
x3pl1mx (nios) maximum x3 of slice; or used by "pl1mean" x3a(ke+1)
ipl1mn (nios) i-index of minimum x1 of slice 0
ipl1mx (nios) i-index of maximum x1 of slice 0
jpl1mn (nios) j-index of minimum x2 of slice 0
jpl1mx (nios) j-index of maximum x2 of slice 0
kpl1mn (nios) k-index of minimum x3 of slice 0
kpl1mx (nios) k-index of maximum x3 of slice 0
pl1xlab (nios) character string containing NCAR mark-up language

(see below) for the desired x-label. Default is
the generic coordinate label (x1, x2, x3).

NCAR markup syntax:

Fonts: |F0| = times-roman (default)
|F10| = times-roman italic
|F14| = times-roman italic bold
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|F5| = greek italic: |F5|r => \rho; |F5|w => \omega
|F18| = math characters: |F18|A = \perp; |F18|R => \parallel

|F18|Q = | (vertical bar)
|F34| = math characters: |F34|W = \cdot; |F34|Q => \nabla

|F34|0 = \deg

Position: |B| => subscript; |S| => superscript; |N| => normal

One may combine one position designator with one font change in
each "field" (bounded by ||), and then string as many fields
together as one needs:

"|F10|e|BF0|t|NF10|+e|BF0|r" = $e_{\rm t}+e_{\rm r}$

Variable control

pl1var (niov) names of variables to be plotted (character*2). ’zz’
Valid names are: ’a ’ (vector potential norm),
’a1’, ’a2’, ’a3’ (vector potential components),
’ag’ (synchrotron age), ’B3’ (b3*b3), ’b ’ (mag-
netic field norm), ’b1’, ’b2’, ’b3’, ’ba’, ’bb’,
’bc’ (magnetic field components), ’bd’ (magnetic
field norm/density), ’bP’, ’bR’ (phi- and radial
magnetic field components), ’br’ (bremsstrahlung
emissivity), ’bt’ (plasma beta), ’cs’ (sound
speed), ’d ’ (density), ’da’ (density-age), ’e1’
(1st int. energy), ’e2’ (2nd int. energy), ’er’
(radiation energy), ’et’ (total energy density),
’gl’ [d(r lt) / dr], ’gk’ [d(r kt) / dr], ’gp’
(gravitational potential), ’hy’ [(1/rho) dp/dr -
3/(2r**2)], ’j ’ (current density norm), ’j1’,
’j2’, ’j3’ (current density components), ’k1’
(entropy of 1st fluid), ’k2’ (2nd entropy), ’ka’
(avg. 1st + 2nd ent.), ’kt’ (kinetic viscous
radial trans.), ’lu’ (radiative luminosity), ’l ’
(angular momentum), ’lt’ (angular momentum radial
transport), ’m ’ (Mach number), ’mA’ (Alfven Mach
number), ’mf’ (fast MS Mach number), ’ms’ (slow
MS Mach number), ’om’ (angular velocity), ’p1’
(1st thermal pressure), ’p2’ (magnetic pressure),
’p3’ (1st ther. + mag. pres.), ’p4’ (2nd thermal
pressure), ’p5’ (1st ther. + 2nd ther. pres.),
’p6’ (mag. + 2nd ther. pres.), ’p7’ (1st ther. +
mag. + 2nd ther. pres.), ’pa’ [pitch angle;
atan(b1/bP)], ’pg’ (pseudo-gravitational poten-
tial), ’ps’ [atan(b3/b2)], ’s1’, ’s2’, ’s3’
(momentum components), ’sy’ (synchrotron emissiv-
ity), ’u1’ (1st specific int. energy), ’u2’ (2nd
specific int. energy), ’v ’ (speed), ’v1’, ’v2’,
’v3’, ’va’, ’vb’, ’vc’ (velocity components),
’vA’ (Alfven speed), ’vf’ (fast speed), ’vs’
(slow speed), ’vv’ [div(v)], ’w ’ (vorticity
norm), ’w1’, ’w2’, ’w3’ (vorticity components).

nlpl1 (niov) = 1 => linear-linear plot 1
= 2 => log(y)-linear(x) plot
= 3 => linear(y)-log(x) plot
= 4 => log-log plot

pl1min (niov) minimum value to be plotted. 0.0
pl1max (niov) maximum value to be plotted. 0.0
pl1mm = 1 => "pl1min" and "pl1max" are set to extrema 1
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of each variable.
= 0 => Use input values of "pl1min" & "pl1max" to

set range of plot. If pl1max .le. pl1min,
they are set to extrema (as though pl1mm=1)

=-1 => same as 0, but extend plot range by one
minor tick mark in each direction

pl1mean (niov) = 0 => ordinary 1-D slices; no means taken. 0
= 1 => 1-D slices are filled with means of

variable across plane (limited by x*pl1mn
and x*pl1mx) orthogonal to the slice.

thetapl1 meridonal rotational angle between 1-2-3 & a-b-c 0.0
coordinates (to compute va vb vc from v1 v2 v3)

phipl1 azimuthal rotational angle between 1-2-3 & a-b-c 0.0
coordinates (to compute va vb vc from v1 v2 v3)

pl1ylab (niov) character string containing NCAR mark-up language
for the desired y-label. Most defaults are fine,
unless, for e.g., v_\phi is desired over v_3.

Overlays

pl1grid every (pl1grid)th a-grid line is drawn as a fine 0
vertical line (for both regular and diagn. plots)
= 0 => no grid lines are drawn

pl1ref (niov) dashed reference line drawn on plot -huge
(< -1.0d30 => no line)

pl1soln (niov) = 0 => no overlay 0
= 1 => Analytical solution to Riemann problem

using end points of slice as left- and
right-states overlaid.

= 2 => analytical solution plotted without
numerical solution

xdiscpl1(nios) location of discontinuity (default: middle of
slice)

Diagnostic dumps

dtgr1d physical (problem) time interval between diag- 0.0
nostic 1-D graph dumps (0.0 => no plots)

If you are using NCAR graphics (norppl1=1), you will need to link all NCAR graphics
libraries to your executable (see your system administrator if you do not know what or where
these libraries are) as well as two user-created libraries, grfx03.a and psplot.a. If you are
using PSPLOT (norppl1=2) exclusively, you can dispense with all the NCAR libraries, and
just link grfx03.a, psplot.a, and noncar.a, the last of which serves only to satisfy external
calls to non-existing NCAR subroutines.

namelist / pl1con /
1 dtpl1 , npl1dmp , units , aspect , pwtpl1
2 , norppl1 , corl , npl1h , npl1v , allxl
3 , allyl , pl1hdr , pl1ftr , pl1dir , ipl1
4 , jpl1 , kpl1 , x1pl1mn , x1pl1mx , x2pl1mn
5 , x2pl1mx , x3pl1mn , x3pl1mx , ipl1mn , ipl1mx
6 , jpl1mn , jpl1mx , kpl1mn , kpl1mx , pl1xlab
7 , pl1var , nlpl1 , pl1min , pl1max , pl1mm
8 , pl1mean , thetapl1, phipl1 , pl1ylab , pl1grid
9 , pl1ref , pl1soln , xdiscpl1, dtgr1d
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B.20 PL2CON—PLot (2-D) CONtrol (subroutine NMLSTS)

This namelist controls the 2-D graphics. During a run, as many as nios 2-D slices may be
specified for each variable plotted. For every slice chosen, a file (metacode or postscript) is
created with a plot generated for each individual or combination of variables specified. The
normal to each slice is parallel to one of the axes of the computational grid and is specified
by pl2dir. The extent of the slice is limited by x1pl2mn, x1pl2mx, etc., while the index at
the base of the normal to the slice is given by lpl2. If ipl2mn, etc. is 0, x1pl2mn, etc. is
used instead.

New to version 3.6 is buffet-style plotting in which the user may select for each plot as
many as two scalars, three vector fields, and the positions of some or all of the “corks” (La-
grangian particles). This is accomplished by the addition of several new namelist parameters
to allow more than one variable to be plotted per plot, and users used to previous versions of
ZEUS-3D should pay special attention to these new namelist parameters described below. In
previous versions of ZEUS-3D, only a select few combination plots were available (e.g., den-
sity plus velocity vectors). With the introduction of buffet-style plotting, the combination
of variables that may be plotted together is now virtually limitless.

For PSPLOT graphics, the first scalar may be plotted using colour, gray scale, or line
contours while the second scalar may be plotted using line contours only. If colour or
grey scale contours is selected for the first scalar (pl2ccol=1,2), a colour bar is included
immediately to the right of the plot (to indicate what values of the scalar correspond to each
colour); this may be suppressed by negating pl2ccol. Each vector field may be drawn with
different colours and a legend indicating which variables are represented by which contours
and vectors is drawn in the upper right corner. The introduction of a legend (controlled
by pl2leg) has obviated the need for a title, and thus pl2hdr is no longer a valid namelist
parameter.

For NCAR graphics, both scalars must be line contours, and only one vector field may
be specified. A legend is also produced instead of a title.

PSPLOT 2-D graphics can generate enormous post-script files; a single file with sev-
eral variables plotted in full colour from a high-resolution data-slice (e.g., 1,000 zones on
a side) can approach 1 Gbyte. Not only does this needlessly occupy disc space and cause
commonly-available graphics-viewers such as ghostview to take forever opening each page,
it can also soak up all the available memory on the machine while the plots are being gen-
erated, limiting the number of zones in the simulation. Such plots tend to be hyper-resolved
often with multiple graphics instructions assigned to each screen pixel, and are rarely worth
the computational effort.

New to version 3.6, one can now mitigate against this by specifying parameters npl2i
and npl2j to be smaller than the actual grid dimensions (e.g., of the order 250–500). These
parameters set the dimensions of the re-binning grids into which the 2-D data-slices are
rebinned (much like pixel plots) before plotting. This can decimate the size of the post-script
file while still generating perfectly acceptable plots, qualitatively identical to the hyper-
resolved ones. (N.B., If the “hyper-resolved” plots are still wanted—e.g., for a poster—one
can always dump HDF files as often as or instead of 2-D plots, then use PLOTZ after the
simulation is completed to generate the desired plots.)

All plots are of publication quality and come fully labelled, including a time stamp
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for easy identification. Unlike the 1-D plots, only one plot may be written to each frame.
However, the plot may be scaled down (pl2scale) if desired.

N.B. For restarted runs in which the computation is resumed on a larger or smaller grid,
and where the default values for x1pl2mn, x1pl2mx, etc. were used in the initial run, it will
be necessary to set x1pl2mn, x1pl2mx, etc. in the input deck for the restarted run to the
extrema of the new grid if the plots are to extend to the bounds of the new grid. Otherwise,
the plots will be bound by the old grid.

parameter description default

General

dtpl2 physical (problem) time interval between 2-D 0.0
plot dumps. 0.0 => no plots.

npl2dmp the sequential number for the next 2-D plot file -1
< 0 => npl2dmp = ipl2dmp

units sets units of angular dimensions (character*2). ’zz’
’dg’ => degrees, ’rd’ => radians,
’pi’ => units of pi radians

pl2scale .lt. 1.0d0 => scaling factor to reduce plot size 1.0
.ge. 1.0d0 => full size

pwtpl2 pen weight for 2-D plots 1.0
norppl2 = 1 => use NCAR graphics library for 2-D plots 2

= 2 => use PSPLOT graphics library for 2-D plots
pl2grid = 0 => do not overlay grid lines onto plots 0

> 0 => overlay a-grid
< 0 => overlay b grid
every mod(|pl2grid|,1000)th grid line drawn

Slice control

pl2dir (nios) direction of normal to image plane: 1, 2, or 3 => 0
1-, 2-, or 3-direction. 0 => no plots.

lpl2 (nios) level of 2-D plot (value of 1-, 2-, or 3-index) (is+ie)/2
pl2avg (nios) = 1 => averages slice with lpl2-1

= 0 => no average taken (default)
x1pl2mn (nios) minimum x1 of plot window x1a(ismn )
x1pl2mx (nios) maximum x1 of plot window x1a(iemxp1)
x2pl2mn (nios) minimum x2 of plot window x2a(jsmn )
x2pl2mx (nios) maximum x2 of plot window x2a(jemxp1)
x3pl2mn (nios) minimum x3 of plot window x3a(ksmn )
x3pl2mx (nios) maximum x3 of plot window x3a(kemxp1)
ipl2mn (nios) i-index of minimum x1 of plot window 0
ipl2mx (nios) i-index of maximum x1 of plot window 0
jpl2mn (nios) j-index of minimum x2 of plot window 0
jpl2mx (nios) j-index of maximum x2 of plot window 0
kpl2mn (nios) k-index of minimum x3 of plot window 0
kpl2mx (nios) k-index of maximum x3 of plot window 0
iflippl2(nios) = 0 => no flipping of plots 0

= 1 => plot flipped about x-axis before writing
jflippl2(nios) = 0 => plot not flipped about x-axis 0

= 1 => plot flipped about y-axis before writing
ireflpl2(nios) = 0 => plot not reflected about x-axis 0

= 1 => plot reflected about x-axis before writing
rendering plot twice as tall

jreflpl2(nios) = 0 => plot not reflected about y-axis 0
= 1 => plot reflected about y-axis before writing
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rendering plot twice as long
npl2i (nios) no. of horizontal zones in rebinned grid (<= idim) 0

= 0 => no rebinning in x- or y-direction
npl2j (nios) no. of vertical zones in rebinned grid (<= jdim) 0

= 0 => no rebinning in x- or y-direction
pl2xlab (nios) character string containing NCAR mark-up language
pl2ylab (nios) for the desired x- and y-labels. Default is the

generic coordinate label (x1, x2, x3).
pl2xl (nios) = 0 => suppresses xlabel (but not x-annotations) 1

= 1 => xlabel is put below horizontal axis
pl2yl (nios) = 0 => suppresses ylabel (but not y-annotations) 1

= 1 => ylabel is put beside vertical axis
pl2ftr (nios) = 0 => suppresses footer 1

= 1 => footer is printed on bottom of plot
pl2leg (nios) = 0 => suppresses legend 2

= 1 => legend is printed above plot (as a header)
= 2 => legend is printed on inside top right

corner of plot

Contours; for contour variables, * = 1,2

pl2sca* (niov) names of scalars to plot (character*2) ’zz’
Valid names are: ’a ’, ’a1’, ’a2’, ’a3’, ’ag’,
’an’ (normal vector potential), ’b ’, ’b1’, ’b2’,
’b3’, ’bn’ (normal magnetic field), ’bP’, ’bR’,
’bt’, ’cs’, ’d ’, ’da’, ’e1’, ’e2’, ’er’, ’et’,
’fn’ (normal magnetic flux function), ’gp’, ’j ’,
’j1’, ’j2’, ’j3’, ’jn’ (normal current density),
’k1’, ’k2’, ’ka’, ’lu’, ’m ’, ’mA’, ’mf’, ’ms’,
’nb’ (break frequency), ’p1’, ’p2’, ’p3’, ’p4’,
’p5’, ’p6’, ’p7’, ’pa’, ’pg’, ’s1’, ’s2’, ’s3’,
’s ’ (momentum norm), ’sn’ (normal momentum),
’sy’, ’u1’, ’u2’, ’v ’, ’v1’, ’v2’, ’v3’, ’vA’,
’vf’, ’vn’ (normal velocity), ’vs’, ’vv’, ’w ’,
’w1’, ’w2’, ’w3’, ’wn’ (normal vorticity).
See "pl1var" in pl1con for other definitions.

pl2ng* (niov) = 1 => contours are spaced evenly 1
> 1 => contours are spaced geometrically such

that first two contours are spaced "pl2ng*"
times closer than evenly spaced contours.

<-1 => contours are spaced geometrically such
that last two contours are spaced "-pl2ng*"
times closer than evenly spaced contours.

pl2min* (niov) minimum contour level to be plotted. 0.0
pl2max* (niov) maximum contour level to be plotted. 0.0
pl2mm* = 0 => use input "pl2min*" & "pl2max*" for plots 1

= 1 => compute "pl2min*" & "pl2max*" for plots
If both "pl2min*" and "pl2max*" are 0.0, compute
them as though "pl2mm*" were 1 for that variable.

thetapl2 meridonal rotation angle between 1-2-3 and a-b-c 0.0
coordinates (compute va, vb, vc from v1, v2, v3)

phipl2 azimuthal rotation angle between 1-2-3 and a-b-c 0.0
coordinates (compute va, vb, vc from v1, v2, v3)

numcl* (niov) = 0 => min(20,ncls) evenly spaced contours are 0
drawn between "pl2min*" and "pl2max*"

> 0 => number of evenly spaced contours to draw
between "pl2min*" and "pl2max*" (max ncls).

< 0 => abs(numcl*) contours drawn and are
specified by "pl2min*" and "levs*".
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if numcl*(2:niov) are not set by user, they are
set to numcl*(1).

levs* (ncls) real array specifying multiples of "pl2min*" to
use for contour levels (for numcl* < 0 only). If
levs2(1) not set by user, levs2 = levs1.

negcon = 0 => negative contours are indistinguishable 0
from positive contours.

= 1 => negative contours drawn with dotted lines
hilo = 0 => highs and lows are not labelled 0

= 1 => highs and lows are labelled H/L
= 2 => highs and lows are labelled H/L with values

as subscripts (NCAR only).
pl2ccol (niov) = 0 => do not use colour or grey-scale 0

= 1 => use grey-scale to fill between contour
= 2 => use colour to fill between contour
if pl2ccol(2:niov) are not set by user, they are
set to pl2ccol(1). Used for PSPLOT only.
pl2ccol < 0 same as abs(pl2ccol) except colour
bar not drawn (contour levels listed in footer
instead)

pl2clin1(niov) controls type of contour lines for first scalar
= 0 => no contours (default if pl2ccol .ne. 0)
= 1 => solid contours (default if pl2ccol=0 or NCAR)
=-1 => dashed contours

pl2clin2(niov) controls type of contour lines for second scalar
= 0 => no contours
= 1 => solid contours (default if pl2clin1 .ne. 1)
=-1 => dashed contours (default if pl2clin1=1)

abs(pl2clin*) = 2 => contour pen weight halved (recommended).
If pl2clin*(2:niov) not set by user, they’re set to
pl2clin*(1).

Vectors; for vector variables, @ = 1,2,3

pl2vec@ (niov) names of poloidal vectors to plot (character*2) ’zz’
Valid names are: ’a ’ (vector potential), ’b ’
(magnetic field), ’cf’ (centrifugal force), ’gp’
[grad(p)], ’gr’ (gravitational force), ’j ’
(current density), ’lf’ (Lorentz force), ’s ’
(momentum), ’v ’ (velocity), ’w ’ (vorticity).

vnorm@ (niov) >=1.0 => normalise vectors, draw all vectors with 0.0
original length > 1.0e-24 * vmax

> 0.0 => do not normalise vectors, draw vectors
< 1.0 .ge. vnorm@ * vmax only
= 0.0 => do not normalise vectors, draw vectors

.ge. 0.04 * vmax only
< 0.0 => normalise vectors, draw all vectors with

original length > 10**vnorm@ * vmax
vscale scaling factor for vector 0.8
nxvec (nios) |nxvec| = # of vectors in x-direction 20

> 0 => different vector fields are staggered in x
< 0 => different vector fields have same x-coord
= 0 => same spacing (not #) as y-direction

nyvec (nios) |nyvec| = # of vectors in y-direction 0
> 0 => different vector fields are staggered in y
< 0 => different vector fields have same y-coord
= 0 => same spacing (not #) as x-direction

pl2vcol@(niov) colours to use for vector fields (PSPLOT only)
= 0 => white; = 1 => purple; = 2 => blue;
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= 3 => green; = 4 => orange; = 5 => red;
= 6 => black
(Defaults: 6 for 1st field; 5 for 2nd, 2 for 3rd)
if pl2vcol@(2:niov) are not set by user, they are
set to pl2vcol@(1).

Corks

pl2crk (niov) = 0 => no corks overlaid on plots 0
> 0 => overlay every (pl2crk)th cork as a small

dot
< 0 => same as >0 plus cork number to upper left
In 3-D, corks within a half a zone of specified
plane are plotted.

Diagnostic dumps

dtgr2d physical (problem) time interval between 0.0
diagnostic 2-D dumps; 0.0 => no dumps

See note at the end of §B.19 describing the namelist pl1con concerning libraries required
with and without NCAR graphics.

namelist / pl2con /
1 dtpl2 , npl2dmp , units , pl2scale, pwtpl2
2 , norppl2 , pl2grid , pl2dir , lpl2 , pl2avg
3 , x1pl2mn , x1pl2mx , x2pl2mn , x2pl2mx , x3pl2mn
4 , x3pl2mx , ipl2mn , ipl2mx , jpl2mn , jpl2mx
5 , kpl2mn , kpl2mx , iflippl2, jflippl2, ireflpl2
6 , jreflpl2, npl2i , npl2j , pl2xlab , pl2ylab
7 , pl2xl , pl2yl , pl2ftr , pl2leg , pl2sca1
8 , pl2sca2 , pl2ng1 , pl2ng2 , pl2min1 , pl2min2
9 , pl2max1 , pl2max2 , pl2mm1 , pl2mm2 , thetapl2
1 , phipl2 , numcl1 , numcl2 , levs1 , levs2
2 , negcon , hilo , pl2ccol , pl2clin1, pl2clin2
3 , pl2vec1 , pl2vec2 , pl2vec3 , vnorm1 , vnorm2
4 , vnorm3 , vscale , nxvec , nyvec , pl2vcol1
5 , pl2vcol2, pl2vcol3, pl2crk , dtgr2d

B.21 PIXCON—PIXel/movie graphics CONtrol (subroutine NMLSTS)

This namelist controls the pixel dumps, which are 2-D images of slices through the data
volume rebinned to a uniform, square Cartesian grid. New to version 3.6, depending on
the new parameter pixfmt, images may be dumped as movie frames (four bytes deep with
grid and dimensions stored in a header) and/or traditional pixel dumps (one byte per datum,
no header) and/or HDF files. As always, pixel dumps remain as separate files, to be dealt
with manually by the user after the run. HDF files are a fossil from very early versions of
the code, and are suitable for graphical analysis if desired. For movie frames, at the end
of the run makempg gathers all files in a tarball (to be used at a later time by ANIM8Z to
recreate the animation with a different palette or bracketing if desired), converts them to
PPM format, and assembles them into an mpeg movie file according to user-set namelist
parameters. Thus, the end product is an mpeg animation for each quantity selected along
with an accompanying tarball of four-byte deep frames. For a smooth temporal animation,
aim for about 400–600 dumps per animation.
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During a run, as many as nios slices may be specified for each variable plotted, and a
single movie frame/pixel dump is created for every variable and every slice specified. The
number of files generated per run can therefore be enormous. The extent of the 2-D slice
can be limited by setting x1pixmn, x1pixmx, etc. The normal to the slice is parallel to one
of the axes of the computational grid and is specified by pixdir. The index at the base of
the normal is given by lpix.

Pixel images (pixfmt=2) were introduced by Michael Norman in the late 1980s as a
way to assemble animations with high temporal resolution without overrunning the limited
disc space of the day. Each image is only 1 byte deep, and thus has a dynamic range of
256; sufficient for qualitative rendering only if the data are properly bracketed and scaled
beforehand. To do this, two parameters were introduced.

First, by setting pixmm=1 (automatic bracketing), each image is bracketed separately to
its own extrema and differences from one image to the next are caused by both the evolution
of the flow and the fluctuations of the extrema. By setting pixmm=0 (manual bracketing),
the same user-set values for pixmin and pixmax are applied to each image, and fluctuations
from one image to the next are entirely because of evolution of the flow. A practical way
of finding optimal values for pixmin and pixmax is to run a low resolution run with pixmm

set to 1, then use the reported extrema (in the log file, zlnnnid) of the pixel dumps to set
pixmin and pixmax for the high resolution run (with pixmm set to 0).

Second, the parameter nlpix sets the scaling (“transfer function”). Setting nlpix=1

gives a linear scaling whereas nlpix>1 gives an essentially logarithmic scaling, where the
colour contours at the low end are nlpix times closer together than at the high end. For
positive-definite scalars, nlpix=100 usually works well; for vector components that can be
either positive or negative, a linear transfer function is usually best. Note, however, that
quantities need not be positive definite in order to have “logarithmic scaling” applied.

Pixel images were originally designed for use with Carol Song’s IMAGETOOL which was
great in its time but sadly discontinued by the NCSA in the late 90s. I know of no software
now which can read separate ZEUS-style pixel dumps and render them as animations the way
IMAGETOOL did. Thus, pixel dumps are now largely obsolete. In order to create an animation
from them, one has to convert each to PPM format (tripling their size), then assemble the
PPM files in an mpeg using software such as FFmpeg.

Instead, movie frames (pixfmt=1, default) are the recommended way to create anima-
tions. These files are 4-bytes deep with some header information, and are automatically
converted to PPM files at the end of a run which are then assembled into an mpeg by
the subroutine makempg (which relies on FFmpeg being available on the user’s platform; see
ffmpeg.org if it isn’t). The movie files are compressed into a g-zipped tarball, and the user
is left with two files per desired animation: the mpeg, and the tarball which can be used later
to recreate the animation without rerunning the simulation should the bracketing or scaling
of the animation need to be changed (using the standalone program ANIM8Z). Thus, while
movie files still need to be bracketed and scaled as pixel dumps, choosing the right values
for pixmin, pixmax, and nlpix before the simulation begins is not critical. Note also for
movie files, pixmm=2 sets pixmin (pixmax) to the minimum (maximum) of the minima (max-
ima) of all the frames in a single animation. This obviates the need to run a low-resolution
simulation to determine the optimal values of pixmin and pixmax. Even if the absolute
extrema of the extrema are not optimal, one can redo the animation from the tarball after
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the simulation using ANIM8Z .
Polar slices are binned to a Cartesian grid before they are written to disc. If a polar grid

includes very small zones near the origin, it may be best to request two animations for each
slice visualised. One animation could include the entire grid and reflect the resolution near
the mid-radial regions (i.e., oversample the outer grid but under-sample the inner), while
the second could include only the inner radial regions to reflect the resolution of the inner
grid.

The parameters which set the dimensions of the arrays for the slices (nxpix,nypix) are
independent of the parameters which set the dimensions of the flow variables (in,jn,kn).
Thus, in the case of a non-uniform grid, files may be written with enough pixels to preserve
the highest resolution on the grid.

N.B. For restarted runs in which the computation is resumed on a larger or smaller grid,
and where the default values for x1pixmn, x1pixmx, etc. were used in the initial run, it will
be necessary to set x1pixmn, x1pixmx, etc. in the input deck for the restarted run to the
extrema of the new grid if the dumps are to extend to the bounds of the new grid. Otherwise,
the dumps will be bound by the old grid.

Also for a restarted run, the g-zipped movie tarballs from the previous run should be
in the same directory as the executable so that the new movie frames can be added to the
tarballs, and the mpegs can be made from all movie frames since the beginning of the first
run, rather than just from those created from the beginning of the present run. To enable
this feature, neither the problem tag nor the names of the movie tarballs should be changed
from one run to the next.

parameter description default

General

dtpix problem time interval between pixel dumps/movie 0.0
frames. If dtpix .le. 0, no files are generated.

npixdmp sequential number for next pixel/movie file -1
< 0 => npixdmp = ipixdmp

units sets units of angular dimensions (character*2). ’rd’
’dg’ => degrees, ’rd’ => radians,
’pi’ => units of pi radians

pixfmt = 1 => PIXDMP creates 4-byte movie frames. 1
= 2 => PIXDMP creates 1-byte raw pixel dumps.
= 3 => PIXDMP creates movie and raw files (1+2).
= 4 => PIXDMP creates 4-byte HDF files.
= 5 => PIXDMP creates movie and HDF files (1+4).
= 6 => PIXDMP creates raw and HDF files (2+4).
= 7 => PIXDMP creates files of each format (1+2+4).

Slice control

pixdir (nios) direction of normal to image plane. 1, 2, or 3 => 0
1-, 2-, or 3-direction. If "pixdir" is not set,
no pixel dumps will be generated.

lpix (nios) level of 2-D pixel dump (value of 1-, 2-, or (is+ie)/2
3-index)

npixi (nios) number of x-pixels before any j-reflection nxpx
npixj (nios) number of y-pixels before any i-reflection nypx
x1pixmn (nios) minimum x1 for pixel image x1a(is)
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x1pixmx (nios) maximum x1 for pixel image x1a(ie+1)
x2pixmn (nios) minimum x2 for pixel image x2a(js)
x2pixmx (nios) maximum x2 for pixel image x2a(je+1)
x3pixmn (nios) minimum x3 for pixel image x3a(ks)
x3pixmx (nios) maximum x3 for pixel image x3a(ke+1)
iflippix(nios) = 0 => no flipping of images 0

= 1 => image flipped about x-axis before writing
(size of image not changed, just flipped)

jflippix(nios) = 0 => no flipping of images 0
= 1 => image flipped about y-axis before writing

ireflpix(nios) = 0 => no reflection about x-axis 0
= 1 => image reflected about x-axis on output =>

twice the number of y-pixels requested
jreflpix(nios) = 0 => no reflection about y-axis 0

= 1 => image reflected about y-axis on output =>
twice the number of x-pixels requested

Variable control

pixvar (niov) names of variables to be plotted (character*2). ’zz’
Valid names are: ’a ’, ’a1’, ’a2’, ’a3’, ’ag’,
’ap’, ’an’, ’b ’, ’b1’, ’b2’, ’b3’, ’bP’, ’bR’,
’bn’, ’bp’, ’bt’, ’cs’, ’d ’, ’da’, ’e1’, ’e2’,
’er’, ’et’, ’fn’, ’gp’, ’j ’, ’j1’, ’j2’, ’j3’,
’jn’, ’jp’, ’k1’, ’k2’, ’ka’, ’lu’, ’m ’, ’mA’,
’mf’, ’ms’, ’nb’, ’p1’, ’p2’, ’p3’, ’p4’, ’p5’,
’p6’, ’p7’, ’pa’, ’pg’, ’s ’, ’s1’, ’s2’, ’s3’,
’sd’ (skew-density) , ’sp’, ’sn’, ’sy’, ’u1’,
’u2’, ’v ’, ’v1’, ’v2’, ’v3’, ’vA’, ’vf’, ’vn’,
’vp’, ’vs’, ’vv’, ’w ’, ’w1’, ’w2’, ’w3’, ’wn’,
’wp’. See "pl1var" in pl1con and "pl2sca*" in
pl2con for other definitions.

nlpix (niov) = 0 => store data 0
> 0 => store log10(data), concentrating colours

at low end. Dynamic range = nlpix,
1 => 100.

< 0 => store log10(data), concentrating colours
at high end. Dynamic range = -nlpix,
-1 => -100.

pixmin (niov) value to be assigned the minimum colour. 0.0
pixmax (niov) value to be assigned the maximum colour. 0.0
pixmm (niov) = 0 => use input "pixmin", "pixmax" for each image 1

If pixmin=pixmax=0, "pixmm" reset to 1
= 1 => compute "pixmin", "pixmax" for each image

(default)
= 2 => extreme of computed "pixmin", "pixmax" used

for all frames (movie format only; raw and
HDF formats, pixmm=1 and 2 are the same)

ncpix number of colour contours in image 255

Animation control; note that a separate palette can be chosen for each variable

pixpal (niov) = 0 => use user palette ’pfilepix’ 2
= 1 => greyscale palette.
= 2 => ZEUS’ spectral colour palette
if pixpal(2:niov) not set by user, they’re set to
pixpal(1).

pfilepix(niov) character*128 user’s palette file (pixpal = 0). If
file not found, pixpal reverts to default (2).
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fratepix FFmpeg’s integer parameter. Animation assembled 24
to run at "fratepix" frames per second

mpgpix = 1 => animations written in mpg format 4
= 4 => animations written in mp4 format
else=> neither mpegs nor PPM files created, movie

frames are bundled into a tarball for post-
processing (e.g., ANIM8Z)

ppmpix = 0 => PPM files are discarded, staging directory 0
makempg.dir deleted after use

= 1 => PPM files are retained in makempg.dir

namelist / pixcon /
1 dtpix , npixdmp , units , pixdir , lpix
2 , npixi , npixj , x1pixmn , x1pixmx , x2pixmn
3 , x2pixmx , x3pixmn , x3pixmx , iflippix, jflippix
4 , ireflpix, jreflpix, pixvar , nlpix , pixmin
5 , pixmax , pixmm , ncpix , morppix , pixpal
6 , pfilepix, fratepix, mpgpix , ppmpix

B.22 USRCON—USeR dump CONtrol (subroutine NMLSTS)

This namelist is reserved for a user-supplied I/O subroutine aliased to USERDUMP (see App. A
to see where USERDUMP is called). Additional namelist parameters may be added as needed.

parameter description default

dtusr physical (problem) time interval between user dumps. 0.0
0.0 => no user dumps

nusrdmp the sequential number for the next user dump file -1
< 0 => nusrdmp = iusrdmp

namelist / usrcon /
1 dtusr , nusrdmp

B.23 HDFCON—HDF dump CONtrol (subroutine NMLSTS)

This namelist controls the HDF (Hierarchical Data Format, version 4) dumps. HDF is a
format for data files developed at the NCSA. This format is fairly widely used, appearing
in various commercial applications such as IDL. HDF dumps are 4 bytes deep, and contain
the grid coordinates along with other useful information about the data. They are suitable
for graphical and quantitative analysis, but not for resuming a simulation.

In order to use HDF, it is necessary to link all the HDF4 libraries to your executable.
If you don’t know what or where these libraries are on your system, ask your system ad-
ministrator who may have to download the (free) HDF4 libraries from the NCSA website
(www.ncsa.uiuc.edu).

parameter description default

dthdf physical (problem) time interval between hdf 0.0
dumps. 0.0 => no hdf dumps

nhdfdmp the sequential number for the next HDF file -1
<0 => nhdfdmp = ihdfdmp

hdfvar(niov) names of variables to be dumped (character*2). ’zz’

http://www.ncsa.uiuc.edu
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Valid names are: ’to’ ("total" dump => v1, v2,
v3, b1, b2, b3, d, et, e1, e2, gp, pg, er, da
in the same file) , ’a1’, ’a2’, ’a3’, ’a ’,
’ag’, ’b1’, ’b2’, ’b3’, ’b ’, ’bt’, ’d ’, ’da’,
’e1’, ’e2’, ’er’, ’et’, ’gp’, ’j1’, ’j2’, ’j3’,
’j ’, ’k1’, ’k2’, ’ka’, ’lu’, ’m ’, ’mA’, ’ms’,
’mf’, ’p1’, ’p2’, ’p3’, ’p4’, ’p5’, ’p6’, ’p7’,
’pg’, ’s1’, ’s2’, ’s3’, ’s ’, ’u1’, ’u2’, ’v1’,
’v2’, ’v3’, ’v ’, ’vv’, ’w1’, ’w2’, ’w3’, ’w ’
See "pl1var" in pl1con and "pl2sca*" in pl2con
for definitions.

namelist / hdfcon /
1 dthdf , nhdfdmp , hdfvar

B.24 TSLCON—Time SLice (history) dump CONtrol (subroutine NMLSTS)

This namelist controls the time slice data dumps. Various scalars, such as total mass, angular
momenta, energy, extrema of variables, etc. are periodically written to an ascii file and/or a
plot (NCAR or PSPLOT graphics). See §B.19 for what libraries are needed for NCAR and
PSPLOT graphics respectively.

parameter description default

General

dttsl problem time interval between ascii dumps 0.0
0.0 => no ascii timeslice dumps

ntsldmp sequential number for next timeslice file -1
< 0 => ntsldmp = itsldmp

itslmn minimum i-index of integration domain ismn
itslmx maximum i-index of integration domain iemx
jtslmn minimum j-index of integration domain jsmn
jtslmx maximum j-index of integration domain jemx
ktslmn minimum k-index of integration domain ksmn
ktslmx maximum k-index of integration domain kemx

Plot control

dttsp problem time interval between plot dumps 0.0
0.0 => no timeslice plot dumps

ntspdmp sequential number for next timeslice plot file -1
< 0 => ntspdmp = itspdmp

pwttsp pen weight for timeslice plots 1.0
norptsp = 1 => use NCAR graphics for timeslice plots 2

= 2 => use PSPLOT graphics for timeslice plots
ntsph number of frames horizontally per page 1
ntspv number of frames vertically per page 1
tsphdr = 1 => write headers to timeslice plot file 1

= 0 => suppresses headers
tspftr = 1 => write footers to timeslice plot file 1

= 0 => suppresses footers
ttspmn problem time for beginning of plot 0.0
ttspmx problem time for end of plot (0.0 => prtime) 0.0

namelist / tslcon /
1 dttsl , ntsldmp , itslmn , itslmx , jtslmn
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2 , jtslmx , ktslmn , ktslmx , dttsp , ntspdmp
3 , pwttsp , norptsp , ntsph , ntspv , tsphdr
4 , tspftr , ttspmn , ttspmx

B.25 CRKCON—CoRK dump CONtrol (subroutine NMLSTS)

New to version 3.6: This namelist controls the cork dump, which consist of data (cork
positions, values of flow variables, and functions of flow variables such as ∇·~v, Mach number,
etc.) collected at user-specified time intervals at the locations of all Lagrangian particles
(corks) populating the grid at t = 0 (those set by GRIDCORK), as well as those injected
onto the grid by the user during the simulation (e.g., JETCORK). These data are continually
appended to an opened ascii file (zcnnnid) which tabulates the locations of each cork at
each time interval, along with each of the specified tracked variables. User-provided post-
processing routines can be used to display these data after the simulation is complete and/or
the user could provide a routine aliased to FINISH to generate a plot file on termination (see
routine SPECTRA for a template).

parameter description default

dtcrk problem time interval between cork dumps 0.0
0.0 => no cork dumps

ncrkdmp the sequential number for the next cork file -1
< 0 => ncrkdmp = icrkdmp

gcrk* GRIDCORK sets a lattice of gcrk1 x gcrk2 x gcrk3 0
corks (default = 1 for *SYM).

iordcrk = 1 => first order integration of cork positions 1
= 2 => second order integration

crkvar (niov) names of variables to be tracked (character*2). ’zz’
Valid names are: ’a1’, ’a2’, ’a3’, ’a ’, ’ag’,
’B3’, ’b1’, ’b2’, ’b3’, ’bP’, ’bR’, ’b ’, ’bd’,
’br’, ’bt’, ’d ’, ’da’, ’e1’, ’e2’, ’er’, ’et’,
’gl’, ’gk’, ’gp’, ’hy’, ’j1’, ’j2’, ’j3’, ’j ’,
’k1’, ’k2’, ’ka’, ’kt’, ’l ’, ’lt’, ’lu’, ’m ’,
’mA’, ’mf’, ’ms’, ’om’, ’p1’, ’p2’, ’p3’, ’p4’,
’p5’, ’p6’, ’p7’, ’pg’, ’s1’, ’s2’, ’s3’, ’s ’,
’sy’, ’u1’, ’u2’, ’v1’, ’v2’, ’v3’, ’v ’, ’vv’,
’w1’, ’w2’, ’w3’, ’w ’, ’ze’ (shock ratio).
See "pl1var" in pl1con and "pl2sca*" in pl2con
for definitions.

namelist / crkcon /
1 dtcrk , ncrkdmp , gcrk1 , gcrk2 , gcrk3
2 , iordcrk , crkvar

B.26 DISCON—DISplay dump CONtrol (subroutine NMLSTS)

This namelist controls the display dumps of 2-D slices. During a run, as many as nios slices
may be specified for each variable displayed. All display dumps generated during a run are
dumped to the same ascii data file. The extent of the display slice can be limited by setting
idismn, idismx, etc. The normal to the display slice is parallel to one of the axes of the
computational grid and is specified by disdir. The index at the base of the normal is given
by ldis.
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The display format allows the user to view a small portion of the data quantitatively
in a matrix format. The maximum amount of data that can be visualised at once from
each specified variable and slice is 38 by 38. The data are scaled and converted to integers
with a dynamic range anywhere from 100 to 106, depending on the amount of data being
displayed. The data are arranged in a 2-D matrix and labelled with the grid indices and the
scaling factor used to scale the data. (The functionality is similar to that of the task PRTIM

in AIPS.)
N.B. For restarted runs in which the computation is resumed on a larger or smaller grid,

and where the default values for idismn, idismx, etc. were used in the initial run, it will be
necessary to set idismn, idismx, etc. in the input deck for the restarted run to the extrema
of the new grid if the dumps are to extend to the bounds of the new grid. Otherwise, the
dumps will be bound by the old grid.

parameter description default

dtdis physical (problem) time interval between display 0.0
dumps. 0.0 => no display dumps.

ndisdmp the sequential number for the next display file -1
< 0 => ndisdmp = idisdmp

disdir (nios) direction of normal to display plane: 1, 2, or 3 0
=> 1-, 2-, or 3-direction; 0 => no display dumps

ldis (nios) level of 2-D display (value of 1-, 2-, or (is+ie)/2
3-index)

disvar (niov) names of variables to be displayed (character*2). ’zz’
Valid names are: ’a ’, ’a1’, ’a2’, ’a3’, ’b ’,
’b1’, ’b2’, ’b3’, ’bt’, ’d ’, ’e1’, ’e2’, ’er’,
’et’, ’gp’, ’k1’, ’k2’, ’ka’, ’j1’, ’j2’, ’j3’,
’j ’, ’lu’, ’m ’, ’mA’, ’ms’, ’mf’, ’p1’, ’p2’,
’p3’, ’p4’, ’p5’, ’p6’, ’p7’, ’pg’, ’s ’, ’s1’,
’s2’, ’s3’, ’u1’, ’u2’, ’v ’, ’v1’, ’v2’, ’v3’,
’vv’, ’w ’, ’w1’, ’w2’, ’w3’. See "pl1var" in
pl1con and "pl2sca*" in pl2con for definitions.

idismn (nios) bottom i-index of display window is
idismx (nios) top i-index of display window ie
jdismn (nios) bottom j-index of display window js
jdismx (nios) top j-index of display window je
kdismn (nios) bottom k-index of display window ks
kdismx (nios) top k-index of display window ke

namelist / discon /
1 dtdis , ndisdmp , disdir , ldis , disvar
2 , idismn , idismx , jdismn , jdismx , kdismn
3 , kdismx

B.27 RADCON—RADio dump CONtrol (subroutine NMLSTS)

This namelist controls the RADIO dumps, which are 2-D images of lines-of-sight integrations
through the data volume at arbitrary viewing angles (theta and phi) binned on a uniform,
square Cartesian grid. New to version 3.6, depending on the new parameter radfmt,
images may be dumped as movie frames (four bytes deep with grid, dimensions, and viewing
angles stored in a header) and/or traditional pixel dumps (one byte per datum, no header)
and/or HDF files. As always, pixel dumps remain as separate files, to be dealt with manually
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by the user after the run. HDF files are a fossil from very early versions of the code,
and are suitable for graphical analysis if desired. For movie frames, at the end of the run
makempg gathers all files in a tarball (to be used at a later time by ANIM8Z to recreate the
animation with a different palette or bracketing if desired), converts them to PPM format,
and assembles them into an mpeg movie file according to user-set namelist parameters. Thus,
the end product is an mpeg animation for each quantity selected along with an accompanying
tarball of four-byte deep frames. For a smooth temporal animation, aim for about 400–600
dumps per animation.

The integration volume can be limited by setting x1radmn, x1radmx, etc. RADIO dumps
are currently available for Cartesian (XYZ) and cylindrical (ZRP) geometries, with the latter
not fully tested. See discussion in §B.21 regarding strategy of bracketing images, dumping
images logarithmically, and making animations.

There are two types of integrated quantities: flow variables and emissivities. Many of the
parameters listed below are for controlling the latter. For example, the Stokes parameters
once integrated can be convolved with a beam, polarisation vectors may be plotted directly
(rather than raster images), polarisation vectors may be superposed on total intensity raster
images, and so on.

The “masks” (*lower, *upper, dmask*, and bmask) are useful in limiting which portion
of the grid is included in the integration of the non-emissivity scalars. For example, if there
is a contact discontinuity (CD) enclosing the region of interest, then there will be a jump
in the density (d) along this interface. Thus, if d jumps, say, from about 0.1 to about
1.0 across the CD, setting dmask*=1.0 and dupper=0.5 would allow only the low density
region (be it interior or exterior to the CD) to contribute to the line-of-sight integration of
variable *. Alternatively, if the magnetic field is found only in the material of interest, setting
bmask*=1.0 would allow only material with magnetic field to be included in the integration
of variable *. Finally, the variables *lower and *upper allow each variable to be masked
by its own distribution. These can be set in addition to the density and/or magnetic field
masks (dmask*, bmask*). For example, if only the compressive portions of the flow are to
be integrated, then setting xupper=0.0 will mean that only negative values of ∇ · ~v will
be included in the integration. All values excluded by the various masks will be given zero
weight. In all cases, the default is no mask.

Reversing the palette (nlrad<0) is useful for images in which radmin<0 and radmax<0

(e.g., negative velocity divergences). In these cases, it may be desirable to have the “maxi-
mum” colour correspond to the minimum pixel value (which has the greatest absolute value).

Note that the parameters which set the dimensions of the arrays for the RADIO dumps
(nxrd,nyrd) are independent of the parameters which set the dimensions of the flow vari-
ables (in,jn,kn) and of the regular pixel slices (nxpx,nypx).

N.B. For restarted runs in which the computation is resumed on a larger or smaller grid,
and where the default values for x1radmn, x1radmx, etc. were used in the initial run, it will
be necessary to set x1radmn, x1radmx, etc. in the input deck for the restarted run to the
extrema of the new grid if the dumps are to extend to the bounds of the new grid. Otherwise,
the dumps will be bound by the old grid.

Also for a restarted run, the g-zipped movie tarballs from the previous run should be
in the same directory as the executable so that the new movie frames can be added to the
tarballs, and the mpegs can be made from all movie frames since the beginning of the first
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run, rather than just from those created from the beginning of the present run. To enable
this feature, neither the problem tag nor the names of the movie tarballs should be changed
from one run to the next.

parameter description default

General

dtrad problem time interval between RADIO dumps 0.0
0.0 => no RADIO dumps.

nraddmp the sequential number for the next radio file -1
<0 => nraddmp = iraddmp

units sets the angular units (character*2) ’rd’
’rd’ => radians, ’pi’ => units of pi radians
’dg’ => degrees

thetamin minimum angle between x1-axis and plane of sky 0.0
dtheta desired increment in "theta" between successive 0.0

dumps
phimin minimum azimuthal angle for lines of sight. 0.0
dphi desired increment in "phi" between successive 0.0

dumps
x1radmn minimum x1 for RADIO integration x1a(is)
x1radmx maximum x1 for RADIO integration x1a(ie+1)
x2radmn minimum x2 for RADIO integration x2a(js)
x2radmx maximum x2 for RADIO integration x2a(je+1)
x3radmn minimum x3 for RADIO integration x3a(ks)
x3radmx maximum x3 for RADIO integration x3a(ke+1)
radfill = 0 => diameter of image plane set to 0

sqrt (x1radln**2 + x2radln**2 + x3radln**2)
so that no matter the viewing angle, image
fits entirely on image plane.

= 1 => diameter of image plane set to x1radln so
that viewed face-on, image fills entire
plane, leaving no black space around image.

radbox = 0 => no box drawn around integration region 2
= 1 => all box lines drawn with highest colour
=-1 => all box lines drawn with lowest colour
= 2 => all lines except those to "hidden corner"

drawn with highest colour (default)
=-2 => all lines except those to "hidden corner"

drawn with lowest colour
radfmt = 1 => RADDMP creates 4-byte movie frames. 1

= 2 => RADDMP creates 1-byte raw pixel dumps.
= 3 => RADDMP creates movie and raw files (1+2).
= 4 => RADDMP creates 4-byte HDF files.
= 5 => RADDMP creates movie and HDF files (1+4).
= 6 => RADDMP creates raw and HDF files (2+4).
= 7 => RADDMP creates files of all 3 formats (1+2+4).

Emission control

radtype = 0 => emissivities are not computed 2
= 1 => Smith et al emissivity (p**2)
= 2 => CNB emissivity (function of d, p, B)
= 3 => synchrotron emissivity with break freq.

pindex power law index of relativistic electrons 2.0
N(E) = kappa * E**(-pindex) (radtype = 2, 3)

freq frequency of RADIO observation (Hz) 5.0d+9
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nubrs nubr(Hz)/nubr(zeus); scaling factor for break 0.5
frequency (radtype=3 only)
0.0 => value is computed in JETINIT

brn0 fiducial number density for bremsstrahlung lrge
emission (m**-3)

brt0 fiducial temp. for bremsstrahlung emission (K) lrge
brnu1, brnu2 limits of frequency band for brem. (Hz) 1.000000e17

1.000001e17
betarel relativistic beta = v/c for fastest zone (for 0.0

Mike Casey’s Doppler boosting)

Convolution control ("beam")

Only the Stokes parameters and the Q-SRA variables are convolved with the
specified elliptical "beam".

cnvlv = 0 => do not apply convolution 0
= 1 => apply convolution to Stokes parameters

bmajor major axis of convolving beam (distance units) 1.0
bminor minor axis of convolving beam (distance units) 1.0
bpa beam position angle (radians) measured counter- 0.0

clockwise between major axis and +x axis
cpb "cells" per beam 5.0

"cpb" is an accuracy parameter. The default (5.0) should be fine in most cases.
Setting it lower will speed up the computation, but will yield a more ragged
image.

Masking control

In what follows,

* = d, p1, t , b, sh, vv, br, w, m, ma, ms, mf, db, eb, de
q = d, p, p/d, B, shear, divv, brem, curlv, M, MA, MS, MF, d*b, e1**2b, d/e1**2

*lower q is integrated along los provided q > *lower -huge
*upper q is integrated along los provided q < *upper huge
dmask* density mask toggle for variable * (except "d") -1.0

= 1.0 => "dlower" and "dupper" set int. limits
= 0.0 => not
=-1.0 => use "dmask"

dmask density mask toggle for all variables 0.0
If "dmask*" .ne. -1.0, value of "dmask*" overrides
"dmask" for variable * only

bmask* B-field mask toggle for variable * -1.0
= 1.0 => B-field extent sets int. limits
= 0.0 => not
=-1.0 => use "bmask"

bmask B-field mask toggle for all variables 0.0
If "bmask*" .ne. -1.0, value of "bmask*" overrides
"bmask" for variable * only

Variable control

Controls which variables are to be "carried" with the line-of-sight
integrations, and how the pixel dumps are to be bracketed. The bulk of CPU is
used up in setting up the lines-of-sight; the additional cpu required for each
variable is nominal. The only real "cost" of selecting all variables is the
additional disc space required to store all the files.
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radvar (niov) character*2 mnemonics for variables to be plotted ’zz’
using pixel-plotting routines. Legal mnemonics are:
’A ’ => pol. position angle [ 0.5 * atan (Q/U) ]
’AV’ => A with polarisation vectors superposed
’F ’ => fractional pol’n (fpol) rastor plot
’FV’ => fpol with polarisation vectors
’I ’ => total intensity (toti) rastor plot
’IV’ => toti with polarisation vectors
’P ’ => polarised intensity (poli) rastor plot
’PV’ => poli with polarisation vectors
’V ’ => pol’n vector rastor plot (black on white)
’VR’ => pol’n vector rastor plot (white on black)
’D ’ => column density
’P1’ => column pressure (internal energy density)
’B ’ => column magnetic field strength
’T ’ => column temperature (specific internal energy)
’SH’ => column velocity shear
’VV’ => column divergence of velocity
’BR’ => bremsstrahlung emission
’W ’ => vorticity
’M ’ => Sonic Mach number
’MA’ => Alfven Mach number
’MS’ => Fast magnetosonic Mach number
’MF’ => Fast magnetosonic Mach number
’DB’ => d * B (K-S R A variable)
’EB’ => p1**2 * B (K-S R A variable)
’DE’ => d / p1**2 (K-S R A variable)

nlrad (niov) = 0 => store data 0
> 0 => store log10(data) concentrating colours at

low end. Dyn. range = nlrad, 1 => 100.
< 0 => store log10(data) concentrating colours at

high end. Dyn. range =-nlrad, -1 => -100.
radmin (niov) value of data to be assigned the minimum colour. 0.0
radmax (niov) value of data to be assigned the maximum colour. 0.0
radmm (niov) = 0 => use input "radmin", "radmax" for each image 1

If radmin=radmax=0, "radmm" reset to 1
= 1 => compute "radmin", "radmax" for each image
= 2 => extreme of computed "radmin", "radmax" used

for all frames (movie format only; raw and
HDF formats, radmm=1 and 2 are the same)

ncrad number of colour contours in image 255

Reversing the palette (nlrad<0) is useful for images in which radmin<0 and
radmax<0 (e.g., negative velocity divergences). In these cases, it may be
desirable to have the "maximum" colour correspond to the minimum pixel value
(which has the greatest absolute value).

Vector control

eorb = 1 => E-vectors 2
= 2 => B-vectors

porf = 1 => vector length proportional to poli 2
= 2 => vector length proportional to fpol

bworb = 1 => black and white pixel vectors 1
= 2 => black pixel vectors only

vlmin vectors with length < vlmin*(max vector) not 0.001
plotted.

icut vectors are not plotted if total intensity 0.001
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toti < icut*max(toti)
pcut vectors are not plotted if polarised intensity 0.001

poli < pcut*max(poli)
pscale scaling factor for polarisation vectors 0.8

= 1 => vectors lining up along image axis touch
< 0 => vectors scaled by |pscale| and have uniform

length (useful to map polarisation angles)
incpx plot every incpx(th) vector in x-direction 1
incpy plot every incpy(th) vector in y-direction 1

Animation control; note that a separate palette can be chosen for each variable

radpal (niov) = 0 => use user palette ’pfilerad’ 2
= 1 => greyscale palette.
= 2 => spectral colour palette (default).
if radpal(2:niov) not set by user, they’re set to
radpal(1).

pfilerad(niov) character*128 user’s palette file (radpal = 0).
If file not found, radpal reverts to default.

fraterad FFmpeg’s integer parameter. Animation assembled 24
to run at "fraterad" frames per second

mpgrad = 1 => animations written in mpg format 4
= 4 => animations written in mp4 format
else=> neither mpegs nor PPM files created, movie

frames are bundled into a tarball for post-
processing (e.g., ANIM8Z)

ppmrad = 0 => PPM files are discarded, staging directory 0
makempg.dir deleted after use

= 1 => PPM files are retained in makempg.dir

namelist / radcon /
1 dtrad , nraddmp , units , thetamin, dtheta
2 , phimin , dphi , x1radmn , x1radmx , x2radmn
3 , x2radmx , x3radmn , x3radmx , radfill , radbox
4 , radfmt , radtype , pindex , freq , nubrs
5 , brn0 , brt0 , brnu1 , brnu2 , betarel
6 , cnvlv , bmajor , bminor , bpa , cpb
7 , dlower , p1lower , tlower , blower , shlower
8 , vvlower , brlower , wlower , mlower , malower
9 , mslower , mflower , dblower , eblower , delower
1 , dupper , p1upper , tupper , bupper , shupper
2 , vvupper , brupper , wupper , mupper , maupper
3 , msupper , mfupper , dbupper , ebupper , deupper
4 , dmaskp1 , dmaskt , dmaskb , dmasksh , dmaskvv
5 , dmaskbr , dmaskw , dmaskm , dmaskma , dmaskms
6 , dmaskmf , dmaskdb , dmaskeb , dmaskde , dmask
7 , bmaskd , bmaskp1 , bmaskt , bmasksh , bmaskvv
8 , bmaskbr , bmaskw , bmaskm , bmaskma , bmaskms
9 , bmaskmf , bmaskdb , bmaskeb , bmaskde , bmask
1 , radvar , nlrad , radmin , radmax , radmm
2 , ncrad , eorb , porf , bworb , vlmin
3 , icut , pcut , pscale , incpx , incpy
4 , radpal , pfilerad, fraterad, mpgrad , ppmrad
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B.28 PGEN—Problem GENerator (subroutine aliased to PROBLEM)

This namelist is reserved for the problem generator, which sets the flow variables to the
desired initial conditions. Thus the parameters which appear in this namelist depend on
which problem is being studied. The desired problem is specified by setting the EDITOR

alias PROBLEM in the file zeus36.mac to the name of the problem generating subroutine.
This subroutine should initialise the active zones of all field variables as well as any inflow
boundary arrays. The routines bndyflgs and bndyall are called after PROBLEM, and thus
need not be called in the user’s problem generator (§5.1).

Below is a description of the problem generator to shkset, which is used for the 1-D Brio
and Wu problem and consistent with the sample of dzeus36.s given in §2.3. In general, the
user will be writing their own problem generator and may, if they wish, call their namelist
pgen as well. Note that it does not matter that more than one subroutine uses pgen as the
name of its namelist, so long as only one problem generating subroutine is called in a run
(as is typical). If the user wishes to use one of the problem generators already in dzeus36,
each of their namelists are described in the comments of the problem generating routine in
exactly the same format as that for shkset which follows.

parameter description default

idirect = 1 => 1-direction ie biggest => 1
= 2 => 2-direction je biggest => 2
= 3 => 3-direction ke biggest => 3

isetib = 1 => set inner boundary conditions based on 1
v(par)

= 0 => inflow BC are already set by iib, etc.
isetob same as isetib for outer boundary 1
n0 Number of zones to be initialised. Namelist is max(nx*z)

read from ioin until a total of ie-is+1 [je-js+1,
ke-ks+1] zones are initialised.

d0 input density tiny
e10 input first internal energy density tiny
p10 input first pressure ( = gamm1(1) * e10 ) -1.0
e20 input second internal energy density tiny
p20 input second pressure ( = gamm1(2) * e20 ) -1.0
v10 input velocity in 1 direction 0.0
v20 input velocity in 2 direction 0.0
v30 input velocity in 3 direction 0.0
b10 input magnetic field in 1 direction 0.0
b20 input magnetic field in 2 direction 0.0
b30 input magnetic field in 3 direction 0.0

Namelist variables idirect, isetib, and isetob must be set in the first
namelist card and may, though need not be, set in all.

Parameters n0-b30 must be set in each namelist card to override defaults.

p10 (p20) used if e10 (e20) not set.

namelist / pgen /
1 idirect , isetib , isetob , n0 , d0
2 , e10 , p10 , e20 , p20 , v10
3 , v20 , v30 , b10 , b20 , b30



C The ZEUS-3D variables

This appendix contains a glossary of the variables used in dzeus36, and is meant to aid the
user in writing subroutines and making changes to the source code itself. It is by no means
complete, but should contain the variables needed for most purposes. All these variables are
declared in the common deck comvar. Thus, adding the EDITOR command *call comvar

before the local declarations makes all these variables accessible from within the subroutine.
The user should be aware of the index convention used. A 3-D array, such as the density,

is denoted d(i,j,k), where i is the index for the x1 coordinate, j is the index for the
x2 coordinate, and k is the index for the x3 coordinate. The coordinates x1, x2, and x3

are intentionally generic, since an attempt has been made to write the code in a covariant
fashion. In Cartesian, cylindrical, and spherical polar coordinates, (x1,x2,x3) corresponds
to (x,y,z), (z,r,φ) [not (r,φ,z)], and (ρ,θ,φ) respectively. In FORTRAN , the index
which changes the fastest is the first one. Thus, in triple do-loops which manipulate the 3-D
arrays, it is best to have the outer loop run on k, the middle loop run on j, and the inner
loop run on i. If one of the directions is divided into more zones than the other two, then it
is best that this direction be the 1-direction (with index i) since it is the inner loop which
vectorises on vector machines. In Cartesian coordinates, this can always be arranged. The
indices strictly follow a right-hand rule. Thus, the array nijb(k,i) is a 2-D array which
has k as its first index and i as its second (and not i as the first index and k as the second
which would follow a left-hand rule). In the tables in this appendix, arrays are given with
their indexing to remind the user of the ZEUS-3D convention.

The user should also be aware of the gridding. The computational domain is divided into
in by jn by kn zones. In each direction, five of these zones are “ghost” or “boundary” zones,
while the remaining zones are “active” zones in which the equations of MHD are solved. In
Cartesian geometry, these zones are rectangular boxes. In general, the gridding need not be
uniform, so the ratio of the dimensions of each zone need not be constant across the grid.
There are eight locations one can associate uniquely with each zone. Each of these locations
can be tagged with the indices (i,j,k). These locations are: the centre of each box, the
centre of three of the six faces, the centre of three of the twelve edges, and one of the eight
corners.

In ZEUS-3D, there are two grids which are referred to as the half-grid (or the a-grid)
and the full grid (or the b-grid). By convention, the (i,j,k)th point on the a-grid is half a
grid spacing closer in each dimension to the (left, bottom, back) corner of the grid than the
(i,j,k)th point on the b-grid. As seen in the table below, zone centres have pure b-grid
coordinates, zone corners have pure a-grid coordinates, while faces and edges of each zone
have mixed coordinates.

location coordinates location coordinates
zone centre (x1b(i), x2b(j), x3b(k)) zone corner (x1a(i), x2a(j), x3a(k))

1-face (x1a(i), x2b(j), x3b(k)) 1-edge (x1b(i), x2a(j), x3a(k))

2-face (x1b(i), x2a(j), x3b(k)) 2-edge (x1a(i), x2b(j), x3a(k))

3-face (x1b(i), x2b(j), x3a(k)) 3-edge (x1a(i), x2a(j), x3b(k))

Part of the strength of ZEUS-3D is its use of a “staggered” grid. On such a grid, not
all variables are located at the same place. Scalars (density and internal energy) are zone-

94
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centred quantities while the components of the flow vectors (velocity and magnetic field) are
face-centred quantities penetrating the face upon which they are centred. Vectors derived
from vector quantities such as the current density (∇ × ~B) and the induced electric field

(~v× ~B) have edge-centred components parallel to the edges while scalars derived from vector
quantities such as ∇ · ~v are zone-centred. Thus, the two grids play equally important roles,
and the user needs to be careful about which grid should be used and where the variables
are located while making any changes to the code.

C.1 Grid variables

Limits for do-loops are tabulated below.

Variable Description
is, ie beginning and ending i-index for active zone-centres
js, je beginning and ending j-index for active zone-centres
ks, ke beginning and ending k-index for active zone-centres

Corresponding to each variable (is, ie, etc.) are the limiting variables (ismn, iemx, etc.)
which indicate the extreme values possible for the do-loop indices should the grid extending
option be used (§B.18). In addition, the variables ism2, ism1, isp1, isp2, and isp3 exist
which are set to is-2, is-1, is+1, is+2, and is+3 respectively. If the computation is
symmetric in the i-direction, ism2, ism1, isp1, isp2, and isp3 are simply set to is. Similar
variables exist for ie, js, je, ks, and ke.

In order to make the grid covariant, metric factors have been introduced which carry
all the dependence of the geometry. In general, the metric appears in the expression for a
differential in volume, dV = h1dx1 h2dx2 h3dx3. In Cartesian coordinates, h1 = h2 = h3 = 1.
In cylindrical coordinates, h1 = h2 = 1, h3 = x2. In spherical polar coordinates, h1 = 1,
h2 = x1, h3 = x1 sinx2. Note that if one is limited to XYZ, ZRP, and RTP coordinates, there
is no need for h1 and h3 can be split into two variables, one dependent just on x1, the other
just on x2. In this way, h3 can be represented by two 1-D arrays (h31 and h32) rather than
one 2-D array. Thus, three 1-D metric factors are used in ZEUS-3D.

The most commonly used a-grid variables are tabulated below.

Variable Location Description
x1a(i) zone-corner x1-coordinate in grid units
x2a(j) zone-corner x2-coordinate in grid units
x3a(k) zone-corner x3-coordinate in grid units
dx1a(i) 1-edge x1a(i+1) - x1a(i)

dx2a(j) 2-edge x2a(j+1) - x2a(j)

dx3a(k) 3-edge x3a(k+1) - x3a(k)

h2a(i) zone-corner = 1 for Cartesian and cylindrical coordinates,
= x1a(i) for spherical polar coordinates

h31a(i) zone-corner = h2a(i)

h32a(j) zone-corner = 1 for Cartesian coordinates,
= x2a(j) for cylindrical coordinates,
= sin(x2a(j)) for spherical polar coordinates
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The most commonly used b-grid variables are tabulated below.

Variable Location Description
x1b(i) zone-centre x1-coordinate in grid units
x2b(j) zone-centre x2-coordinate in grid units (radians in spherical

polar coordinates)
x3b(k) zone-centre x3-coordinate in grid units (radians in both

cylindrical and spherical polar coordinates)
dx1b(i) 1-face x1b(i) - x1b(i-1)

dx2b(j) 2-face x2b(j) - x2b(j-1)

dx3b(k) 3-face x3b(k) - x3b(k-1)

h2b(i) zone-centre = 1 for Cartesian and cylindrical coordinates,
= x1b(i) for spherical polar coordinates

h31b(i) zone-centre = h2b(i)

h32b(j) zone-centre = 1 for Cartesian coordinates,
= x2b(j) for cylindrical coordinates,
= sin(x2b(j)) for spherical polar coordinates

Every grid variable has a corresponding inverse variable, denoted by appending an “i”
to the variable name. Thus, dx1ai=1/dx1a, x2bi=1/x2b, etc. Evidently, there are numerous
grid variables. However, only the a-grid variables x1a, x2a, and x3a are written to the restart
dump. All others are re-computed when a job is resumed.

Note that x1a(i) < x1b(i). The exact relationship between the two grids is:

x1b(i) = x1a(i) + 0.5 * dx1a(i)

with similar expressions applying for the 2- and 3-directions.

C.2 Field variables (3-D arrays)

The main field variables and their locations are as follows:

Variable Location Description
d (i,j,k) zone centre density
v1(i,j,k) 1-face velocity in the 1-direction (grid units)
v2(i,j,k) 2-face velocity in the 2-direction (grid units)
v3(i,j,k) 3-face velocity in the 3-direction (grid units)
et(i,j,k) zone centre total energy density
e1(i,j,k) zone centre first internal energy density (∝ pressure)
e2(i,j,k) zone centre second internal energy density
gp(i,j,k) zone-centre gravitational potential
b1(i,j,k) 1-face magnetic field in the 1-direction (µ0 = 1)
b2(i,j,k) 2-face magnetic field in the 2-direction (µ0 = 1)
b3(i,j,k) 3-face magnetic field in the 3-direction (µ0 = 1)
da(i,j,k) zone centre product of density and synchrotron age
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There is very little internal scaling of variables in ZEUS-3D that the user must consider.
Density, energy, and velocity all may be scaled according to the user’s needs simply by setting
the initial conditions as appropriate. For example, the user may wish to set the density and
the sound speed at infinity to 1. This, along with some canonical length scale will set the
time scale for the calculation. The only scaling implicit to ZEUS-3D is the permeability
of free space (4π × 10−7 in mks, 4π in cgs) is set to 1. Thus, the total pressure (thermal
plus magnetic) is given by ptot = pth + B2/2. Having set the scale of the hydrodynamical
variables, the user should set the magnetic fields with this additional scaling in mind.

If the EDITOR macro ISO is defined, the total and first internal energy densities, e1 and
et, are not declared. The second internal energy (e2), the gravitational potential (gp), the
magnetic field components (b1, b2, b3), and the synchrotron “density-age” (da) are declared
only if the EDITOR macros TWOFLUID, GRAV, MHD, and AGING are defined respectively. If
PSGRAV is defined, the “pseudo-gravitational potential” array (psgp) ( 6= gp) is declared.

C.3 Boundary variables (2-D arrays)

Variable Location Description
niib (j,k) boundary type for all variables except gp
giib boundary type for gravitational potential
diib1 (j,k) zone-centre at i=is-1 density
v1iib1 (j,k) 1-face at i=is 1-velocity (normal to the boundary)
v2iib1 (j,k) 2-face at i=is-1 2-velocity (tangential to the boundary)
v3iib1 (j,k) 3-face at i=is-1 3-velocity (tangential to the boundary)
e1iib1 (j,k) zone-centre at i=is-1 first internal energy density (∝ pressure)
e2iib1 (j,k) zone-centre at i=is-1 second internal energy density
gpiib1 (j,k) zone-centre at i=is-1 gravitational potential
b2iib1 (j,k) 2-face at i=is-1 2-magnetic field (tangential to the boundary)
b3iib1 (j,k) 3-face at i=is-1 3-magnetic field (tangential to the boundary)
emf1iib1(j,k) 1-edge at i=is-1 1-emf (normal to the boundary)
emf2iib1(j,k) 2-edge at i=is 2-emf (tangential to the boundary)
emf3iib1(j,k) 3-edge at i=is 3-emf (tangential to the boundary)
daiib1 (j,k) zone-centre at i=is-1 synchrotron density-age

diib2 (j,k) zone-centre at i=is-2 density
v1iib2 (j,k) 1-face at i=is-1 1-velocity (normal to the boundary)
v2iib2 (j,k) 2-face at i=is-2 2-velocity (tangential to the boundary)
v3iib2 (j,k) 3-face at i=is-2 3-velocity (tangential to the boundary)
e1iib2 (j,k) zone-centre at i=is-2 first internal energy density (∝ pressure)
e2iib2 (j,k) zone-centre at i=is-2 second internal energy density
gpiib2 (j,k) zone-centre at i=is-2 gravitational potential
b2iib2 (j,k) 2-face at i=is-2 2-magnetic field (tangential to the boundary)
b3iib2 (j,k) 3-face at i=is-2 3-magnetic field (tangential to the boundary)
emf1iib2(j,k) 1-edge at i=is-2 1-emf (normal to the boundary)
daiib2 (j,k) zone-centre at i=is-2 synchrotron density-age

v1iib3 (j,k) 1-face at i=is-2 1-velocity (normal to the boundary)
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The previous table lists the arrays for the first, second, and third inner-i boundaries. Note
there are no boundary arrays for the total energy density; these values are computed directly
from boundary values of the primitive variables where needed. Analogous boundary variables
exist at the outer-i boundary (oib), inner-j boundary (ijb), outer-j boundary (ojb), inner-k
boundary (ikb), and outer-k boundary (okb).

Note that the i-boundary variables use indices (j,k) and are declared so long as the
EDITOR macro ISYM is not defined. Similarly, the j-boundary variables use indices (k,i)
and are declared so long as JSYM is not defined while the k-boundary variables use indices
(i,j) and are declared so long as KSYM is not defined. All internal energy boundary variables
(e1iib1, etc.) are not declared if ISO is defined. The boundary variables for the second in-
ternal energy (e2iib1, etc.), gravity (gpiib1, etc.), the magnetic field components (b2iib1,
etc.) and the synchrotron density-age (daiib1, etc.) are declared only if TWOFLUID, GRAV,
MHD, and AGING are defined respectively.

Note that boundary variables are used only for regions of the boundary specified as inflow
[niib(j,k)=8,10 and/or giib=10]. For boundary type 8 (selective inflow), grid values are
used where boundary variables are set to huge. For the gravitational potential, the boundary
variable, gpiib1, is set to known analytical or asymptotic values. For all other boundary
types, the boundary values of the flow variables are determined from the values in the
neighbouring active zones (§B.8).

C.4 Scratch variables

There are a multitude of scratch arrays available which can be used to minimise the addi-
tional memory required by the user’s subroutines. These should be used wherever possible,
especially for 3-D arrays. There are 26 1-D arrays dimensioned (ijkx) and named wa1d

through wz1d, 18 2-D arrays dimensioned (idim,jdim) and named wa2d through wr2d (see
§C.6 for definition of parameters idim and jdim), and finally nine 3-D arrays dimensioned
(in,jn,kn) and named wa3d through wi3d.

C.5 Sundry variables (an abbreviated list)

Variable Description
ioin logical unit attached to input deck
iolog logical unit attached to message log file
iotty logical unit attached to terminal (TTY or CRT)
iodmp logical unit attached to restart dumps
iopl1 logical unit attached to 1-D plot files
iopl2 logical unit attached to 2-D plot files
iopix logical unit attached to 2-D pixel dumps
iousr logical unit attached to user dumps
iotsl logical unit attached to time slice ascii dump
iotsp logical unit attached to time slice plot dump
iodis logical unit attached to display dump
iorad logical unit attached to RADIO dump
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Variable Description
iocrk logical unit attached to cork dump
nhy number of cycles (time steps) completed in simulation
nwarn running total of warnings issued
prtime problem time elapsed in simulation
dt increment of problem time that solution is being advanced

In addition, all of the namelist variables (except for namelist pgen) are declared in comvar.

C.6 Parameters

All global parameters are declared and set in common deck par. Primary parameters (those
which the user can set) include:

Parameter Description
in number of zones in 1-direction plus 5 ghost zones
jn number of zones in 2-direction plus 5 ghost zones
kn number of zones in 3-direction plus 5 ghost zones
nxpx maximum number of pixels in the x-direction for pixel dumps
nypx maximum number of pixels in the y-direction for pixel dumps
nxrd maximum number of pixels in the x-direction for RADIO dumps
nyrd maximum number of pixels in the y-direction for RADIO dumps
niov maximum number of variables plotted/dumped
nios maximum number of slices for each variable plotted/dumped
ncls maximum number of contour levels in 2-D NCAR/PSPLOT plots
ntsl maximum number of time slices to be collected for plots
ncrk maximum number of Lagrangian particles (“corks”)
nmat maximum number of materials. With TWOFLUID set, this should be 2
isig number of significant figures to which some real*8 numbers are rounded.
pi 3.14159. . .
tiny 1.0× 10−99: smallest greater-than-zero number available on machine
huge 1.0× 10+99: largest number available on machine
smll 1.0× 10−6: a convenient “small” number.
lrge 1.0× 10+6: a convenient “large” number.

The parameter nios is used by 1-D and 2-D NCAR/PSPLOT plots, pixel dumps, and display
dumps. The parameter niov is used by these plus HDF dumps and RADIO dumps.

Secondary parameters (those which are computed from the primary parameters and the user
does not set but should still be aware of) include:

Parameter Description
ijkx the maximum of in, jn, and kn

ijkn the minimum of in, jn, and kn

idim = jn (kn, in) if ISYM (JSYM, KSYM) is set [1- (2-, 3-) symmetry flag]
= ijkx if no symmetry is set

jdim = kn (in, jn) if ISYM (JSYM, KSYM) is set [1- (2-, 3-) symmetry flag]
= ijkx if no symmetry is set
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