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Introduction

1. Objectives of the Physics Laboratory

Most people, whether they have ever taken a University Physics course or not, develop an
intuition for the physical world around them. So, for example, when the coyote (from the
Bugs Bunny and Roadrunner series) falls only after he realises he has stepped out beyond
the edge of the cliff, or when the anvil doesn’t budge even after being rammed by a massive
bull at top speed, or when Martians the size of ostriches are created from a small seed and
a single drop of water, the audience is amused at the impossibility of the events. Yet how
do we know these events are impossible? What laws of physics are being violated1, and how
do we know what these laws are?

More specifically, if a force acts on an object, we expect the object to move in the
direction the force is applied. In class, our intuition on this matter is formalised by Newton’s
Second Law of Motion that states F ∝ a, where F is the applied force and a is the acceleration
of the object. The law appears to be a reasonable representation of what we expect. But
how do we know the law of motion isn’t, for example, F ∝ v, where v is the velocity of the
object? Can our everyday experiences tell us that this is not correct or must we test the
correctness of this law of motion more carefully? In fact, history records that up until the
time of Galileo Galilei (1564-1642), most scientists did believe F ∝ v. Galileo was the first to
conduct a series of experiments for which we have recorded evidence (similar to Experiment
3 in this manual), to deduce the correct form of the law (he got Newton’s Second Law).

To many, this represents the goal of scientific experiment—to discover new laws of
physics. But once the law is discovered, what is the point of doing the experiment over and
over again? (Galileo’s experiment has probably been carried out by nearly every first year
science student at every university in the world for the past two centuries.)

Here, then, is at least a partial list of reasons why we ask physics students to do these
labs, even though surely there is little more to discover in them:

1. to introduce students to the care and methodology required to do experimental science
effectively;

2. to show students how the ideal theory taught in class or found in the textbook is applied
to “real-world” situations in which friction, measuring errors, and uncertainties play a
significant role;

1The three examples violate Newton’s Second Law, Conservation of Momentum, and Conservation of
Mass, respectively.
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2 Introduction

3. to teach students the proper techniques of data and graphical analysis;

4. to introduce students to simple methods for estimating the uncertainties associated
with a measurement or an experiment and to enable the student to assess the precision
or quality of experimentally determined results;

5. to expose students to a variety of instruments and measuring techniques through hands-
on use;

6. to instruct students on the proper way to keep a laboratory notebook and writing a
formal scientific report; and

7. to instil upon students proper and safe laboratory conduct.

1.1 Preparation for the lab

Each lab section has assigned to it one lab instructor (a faculty member) and one lab
demonstrator (normally a graduate or senior undergraduate student). These people are here
to help you understand the objectives and methodology of the labs, and to ensure you are
able to complete the lab during the three-hour lab period.

Before walking into the lab, you should have read and understood the material dis-
cussed in this Introduction. In addition, before arriving in the lab to perform an experiment,
you should have carefully read the instructions for that experiment and completed all pre-lab
preparations. At the beginning of each lab, the demonstrator will check your lab books to
make sure you are, in fact, prepared for the experiment and make a note to this effect in
your lab book. Your preparedness for the experiments will influence your final lab grade. If
you do not understand what you are supposed to do in the lab after reading the instructions,
you should prepare a list of questions to ask the lab instructor or demonstrator prior to the
lab or during the instructor’s office hours.

2. Laboratory Notebook

You are required to keep a lab notebook where you will record everything you do in connection
with the experiments you perform. The notebook contains the only permanent record of what
you did during the experiment. Hence, it should contain all of the details which are in any
way relevant to the experiment. You, or any other scientist, should be able to reconstruct
exactly what you did during the experiment from the notes recorded in your lab notebook.

The lab notebook used for PHYS 1100/1101 is the “Blueline A-90 Physics Note-
book” sold at the University bookstore. This notebook contains bound pages with right-
facing pages lined (for notes and calculations) and left-facing pages alternating between blank
(for diagrams) and graph paper (for all graphs). The pages in the notebook are unnumbered,
so the first thing you need to do upon opening up your notebook is to number sequentially
all the right-facing pages in pen, and leave a page at the beginning for a Table of Contents
which should be kept up-to-date as you perform the experiments. A binder with loose-leaf
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paper is not acceptable for a lab notebook, nor will you be permitted to use loose sheets of
paper during the lab. Everything you do in the lab should be recorded in your lab notebook,
however trite you may think the detail may be. These “tidbits” may well become critcal to
your recollection of what you did in the lab when it comes time to write up a formal report
on one of the experiments (§ 3).

You should always write in your lab notebook using pen. Errors are corrected
by drawing a single neat line through the errant entry and entering the correction above
or beside it in as neat a fashion as possible. If the entire page is spoiled, a simple cross
through the entire page will suffice. Under no circumstances should you tear out a page. If
you do, your numbered pages will give you away! Data should be recorded directly into the
lab notebook in pen and not, for example, on a separate piece of paper, later to be copied
into the notebook. Even scratch calculations should be written down in the notebook in
pen. The idea is for you to keep all notes, errant or not, in your lab notebook. Often, one
can learn as much from what didn’t work as from what did, and so it is necessary to get into
the habit of keeping your notebook in such a way that you can read your errors as well.

Summary:

• number all notebook pages and keep a Table of Contents;

• record everything in pen that happens during an experiment;

• use a pen to enter all data and observations into the notebook, and for doing all
calculations;

• never remove any pages from your notebook.

2.1 Informal Lab Write-ups

One informal lab write-up is required with every experiment performed, and all informal
write-ups are completed in-class. At the end of each experiment, the lab notebooks are
collected by the lab demonstrator, whether or not you are finished, and graded by him or
her to be returned the following week. Your in-class lab write-up need not be a detailed
account of the experiment. Rather, it must contain all the information you would need
should you be called upon to write the experiment up formally in the future (see § 3 on
Formal Reports). This is one of the primary criteria upon which your experiment will be
graded . While being forced to complete both the experiment and write-up in the same three
hour period may make the lab seem rushed at first, it does force the student to learn how
to record the salient facts effectively and efficiently. Of course, the other advantage is, other
than the preparatory work for each experiment, there is no weekly lab homework! Examples
of both an acceptable and an unacceptable informal lab report can be found in App. A, and
the student should review these before coming to the first lab.

Before each lab, you should read the instructions in the manual carefully and understand
them. In addition, you should enter the following in your lab notebook before coming to
the lab:
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1. the title and number of the experiment as it appears in the lab manual;

2. the purpose of the experiment (one or two sentences) in your own words;

3. a list (but not a derivation) of the important formulæ (as given in the manual) required
to perform the data analysis with accompanying definitions for the symbols used;

4. answers to any and all of the boxed “Preparation questions” (but not the “Additional
discussion questions”) scattered throughout the theory, procedure, and analysis sections
of the lab description.

During the lab, you should record the following:

1. the date, your name, and your partner’s name;

2. if different from the manual, a list of the equipment used and/or a free-hand drawing
of the experimental arrangement as assembled by you and your partner;

3. the procedures you followed that deviated from those in the lab manual (If your pro-
cedures were, in fact, identical to the instructions, just refer to the lab manual; there
is no need to copy verbatim what already appears there.);

4. an accurate and effective record of your measurements (Often the best way to record
data2 is in a table, and you will be expected to do so whenever possible.);

5. uncertainty estimates given for every measurement, as well as how this uncertainty
was determined (“by eye”, “half-the-range rule”, “scatter in the measurements”, etc.;
see § 5);

6. comments about difficulties or anomalies you encountered;

7. all calculations connected with the experiment, including uncertainty propagation (for
repeated calculations, a written example of one will suffice); and finally

8. your conclusions in which you state your final results with an estimate of their accuracy,
and whether your results agree with “accepted values” (if any) to within experimental
uncertainty. If your results disagree with accepted values, you should list some possible
sources of error that were not accounted for in the lab that may account for the observed
differences.

The “Additional discussion questions” are intended for the formal report (§ 3) and need not
be answered in the informal report. However, time permitting, attempting to answer these
questions in the informal report could lead to “bonus points”. . .

Performing all these tasks in the three-hour session may, at first, seem daunting. By the end
of the year, however, your lab experience should seem much more “relaxed” as you become

2Note that the word data is plural, and takes the plural form of the verb. Thus, one writes “The data
were recorded in Table 1.”, and not “The data was recorded in Table 1.” The singular form of data is
datum.
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more efficient in what you record, and how you record it. If you are running out of time,
concentrate on getting the raw data, even if that means skipping some of the analysis. A
formal report can be done without your analysis, but not without the data!

2.2 Grading

The informal lab write-ups are graded on a scale of 0 to 10 using the following criteria:

1. your performance in the lab, including pre-lab preparation, efficient use of the three-
hour period, etc.;

2. quality of writing and legibility;

3. proper calculations and graphs;

4. proper evaluation of your results including uncertainty propagation and conclusions;
and

5. completeness.

The last criterion is determined from the answer to the following question: “At some point in
the future, could the student generate a formal write-up from what appears in the informal
report?”.

Labs are marked by the lab demonstrator, and returned to you the following week,
giving you time to prepare for the next lab one week hence. Read the grader’s comments
carefully; they are there to provide direction on improving future reports, as well as to ensure
your lab is complete enough should you be required to convert the informal report into a
formal one (§ 3).

If you miss a lab altogether, you will get a zero for that lab. If your absence is excused
(e.g., for a medical reason), you will get a chance later in the semester to make up the lab
“for credit” during “make-up week”.

2.3 Make-up week

If worse comes to worst and you do not get all your data during the regular lab session,
you should plan to make use of “make-up week”, scheduled the week before formal labs are
assigned. Here, you can gather any data you may have missed or gathered incorrectly on as
many labs as you may need. Except for excused absences (e.g., medical), make-up week is
not to redo labs for credit. Rather, they are there to allow students to gather the data they
may have missed in the regular lab, so that they can do whatever formal report is assigned,
which is worth much more to the final lab grade than a single informal report.
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3. Formal Reports

You are required to write one formal report per semester on one of the experiments performed
in the lab. These will generally be graded by your lab instructor. If your lab notebook has
been kept as described in the previous section, the effort should amount to little more than
reformatting and/or transcribing what already appears in your notebook. You will have two
weeks to complete each report.

The formal report is not written in your lab notebook, but on standard sized
(81

2

′′ × 11′′) paper (white blank for computer-generated, white lined for hand-written). If
graphs are hand-drawn, they should be drawn on separate sheets of graph paper (and not
quadrille paper; if you don’t know the difference, find out before doing your report!) using,
as always, rulers for straight lines. All pages can be stapled together at the top left corner;
duo-tangs or other covers are unnecessary but acceptable if you feel the need.

Adherence to standard English grammar is mandatory. In this world, if you cannot com-
municate your thoughts intelligibly, the chances of gaining employment are severely limited,
regardless of what other assets you might possess. Therefore, the report must be written
using full sentences and in paragraph form and not, for example, in point form (although
“bulleted paragraphs” are acceptable when it improves the clarity and organisation). Clearly,
texting abbreviations are absolutely verboten! An example of a formal report for which most
instructors would give a high grade appears in App. B.

Your formal report should contain the following:

1. the date the experiment was performed, your name, and your partner’s name;

2. the date the formal report was completed;

3. Purpose—in your own words, state the objectives of the experiment using full sentences;

4. Theory—this should be a self-contained summary of all the equations used in the data
analysis. If the derivations of the equations are simple, they should be included here
too. However, if the derivations are lengthy, you may cite references (e.g., a text book,
this manual) where the expressions are derived in all their gory detail. As a guide,
try to keep this section to less than one or two pages. Under no circumstances,
should you plagiarise this lab manual, or any other document!.

Note: It is not necessary to answer the “preparation questions” in your formal report.
These should already have been answered and graded in your informal report;

5. Equipment—list all equipment used and include a good-sized diagram (at least half a
page) showing how the experiment was assembled;

6. Procedure—this should be a self-contained summary of what you did in the lab to carry
out the stated objectives. Do not refer to the lab instructions here, and certainly don’t
plagiarise them! This should be your own account of what you did, and written in the
past-passive tense (e.g., “The mass of the sample was measured...”). Avoid using the
imperative tense (e.g., “Measure the mass of the sample...”) and avoid using personal
pronouns (e.g., “I measured the mass of the sample...”);



Attendance 7

7. Raw Data—in this section, you should record all data gathered during the lab along
with an estimate of the uncertainty for each measurement. Without an estimate of the
uncertainty, the data entry is nearly worthless. See § 5 on Experimental Uncertainty.
Where ever possible, record the data in a table with the table properly titled;

8. Data Analysis—all data manipulation (using the equations listed in the Theory sec-
tion) should be done here, including all uncertainty propagation. Where ever possible,
generate graphs of the data in which the independent variable appears on the x-axis,
and the dependent variable appears on the y-axis. See § 6 on Graphical Analysis;

9. Discussion—here, you should indicate the accuracy of your results, recount any anoma-
lies or difficulties you experienced in the lab, propose possible modifications to the lab
to avoid these problems, and answer all questions in the Additional discussion questions
section. These should be answered as part of the text, and not in “point form”;

10. Conclusions—here, you should simply state what you found. A few sentences will suf-
fice and should include what your experimental values were (including the uncertain-
ties) and whether they agreed with any accepted values. IF YOUR RESULTS DIS-
AGREE WITH THE ACCEPTED VALUES, DON’T SAY THAT THEY
DO AGREE!!

As a guide, a formal report will probably be no less than 6 pages, and no more than 12.
Don’t think volume is necessarily a plus. Obvious padding of the report with excessive
verbiage will go against you. If your writing is legible, you may write your report by hand.
However and in general, typed (e.g., word processor) reports are usually preferred. Diagrams
should be done by machine only if such diagrams are better than carefully hand-drawn ones.
Similarly with equations; if your word-procesor cannot handle equations effectively (e.g., see
the equations in App. B), then you should leave enough space in your document to insert
the equations neatly by hand afterward.

Finally, the formal report is your report. Thus, these should be done individually. Even
if your lab partner is asked to write up the same lab, you must not hand in carbon copies of
the same report. Copied reports will get zero. This applies to both the one who copies,
and the one who allowed their report to be copied.

4. Attendance

Attendance to all laboratory sessions is mandatory . If you must miss a session for any
unavoidable reason (e.g., medical), please discuss this with your instructor previous to the
session you must miss whenever possible. The laboratory sessions are regularly scheduled
parts of the course, and you should no more schedule work or other obligations during this
time than you would during your lectures. If you do have a problem attending regularly
scheduled laboratory sessions, please talk to your lab instructor. Often, reasonable requests
can be accommodated.
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5. Experimental Uncertainty

No measurement made in the laboratory can be 100% precise; there is always some degree
of uncertainty associated with every measured value. If q represents the quantity being
measured (e.g., a mass, length, time, etc.), then the associated uncertainty is written as ∆q,
and we write the measurement as:

q ± ∆q.

The Greek letter ∆ (capital letter “delta”, their “D”) is often used to indicate “a change
in”. You are probably already familiar with its use in rises and runs, in which the rise, ∆y,
is the “change in y”, and the run, ∆x, is the “change in x”. The ± symbol (read “plus
or minus”) is taken to mean that the quantity, while measured to be q, could indeed be
anywhere between q − ∆q and q + ∆q; we simply cannot state with any degree of certainty
where in this range q might be given the measuring devices available to us.

Science is an objective pursuit and it is the analysis of the uncertainties that makes it
objective. The statement that a measured quantity is “pretty close” is never an acceptable
conclusion in a lab report. You need to know how close your result is to existing values so
that you can determine whether or not your results agree or disagree with what may already
be known. The only way to do this is to calculate the effect your measured uncertainties
have on your final results, a process known as propagation of uncertainties.

In propagating your uncertainties from the measurements to the final results, you will
learn to apply a set mathematical rules which follow from simple arithmetic and, on occasion,
elementary calculus. In fact, the method you will learn in this lab is a simplified version
of the “full-blown” analysis and gives quick “rules-of-thumb” for propagating uncertainties.
As simplified as these rules may be, you will still find that the propagation of uncertainties
will consume much of your time preparing your informal reports. The sooner you learn
to do these extensive arithmetic operations accurately and quickly, the better will be your
performance in this, or any other science or engineering lab.

5.1 Errors and Uncertainties

Contrary to popular usage (even by seasoned scientists!), the terms error and uncertainty
are not synonymous. Let us begin, therefore, by making the distinction between these two
important concepts.

Definition: Error is the difference between an experimental result and the “accepted” value.
The smaller your error , the more accurate your results.

Definition: Uncertainty is a measure of how precisely an instrument may make a measure-
ment. The smaller your uncertainty , the more precise your readings.

As an example of an experimental error, suppose you have determined that the acceleration
of gravity is 9.9 m s−2, while the “accepted” value is 9.8 m s−2. In this case, the “error” is
9.9 − 9.8 = 0.1 m s−2. When an “error” is made, it is up to the experimentalist to indicate
in his or her report what the possible sources of error might be. Perhaps friction played an
unquantified role in the experiment, or perhaps the system didn’t start exactly at rest as
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assumed by the theory. Or, perhaps the local acceleration of gravity really is 9.9 m s−2 and
not 9.8 m s−2, in which case the experimentalist must show some independent evidence to
support this “alternate” view. (Before doing so, however, you should check to confirm that
you have not simply made a blunder in your calculations!)

There are numerous examples of experimental uncertainty in the lab. In fact every
measurement taken during an experiment has an associated uncertainty. If you are measuring
the length of a steel rod with a ruler whose smallest divisions are millimetres (mm), there
is no way you could report the length of the rod to be 47.23931 mm. The best you could
probably do is to report 47.2 mm. And while 47.2 mm may be the best value you can
determine, you probably wouldn’t be able to swear that the measurement wasn’t 47.1 mm
or 47.3 mm. However, with a good degree of confidence, you could probably state that the
length is greater than 47.0 mm (you can see that the tip of the rod is beyond the 47th mm
mark on the ruler) and less than 47.4 mm (you can see that the tip of the rod is clearly
less than half way between the 47th and 48th mm markings). Therefore, you would state
the length of the rod is somewhere in the range of 47.1 and 47.3, thus 47.2 ± 0.1 mm. The
± 0.1 bit is the uncertainty. Note this is not an error. No error was committed because
you were unable to measure the length any better than to within a fraction of a mm. The
uncertainty is simply a statement of the inescapable fact that nothing can be measured with
infinite precision.

First Law of Experimental Science: All measured quantities must be
accompanied by an estimate of the uncertainty.

Some experiments require making measurements with metre sticks or 2-metre sticks. In
such cases the best accuracy one can hope for is typically ±1 mm (in large part, the parallax
caused by the thickness of the wood may prevent accurate intra-mm measurements), in
which case a measurement given as 57.6 cm would normally be recorded as “0.576 ± 0.001
m.” Note that, while the measurement may have been made in centimetres, one might record
it in metres to maintain work in the SI (mks) system of units. It is normal practice to include
a statement like “(estimated reading uncertainty)” after the measurement in order to indicate
how the uncertainty was established.

The “half-the-range rule”

In some cases, it is not convenient to “read off” the uncertainty from the measuring
device itself, as with the metre-stick in the example above. In these cases, another way to
estimate the uncertainty is to take the same reading several times and then use what we
will call the “half-the-range rule”. For example, in experiment 3, you are to measure the
time for an object to slide down the air-track five times. If these readings were 2.12, 2.14,
2.15, 2.16, and 2.18 seconds, then the average value of these readings is 2.15 and the range
is 2.18 − 2.12 = 0.06. So half the range is 0.03, and you would quote your experimental
reading as 2.15 ± 0.03 s.

Note: In some labs, you may be instructed to use Gaussian statistics (i.e., “standard
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deviations”) for uncertainty estimates. In fact, many calculators have “standard deviation”
and “mean” buttons on them which can be used blindly to extract averages and uncertainties
from your data. However, these techniques apply to data bases which contain a large number
of entries. In this lab, our data bases will usually comprise of 5, maybe 10 readings which
hardly qualifies for large-number statistical methods such as standard deviations. In this
case, the “half-the-range rule” used in this lab is actually preferable to full-blown statistical
analysis, and much easier to use.

5.2 Expressing Uncertainties

In the opening paragraph of this section, we introduced the notation q ± ∆q as a way to
express a measured quantity q with its uncertainty. ∆q is called the absolute uncertainty,
and has the same units as q itself. Thus, if q = 4.23 m and ∆q = 0.03 m, we would write
this as:

4.23 ± 0.03 m, (absolute uncertainty)

and not, for example, “4.23 m ± 0.03 m” which isn’t necessarily incorrect, just awkward.
Alternately, one may wish to express an uncertainty as a fraction of the measured value.

Thus, we may write our uncertain measurement as:

q ± ∆q

q
,

where the fractional uncertainty (also known as the relative uncertainty), ∆q/q, is always
unitless. Thus, in our example above, we would write:

4.23 m ± 0.0071 (frac. unc.), (fractional uncertainty)

(since 0.03/4.23 = 0.0071) where the designation “(frac. unc.)” is optional, and needed only
if you think there is any possibility the reader will confuse the fractional uncertainty for an
absolute uncertainty. If you are careful with your placement of the units (in this example,
m) and there are units to place, this won’t be an issue. For an absolute uncertainty, the units
are placed after the uncertainty (4.23 ± 0.03 m), whereas for a fractional uncertainty, the
units are placed after the reading (4.23 m ± 0.0071). This is sufficient to distinguish between
the two. Note that this convention is easy to remember, as it follows the normal rules of
spoken English. Thus, one would say “4.23 plus or minus 0.03 metres”, and not “4.23 metres
plus or minus 0.03” if one wanted to be certain both numbers were understood as metres.
Similarly, one would say “4.23 metres plus or minus 0.0071 fractional uncertainty”, and not
“4.23 plus or minus 0.0071 fractional uncertainty metres”, which doesn’t really make sense.

Converting between absolute and fractional uncertainties, as one has to do frequently
in propagating uncertainties, is easy. Let the fractional uncertainty of the quantity q be fq.
Then we have:

fq =
∆q

q
(converting from absolute to fractional uncertainty);

∆q = fq q (converting from fractional to absolute uncertainty).
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A percentage uncertainty is just the fractional uncertainty multiplied by 100. Thus,
4.23 m ± 0.0071 could be expressed as 4.23 m ± 0.71%; it is completely a matter of taste.
This is entirely analogous to whether you express the money in your pocket in terms of
dollars (e.g., $22.43) or in cents (e.g., 2,243c//). The value of the money in your pocket is the
same regardless of the units in which you express it. Between the two, this manual normally
uses fractional uncertainties though, on occasion, percentage uncertainties are used when
convenient.

By and large, final results should always be expressed with an absolute uncertainty.
However and as the examples in § 5.4 show, one needs to convert back and forth between
absolute and fractional (percentage) uncertainties frequently while propagating uncertainties,
and thus you will need to become at ease with these conversions.

If the datum is expressed in scientific notation, it and the absolute uncertainty should
be expressed as follows:

(2.21 ± 0.05) × 10−6 kg

and not
2.21 × 10−6 ± 5.0 × 10−8 kg

which is much more cumbersome. Similarly, a fractional uncertainty should be expressed as:

2.21 × 10−6 kg ± 0.023

and not
(2.21 kg ± 0.023) × 10−6

which, in fact, is not the equivalent statement.

5.3 Significant Figures

A former staff member of the Department of Astronomy and Physics (who shall remain
nameless) left a sign in the Burke-Gaffney Observatory (the dome on top of the Loyola
Residence) with the remarkably precise coordinates for the Observatory of 44◦37′45′′.2145
N, 63◦44′49′′.4671 W. Surely the person was just trying to be helpful, but unfortunately
displayed no sense whatever of significant figures. Quoting a precision to the nearest ten
thousandth of an arcsecond (corresponding to the nearest 3 mm on the surface of the Earth)
begs the question: “To which tuft of carpet do these coordinates refer?”. Obviously for
every measurement taken, there is an appropriate number of significant figures one can
quote reasonably, and this number is intimately tied to the uncertainty of the measurement.

Uncertainties may be expressed with one or two significant figures, but no more. The
last significant figure in the experimental quantity should correspond to the last significant
figure in the absolute uncertainty. For example:

4.2316 ± 0.03 has too many significant figures;
4.2316 ± 0.0312 has too many significant figures in the uncertainty;
4.2 ± 0.03 has too few significant figures;
4.23 ± 0.03 is just right;
4.232 ± 0.031 is OK too.
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While the final results should be expressed with the appropriate number of significant figures,
intermediate steps should be retained with all the precision your calculator permits. Rounding
off each and every step of the calculation can lead to significant “round-off errors” which
could grow significantly larger than the uncertainty itself.

5.4 Propagating Uncertainties

Invariably, one is asked to convert the raw data with their associated uncertainties into a
result attained by “plugging” the data into specified equations. In order to express the final
result with an associated uncertainty, one has to propagate the uncertainties through the
relevant equations. For this, there are two primary rules we will follow in this lab:

Rule 1: When adding or subtracting uncertain quantities,
add the ABSOLUTE uncertainties.

Rule 2: When multiplying or dividing uncertain quantities,
add the FRACTIONAL (or PERCENTAGE) uncertainties.

Let’s look at how these two rules are used mathematically. Suppose we have two uncertain
measurements: q ± ∆q and r ± ∆r. According to rule 1:

∆(q + r) = ∆q + ∆r; ∆(q − r) = ∆q + ∆r. (I.1)

Notice the propagated absolute uncertainty is the same regardless of whether we are taking
a sum or a difference. In particular, notice that ∆(q − r) 6= ∆q − ∆r!

Now introduce a third uncertain quantity, s ± ∆s. It follows from rule 1 that:

∆(q + r + s) = ∆q + ∆r + ∆s; ∆(q − r − s) = ∆q + ∆r + ∆s,

etc. You can see how things would go if we had four or more terms: just add all the absolute
uncertainties regardless of whether the term is being added or subtracted.

Next, according to rule 2, the fractional uncertainty in qr and q/r are given by:

fqr =
∆(qr)

qr
=

∆q

q
+

∆r

r
; fq/r =

∆(q/r)

q/r
=

∆q

q
+

∆r

r
, (I.2)

Notice the fractional uncertainties are added regardless of whether the factors are multiplied
or divided. For products/quotients of three uncertain quantities, we have:

∆(qrs)

qrs
=

∆q

q
+

∆r

r
+

∆s

s
;

∆[q/(rs)]

q/(rs)
=

∆q

q
+

∆r

r
+

∆s

s
,

etc. Again, the generalisation to four or more factors is clear: just add up all the fractional
uncertainties.
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Powers of uncertain quantities, such as qn, can be handled just like products. For n = 2,
we have q2 = qq and thus:

∆(q2)

q2
=

∆(qq)

qq
=

∆q

q
+

∆q

q
= 2

∆q

q
,

Similarly, for n = 3, q3 = qqq and:

∆(q3)

q3
=

∆q

q
+

∆q

q
+

∆q

q
= 3

∆q

q
,

and so on. Thus, in general, the uncertainty in the quantity qn is given by:

∆(qn)

qn
= n

∆q

q
, (I.3)

which can be extended to apply even for non-integer values of n. Thus, for n = 1
2
, we have:

∆(
√

q)
√

q
=

1

2

∆q

q
. (I.4)

Occasionally, the two basic rules aren’t enough. For example, what is the uncertainty
of an arbitrary function such as the sine, cosine, or even log of an uncertain quantity? Our
answer comes from the calculus.

The first derivative of a function, f(x), is written:

f ′(x) =
df(x)

dx
.

Now, “df(x)” is the infinitesimal change in f(x) for the corresponding infinitesimal change
in x, namely “dx”. Let us replace the infinitesimal changes with their “macroscopic” coun-
terparts, namely the rise, ∆f(x), and the run, ∆x. Thus, write:

f ′(x) ≈ ∆f(x)

∆x
,

and solve for ∆f(x), the uncertainty in f(x):

∆f(x) ≈ f ′(x) ∆x. (I.5)

For example, suppose θ = 32 ± 1◦, and we want to know what cos θ is with an uncertainty.
Since the derivative of a cosine is a sine3, we have from equation (I.5):

∆(cos θ) = sin θ ∆θ.

3Of course, the derivative of the cosine is actually minus the sine, but we are only interested in the
absolute value of the differences when determining the uncertainties.
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For θ = 32 ± 1◦, sin θ = 0.5299, ∆θ = 0.0175 rad (angles outside trig functions are always
expressed in radians, never degrees!), and thus ∆(cos θ) = 0.0093. Since cos θ = 0.8480, we
report:

cos(32 ± 1◦) = 0.8480 ± 0.0093 ≈ 0.848 ± 0.009.

Example 1 : Suppose m = 3.21±0.02 kg, d = 14.7±0.2 m, t = 29.5±0.3 s, E = 0.90 ± 0.03 J,
and r = 3.95 ± 0.05 m. Evaluate the following expression propagating all uncertainties:

F =
md

t2
+

E

r
(I.6)

Solution: There are at least two ways to tackle this problem. The first way, and what is
often followed in this manual, is to develop an algebraic expression for the final uncertainty
before any numbers are used. To this end, we see that the right hand side of equation (I.6)
has two terms, and so we start by letting:

A =
md

t2
; B =

E

r
.

Then equation (I.6) becomes F = A + B and from equation (I.1), we have:

∆F = ∆A + ∆B. (I.7)

Now, ∆B is a quotient of two factors, and thus from rule 2 [equation (I.2)]:

∆B

B
=

∆E

E
+

∆r

r
⇒ ∆B =

E

r

(

∆E

E
+

∆r

r

)

, (I.8)

while ∆A has three factors, and thus:

∆A

A
=

∆m

m
+

∆d

d
+

∆t2

t2
⇒ ∆A =

md

t2

(

∆m

m
+

∆d

d
+ 2

∆t

t

)

, (I.9)

using equation (I.3) for the fractional uncertainty of t2. Substituting equations (I.9) and
(I.8) into (I.7), we get:

∆F =
md

t2

(

∆m

m
+

∆d

d
+ 2

∆t

t

)

+
E

r

(

∆E

E
+

∆r

r

)

. (I.10)

Equation (I.10) looks a bit nasty but take heart; it’s a “worst-case-scenario”. All expressions
in the theory sections of these labs are no worse and usually simpler to deal with than
equation (I.6).

To complete the problem, use equation (I.6) to evaluate F and equation (I.10) to evaluate
the propagated uncertainty, ∆F . Thus,

F =
(3.21 kg)(14.7 m)

(29.5 s)2
+

(0.90 J)

(3.95 m)
= 0.2820 N
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∆F =
(3.21 kg)(14.7 m)

(29.5 s)2

(

0.02

3.21
+

0.2

14.7
+ 2

0.3

29.5

)

+
0.90 J

3.95 m

(

0.03

0.90
+

0.05

3.95

)

= 0.0127 N,

and we’d report F = 0.282 ± 0.013 N (or F = 0.28 ± 0.01 N).
The second way to propagate uncertainties is to substitute the uncertain numbers di-

rectly into the original expression [e.g., equation (I.6)], and manipulate the uncertainties
along with the numbers according to the two rules of uncertainty propagation. This method
is advised only after you have become good at handling the numbers efficiently and accu-
rately. Its disadvantage is that it is easy to make mistakes often requiring a whole slew of
arithmetic operations to be repeated. The advantage is it avoids algebraic derivations such
as equation (I.10). Thus:

F =
(3.21 ± 0.02 kg)(14.7 ± 0.2 m)

(29.5 ± 0.3 s)2
+

(0.90 ± 0.03 J)

(3.95 ± 0.05 m)

=
(3.21 kg ± 0.0062)(14.7 m± 0.0136)

(29.5 s ± 0.0102)(29.5 s± 0.0102)
+

(0.90 J ± 0.0333)

(3.95 m ± 0.0127)

= (0.0542 N ± 0.0402) + (0.2278 N ± 0.0460)

= (0.0542 ± 0.0022 N) + (0.2278 ± 0.0105 N)

= 0.2820 ± 0.0127 N

= 0.282 ± 0.013 N,

as before. In the second line, absolute uncertainties are converted to fractional uncertainties,
and are distinguishable from absolute uncertainties only by the positioning of the units. In
the third line, fractional uncertainties are added together and then converted back to absolute
uncertainties in the fourth line. Finally, the absolute uncertainties are added in the fifth line
and rounded off appropriately in the sixth and final line.

Example 2 : Suppose g = 9.81±0.01 m s−2, S = 1.05±0.02 m, and θ = 12.0±0.5◦. Evaluate
the following expression propagating all uncertainties:

v =
√

gS sin θ

Solution: First, determine the uncertainty in sin θ using equation (I.5):

sin(12.0 ± 0.5◦) = sin 12.0◦ ± cos 12.0◦
π

180
0.5◦ = 0.2079 ± 0.0085 = 0.2079 ± 4.11%,

where the factor π/180 converts 0.5◦ to radians. Note that sin θ has no units, and thus we
cannot use the positioning of units to distinguish between fractional and absolute uncertain-
ties. Instead, we can use either the (frac. unc.) designation introduced in § 5.2, or percentage
uncertainties which are distinguishable from absolute uncertainties by the % sign. Here, we
choose the latter. Thus,
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v = [(9.81 ± 0.01 m s−2)(1.05 ± 0.02 m)(0.2079± 0.0085)]1/2

= [(9.81 m s−2 ± 0.10%)(1.05 m ± 1.90%)(0.2079 ± 4.11%)]1/2

= [2.141 m2s−2 ± 6.11%]1/2

= 1.463 m s−1 ± 3.06%

= 1.463 ± 0.0448 m s−1

= 1.46 ± 0.04 m s−1

In the second line, absolute uncertainties are converted to percentage uncertainties (fractional
uncertainties times 100), and these are then combined in the third line. The square root is
performed in the fourth line using equation (I.4) and the percentage uncertainty is converted
to an absolute uncertainty in the fifth line. The answer is rounded off to an appropriate
number of significant figures in the sixth and final line.

5.5 Comparing Uncertainty with Error

The whole point of propagating uncertainties is to interpret your data. If, for example, you
determine the acceleration of gravity to be 9.83 m s−2 and the “accepted” value is 9.81 m s−2,
was the experiment a success or were your results inaccurate? Or could the difference of
0.02 m s−2 you found be significant? Without an estimate of your uncertainty, you cannot
answer these questions, and thus the value of your experiment is substantially reduced.

By propagating your uncertainties, you can address all these questions. Suppose your
propagated uncertainty for your estimated value of g were 0.04 m −2. Thus, you report the
acceleration of gravity to be 9.83±0.04 m s−2. Since the error (i.e., 9.83−9.81 = 0.02) is less
than the uncertainty (i.e., 0.04), then the difference between your value and the accepted
value is insignificant and your value agrees with the accepted value to within experimental
uncertainty . On the other hand, if your uncertainty were 0.01, then the error is greater than
the uncertainty and the error is significant . Thus, you report a real difference between your
value and the accepted value. In this case, it is the responsibility of the experimentalist to
determine what, if any, errors might have been committed during the lab that might have
caused the discrepancy, and to follow up on these possibilities. If no errors were found, it may
be possible that the experimentalist has observed a real effect, in which case the scientific
knowledge base has been expanded. These are the results practising scientists hope for.

In general, if your measured value is qexp±∆qexp, and the accepted value is qacc±∆qacc
4,

then the final test you make of your experiment is the following:

4In this lab, the uncertainty of the “accepted value” is often taken as zero since, in general, it will usually
be true that ∆qacc ≪ ∆qexp
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1. Determine the experimental error: ǫ = |qexp − qacc|

2. Compute the total uncertainty: ∆q = ∆qexp + ∆qacc.

3. a) If ǫ < ∆q, you declare the following:

The results confirm the accepted value to within experimental uncertainty.

b) If ǫ > ∆q, you declare the following:

The results do not confirm the accepted value to within experimental uncertainty.

If you find a significant difference in your experimental results (your “error” is greater than
your uncertainty), don’t conclude that your results confirmed or were “pretty close to” the
accepted value! Instead, declare the discrepancy and look for possible reasons for this dis-
crepancy. You will not be graded low because your results didn’t agree with the
so-called accepted value, but you will be graded low if you make false conclusions!

The Prime Directive of Experimental Science:

NEVER CONCLUDE
WHAT YOU DO NOT FIND!

5.6 Exercises

Answers to the following exercises are found in App. D.

1. Convert the following absolute uncertainties to fractional uncertainties.

a) 43.2 ± 0.1 m.
b) (2.0613 ± .0011) × 10−6 kg.
c) −5.639 ± 0.031 s.

2. Convert the following percentage uncertainties to absolute uncertainties.

a) 2063. N ± 4.3%
b) 6.07214 × 10−15 J ± 0.031%
c) −19.3◦C ± 12%

3. Express the following with an appropriate number of significant figures.

a) 17.3 ± 0.02 m
b) 6.15392 ± 0.03419 s
c) 57.31 K ± 0.05
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d) 20 N ± 0.03%

4. Propagate the following uncertainties:

a) Let m = 4.32 ± 0.01 kg, d = 63.25 ± 0.2 m, t = 17.2 ± 0.1 s, E = 1.1 ± 0.1 J, and
r = 4.21 ± 0.01 m. Evaluate the following expression propagating all uncertainties:

F =
md

t2
+

E

r

b) Let d1 = 6.31 ± 0.01 m, d2 = 6.42 m ± 0.01, d3 = 3.15 m ± 0.02, tf = 14.2 ± .1 s, and
ti = 3.6 s ± 1%. Evaluate the following expression propagating all uncertainties:

v =
d1 + d2 + d3

tf − ti

c) Let F = 3.62 ± 0.01 N, x = 1.55 ± 0.05 m, and θ = 44 ± 1◦. Evaluate the following
expression propagating all uncertainties:

W = Fx cos θ

5. Compare the following values of theoretical vs. experimental results, and state whether
each experimental result agrees or disagrees with the theoretical value.

theory experiment agree or disagree?

9.81 m s−2 9.79 ± 0.01 m s−2

331.5 m s−1 351.4 m s−1 ± 0.074

1.616 × 10−25 Å 1.36 × 10−25 ± 0.03 × 10−24 Å

2.0 kg 2.0 ± 1.0 g

6. Graphical Analysis

6.1 Drawing a graph

Graphical analysis techniques are used to identify trends in your data, to suggest relationships
between variables, and to identify sources of error. You should take great care in presenting
your data in graphical form so the reader can understand your experimental results at a
glance. The purpose of this section is to indicate an acceptable format for graphs in the
lab notebook, to practise generating graphs, and to perform some rudimentary graphical
analysis on some sample data.
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In an experiment to measure the spring constant of a spring, we hang various masses
from a vertical spring and measure the distance the spring stretches in each case. Force
balance requires that kx = Mg, and thus,

x =
g

k
M,

is the linear relationship we are testing. On an x vs. M plot, we expect our data to follow a
straight line with slope m = g/k and pass through the origin. (Note we are using lower-case
m for the slope, and upper case M for the masses.) Suppose the data gathered in this
mock-experiment are given in the following table:

M (kg) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

x (± 0.002 m) 0.012 0.022 0.035 0.040 0.063 0.074 0.086 0.097

Figure I.1 displays these tabulated data in a perfectly acceptable graph, which will be referred
to throughout this section. The essentials of an acceptable graph include:

• a useful title;

• all axes labelled and annotated;

• all straight lines drawn with a ruler;

• as is the case for everything in the lab notebook, all graphs are drawn in ink;

• graphs should be drawn on proper graph paper (and not, for example, blank, lined, or
quadrille paper);

• a graph should use as much of the page as practical; and

• data points should be plotted with “error bars” (see below) where they are larger than
the symbol being used.

An example of a useless title is “Position vs. mass”. This is useless, since presumably
this can be gleaned from the labels on the axes. An example of a useful title for the same
plot is “Spring distortion as a function of mass load”, as given in Fig. I.1. Useful titles tend
to be longer than useless titles, but they should still fit on one line.

Axes are labelled with the variable name and its associated units. Annotations (numbers
and tick marks) should be chosen sensibly. Typically, major tick marks should be separated
by multiples of 1, 2, or 5 (multiplied by some power of ten if necessary) in the units of the
variable. Never use multiples of 3, 6, 7, or 9, and certainly never use fractional values (e.g.,
2.5, 4.327, etc.), as such choices make the job of interpolating between tick marks by eye
much more difficult. Multiples of 4 and 8 are rarely used, but occasionally may be justified.

As emphasised in the previous section, measured data are always accompanied by un-
certainties. Uncertainties on a graph can be represented by a symbol (e.g., the capital letter
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Figure I.1 Example of an acceptable graph for a lab notebook.
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“I”) centred on the data-point, whose span covers the limits of uncertainty, as shown in Fig.
I.1. These are often called “error bars”, but as they are really indicative of the uncertainty,
they should probably be called “uncertainty bars”. Common usage does, however, refer to
them as “error bars”, and so we shall (grudgingly) follow this convention.

One vital use of a graph is it allows the experimentalist to see instantly any possible
errant data. The point at m = 0.4 kg is clearly “off”, and we should go back to our
experiment and remeasure that point. Perhaps the reading was supposed to have been 5.2
cm, and we errantly wrote down 4.2 cm instead. For the purpose of this example, we’ll just
ignore this data point from now on.

6.2 Determining the slope of a graph

Often, the “analysis” part of “Graphical Analysis” amounts to looking for linear relationships
between the dependent variable (or some function of it) and the independent variable (or
some function of it). When fitting a straight line through data points on a graph, there are
three general guidelines to follow:

• If the data clearly do not lie on a straight line, don’t force one!

• There is usually no reason to force the best-fit line to pass through the origin; it need
not be anchored at the “(0,0)” point. In fact, the actual intercept may have some
physical significance or may be indicative of uncertainties or errors in your experiment.

• When there is strong evidence the data are linear, draw the best fit (by eye) straight line
through as many of the error bars as possible (not necessarily through the data points
themselves). In particular, do not draw a hand-drawn wavy curve nor a connect-the-
dots jagged line through the data. Best-fit straight lines have data points distributed
evenly on both sides, and are most easily drawn using a transparent ruler.

Slopes are determined by measuring the largest rise and run on your best fit line, and dividing
the former by the latter (slope is “rise over run”). Note that you cannot necessarily use the
differences of the co-ordinates of the two extreme points, since these may or may not lie on
your best fit line. Slopes are determined directly from the graph.

Determining the uncertainty of the slope depends on how large the uncertainties are
and whether they can be seen on the graph. If the error bars are large enough to be drawn
effectively on the graph as they are on Fig. I.1, draw two straight lines through the data. The
first line is drawn with the greatest slope consistent with the data (mmax) and the second
line is drawn with the smallest slope consistent with the data (mmin). While least squares
techniques can be used, they rarely generate better answers than when an experienced person
simply fits the minimum and maximum slopes on a graph by eye, measures the two slopes
directly, and then reports the slope as:

m =
mmax + mmin

2
± mmax − mmin

2
. (I.11)

This should remind you of the “half-the-range rule” (§ 5.1).
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Suppose now the error bars are too small to be drawn on the graph. If the data are
supposed to lie on a straight line and the experiment went as expected, then the data will
appear to lie on a straight line to within the accuracy of the graph. In this case, the slope
of the data (and the uncertainty in the slope) can be computed directly from the tabulated
data, with the graph serving only to verify the linear quality of the data.

The final possibility is that the error bars are too small to be plotted on the graph, and
the data are supposed to follow a straight line but clearly do not. In this case, errors in the
theory, gathering the data, analysing the data, or even generating the graph must be sought
for, found, and corrected if possible.

Back now to the example in Fig. I.1. Minimum and maximum rises and runs are
indicated on the plot (note they span most of the graph), from which minimum and maximum
slopes are computed. Note that the “errant” data point has not been used in fitting the lines
and lies well outside their bounds. Thus, we find:

mmin =
risemin

runmax

=
0.080

0.693
= 0.115 m kg−1; and

mmax =
risemax

runmin

=
0.086

0.645
= 0.133 m kg−1.

Note that mmin = risemin/runmax and not risemin/runmin (think about why this should be
so). Therefore, from equation (I.11) we get a slope of:

m = 0.124 ± 0.009 m kg−1 = 0.124 m kg−1 ± 7.3%.

Since the slope is not actually k but g/k, we write k = g/m and find the spring constant
from m propagating all uncertainties. Taking the uncertainty of g = 9.81 m s−2 to be zero,
we find k = 79.1 Nm−1±7.3% = 79.1±5.7 Nm−1. You should confirm all these calculations
yourself, including measuring mmin and mmax from the graph, to make sure you can do this
kind of analysis properly.

6.3 Exercises

Answers to the following exercises are found in App. D.

1. Consider Experiment 3, in which one is supposed to measure the acceleration of grav-
ity. The independent coordinate is the distance (S) over which the air track rider travels,
and the dependent coordinate is the time (t) it takes for the rider to travel that distance.
Theoretically, one expects the two variables to be related according to:

S =
g sin θ

2
t2,

or t2 =
2

g sin θ
S, (I.12)

where g is the acceleration of gravity and θ is the angle of inclination of the air track rider
(see Experiment 3 if you want more details). Suppose, in performing this experiment, the
data in the following table are gathered.
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S (m) 0.2 0.4 0.6 0.8 1.0 1.2 1.4

t (± 0.01 s) 0.48 0.69 0.88 0.97 1.08 1.19 1.27

On a piece of graph paper (not “quadrille” paper), plot these data, including the error bars,
with the independent variable (S) on the horizontal axis and the dependent variable (t) on
the vertical axis. Having graphed the data, can you spot any potentially errant data? Are
you justified in throwing out these errant data? Can your data be fit to a straight line?

2. Plot a second graph for which the dependent variable is t2. Now can you spot any errant
data? Do your data points now follow a straight line? According to equation (I.12), t2 plotted
against S should follow a straight line with slope 2/(g sin θ). Thus, measure the slope on
your graph along with an uncertainty and, assuming sin θ = 0.174±0.003, determine a value
and an uncertainty for g.

3. An interesting exercise might be to measure the discrepancies among the students’ results
in the class. Everyone started off with the same data, but it is very unlikely that everyone
came up with identical estimates for g. Compare your values with your neighbour’s. Is the
difference between your and your neighbours’ values significant? i.e., Is the difference larger
than your estimate of the uncertainty? If so, one or both of you are in error and you should
try to identify and correct the error(s) made.
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Experiment 1

Measuring Density

Purpose

Ostensibly, the purpose of this experiment is to determine the density of a sample of wood,
and thus identify its species. The real purpose of this experiment, however, is to demonstrate
some of the basic skills an experimental physicist and engineer must master, such as:

• preparing and using a lab notebook;

• using some basic measuring devices;

• measuring and recording uncertain data;

• interpreting and analysing experimental results.

Apparatus

1. one large and one small wooden block,

2. metre stick,

3. Vernier caliper,

4. micrometer,

5. mass balance.

Theory

The density of a uniform object (represented by the symbol ρ, the Greek letter “rho”) is
given by:

ρ =
m

V
, (1.1)

where m is the mass of the object and V its volume. The SI units for density are kg m−3.

25
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species density (kg m−3)

red cedar 380

willow 420

Canadian spruce 450

European redwood 510

Oregon pine 535

sycamore 590

white ash 670

maple 755

water (at 4◦C) 1,000

Table 1.1 Densities of various species of wood, with water included for compar-
ison. Values are taken from http:// www.simetric.co.uk.

The volume of a rectangular wooden block is given by multiplying together its dimen-
sions, namely its length, l, width, w, and height, h. Thus, equation (1.1) becomes

ρ =
m

lwh
. (1.2)

While it is commonly known that wood floats (although ebony can be as dense as 1,120
kg m−3 and would thus sink), the range in densities for wood may surprise some. Balsa
wood, with a density of 170 kg m−3, is 1/8 the density of the densest wood, Lignum Vitae,
with a density of 1,370 kg m−3. Table 1.1 gives the densities of a sample of common wood
species, and you will use this to identify the variety of wood in your blocks.

Given that m, l, w, and h are all uncertain quantities, ρ must also be an uncertain
quantity and we should look at how the uncertainties in the measured quantities propagate
to give us ∆ρ. Rule 2 in § 5.4 of the Introduction tells us to add the fractional uncertainties
of all quantities being multiplied or divided in a given term. Since the right hand side of
equation (1.2) has just one term with four factors, we can immediately write down:

∆ρ

ρ
=

∆m

m
+

∆l

l
+

∆w

w
+

∆h

h
. (1.3)

Procedure

This lab requires the use of both the Vernier caliper and the micrometer; devices for measur-
ing lengths with a fair degree of precision. You will be given instruction on their use during
the lab, which will follow the discussion in App. C.

1. Measure the masses of both blocks of wood using the mass balance, being sure to
record an uncertainty with each measurement.
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What do I use for the uncertainty? At first glance, one might record half or even less of
the smallest gradation on the balance as the uncertainty. Thus, if the smallest gradation
is 1 g, a “first-guess” of the uncertainty might be ± 0.5 g or even ± 0.2 g depending on
how well you think you can interpolate between the finest gradations. However, there
are other factors to consider as well. How well did the scale balance? How much can
you change the mass reading and still have the scale “look” balanced? Does shifting
the mass in the tray slightly affect the balance? These tests and others might result
in you recording a greater uncertainty than just half the smallest gradation. However
you decide what to use as the uncertainty, be sure to make some note of this with your
reading.

2. Measure the dimensions of the large block twice: once with the metre stick, once with
the Vernier caliper. Be sure to record all uncertainties with the measurements.

3. Measure the dimensions of the small block twice: once with the Vernier caliper, once
with the micrometer. Be sure to record all uncertainties with the measurements.

Analysis

1. Using equations (1.2) and (1.3), compute the density of the larger block for each set
of dimension measurements, propagating all uncertainties.

2. Using equations (1.2) and (1.3), compute the density of the smaller block for each set
of dimension measurements, propagating all uncertainties.

Conclusions

1. Do the two densities measured for each block agree to within experimental uncertainty?
If not, check the obvious possibilities, such as bad arithmetic, slipped data entries, etc.
Time permitting, you might even go back and double-check some of your measurements.
Failing this, can you identify any possible source of error or uncertainty you may not
have considered as you were doing the measurements? (“Human error” is never an
acceptable answer to a question such as this.)

2. Using Table (1.1), what is your best guess of the species of wood in each block? Are
you able to identify the species of wood uniquely by all your density measurements,
or was the uncertainty of some measurements large enough to make more than one
identification possible? If so, which ones?

Additional discussion question

1. What are the advantages and limitations of each of the measuring devices used?
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Experiment 2

Equilibrium—Adding Force Vectors
in Two Dimensions

Purpose

The purpose of this experiment is to verify Newton’s Second Law of Motion,
∑ ~F = m~a,

when the net acceleration of the system is zero.

Apparatus

1. force table,

2. several masses and mass holders,

3. mass balance,

4. cardboard square,

5. protractor.

Theory

Force is a vector quantity and thus has magnitude and direction. If several forces, ~F1, ~F2,
~F3, etc., act simultaneously on a mass m, the resultant force ~FR is equal to the vector sum of
the individual forces and accelerates the mass according to Newton’s Second Law of Motion,
~FR = m~a. In the particular case of an object in equilibrium, ~a = 0, and hence ~FR = 0. That
is, when an object is in equilibrium, the vector sum of all forces acting on it is identically
zero.

Figure 2.1 shows three forces acting on a central body (a ring). The resultant force can
be depicted graphically by drawing the vectors head to tail (the order in which the vectors
are added is not important). The resultant force is represented by the vector whose tail
coincides with the tail of the first vector drawn, and whose head coincides with the head of
the final vector drawn, as shown in Fig. 2.2.

29



30 Experiment 2

F1

F2

F3

θ1 = 0
θ3 = 210

θ2 = 135

180

270

90y

x
0

Figure 2.1 Three forces acting on a central object (ring).

Forces, like any vectors, can be added together by resolving them into components and
then adding the x-components together and the y-components together to obtain the x-
and y-components of the resultant vector. For example, suppose the three forces in Fig. 2.1
are: ~F1 = 1.12 ± 0.01N directed at θ1 = 0 ± 1◦, ~F2 = 0.52 ± 0.01N at θ2 = 135 ± 1◦, and
~F3 = 0.83 ± 0.01N at θ3 = 210 ± 1◦. We would like to resolve these forces onto an x-y
coordinate system (with the x-axis directed at 0◦) and propagate their uncertainties. Let us

start by examining the x-component of ~F1.

F1x = F1 cos θ = (1.12 ± 0.01 N) cos(0 ± 1◦)

= (1.12 ± 0.01 N)( cos 0◦ ± 0.0175 sin 0◦)

= (1.12 ± 0.01 N)(1 ± 0) = 1.120 ± 0.010 N,

where we have used equation (I.5) to propagate the uncertainty in the angle (±1◦ con-

"uncertainty box"

F1

F2F3

FR

0.1 N

Figure 2.2 Graphical depiction of the forces in Fig. 2.1.
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verted to ±0.0175 rad) to an uncertainty in the cosine. Now according to equation (I.5),
the uncertainty in cos θ is proportional to sin θ which, when θ = 0, is zero! Surely the
uncertainty in cos θ can’t be zero! In fact, equation (I.5) is an approximation that can
give suspicious results when θ is any multiple of 90◦, including zero. In truth, cos(0 ± 1◦)
should lie somewhere between cos 0◦ = 1 and cos±1◦ = 0.99985. Thus, we might report
cos θ = 0.99992 ± 0.00008 = 0.99992 ± 0.008% using the “half-the-range rule”. This is
indeed a tiny percentage uncertainty—much smaller than the other uncertainties we will
encounter—and thus we are justified in using the approximation that equation (I.5) gave us,
namely cos θ = 1 ± 0.

Now what of the y-component of ~F1?

F1y = F1 sin θ = (1.12 ± 0.01 N) sin(0 ± 1◦)

= (1.12 ± 0.01 N)( sin 0◦ ± 0.0175 cos 0◦)

= (1.12 ± 0.01 N)(0 ± 0.0175)

To proceed, we need to convert the absolute uncertainties into fractional uncertainties, which
poses an immediate problem: How does one convert 0±0.0175 into a fractional uncertainty?
Formally, 0.0175/0 = ∞, which makes no sense. What has gone wrong?

We have to be mindful of the assumptions that went into the expressions using fractional
uncertainties. Rule 2 on page 12 assumes ∆q ≪ q, which clearly is not the case when q = 0!
In physics, we can rarely just blindly plug-and-chug into formulæ; we always have to think
about what we are doing. In this case, because we have violated the assumption that ∆q ≪ q,
we have run into trouble when we blindly use the results of that assumption.

Instead, let us determine the maximum and minimum values of the y-component con-
sistent with these data. The most negative our y-component can be is (1.12 + 0.01 N)(0 −
0.0175) = −0.020N and the most positive is (1.12+0.01 N)(0+0.0175) = 0.020N. Thus, we
should quote our y-component as:

F1y = 0 ± 0.020 N.

Calculating the components of ~F2 and ~F3 is more straight forward since none of the
angles are a multiple of 90◦. These are given below:

F2x = (0.52 ± 0.01 N) cos(135 ± 1◦) = −0.368 ± 0.014 N

F2y = (0.52 ± 0.01 N) sin(135 ± 1◦) = 0.368 ± 0.014 N

F3x = (0.83 ± 0.01 N) cos(210 ± 1◦) = −0.718 ± 0.016 N

F3y = (0.83 ± 0.01 N) sin(210 ± 1◦) = −0.415 ± 0.018 N

Note that an extra significant figure has been carried in all components as these are inter-
mediate results, and we wish to minimise the effect of round-off errors on the final results.

Preparation question 1: Verify that the components of ~F2 and ~F3 are given
as above.
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The components of the resultant force are obtained by adding together the components
of the individual forces. Thus:

FRx = F1x + F2x + F3x = 0.034 ± 0.040 N
(2.1)

FRy = F1y + F2y + F3y = −0.047 ± 0.052 N.

Since both components are consistent with 0, we would conclude that to within experimental
uncertainty, the force vectors summed to zero (as expected for a system in equilibrium). Note
that if even one component were not consistent with zero, we would have to claim that our
forces did not sum to zero to within experimental uncertainty, and then possibly search for
reasons why they didn’t.

In Fig. 2.2, the propagated uncertainties are depicted by an “uncertainty box” located
at the tip of ~F3 with a width of 0.08N (to represent the uncertainty in FRx, namely ±0.040N)
and a height of 0.10N (to represent the uncertainty in FRy, namely ±0.052N). If we con-

struct our force diagram carefully enough, the vector ~FR drawn from the tail of ~F1 to the tip
of ~F3 should have the components given by equation (2.1). Further, if to within experimental

uncertainty we found our forces added to zero, then all of ~FR should lie within the uncer-
tainty box. Conversely, if we found our forces did not add to zero to within experimental
uncertainty, the tail of ~FR should lie outside the uncertainty box.

Procedure

On the apparatus shown in Fig. 2.3, forces ~F1, ~F2, etc., are applied to a small ring by strings
which pass over a pulley and to which masses are hung. The magnitude of each force is
obtained by calculating the weight of the total mass hanging from the string, while the
direction of each force is determined from an angular scale on the “force table”. In this
experiment you apply several forces to the ring and adjust the directions of the forces until
the ring remains stationary and centred around a central post.

1. Examine the force table and note how both the magnitude and direction of the forces
can be adjusted. The central pin serves as a reference for centring the ring and also
prevents the masses from falling off in grossly unbalanced situations. The total weight
on a string is the weight of the hanger plus the weight of the added mass, which you
will have to weigh using the mass balance, since the numbers written on the masses are
only good to within a few grams.

2. Begin by estimating the precision with which forces can be declared balanced. Load
two mass hangers with equal masses (∼ 100 g) and position the arms precisely at 0◦ and
180◦ using the measuring device provided (piece of “notched” cardboard) for accuracy.
The masses on the hangers including the hangers should be as identical as possible,
using the 1 and 2 gram masses as needed. The central ring should be free of the central
pin and, even when the force table is tapped briskly, the central ring should not move.
Now find by experiment the largest increment in mass, ∆m, which, when added to one
of the mass hangers, just causes the ring to drift when tapping the force table. Record
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Figure 2.3 The force table with three of the four hangers in place.

the value ∆w = 1
2
∆mg, which is the uncertainty for all weights used in the rest of this

experiment.

Preparation question 2: Why do you suppose we use 1
2
∆mg, and not just

∆mg as the uncertainty in the weights?

3. Next, estimate the precision with which angles can be determined at force balance.
Load three mass hangers with equal masses (∼ 100 g) and position the arms precisely
at 0◦, 120◦, and 240◦. Make certain that the strings are aimed directly at the centre
and, if they are not, slide the knots around the ring until they are. The central ring
should be free of the central pin and, even when the force table is tapped briskly, the
central ring should not move. Leaving two of the arms fixed, nudge the third arm
clockwise until tapping the force table causes the ring to drift. Record the angular
position of the arm. Return the arm to its equilibrium position, then nudge it counter-
clockwise until tapping the force table once again causes the ring to drift. Record this
second angular position of the arm. Half of the difference between the two positions is
the uncertainty for all angular measures in the rest of this experiment.
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PART I. Three-force experiment

4. Load three mass hangers with three unequal masses (e.g., 100, 150, and 200 g), making
sure the greatest mass is less than the sum of the other two.

Preparation question 3: Why must the greatest mass be less than the sum
of the other two?

5. Adjust the arm directions very precisely until the ring is free of the central pin and
remains centred even while tapping briskly on the force table. Record the total weight,
w, hanging from each string (including the hanger!) as measured by the mass balance.
Record the angular position of each arm, using the “notched” cardboard square for
accuracy.

PART II. Four-force experiment

6. Add the fourth mass hanger to the force table.

7. Load all four mass hangers with unequal masses (between 50 g and 250 g) making sure
the greatest mass is significantly less than the sum of the other three.

8. Adjust the arm directions until the ring remains centred and free of the central pin even
while briskly tapping on the force table. Record all four masses and their positions.

Analysis

1. Resolve each force in Part I into their x- and y-components, propagating the uncertain-
ties in both the magnitude and direction of the forces as done in the Theory section.

2. Calculate the x- and y-components of the resultant force and their uncertainties [e.g.,
equation (2.1) in the Theory section)]. To within experimental uncertainty, is your
resultant vector consistent with zero?

3. In the manner of Fig. 2.2, draw to scale your measured force vectors (magnitude and
direction) without worrying about the uncertainties. Treat this diagram as you would
a graph, and use a full sheet of graph paper taking care to represent the vectors as
accurately and as large as possible. Be sure to indicate the scale used for your diagram
(e.g., Fig. 2.2). If the measurements and your drawing are absolutely accurate, then
a closed triangle should result. However, because of experimental uncertainties, your
triangle will probably be slightly open.

4. In the manner of Fig. 2.2, draw the resultant vector. If your diagram is done accurately
(and big) enough, the components you computed in analysis step 2 should correspond
nicely to the resultant vector you just drew.
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5. Again in the manner of Fig. 2.2, draw an “uncertainty box” around the tip of the re-
sultant vector. If, in analysis step 2, you found that the resultant vector was consistent
with zero, your resultant vector should lie completely within the uncertainty box you
just drew. Otherwise, not.

6. Repeat analysis steps 1–5 for the four forces in Part II.

Conclusions

1. Did analysis step 2 show that the forces were balanced in each of Parts I and II to
within experimental precision? Why or why not?

2. Do your force diagrams in analysis step 5 confirm that the forces were balanced in each
of Parts I and II to within experimental precision? Why or why not?

Additional discussion question

1. What, if anything, could cause the answers to the above questions to be different? In
the event analysis steps 2 and 5 arrive at different conclusions (i.e., one confirms force
balance, the other does not), which of the two do you believe and why?
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Experiment 3

Determining the Acceleration of
Gravity

Purpose

The purpose of this experiment is to determine the acceleration of gravity using a linear air
track.

Apparatus

1. linear air-track,

2. linear air-track rider with attached metal “flag”,

3. one photogate,

4. one accessory photogate,

5. ruler,

6. Vernier caliper,

7. ten risers.

Theory

An object subject to a constant acceleration, a, will travel a distance, S, in a time, t,
according to the kinematical equation of motion,

S = v0t +
1

2
at2, (3.1)

where v0 is the initial velocity. If the object starts from rest (v0 = 0) on a frictionless plane
inclined at an angle θ, then it will accelerate under the influence of gravity alone down the
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Figure 3.1 The Inclined Plane.

plane. The acceleration along the incline is a = g sin θ, where g is the acceleration of gravity
at the Earth’s surface (see Figure 3.1). Thus, equation (3.1) becomes:

S =
g sin θ

2
t2,

or, rearranging to isolate t,

t2 =
2

g sin θ
S. (3.2)

Therefore, a plot of t2 (not t!) vs. S should yield a straight line with a slope, m, given by:

m =
2

g sin θ
.

Thus, if we measure the slope from a t2 vs. S graph, the experimentally determined acceler-
ation of gravity, gexp, is given by:

gexp =
2

m sin θ
. (3.3)

Note that the slope is not equal to g directly. Rather, the slope has to be substituted into
equation (3.3) in order to obtain g.

Finally, note that the uncertainty in gexp, ∆gexp, is given by:

∆gexp

gexp

=
∆m

m
+

∆ sin θ

sin θ
, (3.4)

where ∆m is the experimental uncertainty in the slope, and ∆ sin θ is the experimental
uncertainty in sin θ.

Preparation question 1: Derive equation (3.4). To do this, you may wish
to review § 5.4 of the Introduction. This isn’t meant to be difficult; it’s a two-
or three-liner at most.
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Procedure

1. The linear air-track apparatus should already be set up for you as depicted in Fig.
3.2. Set the airflow to maximum so that the air-track rider slides smoothly along the
air-track.

primary photogate 

secondary photogate 

air hose 

flag 

risers 

rider linear air-track 

T 

D 

Figure 3.2 The inclined linear air-track with the air-track rider in its starting position.

2. Release the rider near the centre of your track from rest. If the rider starts to move,
the track is not level and you will need to adjust the screw on the leg with the single
rubber foot. Turning the screw clockwise raises the track. Once the track is levelled
so that the rider does not move, place the rider at another location and make sure the
rider doesn’t move from rest there either. If it does, your track may be slightly bent
or warped, in which case you will need to select the best metre or so of track on which
the rider moves the least from rest.

3. Measure the horizontal distance, D (Fig. 3.2), between the legs of the air-track where
they come in contact with the table. Record this value along with its uncertainty.

4. Measure the thickness of the ten risers together at five different places using the Vernier
caliper provided. Take the average of these five values as the thickness, T (Fig. 3.2),
and use the “half-the-range” rule for the uncertainty. If you need to be reminded how
to use a Vernier caliper, see App. C or ask your demonstrator.

5. Place the ten risers underneath the leg of the air-track with the single foot, as shown
in Fig. 3.2.

6. Using only the felt-tipped pen provided, carefully mark eight vertical “tick-
marks” along the straightest 1.4 m of the air-track, each precisely 0.2 m apart. These
tick marks should be placed so that the rider glides over them as it slides down the
track. Do not mark the metal surface of the air track with anything other
than the pens provided, as pencils and ball-point pens will damage the
surface and/or mark it permanently. The highest tick mark is the “zero-point”,
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followed by the 0.2, 0.4, 0.6, . . . , 1.4 m positions, the latter being closest to the bottom
of the track.

7. Create a table with six columns in your lab book with the headings: S, t1, t2, t3, t4,
and t5. Including the headings, this table will require 16 lines assuming the data are
entered double-spaced.

8. Set the primary photogate (with the largest base) to pulse mode. This is the setting
that causes the timer to start when the flag of the air-track rider cuts the beam of one
of the photogates, and stop when the flag cuts the beam of the other.

9. With the flag on the downhill side of the rider, hold the rider so that its downhill edge
is precisely at the zero-point tick mark. Then, carefully slide the secondary photogate
(with the smallest base) toward the flag until either the little red light flashes on, or
the timer on the primary photogate starts. The idea is that with the rider precisely
placed at the zero-point, the flag cuts the photogate beam the instant the rider is
released, and the timer is started. Once the secondary photogate is positioned
satisfactorily, do not move it for the rest of the experiment.

10. Using the rider, position the primary photogate at the 0.2m mark in the same manner
as the secondary photogate was positioned at the zero-point in the previous step.

11. Return the rider precisely to the zero-point and release it from rest. The timer should
then record the time, t, for the rider to slide 0.2m. Repeat this step five times, and
record each time in your data table under the columns t1, t2, etc. If any of the five times
are clearly “off”, repeat this step until you have five consistent (but not necessarily
identical) values.

12. Repeat step 11, with the primary photogate positioned at each of the 0.4, 0.6, 0.8, . . . ,
1.4 m positions, and record your readings in your data table. This will give you seven
data points for plotting.

Analysis

1. Calculate the sine of the angle of inclination using sin θ = T/D, and its associated
uncertainty, ∆ sin θ, using equation (3.6) below. Note there is no point in calculating
θ itself, since θ is never actually used, only sin θ is used.

Preparation question 2: Show that

∆ sin θ

sin θ
=

∆T

T
+

∆D

D
, (3.6)

where ∆T and ∆D are the measured absolute uncertainties in T and D re-
spectively from procedure steps 3 and 4.
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2. Create another table with five columns in your lab book with the headings: S, t, ∆t,
t2, and ∆(t2). t is the average of your five readings in your raw data table, ∆t is the
uncertainty in t given by the “half-the-range rule”, and ∆(t2) is the uncertainty in t2

given by:

∆(t2) = 2t ∆t. (3.7)

Complete this table by performing all the necessary calculations.

Preparation question 3: Derive equation (3.7).

3. On a page of graph paper, plot t2 vs. S and include the uncertainty bars ∆(t2).

4. Evaluate the slope, m, of the graph along with an estimate of its uncertainty (see § 6
on Graphical Analysis in the Introduction).

5. From equations (3.3) and (3.4), calculate your experimentally determined value for g,
along with its associated uncertainty.

6. After completing all the analysis and when you are certain you will not need to take
any further measurements, use a damp cloth to clean off all the tick marks you put on
the air track with the felt marker.

Conclusions

1. Does your experimental value of g agree with the accepted local value of g (9.81 m s−2)
to within experimental uncertainty? If not, what sources of experimental error might
account for the difference that you haven’t already accounted for? (Hint: glance at the
first two discussion questions.)

Additional discussion questions

1. If there were friction in the system, would it increase or decrease your experimental
value of g? Explain.

2. If the rider were released before it cut the first photogate beam, would this increase or
decrease your experimental value of g? Explain.

3. In addition to the slope of the t2 vs. S plot, you might also determine the t2-intercept.
What ought this intercept be? If you found that to within experimental uncertainty,
your t2-intercept was greater than zero, what effect, if any, could this have on your
experimentally determined value of g? How might a positive t2-intercept be interpreted
physically?
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4. An alternate method of using an air-track to measure g consists of setting up one of the
photogates in gate mode, where the timer starts as soon as the beam is cut and stops
as soon as the same beam is restored. Thus, in this mode, the photogate measures
the time it takes for the flag to pass through the beam. In such a configuration,
the timer can be used to measure the speed of the air-track rider at the bottom of the
incline. Demonstrate how that information could be used to measure g experimentally.
Would you expect the uncertainties using this method to be greater or less than the
uncertainties you obtained in this experiment?



Experiment 4

Ballistic Pendulum and Projectile
Motion

Purpose

The purpose of this experiment is to verify the law of conservation of momentum in an
inelastic collision using the ballistic pendulum.

Apparatus

1. ballistic pendulum (see Fig. 4.1),

2. balance and masses,

3. metre stick,

4. carbon paper,

5. masking tape.

Theory

This experiment studies the principle of conservation of momentum through a combined
study of projectile motion and the motion of a simple pendulum.

Consider a projectile of mass M1, fired horizontally from a known height y above the
ground, where y is measured from the bottom of the projectile. According to the laws of
kinematics for constant acceleration, the projectile falls to the ground in a time t given by:

t =

√

2y

g
. (4.1)

During that time, it travels a horizontal distance x, as shown in Fig. 4.2, and thus the initial
horizontal velocity v1 is given by:

v1 =
x

t
. (4.2)
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Figure 4.1 The ballistic pendulum apparatus.

Preparation question 1: Can you think of any reason(s) why equation (4.2)
might underestimate v1, even if the measurements of x and t are accurate?

Figure 4.2 Determining the initial velocity of the projectile from its trajectory.
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Combining equations (4.1) and (4.2) gives us:

v1 = x

√

g

2y
. (4.3)

Preparation question 2: If g = 9.81 is taken to be exact, show that the
uncertainty in v1 is given by:

∆v1

v1

=
∆x

x
+

1

2

∆y

y
, (4.4)

where ∆x and ∆y are respectively the absolute uncertainties in x and y.

Suppose that instead of being allowed to travel until it hits the ground, the projectile
strikes and becomes attached to a pendulum bob of mass M2 initially at rest. Immediately
after this inelastic collision, the combined system of the bob and projectile has a mass
M1 + M2, moves off with a horizontal velocity v12, and begins its trajectory upward. At the
bottom of the trajectory, the kinetic energy, Ki, is given by:

Ki =
1

2
(M1 + M2)v12

2, (4.5)

while its potential energy, Ui, is zero if we associate the bottom of the trajectory with a
height of zero.

The pendulum now swings under the constraint of the arm, and comes to rest a height
h above its starting position where it is held in place by a “tooth and claw” mechanism as
shown in Fig. 4.3. Here, the kinetic energy, Kf , is zero (because it has come to rest), and
the potential energy, Uf , is given by:

Uf = (M1 + M2)gh. (4.6)

Figure 4.3 Ballistic pendulum after the arm has been struck by the projectile.
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According to the principle of conservation of mechanical energy, Ui + Ki = Uf + Kf and
thus, from equations (4.5) and (4.6), we get:

0 +
1

2
(M1 + M2)v12

2 = (M1 + M2)gh + 0

⇒ v12 =
√

2gh. (4.7)

Preparation question 3: If g is taken to be exact, show that the uncertainty
in v12 is given by:

∆v12 =

√

g

2h
∆h, (4.8)

where ∆h is the absolute uncertainty in h.

In this lab, we are interested in verifying whether momentum is conserved in an inelastic
collision. Here, M1 with speed v1 [equation (4.3)] immediately before the collision collides
and sticks to M2 and acquires a velocity v12 [equation (4.7)] immediately after the colli-
sion. According to the principle of conservation of momentum, the momenta of the system
immediately before and after the collision should be the same, thus:

M1v1 = (M1 + M2)v12

This is most easily tested experimentally by testing the validity of the equation:

M1v1 − (M1 + M2)v12 = 0, (4.9)

where the absolute uncertainty of the left hand side is given by:

M1∆v1 + v1∆M1 + (M1 + M2)∆v12 + v12(∆M1 + ∆M2). (4.10)

This can be easily verified using the rules of uncertainty propagation in §5.4.

Procedure

PART I. Determining the before-collision velocity v1

1. Measure the mass of the projectile, M1, using the balance provided. Record this value
in your lab book.

2. Move the pendulum bob out of the path of the projectile. Do not remove the pendulum
arm, but instead rest it in the curved rack.

3. Place the entire apparatus (see Fig. 4.2) near the edge of the table so that when the
projectile is fired, it lands on the floor (but please don’t shoot your neighbours!). Use
masking tape to outline where on the table the apparatus is to sit for the duration of
the experiment.
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4. Measure the distance y between the bottom of the projectile as it rests in the launcher,
and the floor. Estimate and record the uncertainty, ∆y.

5. Fire two or three test shots, and see where they land on the floor. Place the carbon
paper at that point (with white paper layer touching the floor) and tape it down.

6. Keep the position of the ballistic pendulum apparatus fixed. By firing the projectile,
determine the range, x, of the projectile’s motion (Fig. 4.2) using the marks that
are made when the projectile lands on the carbon paper. Repeat this procedure ten
times and record your measurements in a table. Find the average range (x̄) with an
appropriate uncertainty (e.g., the sum of the uncertainty in the distance between where
the projectile is launched and the leading edge of the carbon paper taped to the floor,
and the uncertainty in the position of the dots from the carbon paper as determined
from the “half-the-range rule” described in § 5 of the Introduction).

PART II. Determining the after-collision velocity v12

7. Record the effective mass of the pendulum bob, M2, printed on the base of the gun
assembly. Use an uncertainty of ±1 in the last digit quoted.

8. Let the pendulum bob hang freely so that when you fire the projectile (mass M1), it is
caught and trapped by the bob (mass M2). You may have to adjust the orientation of
the bob slightly to that the projectile is caught and trapped by the bob nearly every
time the projectile is fired.

9. With the bob hanging freely, measure the height h1 of the centre of mass of the bob
(indicated by a pointer attached to the bob; Fig. 4.3) above the base.

10. With the bob hanging freely and at rest, fire the projectile so that the bob is caught
by the curved rack. Measure the height h2 of the centre of mass of the bob above the
base.

HINT: Each grove is 1 mm higher than the previous. Thus, to get h2 in mm, you can
simply add the groove number to the height of the centre of mass of the bob above the
base when it is trapped in “groove 0” (as numbered on the side of the curved track).

11. Repeat step 10 nine more times to obtain ten measurements for h2 altogether, recording
your data in a table. From these data, find the average height, h̄2, and determine the
associated uncertainty, ∆h2, from the “half-the-range rule”.

12. Finally, determine h = h̄2 − h1 (Fig. 4.3), the height that the bob rises with the
projectile, where ∆h = ∆h2 + ∆h1.

Analysis

1. From equations (4.3) and (4.4), determine v1 and its uncertainty.
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2. From equations (4.7) and (4.8), determine v12 and its uncertainty.

3. Substitute your measured values for M1, v1, and v12 and the recorded value of the effec-
tive mass of the bob (M2), into equation (4.9), propagating all uncertainties [expression
(4.10)].

Conclusions

1. To within experimental uncertainty, did you find momentum to be conserved? If not,
what sources of experimental error might account for the difference that haven’t already
been accounted for? (Hint: Glance at the first discussion question.)

Additional discussion questions

1. There are other sources of error that have not been accounted for in this lab. For
example, what would the effect of air resistance be in measuring the range of the
projectile? How would the loss of energy and momentum caused by the interaction of
the curved rack with the bob affect the results? Does the fact that the grooves on the
curved rack are discrete instead of continuous have any influence on the results?

2. Does it matter to the conservation of momentum whether or not energy is conserved?
That is, can momentum be conserved even if kinetic energy is not? Explain.



Experiment 5

Shear Modulus

See Appendices A and B for examples of informal and formal reports for this experiment.

Purpose

The purpose of this experiment is to measure the shear modulus (a.k.a. modulus of rigidity)
for two metal rods, and then identify the metal in each rod from tabulated values.

Apparatus

1. torsion apparatus (Fig. 5.1),

2. assorted masses and a mass hanger,

3. mass balance,

4. micrometer,

5. metre stick,

6. two rods of unknown metal.

Theory

Under the influence of an external force, all solids deform to some extent. Materials that
restore their original shape once the external force has been removed are described as elastic;
examples include springs, diving boards, rubber bands, etc. If the elastic limit of a material
is exceeded, permanent deformation of the object results. Inelastic materials such as bread
dough, metal solder, etc., are materials for which the elastic limit is relatively small.

The stress on a body (Σ) associated with an applied external force (F ) is defined as
Σ = F/A where A is the area over which the force is distributed (and not necessarily the
area over which it is applied). The deformation of the body is called the strain (S) and is
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rod 

Figure 5.1 Schematic diagram of the torsion apparatus.

usually expressed as a ratio of the distortion of the body (x) to some characteristic length
(L). Thus, S = x/L. For an elastic body and small strains, the stress is linearly proportional
to the strain (Σ ∝ S), and the constant of proportionality is known as the elastic modulus .

There are basically two types of stresses: compressional (also known as tensile) stress
in which the force is applied normal to the surface; and shearing stress, in which the force
is applied tangential to the surface. Compressing or stretching a spring is an example of a
compressional stress. Let the cross-sectional area of the spring be A, let the applied force
be F , and let the spring of relaxed length L be stretched by a distance x when the force is
applied. The stress is then given by F/A, and the strain is given by x/L. Thus, we write :

F

A
= −Y

x

L
, (5.1)

where Y is referred to as Young’s Modulus, and is the specific name given to the elastic
modulus for a compressional stress. Equation (5.1) may be rewritten as:

F = −AY

L
x ≡ −kx, (5.2)

where, in this example, k = AY/L is the spring constant. Note that the spring constant
depends as much upon the geometry of the spring (its length and cross-sectional area) as it
does upon the material with which the spring is made. On the other hand, Y depends only
upon the type of material used to make the spring. Thus, there is a particular value of Y
for springs made with copper, another value for steel, etc., irrespective of the dimensions of
the spring.
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Figure 5.2 A sheared rectangular box.

Preparation question 1: Using equation (5.2), show that if a spring is cut
in half, its spring constant doubles.

For a sheared system, we again define the strain as a unitless quantity, namely the
distortion x divided by the length of the object, L, as depicted in Fig. 5.2. In this case, we
write:

Σ =
F

A
= GS = G

x

L
≡ G tanφ, (5.3)

where G is the Shear Modulus, also known as the Modulus of Rigidity , and φ is the shearing
angle.

A long rod fixed at one end and twisted at the other is an example of a sheared system.
To compute the shear modulus, G, of a solid rod with radius R and length L, divide it into
a series of concentric hollow cylinders. The total stress on the rod is then the sum of all the
stresses on the concentric cylinders from which we can compute G.

In Fig. 5.3, a hollow cylinder of length L, radius r, thickness dr, and cross-sectional area
dA = 2πr dr, is twisted by a torque dτ = rdF , where dF is the infinitesimal force applied
to the surface of the thin cylindrical shell. Thus, the stress on the cylinder is given by5:

Σ =
dF

dA
=

1

2πr2

dτ

dr
. (5.4)

Now, the strain on the cylinder, as depicted in Fig. 5.3 is given by

S = tan φ =
x

L
=

rθ

L
. (5.5)

Substituting equations (5.4) and (5.5) into Σ = GS gives us:

1

2πr2

dτ

dr
= G

rθ

L
.

Solving for dτ we get:

dτ =
2πGθ

L
r3dr,

5Note that the stress is distributed over the cross-sectional area of the rod, and not over its surface area.
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Figure 5.3 Twisting a hollow cylinder.

and then integrating dτ over the entire radius of the rod, we get:

τ =
∫ R

0

2πGθ

L
r3dr =

2πGθ

L

∫ R

0
r3dr =

πGθR4

2L
. (5.6)

In this experiment, the torque is applied to the rod by hanging a mass, M , from one
side of a pulley of diameter D as shown in Fig. 5.1. Thus, the torque is given by τ = MgD/2
and comparing this to equation (5.6) gives an expression for the twist angle, θ:

θ =
gDL

GπR4
M,

where θ is expressed in radians. If θ is measured in degrees, we have instead:

θ =
180 gDL

Gπ2R4
M. (5.7)

Equation (5.7) has the form θ ∝ M , with the slope, m, given by:

m =
180 gDL

Gπ2R4
,

which, when solved for G, yields:

G =
180 gDL

mπ2R4
. (5.8)

Therefore, if one measures the twist angle as a function of the load mass, the slope of the θ
vs. M plot, m, can be used in equation (5.8) to give an estimate of the Shear Modulus, G.
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Preparation question 2: If g = 9.81 is taken to be exact, show that the
uncertainty in G is given by:

∆G

G
=

∆D

D
+

∆L

L
+

∆m

m
+ 4

∆R

R
. (5.9)

Note the factor of 4 in front of the fractional uncertainty of R. Thus, R will
have to be measured particularly carefully to minimise its disproportionate
contribution to the fractional uncertainty of G.

Procedure

1. The masses indicated on the weights are not entirely accurate, so we need to deter-
mine their uncertainty. Using the balance provided, weigh five of the “50 g” masses
individually, and then take the mean ± half the range of the values as your individual
mass value. If you find the masses are identical, use the reading uncertainty on the
mass balance as the uncertainty instead. Repeat for the “100 g” masses.

2. Wrap the piece of cord provided around the wheel, and then measure (using the metre
stick) how much of the cord was needed to wrap around the wheel exactly once. Note
that because of the thick axle, it is difficult to measure the diameter of the wheel
directly, and so you shouldn’t attempt to do so. The diameter of the wheel, D, is the
circumference divided by π. Record both D and an estimate of its uncertainty.

3. Insert the rod with a “B” stamped on one of the ends into the sockets of the table
clamps (Fig. 5.1). Be certain that the thumbscrews are tightened into the notches of
the bushings, otherwise you may damage the rod during the experiment.

4. Twist the wheel by hand by about 10◦ and release. The wheel should wiggle back and
forth a few times as it returns to its original position. Record the position that the
wheel returns to. Now twist the wheel by the same amount in the opposite direction,
and release. The wheel should return to the same position that you recorded. If it
doesn’t return to the same position to within 0.5/deg, tell your instructor; your torsion
wheel may have to be replaced with another before you continue.

5. Use the metre stick to measure the length of the thin portion of the rod between the two
metal bushings at either end. Record this length L and an estimate of its uncertainty.

6. Use the micrometer to measure the diameter of the rod in at least five different loca-
tions. Do not over-tighten the micrometer caliper. If you are still unfamiliar
with this device, see App. C or ask your demonstrator. From these measurements, de-
termine the average diameter and an associated uncertainty (using the “half-the-range
rule”). The radius of the rod, R, is half the average diameter, and ∆R is half the
estimated uncertainty of the diameter.
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Figure 5.4 a) To “zero” the angle for clockwise twists (procedure step 8), line up
the ‘0’ on the Vernier scale with the ‘0’ on the main scale. b) In this example of a
clockwise twist angle (procedure step 9), the reading is 16.7◦. c) To “zero” the angle for
counterclockwise twists (procedure step 12), line up the ‘0’ on the Vernier scale with the
‘100’ on the main scale. b) In this example of a counterclockwise twist angle (procedure
step 13), the reading is 83.4◦ and thus θ = 100◦ − 83.4◦ = 16.6◦.

7. Create a table with seven columns and at least 22 lines, assuming the data are entered
double-spaced and one line is left for the headings. The first column is to record the
total mass hung on the hanger and its uncertainty, columns 2–5 are to record the four
twist angles you will measure, column 6 is for the average twist angle, and column 7
is for the “half-the-range” uncertainty in the twist angle.

8. Wrap the cord or strap around the wheel in a clockwise fashion. Set the Vernier scale
accurately to 0◦ with the mass hanger being the only weight on the cord. Refer to Fig.
5.4 a) and b) to be certain you are using the Vernier angular scale correctly.

9. Apply masses to the mass hanger in “50 gram” increments (actual increment deter-
mined in step 1) starting with one mass and ending with ten masses (maximum capacity
of the hanger). Record in your table the masses applied in column 1 and the resulting
twist angles (θ) in column 2. Remember that the uncertainty of the mass applied is the
sum of the absolute uncertainties of each mass. What is your estimate of the reading
uncertainty in θ?

10. With the maximum mass on the hanger, jiggle the mass hanger gently. Take the
reading again, and record this possibly new value of the twist angle at the bottom of
the third column of your data table.
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11. Complete the third column by removing the “50 g” masses one at a time, recording
each twist angle in your data table as you do. Your angle measurements should read
almost the same as they did in step 9, although they will probably not be exactly the
same.

12. Once all the masses have been removed, wrap the cord (or strap) around the wheel in
a counter-clockwise fashion and, with the mass hanger being the only weight on the
cord, set the Vernier scale accurately to 100◦. Refer to Fig. 5.4 c) and d) to be certain
you are using the Vernier angular scale correctly. Particularly for the 100◦ side, many
students get this confused.

13. Repeat steps 9, 10, and 11 recording your twist angles in columns 4 and 5 of your data
table. Note that this time, the twist angle θ = 100◦− the reading.

Important: The four angles for a given mass should not differ by much more
than 0.5◦. If they do, consult your instructor as there may be something
wrong with your equipment or with how you are reading the angles.

14. Time permitting, replace rod “B” with the rod stamped with an “S” on one of its ends
and repeat steps 5–13 using the “100 g” masses instead of the “50 g” masses.

Analysis

1. For rod “B”, compute the average of the four twist angles, θ̄, for each mass and
record this in the sixth column of your table. In the seventh and final column, record
the uncertainty in θ, ∆θ, using the “half-the-range rule” or the reading uncertainty,
whichever is greater.

2. Generate a plot of θ̄ vs. M , including error bars for both ∆θ̄ and M as appropriate.
According to equation (5.7), the data should follow a straight line.

3. Find the maximum and minimum slopes consistent with the data, and determine an
average slope with an associated uncertainty [equation (I.11) in the Introduction].

4. From equations (5.8) and (5.9), determine the shear modulus, G, of the “B”-rod and
its uncertainty.

5. Time permitting, repeat analysis steps 1–4 for the “S”-rod.

Conclusions

1. Use Table 5.1 to identify the type of metal in rods “B” and “S”. Is it possible to
identify the metal uniquely?
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metal G (1010 Nm−2)

lead 1.31

aluminum 2.70

brass 3.45

cast iron 4.10

bronze 4.48

iron (malleable) 6.40

carbon steel 7.70

steel 8.50

molybdenum 11.80

Table 5.1 Table of shear moduli (G) for various metals. Values are taken from
http://www.engineeringtoolbox.com.

Additional discussion questions

1. If the uncertainty in the measured value of G is too large, it will be impossible to make
a unique identification of the metal in the rod. Assuming this to be the case, what is
the single most important modification you could make to this experiment that would
improve the precision of the results enough to make a unique identification?

2. We never actually measured the mass of the mass hanger. Yet, done properly, your
data should have fit a straight line passing through the origin. What did we do that
accounted for the mass of the mass hanger?



Experiment 6

Determining g Using a Simple
Pendulum

Purpose

The purpose of this experiment is to determine a value for the gravitational acceleration g
at the Earth’s surface using a simple pendulum.

Apparatus

1. metal pendulum “bob”,

2. metal frame and thread for the pendulum bob,

3. metre stick,

4. stopwatch.

Theory

The period of oscillation, T , for a simple pendulum oscillating with a small amplitude (a few
degrees or less) is given by:

T = 2π

√

L

g
, (6.1)

where L is the length of the string as measured from the pivot point to the centre of mass
of the bob, and g is the gravitational acceleration at the Earth’s surface.

Preparation question 1: Starting with a free-body diagram for a pendulum,
derive equation (6.1) using your textbook for “inspiration” if you like.
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Figure 6.1 A simple pendulum.

Notice that the period of oscillation doesn’t depend on either the mass of the pendulum bob,
nor the amplitude of oscillation so long as the amplitude is small.

Squaring both sides of equation (6.1), we get:

T 2 =
4π2

g
L, (6.2)

Therefore, a plot of the square of the swing period, T 2, vs. the string length, L, should yield
a straight line with slope:

m =
4π2

g
,

which, when solved for g, gives:

g =
4π2

m
. (6.3)

In this lab, we will use equation (6.3) as a simple way to measure the acceleration of gravity.

Preparation question 2: What is the uncertainty in g, ∆g, in terms of the
uncertainty in the slope, ∆m?

Procedure

1. Attach the string to the pivot bar of the stand so that the length of string between the
pivot point (the underside of the horizontal bar in the metal frame) to the centre of
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mass for the pendulum bob as close to 90 cm as practical. Take care that the thread
does not come loose during the experiment (Fig. 6.1).

2. Make a table in your lab book with eight columns and at least 16 lines (assuming you’ll
enter your data double-spaced).

3. Using the metre stick, measure the actual length, L, of the string from the pivot point
to the centre of mass of the bob, and record it and an estimate of the uncertainty in
the first column of your table.

4. Pull the bob back so that the angle the string makes with the vertical is no more than
5◦ (use a protractor, if necessary, to get an idea of what “less than 5◦” means!), and
release. Use the stopwatch to measure the elapsed time for ten complete swings of the
bob (as measured from the top of the swing) in seconds. It is not a good idea to start
counting right when the pendulum is released; wait for one swing to complete before
starting. NOTE: one swing is completed when the pendulum returns to its starting
position. Record this time (call it t1) and an estimate of the uncertainty (reading,
reaction delay, etc.), in column 2.

Preparation question 3: Why is it better to measure the time between
moments when the bob is at the top of its swing than when it is at the bottom
of its swing?

5. Repeat step 4 four additional times, recording the times for ten swings in columns 3–6
headed with, say, t2, t3, t4, and t5.

6. Repeat steps 3, 4, and 5 for several other lengths (e.g., 0.8, 0.7, . . . , 0.3 m).

Analysis

1. For each string length, compute the average time, t̄, for ten swings and a half-the-range
uncertainty. Divide this by 10 to get your measurement of the period, T , and record
this value along with its uncertainty in column 7 of your table. Note that when you
divide t̄ by 10 to get T , you should also divide its uncertainty by 10 to get ∆T .

2. For each length, compute T 2 and its uncertainty, ∆(T 2), [e.g., equation (I.3) in the
Introduction], and record these values in the eighth and final column of your table.
Provide in your lab book a sample calculation for how you got one value of T 2 and
∆(T 2) from your raw measurements t1, t2, etc. The rest you can just record in your
table without writing out the derivations in detail.

3. Generate a graph with T 2 (the dependent variable) on the vertical axis and L (the
independent variable) on the horizontal axis, including uncertainty bars for both vari-
ables if visible. If the uncertainty bars are not large enough to plot, make a note of that
on your graph. Review § 6 of the Introduction if you have forgotten what constitutes
a good graph and how to measure the slope from a graph.
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4. By drawing two straight lines through your data, one with the maximum slope con-
sistent with your data, the other with the minimum slope consistent with your data,
determine the slope of the best fit line, m, along with an uncertainty, ∆m [equation
(I.11) in the Introduction].

5. Use equation (6.3) to compute g with an associated uncertainty.

Conclusions

1. Does your experimentally determined value of g agree with the local accepted value of
9.81 m s−2? If not, what are the possible sources of experimental error?

Additional discussion questions

1. Do your maximum- and minimum-slope best-fit lines encompass the origin? If not,
can you explain why they might not?

2. Compare your experimentally determined value for g from this lab with that deter-
mined in Lab 3. Which value was more accurate? Which value was more precise?
Comment, then, on which methodology is better for determining g.

3. Recall that equation (6.3) is derived assuming that the swing amplitude of the pendu-
lum is relatively small. Time permitting and with the pendulum string length of say
0.6 m, measure T (one measurement for ten swings is sufficient here) for an amplitude
of (approximately) 10◦, 20◦, and 40◦. Including your previous measurement for 5◦, this
gives you four data points. Is there a trend? If you were to have used an amplitude
that was too large, how would this have affected your experimentally determined value
of g?



Experiment 7

Standing Waves

Purpose

The purpose of this experiment is to investigate standing waves on a stretched string. As a
consequence, the linear density (in units of kg m−1) of the string may be determined.

Apparatus

1. oscillator,

2. frequency counter,

3. transformer,

4. electrical leads,

5. standing wave driver,

6. pulley,

7. string,

8. UV lamp,

9. several masses and a mass hanger,

10. mass balance,

11. metre stick.

Theory

The velocity of propagation, v, of a transverse wave on a taut string is given by:

v =

√

T

µ
,
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where T is the tension on the string (N) and µ is the linear density of the string (kg m−1).
In the case of wave motion, we also have,

v = fλ,

where f is the frequency of vibration (Hz = s−1) and λ is the wavelength of the wave (m).
Thus,

f =
1

λ

√

T

µ
. (7.1)

If L is the length of the string and n is the number of loops in the standing wave (see Fig.
7.1), then

λ =
2L

n
.

Preparation question 1: Why do standing waves exist only when the wave-
length is given by λ = 2L/n, where n is an integer? Why, for example, could
a standing wave not be created with λ = 4L (and thus n = 1/2)?

Further, if the tension is supplied by a mass, M , hanging from the string, T = Mg.
Substituting for λ and T in equation (7.1), we get our principle result to be checked experi-
mentally:

f =
n

2L

√

Mg

µ
. (7.2)

Note that there are three independent variables that can be varied: n, M , and L. We
can rearrange equation (7.2) in three different ways to “expose” the dependence f has on

Figure 7.1 Examples of standing waves.
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each of these variables. Thus:

f = m1n, where m1 =
1

2L

√

Mg

µ
; (7.3)

f = m2

√
M, where m2 =

n

2L

√

g

µ
; (7.4)

f = m3

1

L
, where m3 =

n

2

√

Mg

µ
. (7.5)

By plotting f against n (holding each of L and M constant), f against
√

M (holding each
of n and L constant), and f against 1/L (holding each of n and M constant), we should
get three straight lines with measurable slopes, and thus three ways of estimating the linear
density of the string, µ. Thus, for example, from equation (7.3) we have:

µ =
Mg

4L2m2
1

and
∆µ

µ
=

∆M

M
+ 2

∆L

L
+ 2

∆m1

m1

(7.6)

In this lab, we will find that the fractional uncertainty in the masses, ∆M/M , is negligible
compared to the other sources of uncertainty, and thus we will ignore its contribution.

Preparation question 2: Derive similar expressions to equations (7.6) for
µ and its fractional uncertainty in terms of m2 and m3 (assuming the uncer-
tainties for both g and n are zero).

Procedure

Figure 7.2 is a schematic diagram illustrating the apparatus used in this experiment. The
driver (a two-cone speaker) is used to vibrate the string which is fixed on a pulley at the other
end. The frequency and amplitude of vibration are controlled by the oscillator. The desired
frequency is that which excites resonant waves in the string (i.e., provides the maximum
observed amplitude in the string vibrations).

WARNING: The UV lamp illuminates the phosphorescent string and makes
it easier to see. UNDER NO CIRCUMSTANCES SHOULD YOU LOOK DI-
RECTLY AT THE UV BULB WHILE IT IS ON! Prolonged exposure of the
unprotected eye to the emission from the UV bulb can cause severe and perma-
nent eye damage.

1. With the oscillator off, become familiar with the oscillator controls. The large dial
adjusts the oscillator frequency and has a logarithmic scale from which you can get
a quick read of the output frequency. Touching the right side of the large dial is a
“fine-adjust” knob for fine-tuning the frequency. In addition, the “range” knob is a
frequency “multiplier” (e.g., set at 10, the frequency output is ten times what the large
dial is set to) and the “amplitude” knob controls the power output.
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fine-adjust 

Figure 7.2 Arrangement of apparatus.

2. While the large dial has a logarithmic scale of the output frequency, the uncertainty of
this value is high. Thus, we use an electronic frequency counter to measure the output
frequency. For highest accuracy, it is necessary to have the “10 s” selector pushed
in, which means that the device takes only one reading every ten seconds. Thus it is
critical that after adjusting the oscillator frequency, you let the value of the readout
settle for several seconds before recording the value.

3. Turn the oscillator and frequency counter on. As a trial run, place a 20 gram mass on
the hanger and set the length of the string to about 1 metre. Note that at the pulley
end, the string is measured from the top of the pulley. Adjust the frequency until the
resonance frequency for a one-loop standing wave (f1) is found. Since f ∝ n, if you
happen to find the frequency fn of an n-loop standing wave first, adjust the frequency
to f1 = fn/n to find the one-loop resonance. Note also it is possible to hit a weak
n = 1 resonance at a frequency f1/2 (analogous to pushing a child on a swing every
other oscillation). Thus, once you think you have found f1, try doubling the frequency
to make sure you do get two loops (n = 2).

At first, the amplitude knob on the oscillator can be set quite high, but it may be
necessary to reduce the amplitude once resonance is found, especially for low values
of n. Note also that the frequency must be adjusted very gradually as one approaches
resonance.

4. There will be a lot of frequencies to measure in this lab, and so rather than measuring
each frequency five times to apply the half-the-range-rule to each, we’ll do it carefully
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for one resonant frequency, and apply that uncertainty to all frequencies measured in
the rest of the lab.

a) With the 20 g mass still on the mass hanger, find the two-loop (n = 2) resonance
of the ∼ 1 m length string. To do this, watch the string as you carefully adjust
the frequency until the central node is as sharp as it can be and the two loops are
at their maximum amplitude. Remember to wait several seconds before recording
the frequency from the frequency counter. There is no need to record a reading
uncertainty here.

b) Next, turn the frequency dial well away from resonance, and repeat the previous
step until you have ten measures of the n = 2 resonant frequency. Delete any
questionable values (those clearly too high or too low) and from the rest, determine
the average frequency, f̄ , and its uncertainty, ∆f , from the half-the-range rule.

c) Compute the fractional uncertainty, ∆f/f̄ . This is the fractional uncertainty you
will use for all resonant frequencies you measure in the rest of the lab.

5. Fix the length of the string (L ∼ 1 metre) and the mass on the hanger (M ∼ 25
grams). Record the actual length of the string and measure the mass hanging from
the string (including the mass hanger) using the balance provided. Find the resonant
frequencies for as many resonances (i.e., n = 1, 2, 3, . . .) as you can, recording your
data in a two-row table (top row for n, bottom row for f .)

6. Fix and record the length of the string (L ∼ 1 metre) and use n = 2. Find the two-loop
resonant frequencies for masses 20, 25, 30, 35, . . ., 60 g hanging on the hanger. Use the
mass balance to determine the masses (including the mass hanger) rather than relying
on the values stamped on the masses themselves. Record your data in a two-row table
(top row for M , bottom row for f).

7. Fix and record the mass (M ∼ 25 g) on the hanger and use n = 2. Find the two-loop
resonant frequencies for varying lengths (e.g., L = 0.5, 0.6, 0.7, . . . , 1.2 metres) and
record your data in a two-row table (top row for L, bottom row for f).

Analysis

1. From your first data table, plot f vs. n (§ 6.1, Introduction) and measure the slope m1

directly from your graph (§ 6.2, Introduction). Use equations (7.6) to determine the
linear density of the string, µ, and its uncertainty. Check to make sure that ∆M/M
(∆M is the reading uncertainty of the mass balance) is much less than the other
uncertainties (e.g., ∆L/L). If so, it can be ignored in the uncertainty propagation. If
not, it must be carried forward.

2. Do what you need to do to determine µ and its uncertainty from your second data
table (f and M). With f plotted, as usual, on the vertical axis, think carefully about
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what should be plotted along the horizontal axis so that the data follow a straight line
[e.g., glance back at equation (7.4)].

3. Do what you need to do to determine µ and its uncertainty from your third data table
(f and L). Again, think carefully about what should be plotted along the horizontal
axis to obtain a linear plot.

Conclusions

1. Are the three experimentally determined values for µ consistent to within your exper-
imental uncertainty?

2. Which measurement is the most precise?

Additional discussion questions

1. What are the primary sources of uncertainty in this experiment? How might the
accuracy and effectiveness of this experiment be improved?

2. Why is a guitar designed to have strings with different thicknesses? Given that the
strings are mounted with similar tensions (why might this be desirable?), how do the
differing diameters affect the resonant frequencies (and thus the pitch) of the different
strings?

3. The microphone (pickup) on an electric guitar is not placed at the middle (along
the length) of the guitar string where you might expect the maximum amplitude of
vibration to be. Why not? [Hint: when you pluck a string you excite a variety of
different modes (values of n) or resonances simultaneously, and not just the n = 1
(single loop) mode.]



Experiment 8

Specific Heat and Latent Heat of
Fusion

PART I

Purpose

The purpose of the first part of this experiment is to find the specific heat of brass.

Apparatus

1. heated brass samples,

2. water,

3. calorimeter (Figure 8.1),

4. electronic thermometer,

5. balance.

Theory

By definition, heat is the thermal energy transferred between a system and its surroundings
as a result of temperature differences. When a hot piece of metal is immersed in cool water,
heat “flows” from the metal into the water. The heat flow continues until both the metal
and the water are at the same temperature. A schematic diagram illustrating the apparatus
(called a calorimeter) used in this heat transfer experiment is given in Fig. 8.1.

According to the principle of conservation of energy, the net heat gained or lost by a
closed system such as the metal and water in a calorimeter is zero. Thus,

Qw + Qm = 0 ⇒ Qw = −Qm. (8.1)
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Figure 8.1 Schematic diagram of the calorimeter.

Now, for a given mass M of material with specific heat c, the heat gained or lost as its
temperature changes from Ti to Tf is:

Q = Mc(Tf − Ti).

Thus, if the initial temperature of the metal is Tm and its final temperature is T < Tm, then,

Qm = Mmcm(T − Tm) < 0.

Further, if the initial temperature of the water is Tw and its final temperature is T > Tw

(i.e., the metal and water attain the same final temperature), then,

Qw = Mwcw(T − Tw) > 0.

Substituting the expressions for Qm and Qw into equation (8.1), we get:

Mwcw(T − Tw) = −Mmcm(T − Tm) = Mmcm(Tm − T )

and therefore:

cm = cw

Mw

Mm

T − Tw

Tm − T
. (8.2)

Preparation question 1: In this experiment, the heat transfer to the
calorimeter is negligible and can be ignored. If this weren’t true, how would
equation (8.2) be modified to take the calorimeter into account? Assume that
the inner cup of the calorimeter has a mass Mc, a specific heat cc, and is
initially at temperature Tw.
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From equation (8.2), cm can be calculated from the given value of cw (4,186 J kg−1 ◦C−1) and
all the measured temperatures and masses. Further, the fractional uncertainty in cm is given
by:

∆cm

cm

=
∆Mw

Mw

+
∆Mm

Mm

+
2∆T

T − Tw

+
2∆T

Tm − T
. (8.3)

Preparation question 2: Derive equation (8.3).

Procedure and Analysis

1. Measure and record the mass of the calorimeter and its uncertainty.

2. Partially fill the calorimeter (about 2/3) with cool (say ∼ 15◦ C) tap water. Mea-
sure and record the mass of the water and the calorimeter together. Calculate Mw,
propagating its uncertainty properly.

Be prepared to perform steps 3–5 in rapid succession. As always, all measure-
ments are to be recorded with their uncertainties.

3. Record the initial temperature of the water (Tw).

4. Record the temperature Tm of the hot large sample of brass (same as that of the hot
water bath). Check that the tip of the thermometer is fully immersed in the hot water
and not above the surface nor touching the bottom, either one of which could give you
a reading very different from the temperature you seek.

5. Select a large sample of brass, transfer it into the water in the calorimeter, and quickly
replace the top. For this experiment to be successful, the transfer must be
made within 10 s. Record the number that appears on the attached string both in
your lab book and on the chalkboard (the latter so that no one else accidentally takes
your sample after you have returned it to the hot water bath).

6. Stir the water gently for at least 30 seconds while monitoring its temperature. Record
the highest temperature attained by the water (T ).

7. Measure the mass of the brass sample (Mm) and return it to the hot water bath.
Discard the water in the calorimeter.

8. Calculate cm and its uncertainty using equations (8.2) and (8.3).

9. Repeat steps 2 through 8 for a small sample of brass.

10. After performing Part II, repeat steps 2 through 8 for the same large sample of brass
again. You do this after Part II to give your sample time to heat up again.
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Conclusions

1. Are your three measurements of cm consistent to within experimental uncertainty?

2. “Standard values” of cm for brass differ, according to the source. In part, this is because
brass, not being an element, is made with slightly varying compositions. Searching
textbooks and on-line, an average value for cm seems to be 373. ± 7. J kg−1 ◦C−1. Is
your value consistent with this range?

Additional discussion question

1. Are your results more precise for the large sample or small sample of brass? Explain.

PART II

Purpose

The purpose of the second part of this experiment is to find the latent heat of ice.

Apparatus

1. ice,

2. water,

3. calorimeter (Fig. 8.1),

4. electronic thermometer,

5. balance.

Theory

As in Part I, Part II demonstrates that heat is transferred from a hot source to a cold source,
and that heat transfer may also cause a phase change in a substance, i.e. solid to liquid.
Consider the case of a block of ice with mass Mi and temperature 0◦C immersed in a warm
water bath of mass Mw and temperature Tw. Some of the heat transferred from the warm
water bath to the ice breaks the intermolecular bonds of the solid ice crystals to form liquid
water. The heat, Qi, required to convert 0◦C ice of mass Mi to water of the same temperature
and mass is given by:

Qi = MiLi,
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where Li is the latent heat of fusion of ice.
The remaining heat transferred from the warm water bath increases the temperature

of the water that was once ice from 0◦C to its final, equilibrium temperature T . This heat
(Qw) is given by:

Qw = Micw(T − 0◦C) = MicwT,

where T must now be expressed in Celcius. When equilibrium is reached, the sum of Qi and
Qw must be equal to the heat loss by the warm water bath. Thus,

MiLi + MicwT = −Mwcw(T − Tw) = Mwcw(Tw − T )

and so,

Li = cw

Mw

Mi

(Tw − T ) − cwT. (8.4)

From measurements of the masses and temperatures, one can determine the heat of fusion of
ice, Li. Further, the absolute uncertainty in Li is given by the rather nasty looking equation:

∆Li = cw

[

∆Mw

Mi

(Tw − T ) +
Mw∆Mi

M2
i

(Tw − T ) +
2∆TMw

Mi

+ ∆T

]

. (8.5)

We’ll resist the temptation to ask you to derive this! (Though you could; it really is just
straight-forward algebra.)

Procedure and Analysis

1. Partially fill the calorimeter (about 2/3) with lukewarm (say ∼ 35◦ C, or near body
temperature) tap water. Measure and record the mass of the water and the calorimeter
together. Calculate Mw, propagating its uncertainty properly.

Be prepared to perform steps 2 and 3 in rapid succession. Once again, all
uncertainties must be recorded with the measurements.

2. Record the initial temperature of the water (Tw) just before adding the ice.

3. Crush three ice cubes, and add the solid portion only (no melt water!) to the water in
the calorimeter. Quickly replace the top.

4. Stir the water gently until all the ice has melted while monitoring its temperature.
Record the lowest temperature attained by the water (T ).

5. Measure the mass of the calorimeter + water + melted ice, and calculate Mi. Discard
the water in the calorimeter.

6. Calculate Li and its uncertainty from equations (8.4) and (8.5).

7. Repeat steps 1 through 6 two more times using at first two crushed ice cubes, then one
crushed ice cube.
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Conclusions

1. Are your three measurements of Li consistent to within experimental uncertainty?

2. What is your best estimate of Li? Does it agree with the accepted value of Li =
3.33 × 105 J kg−1 to within experimental uncertainty?

Additional discussion questions

1. Does the amount of ice affect the latent heat of fusion? Does the amount of ice affect
the experimental uncertainty? If so, in what way and why?

2. When a substance changes from liquid to vapour, is the work done by the substance (W )
positive or negative, and does its internal energy (E) increase or decrease? Explain.

3. Which cools a cup of hot coffee more: 40 g of water at 0◦ C or 20 g of ice at 0◦ C? Work
it out!



Experiment 9

Equipotential Surface Mapping

Purpose

The purpose of this lab is to map equipotential contours and electric field lines about two
pairs of charged electrodes.

Apparatus

1. DC power supply,

2. multimeter (used as a voltmeter),

3. parallel and circular electrode sheets,

4. wire leads and probe,

5. ruler.

Theory

If a charge, Q, exerts an electrical force, ~FE, on another charge, q, the electric field, ~EQ,
emanating from Q is defined to be:

~EQ =
~FE

q
N C−1.

The concept of an “electric field” is an important one in physics. It postulates that a charged
object, Q, sets up a “field” in all space about it such that should another charged object,
q, enter that field, an electrical force is exerted upon q. We say that the force is mediated
by the field. The field from Q exists whether or not q is there to “feel” it. (A falling tree in
the woods does indeed make a sound even if no one is there to hear it!) The force, however,
exists only when the two charges are present.
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Preparation question 1: Write down Coulomb’s Law for two spherical
charges, Q and q. What is the electrical field emanating from Q?

Preparation question 2: Write down Newton’s Law of gravitation for two
spherical masses, M and m. Since this is similar in form to Coulomb’s Law,
we might expect there to be a gravitational field analogous to the electrical
field. What is the gravitational field emanating from M? What are its units?
What is the gravitational field near the surface of the Earth?

The electric force is conservative, and thus we can define a potential energy whose
incremental change, dUE , is minus the work done by the electrical force over an incremental
displacement, d~r:

dUE = −~FE · d~r.
The potential, VE , is to the potential energy, UE , what the electric field, ~E, is to the electrical
force, ~FE . Thus,

dVE =
dUE

q
= −

~FE

q
· d~r = −~E · d~r. (9.1)

The units for potential, V , are JC−1, or volt (V). Equivalently, we can write:

~E = −dVE

dr
r̂, (9.2)

where r̂ is a unit vector pointing in the opposite direction of ~E. Thus the units for electric
field may also be written as Vm−1. (Indeed, these are more commonly used than NC−1.)

Because the potential is the dot product of two vectors, it is a scalar quantity (like
temperature) and can be visualised in 2-D using contours. If you have ever looked at a
weather map (e.g., Fig. 9.1), you are already familiar with contours. Contours are lines that
join up points with equal values of the scalar being mapped. In Fig. 9.1 in which temperature
contours are shown, the 20◦ contours, for example, join up all the points on the map where
the temperature is expected to reach 20◦. If your city lies between the 20◦ and 25◦ contour
lines, you can expect a high somewhere between these temperatures.

Contours of VE are known as equipotential contours, or just equipotentials for short6. If
two points lie on the same equipotential, dVE = 0, and no electrical work is done on a charge
that may move between these two points. The electrical force, therefore, is not inclined to
move the charged object from one of these points to the other.

A gravitational analogy may be helpful. A level surface is a surface that lies along the
same gravitational equipotential, and an object placed on this surface can be expected to
stay put. Thus, shelves are built level and not slanted. On a slanted shelf, one end is at
a higher potential than the other, and an object placed at the higher end can be expected

6In 3-D, the locus of points with the same potential form surfaces, and are thus known as equipotential

surfaces.
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Figure 9.1 A typical weather map with temperature contours.

to slide down the shelf. On a level shelf, the gravitational force is still there, but it doesn’t
cause the object to move. So it is with electrical potential and the electrical force.

If d~r lies along a VE contour, the change in VE along d~r, dVE, is zero by definition. Thus,
equation (9.1) requires that ~E · d~r = 0, and ~E is perpendicular to d~r. Since d~r lies along the

equipotential, the electric field, ~E, must be everywhere perpendicular to equipotentials. We
will use this fact to map electric field “lines” from equipotential contours mapped directly
from measurements taken with an electrical probe placed around charged electrodes.

Procedure

In this experiment, we use an apparatus in which electrodes (essentially metal objects con-
nected to opposite ends of a “DC source” or battery) are fixed to a special low-conductivity
surface which permits a very low current to move through it. Thus, an ordinary voltmeter
(which needs some current to pass through it for a reading) can be used to measure poten-
tial differences between two arbitrary points on the surface. Finding points with the same
potential, then, allows us to map out equipotential contours, and thus electric field lines.

Unlike all the other labs in this manual which are quantitative, this is a qualitative
lab and thus you may consider today to be an “uncertainty-free holiday”. No uncertainty
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Figure 9.2 Schematic diagram of the apparatus.

propagation or analysis is expected in this write-up.

NOTE: For your safety and the safety of the equipment, do not turn on the power supply
until your lab instructor or a demonstrator verifies that you have connected everything
according to instructions and that the proper instrument settings are being used.

PART I. Parallel electrodes: a “capacitor”

1. Make sure your power supply is turned off. Set the multimeter dial to the
DC-voltage location, typically labelled with a “V” that has both a straight line and a
dashed line above it so that it acts as a voltmeter.

2. With the leads provided, connect the positive parallel electrode (red) to the positive
terminal (red) on the power supply and the negative parallel electrode (black) to the
negative terminal (black) on the power supply (see Fig 9.2, which actually shows the
“circular electrodes” being used; you should use the “parallel electrodes” for Part I).

3. Connect the negative terminal of the multimeter (black, labelled “COM”) to the nega-
tive parallel electrode. The positive terminal of the multimeter (red “V”) has a probe
attached to it which you will use to measure the potential (relative to the negative
electrode) at various points between the electrodes.
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4. With the power supply still switched off, turn the current knob to full and the voltage
knob to zero.

Have your lab instructor or demonstrator check your connections and settings
before proceeding.

5. Turn on the power supply and place the probe on the positive (red) parallel electrode.
Increase the voltage slowly until the potential measured by the multimeter between
the two parallel electrodes reads +20 V. (Once you have set the voltage on the power
supply, do not adjust it until this part of the experiment is finished.)

6. Holding the probe vertically, press its tip firmly—but not too hard—at some arbitrary
point between the parallel electrodes, and take a reading from the multimeter. Leaving
the tip of the probe in place but tilting the probe substantially toward one or the other
electrode, does the reading on the multimeter change? Now let off on the pressure of
the probe somewhat, and determine how firmly the probe must be held so that the
reading remains stable. What can you say about the importance of how the probe is
held?

7. Along a perpendicular line that bisects the parallel electrodes, place the probe at 3.0,
6.0, 9.0, and 12.0 cm from the positive (red) electrode, and for each point record the
voltage. On the scaled drawing of the parallel plate electrodes (page 79), draw (for
this lab only, in pencil if you like) a dot at each of these four points and include the
voltage reading (V ). If you make too many errors on the sheet and want to start over,
go to page 80.

8. Starting at the 3.0 cm point, place the probe at as many other points (each roughly 2
cm apart) as needed to map out the equipotential contour (i.e., points with the same
value of V ) essentially from one side of the apparatus to the other. Mark each point
of the equipotential contour on the scaled drawing, then draw a smooth line between
the points.

9. Repeat step 8 for each of the other three points in step 7 to give you a total of four
equipotentials.

10. Now draw at least six representative electric field lines separated evenly across the
width of the drawing, remembering that field lines must everywhere be perpendicular
to both the surface of the electrode and equipotential contours.

PART II. Circular electrodes: a “dipole”

11. Repeat steps 1–5 in Part I for the circular electrodes.

12. Using the probe, map the equipotential contour for VE = 3.0 volts, and record these
positions on the scale diagram provided on page 81. Each position should be roughly
2.0 cm apart. Probe as many places as needed to trace the equipotential contour either
off the page, or back to its beginning (a minimum of 10 locations, possibly more).
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13. Repeat step 11 for each of VE = 6.0, 9.0, 12.0, 15.0, and 18.0 Volts, for a total of six
equipotential contours.

14. On your scale drawing, draw at least six electric field lines that connect the two elec-
trodes. Remember that electric field lines are perpendicular to the surface of the
electrodes, and to every equipotential contour they cross.

15. Turn off the power supply and set its voltage and current knobs to zero. Remove all
the electrical leads (wires) and turn off the multimeter.

Analysis, Discussion, and Conclusions

1. Include your two field-line maps with your lab write-up. This is the only time you’ll
be adding pages to your lab notebook.

2. Plot the data in procedural step 7 on a VE vs. d graph (where d is the distance from
the positive electrode), including the points VE = 20 volts at d = 0 cm and VE = 0
volts at d = 15 cm (and thus touching the negative electrode). This will give you six
points that should lie on a straight line. What is the slope of your graph? What does
this value represent? (Hint: what are its units?7)

3. In general, static electric field lines, such as the ones drawn in this lab, must begin on
a positive point charge and end on a negative point charge. In this lab, this is manifest
by (most of) the electric field lines starting and ending on one of the electrodes (where
the point charges reside). Do all your electric field lines behave this way? If any of the
field lines you drew do not start and/or end on an electrode, where do you suppose
their “charge anchors” are?

4. Describe the shape of the electric field lines for both electrode setups. What do you
think influences the shapes of the equipotentials and thus the field lines?

5. A couple of times in the lab procedures, it was mentioned that the electric field lines
must be perpendicular to the surfaces of the electrodes as well. Thus, the surfaces of
the electrodes must themselves be equipotentials. Explain why this would be so.

7Need another hint? Glance back at equation (9.2)
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Experiment 10

Direct Current I-R Circuits

Purpose

The purpose of this experiment is to verify Kirchhoff’s rules in simple DC I-R circuits.

Apparatus

1. DC voltage source,

2. four digital multimeters (acting as voltmeters, ammeters, and ohmmeters),

3. resistors,

4. electrical leads.

Theory

The current, I, driven through a DC (direct current) circuit depends upon the effective
resistance, Reff , in the circuit and the potential difference, V , applied across the resistance.
According to the definition of resistance,

V = IReff ⇒ I =
V

Reff

, (10.1)

where the unit of resistance is “ohm” (Ω). Contrary to what is often understood from high
school and even from some college-level electronics texts, this is not “Ohm’s Law”; nothing
in equation (10.1) says that Reff has to be constant. Ohm’s law states that for a certain
class of resistors known as Ohmic resistors (e.g., ceramics, most metals), Reff is a constant
regardless of the potential difference, V , applied. Thus, for resistors obeying Ohm’s Law, I
plotted against V yields a straight line with slope 1/Reff . For non-Ohmic resistors (those
that don’t obey Ohm’s Law), an I vs. V plot does not yield a straight line.

An example of a non-Ohmic resistor is a semi-conducting diode. While one can always
find the effective resistance of such a resistor by measuring V and I and then using equation
(10.1), the value of Reff depends not only on the potential difference across it, but also on
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Figure 10.1 A DC I-R circuit with two resistors in series.

the direction of the current through it. It is this property that is at the base of the entire
computer-chip industry.

Kirchhoff’s two rules for circuit analysis (the ones to be checked indirectly in this lab)
are:

1. Junction rule: The sum of all currents into and out of any point (or junction) is zero:
∑

I = 0.

2. Loop rule: The sum of all voltages around any closed loop is zero:
∑

V = 0.

In the circuit depicted in Fig. 10.1, a DC voltage supply (battery) is placed in “series”
with two resistors, R1 and R2, and an ammeter, A, to measure the current. The ammeter has
its own “internal resistance” which is generally small and usually negligible; we will ignore
this resistance in this lab. A voltmeter, V8, is also shown in Fig. 10.1 placed in “parallel” with
the resistors using dotted lines. The dotted lines indicate that the voltmeter is not actually
connected to the circuit as the ammeter is, but can be introduced into the circuit simply
by “touching” its two leads to either side of a circuit element whose potential drop is being
measured. As indicated in Fig. 10.1, the voltmeter is measuring the potential gain across the
battery or, equivalently, the potential drop across the two resistors. Voltmeters also have
their own internal resistance which, by design, is very large (typically several million Ω) so
that the voltmeter diverts as little current from the main circuit as possible. In principle,
this drain does affect the current passing through the resistors, though we shall ignore this
effect in this lab.

For the circuit depicted in Fig. 10.1, we use the second of Kirchhoff’s rules to find:

V − IR1 − IR2 = 0 ⇒ V = I(R1 + R2)

8The symbol “V” is probably the most overused symbol in circuit analysis. It is used for potential, the
symbol for Volt, to label the power supply, and to label the voltmeter. One generally has to go on context
to determine what usage is being made of the “V” and, at times, things can look a little crazy. For example,
to say the voltage is ten volts, one would write: V = 10 V where, if one didn’t notice the use of italics, one
might be tempted to “cancel the Vs” and write nonsense such as 1 = 10.
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Figure 10.2 A DC I-R circuit with three resistors in series.

⇒ I =
V

R1 + R2

. (10.2)

Given that V , R1, and R2 are uncertain quantities, it is easy to show that the uncertainty
in I is given by:

∆I

I
=

∆R1 + ∆R2

R1 + R2

+
∆V

V
. (10.3)

Comparing equations (10.1) and (10.2), we find for this circuit that:

Reff = R1 + R2.

Thus, resistors in series add.
The circuit depicted in Fig. 10.2 shows three resistors in series. Applying the second of

Kirchhoff’s rules once again, we find:

V − IR1 − IR2 − IR3 = 0 ⇒ V = I(R1 + R2 + R3)

⇒ I =
V

R1 + R2 + R3

, (10.4)

with the uncertainty in I given by:

∆I

I
=

∆R1 + ∆R2 + ∆R3

R1 + R2 + R3

+
∆V

V
. (10.5)

Comparing equations (10.1) and (10.4), we find for this circuit that:

Reff = R1 + R2 + R3.

For the circuit in Fig. 10.3 which shows two resistors in parallel across the power supply,
we need to use both of Kirchhoff’s rules to determine the effective resistance in the circuit.
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Figure 10.3 A DC I-R circuit with two resistors in parallel.

As illustrated, the current I3 goes toward point P while currents I1 and I2 go away from
point P. Thus:

I3 − I1 − I2 = 0 ⇒ I3 = I1 + I2. (10.6)

Applying the second rule to the two loops containing the voltage supply, we get:

V − I1R1 = 0 ⇒ I1 = V/R1, (10.7)

V − I2R2 = 0 ⇒ I2 = V/R2. (10.8)

Substituting equations (10.7) and (10.8) into equation (10.6) yields:

I3 = V
(

1

R1

+
1

R2

)

. (10.9)

Comparing equations (10.1) and (10.9), we find for this circuit that:

1

Reff

=
1

R1

+
1

R2

⇒ Reff =
R1R2

R1 + R2

and we say “resistors in parallel add in reciprocal”.
Finally, the uncertainties in the currents are given by:

∆I1

I1

=
∆R1

R1

+
∆V

V
;

∆I2

I2

=
∆R2

R2

+
∆V

V
;

(10.10)
∆I3

I3

=

(

∆R1

R2
1

+
∆R2

R2
2

)

R1R2

R1 + R2

+
∆V

V
.

Preparation question 1: Derive equations (10.3), (10.5), and all three of
equations (10.10).



Direct Current I-R Circuits 87

Procedure and Analysis

WARNING: Never short out the terminals of the power supply.
That is, do not connect the power supply to a circuit consisting
only of a multimeter and no other resistors, as this may damage the
power supply and/or the multimeter.

Use of the Fluke multimeter: A multimeter is a device that can be used as an ohmeter,
voltmeter, or ammeter, simply by setting a switch. The sensitivity of the device can also be
controlled by an appropriate setting.

For an ohmmeter, turn the multimeter dial to the ohmmeter location, typically marked
with an “Ω”. With the resistor isolated from the rest of the circuit, connect one lead
from the black input on the meter labelled “COM” to one end of the resistor, and connect
another lead from the red input on the meter labelled “Ω” to the other end of the resistor.
This provides you with a resistance readout in ohms (Ω). The uncertainty of the resistance
reading is ±0.25% + 2 in the last digit. Thus, for example, if the reading is 0.704 kΩ, the
uncertainty is 0.0025 × 0.704 + 0.002 = 0.0038 kΩ, and you would quote 0.704 ± 0.004 kΩ.

For an ammeter, turn the multimeter dial to the DC-current location, typically labelled
with an “A” that has both a straight line and a dashed line above it, and place the meter
in series with the device whose current is being measured. Thus, connect one lead from
the black input on the meter labelled “COM” to the “low voltage” side (labelled “−” in
the figures) and connect another lead from the red input on the meter labelled “10 A” to
the “high voltage” side (labelled “+” in the figures). This will give you a current readout
between 0 and 10 A. If the current is low enough (less than 0.3 A), move the lead from the
“10 A” input to the “300 mA” input. This will give a current readout between 0 and 300
mA, and should be used for low currents only. The uncertainty of the DC current
reading is ±1% + 3 in the last digit.

For a voltmeter, turn the multimeter dial to the DC-voltage location, typically labelled
with a “V” that has both a straight line and a dashed line above it, and place the meter
in parallel across the device whose voltage is to be measured. Thus, connect one lead from
the black input on the meter labelled “COM” to the “low voltage” side (“−”) and connect
another lead from the red input on the meter labelled “V” to the “high voltage” side of the
same device (“+”). This will give you a potential drop readout between 0 and 600 volts.
The uncertainty of the DC voltage reading is ±0.25% + 2 in the last digit9.

PART I: Two resistors in series

1. Create a data table in your lab notebook with three columns: one for the measured
applied voltage (Vm), one for the measured current (Im), and one for the computed
current (Ic).

9Uncertainties are from Fluke’s web site: http://ca.mouser.com/fluke/.
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2. Choose two resistors for use as R1 and R2. Measure and record their resistances using
the multimeter as an ohmmeter and assemble the circuit as shown in Fig. 10.1.

3. For three different values of applied voltage V , record measured values for Vm and
Im. Use equations (10.2) and (10.3) to determine the expected current (Ic) and its
uncertainty based on Kirchhoff’s rules, and record these in column 3.

PART II: Three resistors in series

4. Create a data table in your lab notebook with nine columns: one for the measured
applied voltage (Vm), one for the measured current (Im), one for the computed current
(Ic), three for the measured voltages across each of the resistors (V1,m, V2,m, and V3,m),
and three for the computed voltages across each of the resistors (V1,c, V2,c, and V3,c).

5. Assemble the circuit as shown in Fig. 10.2. Using the multimeter as an ohmmeter,
measure and record the resistances of the three resistors.

6. For three different values of applied voltage V , record measured values for Vm, Im, V1,m,
V2,m, and V3,m. Use equations (10.4) and (10.5) to compute the expected current (Ic)
and its uncertainty. Compute the expected voltages across each of the resistors (V1,c,
V2,c, and V3,c) using Vi,c = IcRi, where i = 1, 2, 3, and where the uncertainties follow
the usual rules of uncertainty propagation. Record each of the computed values in the
appropriate columns of your table.

PART III: Two resistors in parallel

7. Create a data table in your lab notebook with seven columns: one for the measured
applied voltage (Vm), three for measured currents (I1,m, I2,m, and I3,m), and three for
computed currents (I1,c, I2,c, and I3,c).

8. Choose two resistors for use as R1 and R2. Measure and record their resistances using
the multimeter as an ohmmeter and assemble the circuit as shown in Fig. 10.3.

9. For three different values of applied voltage V , record measured values for the voltage
across the power supply, Vm, and the three currents, I1,m, I2,m, and I3,m, as indicated in
Fig. 10.3. Using equations (10.7) – (10.10), calculate the expected currents and their
uncertainties and record these values in the columns I1,c, I2,c, and I3,c.

Conclusions and discussion

1. Is there a significant difference between any of your measured and calculated values in
any of the three tables? If so, what sources of error do you suspect may have crept
into your experiment?

2. Which of your results, if any, confirm Kirchhoff’s first rule? Second rule? How?
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3. Kirchhoff’s rules are statements on the conservation of energy and the conservation of
charge. Which is which?

4. Have you been able to verify Ohm’s Law? If so, what data from your experiment has
verified this? If not, how might you modify this lab so that you could?



90 Experiment 10



Appendix A

Examples of Informal Reports

A.1 An Example of a Good Informal Report

In the following pages is an example of an informal report for Experiment 5, written by I.
M. A. Keener, that most instructors and graders would consider excellent. Everything up
to and including the “Preparation questions” was presumably done before Keener came to
the lab. The purpose is stated with complete sentences, the theory section just states the
relevant equations with the symbols defined, and all “Preparation questions” are correctly
answered.

Referring to the lab manual for the apparatus and procedures is fine so long as there
were no deviations from these during the lab. If you had to use some different equipment or
deviate from the stated procedures, you should record those deviations in your report.

Complicated figures need not be reproduced in the report; a reference to the relevant
figure in the manual is acceptable. However, simple diagrams and/or those you feel are
needed but not in the manual should be drawn with pen and ruler on one of the blank pages
in your lab book, and should fill as much of the page as practical.

In the Data section, the data should be clearly identified, tabulated where possible, and
written in ink . Errors will happen, and thus you should write small enough or leave blank
lines between entries so if you do make an error, you can neatly cross out the error and write
the correct value above it. Note you can still read the errant entries in this example.

The Data Analysis section is distinct from the Data section, and you should keep them
separate. All calculations are performed here, in ink . Graphs are done according to the
instructions in § 6 of the Introduction. Thus, you should draw your graph with pen and ruler,
and it should fill as much of the graph page as practical. The title should be descriptive
but not overly long, and annotations should be chosen sensibly. Axes are labelled with the
variable names and units, and error bars are included where practical. If the data are being
fit to a straight line, lines with the minimum and maximum slopes consistent with the data
and not forced through the origin should be drawn, and the slopes should be measured
directly from these.

If there is insufficient time to finish the experiment, do what you can giving the highest
priority to gathering the raw data. After all, your ability to generate a formal report for
the experiment in the future will depend more on whether you have all the data than on
whether you complete all the analysis. If you are unable to get all the data during the
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regularly scheduled lab, you should plan on gathering the missing data during “make-up
week” (§ 2.3 of the Introduction).

The Discussion and Conclusions sections may be merged together in the informal report,
if you wish. Here, we expect you only to state the facts as you determined them. If you have
time, extend your discussion by answering the questions at the end of the experiment, and
suggest realistic ways the lab may be improved where appropriate.

Finally, note that this sample report includes only the data and analysis for one of the
rods, not both, as this is sufficient to demonstrate what a good lab report should look like.
In practise, it is expected that students will be able to analyse both rods for a complete
report.

Most graders would give this lab a 7 or 8 out of 10, losing 2 points for not including the
second rod. A completed report like this would earn the full ten points.
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A.2 An Example of a Poor Informal Report

In the following pages is an example of an informal report for Experiment 5, written by R.
U. Really, that most instructors would consider very poor. Since the Purpose and Theory
sections are to be completed before the lab, Really has no excuse for this brevity or for not
answering the “Preparation questions”. The Purpose is stated using an incomplete sentence,
and the Theory section should at least contain the equations to be used and a list of defined
symbols.

There is no division between the Data and Data Analysis sections. Errant entries are
obliterated and cannot be read. Symbols (e.g., D, L, etc.) are introduced without being
defined. Some data are recorded with their uncertainties (e.g., D, L, and R), so that’s good,
but some data are not recorded with their uncertainties (e.g., M), and other data are missing
altogether (e.g., the five measurements that went into determining R).

The graph is inadequate. It could have been drawn much bigger and the lines were
drawn without a ruler. The title is useless and the axes are not labelled. Error bars are not
drawn to scale, the minimum and maximum sloped lines are forced through the origin when
they should not be, and the rises and runs are chosen so small that reading error from the
graph now dominates the uncertainty.

What is worse, Really has completely forgotten to reconcile units. He has used the slope
as directly measured from the graph (0.039) into his equation for G without first converting
to ◦/kg, and has used the measurements of D, R, and L directly without first converting
them into metres. No wonder his shear modulus was five orders of magnitude off!

Really’s carelessness has rendered this lab report virtually useless. Evidently his partner,
I. M. A. Keener, even alerted him to the potential problem with the units, yet there is no
evidence Really bothered following this up.

Unlike Keener’s report, Really’s report shows little organisation, little preparedness, and
little attention to proper analysis procedure. It is difficult to imagine how Really would be
able to prepare a formal report from this two months down the road, and even more difficult
to imagine how anyone else would be able to follow what was done in this experiment.
Virtually any grader would give this report a severe failing grade (could be zero!).
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Example of a Formal Report

In the following pages is an example of a formal report for Experiment 5 for which most
instructors would give high marks (90% or better). Notice for the most part, it is little
more than a transcription of the example of a good informal report in App. A, with more
discussion filled in here and there. This is possible only if your lab notebook is kept complete
and in good order, like Keener’s. If you maintain your lab notebook more like Really does,
your task of writing up a good formal report will be significantly more difficult.

As per § 3 of the Introduction (“Theory” item #4), answers to the “preparation ques-
tions” are not reproduced here. These were to help prepare the student for the experiment
before coming to the lab, have already been answered in the informal report, and have served
their purpose. However, note that all the “Discussion questions” are answered in this report,
which were not all necessarily answered in the informal report.

Notice how well the word processor used to generate this report handles equations.
If your word processor cannot do equations well, you are advised to leave spaces for each
equation, then write them in by hand after the report is printed out. Good handwriting is
always better than bad word processing.

As with the sample informal report in § A.1, this sample formal report includes only the
data and analysis for one of the rods, not both, as this is sufficient to demonstrate what a
good formal lab report should look like. In practise, students would be expected to include
the analysis of both rods in a formal report, having used the “make-up week” (§ 2.3) to
obtain any data that were not collected during the actual lab.

Use this example as a guide only. Your instructor may give you specific instructions
which supersede some of the styles illustrated here.
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Formal Lab Report

Experiment 5: Shear Modulus

Performed by: I. M. A. Keener

Partner: R. U. Really

Lab Performed: November 17, 2008

Report Submitted: March 23, 2009

Purpose

The purpose of this experiment is to demonstrate how a metal can be
identified by measuring its shear modulus.

Apparatus

1. torsion apparatus (see Fig. 1),

2. assorted masses and a mass hanger,

3. mass balance,

4. metre stick,

5. micrometer,

6. rod of unknown metal.

See Fig. 1 for a schematic diagram of the arrangement and use of the
apparatus.

Theory

When a rigid object is acted upon by an external force, some shear will
result (Fig. 2). Experimentally, it is known that the "stress", Σ, exerted
on the object (force divided by the area over which the force acts) is
proportional to the "strain" (shearing distortion), x/L, and we write:

Σ = G
x

L
, (1)

where x is the distortion, L is the scale length of the object (e.g., see
Fig. 2), and G is the shear modulus on the material.

-1-
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Figure 1. Apparatus for the Shear Modulus lab, with the important
quantities labelled. (Reproduced from the lab manual.)

Figure 2. When a force, F, is applied to a solid object, the strain (x/L)
is proportional to the stress (F/A) for small distortions. (Reproduced
from the lab manual.)
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In this lab, we twist a long metal rod. In this case, the stress comes
from an applied torque rather than an applied force, and the strain is a
twist angle, not a shearing distance. If, as in Fig. 1, the torque is
supplied by a mass, M, hanging from a wheel of diameter D, which in turn
twists the metal rod of radius R and length L, the twist angle, θ, is
related to the mass load, M, according to:

θ =
180gDL

Gπ2R4
M, (2)

where θ is measured in degrees. See equation 5.7 and its derivation in the
"PHYS 1100/1101 Lab manual", Edition 4.1 (2009; henceforth "the manual").
Thus, a plot of θ vs. M should yield a straight line whose slope, m, is
given by:

m =
180gDL

Gπ2R4
. (3)

By measuring this slope, we can then find an experimentally determined
value for the shear modulus:

G =
180gDL

mπ2R4
. (4)

The uncertainty in G follows from rule 2 in § 5.4 in the manual, as well
as equation (I.3). Thus,

∆G

G
=

∆D

D
+

∆L

L
+

∆m

m
+ 4

∆R

R
. (5)

Procedure

1. Five of the "50 g" masses were weighed using the mass balance. The
average of these five values and a half-the-range uncertainty were
recorded.

2. The circumference of the torsion wheel (Fig. 1) was measured by
measuring the length of the cord needed to wrap tightly around the
wheel, then dividing by π. An uncertainty of ±3 mm was quoted for
the circumference---three times the reading uncertainty---because of
the additional uncertainty introduced by this method of measuring.

3. The rod stamped with a "B" was inserted into the torsion apparatus.
Its length, L, was measured using a metre stick and its radius was
measured five times with a micrometer, with its value taken as the
mean of the five readings with a half-the-range uncertainty recorded.

4. The cord was wrapped clockwise about the torsion wheel and, with only
the mass hanger hanging from the cord, the Vernier angular reading was
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set precisely to zero. Masses were then applied in 50 g increments up
to 500 g, and the twist angle for each mass was recorded in column θ1
of Table 1.

5. With the maximum mass on the hanger, the hanger was jiggled gently
from below, and the twist angle was measured again and recorded at the
bottom of column θ2 in Table 1. Masses were removed in 50 g
increments with each twist angle reading recorded in column θ2.

6. With the mass hanger empty, the cord was wrapped around the wheel in
the counter-clockewise direction, and steps 4 and 5 were repeated,
filling columns θ3 and θ4 in Table 1. Column θ̄ contains the means of
the values in columns θ1--θ4, while column ∆θ is the half-the-range
uncertainty.

7. The graph in Fig. 3 is θ̄ plotted against M, with the uncertainty bars
drawn where visible. All subsequent analysis was performed from this
graph.

Raw Data

1. The masses of the five "50 g" masses are:

50.5 g, 49.7 g, 50.5 g, 50.4 g, 49.9 g

Thus, m̄ = 50.20 g; ∆m = 0.40 g.

As the masses are added/removed from the hanger, the total mass is
adjusted in units of 50.2± 0.4 g.

2. circumference of wheel = C = 49.3 ± 0.3 cm. Thus, D = 15.7 ± 0.1 cm.

3. L = 100.0 ± 0.1 cm

The five measured rod diameters are:

3.927 mm, 3.930 mm, 3.926 mm, 3.927 mm, 3.928 mm.

Thus, d̄ = 3.927 mm and ∆d = 0.003 mm (half the range). Since the
half-the-range uncertainty is greater than the reading uncertainty,
the former is retained as the uncertainty in d.

Thus, R = d̄/2 = 1.9635 ± 0.0015 mm.

4. The data from procedure items 4--7 are tabulated in Table 1.

The reading uncertainty for the Vernier scale in θ is ± 0.05◦ which,
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M (g) θ1 (◦) θ2 (◦) θ3 (◦) θ4 (◦) θ̄ (◦) ∆θ (◦)

50.2 ± 0.4 2.0 2.1 1.9 2.2 2.05 0.15

100.4 ± 0.8 4.1 4.2 4.0 4.2 4.13 0.10

150.6 ± 1.2 5.9 5.9 6.1 6.0 5.98 0.10

200.8 ± 1.6 8.5 8.4 8.6 8.6 8.52 0.10

251.0 ± 2.0 10.3 10.4 10.4 10.7 10.43 0.15

301.2 ± 2.4 11.8 12.0 12.1 12.1 11.95 0.15

351.4 ± 2.8 14.2 14.8 14.5 14.6 14.52 0.30

401.6 ± 3.2 16.3 16.4 16.1 16.5 16.33 0.20

451.8 ± 3.6 18.0 18.0 18.0 17.9 17.97 0.05

502.0 ± 4.0 19.9 20.6 19.8 20.3 20.15 0.40

Table 1. Mass load and twist angles gathered in this lab.
Reading uncertainty for all twist angles is ± 0.05◦.

in all cases, is less than or equal to the half-the-range uncertainty.
Thus, the latter is retained for the uncertainty for all mean twist
angles.

Data Analysis

Figure 3 includes the fit-by-eye best-fit lines with the maximum and
minimum slopes, and consistent with most of the data (passes through most
of the error bars). Also indicated on the graph are the rises and runs
used to measure these slopes. Thus, we find:

mmax =
max rise

min run
=

20.85− 2.00

500. − 53.
= 0.04217 ◦/g;

mmin =
min rise

max run
=

19.85− 2.00

500. − 35.
= 0.03839 ◦/g;

⇒ m =
mmax + mmin

2
± mmax − mmin

2
= 0.04028± 0.00189 ◦/g

= 40.3± 1.9◦/kg.

Thus, from equation (4), we get:
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Figure 3. Graph showing the mean twist angles, θ̄, plotted against mass
load, M. Data taken from Table 1.
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G =
(180)(9.81)(0.157)(1.000)

(40.3)π2(0.0019635)4
= 4.689× 1010 Nm−2.

To find ∆G using equation (5), we first evaluate all the relevant
fractional uncertainties. Thus,

∆D

D
= 0.00637;

∆L

L
= 0.001;

∆R

R
= 0.00076;

∆m

m
= 0.0469.

Substituting these values into equation (5) yields:

∆G

G
= 0.0573 ⇒ ∆G = 0.27× 1010 Nm−2.

Therefore, the shear modulus for the metal rod stamped "B" is:

G = (4.69± 0.27) × 1010 Nm−2.

and thus 4.42× 1010 Nm−2 ≤ G ≤ 4.96× 1010 Nm−2. According to Table 5.1 in the
manual, this is consistent with bronze (G = 4.48× 1010 Nm−2), and no other
metals. However, it is noted that while not tabulated in Table 5.1, the
shear modulus of copper, a metal closely related to bronze, is
G = 4.50× 1010 Nm−2. Thus, the uniqueness of the identification is based, in
part, on the exclusivity of Table 5.1.

Discussion

1. While it was possible to identify the metal uniquely (given the
separation of values in Table 5.1), there is still much one could do to
improve the precision of this lab. By far the largest source of
uncertainty in this lab is the determination of the slope of the θ vs. M
graph, whose fractional uncertainty is 7 times higher than the next largest
source (measurement of D). Thus, one would obtain the greatest improvement
by working on how the angular twists are measured.

The imprecision of the angular measurements in the current lab isn’t
just reading error; Table 1 shows that the "spread" in θ to be typically
much greater. There may be some "hystereses" in the rod (in which the rod
doesn’t completely "untwist" right after the torque is relieved), and thus
the readings obtained while adding the masses and removing them may be
systematically different. It may be that there is some slipping of the rod
in the clamps or bushings at the 0.2◦ level which this lab wouldn’t
necessarily detect. Thus, to obtain an order of magnitude increase in the
precision and accuracy of the twist angle would require a substantial
redesign of this experiment.

2. The mass of the hanger was accounted for by step 4 of the Procedure, in
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which the Vernier scale was set precisely to zero with just the mass hanger
hanging from the cord. This effectively set the origin of the θ vs. M
graph to be (0,0).

Conclusions

The shear modulus for the metal rod stamped "B" is G = (4.69± 0.27) × 1010

Nm−2. To within experimental uncertainty, this is consistent with the rod
being made of bronze, whose shear modulus (from Table 5.1 in the manual) is
G = 4.48× 1010 Nm−2.
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Using Vernier Scales

C.1 Vernier Scales

Throughout your scientific career, you will encounter instruments that use Vernier scales to
make precise measurements. These measurements are accomplished by the combined use
of two scales: the first is the main scale which is used to make the coarse measurement;
the second is the Vernier scale which can measure accurately one tenth to one hundredth
the finest division on the main scale. The final value reported for a measurement using
an instrument with a Vernier scale is the sum of the readings from the main scale and the
Vernier scale.

Figure C.1 An illustration of the main and Vernier scales.

Figure C.1 illustrates three important components of a typical Vernier device: the “main
scale”, the “Vernier scale”, and the “zero line”. On some instruments, the zero line may not
be identified as such, and so one takes as the zero line the line at the end of the Vernier scale
closest to the smallest main scale reading (Fig. C.2).

To read the Vernier device, first determine between which two divisions on the main
scale the zero line falls. The lesser of these two main scale divisions is the main scale reading.
The Vernier scale reading is then determined by identifying which of the divisions on the
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Figure C.2 Identifying the “zero” line of the Vernier scale.

Vernier scale lines up best with a main scale division.

Example 1. In Fig. C.2a, the zero line falls between 0.8 and 0.9 cm. Thus, the main scale
reading is 0.8 cm. The Vernier division aligned with a main scale division is the third division
right of the zero line (which happens to line up with the 1.1 division on the main scale, but
note that the ‘1.1’ is irrelevant), and since there are ten divisions on the Vernier scale, the
Vernier reading is 3/10 of a main scale division. Thus, the Vernier reading is 0.1×3/10 = 0.03
cm and the final reading is 0.8 + 0.03 = 0.83 cm.

As for the uncertainty, you can see that the third Vernier scale division is the only one
to line up with a main scale division, and therefore the reading cannot be 0.82 nor 0.84
(neither the second nor fourth divisions line up!). Thus, an uncertainty of ± 0.01 is too high.
Therefore, quote your result as 0.830 ± 0.005, where the extra ‘0’ is added after the 0.83 in
order to make the significant figures of the measurement match that of the uncertainty.

Example 2. In Fig. C.2b, the main scale increases from right to left and the zero line falls
between 1.3 (just on the right) and 1.4 (on the left). Thus, the main scale reading is 1.3 cm.
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In this case, both the zeroth and the first Vernier divisions line up with main scale divisions
equally well, and thus take the Vernier reading as half way in between 0.00 and 0.01. Thus,
your final reading should be 1.305 ± 0.005 cm.

Figure C.3 gives six other examples of Vernier readings. For each, identify and label the
main scale, the Vernier scale, and the zero line, and write down the reading along with an
estimate of your uncertainty. (see App. D for answers.)

!"#$# %# &# '# (# )#

!"#$# %# &# '# (# )#

""#)# (# '# &# %# $#

a) 

c) 

b) 

""#$# %# &# '# (# )#

!"#$# %# &# '# (# )#

!"#)# (# '# &# %# $#

f) 

e) 

d) 

Figure C.3 Six settings of a Vernier scale.
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C.2 The Vernier Caliper

One of the most frequently encountered Vernier devices is the Vernier caliper, used to measure
the outside or inside dimensions of objects with a high degree of precision. Most common
calipers can measure to a precision of ± 0.05mm. Calipers consist of a handle with the
main scale running down its length and a jaw permanently fixed to one end. A second jaw
containing a window with the Vernier scale along the window’s edge slides up and down the
handle and has a thumb roller for making fine adjustments (Fig. C.4).

Figure C.4 A schematic diagram of a Vernier Caliper

Figure C.5 Measuring the outside dimension of an object using the Vernier caliper.

To use a Vernier caliper to measure the outside dimensions of an object, you first open
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the jaws of the caliper and place the object between the opened jaws (Fig. C.5). Slowly close
the caliper on the object using the thumb roller until the jaws hold the object snugly. Do
not close the caliper jaws on the object without using the thumb roller, otherwise,
you could damage or deform the object you are measuring or damage the caliper itself. When
you have closed the caliper jaws, you can read the measurement from the scales.

Figure C.6 Measuring the inside dimension of an object using the Vernier caliper.

Measuring the inside dimension of an object with a Vernier caliper is essentially the
same as measuring the outside except that you use the small curved jaws opposite the main
jaws (Fig. C.6). These jaws measure distances by the separation of the straight edges of the
two small jaws. For example, to measure the inside of a pipe, place the small jaws inside the
pipe and slowly open the calipers (using the thumb roller) until the edges of the jaws touch
the inside of the pipe on opposite sides, then read your measurement from the scales.

Points to remember:

• Before using the caliper, determine its “zero” value by closing the jaws together with
nothing in between them. Record this reading, and subtract it from all subsequent
measurements made. Ideally, this value should be 0.00mm. If your actual “zero” is
outside the range ±0.1mm, please inform the lab demonstrator.

• Make sure you know what the units are for the scales you are using. Some calipers
have both inch and centimetre scales on the handle.

• Do not drop the calipers.

• Do not close the calipers with excessive force.
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• Do not bend the handle or jaws.

• Do not write on the scales with pens or pencils.

• Always open the jaws before removing an object.

• It is always good practice to take several measurements and take the average to get
your final measurement (with the uncertainty being half-the-range if it is greater than
the reading uncertainty).

C.3 The Micrometer

The second most frequently encountered Vernier device is the micrometer, used to measure
the outside dimensions of objects with a very high degree of precision. Used carefully, the
micrometers that you will use in this lab can measure with a precision of ± 0.002 mm = 2 µm
(micrometre), whence its name.

Figure C.7 A schematic diagram of the micrometer.

Micrometers look like a “u” (the frame) with a handle attached to one end (Fig. C.7).
Attached to the inside of the frame are two anvils which are closed snugly onto the object
being measured. On the inside of the handle is the main scale printed right on the shaft,
with the Vernier scale printed on the inside of the barrel. Normally, the main scale is divided
into half-millimetres, and the Vernier scale is divided into 50 divisions. At the end of the
handle are two knobs for opening and closing the anvils. The micrometer is designed so that
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for every full revolution of the barrel, the anvils spread by exactly one division on the main
scale, that is by 0.5mm.

To use a micrometer, place the object to be measured between the opened anvils. Close
the anvils on the object using the fine adjust knob until the anvils are holding the object
snugly. The clutch built into the fine adjust knob will prevent the anvils from closing too
tightly around the object. Therefore never use the coarse adjust knob to close the
anvils on an object. Failure to use the fine adjust knob may deform or damage the object,
the micrometer, or both, and will certainly distort your measurement.

To read the measurement on the main scale, find the last division uncovered by the edge
of the barrel. In Fig. C.8, for example, the last division uncovered is 16 (just). Because the
main scale is divided into half -millimetres, be aware that your main scale reading could be
a full integral number (e.g., 16.0mm), or a half-integral number (e.g., 16.5mm).

Figure C.8 Detailed view of the inner handle region of a micrometer, showing the
scales on the shaft and the inside of the drum.

Since the Vernier scale has 50 divisions and since the anvils spread by 0.5mm per
revolution of the barrel, the Vernier scale divides each half millimetre into 50 equal parts.
Thus, the units of the divisions on the barrel are 0.5/50 = 0.01 mm. To obtain the Vernier
reading, pick off the number on the Vernier scale aligned with the central line running along
the length of the shaft (and perpendicular to the main scale divisions). In general, two
divisions on the Vernier scale will straddle this central line, and you should do the best you
can to interpolate the Vernier reading. In Fig. C.8, for example, the central line points to
about 2.6 on the Vernier scale. Since the units of the Vernier scale are 0.01mm, we must
add to the main scale reading (16.000mm) the Vernier scale reading (0.026mm) to get a
net reading of 16.026mm. As for the uncertainty, it is generally safe to use ± 0.002mm,
although you may feel confident you can read to within ± 0.001mm.
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Points to remember:

• Before using the micrometer, determine its “zero” value by closing the anvils together
with the fine adjust knob. Record this reading, and subtract it from all subsequent
measurements made. Ideally, this value should be 0.000mm. If your actual “zero” is
outside the range ±0.01mm, please inform the lab demonstrator.

• Make sure you know what the units are for the scales you are using. Some micrometers
have different units than mm used in the examples here.

• Do not drop the micrometers.

• Always use the fine adjustment knob to close the anvils.

• Do not close the anvils with excessive force.

• Do not write on the scales with pens or pencils.

• Always open the anvils before removing an object.

• It is always good practice to take several measurements and take the average to get
your final measurement (with the uncertainty being half-the-range if it is greater than
the reading uncertainty).


