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What’s become known as Carnot’s Theorem came from Sadi Carnot’s book Reflections on
the Motive Power of Fire first published in 1824, rather forgotten, then uncovered and
published again with a translation in 1897. Motive power was an early term for work which,
as interpreted by Güémez et al. (2002, Am. J. Phys., vol. 70, p. 42), Carnot defined as:

[. . . ] the useful effect that an engine is capable of producing. The effect can
always be expressed in terms of a weight being raised to a certain height.

Using various working substances (gases, liquids) run repetitively through (reversible) ther-
modynamical cycles, Carnot concluded the following (also interpreted by Güémez et al.):

1. Wherever there is a difference in temperature [between the heat reservoirs], motive
power can be produced.

2. [. . . ] the maximum amount of power gained by the use of steam [in a Carnot cycle] is
also the maximum that can be obtained by any means whatsoever.

3. The motive power of heat is independent of the working substances that are used to
develop it. The quantity is determined exclusively by the temperature of the bodies
between which, at the end of the process, the passage of caloric1 has taken place.

From these statements, the literature (including undergraduate texts) have formulated Carnot’s
Theorem in predominantly one of two ways:

A. The efficiency of all ideal (reversible) heat engines is the same, depending only on the
temperatures of the heat baths from which heat is extracted and to which heat is ejected ;

B. The efficiency of the Carnot cycle is greater than all other reversible or irreversible
thermodynamical cycles, and is independent of the working substance used to convert
heat into work.

While statements like A claiming all reversible engines are equally efficient can be found in
perhaps 3 out of 4 items in the literature (including text books and on-line physics resources),
it is incorrect; B is the more accurate representation of Carnot’s theorem. So how did
interpretation A gain such a foothold?

The wording of Carnot’s statement 2 is perhaps unfortunate. Without the words of clarity
added by Güémez et al. (namely “in a Carnot cycle” justified from earlier portions of this
statement represented by [. . . ]), statement 2 could be interpreted to mean that any reversible

1In 1789, Antoine Lavoisier coined the term caloric to refer to a weightless gas contained by all matter

that carried heat from one object to another when caloric in the two objects was unbalanced. The idea was

replaced by the first law of thermodynamics when it was introduced in the mid 19th century.
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thermodynamical cycle whatsoever has the same efficiency. In fact, what Carnot meant was
that specifically the Carnot cycle, using any working substance whatsoever, has the same
efficiency. In other words, the efficiency is independent of the substance, not the cycle.

Those inclined to take the incorrect interpretation of Carnot’s second statement might then
find solace in the third. The last sentence, for example, taken out of context could be
construed to claim that work extracted from any reversible cycle depends only on the tem-
peratures in the heat reservoirs, and thus the same as the Carnot cycle. However, in the
sentence immediately preceding, Carnot clearly states that he is talking about independence
from the working substance, not necessarily thermodynamical cycle.

In his text Classical and Statistical Thermodynamics, Ashley Carter is among those adopting
interpretation A and thus propagating this confusion. His §6.4 concludes on page 94 with:

That is to say, all [his emphasis] reversible engines operating between the same
reservoirs have the same efficiency, η = 1−TL/TH. Irreversible engines will have
a lesser efficiency. This is Carnot’s Theorem.

To be clear, this is patently false.

Let’s examine his “proof” of this conclusion—one you’ll find in numerous texts as well as
Wikipedia, Khan’s Academy, etc.—which is predicated on his Figs. 6.7, 6.8, and 6.9. In each
figure, notice that two very important assumptions are made without mention, and then
unknowingly—I have to assume—transmitted into the mathematics:

1. All heat enters and exits the system from constant-temperature reservoirs and work is
then computed as a difference of these heats. Thus, these portions of the thermody-
namical cycle must be isotherms.

2. With all heat passing through the isotherms, there is none left to enter or exit from
the subprocesses that join the two isotherms (which must exist lest the two isotherms
be the same). These, therefore, must be adiabats.

So, how many thermodynamical cycles are composed of two isotherms and two adiabats?
Just one: the Carnot cycle! So, what Carter actually proves is:

All reversible Carnot-cycle engines operating between the same reservoirs have
the same efficiency,

which is much like saying ‘All red apples are red.’ Nothing to argue with, just not particularly
profound!

Carter is not alone. Google “Carnot’s theorem”, and you’ll find numerous examples of
professional physicists asserting that Carnot’s theorem states that all reversible cycles have
the same efficiency as the Carnot cycle. It just isn’t true!

Indeed, when the third edition of the fabled first-year text Physics (for students of science
and engineering) by Halliday and Resnick became Halliday, Resnick, and Walker in edition
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4, the example of a Stirling engine was introduced in their Chapter 22 on entropy. Their
Figure 22-5 (which became their Figure 21-8 in the fifth edition and reproduced in the left
panel of the figure below) shows the Stirling cycle with two isotherms and two isochors
with heat entering and leaving the system only through the isotherms. They also offered a
“proof” that this and any reversible engine has the same efficiency as the Carnot cycle which,
while quite a bit simpler than Carter’s “proof”, is equally wrong. They start off correctly by
stating that entropy, being a state variable, doesn’t change in a complete thermodynamical
cycle. Thus,
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They continue by concluding that since the ratio of the temperatures does not depend upon
the nature of the reversible cycle, the efficiencies of all ideal (reversible) engines must be the
same, as is stated clearly in their equation 21-9 in edition 5.

Can you spot the flaw in their argument? In order to perform the integral as they did, they
had to assume that where d̄Q 6= 0, T is constant. Thus, just like in Carter’s argument, they
assume implicitly that all heat enters and leaves through isotherms, leaving no heat to enter
or leave the system through the adjoining sub-processes. These, therefore, must be adiabats,
once again identifying the cycle uniquely as a Carnot cycle, not a Stirling cycle.

It is telling (and reassuring) therefore, that this was corrected in their edition 6 (e.g., their
Figure 21-12 reproduced above right). Here, notice the addition of the same Q entering the
isochor on the left and leaving the isochor on the right. (They must be the same because the
heat entering/leaving an isochor depends only on the temperature difference of the states
they connect which is the same given that the isochors are joined by isotherms.) One might
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protest that if the same amount of heat entering one isochor leaves the other, surely these
effects must cancel!

Not at all. In this case, the efficiency is given by:

η Stirling = 1−
|Qout|

Qin

= 1−
|QL|+ |Q|

|QH|+ |Q|
,

where |QH| and |QL| are the quantities of heat entering and leaving the system along the
high- and low-temperature isotherms respectively, and |Q| is the quantity of heat entering
and leaving the system along the isochors. It should be immediately apparent, then, that η
falls as Q increases.

More specifically, along the isotherms and referring to HRW’s Fig. 21-12 above, we can write:

QH = RTH ln(vb/va); QL = −RTL ln(vb/va);

whereas along the isochors, we have:

|Q| = cv(TH − TL).

Thus,

η Stirling = 1−
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,

where,

Toff ≡
cv
R

TH − TL

ln(vb/va)
,

is the effective offset temperature, which renders the efficiency of the ideal Stirling engine
less than that of the Carnot cycle.
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By the way, the proof of interpretation B is actually quite
simple. Construct any loop on a T -s diagram bound by
an entropy domain, smin ≤ s ≤ smax, and a temperature
range, TL ≤ T ≤ TH (e.g., the blue loop in the fig-
ure). On a T -s diagram, the area under the upper/lower
bound of the loop is the heat entering/leaving the sys-
tem, while the area within the loop is the work done
per cycle. One can then see by inspection that to max-
imise the heat entering the system per cycle, Qin, and
at the same time minimise the heat ejected, |Qout|, the
loop must be a rectangle (red) and thus bound by two
isotherms and two adiabats. This is precisely the Carnot
cycle. Any other loop bound by smin ≤ s ≤ smax and TL ≤ T ≤ TH necessarily has a higher
value of |Qout|/Qin, and thus a lower efficiency2. Note that this argument has no dependence
on the nature of the working substance undergoing the thermodynamical cycle. So long as
the substance can physically attain each state around the closed loop, the efficiency of the
cycle depends only upon the geometry of the loop.

2And with a little bit of thought, one can eliminate the need for the loop to be bound in entropy, leaving

the bound in temperature the only relevant one.
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