
A Primer on

ZEUS-3D

David A. Clarke

Professor of Astronomy and Physics

Saint Mary’s University, Halifax NS, Canada

david.clarke@smu.ca

February, 2015

Copyright c© David A. Clarke, 2015

Prerequisite: A Primer on Magnetohydrodynamics.

mailto:david.clarke@smu.ca
http://www.ap.smu.ca/~dclarke/home/documents/byDAC/mhd_primer.pdf

Contents

Preface ii

1 What is ZEUS-3D? 1

2 Source code management and version control 2

3 Algorithms 4

4 Staggered mesh 5

5 Boundary conditions 6

6 In-line graphics and I/O 7

7 Running ZEUS-3D 9

8 Programming within ZEUS-3D 10

9 Installing ZEUS-3D 10

10 Example runs 10

11 The future of ZEUS: AZEuS 12

i

Preface

This primer, along with the accompanying document A Primer on Magnetohydrodynamics,
were prepared for a mini-series of two lectures I gave at the University of Victoria in February,
2015. The intent of these two primers was to give an overview of MHD, both from a
theoretical standpoint and as a practical computational tool, to (astro)physicists who may
not have had any formal training in the subject, but who may nevertheless be contemplating
problems in which MHD is a significant component.

I view these primers as the first salvo of what I’d like to develop into two mini-courses
that would form the core of a summer “ZEUS-school” for theoretical and computational
MHD, offered to users and potential users of ZEUS-3D and AZEuS worldwide. Time will
tell if this idea ever gets off the ground!

In the meantime and inasmuch as these notes may help others, the reader is free to use,
distribute, and modify them as needed so long as they remain in the public domain and are
passed on to others free of charge.

David Clarke
Saint Mary’s University
February, 2016

Primers by David Clarke:

1. A FORTRAN Primer

2. A UNIX Primer

3. A DBX (debugger) Primer

4. A Primer on Tensor Calculus

5. A Primer on Magnetohydrodynamics

6. A Primer on ZEUS-3D

7. Eclipse Photography for Mortals

I also give a link to David R. Wilkins’ excellent primer Getting Started with LATEX, in
which I have added a few sections on adding figures, colour, and HTML links.

ii

http://www.ap.smu.ca/~dclarke/home/documents/byDAC/fprimer.pdf
http://www.ap.smu.ca/~dclarke/home/documents/byDAC/uprimer.pdf
http://www.ap.smu.ca/~dclarke/home/documents/byDAC/dprimer.pdf
http://www.ap.smu.ca/~dclarke/home/documents/byDAC/tprimer.pdf
http://www.ap.smu.ca/~dclarke/home/documents/byDAC/mhd_primer.pdf
http://www.ap.smu.ca/~dclarke/home/documents/byDAC/zeus_primer.pdf
http://www.ap.smu.ca/~dclarke/home/documents/byDAC/eclipse.pdf
http://www.ap.smu.ca/~dclarke/home/documents/latex/lprimer.pdf

1 What is ZEUS-3D?

You don’t really understand something until you can compute it.

Michael L. Norman, Director, SDSC

ZEUS-3D is a multi-physics, covariant, computational
fluid dynamics (CFD) FORTRAN77 code designed pri-
marily for, but not restricted to, astrophysical applica-
tions. It was born from the ZEUS-development project
headed by Michael Norman at the NCSA between 1986
and 1994 whose principal goal was to develop a robust,
user-friendly, multi-purpose MHD code that could be
released as open-source with full documentation. Prin-
cipal developers other than DAC and MLN have in-
cluded Jim Stone and Robert Fiedler and, over the
years, various versions of the code have become pub-
licly available. However, only the ICA version has had
any significant algorithm development since 1995, and
it is this version that is the subject of this primer.

ZEUS-3D includes the effects of magnetism, self
gravity, viscosity, a second cospatial and diffusive fluid,
molecular cooling, and can be run with an isothermal,

adiabatic, or polytropic equation of state. Terms in equations (1)–(6) below are colour-
coded respectively; black terms being the standard equations of ideal HD. Simulations may
be performed in any of Cartesian (XYZ), cylindrical (ZRP), or spherical polar coordinates
(RTP), and in any dimensionality (1-D, 11

2
-D, 2-D, 21

2
-D, or 3-D). The set of equations solved

are:

∂ρ

∂t
+∇ · (ρ~v) = 0; (1)

∂~s

∂t
+∇ ·

(

~s~v + (p1 + p2 + pB) I− ~B ~B − µ S

)

= −ρ∇φ; (2)

∂e1

∂t
+∇ · (e1~v) = −p1∇ · ~v + µS : ∇~v −L; (3)

∂e2

∂t
+∇ · (e2~v − D · ∇e2) = −p2∇ · ~v; (4)

∂eT

∂t
+∇·

[

(eT+p1+p2−pB)~v − µS · ~v − D · ∇e2 + ~E × ~B
]

= −L; (5)

∂ ~B

∂t
+∇× ~E = 0, (6)

where:

ρ is the matter density;

~v is the velocity;

1

http://www.ica.smu.ca/zeus3d/

~s is the momentum density = ρ~v;

p1 & p2 are the partial pressures from the first and second fluids;

pB is the magnetic pressure = 1

2
B2;

I is the unit tensor;

~B is the magnetic induction (in units where µ0 = 1);

µ is the shear viscosity;

S is the viscid part of the stress tensor whose elements, Sij, are given by:

Sij = ∂jvi + ∂ivj −
2

3
δij∇ · ~v;

where ∂i indicates partial differentiation with respect to the coordinates,
xi, i = 1, 2, 3, and where δij is the usual “Kronecker delta”;

φ is the gravitational potential, ∇2φ = 4πρ, in units where G = 1;

e1 & e2 are the internal energy densities of the first and second fluids;

L is the cooling function (of ρ and e1) for nine coolants (Hi, Hii, Ci, Cii,
Ciii, Oi, Oii, Oiii, Sii) interpolated from tables given by Raga et al.

(1997);

D is the (diagonal) diffusion tensor;

eT is the total energy density = e1 + e2 +
1

2
ρv2 + 1

2
B2 + φ;

~E is the induced electric field = −~v × ~B;

and where the ideal equations of state close the system of variables:

p1 = (γ1 − 1)e1; p2 = (γ2 − 1)e2,

with γ1 and γ2 being the ratios of specific heats for the two fluids.

2 Source code management and version control

Version 3.6 of ZEUS-3D (dzeus36) is managed by EDITOR, version 2.2 (edit22), which
comes as part of the dzeus36.tar bundle. EDITOR provides two primary functions: source
code management and version control.

Source code management

ZEUS-3D is one behemoth code (>130,000 lines) which contains every item of physics,
geometry, I/O, algorithm, and symmetry option ever developed for it. While this eases
navigating within the code for programmers, it would be nice if the compiler didn’t need to
waste memory or cpu computing unwanted features.

EDITOR acts as a precompiler which can “turn on” and “turn off” certain segments
of the code before the compiler sees it. To affect this, EDITOR commands (heralded by an
asterisk * in the first column) are peppered throughout the code which allow the user to
render the 3-D code a perfectly efficient 2-D code should a symmetry axis be defined. The
following is a snippet of coding from the subroutine SHKSET illustrating how this is done:

2

1 *if -def,KSYM
2 do 40 k=ksm2,kep3
3 *endif -KSYM
4 *if -def,JSYM
5 do 30 j=jsm2,jep3
6 *endif -JSYM
7 do 20 i=imin,imax
8 d (i ,j,k) = d0
9 v1(i+1,j,k) = v10

10 v2(i ,j,k) = v20 * h31b(i) * h32a(j)
11 v3(i ,j,k) = v30 * h31b(i) * h32a(j)
12 *if -def,ISO
13 e1(i ,j,k) = e10
14 *endif -ISO
15 *if def,TWOFLUID
16 e2(i ,j,k) = e20
17 *endif TWOFLUID
18 *if def,MHD
19 b1(i+1,j,k) = b0 * h2ai(i+1) * h31ai(i+1)
20 b2(i ,j,k) = b20 * h32ai(j)
21 b3(i ,j,k) = b30
22 *endif MHD
23 20 continue
24 30 continue
25 40 continue

In a file called zeus36.mac (§7), one defines the desired EDITOR macros such as KSYM,
JSYM, ISO, TWOFLUID, and MHD illustrated in this segment. Should MHD be listed among
those defined, lines 19–21 are retained in the compiler copy of the code and thus compiled.
Otherwise, these lines are dropped (as are all other mentions of the magnetic field throughout
the code), and the magnetic field arrays are not even declared. In a non-MHD simulation,
it would be wasteful indeed if one still had to declare three unwanted arrays, fill them with
zeroes, and then push around zeroed magnetic fields throughout the simulation.

Other EDITOR macros include those for geometry (XYZ, ZRP, RTP), physics (GRAV,
RADIATION, etc.), I/O (PLT1D, RADIO, etc.), algorithm (MOC, RIEMANN, etc.), and compiler
(GFORTRAN, IFORT, etc.).

Version control

EDITOR can also manage change decks, files separate from the main code in which the user
can direct EDITOR to delete, add, or change lines in the code before the code is compiled.
The master copy of the code is left untouched, and multiple developers can have working
change decks until such time when it is decided to merge all change decks into the code
permanently, creating the next version. Typical syntax is as follows:

1 *replace ctran1.130,137
2 c
3 c b) Interpolate "v1" to zone centres.
4 c
5 call x1fc3d (v1, v1twid)
6 *delete ttran1.150,155
7 *insert cmoc3.230
8 *if -def,ISYM

3

9 do 10 i=ism2,iep3
10 *endif -ISYM
11 vel1(i) = v1 i,js,ks)
12 10 continue

Lines 1, 6, and 7 direct EDITOR to replace several lines in subroutine CTRAN1 with the
given lines, delete six lines from subroutine TTRAN1 (and replace them with nothing), and
then insert a do-loop after line 230 in subroutine CMOC3. Note that other EDITOR directives
such as lines 8 and 10 can be included as part of an insertion into the code.

Other EDITOR features

EDITOR can also tidy up sloppy FORTRAN , create a numbered text file for a FORTRAN

77 code, compare two files, split a code (file) into its constituent modules, and a few other
tasks useful in developing large codes.

3 Algorithms

There are a semi-infinite number of ways one can difference differential equations (so that
the former tend to the latter as δt → dt), and yet not all of them are stable in the realm of
finite δt. Over the years, a variety of algorithms have been developed to solve the differenced
equations of MHD stably, and users of ZEUS-3D have the benefit of decades of person years
of development and experience.

In broad brush terms, dzeus36 is a conservative code based on a staggered mesh. It
is upwinded in both the entropy and Alfvén waves and stabilised against compressive os-
cillations (fast and slow waves) by the use of von Neumann-Richtmyer artificial viscosity.
Interpolations can be as high as third order, though formally the convergence rate of the
code can be as low as first order, depending on how it is configured.

Specific algorithms—many of them unique to ZEUS-3D—designed to stave off certain
types of numerical instabilities not addressed by the attributes listed above are tabulated
below, roughly in chronological order.

1. Consistent Advection (CA; Norman, Wilson, & Barton, 1980, ApJ, 239, 968) was
invented to prevent numerical drift between mass and angular momentum fluxes in
axisymmetic HD simulations, and settled the dispute on whether rotating matter ac-
creting onto a point mass formed a disc or torus (NWB proved it to be a disc).

CA remains in dzeus36 to this day, though it has been found to be injurious when
applied to the energy equation (Clarke, 2010, ApJS, 1897, 119). Thus, as default, CA
is applied only to the momenta.

2. Constrained Transport (CT; Evans & Hawley, 1988, ApJ, 332, 659), based on a stag-
gered mesh (§4) is a method by which the magnetic field—when initialised to satisfy

∇ · ~B = 0—will always satisfy ∇ · ~B = 0 to machine round-off error.

3. Consistent Method of Characteristics (CMoC; Clarke, 1996, ApJ, 457, 291) is an algo-
rithm which imposes upwindedness in the Alfvén speed and by which the velocity and

4

magnetic field required to calculate the induced electric field are interpolated implic-
itly over a plane, rather than explicitly in one direction at a time. This is necessary
to prevent a numerical phenomenon in which a localised weak magnetic field could be
promoted by several orders of magnitude in a single time step because of inconsistently
determined interpolations.

4. Finely Interleaved Transport (FIT; Clarke, unpublished). Certain multi-dimensional
problems (e.g., 2-D transport of Alfvén waves) could not be done by any previous
version of ZEUS without features being broken up into stripes perpendicular to the
direction of propagation. FIT cures this problem.

In addition, there are three interpolation algorithms (donor cell, van Leer’s second
order interpolation, and Colella & Woodward’s piecewise parabolic interpolation), three self-
gravity algorithms (Successive Over-relaxation, Full Multi-grid, and FFT), and two kinds of
artificial viscosity (von Neumann-Richtmyer algorithm of 1950, and a tensor algorithm).

4 Staggered mesh

2x

1x
3x1E

2E

3E

, e

v 2, B

1, B1v
ρ

2
Figure 1: The staggered mesh depicted in the
1-2 plane.

ZEUS-3D is based on a staggered mesh as
shown in Fig. 1. Scalars (ρ, e; black) are
zone-centred, primary vector components (~v,
~B; red) are face-centred, and derived vector

components (~Eind; cyan) are edge-centred.
Two main benefits of using a staggered

mesh are flux computation and preserving
∇ · ~B = 0. On the former, consider the dif-
ferenced continuity equation when ~v = v1x̂1:

ρn+1
i − ρni
δtn

= −
ρ
n+ 1

2

i+ 1

2

vn1,i+1 − ρ
n+ 1

2

i− 1

2

vn1,i

δxi

,

where superscripts indicate time step, sub-
scripts zone number, and where the half

super/sub-scripts indicate some sort of time-centring/spatial interpolation. This equation
can then be solved for ρn+1

i , the value of ρ at zone i at the next time step.
Evidently, the fluxes (ρv) are computed at the zone faces (i± 1

2
). To do this, the zone-

centred ρ must be interpolated to the zone faces, a time-consuming effort fraught with a host
of numerical “landmines”. On the other hand, face-centred v1 (by virtue of the staggered
mesh) need not be interpolated, providing significant computational relief.

More significant is the preservation of ∇ · ~B = 0 (the solenoidal condition). Consider
the evolution of B1 and B2 with 3-symmetry where the 1- and 2-components of the induction
equation are:

∂B1

∂t
=

∂E3

∂x2

;
∂B2

∂t
= −

∂E3

∂x1

since the 3-derivatives are zero. Differencing this (with the 3-component of the induced

5

electric field, E3, located at the 3-edges as shown in Fig. 1 with the cyan circle-dots), we get:

δB1,i,j

δt
=

E3,i,j+1 − E3,i,j

δx2

;
δB2,i,j

δt
= −

E3,i+1,j −E3,i,j

δx1

. (7)

Taking the differenced divergence of the changes in the magnetic field, we get:

∇ · δ ~B =
δB1,i+1,j − δB1,i,j

δx1

+
δB2,i,j+1 − δB2,i,j

δx2

,

now a zone-centred quantity. By substituting equation (7) for the δBs, every term on the

right hand side cancels identically, and δ ~B is numerically divergence-free. Thus, if ~B is
initialised divergence free, it will remain so to numerical round off error throughout the
simulation. I challenge you to place the magnetic field components at the zone-centres, for
example, and try to find a way maintain ∇ · ~B = 0 to round-off error!

5 Boundary conditions

Boundaries are set independently for each of six grid boundaries and, within each boundary,
the boundary type may be set zone by zone. Ten boundary types are currently supported:

1. reflecting boundary conditions at a symmetry axis (r = 0 in ZRP, θ = 0 or π in RTP)
or grid singularity (r = 0 in RTP);

2. non-conducting reflecting boundary conditions (Fig. 2a);

3. conducting reflecting boundary conditions (Fig. 2b);

4. continuous reflecting boundary conditions (Fig. 2c);

5. periodic boundary conditions;

6. “self-computing” boundary conditions (for AMR);

7. transparent (characteristic-based) outflow boundary conditions (not implemented);

b) c)a)

Figure 2: Magnetic field lines across three different types of reflecting boundaries. a) non-
conducting boundaries ⇒ B‖(out) = −B‖(in), B⊥(out) = B⊥(in); b) conducting boundaries
⇒ B‖(out) = B‖(in), B⊥(out) = −B⊥(in); and c) continuous boundaries ⇒ B‖(out) = B‖(in),
B⊥(out) = B⊥(in). The designations ‖ and ⊥ are relative to the boundary normal.

6

8. “selective” inflow boundary conditions (useful for sub-fast-magnetosonic inflow);

9. traditional outflow boundary conditions (variables constant across boundary);

10. traditional inflow boundary conditions (suitable for super-fast-magnetosonic inflow).

All boundary conditions strictly adhere to the solenoidal condition, even where different
boundary types adjoin on the same boundary. The first five conditions are exact, while the
latter five are approximate and can sometimes launch undesired waves into the grid.

6 In-line graphics and I/O

One may request a variety of output to be dumped to disc periodically during a dzeus36

run. Each format of I/O has its own file-naming syntax of the form zxvvnnnid.mm, where:

- the first letter is always z to indicate the file came from ZEUS-2D or ZEUS-3D;

- x is one- (occasionally two-) characters to identify the type of output;

- vv (when present) is a user-set two-character tag to identify the variable;

- nnn is the three digit sequential number of the file;

- id is a user-set two-character tag to identify one run from another; and

- mm (when present) is a two-digit number to identify the slice.

The principle forms of graphical output include:

1. 1-D line plots : zpnnnid.mm (e.g., left panel of Fig. 3)

- any number of 77 variables plotted against any of the three coordinate axes

- variables can be plotted as lines or using one of 6 different symbols

- one or multiple plots per graph; one or multiple graphs per page

2. 2-D contour plots : zqnnnid.mm (e.g., second left panel of Fig. 3)

- “buffet-style” plotting: as many as two scalars and three vector fields may be
plotted on the same graph

- scalars plotted as colour or greyscale, and/or lines

- different vector fields plotted with different colours

3. 2-D pixel dumps : zivvnnnid.mm [e.g., second right panel (top) of Fig. 3]

- 2-D slices through datacube assembled to an mpeg automatically at run’s end

- any number of 78 variables may be plotted in one or more planes

4. “RADIO” dumps : zRvvnnnid [e.g., second right panel (bottom) of Fig. 3]

7

Density

Plot file ‘zp001xd.01.ps’ created on 12/02/2015 at 11:31:05.

t = 80.0000, nhy = 506, x2a(1) = 0.000, x3a(1) = 0.000.

0 100 200 300 400 500
x1

0.2

0.4

0.6

0.8

1.0

ρ

0.104

0.124

0.145

0.165

0.186

0.206

0.227

0.247

0.268

0.288

0.308

0.329

0.349

0.370

0.390

0.411

0.431

0.452

0.472

0.493

0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0

x1

x
2

ρ
vpol

Plot file ‘zq001yr.01.ps’ created on 10/02/2015 at 18:10:17.

t = 0.50000, nhy = 500, x3a(1) = 0.000.

Vectors: v1,max = 1.586

v1,min = 6.344 × 10−2

Scalars: q1,max = 0.503

q1,min = 9.372 × 10−2

Timestep (waves)

Plot file ‘ztp001yr.ps’ created on 10/02/2015 at 18:10:22.

t = 0.50000, nhy = 500.

0.0 0.1 0.2 0.3 0.4 0.5
t

−3.0

−2.8

−2.6

−2.4

−2.2

−2.0

lo
g
(δ

t)

δt

δtQ

δtcs

δtvA

Figure 3: From left to right: 1-D line (bubble) plot of the density in the Brio & Wu shock tube
problem; a colour contour plot showing both density and velocity vectors from the Orzsag-Tang
vortex; a 2-D pixel plot of the velocity divergence (top) and a line-of-sight integration dump of the
synchrotron emissivity in a low resolution (643) run of super-Alfvénic turbulence; and a time slice
plot showing how the time-steps, δt, evolve over the course of a simulation.

- line-of-sight integrations from an arbitrary and possibly moving vantage point
automatically assembled to an mpeg at run’s end

- any number of 25 variables to select, including all primitive variables, Stokes I,
Q, and U parameters, bremsstrahlung, and a number of other derived quantities.

5. History plots : ztpnnnid (e.g., right panel of Fig. 3)

- 97 different variables including variable extrema, time steps, and volume integrals
plotted against problem time

- used to monitor a simulation, track conserved quantities, variable extrema, etc.

Other formats of I/O to and from dzeus36 include:

1. Input deck (inzeus) is the only input data file ZEUS requires, and includes all namelist
specifications

2. Restart dumps (zrnnnid) is an image of the simulation suitable for resuming the sim-
ulation from the time the dump was created.

3. HDF dumps (zhvvnnnid) are HDF4 files of any number of 53 variables, including a
“total HDF dump” which includes all primitive variables, suitable for post-processing
and graphics (but not a restart).

4. “Corks” (zcnnnid) are passive particles injected into the flow to keep track of 63
different quantities as functions of time in Lagrangian coordinates.

5. Logfile (zlnnnid) records namelist choices, grid information, and various terminal mes-
sages generated throughout the run.

8

6. Display dumps (zdvvnnnid.mm) are 2-D slices of numerical values for any number of
50 variables arranged on a grid with zone indices labelling the horizontal and vertical
axes; primarily used for debugging.

Plots shown in this primer are in-line features of dzeus36. Some plots may be created
after a run by using the post-processing ancillary codes PLOTZ and RADIO, both included
in dzeus36.tar.gz with a user manual. The former creates 1-D and 2-D plots, while the
latter does line-of-sight integrations at various vantage points through a simulation “still”.
Both of these codes take “total HDF4 dumps” as their input.

7 Running ZEUS-3D

ZEUS-3D is run by preparing two, perhaps three ascii files. These are:

1. user-written change deck(s) to add, modify, or delete code in dzeus36 (optional);

2. zeus36.mac, a “macro file” containing all macros directing EDITOR which portions
of the code are to be passed to the compiler;

3. dzeus36.s, a “script file” containing unix commands that takes care of:

- assembling all files needed for compilation and linking including libraries, user-
written change decks, and zeus36.mac;

- launching EDITOR to perform the precompilation steps;

- launching the makefile created by EDITOR to create the executable, xdzeus36;

- creating the input file inzeus required by xdzeus36 to do the calculation.

Once zeus36.mac, dzeus36.s, and possibly the change deck(s) are prepared as required,
they should be placed in their own directory and the command:

csh -v dzeus36.s

should be issued at the unix prompt. If all goes well, the executable (xdzeus36) and input
file (inzeus) are created in the directory. Typing xdzeus36 at the prompt then launches
the run.

If run in the foreground, dzeus36 can recognise numerous “interrupt messages” which
can be issued at the terminal. These include asking how far along the simulation is, requesting
a plot to be generated, changing the length of time the simulation is to run, or even stopping
cleanly (or aborting abruptly). The reader is referred to the user manual for details.

For an ideal MHD run and a modest amount of I/O, dzeus36 is about 95% parallel,
which means it can make good use of sixteen processors, but not necessarily 32. EDITOR

can be directed to prepare both the code and even the user’s change decks for a parallel
application using OpenMP. In principle, there is very little the user needs to do (other than
write thread-safe code) to prepare an executable to run in parallel.

Working examples of zeus36.mac and dzeus36.s are included in the public domain
tarball dzeus36.tar.gz, and detailed descriptions are given in the user manual.

9

8 Programming within ZEUS-3D

One can program within ZEUS-3D without actually changing the master file (dzeus36) by
the use of change decks, already discussed in §§2 and 7. One then directs EDITOR to
temporarily merge the change deck into the code before (pre)compilation by including a line

*read <changedeck>

at the appropriate place in the script file dzeus36.s. For further details, the reader is
referred to the user manual.

9 Installing ZEUS-3D

The public tarball, dzeus36.tar.gz, includes detailed instructions to install dzeus36 and its
ancillary programs and libraries on virtually any UNIX platform, and the reader is directed
to those. This includes Windows laptops running RedHat or Ubuntu linux, MacBook Pro,
and any mainframe (IBM, SUN, Cray, SGI, etc.). Further, dzeus36 may be compiled by a
variety of FORTRAN compilers including gfortran, ifort, pgf90, and others.

10 Example runs

1. Revisiting the 1-D shock tube example from the Primer on MHD

0.2

0.4

0.6

0.8

1.0

ρ

0.2

0.4

0.6

0.8

1.0

p
1

1.0

1.5

2.0

2.5

e T

0.0 0.2 0.4 0.6 0.8 1.0

x1

0.2

0.4

0.6

0.8

v
1

0.0 0.2 0.4 0.6 0.8 1.0

x1

−0.8

−0.6

−0.4

−0.2

−0.0

v
2

0.0 0.2 0.4 0.6 0.8 1.0

x1

0.2

0.4

0.6

0.8

1.0

B
2

- lines are the analytical solution, bubbles are the dzeus36 solution zone for zone.

- smooth portions of profiles accurate to within a fraction of 1% (width of bubbles)

- shocks “captured” by two or three zones

- CD captured by two zones, though there is a 1% undershoot at its base

10

2. 2-D transport of a square Alfvén wave

−0.2 −0.1 0.0 0.1 0.2

−0.2

−0.1

0.0

0.1

0.2

x1

x
2

v⊥

−0.2 −0.1 0.0 0.1 0.2

−0.2

−0.1

0.0

0.1

0.2

x1
x

2

v⊥

−0.2 −0.1 0.0 0.1 0.2

−0.2

−0.1

0.0

0.1

0.2

x1

x
2

v⊥

- square perturbation to v⊥ (left panel) launches two oppositely directed Alfvén waves
along magnetic field lines, oriented 45◦ from x1-axis

- periodic boundary conditions; Alfvén waves pass through grid twice, return to origin

- without FIT (finely interleaved transport), waves develop spikes in direction orthogonal
to propagation (centre panel)

- with FIT, Alfvén wave suffers only normal isotropic numerical diffusion (right panel)

3. 3-D super-Alfvénic turbulence

0 0 20 40 60 80

t

!8.0

!6.0

!4.0

!2.0

0.0

2.0

lo
g
(E

)

ET

EK

E1,int

EB

11

This 1283 simulation (images on next page) shows how a weak magnetic field (β ∼ 1010) can
be boosted to equipartition (β ∼ 1) in an isothermal turbulent medium, such as the ISM
or in the lobes of extragalactic radio sources. This super-Alfvénic turbulence is a difficult
simulation for MHD codes to do, and is what motivated the development of the Consistent
Method of Characteristics (CMoC) in the early 1990s.

From left to right, top to bottom, the first five panels show line-of-sight integrations
of: density; magnetic energy density; ∇ · ~v (where dark lines show shocks); optically thin
synchrotron emission (what a radio telescope might observe); and fractional polarisation

of the synchrotron emission, including polarisation ~B-vectors superposed. The sixth panel
shows how the principle energies evolve in time, notably the magnetic energy which grows
as a power law until it is saturated and in equipartition with the thermal energy density.

11 The future of ZEUS: AZEuS

AZEuS (Adaptive Zone Eulerian Scheme) is a
marriage of Adaptive Mesh Refinement—AMR—
and ZEUS-3D. AMR allows numerous grids of
varying resolution to be automatically created
or destroyed, depending on where resolution is
needed. Each grid passes information to abut-
ting ones in a completely conservative fashion,
enabling simulations with much higher effective
resolution than ever before.

AZEuS is still under development, and will
be released into the public domain in due course.
However, it has been used by us already to per-
form simulations of protostellar jets. Now, we
think we understand how protostellar jets are
launched at the sub-0.1 AU scale, but can this
account for the observations of protostellar jets
at the 1,000 AU scale?

You can read more about AZEuS and its maiden simulation in:

Ramsey & Clarke, ApJ, 2011, 728, L11

Ramsey, Clarke, & Men’shchkov, ApJS, 2012, 199, 13

12

!"#$$%&'"%($$%)*%
($$%&'"%+%)*%

,$"$$$%&'%-(%.)/"%("+$$%)*%

Figure 4: Inserts showing relative scale lengths of pre-AZEuS MHD simulations of protostellar jets
and their observed counterparts (in this case, HH34).

!"#$$%&'()*+,&(,+-$./)01/'+23/4%&5$'.&/'6)+#/5702$-+

.&50)61/'+/8+2,$+6.2-/7,*.)+9$2+&'+::;<+

Figure 5: First AZEuS simulation: axisymmetric protostellar jets to 4,000 AU at 0.01 AU resolution.
Colour contours depict the Alfvénic Mach number; contours, magnetic field lines.

13

	Preface
	What is ZEUS-3D?
	Source code management and version control
	Algorithms
	Staggered mesh
	Boundary conditions
	In-line graphics and I/O
	Running ZEUS-3D
	Programming within ZEUS-3D
	Installing ZEUS-3D
	Example runs
	The future of ZEUS: AZEuS

