
A Primer on

Magnetohydrodynamics

David A. Clarke

Professor of Astronomy and Physics

Saint Mary’s University, Halifax NS, Canada

david.clarke@smu.ca

February, 2015

Copyright c© David A. Clarke, 2015

mailto:david.clarke@smu.ca


To those uninitiated to the magic of MHD, I can think of no better introduction to the subject
than the following video, prepared by cinematographers engaged by NASA to highlight
the work of the dedicated scientists, technicians, engineers, and staff who made the Solar
Dynamic Observatory the spectacular success it was.

Prepare to have the hair on the back of your neck stand on end: SDO, live MHD

https://www.youtube.com/watch?v=GSVv40M2aks
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Preface

This primer, along with the accompanying document A Primer on ZEUS-3D, were prepared
for a mini-series of two lectures I gave at the University of Victoria in February, 2015.
The intent of these two primers was to give an overview of MHD, both from a theoretical
standpoint and as a practical computational tool, to (astro)physicists who may not have had
any formal training in the subject, but who may nevertheless be contemplating problems in
which MHD is a significant component.

I view these primers as the first salvo of what I’d like to develop into two mini-courses
that would form the core of a summer “ZEUS-school” for theoretical and computational
MHD, offered to users and potential users of ZEUS-3D and AZEuS worldwide. Time will
tell if this idea ever gets off the ground!

In the meantime and inasmuch as these notes may help others, the reader is free to use,
distribute, and modify them as needed so long as they remain in the public domain and are
passed on to others free of charge.

David Clarke
Saint Mary’s University
February, 2016

Primers by David Clarke:

1. A FORTRAN Primer

2. A UNIX Primer

3. A DBX (debugger) Primer

4. A Primer on Tensor Calculus

5. A Primer on Magnetohydrodynamics

6. A Primer on ZEUS-3D

7. Eclipse Photography for Mortals

I also give a link to David R. Wilkins’ excellent primer Getting Started with LATEX, in
which I have added a few sections on adding figures, colour, and HTML links.
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http://www.ap.smu.ca/~dclarke/home/documents/byDAC/fprimer.pdf
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1 A bit of History

We have to learn again that science without contact with experiments is an
enterprise which is likely to go completely astray into imaginary conjecture.

Hannes Alfvén, father of MHD

The branch of physics known as magnetohydrodynam-
ics (MHD) was invented by the Swedish (astro)physi-
cist/engineer, Hannes Olof Gösta Alfvén (1908–1995)1

who, among other accomplishments, was the first (with
N. Herlofson) in 1950 to detect and identify non-thermal
(synchrotron) radiation from the cosmos, was the first in
1963 to predict the large-scale filamentary nature of the
universe, and is universally regarded as the inventor and
father of MHD for which he shared the 1970 Nobel prize
in physics.

When his theory predicting the existence of what are
now known as Alfvén waves was first published2, it was
received with considerable criticism and ridicule. This was
the first time anyone ever suggested that electromagnetic
waves of any sort could be supported by a conducting
medium (and exactly opposite to what had been presumed

“obvious” since Maxwell, namely that all conductors attenuate electromagnetic waves within
a skin depth), and comments such as ‘If such a thing were possible, Maxwell himself would
have discovered it’ was often how Alfvén’s ideas were dismissed. It is said that in the late
1950’s while giving one of his lectures at the University of Chicago, none other than Enrico
Fermi was heard by all to say “Of course!”, at which point the ridicule stopped. However,
Alfvén’s real triumph happened in 1958 when Alfvén waves were indisputably detected in
the lab. It was from that point in time when MHD suddenly became part of “mainstream
physics”, even to the point of being considered “obvious”!

MHD is an example of classical physics, and that it was 35 years after the advent
of quantum mechanics before physicists started to become familiar with it is an historical
anomaly. Despite its classical character, MHD is a relatively new branch of physics.

2 Conserved Quantities

MHD is based on the conservation of mass, momentum (Newton’s second law), energy,
and magnetic flux. Consider an ensemble of charged particles within some volume V , and
let these particles interact with each other via elastic collisions. If their collective mass,

1http://public.lanl.gov/alp/plasma/people/alfven.html
2Alfvén, H., 1942, Existence of electromagnetic-hydrodynamic waves, Nature, v. 150, p. 405
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momentum, total energy, and magnetic flux are M , ~S, ET, and Φ respectively, then:

dM

dt
= 0; conservation of mass (1)

d~S

dt
=

∑

~Fext; Newton’s Second Law (2)

dET

dt
= Papp; conservation of total energy (3)

dΦ

dt
= 0, conservation of magnetic flux (4)

where ~Fext are all forces external to the ensemble of particles, while Papp is the rate at which
work is done (power) by all forces applied to the ensemble of particles.

Forces external to the ensemble of particles include gravity, Lorentz force, viscous drag
and collisions from neighbouring (outside the volume V ) particles. Since the total energy, ET,
includes the gravitational and magnetic energy densities, the only external forces considered
to be applied are the collisions.

A fluid is defined by how collisions among the particles are manifest. If a sufficient
number of particles collide per unit time, the force of these collisions is isotropic and felt
as a pressure gradient. Likewise, their charges will be distributed so that no external static
electric field can be supported. In this case, we say that the distance between collisions
(mean-free path), δl, is much smaller than the size of the box, ∆l, of the volume V , which
in turn is smaller than the smallest physical scale of interest, L:

δl ≪ ∆l < L
If this inequality is not valid, then the system of particles comes under the realm of plasma
physics rather than MHD, and is governed by the so-called Vlasov equation (Boltzmann
equation for neutral particles).

3 Theorem of Hydrodynamics

Definition: An extensive quantity is proportional to the amount of substance being consid-
ered. Examples include the mass, energy, volume, etc.

Definition: An intensive quantity is independent of the amount of substance being consid-
ered. Examples include the density, pressure, temperature, etc.

For every extensive quantity, Q(V, t), of a sample, a corresponding intensive quantity,
q(~r, t), may be given by:

q(~r, t) = lim
∆V→0

∆Q(V, t)

∆V
=

∂Q(V, t)

∂V
. (5)

Conversely,

Q(V, t) =

∫

V

q(~r, t) dV. (6)
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Figure 1: A volume, V (t), expands to volume V (t + ∆t) in a time ∆t by adding to
V (t) a “skin” of surface area ∂V and thickness v∆t.

Theorem of Hydrodynamics.3 If the time dependence of an extensive variable, Q, is given
by:

dQ

dt
= Σ, (7)

where Σ represents (time-dependent) “source terms”, then the corresponding intensive quan-
tity, q(~r, t), is governed by:

∂q

∂t
+∇ · (q ~v) = σ, (8)

where ~v = d~r/dt, Q =
∫

V
q dV , Σ =

∫

V
σ dV , and where the product q ~v must be a differen-

tiable function of the coordinates4.

Proof:
dQ

dt
= Σ ⇒ d

dt

∫

V

qdV =

∫

V

σdV,

where, in general, the volume element V = V (t) also varies in time. Thus,

d

dt

∫

V (t)

qdV = lim
∆t→0

1

∆t

[
∫

V (t+∆t)

q(~r, t+∆t)dV −
∫

V (t)

q(~r, t)dV

]

= lim
∆t→0

1

∆t

[
∫

V (t+∆t)−V (t)

q(~r, t+∆t)dV +

∫

V (t)

q(~r, t+∆t)dV −
∫

V (t)

q(~r, t)dV

]

= lim
∆t→0

1

∆t

∫

∆V

q(~r, t+∆t)dV + lim
∆t→0

1

∆t

∫

V (t)

[

q(~r, t+∆t)− q(~r, t)
]

dV

where, as shown in Fig. 1, the difference in volume, ∆V = V (t+∆t)− V (t), is the surface
integral over the closed surface, ∂V , of the “skin thickness”, ~v∆t, times the area differential,
n̂∆A. Thus, within ∆V , the volume differential is dV = (~v∆t) · (n̂dA), and we have:

d

dt

∫

V (t)

qdV = lim
∆t→0

1

✟
✟∆t

∮

∂V

q(~r, t+∆t)(~v✟✟∆t) · (n̂dA) +
∫

V (t)

lim
∆t→0

q(~r, t+∆t)− q(~r, t)

∆t
dV

3This theorem is a variant of Reynolds’ transport theorem.
4Requiring a function to be integrable is less severe than requiring it to be differentiable. The former

requires only that there be no singularities of first order or greater in the function [i.e., if f(x−x0) ∼ (x−x0)
p

near x0, p > −1 for the function to be integrable through x0], whereas the latter also requires the function
to be continuous at x0 (and for p ≥ 0).
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=

∮

∂V

q(~r, t)~v · n̂dA+

∫

V (t)

∂q(~r, t)

∂t
dV

=

∫

V (t)

∇ ·
(

q(~r, t)~v
)

dV +

∫

V (t)

∂q(~r, t)

∂t
dV (using Gauss’ theorem)

=

∫

V (t)

(

∂q(~r, t)

∂t
+∇ ·

(

q(~r, t)~v
)

)

dV =

∫

V (t)

σ(~r, t)dV.

⇒
∫

V

(

∂q

∂t
+∇ · (q ~v)− σ

)

dV = 0.

As this is true for any volume, V , the integrand must be zero, proving the theorem.

4 Equations of Hydrodynamics

1. Continuity equation: Let Q = M , mass of fluid sample. Then q = ρ (mass density) is the
corresponding intensive variable and, from equation (1), Σ = 0 ⇒ σ = 0. Thus, the theorem
of HD requires:

∂ρ

∂t
+∇ · (ρ~v) = 0. (9)

2. Momentum equation: Let Q = ~S, total momentum of fluid sample. Then, q = ~s = ρ~v
(momentum density) is the corresponding intensive variable and from equation (2), Σ =
∑

~Fext ⇒ σ =
∑ ~fext, the external force densities. Thus, the theorem of HD requires:

∂~s

∂t
+∇ · (~s~v) =

∑

~fext, (10)

where the Cartesian representation of the divergence term is:

∇ · (~s~v) =
(

∇ · (sx~v),∇ · (sy~v),∇ · (sz~v)
)

.

For ideal HD, external force densities include terms arising from pressure gradients and
gravity. For pressure gradients, consider a small cube with edge length ∆x and face area
∆A (Fig. 2a). If the pressure at the left and right sides of the cube are respectively p(x) and
p(x+∆x), then the net pressure force acting on the cube in the x-direction is given by:

F (x+∆x) + F (x) = −p(x+∆x)∆A + p(x)∆A = −∆p

∆x
∆A∆x = −∆p

∆x
∆V.

Thus, the pressure force density in the x-direction is:

fx =

∑

Fx

∆V
= −∆p

∆x
→ −∂p

∂x
as ∆x → 0.
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Figure 2: a) (left) A cube of edge length ∆x with external pressure forces acting on
the x-faces indicated. b) (right) An x-y cut through the cube on the left showing both
the pressure forces on and motion of the x-faces.

Accounting for all three components, we have for the pressure force density:

~fp = −∇p. (11)

As for gravity, if the mass of the fluid sample is ∆M , then the gravitational force on
the mass is −∆M ∇φ, where φ is the local gravitational potential. Thus, the gravitational
force density is:

~fφ = −∆M ∇φ

∆V
→ −ρ∇φ as ∆V → 0. (12)

Substituting both equations (11) and (12) into (10) yields the momentum equation:

∂~s

∂t
+∇ · (~s~v) = −∇p− ρ∇φ. (13)

3. Energy equation: Let Q = ET be the total energy of the fluid sample:

ET =
1

2
(∆M)v2 + E + (∆M)φ,

where E is the internal energy. The corresponding intensive variable is the total energy
density,

eT =
1

2
ρv2 + e+ ρφ, (14)

where e is the internal energy density, related to the pressure by the ideal gas law:

p = (γ − 1)e, (15)

where γ is the usual ratio of specific heats.
From equation (3), Σ = Papp ⇒ σ = papp, the rate at which work is done on a unit

volume of fluid by all applied forces. Thus, the theorem of HD requires:

∂eT
∂t

+∇ · (eT~v) = papp. (16)
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The applied power is the rate at which work is done by the external fluid on the fluid
sample (collisions, and thus pressure) as the latter expands or contracts within the former.
Thus, consider a small cubic sample of fluid with dimension ∆x in the x-direction and
cross sectional area ∆A (Fig. 2). The pressure force exerted on the left face of the cube is
F (x) = +p(x)∆A and, in time ∆t, the left face is displaced by vx(x)∆t. Thus, the work
done on the left face by the external fluid is ∆WL = +p(x) vx(x)∆t∆A. Similarly, the work
done on the right face is ∆WR = −p(x+∆x) vx(x+∆x)∆t∆A, and the net work done on
the fluid cube by the external medium is:

∆W = ∆WL +∆WR = p(x) vx(x)∆t∆A− p(x+∆x) vx(x+∆x)∆t∆A

⇒ Papp =
∆W

∆t
= −∆A∆x

p(x+∆x) vx(x+∆x)− p(x) vx(x)

∆x
= −∆V

∆(pvx)

∆x
.

Thus, the applied power density is given by:

papp =
Papp

∆V
= − ∆(pvx)

∆x
→ −∂(pvx)

∂x
.

Taking into account similar terms in the y- and z-directions,

papp = −∇ · (p~v). (17)

Substituting equation (17) into (16) yields:

∂eT
∂t

+∇ · [(eT + p)~v] = 0. (18)

5 The Induction Equation

In an electromagnetic field, a particle with charge q feels an electromagnetic force:

~FEM = q( ~E + ~v × ~B),

where q ~E is the Coulomb force and q~v × ~B is the Lorentz force.
As ~FEM accelerates the charge, collisions with other particles increase and a drag force,

much like that exerted on objects falling through the air, is exerted on the particle. This
drag force is proportional to the charge on the particle, q, its velocity through the medium,
~v, and the charge density of the medium, ρq:

~FR = −ηq~vρq,

where − indicates ~FR points in the opposite direction as ~v, and where η is the resistivity
(proportionality constant).

Any particle acted upon by a drag force eventually attains a terminal velocity where
the drag and driving forces balance. Thus, we have:

~FEM + ~FR = q( ~E + ~v × ~B − ηρq~v) = 0 ⇒ ~E + ~v × ~B = η ~J. (19)
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where ~J = ρq~v is the current density. Equation (19) is the generalised Ohm’s Law in which,
for a fluid, ~v is interpreted as the velocity of a charged fluid element rather than an individual
charged particle.

Taking the curl of equation (19), we get:

∇× ~E +∇× (~v × ~B − η ~J) = 0 ⇒ ∂ ~B

∂t
= ∇× (~v × ~B − η ~J),

the combined Faraday-Ohm law, where Faraday’s Law (∇×E = −∂ ~B/∂t) has been invoked.
In the limit of an ideal fluid (where both viscosity and resistivity are zero), we get the
induction equation:

∂ ~B

∂t
= ∇× (~v × ~B). (20)

Finally, from the Ampère-Maxwell Law:

∇× ~B =
1

c2
∂ ~E

∂t
+ µ0

~J ⇒ ~J = ρq~v =
1

µ0
∇× ~B, (21)

if we ignore the displacement current on the grounds that the factor 1/c2 makes it negligible
for non-relativistic fluid motions.

On comparing Faraday’s Law with equation (20), we see that there is an induced electric
field in the fluid given by:

~Eind = −~v × ~B. (22)

It was general ignorance of this term that led many physicists of his day to dismiss Alfvén’s
theory. The idea that conducting media cannot support electromagnetic fields is predicated
on the fact that free charges redistribute themselves nearly instantaneously (e.g., within a
skin depth) to negate any static electric field (whose field lines begin and end on free charges)
that may try to establish itself. But the electric field in equation (22) is an induced field
which forms closed loops. It is manifestly non-conservative and cannot be eliminated by the
rearrangement of free charges. Thus, an MHD fluid is a conducting medium that can and
does support electromagnetic fields and is why the physics of MHD is so rich.

6 Conservative and Primitive Forms of MHD

A magnetic field in the presence of a charged MHD fluid introduces another force density to
the momentum equation. A parcel of fluid of charge q moving at velocity ~v in a background
magnetic induction ~B feels a Lorentz force density of:

~fL = ρq~v × ~B = ~J × ~B =
1

µ0
(∇× ~B)× ~B,

using equation (21). Thus, equation (13) becomes:

∂~s

∂t
+∇ · (~s~v) = −∇p− ρ∇φ+

1

µ0
(∇× ~B)× ~B. (23)
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The magnetic energy density associated with a magnetic field, ~B is given by:

eB =
B2

2µ0

,

and thus the total energy density of an MHD fluid is:

e∗T = eT + eB =
1

2
ρv2 + e+

B2

2µ0
+ ρφ.

It is left as an exercise to show that the evolution equation for e∗T is therefore:

∂e∗T
∂t

+∇ ·
(

(eT + p)~v − 1

µ0
(~v × ~B)× ~B

)

= 0. (24)

The magnetic term in the divergence has a very simple physical interpretation. From equa-
tion 22, we have:

− 1

µ0
(~v × ~B)× ~B =

1

µ0

~Eind × ~B = ~SM,

the Poynting vector. Since the divergence of a Poynting vector is an energy flux, the last term
in equation (24) represents energy transported along magnetic field lines from one parcel of
fluid to another.

Thus, the equations of MHD are:

Equation set 1:

∂ρ

∂t
+∇ · (ρ~v) = 0; (9)

∂~s

∂t
+∇ · (~s~v) = −∇p− ρ∇φ+

1

µ0
(∇× ~B)× ~B; (23)

∂e∗T
∂t

+∇ · (eT~v) = −∇ ·
(

p~v − 1

µ0
(~v × ~B)× ~B

)

(24)

∂ ~B

∂t
−∇× (~v × ~B) = 0, (20)

where:

~s = ρ~v; eT =
1

2
ρv2 + ρφ; e∗T = eT +

B2

2µ0

; p = (γ − 1)e,

are the constitutive equations. Equation set 1 are in the so-called conservative form because
the time derivatives are of the intensive form of the conserved extensive variables, namely
the mass, momentum, total energy, and magnetic flux.

There are numerous alternate forms of these equations, however, and it is left as another
exercise to derive the following equations in the so-called primitive form:
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Equation set 2:
∂ρ

∂t
+∇ · (ρ~v) = 0; (9)

∂~v

∂t
+ (~v · ∇)~v = −1

ρ
∇p−∇φ+

1

ρµ0
(∇× ~B)× ~B; (25)

∂p

∂t
+ ~v · ∇p = −γp∇ · ~v (26)

∂ ~B

∂t
+∇ · (~v ~B − ~B~v) = 0, (27)

where the induction equation (27) has been written in an alternative form using the dyadic

products of ~v and ~B to make it look like a divergence rather than a curl. Note that equation
set 2 is closed, and no constitutive equations are required. The variables (ρ,~v, p, B) are
known in MHD as the primitive variables, whence the designation of this equation set.
Finally, equation (25) is known as Euler’s equation after the most prolific mathematician of
all time credited for being the first to write it down (in its HD form).

7 Fast, Alfvén, and slow waves

Consider the MHD equations in one Cartesian coordinate (x). Thus, ∂y = ∂z = 0, and
equations (9), (25), (26), and (20) become:

Equation Set 3:

∂tρ+ vx ∂xρ+ ρ ∂xvx = 0; (28)

∂tvx + vx ∂xvx +
1

ρ
∂xp+

By

ρ
∂xBy +

Bz

ρ
∂xBz = 0; (29)

∂tvy + vx ∂xvy −
Bx

ρ
∂xBy = 0; (30)

∂tvz + vx ∂xvz −
Bx

ρ
∂xBz = 0; (31)

∂tp+ vx ∂xp+ γp ∂xvx = 0; (32)

∂tBy + vx ∂xBy +By ∂xvx − Bx ∂xvy = 0; (33)

∂tBz + vx ∂xBz +Bz ∂xvx −Bx ∂xvz = 0. (34)

Note that the x-component of the induction equation requires that:

∂tBx = ∂y(vxBy − vyBx)− ∂z(vzBx − vxBz) = 0,

and Bx is constant in time, while the solenoidal condition requires that:

∇ · ~B = ∂xBx = 0,

9



and Bx is also constant in space. Thus, Bx is constant everywhere for all time and we need
only concern ourselves with the y- and z-components of the induction equation.

Equation set 3 may be written more compactly as:

∂t|q〉+ J ∂x|q〉 = 0, (35)

where the ket of primitive variables, |q〉, and the Jacobian matrix for the primitive variables,
J, are given by:

|q〉 =





















ρ
vx
vy
vz
By

Bz

p





















; J =





















vx ρ 0 0 0 0 0
0 vx 0 0 By/ρ Bz/ρ 1/ρ
0 0 vx 0 −Bx/ρ 0 0
0 0 0 vx 0 −Bx/ρ 0
0 By −Bx 0 vx 0 0
0 Bz 0 −Bx 0 vx 0
0 γp 0 0 0 0 vx





















.

Equation (35) is a wave equation and we seek its normal mode solutions of the form:

|q(x, t)〉 = |f(ξ)〉,

where ξ = x−ut, and where u is the speed of a particular normal mode (wave speed). Thus,

∂t|q〉 =
∂ξ

∂t

d|f〉
dξ

= −u|f ′〉; ∂x|q〉 =
∂ξ

∂x

d|f〉
dξ

= |f ′〉. (36)

Substituting equations (36) into (35), we get:

J |f ′〉 = u|f ′〉,

and u are the eigenvalues of the Jacobian J, while |f ′〉 are (proportional to) its eigenvectors.
In this primer, we shall look at the eigenvalues only.

To obtain the eigenvalues, we solve the linear algebra equation: det(J− uI) = 0 which,
after rather lengthy though straight-forward algebra, yields:

det(J− uI) = [u− (vx − af)][u− (vx − ax)][u− (vx − as)][u− vx]×
[u− (vx + as)][u− (vx + ax)][u− (vx + af)] = 0,

(37)

where af , ax, and as are respectively the fast magnetosonic speed, the x-component of the
Alfvén speed, and the slow magnetosonic speed. These are given by:

af =

√

1

2

(

a2 + c2s +
√

(a2 + c2s )
2 − 4a2xc

2
s

)

; (38)

ax =
Bx√
ρ
; (39)

as =

√

1

2

(

a2 + c2s −
√

(a2 + c2s)
2 − 4a2xc

2
s

)

, (40)
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where:

a2 =
B2

ρ
=

B2
x +B2

y +B2
z

ρ
; c2s =

γp

ρ
,

are the squares of the Alfvén and sound speeds respectively. Therefore, the 1-D MHD
equations admit seven characteristic (wave) speeds, namely:

u1 = vx − af ; u2 = vx − ax; u3 = vx − as; u4 = vx;

u5 = vx + as; u6 = vx + ax; u7 = vx + af ,
(41)

which correspond to four distinct types of waves supported by a magnetised fluid. Waves
1 and 7 (u1 and u7) are fast magnetosonic waves, waves 2 and 6 are Alfvén waves, waves 3
and 5 are slow magnetosonic waves, and wave 4 is an entropy wave which, as the only wave
not affected by the presence of a magnetic field, is the only type of wave identical to its
hydrodynamic counterpart. It is left as an exercise to show the following inequalities hold:

as ≤ cs ≤ af ;

as ≤ a ≤ af ;

as ≤ ax ≤ af ,

(42)

and thus, the wave speeds as listed in (41) are in ascending order from the most negative to
the most positive.

Alfvén waves propagating along magnetic field lines are like vibrations along telephone
wires. They are transverse (ordinary sound waves are longitudinal), and have no analogue
in a non-magnetised fluid. As B → 0 in an MHD fluid, Alfvén waves simply disappear. It
was the detection of this type of wave in a laboratory in 1958 that convinced the physics
world that MHD was a valid theory.

Fast and slow waves are both compressional and transverse, with both thermal and
magnetic pressure variations driving the longitudinal component, and magnetic variations
alone driving the transverse component. As B → 0, the slow wave disappears, whereas the
fast wave morphs to an ordinary sound wave.

In the atmosphere, a thunder clap is the result of a disturbance (charge transfer between
clouds and/or the ground) that launches both sound and entropy waves in all directions5.
No other waves are launched because the air doesn’t support any other wave types.

In an MHD medium, that same thunder clap would generate all four types of waves:
entropy, slow, Alfvén, and fast waves. An observer would first hear (yes, hear) the fast
wave, then might observe the Alfvén wave as a transverse wind shear (and certainly on a
magnetometer), then would hear the slow wave. If it hadn’t already completely dissipated,
an entropy wave (a gust of wind) might then follow. As the scale of the disturbance would
dictate the dominant wavelength of the waves, the fast wave—moving faster—would sound
“higher” than the slow wave (f = v/λ).

Note that the fast and slow speeds are directional. Unlike an ordinary sound wave
which is isotropic, both as and af depend upon ax = a cos θ, where θ is the angle between

5When I clap my hands, I launch both a sound wave and an “entropy wave”, the latter being a small a
gust of wind.
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Figure 3: Polar diagrams representing wave speeds of the slow (inner curve), Alfvén
(middle curve), and fast (outer curve) waves for α ≡ c2s/a

2 = 4 (panel a), α = 1
(panel b), and α = 1

4 (panel c). In each case, the wave speed is proportional to the

distance between the origin and where a ray inclined at angle θ (angle between ~B and
the x-axis) intersects a given curve, as exemplified by the dashed line in panel c.

the x-axis (direction of wave propagation) and the orientation of the magnetic field vector
(Fig. 3). Note further on Fig. 3 that the slow curve is completely contained by (or touches)
the Alfvén curve which is completely contained by (or touches) the fast curve, as required
by equation (42).

8 MHD Shocktubes

A shocktube is a long tube inside which an essentially 1-D gas experiment can be performed.
Typically, one sets two constant states—left and right—with different densities, pressures,
etc., separated by a solid diaphragm as shown in Fig. 4. At some prescribed time, the
diaphragm is removed and the two states interact. How they interact can be quite dramatic
depending on how different the left and right states are initially.

The mathematical equivalent of a laboratory shocktube is called a Riemann problem.
While there is no record of Riemann ever doing any specific calculations in fluid dynamics,
he did develop the mathematics we use in order to find the analytical solution to a shocktube

, v , pRRρ R, p, vL LρL

D
left state right state

Figure 4: A schematic diagram of a shocktube. At t = 0, the diaphragm, D, is
removed, and the two constant states interact with an arbitrary jump in (possibly) all
flow variables at D.
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problem. This is beyond the scope of this primer (though determining the eigenvalues of the
MHD Jacobian is part of it), and we’ll focus here on the phenomenology.

Figure 5 a) shows the initial left and right states of a typical shocktube. The diaphragm
located at x1 = 0.5 separates two MHD monatomic (γ = 5/3) states, both initially at rest
(v1 = v2 = 0) and with B1 = 1. The left state has ρ = 1, p = 1, and B2 = 1, while the
right state has ρ = 0.2, p = 0.1, and B2 = 0, all in arbitrarily scaled units. At t = 0 the
diaphragm is removed and the two states interact with the semi-analytical Riemann solution
of this interaction shown in Fig. 5 b) at t = 0.15 in these same scaled units.

The moment the two states are in contact, the jump becomes unstable with the left
state (higher pressure) pushing into the right. This interaction sends out all types of waves
in both directions with their cumulative effect in both time and space resulting in five distinct
features in Fig. 5 b. On the left, fast and slow rarefaction fans develop as material from the
left “spills” into the right. This phenomenon is similar to what happens in a sandbox divided
in two equal halves with sand in one side but not the other. At the instant the divide is
removed, the jump in sand depth is vertical but this jump quickly leans over as sand pours
from the deep side to the shallow, superficially resembling the rarefaction fans in Fig. 5 b.

At x1 ∼ 0.64, an entropy wave (a.k.a. contact ; a discontinuity in density but not the
pressure) separates the original material on the left from that on the right, indicating how
far the left half has pushed into the right. An atmospheric example of a contact is a weather
front, which is a discontinuity in temperature (and thus density) but not pressure. Cool,

a) b)
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Figure 5: a) Initial state of a typical Riemann problem (adapted from Fig. 4a of Ryu
& Jones, 1995, ApJ). b) Final state after t = 0.15 showing from left to right: a fast
rarefaction, slow rarefaction, contact discontinuity (entropy wave), slow shock, and a
fast shock.
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dry air moves into a region of hot, moist air causing the latter to rise over the former (cool,
dry air is denser, despite our physiological impression). As a result, the moist air cools and
loses some of its moisture to precipitation.

Finally, at x1 = 0.75 and 0.86 are, respectively, a slow and fast shock, triggered by
the contact moving into the right state faster than either the local slow or fast speeds.
Similarly in the atmosphere, anything that tries to move faster than the speed of sound
(e.g., a supersonic aircraft) triggers a leading (bow) shock. Shocks are discontinuities in all
variables and astrophysically, their passage through the ISM can drive turbulence, excite
line emission, even trigger star formation.

We shall revisit this particular shocktube in the ZEUS-3D primer.

A Problem Set

1. a) Starting with the continuity equation (9) and the adiabatic equation of state (p ∝ ργ),
derive the pressure equation (26).

b) Starting with the continuity equation (9) and the MHD momentum equation (23), derive
the MHD Euler equation (25).

2. a) From the pressure equation (26) and the ideal gas law (15), show that the evolution
equation for the internal energy is:

∂e

∂t
+∇ · (e~v) = −p∇ · ~v. (43)

b) From equations (9), (20), (25), and (43), derive the evolution equation for the total
magnetic energy, (24).

3. By using the closed forms for the MHS wave speeds (equations 40, 39, and 38), prove
inequalities (42).

4. The form of the momentum equation actually solved by ZEUS-3D for ideal MHD with
no self-gravity is:

∂~s

∂t
+∇ ·

(

~s~v + (p+ pB) I− ~B ~B
)

= 0, (44)

where ~s~v and ~B ~B are dyadic products of the vectors, I is the identity tensor (matrix), and
pB = B2/2µ0 is the magnetic pressure. Using the vector identities in Appendix B, show how
this may be derived from equation (23).
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B Vector Identities

Let ~A, ~B, ~C, and ~D be four arbitrary vectors. Then,

~A · ( ~B × ~C) = ~B · ( ~C × ~A) = ~C · ( ~A× ~B); (45)

~A× ( ~B × ~C) = ( ~A · ~C) ~B − ( ~A · ~B) ~C; (46)

( ~A× ~B) · ( ~C × ~D) = ( ~A · ~C)( ~B · ~D)− ( ~A · ~D)( ~B · ~C). (47)

Let f and g be two arbitrary scalar functions of the coordinates, and let ~A and ~B be two
arbitrary vector functions of the coordinates. Then,

∇(fg) = f∇g + g∇f ; (48)

∇(f/g) =
g∇f − f∇g

g2
; (49)

∇( ~A · ~B) = ( ~B · ∇) ~A + ( ~A · ∇) ~B + ~B × (∇× ~A) + ~A× (∇× ~B); (50)

∇ · (f ~A) = f∇ · ~A+ ~A · ∇f ; (51)

∇ · ( ~A× ~B) = ~B · (∇× ~A)− ~A · (∇× ~B); (52)

∇× (f ~A) = f∇× ~A+∇f × ~A; (53)

∇× ( ~A× ~B)6 = ( ~B · ∇) ~A− ( ~A · ∇) ~B − ~B(∇ · ~A) + ~A(∇ · ~B); (54)

∇× (∇f) = 0; (55)

∇ · (∇× ~A) = 0. (56)

For ∇× (∇× ~A), see identity (69).

Identities (57) and (58) below are particularly useful for working with the MHD equa-
tions and can be derived from the more fundamental identities above.

( ~A · ∇) ~B =
1

2

[

∇( ~A · ~B) + ~A(∇ · ~B)− ~B(∇ · ~A)−∇× ( ~A× ~B)

− ~A× (∇× ~B)− ~B × (∇× ~A)
]

;
(57)

( ~A · ∇) ~A = 1
2
∇A2 − ~A× (∇× ~A). (58)

Constructs such as ~A~B (the dyadic product of the vectors ~A and ~B) as well as ∇ ~A (the

gradient of the vector ~A) are examples of dyadics (and thus tensors) and appear frequently
in the MHD equations. In Cartesian coordinates, these look like:

~A~B = |A〉〈B| =





Ax

Ay

Az



 [Bx By Bz] =





AxBx AxBy AxBz

AyBx AyBy AyBz

AzBx AzBy AzBz



; (59)

6∇× ( ~A× ~B) may also be expressed in terms of perfect divergences; see identity (65).
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∇ ~A =





∂xAx ∂xAy ∂xAz

∂yAx ∂yAy ∂yAz

∂zAx ∂zAy ∂zAz



. (60)

The colon product (double contraction) of two dyadics M = ~A~B and N = ~C ~D is defined as:

M : N ≡
∑

ij

MijNij =
∑

ij

AiBjCiDj =
∑

i

AiCi

∑

j

BjDj = ( ~A · ~C)( ~B · ~D). (61)

Following are several useful identities involving the tensors ∇ ~A, ~A~B, and T, the latter
not necessarily a dyadic. The superscript T denotes the transpose of a tensor in which, in
its matrix representation, the rows of the tensor form the columns of the transpose. Thus,
( ~A~B)T = ~B ~A. The first equality in identity (64) is analogous to (51) while the second two
follow from (57). Identities (65) and (66) then follow trivially from (64).

~A · (∇ ~A) = ( ~A · ∇) ~A = 1
2
∇A2 − ~A× (∇× ~A); (62)

~A · (∇ ~A)T = 1
2
∇A2; (63)

∇ · ( ~A ~B) = ( ~A · ∇) ~B + ~B(∇ · ~A)

=
1

2

[

∇( ~A · ~B) + ~A(∇ · ~B) + ~B(∇ · ~A)−∇× ( ~A× ~B)

− ~A× (∇× ~B)− ~B × (∇× ~A)
]

= ( ~B · ∇) ~A+ ~A(∇ · ~B)−∇× ( ~A× ~B);































(64)

∇ · ( ~A ~B) = ∇ · ( ~B ~A)−∇× ( ~A× ~B); (65)

∇ · ( ~A ~A) = ( ~A · ∇) ~A+ ~A(∇ · ~A)
= 1

2
∇A2 + ~A(∇ · ~A)− ~A× (∇× ~A);

}

(66)

∇ · (T · ~A) = T : ∇ ~A + (∇ · T) · ~A; (67)

∇ ~A : ∇ ~A = (∇× ~A) · (∇× ~A) +∇ ~A : (∇ ~A)T; (68)

∇ · (∇ ~A) = ∇2 ~A = ∇(∇ · ~A)−∇× (∇× ~A); (69)

∇ · (∇ ~A)T = ∇(∇ · ~A). (70)
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