
EDITOR USER MANUALVersion 2.1David A. ClarkeInstitute for Computational Astrophysi
sSaint Mary's UniversityHalifax NS, Canada B3H 3C3http://www.i
a.smu.
a/zeus3dJune, 2004; revised O
tober, 2007Copyright

 David A. Clarke, 2004, 2007

Contents iContentsDis
laimer ii1 Introdu
tion 11.1 VERSION 2.1 . 12 PRECOM: Pre
ompiling sour
e
ode 32.1 Basi
 pre
ompiling . 32.2 The NAMELIST extension . 92.3 Inserting mi
ro-tasking dire
tives . 132.4 Splitting a sour
e
ode; generating a make�le 182.5 The pre
om.s s
ript �le . 193 NUMBER: Generating a numbered listing 233.1 Reformatting a �le . 233.2 The number.s s
ript �le . 234 MERGE: Merging sour
e
ode 254.1 Change de
ks . 254.2 The merge.s s
ript �le . 285 TARGET: FORTRAN tidy-up 315.1 The target.s s
ript �le . 346 COMPARE: Comparing similar ASCII �les 366.1 Comparing entire �les . 366.2 Comparing de
laration
ontents . 386.3 The
ompare.s s
ript �le . 407 SPLIT: Splitting sour
e
ode 427.1 Splitting a �le . 427.2 The split.s s
ript �le . 428 CONCAT: Con
atenating �les 438.1 The
on
at.s s
ript �le . 439 Installing EDITOR 449.1 Installation . 449.2 The s
ript �le edit21.s . 469.3 EDITOR parameters . 48A Error messages 50A.1 Fatal errors . 50A.2 Non-fatal errors . 52A.3 Warnings . 58A.4 NAMELIST errors . 58

Dis
laimer iiDis
laimerNOTICE: This software was developed by the author at the National Center forSuper
omputing Appli
ations (NCSA) at the University of Illinois in Urbana-Champaign between 1988 and 1990, and is
urrently maintained by the authorat the Institute for Computational Astrophysi
s at Saint Mary's University inHalifax, NS. It and this manual are o�ered \as is" by the author to anyone fornon-pro�t, edu
ational use with no expressed or implied warranty or suitability.It is requested that the author's name and this dis
laimer remain asso
iated withthis manual and software, as well as any des
endents of this software that maybe developed by a third party.

Introdu
tion 1EDITOR USER MANUALVersion 2.1, David A. Clarke, ICA, O
tober 2007
1 Introdu
tion1.1 VERSION 2.1EDITOR is a highly portable text manipulator written in FORTRAN77 designed to man-age and
ompile large
omputer
odes, and pla
ed in the publi
 domain by the author(see Dis
laimer on page ii). The \tar" �le dzeus35.tar.gz, available for downloading atwww.i
a.smu.
a/zeus3d,
ontains the EDITOR pa
kage in
luding this manual and instal-lation intru
tions ne
essary to install and use EDITOR on the user's home platform.EDITOR is designed for sour
e
ode written in FORTRAN, although some of its fun
-tionality is independent of the
ontents of the ASCII text it manipulates. It was born, inpart, out of the author's frustration in porting software from CTSS to UNICOS in 1988 whenthe NCSA swit
hed the operating system on its Cray ma
hines. For those familiar with theCTSS environment, EDITOR was initially designed to mimi
 the CTSS pre
ompiler, HIS-TORIAN , mu
h of whose fun
tionality was not
arried into MPPL, the �rst pre
ompilerunder UNICOS. Sin
e then, EDITOR has blossomed into a rather sophisti
ated pa
kage inex
ess of 13,000 lines of FORTRAN
apable of a variety of text manipulations. Ea
h of thesefun
tionalities shall be referred to as a job, of whi
h there are seven in this release. Thesein
lude:1. pre
ompiling sour
e
ode, in
luding inserting modules (e.g.,
ommon blo
k de
lara-tions) into sour
e
ode, sele
ting sour
e
ode to be
ompiled, repla
ing nameliststatements and their asso
iated reads/writes with
alls to subroutines in a portable li-brary, \ mi
ro-tasking" nested do-loops, and splitting up the sour
e
ode into modules(PRECOM, x2);2. generating a multi-
olumned sour
e
ode listing
omplete with a table of
ontents(NUMBER, x3);3. merging a \
hange de
k" with a sour
e
ode, thereby upgrading the sour
e
ode withoutmaking
hanges dire
tly to the master �le (MERGE, x4);4. tidying up FORTRAN sour
e
ode in
luding relabelling targets, indentation, renum-bering
ontinuation
hara
ters, alphabetising modules, et
. (TARGET, x5);5.
omparing two ASCII �les and reporting the di�eren
es found (COMPARE, x6), overlook-ing some di�eren
es of spe
i�ed type;6. splitting a long �le into subroutine modules (SPLIT, x7); and

Introdu
tion 27.
on
atenating all �les with a
ommon suÆx found in the
urrent dire
tory and all itssubdire
tories into a single �le (CONCAT, x8).These jobs are all des
ribed in the se
tions indi
ated. In addition to des
ribing EDI-TOR's most important task (pre
ompilation), x2 introdu
es the �rst-time user to languageof EDITOR. Finally, x9 des
ribes how EDITOR may be installed on a new platform.

Pre
ompiling sour
e
ode 32 PRECOM: Pre
ompiling sour
e
ode2.1 Basi
 pre
ompilingThe main purpose of EDITOR is to pre
ompile large FORTRAN sour
e
odes. By default,the EDITOR pre
ompiler
reates a separate �le (whose name is the same as the original �lewith the extension .f appended)
ontaining the pre
ompiled sour
e listing. The �le
ontain-ing the original sour
e
ode is left as is. EDITOR was designed to mimi
 HISTORIAN , thepre
ompiler available under the Cray Time Sharing System (CTSS) whi
h was widely usedon Cray ma
hines before 1989 and, in the opinion of the author, one of the most useful and
exible pre
ompilers of its day. In the years sin
e, EDITOR has undergone many
hangesthat has taken it beyond HISTORIAN and it remains the pre
ompiler for the ZEUS familyof astrophysi
al MHD
odes (www.i
a.smu.
a/zeus3d).To use EDITOR, one must insert various types of EDITOR
ommands, all relativelyunobtrusive, into an existing FORTRAN sour
e
ode. All EDITOR
ommands go on sep-arate lines and begin with an asterisk (*) in the �rst
olumn. There may be one EDITOR
ommand per line. Depending on the task
hosen, EDITOR will make from 1 to 7 passesthrough the sour
e
ode
arrying out various dire
tives as spe
i�ed by the EDITOR
om-mands. During pre
ompilation, the resulting sour
e
ode will be standard FORTRAN, voidof any EDITOR
ommands and ready for the
ompiler.It is unlikely that users with small, easily managed sour
e
odes will want to bother withany pre
ompiler. But
urators of parti
ularly large
odes whi
h o�er a variety of features,run under various operating systems (OS), and modi�ed by several people simultaneouslywill want to
onsider some sort of prepro
essor su
h as EDITOR. For example,
odes whi
hneed to operate under more than one OS will almost
ertainly require a separate version forea
h OS to a

ommodate the di�eren
es among the host ma
hines. The last thing that a
urator of a large
ode wants to do is to have multiple versions of the same
ode to upgradeevery time there is a
hange. The pre
ompiler in EDITOR will allow these disparate versionsto be merged into a single master
ode, and thus upgrades need be implemented only on
e.EDITOR
onsiders a sour
e
ode as being made up of separate \de
ks" (a throw-ba
kfrom the days when
omputer programs
onsisted of de
ks of
ards), whi
h may or may notbe grouped into designated \groups". There are two types of de
ks that EDITOR re
ognises.\Ordinary de
ks" normally
onsist of individual program modules, su
h as subroutines,fun
tions, and the main program. \Common de
ks" are pie
es of
ode whi
h are to appearverbatim in one or more ordinary de
k(s). Common de
ks
an be thought of as EDITOR'sanswer to in
lude statements whi
h is a
ommon though not ANSI-standard extension ofmany FORTRAN
ompilers. Normally,
ommon de
ks
onsist of
ommon blo
k de�nitionswhi
h are required by more than one program module. Common de
ks
ould also be usedas a way of \in-lining" a segment of
ode into more than one pla
e throughout the master
ode.The �rst thing a user should do in preparing a sour
e
ode for EDITOR is to insert*de
k and *
de
k statements at the beginning of all sour
e
ode modules. The syntax is asfollows:*
de
k de
kname*
d de
kname

Pre
ompiling sour
e
ode 4*de
k de
kname*dk de
knamewhere de
kname is a user-designated name for the de
k unique from all other de
knames.*
de
k (or equivalently, *
d for short) tells EDITOR that everything that follows up to butnot in
luding the next *
de
k, *
d, *de
k, or *dk statement belongs to the
ommon de
kso named. Similarly, *de
k (*dk) indi
ates an ordinary de
k. One is free, for example, togive an ordinary de
k the same name as the module (i.e. program, subroutine, or fun
tionname) it
ontains.Optionally, the user may designate \groups" of de
ks with the *group (or *gp for short)statement.*group groupname*gp groupnamewhere groupname is a user-designated name for the group, not ne
essarily unique from thosenamed in other group statements. All ordinary de
ks will then be
onsidered part of thegroup named in the most re
ent group statement. The *group
ommand is designed foruser
onvenien
e; it has no e�e
t on how the program is
ompiled. They allow, for example,the FORTRAN tidy-up routine (TARGET, see x5) to re-alphabetise all de
ks within a
ertaingroup, then arrange the groups themselves alphabeti
ally. In some sense, one
an think ofgroups as analogous to \dire
tories" aiding the user to lo
ate a parti
ular module within alarge sour
e
ode.Having designated the de
ks (and perhaps groups), one may now insert the variouspre
ompiler
ommands whi
h will be
arried out during the �rst two passes the pre
ompilermakes through the
ode. The �rst pass establishes whi
h de
ks the user has de�ned, theirextent, and whi
h EDITOR \ma
ros" have been set. The se
ond pass pre
ompiles the sour
e
ode a

ording to the ma
ro settings. In this way, the
ompiler will only see that portion ofthe
ode whi
h the user has deemed relevant to the problem at hand.There are two types of EDITOR ma
ros { \de�nitions" and \aliases". Setting ma
ros isdone by inserting any number of the following EDITOR
ommands anywhere in the mastersour
e �le, or in the
hange de
k if MERGE is being used in tandem with PRECOM (x4). Notethat these statements are global in that they will have e�e
t throughout the
ode no matterwhere in the
ode they appear. There is, for example, no way to impose a ma
ro for part ofthe sour
e
ode, then \turn it o�" for the rest.*define def1 , def2 , ...*def def1 , def2 , ...*alias alias1 alias2*al alias1 alias2where def1 , def2 , et
. are user-sele
ted alpha-numeri
 keywords whi
h determine \a
tive"segments of the sour
e
ode. The *alias statement instru
ts EDITOR to repla
e all o

ur-ren
es of the alpha-numeri
 keyword alias1 with alias2 (ex
ept for those whi
h appear in
omment statements). Note that *define and *def are synonyms, as are *alias and *al.Having determined whi
h EDITOR ma
ros have been set, the pre
ompiler makes ase
ond pass through the sour
e
ode to look for *if define or *if alias statements. These

Pre
ompiling sour
e
ode 5determine whi
h segments of the program are to be in
luded in the pre
ompiled version ofthe sour
e
ode whi
h is ultimately sent to the
ompiler. The following lists the legal syntaxfor EDITOR *if statements.1. *if define,ma
ro { the following sour
e
ode is kept provided the ma
ro is de�nedby a *define statement somewhere in the �le.Note that the
omma following *if define," is optional. It was introdu
ed in orderto mimi
 HISTORIAN where it is not optional. Note to HISTORIAN users: thealias feature has no analogue in HISTORIAN .2. *if -define,ma
ro { the following sour
e
ode is kept provided the ma
ro is notde�ned by a *define statement somewhere in the �le.3. *if def,.not.ma
ro { same as 2. Note that def is an a

eptable abbreviation fordefine.4. *if def,ma
ro1.and.ma
ro2 { the following sour
e
ode is kept provided both ma
rosare de�ned by a *def statement somewhere in the �le.5. *if def,ma
ro1.or.ma
ro2 { the following sour
e
ode is kept provided either ma
rois de�ned by a *def statement somewhere in the �le.6. *if alias ma
ro.eq.phrase { the following sour
e
ode is kept provided the aliasma
ro has been set to the
hara
ter string phrase by an *alias statement somewherein the �le.7. *if al ma
ro.ne.phrase { the following sour
e
ode is kept provided the alias ma
rohas not been set to the
hara
ter string phrase by an *alias statement somewhere inthe �le. Note that *al is an a

eptable abbreviation for *alias.8. *else { the following sour
e
ode is kept if the sour
e
ode following the previous *if(and all the way to this *else statement) was not kept, i.e. if the truth value of theprevious *if is false. Note that *el is an a

eptable abbreviation.9. *endif {
loses the previous *if, *else stru
ture. All sour
e
ode following the*endif statement is not a�e
ted by the previous *if or *else statements. For every*if statement, there must be an *endif statement whi
h follows. Note that *ei is ana

eptable abbreviation.10. *
all de
kname { in
ludes the
ontents of the
ommon de
k de
kname at the lo
ationof the *
all statement. Note that *
a is an a

eptable abbreviation for *
all.Finally, one may insert
omment statements if desired by putting an asterisk in both
olumns 1 and 2. These
omments will appear in the master sour
e
ode where the userpla
es them, but will not be
opied over to the �le whi
h EDITOR prepares for the
ompiler.Following is a simple example showing how these statements
an be used. The fun
tionof the program is simply to return the time of day. Note that the line numbers in the �rst

Pre
ompiling sour
e
ode 6�ve
olumns are in
luded for referen
e only, and are not modi�
ations made by the EDITORpre
ompiler.Master sour
e �le:1 **2 ** Sele
t operating system. Choi
es are: UNICOS, CONVEXOS, SUNOS3 **4 *define UNICOS5 **6 ** Sele
t i/o subroutine by setting an alias for WRITE.7 **8 *alias WRITE write19 *
de
k impli
it10 impli
it none11 *
de
k
ommon12 *if define,UNICOS13
hara
ter*8 tod14 *endif UNICOS15 *if define,CONVEXOS16
hara
ter*9 tod17 *endif CONVEXOS18 *if define,SUNOS19
hara
ter*24 tod20 *endif SUNOS21
ommon /
om1 / tod22 *
de
k de
lare23 *
all impli
it24 *
all
ommon25 *de
k tod26
===+====1====+====2====+====3====+====4====+====5====+====6====+====7==27
28 program tod29
30
 PURPOSE: This program returns the time of day on various systems.31
32
---33
34 *
all de
lare35
36 *if define,UNICOS.or.CONVEXOS37 external date38 *endif UNICOS.or.CONVEXOS39 *if define,SUNOS40 external fdate41 *endif SUNOS42 external WRITE43
44
---45
46
 Get time of day ("tod").47
48 *if define,UNICOS.or.CONVEXOS49
all date (tod)50 *endif UNICOS.or.CONVEXOS51 *if define,SUNOS52
all fdate (tod)53 *endif SUNOS

Pre
ompiling sour
e
ode 754
55
 Write result to CRT using desired i/o routine aliased to WRITE.56
57
all WRITE58 stop59 end60
61 *de
k write162
===+====1====+====2====+====3====+====4====+====5====+====6====+====7==63
64
 subroutine write165 *if alias WRITE.eq.write166
67
 PURPOSE: This subroutine writes "tod" to the CRT.68
69
---70
71 *
all de
lare72
73
---74
75 write(6,2000) tod76 *if define,UNICOS77 2000 format('Time of day a

ording to the Cray is: ',a)78 *endif UNICOS79 *if define,CONVEXOS80 2000 format('Time of day a

ording to the Convex is: ',a)81 *endif CONVEXOS82 *if define,SUNOS83 2000 format('Time of day a

ording to the Sun is: ',a)84 *endif SUNOS85 *endif86 return87 end88
89 *de
k write290
===+====1====+====2====+====3====+====4====+====5====+====6====+====7==91
92 subroutine write293 *if alias WRITE.eq.write294
95
 PURPOSE: This subroutine writes "tod" to the CRT using a different96
 format than WRITE1.97
98
---99
100 *
all de
lare101
102
---103
104 write(6,2000) tod105 2000 format('Time of day is: ',a)106 *endif107 return108 end109
With the EDITOR ma
ros settings as de�ned in lines 4 and 8, the pre
ompiler would
onvert

Pre
ompiling sour
e
ode 8this
ode into the following form whi
h would be read by the
ompiler. Note that the linenumbers from the master
ode have been preserved.Pre
ompiled sour
e �le:26
===+====1====+====2====+====3====+====4====+====5====+====6====+====7==27
28
 program tod29
30
 PURPOSE: This program returns the time of day on various systems.31
32
---33
10 impli
it none13
hara
ter*8 tod21
ommon /
om1 / tod37 external date42 external write143
44
---45
56
 Get time of day ("tod").47
49
all date (tod)54
55
 Write result to CRT using desired i/o routine aliased to WRITE.56
57
all write158 stop59 end60
62
===+====1====+====2====+====3====+====4====+====5====+====6====+====7==63
64
 subroutine write166
67
 PURPOSE: This subroutine writes "tod" to the CRT.68
69
---70
10 impli
it none13
hara
ter*8 tod21
ommon /
om1 / tod72
73
---74
75 write(6,2000) tod77 2000 format('Time of day a

ording to the Cray is: ',a)86 return87 end88
90
===+====1====+====2====+====3====+====4====+====5====+====6====+====7==91
92 subroutine write2107 return108 end109
In this example, the EDITOR de�nitions are used to a

ount for the di�eren
es in system

Pre
ompiling sour
e
ode 9
alls under various operating systems (e.g., lines 12{20 in the master
ode). They may alsobe used to tailor a
ode so that the
ompiler will generate a binary
ode optimised for theproblem to be solved. For example, if the master sour
e
ode is one whi
h
omputes self-gravitating hydrodynami
al
ows and it has been determined that self-gravity is irrelevantto the problem at hand, one does not want to waste memory by de
laring gravitationalvariables, nor does one want to perform the
omputations ne
essary to evolve the unwantedgravitational potential. EDITOR de�nitions may be used to eliminate those portions ofthe
ode pe
uliar to the self-gravity feature, thereby streamlining the
ode for a non-self-gravitating problem.Note the two uses for alias ma
ros illustrated in this example. Aliases
an be used tosele
t the module to whi
h exe
ution is passed without having to
hange the body of thesour
e
ode itself (line 57). They
an also be used to prevent an unwanted segment of the
ode from being
ompiled (line 93). While the latter fun
tion may be performed by thede�nition ma
ros, the former may not and thus the alias feature represents a real extensionof the fun
tionality of HISTORIAN .Common de
ks (su
h as impli
it,
ommon, and de
lare beginning on lines 9, 11, 22respe
tively) appear in the pre
ompiled version of the
ode only if they are inserted inthe
ode by a *
all statement (e.g., line 34). Common de
ks not referred to by a *
allstatement will not appear in the pre
ompiled version of the
ode and, in parti
ular, the
ommon de
ks themselves are not e
hoed to the pre
ompiled version as separate modules.Common de
ks may
all other
ommon de
ks (e.g., lines 23 and 24), but they may not
allthemselves. Calls to
ommon de
ks may be nested (i.e.,
ommon de
k 1
alls
ommon de
k2 whi
h
alls
ommon de
k 3, et
.) as many as 10 deep, so long as none of the
ommonde
ks in the nest are the same (no
losed loops!).2.2 The NAMELIST extensionNamelists �rst appeared at the Lawren
e Livermore Labs around 1980 and was in
orpo-rated as a CTSS FORTRAN extension. Sin
e then, most operating systems o�er FOR-TRAN77
ompilers with namelist extensions, and namelist has be
ome a standard featureof FORTRAN90. However, until the arrival of FORTRAN90 (sometime in 1994!), there wasno namelist standard, and this
aused great heada
hes for the ZEUS development proje
twhi
h, in 1990, had to operate on three platforms (UNICOS, CONVEXOS, and SUNOS, thepre
ursor to SOLARIS). Thus, a portable namelist emulator was developed and EDITOR
an be instru
ted to repla
e all namelist syntax in the
ode with
alls to a namelist library,whi
h in
ludes features that the FORTRAN90 namelist does not (e.g., ability to assign val-ues to 2D arrays, allowing variables passed by a subroutine argument list to be namelistvariables). The dis
ussion in this subse
tion, therefore, is restri
ted to the EDITOR
avourof namelists.Namelists provide an extremely useful and
exible way of supplying user-determined datato a program. Traditionally, FORTRAN sour
e
odes have relied upon prompting users fordata and/or formatted reads to dis
 �les. For many input parameters, the former
an taxthe user's patien
e while the latter
an be frustrating be
ause of the need to
omply witha stri
t format for the input data. Namelists eliminate these problems, as illustrated in thefollowing example:

Pre
ompiling sour
e
ode 101 integer in, jn2 parameter (in=100, jn=100)3
4
hara
ter*128
s
alar,
ve
tor(in),
array(in,jn)5 integer is
alar, ive
tor(in), iarray(in,jn)6 real rs
alar, rve
tor(in), rarray(in,jn)7 logi
al ls
alar, lve
tor(in), larray(in,jn)8
9 ...10 ...11
12
 Open the ASCII file "infile" whi
h
ontains the namelist data and13
 ASCII file "outfile" to whi
h a namelist summary may be written.14
15 open (51, file='indata', status='old')16 open (52, file='outdata', status='unknown')17
18
 Define list of parameters whi
h may be set by namelist "data1".19
20 namelist / data1 /
s
alar, is
alar, rs
alar, ls
alar21 ,
ve
tor, ive
tor, rve
tor, lve
tor22 ,
array , iarray , rarray , larray23
24
 Default values for namelist parameters25
26
s
alar = ' '27 is
alar = 028 rs
alar = 0.0e0029 ls
alar = .false.30 do 10 i=1,in31
ve
tor(i) = ' '32 ive
tor(i) = 033 rve
tor(i) = 0.0e0034 lve
tor(i) = .false.35 10
ontinue36 do 30 j=1,jn37 do 20 i=1,in38
array(i) = ' '39 iarray(i) = 040 rarray(i) = 0.0e0041 larray(i) = .false.42 20
ontinue43 30
ontinue44
45
 Read namelist from logi
al unit 51.46
47 read (51, data1)48
49
 Write a namelist summary to logi
al unit 52.50
51 write (52, data1)Namelists read data from an ASCII namelist input data �le (named indata in thisexample) whi
h the user prepares before exe
uting the binary. Line 15 is an ordinary openstatement appropriate for linking an existing ASCII dis
 �le to the program at exe
utiontime. Unit 51 was
hosen arbitrarily. Most any unit number other than 5 or 6 may be
hosen.The namelist statement on line 20 de�nes whi
h variables belong to the namelist data1 and

Pre
ompiling sour
e
ode 11thus whi
h variables may be assigned values in the namelist input data �le indata. Line 47is where the data in the namelist data1 are read from indata. As many namelists as desiredmay be so de�ned and read throughout the program and for every namelist de�ned, thereshould be a
orresponding entry in the namelist input data �le indata, as des
ribed below.Line 51 writes a summary of the namelist settings to unit 52. This is not a ne
essary part ofthe namelist stru
ture, and many users may not want to bother with this feature. Indeed,many implementations of namelist don't even o�er the option to write a summary of thenamelist settings. The EDITOR namelist does, however, support the write (or equivalently,print) statement.While it is not ne
essary, it may be useful to assign all the namelist parameters defaultvalues before the read statement (lines 26 through 43). This is so that in
ase the userdoes not assign values to all the parameters in the namelist input data �le (by no means arequirement), all parameters will be initialised to something and hopefully to a useful defaultvalue.To use the EDITOR namelist, one must abide by the following rules:1. Do not use namelist as a variable name in any module that reads data from namelists.2. Do not name any subroutines nlsda
nn, where nn varies from 01 to 24.3. Link the library namelist.a for single pre
ision appli
ations, and dnamelist.a fordouble pre
ision appli
ations to your
ode during the link step. The namelist.f anddnamelist.f sour
e
odes and the s
ript �les to build the libraries are in the dire
torynmlst of dzeus35.tar downloaded from www.i
a.smu.
a/zeus3d).Otherwise, use namelists as indi
ated above, and prepare your namelist input data �le as inthe following example:1
 ==+====1====+====2====+====3====+====4====+====5====+====6====+====7==2 $data1 rs
alar=1.0, is
alar=1, ls
alar=.true.,
s
alar='ab
defg'3 , ive
tor=3*1,2,3, ive
tor(20:30)=2, ive
tor(40)=4*34
 , ive
tor(1)=1,1,1,2,3, ive
tor(20)=11*2, ive
tor(40)=3,3,3,35 , iarray(1:100,1:100)=1, iarray(1:10,91:100)=26 ,
ve
tor(3)="ab
defghijklmnopqrstuvwxyz01234567890ABCDEFGHIJKL7 MNOPQRSTUVWXYZ", lve
tor(98)=.t.,.false.,.f. $Various aspe
ts of this data �le warrant dis
ussion. Again, line numbers are not part of thedata �le; they are in
luded for referen
e only.1. Ea
h line in a namelist input data �le may be at most 72
hara
ters wide. Anythingbeyond the 72nd
olumn will be ignored. Thus, one might
onsider in
luding a numberline, su
h as line 1, whi
h will allow one to see at a glan
e whether the data extendbeyond the 72nd
olumn.2. Only one of three
hara
ters are allowed in
olumn 1:
, C (for \
ommenting out"lines as in lines 1 and 4), or a blank. Anything else will
ause an error message to begenerated and exe
ution to abort. Note that all lines
ommented out will be e
hoedto the CRT at exe
ution time.

Pre
ompiling sour
e
ode 123. Only one of two
hara
ters are allowed in
olumn 2: the $ sentinel (for opening anamelist), or a blank. Anything else will
ause an error message to be generated andexe
ution to abort.4. The �rst word to appear after the opening $ sentinel should be the namelist name asde�ned in the program|in this
ase, data1. There may be spa
es between the opening$ sentinel and the namelist name, but nothing else.5. After the namelist name, the user is free to set whi
hever variables within the namelistto whatever values are desired. Note that the order in whi
h the variables are set neednot be the same as the order in whi
h they are listed in the namelist statement. Onedoes not need to set all the variables listed either. However, any variable set in thedata �le whi
h is not listed in the
orresponding namelist statement in the programwill generate an error message and abort exe
ution.6. Variable assignments may appear anywhere between and in
luding
olumns 3 and 72.Variable assignments are separated by a
omma and as many (in
luding none) blanksas desired.7. Variables are set by typing the variable name, followed by an equals sign (=), followedby the desired value in a format
onsistent with the variable type.8. Legal values whi
h may be assigned to a logi
al variable are .true., .t., .false., or.f., where the �rst two and last two are synonyms. Note that the periods must bein
luded.9. Chara
ter strings are set by en
losing the desired text inside a pair of single quotes ora pair of double quotes. If a
hara
ter string is too long to �t within the 72
olumn
onstraint, one may type all the way to the 72nd
olumn and resume the string inthe third
olumn on the following line. Note that even with the
hara
ter string sosplit, only one opening and one
losing quote should be used (e.g., lines 6 and 7). This\wrap-around" feature is supported by the EDITOR namelist for
hara
ter variableassignments only.10. Hollerith strings are not supported by the EDITOR namelist. Use true
hara
tervariables.11. Setting values for ve
tors may be done in a number of ways, as illustrated on lines 3and 4. Thus ive
tor=3*1,2,3 will set ive
tor(1)=1, ive
tor(2)=1, ive
tor(3)=1,ive
tor(4)=2, and ive
tor(5)=3; ive
tor(20:30)=2 will set in
lusively the 20ththrough 30th elements of ive
tor to 2; and ive
tor(40)=4*3 will set the 40th through43rd elements of ive
tor to 3. Note that line 4 whi
h is
ommented out would performthe identi
al assignments. Note that ive
tor=3*1,2,3 is, by
onvention, identi
al toive
tor(1)=3*1,2,3. The redundan
y in notation for assigning ve
tor values is sothat namelist input data �les prepared for the CTSS namelist may be read by theEDITOR namelist.

Pre
ompiling sour
e
ode 1312. Setting values for rank 2 arrays may be done only by using the full
olon notation(line 5). This notation is pe
uliar to the EDITOR namelist and, so far as is known bythe author, is not supported by FORTRAN90 namelist. Setting values for arrays ofgreater rank than 2 is not supported.13. The last
hara
ter on the last line of a namelist assignment must be the
losing $sentinel. Be
areful that this does not go beyond the 72nd
olumn. If it is left out orinadvertently pla
ed beyond the 72nd
olumn, an error message will be generated, andexe
ution will abort.14. One is free to de�ne as many namelists as desired in the sour
e
ode. However, on
eone namelist is de�ned, it must be read from the namelist input data �le by a readstatement (line 47 above) before a new namelist is de�ned. Thus, only one namelistmay be pending at a time. This is not a restri
tion of FORTRAN90 namelist.15. The order of the namelists (not the variables, but the namelists themselves) must bethe same in the namelist input data �le as they are read by the sour
e
ode. Thus, ifthe sour
e
ode is written so that namelist data2 is read after namelist data1, then thevariable assignments for data2 must appear after the variable assignments for data1in the namelist input data �le. If data2 should appear before data1 in the namelistinput data �le, the read to data1 will
ause the data for data2 to be skipped. Thus,when it
omes time to read data2, these data will not be found and an error messagewill ensue.16. For every namelist read by the sour
e
ode, there must be an entry with the samenamelist name in the namelist input data �le. If, for example, none of the parametersfor namelist data2 are to be assigned values, it is still ne
essary to in
lude a minimalentry in the namelist input data �le of the form:$data2 $Failure to do so will generate an error message and abort exe
ution.Should any of these rules be broken, namelist error messages are generated at run time.These are dis
ussed in xA.4.2.3 Inserting mi
ro-tasking dire
tivesWhile single pro
essor speed is still in
reasing with ea
h new te
hnology released, most of theprogress in raw
ompute power over the past de
ade has been through parallelisation. Twoparadigms for parallel
omputing have emerged. The \Beowulf" is an example of a distributedmulti-pro
essing environment in whi
h memory is distributed over the
onstituent pro
essors.A great deal of thought must be given to how the pro
essors
ommuni
ate with ea
h other,and for many appli
ations this
an be a very time-
onsuming task. Shared multi-pro
essing(SMP) is the se
ond and more expensive parallel environment, but
an simplify enormouslythe task of parallelising a
ode. On an SMP, all pro
essors have a

ess to the same memory

Pre
ompiling sour
e
ode 14and
ommuni
ation among the pro
essors is greatly redu
ed. The \auto-parallelisation"feature of EDITOR is designed for appli
ations on SMP ar
hite
tures.There are two basi
 strategies to \multi-tasking" (i.e., parallelising) a sour
e
ode. Onemay \ma
ro-task" a
ode by arranging for the individual pro
essors to work on individual
alls to one or more subroutine(s) whose results are independent of ea
h other, and/orone may \mi
ro-task" a
ode by sending separate iterations through a do-loop to separatepro
essors. Of the two mi
ro-tasking is really the only way to fully exploit the inherentparallelism in a
ode.Criti
al to mi
ro-tasking a
ode is the
on
ept of \private" and \shared" variables.Private variables are those for whi
h ea
h pro
essor has a separate and independent
opy.Shared variables are those whi
h all pro
essors read from and perhaps write to. The rulesfor determining whi
h variables are private and whi
h are shared are fairly straight forward.A variable is private if:1. The �rst time it appears within a do-loop stru
ture, it appears on the left hand sideof an equals sign; and2. It is not indexed by the outer do-loop index.Otherwise the variable is shared. The key to mi
ro-tasking is to identify
orre
tly whi
hvariables are private and whi
h are shared|a task known as \s
oping". Only if the variablesare s
oped properly
an a mi
ro-tasked
ode be generated whi
h yields the same results asthe original serial
ode. A number of platforms o�er
ompiler options to help users ma
ro-task and mi
ro-task their
odes. In developing the ZEUS
ode, the author found that theauto-tasking features provided by Cray around 1990 often made s
oping errors, and/or weretoo timid in some of the loops they attempted to s
ope and a more aggressive and a

urateauto-s
oping feature was in
orporated into EDITOR.After s
oping the variables in a nested loop, EDITOR inserts the appropriate \
mi
$"auto-tasking dire
tives re
ognised by UNICOS and SUNOS FORTRAN
ompilers or \
$omp"for OpenMP at the beginning of the s
oped loop. Should the
ode then be passed throughthe
ompiler's auto-tasker, the presen
e of these
mi
$ or
$omp statements will tell theauto-tasker that these loops have already been s
oped and parallelised, and
an be passedover.For all other parallelisation opportunities, the vendor's auto-tasking tools should be used.Indeed, the auto-s
oping features of most vendors
ompilers may by now be superior toEDITOR's and it may be better to use the vendor's auto-parallelisation features ex
lusively.Note that the EDITOR auto-s
oper will only s
ope those variables de
lared at the begin-ning of the program module. Unde
lared s
alars (allowed when impli
it none is not used)will probably be s
oped
orre
tly by the
ompiler's auto-tasker by virtue of the autos
ope(default(auto)) dire
tive in
luded in all EDITOR-supplied
mi
$ (
$omp) statementsbut, in the author's experien
e, not ne
essarily.Below are some examples using Cray's
mi
$ syntax to illustrate the use of the EDITORauto-s
oper. There is a one-to-one
orresponden
e between all
mi
$ and
$omp
ommandswhi
h
an be gleaned from the
ode (edit21) or from any OpenMP manual if the reader isinterested. In all
ases, assume that all variables in
luding s
alars have been spe
i�
ally

Pre
ompiling sour
e
ode 15de
lared as real, integer, et
. at the beginning of the program module. Note that the linenumbers in the �rst 5
olumns are in
luded for referen
e and are not modi�
ations made bythe EDITOR pre
ompiler to the sour
e
ode.Example 1: A straight forward nested loop. EDITOR has s
oped the nested loop and hasinserted the appropriate
mi
$ dire
tives. Only the outer loop is mi
ro-tasked. On a ve
torma
hine su
h as a Cray, the inner loop will be ve
torised.1
mi
$ do all private (k, kp1, j, jp1, i, ip1, b1av, b2av, b3av)2
mi
$1 shared (kmax, jmax, imax, b1, b2, b3, btot)3
mi
$1 autos
ope4 do 30 k=1,kmax5 kp1 = k + 16 do 20 j=1,jmax7 jp1 = j + 18 do 10 i=1,imax9 ip1 = i + 110 b1av = b1(i,j,k) + b1(ip1,j ,k)11 b2av = b2(i,j,k) + b2(i ,jp1,k)12 b3av = b3(i,j,k) + b3(i ,j ,kp1)13 btot(i,j,k) = 0.25 * (b1av**2 + b2av**2 + b3av**2)14 btot(i,j,k) = amax1 (sqrt(btot(i,j,k)), tiny)15 10
ontinue16 20
ontinue17 30
ontinueThe variable tiny (line 14) was not s
oped (i.e., EDITOR did not in
lude it in either theprivate or the shared lists in lines 1 and 2) be
ause in the program from whi
h this examplewas extra
ted, tiny is a parameter and not a variable. Parameters are not s
oped sin
e the
ompiler repla
es parameters with their assigned numeri
al values.Fun
tions and subroutines should not be s
oped. Note that the EDITOR auto-s
operis able to distinguish between proper arrays with argument lists (su
h as btot in lines 13and 14) whi
h are de
lared and s
oped, and intrinsi
 fun
tions (su
h as sqrt in line 14)whi
h are not de
lared, nor s
oped. Similarly, user-written fun
tions whose attribute (real,integer, et
.) is not de
lared will not be s
oped. User-written fun
tions whose attributeis de
lared will not be s
oped provided they are also de
lared as external . A user-writtenfun
tion with de
lared attribute not de
lared external will be s
oped, and this may or maynot have deleterious e�e
ts.Example 2: If dependen
ies and/or redu
tions are found in the loop, the loop, as written,is not parallelisable and is not s
oped. A redu
tion is when the value assigned to a privatevariable depends on the value of that variable as determined by a previous iteration, as isthe
ase for imax below, or on another element of that variable should the variable be anarray. A dependen
y is where a variable is �rst used as a shared variable, then as a privatevariable, as is the
ase for ival below. A loop
ontaining either a dependen
y or a redu
tionwill, in general, generate di�erent answers depending upon whether it is run serially or inparallel and thus is non-parallelisable. Most
ompilers are sophisti
ated enough to rewrite
ode to eliminate most redu
tions and some dependen
ies and thus if EDITOR �nds a non-parallel loop, it inserts a \No
mi
$-dire
tive report" below the loop (in
omments) and

Pre
ompiling sour
e
ode 16adds no
mi
$ statement before it so that the
ompiler
an have to have a
ra
k at it if itsauto-parallelisation feature is enabled.In addition, I/O and
hara
ter operations within a loop will prevent parallelisation.1 imax = 02 ival = i13 do 40 j=j1,j24 do 30 i=i1,i25 iarray(i,j) = ival6 ival = i + 17 imax = max0 (imax, iarray(i,j))8 30
ontinue9 40
ontinue10
***11
*********** EDITOR NO-CMIC$-DIRECTIVE REPORT FOR LOOP 40 ***********12
***13
** No parallel dire
tives issued be
ause the following variable(s) **14
** was/were found to generate dependen
ies or redu
tions: **15
** ival (dependen
y) **16
** imax (redu
tion) **17
***1 do 130 j=j1,j22 do 120 i=i1,i23
hqty(i,j) =
har (iqty(i,j))4 120
ontinue5 write (iodmp) (
hqty(i,j), i=i1,i2)6 130
ontinue7
***8
*********** EDITOR NO-CMIC$-DIRECTIVE REPORT FOR LOOP 130 ***********9
***10
** Char. operations prevented parallel dire
tives from being issued. **11
** I/O prevented parallel dire
tives from being issued. **12
***Example 3: O

asionally, the EDITOR autotasker needs some help auto-s
oping a nestedloop. On line 12 in the example below, the variable ar is indexed by mm rather than theouter loop index ny, and is assigned a value whi
h depends on some other element of ar.Te
hni
ally, this
onstitutes a redu
tion and thus the loop is not parallelisable by EDITOR.However,
areful examination of the index mm shows that for every value of ny, there is aunique value of mm and thus mm is really a \ghost" of ny. Hen
e, ar should a
tually be s
opedas a shared variable and a redu
tion on a shared variable does not inhibit parallelism. EDI-TOR is not sophisti
ated enough to realise the link between ny and mm, and thus determinesthat this loop is not parallelisable by virtue of the redu
tion.Of
ourse, the user would know that in fa
t, ar should be treated as a shared variable,and this information
an be
onveyed to EDITOR by inserting a dummy statement, su
h asline 6 in the example below. Dummy statements have a
** in the �rst three
olumns andare s
oped by the EDITOR auto-tasker. However, they are treated as inert
omments bythe
ompiler. The dummy statement indexes ar with ny, and thus ar is s
oped as shared.But this introdu
es another problem: If a variable is �rst s
oped as shared, then used laterin the loop as a private variable (line 12), this
onstitutes, te
hni
ally, a dependen
y! It is abogus dependen
y to be sure, but EDITOR doesn't know that. Thus, the additional �x online 1 is required. The dire
tive
*ipdepipred instru
ts the EDITOR auto-tasker to ignore

Pre
ompiling sour
e
ode 17any parallel dependen
ies and any parallel redu
tions it may en
ounter in the nested do-loopstru
ture immediately following the dire
tive and auto-s
ope it anyway. Note that EDITORauto-s
oping dire
tives di�er from regular EDITOR
ommands in that they start with a
*rather than simply *. Other su
h dire
tives in
lude
*ipdep (ignore parallel dependen
iesonly) and
*ipred (ignore parallel redu
tions only). Inserting both the dummy statementand the
*ipdepipred dire
tive allows the EDITOR auto-s
oper to s
ope the loop and insertthe
orre
t
mi
$ statements just before the beginning of the outer loop (and thus right afterthe
*ipdepipred dire
tive).1
*ipdepipred2
mi
$ do all private (ny, m1, n1, nx, mm, nn)3
mi
$1 shared (nyz, ar, m0, nxz, n0)4
mi
$1 autos
ope5 do 40 ny=1,nyz6
** ar(ny) = 0.07 m1 = m0 + 2 * (ny - 1) * nxz8 n1 = n0 + 2 * (ny - 1) * nxz9 do 30 nx=1,nxz10 mm = m1 + nx11 nn = n1 - nx + 112 ar(mm) = ar(nn)13 30
ontinue14 40
ontinueExample 4: There are two situations known in whi
h the EDITOR auto-s
oper will in
or-re
tly de
lare a loop safe for mi
ro-tasking. The �rst
ase is where a goto statement appearswithin the nested do-loop stru
ture. If a goto statement redire
ts exe
ution to somewhereelse within the loop, parallelism is not a�e
ted and multi-tasking is desirable. However, ifexe
ution is taken outside the nested loop stru
ture, parallelism is destroyed, and the loopshould not be multi-tasked. The EDITOR auto-s
oper has not been endowed with the abil-ity to distinguish where exe
ution is redire
ted, and so blindly s
opes the loop. In this way,the EDITOR auto-s
oper is perhaps overly aggressive. Thus, the user should be aware ofnested loops with goto statements whi
h redire
t exe
ution outside the loop and instru
tthe EDITOR auto-s
oper to pass over the loop. This is done with the
*nopar dire
tive.1
*nopar2 do 30 i=i1,i23 do 20 k=k1,k24 do 10 j=j1,j25 if (d(i,j,k) .gt. fa
tor*d(ism1,j,k)) go to 406 10
ontinue7 20
ontinue8 30
ontinue9 40
ontinueNote that the
*nopar is interpreted only by EDITOR. Thus, if sour
e
ode uns
opedby the EDITOR auto-s
oper is passed through the
ompiler's auto-tasker, an attempt maystill be made by the
ompiler to generate the appropriate
mi
$ dire
tives.Example 5: The se
ond
ase where the EDITOR auto-s
oper breaks down is more subtle.The EDITOR auto-s
oper will s
ope nested loops in whi
h there is a
all to a subroutine.

Pre
ompiling sour
e
ode 18If the user determines that the subroutine
all destroys parallelism, the loop should not bes
oped, and the user should pla
e a
*nopar dire
tive before the outer loop. Now, assumingthat the subroutine
all does not destroy parallelism, one still has to be
areful. There maystill be the problem of s
oping the variables in the subroutine argument list. In the examplebelow, the variable vp is assigned values by the subroutine
all and not by an assignmentstatement expli
itly in the loop itself. Thus vp is intrinsi
ally a private variable. However,without the dummy statement (line 7), the �rst appearan
e of vp is not to the left of anequals sign, and thus it would be s
oped erroneously as shared (EDITOR is not sophisti
atedenough to sear
h for the subroutine and s
ope the variables in the
alling list based on the
ontents of the subroutine). Thus, dummy line 7 for
es vp to be s
oped as private.There is still a potential trap, however. Normally, lo
al variables within a subroutinewill be
onsidered private for the purpose of multitasking loops that
ontain
alls to thatsubroutine. This is as it should be. However, the same lo
al variables will be treated asshared if they are de
lared to be in
ommon or equivalen
ed to variables in
ommon by thesubroutine
alled in the loop. This will invariably yield in
orre
t and non-repeatable results.Note that in the example below, vtmp and/or vp may be part of a
ommon blo
k. Sin
e the
mi
$ dire
tives expli
itly tell the
ompiler that these variables are private, extra
opies ofthe variables will be made regardless of whether they are in
ommon or not. But if thereis no way to tell the
ompiler that
ommon variables in a subroutine
alled within a loopare to be treated as private, this will
reate irreprodu
ible results. Unless you know su
h
onstru
ts will not
ause problems, it is best to avoid
alls to su
h routines inside a loop youwish to mi
ro-task, or avoid mi
ro-tasking the loop altogether.1
mi
$ do all private (j, i, vtmp, vp)2
mi
$1 shared (j1, j2, i1, i2, v2, vg2, v2star, qty)3
mi
$1 autos
ope4 do 60 j=j1,j25 do 20 i=i1,i26 vtmp(i) = v2(i,j) - vg2(j)7
** vp (i) = 0.08 20
ontinue9
all x3z
1d (vtmp, vp)10 do 30 i=i1,i211 v2star(i,j) = vp(i) * qty(i)12 30
ontinue13 60
ontinue2.4 Splitting a sour
e
ode; generating a make�leFor
ode developers who prefer to work with a single master �le
ontaining all the programmodules, UNIX often poses a dilemma. Two useful UNIX fa
ilities, MAKE and DBX, work bestif the sour
e
ode is split into individual �les, one for ea
h program module. Using FSPLIT isunsatisfa
tory be
ause it pays no attention to whi
h modules have been
hanged and whi
hhave not, for
ing MAKE to re
ompile all the program modules, not just the ones that were
hanged.The EDITOR pre
ompiler o�ers an easy way around this problem. One may instru
tthe pre
ompiler to make yet another pass through the master sour
e �le and this time splitit into individual �les for ea
h module. The naming
onvention for these �les is as one

Pre
ompiling sour
e
ode 19might hope|the name of the module with a spe
i�ed extension (default is .f). One
aneven spe
ify in whi
h dire
tory these �les should be pla
ed. Before writing a �le to dis
, thepre
ompiler will
he
k to see if there is already a �le by that name on dis
 in the spe
i�eddire
tory. If there is not, a new �le is
reated. If there is, the pre
ompiler
ompares line forline the version of the module it just split o� the master �le with the dis
 �le. If the twodi�er, the dis
 �le is updated. If the two are identi
al, the dis
 �le is not updated. In thisway, MAKE will not re
ompile unaltered program modules. For large sour
e
odes and slow
ompilers, this is no small
onsideration.At the same time, the EDITOR prepro
essor will generate a make�le if makename isspe
i�ed (see x2.5). The user may tell EDITOR whi
h
ompiler,
ompiler options, loader,and loader options to use in the make�le. If you need to
ompile a few routines with di�erent
ompiler options than the majority, you may spe
ify these spe
ial
ompiler options as wellas the routines for whi
h these spe
ial options apply. In addition, the desired name for thebinary exe
utable may be spe
i�ed. Thus, on
e the EDITOR prepro
essor has pro
essedthe master sour
e
ode, the
ode may be
ompiled simply by typing:make -f makenamewhere makename is the name of the make�le spe
i�ed by the user.2.5 The pre
om.s s
ript �leA pre
ompiled version of a FORTRAN sour
e
ode may be generated by issuing the following
ommand:
sh -v pre
om.swhere pre
om.s is an ordinary C-shell s
ript �le as follows:1 #============== SOURCE FILE TO PRECOMPILE A SOURCE CODE ===============#2 #3 #=======================================> Get files from home dire
tory.4 if(! -e xedit21)
p USERID/editor/xedit21 .5 #----------------------> If ne
essary,
reate the dire
tory "DIRECTORY".6 if(! -e DIRECTORY) mkdir DIRECTORY7 #-----------------------> Create the input de
k for EDITOR, and exe
ute.8 rm -f inedit9
at << EOF > inedit10 \$editpar inname='SOURCECODE'11 , ibanner=1, job=4, idump=1, inmlst=1, iutask=1, safety=0.412 , iupdate=1, ext='.f', bran
h='DIRECTORY'13 , makename='MAKEFILE', xeq='EXECUTABLE'14
 ,
options='-g -C -ftrap=
ommon', loptions='-g'15 ,
options='-fast', loptions='-fast'16 , libs='namelist.a' \$17 EOF18
hmod 755 xedit2119 ./xedit21A soft
opy of pre
om.s may be found in the editor dire
tory of dzeus35.tar downloadedfrom www.i
a.smu.
a/zeus3d. Note that the line numbers in the �rst �ve
olumns are notpart of the �le and are in
luded only for referen
e.

Pre
ompiling sour
e
ode 20Comments for C-shell s
ript �les are indi
ated by a # in
olumn 1. For all EDITORC-shell s
ript �les listed in this manual, there are, by
onvention, two types of
omments.Those lead by a double line (==========>) indi
ate that the following portion of the s
ript�le should rarely, if ever, require
hanging. Those lead by a single line (---------->)indi
ate segments of the s
ript �le whi
h will probably have to be altered every time thes
ript �le is used.The �rst segment of pre
om.s
opies the ne
essary �les (in this
ase, just the edit21exe
utable) to the present working dire
tory. Note that the UNIX phrase \if(! -e ...)"ensures that the named �le will not be retrieved if it already exists in the pwd.The se
ond segment
reates a dire
tory on dis
 into whi
h all sour
e �les split from themaster
ode during pre
ompilation (x2.4) and all
orresponding obje
t and listing �les arepla
ed, should this option be used.The third segment is where the input parameters for EDITOR are spe
i�ed. Inputparameters are read in by a \namelist", as dis
ussed in x2.2. Spe
ifying the parameters inthe namelist editpar is how EDITOR is
ontrolled. In the example, both SOURCECODE andDIRECTORY (as well as all words in all
aps) have to be spe
i�ed by the user. Note that the$ sentinel is pre
eded by a ba
kslash (\). This prevents the s
ript �le from interpreting the$ as a
ontrol
hara
ter and instead treats it as an ASCII
hara
ter to be passed (withoutthe leading ba
kslash) to the text �le inedit.There are 45 valid namelist parameters in editpar, but only 20 are relevant for pre
om-piling sour
e
ode. These in
lude six general parameters whi
h all or most EDITOR jobsuse, and 14 additional parameters pe
uliar to PRECOM.parameter des
ription defaultGENERALinname name of sour
e
ode to be edited (
hara
ter*64).ibanner =1 => print banner to s
reen at beginning of exe
ution 0=0 => no bannerjob =1 => number lines in sour
e
ode 1=2 => tidy sour
e
ode (retarget, indent, alphabetise)=3 => update sour
e
ode with
hange de
ks=4 => prepare sour
e
ode for
ompilation.=5 =>
ompares two files and reports lo
ation of first"ndiff" differen
es.=6 => splits master file into module files.=7 =>
on
atenates module files to master file.idump =1 => diagnosti
 dumps are written to "output". 0=0 => no diagnosti
 dumps.outname name of outfile. If unspe
ified, outfile will be nameda

ording to internal naming
onvention (
hara
ter*64).safety Memory management parameter. k2*safety lines of 0.0"inname" are read at a time. 0.0 => 0.9 (job=1,2,5,6,7),0.4 (job=3,4)PRECOM (job=4)inmlst =0 => leave NAMELIST and asso
iated I/O alone. 0>0 => substitute all o

urren
es of NAMELIST andasso
iated I/O for
alls to subroutines in(D)NAMELIST.A. A maximum of "inmlst" assignments

Pre
ompiling sour
e
ode 21
an be made in the input de
k per NAMELIST."inmlst"=1 => 1000.iutask =0 => no mi
rotasking attempted 0=1 => insert Cray mi
rotasking dire
tives (
mi
$)in front of parallelisable nested do-loops.=2 => insert OpenMP parallelisation dire
tives (
$omp)in front of parallelisable nested do-loops.iupdate =0 => PRECOMpiled sour
e
ode is dumped to one file. 0=1 => PRECOMpiled subroutines stored to separate files.Subroutine is written only if it is different fromversion on dis
, or if it doesn't exist on dis
.bran
h
hara
ter*32 string indi
ating default dire
tory in blankwhi
h to write subroutine files.ext desired extension for files (
hara
ter*8) '.f'makename name of makefile to be
reated (
hara
ter*16). If blankblank, no makefile is
reated. The files
ompiled byMAKE are those in the dire
tory 'bran
h'.
ompiler spe
ifies
ompiler to be used by MAKE. UNICOS 'f90'(
hara
ter*32) CONVEXOS 'f
 -
'SUNOS, AIX, LINUX 'f77 -
'
options spe
ifies
ompiler options. For f90 (UNICOS), blankthese are appended to the string '-b \$*.o', whi
h isneeded for the makefile. Similar strings for SUNOS,CONVEXOS, LINUX, and AIX (
hara
ter*128).spe

opt spe
ifies
ompiler options for spe
ial de
ks named in blankarray spe
dk. O

asionally, one needs to
ompile a fewroutines with spe
ial
ompiler options in order for the
omputations to be done
orre
tly (
hara
ter*128).spe
dk those de
ks to be
ompiled with
ompiler options blankspe

opt (
hara
ter*16(k4)).loader spe
ifies loader to be used by MAKE. UNICOS 'segldr'(
hara
ter*32) CONVEXOS 'f
'SUNOS, AIX, LINUX 'f77'xeq name of exe
utable to be
reated by MAKE (
hara
ter*64to allow for dire
tory spe
ifi
ation as well, defaultis 'inname' with the extension '.x').loptions spe
ifies loader options other than -o. These are blankappended to '-o \$(EXE)', whi
h is needed for themakefile (
hara
ter*128).libs are the libraries to be linked by the loader. As many blanklibraries
an be spe
ified as will fit in
hara
ter*512.Some notes:1. Default name to be given the pre
ompiled dis
 �le (outname) is inname with theextension .f.2. There are OS-dependent defaults for the
ompiler and loader. In the example ofpre
om.s listed above, there are two possible
ompiler options spelled out. The �rst(line 14,
ommented out) is the setting for full diagnosti
s and to enable dbx for f77 onSUNOS (AIX, LINUX). Line 15 (not
ommented out) gives the appropriate
ompileroptions for full optimisation on SUNOS (AIX, LINUX).3. EDITOR is unable to interpret tab
hara
ters. For programmers who habitually usetabs in their sour
e
ode, these should all be repla
ed manually with the appropriatenumber of blanks before attempting to prepro
ess it with EDITOR.

Pre
ompiling sour
e
ode 224. Should the EDITOR pre
ompiler dete
t any EDITOR syntax errors, EDITOR will in-sert an error message immediately following the o�ending statement in the pre
ompiled�le (with the .f extension). Dete
tion of error message will render the pre
ompiled�le unusable for
ompilation purposes, and may prevent additional passes through the
ode requested by the user (repla
ing namelists, for example). The user will be toldthat errors were dete
ted and how to �nd them in the pre
ompiled dis
 �le. On
ethe errors are
orre
ted in the master �le, the user
an attempt to pre
ompile the �leagain. See xA for a des
ription of the error messages generated by EDITOR.

Generating a numbered listing 233 NUMBER: Generating a numbered listing3.1 Reformatting a �leThe NUMBER feature of EDITOR will take as input any ordinary ASCII sour
e
ode andreformat it so that ea
h line of the sour
e
ode appears with various labels. By default, aseparate �le (whose name is the same as the input �le with the extension .n appended) is
reated
ontaining the reformatted sour
e listing. The original �le is left as is.Ea
h line is labelled with as many as 6 labels. The �rst and third
olumns of thereformatted �le is the line number sin
e the beginning of the �le, with the sour
e
ode itself(72
hara
ters wide) in the se
ond
olumn. The fourth
olumn is the number of exe
utablestatements (i.e., not in
luding
omments and
ontinuation lines) sin
e the beginning of the
urrent module. The statement number takes into a

ount the number of statements impliedby ea
h *
all statement (x2.1). This is useful, for example, if
ompiler and/or debuggerdiagnosti
s refer to the exe
utable statement number within a module, rather than the ASCIIline number as more modern
ompilers and debuggers do. The �fth
olumn is the number oflines sin
e the beginning of the
urrent module (see inumber below). The sixth
olumn is the\group" name in whi
h the
urrent module is grouped (x2.1), while the seventh
olumn liststhe name of the
urrent module. The user has some
ontrol over what labels are put on ea
hline (see inumber below) and how the number of exe
utable statements sin
e the beginningof the
urrent module is
omputed (see ix
lude below). A full
ompliment of labels willexpand an ordinary 72
olumn FORTRAN sour
e listing to 132
olumns, so an appropriateprinter must be used to print out the reformatted listing. In addition, EDITOR may beinstru
ted to pla
e a table of
ontents at the beginning of the listing. To aid in lo
ating amodule rapidly, the table of
ontents list the modules both sequentially and alphabeti
ally.3.2 The number.s s
ript �leA sour
e listing may be reformatted with NUMBER by issuing the following
ommand:
sh -v number.swhere number.s, is as follows:1 #============= SOURCE FILE TO CREATE A NUMBERED LISTING ===============#2 #3 #=======================================> Get files from home dire
tory.4 if(! -e xedit21)
p USERID/editor/xedit21 .5 #-----------------------> Create the input de
k for EDITOR, and exe
ute.6 rm -f inedit7
at << EOF > inedit8 \$editpar inname='SOURCECODE'9 , ibanner=1, job=1, inumber=3, itable=1, ix
lude=1 \$10 EOF11
hmod 755 xedit2112 ./xedit21A soft
opy of number.s may be found in the editor dire
tory of dzeus35.tar downloadedfrom www.i
a.smu.
a/zeus3d.

Generating a numbered listing 24The �rst segment gets xedit21 from the user's home dire
tory, if needed. The se
ondsegment prepares the input de
k for EDITOR appropriate for reformatting a sour
e listing.In addition to the general namelist parameters des
ribed in x2.5, there are three namelistparameters whi
h may be used spe
i�
ally to
ontrol NUMBER.parameter des
ription defaultNUMBER (job=1)inumber =1 => sequential numbering of sour
e
ode only. 3=2 => sequential, statement, and by subroutine.=3 => sequential, statement, and by de
k.itable =1 =>
reates a table of
ontents (inumber=3 only) 1=0 => no table of
ontentsix
lude =1 => won't label line with statement number if ex
luded 1by *if, *else, *endif logi
 (inumber=3 only)=0 => labels all exe
utable statements.Some notes:1. Sele
ting inumber=3 spe
i�es that line numbering in the �fth
olumn will be donerelative to *de
k and *
de
k statements, rather than FORTRAN module statementssu
h as program, subroutine, fun
tion, et
. (inumber=2).2. Setting ix
lude=1 will ex
lude \dormant" parts of the sour
e
ode (as determined bythe settings of the EDITOR ma
ro de�nitions; see x2.1) from the
omputation of the
urrent statement number (fourth
olumn).

Merging sour
e
ode 254 MERGE: Merging sour
e
ode4.1 Change de
ksOne important feature of EDITOR is the ability to merge a \
hange de
k" into an existingsour
e
ode. This feature is useful from the standpoint of keeping the
hanges to a workingversion of a sour
e
ode separate from the sour
e
ode itself. Further,
hange de
ks are usefulto
ode development proje
ts in whi
h there are several
ontributors. In prin
iple, a
uratorof a
ode may gather in all
hange de
ks and let EDITOR merge these
hange de
ks intothe
urrent master
ode, thereby generating the next version. Finally, ea
h
ode developermay independently and temporarily merge their own
hange de
k into the
urrent version ofthe
ode in order to develop and debug their
hanges.Change de
ks
onsist largely of the new lines of FORTRAN that the user wishes to pla
einto an existing
ode, along with any EDITOR pre
ompiler statements that may be required.These
ode segments may either be inserted into the
ode at a spe
i�ed lo
ation, or repla
ea spe
i�ed part of existing
ode. There are four EDITOR
ommands that
ontrol a MERGE:1. *insert de
kname.n { inserts text immediately following the *insert
ommand intothe sour
e
ode dire
tly after line n in (
)de
k de
kname.2. *delete de
kname.n,m { deletes lines n through m in (
)de
k de
kname, and repla
esit with the text immediately following the *delete
ommand, if any. Note that mmust be greater than n. If m is missing altogether, then m = n will be assumed.3. *ident
hangede
kname { identi�es the name of the
hange de
k to the
ode developer.It has no internal (to EDITOR) fun
tion, and is in
luded for the sole purpose ofpreserving ba
kward
ompatibility with HISTORIAN . In pra
tise, it never needs to beused.4. *read �lename { repla
es the statement with the
ontents of the named �le. This ishow more than one
hange de
k may be merged with a sour
e �le at the same time.The line numbers m and n are relative to the most re
ent *(
)de
k statement, wherethe *(
)de
k statement itself is line 1. The line numbers may be attained most easily fromthe �fth
olumn of a listing of the sour
e
ode reformatted by NUMBER (x3).Note that *i, *d, *id and *r are valid abbreviations of *insert, *delete *ident and*read respe
tively. For those who don't like the fa
t that the delete
ommand
an a
tuallybe used to repla
e text, the
ommand *repla
e (or *rp for short) is a re
ognised synonymfor *delete. Use the two inter
hangeably. Together, *delete, *insert, and *repla
e
ommands shall be referred to as \MERGE edits".EDITOR's MERGE may be given one master sour
e �le and one
hange de
k (
ontainingan arbitrary number of *reads to other
hange de
ks if desired) and
reates a new merged�le whose name, by default, is the same as the input master sour
e �le with the extension.m appended. The merger also generates an amalgamated
hange de
k with all the *read
ommands, if any,
arried out. This
hange de
k has the same name as the user-spe
i�ed
hange de
k with the extension .m appended and is where error messages, if any, are inserted.The original �les are not
hanged.

Merging sour
e
ode 26An example might be appropriate at this point. Following is another version of thetime-of-day program used in x2, a
hange de
k, and the result of having the two merged byEDITOR.Master sour
e �le (named, for example, tod):1 *de
k tod2
===+====1====+====2====+====3====+====4====+====5====+====6====+====7==3
4 program tod5
6
 PURPOSE: This program returns the time of day on various systems.7
8
---9
10 impli
it none11 *if define,UNICOS12
hara
ter*8 tod13 *endif UNICOS14 *if define,CONVEXOS15
hara
ter*9 tod16 *endif CONVEXOS17
18 external date19
20
---21
22
 Get time of day ("tod").23
24
all date (tod)25
26
 Write result to CRT.27
28 write (6, 2000) tod29 2000 format('Time of day is: ',a)30 stop31 endChange de
k (named, for example,
hgtod):1 *define UNICOS2 *delete tod.293 *if define,UNICOS4 2000 format('Time of day a

ording to the Cray is: ',a)5 *endif UNICOS6 *if define,CONVEXOS7 2000 format('Time of day a

ording to the Convex is: ',a)8 *endif CONVEXOS9 *insert tod.610
 Systems in
lude UNICOS and CONVEXOS.Master sour
e �le (tod) merged with
hange de
k (
hgtod) to form new master sour
e �le(tod.m):1 *de
k tod2
===+====1====+====2====+====3====+====4====+====5====+====6====+====7==

Merging sour
e
ode 273
4 program tod5
6
 PURPOSE: This program returns the time of day on various systems.7
 Systems in
lude UNICOS and CONVEXOS. *8
9
---10
11 impli
it none12 *if define,UNICOS13
hara
ter*8 tod14 *endif UNICOS15 *if define,CONVEXOS16
hara
ter*9 tod17 *endif CONVEXOS18
19 external date20
21
---22
23
 Get time of day ("tod").24
25
all date (tod)26
27
 Write result to CRT.28
29 write (6, 2000) tod30 *if define,UNICOS *31 2000 format('Time of day a

ording to the Cray is: ',a) *32 *endif UNICOS *33 *if define,CONVEXOS *34 2000 format('Time of day a

ording to the Convex is: ',a) *35 *endif CONVEXOS *36 stop37 end38 *define UNICOS *Some notes:1. MERGE
ommands may not appear in the master �le, only in the
hange de
k.2. Anything before the �rst MERGE edit will be pla
ed at the end of the merged �le (e.g.,line 38 of tod.m).3. An asterisk (*) is pla
ed in the 74th
olumn of every line put into the merged mastersour
e �le by the
hange de
k. This asterisk is only to aid the user to see at a glan
ewhi
h lines are new to this version of the
ode. If the .m �le is then passed throughPRECOM (x2), NUMBER (x3), or TARGET (x5), the asterisk in
olumn 74 is not
opied tothe .f, .n, or .t �le respe
tively.4. Note that the line numbers used in the MERGE edit statements are always those of theoriginal master �le. That is to say, the user does not have to worry that a MERGE editmade somewhere else in the
hange de
k might a�e
t the line numbering for otherMERGE edits. By the same token, one may not make a MERGE edit on a MERGE edit in

Merging sour
e
ode 28the
urrent
hange de
k. Changes to MERGE edits should be done dire
tly in the
hangede
k(s).5. Obviously,
are should be taken to ensure that MERGE edits do not refer to lines inthe master sour
e that have been deleted by other MERGE edits. Su
h a
on
i
t willgenerate a (non-fatal) error message (see xA.2).6. All the pun
tuation in the MERGE
ommands is optional. *d tod 1 3" is just asvalid as *d tod.1,3". The pun
tuation used in these examples re
e
ts HISTORIANsyntax whi
h EDITOR permits for the sake of
ompatibility.As a sour
e
ode prepro
essor, EDITOR is probably in its most useful state when theMERGE and PRECOM features are used in tandem whi
h is a

omplished by setting the appro-priate input parameter (x4.2). One
an take a master �le and a
hange de
k, merge themtogether to produ
e a .m �le, pre
ompile the .m �le to generate a .f �le, repla
e all thenamelists mi
ro-task, it, update only those modules that were a�e
ted by whatever
hangeyou might have made to the
hange de
k, and generate the new make�le, all with one exe
u-tion of EDITOR. It is in this mode that the author uses EDITOR to manage the ZEUS-3D
ode, and therefore the mode whi
h is probably the most debugged and robust. The s
ript�le in x4.2 is a template for using EDITOR in just this way.Curators of large
odes should be warned that
hange de
ks
an be
ome too
umber-some and numerous to make this strategy pra
ti
al. As a �rst guide, one might
onsiderpermanently merging a
hange de
k with the master
ode on
e it has grown to 25% the sizeof the master
ode. Then a new
hange de
k may be started with referen
es to line numbersin the new version of the master sour
e �le.4.2 The merge.s s
ript �leA merged sour
e listing may be generated by issuing the following
ommand:
sh -v merge.swhere merge.s, is as follows:1 #======= SOURCE FILE TO MERGE A CHANGE DECK INTO A SOURCE CODE ========#2 #3 #=======================================> Get files from home dire
tory.4 if(! -e xedit21)
p USERID/editor/xedit21 .5 #========================> If ne
essary,
reate the dire
tory DIRECTORY.6 if(! -e DIRECTORY) mkdir DIRECTORY7 #--> Create
hange de
k.8 rm -f
hanges9
at << EOF >
hanges10 *ident
hanges11 *delete par.312 parameter (idim=100, jdim=100, kdim=100)13 *read CHANGEDECK14 EOF15 #-----------------------> Create the input de
k for EDITOR, and exe
ute.16 rm -f inedit17
at << EOF > inedit

Merging sour
e
ode 2918 \$editpar inname='SOURCECODE',
hgdk='
hanges'19 , ibanner=1, job=3, idump=1, inum=0, ipre=1, inmlst=120 , iutask=0, iupdate=1, ext='.f', bran
h='DIRECTORY'21 , makename='MAKEFILE', xeq='EXECUTABLE'22 , libs='namelist.lib' \$23 EOF24
hmod 755 xedit2125 ./xedit21A soft
opy of merge.s may be found in the editor dire
tory of dzeus35.tar downloadedfrom www.i
a.smu.
a/zeus3d.The �rst segment retrieved xedit21 from the user's home dire
tory, if needed. You
ouldadd lines here to retrieve the sour
e
ode and
hange de
k from their home dire
tory as well.The se
ond se
tion generates a dire
tory on dis
 just as pre
om.s did (x2.5) in anti
ipationthat the user will want to use the pre
ompiler in tandem with the merger. The third se
tiongenerates the a
tual
hange de
k that will be merged with the master �le. The s
ript �le will
reate a dis
 �le
alled
hanges after it has removed any su
h dis
 �le whi
h may alreadyexist. Thus, don't run this s
ript �le verbatim within a dire
tory in whi
h there is a �le
alled
hanges that you
an't live without!The �le
hanges
ontains the inert *ident
ommand, followed by another example ofa MERGE edit. In this
ase, line 3 of a de
k named par is being repla
ed with a parameterstatement setting idim, et
. to 100. This illustrates a stru
ture that the author �nds veryuseful, and is why this spe
i�
 example has been in
luded in this otherwise general template.In this
ase, a program has been written with all the parameter statements pla
ed togetherin a
ommon de
k
alled par. Every subroutine that requires knowledge of the parametervalues then has a *
all par statement at the beginning of the de
laration list. If for everyjob run, a di�erent set of parameter values is required, the easiest and most a

essible pla
eto make this
hange is right in the s
ript �le whi
h merges and pre
ompiles the sour
e
ode.Thus, right in merge.s, one might in
lude the most often-needed
hanges using the MERGEedit stru
tures des
ribed in this se
tion. Then, as indi
ated in this template, one
ould issuea *read
ommand whi
h will bring in the bulk of the
hanges being
onsidered at this timewhi
h are in some user-supplied �le CHANGEDECK.Finally, the fourth segment
reates the input de
k for EDITOR appropriate for the mergebeing performed, and then exe
utes EDITOR. In addition to the general namelist parametersdes
ribed in x2.5, there are three namelist parameters whi
h are pe
uliar to MERGE. However,if the reformatting feature of EDITOR (NUMBER, x3) is to be
alled in tandem with MERGE,then inum should be set to 1 and all the input parameters pe
uliar to NUMBER (3.2) be
omeappli
able. If the pre
ompiler is to be
alled in tandem with MERGE, then ipre should be setto 1, and all the input parameters pe
uliar to PRECOM (x2.5) be
ome appli
able.parameter des
ription defaultMERGE (job=3)
hgdk name of
hange de
k to be merged with "inname"(
hara
ter*64).inum =1 => a NUMBERed file will be
reated. 0=0 => no NUMBERed fileipre =1 => a PRECOMpiled file will be
reated. 0=0 => no PRECOMpiled file

Merging sour
e
ode 30Some notes:1. If, on the one hand, MERGE and PRECOM are performed together on the �le myprog, thenEDITOR will generate two additional sour
e �les, namely myprog.m and myprog.f.The former will be the result of the merger with all the pre
ompiler
ommands, ifany, remaining while the latter will be a pre
ompiled version ready for the
ompiler
ontaining nothing but FORTRAN (having had all the pre
ompiler
ommands
arriedout and then expunged). If, on the other hand, MERGE is used with ipre=0, then onlya .m �le will be generated. Then, if myprog.m is passed through the pre
ompiler usingpre
om.s, the pre
ompiled �le will be named myprog.m.f. Note that if the EDITORnamelist parameters in the two s
enarios have the same values, then the �les myprog.fand myprog.m.f will be identi
al .2. Should the EDITOR merger dete
t any EDITOR syntax errors, EDITOR will insertan error message immediately following the o�ending statement in the amalgamated
hange de
k (.m extension). The user will be told that errors were dete
ted and howto �nd them. On
e the errors are
orre
ted in the original
hange de
k (i.e., not the.m �le where the errors were reported), the user
an attempt to merge the �les again.See xA.2 for a des
ription of the non-fatal error messages generated by EDITOR.

FORTRAN tidy-up 315 TARGET: FORTRAN tidy-upThe TARGET feature of EDITOR was designed to rewrite a user's sour
e
ode with uniformorigin-target labels,
ontinuation
hara
ters, and indentation, as well as rearranging thevarious de
ks and groups alphabeti
ally. TARGET
an also be instru
ted to repla
e do-enddostru
tures with targeted do-loops (but not the reverse|re
e
ting the author's bias!). Bydefault, a separate �le (whose name is the same as the input �le with the extension .tappended) is
reated
ontaining the tidied sour
e listing. The original �le is left as is.TARGET's primary fun
tion is to resequen
e numbered statements (\targets") and their
orresponding \origins" to regain the order that the writer may have originally intended.Examples of origin and target statements are as follows:1 do 10 i=1,imax2 ...3 go to 204 ...5 20
ontinue6 ...7 10
ontinueLines 1 and 3 are origins while lines 7 and 5 are their respe
tive targets.TARGET
an re
ognise virtually all FORTRAN stru
tures in whi
h origins and targetsmay lurk. These in
lude:1. (nested) do-loops with numbered targetsdo 100 i=1,imaxdo 100 j=1,jmax100 ...2. go to statementsgo to 2020 ...3.
omputed go to statementsgo to (10,20,30) i10 ...20 ...30 ...4. if statementsif (j.eq.1) go to (10,20) i10 ...20 ...5.
omputed if statements,if (10,20,30) x10 ...20 ...30 ...

FORTRAN tidy-up 326. i/o statements (write, print, en
ode, read, de
ode, open)write (6,1000) x1000 format(f5.2)read (lu,end=20,err=100) x20 ...100 ...open (unit=lu,file=infile,status='old',err=10,form='unformatted')10 ...As mentioned, TARGET may be instru
ted to
onvert all do-enddo stru
tures into targeteddo-loops. TARGET will s
an ea
h program module (i.e. de
k, program, fun
tion, subroutine)for origin and targets and reassign the numeri
al values of the labels so that the targets(not the origins) appear sequentially (with a spe
i�ed in
rement between ea
h
onse
utivetarget). Three levels of targets are identi�ed and are resequen
ed independently. All do-loopand goto targets (in
luding the end and err options in the parameter lists of read and openstatements) are
onsidered together and by default, are assigned labels between 10 and 990.All input statements (read, de
ode) are resequen
ed between 1010 and 1990, and all outputstatements (write, print, en
ode) are resequen
ed between 2010 and 2990. This allows oneto identify, at a glan
e, whi
h targets belong to do/goto statements, whi
h belong to inputstatements, and whi
h belong to output statements.As part of the resequen
ing pro
ess, TARGET will for
e all do-loop and goto statementsto \land" on a
ontinue statement, thus displa
ing the original targeted statement byone line. For do-loop targets, the
ontinue statement is put after the original targetedstatement while for goto statements, the
ontinue statement is pla
ed before the originaltargeted statement. This leaves the logi
al intent of the
ode inta
t.Besides resequen
ing origin-target statements, TARGET may be instru
ted to relabel
on-tinuation statements and for
e uniform indentation. These three features are illustrated inthe following example:Original
ode:subroutine sub1 (in, jn, x, y, array, iret)
 real x(in), y(jn), array(in,jn)
 go to (1,31) iret31
ontinuedo 10 j=1,jndo 10 i=1,in10 array(i,j) = x(i)**2. + 2.0 * x(i) * y(j). + y(j)**2if (imax.le.100) thenimax = 100elseimax = 200endif1
ontinuereturnend

FORTRAN tidy-up 33Tidied
ode:subroutine (in, jn, x, y, array, iret)
 real x(in), y(jn), array(in,jn)
 go to (40,10) iret10
ontinuedo 30 j=1,jndo 20 i=1,inarray(i,j) = x(i)**21 + 2.0 * x(i) * y(j)2 + y(j)**220
ontinue30
ontinueif (imax.le.100) thenimax = 100elseimax = 200endif40
ontinuereturnendIndentation is applied to both (nested) do-loops and if-else-endif stru
tures as illustratedabove. Note that applying uniform indentation for
es the sour
e
ode to begin in
olumn8, rather than
olumn 7, the minimum allowed by FORTRAN syntax. Starting in
olumn8 means that there will always be at least one spa
e between a
ontinuation
hara
ter in
olumn 6 and the �rst
hara
ter in the statement, thus improving readability. Note also thatapplying uniform indentation will preserve any verti
al stru
ture imposed by the user. Thus,in the example above, the +s remain under the =. If the appli
ation of uniform indentation (orresequen
ing origins)
auses the line to extend beyond the 72nd
olumn, TARGET will breakthe line at the 72nd
olumn (without regard to word breaks) and generate a
ontinuationstatement with an ampersand (&) in
olumn 6. This will not a�e
t the logi
 of the sour
e
ode, but may o�end the user's notion of aestheti
s. Thus, after TARGET has �nished withthe sour
e
ode, one merely needs to sear
h the tidied version for an & in
olumn 6 and thenmake the desired
hanges manually.Resequen
ing
ontinuation
hara
ters will
ause
ontinuation statements to be givennumeri
al
ontinuation
hara
ters in the following sequen
e: 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3,et
. Zero (0) is not used, sin
e it is an illegal
ontinuation
hara
ter in FORTRAN.Finally, TARGET
an be instru
ted to rearrange the modules alphabeti
ally a

ordingto the full de
k name whi
h
onsists of the group name (as determined by the most re
ent*group statement; x2.1) followed by the de
k name (as determined by the most re
ent *de
kor *
de
k statement; x2.1). Common de
ks will be pla
ed before ordinary de
ks. The usermay single out a few de
ks to be pla
ed before all else regardless of where they belongalphabeti
ally. Thus, for example, if there were a de
k
ontaining opening
omments, or ifit was desired to pla
e the program before the subroutines, this may be a

ommodated bysetting the appropriate namelist parameters, as des
ribed in the next subse
tion.

FORTRAN tidy-up 345.1 The target.s s
ript �leA sour
e listing may be tidied by issuing the following
ommand:
sh -v target.swhere target.s, is as follows:1 #============ SOURCE FILE TO TIDY UP FORTRAN SOURCE CODE ==============#2 #3 #=======================================> Get files from home dire
tory.4 if(! -e xedit21)
p USERID/editor/xedit21 .5 #-----------------------> Create the input de
k for EDITOR, and exe
ute.6 rm -f inedit7
at << EOF > inedit8 \$editpar inname='SOURCECODE'9 , ibanner=1, job=2, idump=110 , ibegdo= 10, ienddo= 990, ibegre=1010, iendre=199011 , ibegwr=2010, iendwr=299012 , in
=10, irepl=1, ireseq=1, indent=2, ialpha=113 , first ='ABSOLUTE FIRST (C)DECK'14 , se
nd ='ABSOLUTE SECOND (C)DECK'15 , first
d='BEFORE ALL CDECKS, BUT AFTER se
nd'16 , firstdk='BEFORE ALL DECKS, BUT AFTER se
nd' \$17 EOF18
hmod 755 xedit2119 ./xedit21A soft
opy of target.s may be found in the editor dire
tory of dzeus35.tar downloadedfrom www.i
a.smu.
a/zeus3d.The �rst segment retrieves xedit21 from the user's home dire
tory, if needed. These
ond segment prepares the input de
k for EDITOR appropriate for tidying up a sour
elisting. In addition to the general namelist parameters des
ribed in x2.5, there are 15 namelistparameters pe
uliar to TARGET. These are des
ribed below.parameter des
ription defaultTARGET (job=2)ibegdo lowest target value for "goto" and "do" stmnts. 10ienddo highest target value for "goto" and "do" stmnts. 990ibegre lowest target value for "read" and "de
ode" stmnts. 1010iendre highest target value for "read" and "de
ode" stmnts. 1990ibegwr lowest target value for "write" and "en
ode" stmnts. 2010iendwr highest target value for "write" and "en
ode" stmnts. 2990in
 in
rement between su

essive targets. 10irepl =1 => repla
e "do-enddo"s with targeted "do"s. 1=0 => do not repla
e "do-enddo"s.ireseq =1 => resequen
e 6th
hara
ter in
ontinuation stmnts. 1=0 => no resequen
e.indent =0 => no uniform indentation is imposed. 2>0 => impose uniform indentation of "indent" spa
es.ialpha =0 => no alphabetisation of de
ks. 1=1 => modulo spe
ifi
ation of "first" et
., "
ommonde
ks" and "ordinary "de
ks" are arrangedalphabeti
ally. "Common de
ks" are listedbefore "ordinary de
ks".

FORTRAN tidy-up 35first name of "de
k" (
ommon or ordinary) to be listed beforeall others (
hara
ter*16).se
nd name of "de
k" (
ommon or ordinary) to be listed rightafter "first" (
hara
ter*16).first
d name of "
ommon de
k" to be listed before all other"
ommon de
ks" but after "se
nd" (
hara
ter*16).firstdk name of ordinary "de
k" to be listed before all otherordinary "de
ks" but after "se
nd" (
hara
ter*16).It should be noted that TARGET is parti
ularly sensitive to tab
hara
ters. EDITOR isknown to make mistakes and even
rash if it en
ounters a tab
hara
ter during a TARGET ses-sion and so, as mentioned in x2.5, all tab
hara
ters should be repla
ed with the appropriatenumber of blanks.

Comparing similar ASCII files 366 COMPARE: Comparing similar ASCII �les6.1 Comparing entire �lesEDITOR may be instru
ted to
ompare two ASCII �les
hara
ter for
hara
ter and reportthe di�eren
es found in the two �les. The lo
ations of where the �les diverge and re
onvergeare reported. Obviously, for two totally dissimilar �les, su
h a report may be
ome unwieldyas
han
e alignments of the two �les are dis
overed.What makes EDITOR's COMPARE di�erent from diff on most UNIX platforms is thatit may be instru
ted to ignore super�
ial or unimportant di�eren
es su
h as those found inFORTRAN
omments (i.e., lines with a
 or C in the �rst
olumn), the number of blanks leftbetween \words", and the FORTRAN
ontinuation
hara
ters
hosen (
hara
ter in
olumn6). This is an attempt to get beyond the most
ommon di�eren
es in programming styleand un
over only those di�eren
es whi
h may alter the logi
 of the program. COMPARE is alsomu
h better at �nding where the �les re
onverge than diff. Finally, if there are an unrulynumber of di�eren
es, one may instru
t EDITOR to stop sear
hing after a spe
i�ed numberof di�eren
es have been found.EDITOR reports the di�eren
es by dumping the portion of the line from both �les wherethe di�eren
e was found and points to the very
hara
ter whi
h triggered the report. It alsotells the user on whi
h line the two �les re
onverge. Below is an example of two �les withsome di�eren
es, and the EDITOR COMPARE reports generated by
omparing these two �lesun various ways.File 1 (tod1):1 program tod2
-------------> This program returns the time of day on various systems.3
hara
ter*8 tod4
5
all date (tod)6 write (6,10) tod7 10 format('Time of day is: ',a)8 stop9 endFile 2 (tod2):1
===+====1====+====2====+====3====+====4====+====5====+====6====+====7==2
3 program tod4
5
 PURPOSE: This program returns the time of day on various systems.6
7
---8
9 impli
it none10
hara
ter*8 tod11
12 external date13
14
---15

Comparing similar ASCII files 3716
 Get time of day ("tod").17
18
all date (tod)19
20
 Write result to CRT.21
22 write (6, 2000) tod23 2000 format('Time of day is: ',a)24 stop25 endThese two versions of (presumably) the same program show di�erent programming styles.The task is to �nd all important di�eren
es between these two �les, if any. In the reportthat follows, no super�
ial di�eren
es were ignored and COMPARE behaves mu
h like diff.COMPARE :COMPARE : diff "tod1 " "tod2 "COMPARE : line
ontext line
ontextCOMPARE : --COMPARE : 1 diff at 1 progra 1
===+====1==COMPARE : same at 4 ^ 2 ^COMPARE : 2 diff at 5
all date (t 3 program todCOMPARE :COMPARE : Number of differen
es reported = 2COMPARE :First the anatomy of this report. The �rst
olumn (headed by diff) labels the di�eren
essequentially. The se
ond
olumn (headed by tod1, the name of the �rst �le) gives the linenumber and a segment of the indi
ated line in whi
h the di�eren
e was dis
overed for the �rst�le. The third
olumn (headed by tod2, the name of the se
ond �le) gives similar informationfor the se
ond �le. Ea
h di�eren
e report
onsists of two lines; where the �les diverge (diffat) and where the �les re
onverge (same at). The \diff at" line gives the
ontext ofthe �le in whi
h the di�eren
e was dis
overed
entred over a
arat (^) whi
h indi
ates the�rst
hara
ter found to be di�erent. For entirely di�erent lines, this will generally be the�rst
hara
ter in the line. The \same at" line indi
ates on whi
h line in ea
h �le the �lesre
onverge, and
ontains the
arats.This parti
ular report is of little use. It basi
ally states that the two �les di�er right fromthe start (note that one �le is indented with six blanks, the other with seven), happen tobe the same again where both �les have an empty
omment line, then di�er throughout therest of the �les. Sin
e the �les never re
onverge, the \same at" line for the se
ond di�eren
ereport is never issued, and thus neither are the
arats. These two �les are basi
ally toodi�erent for an all-di�eren
e report to be of mu
h use.In the se
ond report whi
h follows, di�eren
es stemming from blanks were ignored. It isa bit more useful than the �rst report sin
e reported di�eren
es are more lo
alised.COMPARE :COMPARE : diff "tod1 " "tod2 "COMPARE : line
ontext line
ontextCOMPARE : --COMPARE : 1 diff at 1 program 1
===+====1==COMPARE : same at 1 ^ 3 ^COMPARE : 2 diff at 2
------------ 4

Comparing similar ASCII files 38COMPARE : same at 4 ^ 4 ^COMPARE : 3 diff at 5
all dat 5
 PURPOSE:COMPARE : same at 5 ^ 18 ^COMPARE : 4 diff at 6 write (6 19
COMPARE : same at 8 ^ 24 ^COMPARE :COMPARE : Number of differen
es reported = 4COMPARE :The �rst di�eren
e reports that the �rst two lines of ea
h �le are di�erent (tod2 beginswith a
omment, tod1 begins with the program statement) and that the two �les re
onvergeagain at line 1 of tod1 and line 3 of tod2. Still, there is
ha� amongst the wheat if one isnot interested in the di�eren
es generated by
omment statements.Finally, the third report whi
h follows was generated with di�eren
es in
omments andblanks overlooked.COMPARE :COMPARE : diff "tod1 " "tod2 "COMPARE : line
ontext line
ontextCOMPARE : --COMPARE : 1 diff at 3
hara
ter*8 9 impli
itCOMPARE : same at 3 ^ 10 ^COMPARE : 2 diff at 5
all date (t 12 externalCOMPARE : same at 5 ^ 18 ^COMPARE : 3 diff at 6 write (6,10) tod 22 rite (6, 2000) todCOMPARE : same at 8 ^ 24 ^COMPARE :COMPARE : Number of differen
es reported = 3COMPARE :In this
ase, COMPARE reports that tod2 has an impli
it statement and an externalstatement whereas tod1 does not, and that the target for the write statement di�ers in thetwo versions (10 in tod1, 2000 in tod2). This is perhaps the most useful of all reports, andillustrates the power of being able to ignore sele
tively various types of di�eren
es.6.2 Comparing de
laration
ontentsThe se
ond way EDITOR may
ompare two �les is by
omparing the
ontents of theirrespe
tive de
laration lists without regard to format . This mode of
omparison does notextend into the body of the FORTRAN module
ontaining the FORTRAN exe
utables.The utility of this feature is perhaps best illustrated by an example. In an attempt toalign a subroutine with a parti
ular
oding style, suppose one wishes to reformat all thede
larations at the beginning of a program module from the style illustrated in the �le de
1to that in �le de
2 below:Style 1 (�le de
1):impli
it noneinteger idim, jdimparameter (idim=100,jdim=100)integer i,j,is,ie,js,je,ieqs(10)real s1,v1(idim),w1(jdim),a1(idim,jdim),s2,v2(idim),w2(jdim),

Comparing similar ASCII files 39.a2(idim,jdim)s3,v3(idim),w3(jdim)s4,s5,s6,s7,s8,s9,s10,.reqs(10),reqv(3*idim+3*jdim)
 equivalen
e (ieqs(1),i),(ieqs(2),is),(ieqs(3),ie),(ieqs(4),j),.(ieqs(5),js),(ieqs(6),je)equivalen
e (reqs(1),s1),(reqs(2),s2),(reqs(3),s3),(reqs(4),s4),.(reqs(5),s5),(reqs(6),s6),(reqs(7),s7),(reqs(8),s8),(reqs(9),s9),.(reqs(10),s10),(reqv(1),v1(1)),(reqv(idim+1),v2(1)),.(reqv(2*idim+1),v3(1)),(reqv(3*idim+1),w1(1)),.(reqv(jdim+3*idim+1),w2(1)),(reqv(2*jdim+3*idim+1),w3(1))
ommon /
omi/ ieqs
ommon /
omr/ reqs,reqv,a1,a2Style 2 (�le de
2):

-------------------------- IMPLICIT STATEMENT -------------------------
---impli
it none

------------------------------ PARAMETERS -----------------------------
---integer idim , jdimparameter (idim = 100, jdim = 100)

------------------------------ VARIABLES ------------------------------
---integer i , is , ie1 , j , js , jereal s1 , s2 , s3 , s4 , s51 , s6 , s7 , s8 , s9 , s102 , s11 , s12
 real v1 (idim), v2 (idim), v3 (idim)1 w1 (jdim), w2 (jdim), w3 (jdim)
 real a1 (idim,jdim), a2 (idim,jdim)

------------------------ EQUIVALENCE STATEMENTS -----------------------
---integer ieqs (10)equivalen
e1 (ieqs(1),i),(ieqs(2),is),(ieqs(3),ie)2 ,(ieqs(4),j),(ieqs(5),js),(ieqs(6),je)
 real reqs (20)equivalen
e1 (reqs(1),s1),(reqs(2),s2),(reqs(2),s3)2 ,(reqs(4),s4),(reqs(5),s5),(reqs(6),s6)3 ,(reqs(7),s7),(reqs(8),s8),(reqs(9),s9)4 ,(reqs(10),s10),(reqs(11),s11),(reqs(12),s12)
 real reqv (3*idim+3*jdim)equivalen
e (reqv (1), v1 (1))1 , (reqv (idim+1), v2 (1))2 , (reqv (2*idim+1), v3 (1))3 , (reqv (3*idim+1), w1 (1))4 , (reqv (jdim+3*idim+1), w1 (1))

Comparing similar ASCII files 405 , (reqv (2*jdim+3*idim+1), w3 (1))

---------------------------- COMMON BLOCKS ----------------------------

ommon /
omi / ieqs
ommon /
omr / reqs , reqv , a1 , a2Upon
omparing these two de
laration modules, EDITOR would issue the following di�er-en
e report:COMPARE :COMPARE : The following de
larations were not found in file "de
1 "COMPARE : real s11COMPARE : real s12COMPARE : real reqs(20)COMPARE : equivalen
e (reqs(2),s3)COMPARE : equivalen
e (reqs(11),s11)COMPARE : equivalen
e (reqs(12),s12)COMPARE : equivalen
e (reqv(jdim+3*idim+1),w1(1))COMPARE :COMPARE : The following de
larations were not found in file "de
2 "COMPARE : real reqs(10)COMPARE : equivalen
e (reqs(3),s3)COMPARE : equivalen
e (reqv(jdim+3*idim+1),w2(1))COMPARE :Obviously, several
hanges other than formatting
hanges were introdu
ed when de
1 wasre
ast into de
2. Some of the
hanges may have been deliberate (the addition of variabless11 and s12, in
reasing the dimension of reqs from 10 to 20) while the remainder areprobably typos (in the equivalen
e statements in de
2, reqs(2) and w1 appear twi
e whilereqs(3) and w2 do not appear at all).6.3 The
ompare.s s
ript �leTwo sour
e listings may be
ompared by issuing the following
ommand:
sh -v
ompare.swhere
ompare.s, is as follows:1 #================ SOURCE FILE TO COMPARE TWO LISTINGS =================#2 #3 #=======================================> Get files from home dire
tory.4 if(! -e xedit21)
p USERID/editor/xedit21 .5 #-----------------------> Create the input de
k for EDITOR, and exe
ute.6 rm -f inedit7
at << EOF > inedit8 \$editpar inname='SOURCECODE1'9 , in2name='SOURCECODE2'10 , ibanner=1, job=5, i
ompar=1, ndiff=100, ignore=0,0,0 \$11 EOF12
hmod 755 xedit2113 ./xedit21

Comparing similar ASCII files 41A soft
opy of
ompare.s may be found in the editor dire
tory of dzeus35.tar downloadedfrom www.i
a.smu.
a/zeus3d.The �rst segment retrieves xedit21 from the user's home dire
tory, if needed. Youmay wish to add two similar lines to retrieve from their home dire
tories the two �les to be
ompared (SOURCECODE1 and SOURCECODE2). The se
ond segment prepares the input de
k forEDITOR appropriate for
omparing two sour
e listings. In addition to the general namelistparameters des
ribed in x2.5, there are four namelist parameters pe
uliar to COMPARE. Theseare des
ribed below.parameter des
ription defaultCOMPARE (job=5)in2name name of file to be
ompared with "inname" (
har*64).i
ompar =1 => report first "ndiff" differen
es 1=2 => list dis
repan
ies in de
larationsndiff maximum number of differen
es to report 100(i
ompar=1 only).ignore integer ve
tor indi
ating types of differen
es to 0,0,0report (0) or ignore (1). ignore(1):
ontinuation
hara
ters; ignore(2): blanks; ignore(3):
omments(i
ompar=1 only).Some notes:1. ignore is a ve
tor with 3 elements. The �rst, se
ond, and third elements pertain to
ontinuation
hara
ters, blanks, and
omments respe
tively. If any element is 1, thattype of di�eren
e is ignored, otherwise, it is reported. So, for example, if one wantedto �nd the di�eren
es between two �les with di�eren
es in
ontinuation
hara
tersand
omments overlooked (but di�eren
es in the number of blanks between wordsreported), one would set ignore=1,0,1.2. Comparison of de
larations may
ause an over
ow to o

ur if EDITOR was
ompiledwith parameter k9 set too small. See x9.3 and xA.1.

Splitting sour
e
ode 427 SPLIT: Splitting sour
e
ode7.1 Splitting a �leAs part of the pre
ompilation pro
ess, splitting up a �le was dis
ussed in x2.4. One
anperform the split outside PRECOM using SPLIT, but it does not in
lude the
he
king featurethat the pre
ompilation split allows. That is to say, no e�ort is made to
he
k if the �lebeing overwritten needs to be updated.This feature of EDITOR is very similar to fsplit. The EDITOR SPLIT names ea
h �leit
reates with the module name and the user-spe
i�ed extension appended. It will allow theuser to spe
ify in whi
h dire
tory all �les are to be pla
ed.7.2 The split.s s
ript �leA sour
e listing may be split by issuing the following
ommand:
sh -v split.swhere split.s, is as follows:1 #==== SOURCE FILE TO SPLIT A SOURCE CODE INTO FILES FOR EACH DECK =====#2 #3 #=======================================> Get files from home dire
tory.4 if(! -e xedit21)
p USERID/editor/xedit21 .5 #========================> If ne
essary,
reate the dire
tory DIRECTORY.6 if(! -e DIRECTORY) mkdir DIRECTORY7 #-----------------------> Create the input de
k for EDITOR, and exe
ute.8 rm -f inedit9
at << EOF > inedit10 \$editpar inname='SOURCECODE'11 , ibanner=1, job=6, idump=112 , ext='.f', bran
h='DIRECTORY' \$13 EOF14
hmod 755 xedit2115 ./xedit21A soft
opy of split.s may be found in the editor dire
tory of dzeus35.tar downloadedfrom www.i
a.smu.
a/zeus3d.The �rst segment retrieves xedit21 from the user's home dire
tory, if needed. The se
ondsegment prepares the input de
k for EDITOR appropriate for splitting a sour
e listing. Inaddition to the general namelist parameters des
ribed in x2.5, two of the namelist parametersused to
ontrol PRECOM are also used by SPLIT. These are des
ribed below.parameter des
ription defaultSPLIT (job=6)bran
h
hara
ter*32 string indi
ating dire
tory in whi
h blankseparate files are written.ext desired extension for files (
hara
ter*8) '.sr
'

Con
atenating files 438 CONCAT: Con
atenating �lesEDITOR's CONCAT goes beyond the UNICOS utility
at by bringing together all �les withthe same spe
i�ed extension lo
ated in the spe
i�ed dire
tory or any of its subdire
toriesinto a single sour
e �le.8.1 The
on
at.s s
ript �leSour
e listings may be
on
atenated by issuing the following
ommand:
sh -v
on
at.swhere
on
at.s, is as follows:1 #=========== SOURCE FILE TO CONCATENATE FILES INTO ONE FILE ===========#2 #3 #=======================================> Get files from home dire
tory.4 if(! -e xedit21)
p USERID/editor/xedit21 .5 #-----------------------> Create the input de
k for EDITOR, and exe
ute.6 rm -f inedit7
at << EOF > inedit8 \$editpar outname='OUTFILE'9 , ibanner=1, job=7, idump=110 , ext='.f', bran
h='TOP DIRECTORY' \$11 EOF12
hmod 755 xedit2113 ./xedit21A soft
opy of
on
at.s may be found in the editor dire
tory of dzeus35.tar downloadedfrom www.i
a.smu.
a/zeus3d.The �rst segment retrieves xedit21 from the user's home dire
tory, if needed. These
ond segment prepares the input de
k for EDITOR appropriate for
on
atenating sour
elistings. In addition to the general namelist parameters des
ribed in x2.5, two of the namelistparameters used to
ontrol PRECOM are also used by CONCAT. These are des
ribed below.parameter des
ription defaultCONCAT (job=7)bran
h
hara
ter*32 string indi
ating top dire
tory from blankwhi
h files are sought.ext
ommon extension of files (
hara
ter*8). '.sr
'

Installing EDITOR 449 Installing EDITOR9.1 InstallationThis se
tion des
ribes how to install EDITOR on your UNIX-based system. It is assumedthat the user has
reated a fresh dire
tory
alled, for example, editor v2.1 ICA and, intothat dire
tory, downloaded the �le dzeus35.tar from www.i
a.smu.
a/zeus3d. On
e thistar-�le is unpa
ked, type:ls -FC *and the following should appear on your s
reen:README bldlibo* edit21.tareditor:
ompare.s edit21.LINUXNAG.f edit21.s
on
at.s edit21.OS2GNU.f merge.sedit21 edit21.OS2WATCOM.f number.sedit21.AIX.f edit21.SUNOS.f pre
om.sedit21.CONVEXOS.f edit21.SUNOSF95.f split.sedit21.LINUX.f edit21.SUNOSGNU.f target.sedit21.LINUXIFC.f edit21.UNICOS.fmanuals:edit21_man.psnmlst:dnamelist dnamelist.s namelist namelist.sThese are all the �les needed to run and operate the program edit21, version 2.1 of EDITOR.EDITOR a
tually manages itself. That is, peppered throughout EDITOR are numerousEDITOR
ommands des
ribed in x2.1. Other than the *dk and *
d statements, these aremostly *if def...*endif
onstru
ts to a

ount for the various operating systems (OS)EDITOR supports. Therefore, to get things started, pre
ompiled versions of edit21 forea
h OS supported are provided in the dire
tory editor, ea
h stripped of all EDITOR
ommands and thus ready for the
ompiler.The following instru
tions are written as though the user were working under SUNOS(SOLARIS). Thus, some translation of the instru
tions may be ne
essary for platforms otherthan SUNOS.STEP 1: Create a preliminary edit21 exe
utable, xedit21. Sin
e edit21 manages itself,in prin
iple one needs the edit21 exe
utable in order to
ompile it! Thus, a bit of a \boot-strap" pro
ess is required to
omplete the
ompilation.Go to dire
tory editor.1.1) If you are operating under one of the supported platforms (e.g., AIX, CONVEXOS,et
.), type:f77 -o xedit21 edit21.<OS>.fwhere <OS> is the appropriate OS tag, and repla
e f77 -o as appropriate. This will

Installing EDITOR 45
reate the preliminary xedit21 exe
utable. Move on to step 2.1.2 If you are under an OS not represented in the eleven edit21.OS.f �les in dire
toryeditor, you will have to modify edit21.SUNOS.f as follows. Type:f77 -o xedit21 edit21.SUNOS.frepla
ing f77 -o as appropriate to laun
h the platform's FORTRAN
ompiler. This willalmost
ertainly fail,
iting
alls to unknown subroutines su
h as etime, time, fdate,and possibly system. Under SUNOS, these do the following:etime returns the
pu time sin
e the beginning of the run in se
onds;time returns the total elapsed wall-
lo
k time in se
onds (integer) sin
e thelast
all to time;fdate returns the date in a 26
hara
ter string with the format Mon Aug 2114:58:24 2000 (yes, there are only 24
hara
ters, the last two are blankfor some reason);system allows you to make a systems
all (su
h as removing a �le from dis
)from within the FORTRAN sour
e
ode at run time.You will have to �nd the equivalents to these under your OS, and then adjust theFORTRAN logi
 in edit21.SUNOS.f that depends upon these
alls. For example, youmay �nd your system gives a date in a di�erent format, in whi
h
ase you will have to
hange the FORTRAN whi
h uses these data. The best way to see where the systemdependent stu� is is to look in edit21 (not edit21.SUNOS.f), and s
an for the phrase:*if def,SUNOSand then make the ne
essary
hanges to edit21.SUNOS.f (not edit21). On
e all thene
essary
hanges have been made and presuming your �le is now
alled edit21.NEWOS.fwhere NEWOS is the tag
hosen for your OS (typi
ally, the name of your OS in \all
aps"),type:f77 -o xedit21 edit21.NEWOS.fThis should produ
e a preliminary edit21 exe
utable (xedit21) needed through step 4.Step 2: From dire
tory editor v2.1 ICA, open the s
ript �le bldlibo in your text editor.The entire �le should be platform independent with the possible ex
eption of lines 17 and18 whi
h invoke the f77
ompiler. The options listed are valid for the f77
ompilers on bothSUNOS and AIX, but may be di�erent for other OSs. The intent of the options on line17 is to
reate obje
t �les without linking (-
), and to invoke the fastest safe optimisationlevel (-O4). The options in the
ommented out line 18 are for full debugging. The
ommentbefore line 17 indi
ates a bug in the SUNOS
ompiler at the time of this writing that maynot apply elsewhere. Finally, f90/f95 users should make the appropriate
hanges to lines 17and 18.Step 3: From the dire
tory nmlst, issue the following
ommands:
sh -v namelist.s
sh -v dnamelist.s

Installing EDITOR 46These
ommands will
reate single- and double-pre
ision versions of the platform-independentnamelist libraries (namelist.a and dnamelist.a respe
tively). The former is required foredit21 while the latter is in
luded to link to double pre
ision software that the user maywish to manage with EDITOR.Step 4: If your OS is one of the eleven supported OSs, go to step 5. If not, you must putall the
hanges you made to
reate edit21.NEWOS.f into the \master
opy" of EDITOR,namely edit21.From the dire
tory editor, open edit21.NEWOS.f in one text editing window, edit21in another. Without deleting any lines in edit21, add your system-dependent
hanges toedit21. Make sure ea
h addition begins and ends with:*if def NEWOS*endif NEWOSjust like the SUNOS, AIX, et
. equivalents do. Follow the SUNOS examples already in edit21
arefully. You should also make
ertain that the OS tag you invented in step 1 (e.g., NEWOS)is unique, and not already used in edit21 for something else.Step 5: From the dire
tory editor, open edit21.s (des
ribed in x9.2) and repla
e the oneo

urren
e of SUNOS with your own operating system tag. Save the
hange. Then, even ifyou left the tag as SUNOS, type:
sh -v edit21.swhi
h
reates your �nal working version of xedit21 (repla
ing the temporary exe
utable
reated in step 1), and leaves it in the dire
tory editor. You are now ready to go.9.2 The s
ript �le edit21.sThe s
ript �le edit21.s used in the previous se
tion to install EDITOR serves as a goodexample of how the author uses EDITOR in pra
tise. For the purposes of this dis
ussion,the �le is reprodu
ed below, with an ele
troni

opy of a similar �le available in the dire
toryeditor of dzeus35.tar downloaded at www.i
a.smu.
a/zeus3d.1 #============= SOURCE FILE TO CREATE THE EDITOR EXECUTABLE =============#2 #3 #=======================================> Get files from home dire
tory.4 if(! -e edit21)
p USERID/editor/edit21 .5 if(! -e xedit21)
p USERID/editor/xedit21 .6 if(! -e namelist.a)
p USERID/namelist.lib/namelist.a .7 #=======================> If ne
essary,
reate the dire
tory "editor2.1".8 if(! -e editor2.1) mkdir editor2.19 #---> Create the
hange de
k.10 rm -f
hgedit11
at << EOF >
hgedit12 *define SUNOS13 *delete par.10,1114 parameter (k1=1000, k2=100000, k3=2000, k4=2000, k5=200015 1 , k6=128, k7=1000, k8=1000, k9=4000)16 **read
hged21

Installing EDITOR 4717 EOF18 #========================> Create the input de
k for EDITOR, and exe
ute.19 rm -f inedit20
at << EOF > inedit21 \$editpar inname='edit21'22 , idump=1 ,job=3, ipre=1, inmlst=1, iutask=0, safety=0.423 ,
hgdk='
hgedit'24 , iupdate=1, ext='.f', bran
h='editor2.1'25 , makename='makeedit', xeq='xedit21'26
 ,
options='-g -C -ftrap=
ommon', loptions='-g'27 ,
options='-fast', loptions='-fast'28 , libs='namelist.a' \$29 EOF30
hmod 755 xedit2131 ./xedit2132 #===> MAKE the EDITOR exe
utable.33 make -f makeeditAs with previous examples, the �rst segment of edit.s retrieves the ne
essary �les fromthe user's home dire
tory, in
luding the EDITOR binary exe
utable if not already in the
urrent dire
tory.The se
ond segment
reates a dire
tory on dis

alled editor2.1 into whi
h all �les splitfrom the master sour
e �le edit21 and obje
t �les on
e
ompiled are pla
ed.The third segment generates the
hange de
k
hgedit whi
h gets merged with the master�le edit21. This
hange de
k �rst sets the operating system by de�ning the appropriateEDITOR de�nition. If there were any EDITOR aliases to be set, they might be set heretoo. Next, the
hange de
k sets values for the parameters des
ribed in x9.3. Be
ause ofthe memory management built into EDITOR, it is unlikely that these values would everhave to be
hanged from those given. Finally, the bulk of the
hanges to the sour
e
odeare delegated to a �le
alled
hged21 whi
h, in this example, is not merged with edit21be
ause of the double asterisk interpreted as a
omment by EDITOR. Should the user wishto
hange EDITOR for any reason, this is an obvious pla
e to link the
hanges.If there were numerous EDITOR ma
ro settings, one might
onsider pla
ing them allin a separate �le (
alled, for example, edit21.ma
) and then insert the statement *readedit21.ma
 where the *define SUNOS statement
urrently is. In this way, the s
ript �lewill remain
on
ise, and only those
hanges whi
h need to be the most a

essible (settingthe parameter values, for example) would remain in the s
ript �le itself.The fourth segment generates the namelist input data �le inedit whi
h instru
ts the
urrent version of the EDITOR binary exe
utable xedit21 how to prepro
ess edit21. Inthis example, the namelist parameters are set so that
hgedit will �rst be merged intoedit21 whi
h is then pre
ompiled (sin
e ipre=1) for SUNOS with the namelist repla
ementfeature on, the
onditional splitting feature on, and the mi
ro-tasking feature o� . All �lessplit from the merged master sour
e
ode will be pla
ed in the dire
tory editor2.1 andwill have the extension .f appropriate for FORTRAN sour
e
ode. Sin
e iupdate=1 andmakename are set to a non-blank
hara
ter string in the input de
k, a make�le with thename makeedit will be generated. The make�le will use the default
ompiler (f77 -
 underSUNOS) and loader (f77 under SUNOS) with high optimisation (
options and loptionsboth set to -fast, appropriate for SUNOS). An optional set of
ompiler and loader optionssuitable for debugging is
ommented out. The library namelist.a will be linked with the

Installing EDITOR 48EDITOR obje
t
ode to generate a binary exe
utable
alled xedit21. Finally, this segmentexe
utes the
urrent version of xedit21 and edit21 is prepro
essed.The �fth segment �res up the make�le makeedit generated in the previous segment.This
ompiles and links the new EDITOR
ode generating a new version of xedit21 andoverwriting the version of xedit21 whi
h did the prepro
essing.9.3 EDITOR parametersAs FORTRAN uses stati
 memory, there are numerous parameters that EDITOR requiresto set internal array sizes. For the most part, the default settings should be �ne for anyappli
ation on any platform. However, in
ase the user needs to
hange any of them, anexhaustive list of EDITOR's parameters, what they limit, and their default values are givenbelow.parameter interpretation defaultk1 maximum number of errors to be reported 1,000k2 maximum number of lines in sour
e
ode to be pro
essed 100,000k3 maximum number of origins per module (TARGET) 2,000k4 maximum number of de
ks in sour
e
ode 2,000k5 maximum number of targets per module (TARGET) 2,000k6 maximum number of
hara
ters per line of sour
e
ode 128k7 maximum number of EDITOR definitions 1,000k8 maximum number of EDITOR aliases 1,000k9 maximum number of variables within a module 4,000The purpose of the last parameter k9 depends on the EDITOR fun
tion. When
ompar-ing de
laration lists of two �les (x6.2), COMPARE will only allow as many k9 variables of ea
htype (real, integer, et
.). The namelist repla
ement feature (x2.2) will allow as many as k9variables to be de�ned in ea
h namelist. Finally, the mi
ro-tasking feature (x2.3) will s
opeas many as k9 variables in ea
h nested loop stru
ture it en
ounters. The default values listedabove should be more than adequate for most purposes.The parameter k2 sets the maximum number of lines read at a time from the user'ssour
e �le being pro
essed. A sour
e �le of any arbitrary size may be read. However, if thesour
e
ode is too long, the �le will be read in pie
es rather than all at on
e in order to avoidsurpassing the memory available on your ma
hine. Thus, EDITOR is built with an e�ortmade toward memory management, and this should be entirely transparent to the user. A100,000 line sour
e
ode may be read in and pro
essed all at on
e (with k2 set as high asneed be) or in various pie
es. The end result will be identi
al. There are a few fa
tors to be
onsidered in
hoosing the appropriate value of k2.1. EDITOR is slightly faster if k2 is large enough to read the entire input �le at on
e,but only slightly.2. The amount of memory required by EDITOR is largely di
tated by k2. There arefour
hara
ter*128 arrays dimensioned with k2. Thus, the memory required by thesearrays for k2=100000 (the default) is 51.2 Mbytes. It turns out that the size of theEDITOR exe
utable with k2=100000 is 52.4 Mbytes, so it is
lear that the k2 arrays

Installing EDITOR 49are the dominant sink of memory. Use these numbers to guide your sele
tion for k2and
hoose as large a value as may be
onveniently handled by your ma
hine.3. The number of lines read by EDITOR at a time will be at most safety*k2. Thevariable safety may be set in the namelist input data �le inedit (x2.5 and x9.2) andre
e
ts the fa
t that the sour
e
ode is apt to expand during prepro
essing. For NUMBER,the expansion is minimal (table of
ontents only), and so safety=0.9 is probablyOK. For TARGET, the same. However, for MERGE the amount of expansion dependson how mu
h extra
oding is being merged with the original �le. For PRECOM the*
all statements
an result in substantial expansion of the sour
e �le. Thus, settingsafety=0.4 or smaller may be appropriate. If safety is set too high and an over
owresults, exe
ution will be aborted and the user will be asked to use a smaller value forsafety (see xA.1). Sin
e EDITOR reads only
omplete de
ks and in general, a de
kwon't happen to end after exa
tly safety*k2 lines, EDITOR will usually read less thansafety*k2 lines at a time. If there are individual de
ks with more than safety*k2lines, this will
reate an over
ow
ondition, and exe
ution will abort (xA.1). The usermust then do one or more of the following: resubmit the EDITOR job with a largervalue of safety (at the risk of generating over
ows when the new �les expand); rewritethe sour
e
ode with smaller de
ks; or re
ompile EDITOR with a larger value of k2.If none of these
an be done, EDITOR may not be used for the desired task on the
hosen ma
hine.

Error messages 50A Error messagesError messages
ome in four
avours. The most serious
ause EDITOR to abort exe
utionand usually require it to be re
ompiled with higher values for one or more parameters. These
ond type
onsist of error messages
aused by in
orre
t EDITOR syntax in the �les beingpro
essed. These are not fatal to EDITOR itself, but will mean that the �les pro
essedby EDITOR will be unusable for their intended purpose. EDITOR will insert these errormessages dire
tly below the o�ending line in the output �le. Note that original input �lessupplied by the user are never altered by EDITOR. The third type are warning messageswhi
h are e
hoed on the terminal s
reen. In this release, there is only one warning, and itis
ompletely inno
uous. Finally, if the user's program is prepro
essed with the namelistrepla
ement feature (x2.2), syntax errors in the user's namelist input data �le will generatefatal error messages at run time.A.1 Fatal errorsFatal error messages whi
h abort EDITOR arise under two
onditions. Either an over
owhas o

urred (in whi
h
ase EDITOR may have to be re
ompiled with one of its parametersset to a higher value), or the �le that EDITOR was trying to read was not found or wasfound to be
orrupted. All fatal error messages indi
ate whi
h EDITOR subroutine foundthe problem (of no real use ex
ept possibly to EDITOR programmers) and what the problemis, followed by the unwel
ome message: ABORTS!. Internally, the ABORTS! message is alwaysfollowed by a stop statement, so this message really means what it says.These messages are listed here alphabeti
ally, with some des
riptive text interleavedwhere ne
essary. The �rst set of messages
ome from COMPARE (x6) and, in parti
ular,when the de
larations of two �les are being
ompared. These all require that EDITOR bere
ompiled with a larger value of k9 (x9.3). Note that n indi
ates the
urrent value of k9 asalready
ompiled.COMPARE : Number of
hara
ter variables ex
eeded n. In
rease parameter k9.COMPARE : ABORTS!COMPARE : Number of data assignments ex
eeded n. In
rease parameter k9.COMPARE : ABORTS!COMPARE : Number of equivalen
es ex
eeded n. In
rease parameter k9.COMPARE : ABORTS!COMPARE : Number of externals de
lared ex
eeded n. In
rease parameter k9.COMPARE : ABORTS!COMPARE : Number of integer variables ex
eeded n. In
rease parameter k9.COMPARE : ABORTS!COMPARE : Number of logi
al variables ex
eeded n. In
rease parameter k9.COMPARE : ABORTS!COMPARE : Number of parameters ex
eeded n. In
rease parameter k9.COMPARE : ABORTS!

Error messages 51COMPARE : Number of real variables ex
eeded n. In
rease parameter k9.COMPARE : ABORTS!COMPARE : Number of variables in
ommon ex
eeded n. In
rease parameter k9.COMPARE : ABORTS!CONCAT (x8) has one trap whi
h will abort exe
ution should it have trouble reading aparti
ular line (i) in a named �le (�lename). This indi
ates that the �le may be
orruptedor is shorter than EDITOR anti
ipated. Che
k the
ontents of the �le, parti
ularly aroundthe indi
ated line.CONCAT : Problem reading line i in file "filename"CONCAT : ABORTS!If a user-spe
i�ed input �le isn't a
tually there, the following message will be issued.Che
k that �lename was spelled
orre
tly, or that the �le is in the proper dire
tory.OFILE : Problem opening file "filename"OFILE : ABORTS!While EDITOR has been designed with
onsiderable e�ort toward memory management(x9.3), it is still possible for over
ows to o

ur. There are two types of over
ow. One
anbe
orre
ted only by re
ompiling EDITOR with a larger value for the parameter k2 (x9.3).The other may be
orre
ted by resetting the parameter safety in the namelist input data�le indata (x2.5 and x9.2) to a lower value, then exe
uting EDITOR again. Note that thelatter
ase does not require re
ompiling EDITOR.The over
owed text is not written to the intended �le, but to an emergen
y �le
alled\OVERFLOW.TXT" that the subroutine OVERFLOW opens, writes to, and
loses before it abortsexe
ution. It may help to examine the
ontents of this �le, but in all likelihood, all one
ando is to reset k2 and/or safety. Following are the OVERFLOW fatal error messages. Theyindi
ate whi
h subroutine originally dete
ted the over
ow and whether to re
ompile with ahigher value for k2 or to resubmit with a lower value of safety. The last message is probablytrouble sin
e it implies that enough error messages were inserted to ex
eed array bounds.OVERFLOW: File overflow in CDECKS. In
rease parameter "k2"OVERFLOW: Overflowed text file written to file "OVERFLOW.TXT"OVERFLOW: ABORTS!OVERFLOW: File overflow in MERGE. In
rease parameter "k2"OVERFLOW: Overflowed text file written to file "OVERFLOW.TXT"OVERFLOW: ABORTS!OVERFLOW: File overflow in MERGE. Spe
ify lower value for "safety" than xOVERFLOW: Overflowed text file written to file "OVERFLOW.TXT"OVERFLOW: ABORTS!OVERFLOW: File overflow in NMLST. Spe
ify lower value for "safety" than xOVERFLOW: Overflowed text file written to file "OVERFLOW.TXT"OVERFLOW: ABORTS!OVERFLOW: File overflow in PARALLEL. In
rease parameter "k2"OVERFLOW: Overflowed text file written to file "OVERFLOW.TXT"

Error messages 52OVERFLOW: ABORTS!OVERFLOW: File overflow in PRECOM. Spe
ify lower value for "safety" than xOVERFLOW: Overflowed text file written to file "OVERFLOW.TXT"OVERFLOW: ABORTS!OVERFLOW: File overflow in TARGET. Spe
ify lower value for "safety" than xOVERFLOW: Overflowed text file written to file "OVERFLOW.TXT"OVERFLOW: ABORTS!OVERFLOW: In ERRMSG, attempt to insert error message
auses a file overflowOVERFLOW: Overflowed text file written to file "OVERFLOW.TXT"OVERFLOW: ABORTS!Finally, the subroutine whi
h reads text on
e a text �le is opened (RFILE)
an fall intotraps. EDITOR will always attempt to read entire de
ks or modules of a sour
e
ode (x9.3).If it
annot (that is, if safety*k2 is less than the number of lines in the largest de
k),then exe
ution will abort. In addition, if the �le being read is
orrupted or smaller thananti
ipated, a fatal error message will be generated.RFILE : A module in file "filename" is longer than i linesRFILE : In
rease parameter "k2"RFILE : ABORTS!RFILE : Array bounds ex
eeded while reading file "filename"RFILE : In
rease parameter "k2"RFILE : ABORTS!RFILE : Problem reading line i in file "filename"RFILE : ABORTS!A.2 Non-fatal errorsThere are a variety of error messages that EDITOR inserts into the output �les shouldit un
over any EDITOR syntax errors or some sele
ted FORTRAN syntax errors. Theseerrors do not abort exe
ution. EDITOR simply notes the error, leaves the errant line in theoutput �le (as opposed to synta
ti
ally
orre
t EDITOR statements whi
h on
e
arried outare expunged from the output �le), and moves on. Every e�ort has been made to ensurethat the error message will appear immediately after the o�ending line in the output �le.This requires a rather elaborate a

ounting s
heme whi
h keeps tra
k of every line addedor deleted from the �le so that the pointers whi
h indi
ate where the error messages shouldbe inserted are kept up to date. This logi
 is prone to
aws and, while the author hasn'tnoted a single
ase of a mispla
ed error message in several years of
onstant use, it is still
on
eivable that the o

asional error message will appear out of
ontext.Non-fatal error messages may be generated only by PRECOM (x2), MERGE (x4), or TARGET(x5). The appropriate se
tion should be
onsulted for the
orre
t syntax of the desiredoperation. Note that the input �les are never altered by EDITOR. Thus, error messagesappear in the .f, .m, or .t output �les only, not the input �les. Nevertheless,
orre
tionsshould be made to the original input �les|making them to the output �les where the errormessages appear will have no e�e
t.

Error messages 53CDECKS : **** ERROR 1 **** > 10 nested *
alls. Does a *
de
k
all itself?This indi
ates that the user has ex
eeded the internal EDITOR limit of 10 nested *
allsto
ommon de
ks. Sin
e it is unlikely su
h a
omplex stru
ture would be deliberate, themessage suggests that perhaps the
alling tree is
losed. e.g., perhaps,
ommon de
k 1
alls
ommon de
k 2 whi
h
alls
ommon de
k 3 whi
h
alls
ommon de
k 1, or something to thate�e
t. If so, this should be
orre
ted.CDECKS : **** ERROR 2 **** Call made to an unknown
ommon de
k.A
all has been made to an unde�ned
ommon de
k. Misspelling a
ommon de
k name in a*
all statement is the most probable
ause for this error.COLLECT : **** ERROR 3 **** Expe
ting a
hara
ter expression.If a *
all statement appears without a
ommon de
k named, or if any other EDITOR
ommand is in
omplete, this error message will result. Che
k syntax.COLLECT : **** ERROR 4 **** Too many swit
hes defined.This indi
ates that the user has spe
i�ed more swit
hes (de�nitions) than allowed by thearray bounds. One either needs to de�ne fewer ma
ros, or to re
ompile EDITOR with alarger value of k7.COLLECT : **** ERROR 5 **** Too many aliases defined.This indi
ates that the user has spe
i�ed more aliases than allowed by the array bounds.One either needs to set fewer aliases, or to re
ompile EDITOR with a larger value of k8.COLLECT : **** ERROR 6 **** Too many
ommon de
ks defined.This indi
ates that the user has spe
i�ed more
ommon de
ks than allowed by the arraybounds. One either needs to de�ne fewer
ommon de
ks, or to re
ompile EDITOR with alarger value of k4.COPY : **** ERROR 7 **** Syntax! First
hara
ter is illegal.This message is a
ombined EDITOR-FORTRAN syntax error message, and indi
ates thatthe only allowed
hara
ters in the �rst
olumn of legal FORTRAN/EDITOR statements isa blank, a digit (0 through 9),
, C, or *.COPY : **** ERROR 8 **** Syntax! EDITOR sentinel (*) not in
olumn 1.This message indi
ates that the EDITOR
ommand does not begin in the �rst
olumn.EDITOR will not attempt to read statements that do not adhere to the pre
ise syntax.COPY : **** ERROR 9 **** Syntax! Extra spa
e after EDITOR sentinel (*).This message indi
ates that the EDITOR sentinel (*) is not followed immediately by therest of the
ommand. Again, stri
t
omplian
e with the syntax is required.

Error messages 54CTOI : **** ERROR 10 **** A non-numeri

hara
ter dete
ted.Some EDITOR
ommands have �elds inside whi
h integers are expe
ted. Thus, if a userinadvertently types *delete sub1.io where the io should have been a 10, ERROR 10 willbe generated.There is no error message 11.ERRSET : **** ERROR 12 **** Number of issued errors ex
eeds "k1".Trouble. If one really wants to see all the errors at the same time, go ahead and re
ompileEDITOR with a higher value of k1. However, there is probably something really wrongwith the input �les, and this will have to be
orre
ted. On
e the errors are �xed, this errormessage should go away as well.INOREX : **** ERROR 13 **** Unre
ognised EDITOR
ommand.EDITOR didn't re
ognise what followed the * sentinel as a valid EDITOR
ommand. Che
ksyntax.INOREX : **** ERROR 14 **** More than ten nested *if statements.EDITOR only allows as many as 10 nested *if statements, whether they be *if define or*if alias. One needs to simplify the nested stru
ture.INOREX : **** ERROR 15 **** Expe
ting a
hara
ter expression.See ERROR 3.INOREX : **** ERROR 16 **** Expe
ting a Boolean .and. or .or..If an EDITOR *if define statement lists more than one ma
ro, these ma
ros must beseparated by an .and. or an .or..INOREX : **** ERROR 17 **** Expe
ting a Boolean .eq. or .ne..An *if alias statement must have either an .eq. or a .ne. in the fourth �eld.INOREX : **** ERROR 18 **** Dangling *endif statement.More *endif statements than the number of pending *if statements have been dis
overed.All *endifs must have a
orresponding *if statement appearing before it in the de
k.INOREX : **** ERROR 19 **** Too few *endif statements in previous de
k.At least one *if statement was not
losed by an *endif statement by the time the previousde
k was
losed. All *if statements must be
losed by an *endif statement before thenext de
k begins. This message is pla
ed immediately after the *de
k statement of the de
kimmediately following the de
k with the unbalan
ed *if statement(s).

Error messages 55LIST : **** ERROR 20 **** Unbalan
ed parentheses.A FORTRAN statement with an argument list (if,
omputed goto, et
.) has unbalan
edparentheses. This FORTRAN syntax error is only reported when it interferes with thedesired prepro
essing (e.g., looking for targets at the end of an if statement).MERGE : **** ERROR 21 **** Expe
ting a
hara
ter expression.See ERROR 3MERGE : **** ERROR 22 **** Referen
e made to an undefined de
k.A MERGE edit (*insert, *delete, or *repla
e) has been issued whi
h refers to a de
k notfound in the master sour
e
ode. The most likely reason is that the de
kname has beenmisspelled.MERGE : **** ERROR 23 **** Expe
ting a line number to follow de
k name.MERGE edits require at least one referen
e to a line number. If no line numbers were given,this error message is issued.MERGE : **** ERROR 24 **** Last line number must be greater than first.For the MERGE edit: *delete �lename.n,m, m must be greater than n.MERGE : **** ERROR 25 **** Spe
ified range not found in de
k.The spe
i�ed lines in the *delete statement were not found in the spe
i�ed de
k. Che
kthe �fth
olumn of the sour
e
ode formatted by NUMBER and make sure the lines do indeedexist.MERGE : **** ERROR 26 **** Cannot find spe
ified line. Was it deleted?Probable
ause of this error message is a previous *delete statement removed the line(s)that the
urrent MERGE edit is trying to a�e
t.NMLST : **** ERROR 27 **** Missing opening delimiter /.The NMLST errors should not be
onfused with the namelist error messages that mayappear during run time of the user's program should syntax errors be found in the namelistinput data �le. The NMLST errors are those generated by improper syntax of the nameliststatement in the user's sour
e
ode itself. This error message indi
ates that the openingslash is absent from the namelist designation. See x2.2 for an example of proper namelistsyntax.NMLST : **** ERROR 28 **** Missing
losing delimiter /.This error message indi
ates that the
losing slash is absent from the namelist designation.See x2.2 for an example of proper namelist syntax.

Error messages 56NMLST : **** ERROR 29 **** Too many variables in namelist. In
rease "k9".This error message indi
ates that the user has de�ned more variables in the namelist state-ment than may be a

ommodated by the
urrent setting of the internal parameter k9. Onemay break up the namelist into smaller namelists, or re
ompile EDITOR with a larger valueof k9 (x9.3).NMLST : **** ERROR 30 **** Too many vars. in namelist. In
rease "inmlst".This error message indi
ates that the user has de�ned more variables in the namelist state-ment than the user-sele
ted value of inmlst (x2.5) would allow. One may break up thenamelist into smaller namelists, or reset inmlst to a higher value.NMLST : **** ERROR 31 **** No variables found in namelist.There must be at least one valid variable listed in ea
h namelist de�ned.NMLST : **** ERROR 32 **** Unre
ognised syntax in dimension statement.In repla
ing the namelist statement with
alls to subroutines in namelist.a, EDITOR mustmake de
isions as to whi
h subroutines to
all. In so doing, EDITOR s
ans the de
larationsat the head of the program module to learn about the attributes (real, integer, et
.) anddimensions, if any, of ea
h variable in the namelist. Should it �nd any FORTRAN syntaxerror in the de
laration list that impedes its s
an, EDITOR generates this message.NMLST : **** ERROR 33 **** Blank "nlsda
" suffix! Che
k de
larations.This error stems (usually) from some syntax error (su
h as a missing
omma) in the de
-laration list that wasn't dete
ted while the de
laration list was being s
anned and left thevariable attribute undetermined. In this event, EDITOR is unable to determine whi
h ofthe namelist.lib subroutines (named nlsda
nn, where nn ranges from 01 to 24) to
all.Che
k whi
h variable is involved with the statement to whi
h this error message refers andexamine how that variable is de
lared in that program module.PRECOM : **** ERROR 34 **** Call made to an unknown
ommon de
k.See ERROR 2.TARGET : **** ERROR 35 **** Unre
ognised
hara
ter in first five
olumns.TARGET errors refer always to in
orre
t FORTRAN syntax whi
h impedes the tidy-up pro
ess.This parti
ular error is generated if there is anything other than a digit (0 to 9) in the �rst5
olumns of any statement that is not a
omment, blank, or EDITOR statement.TARGET : **** ERROR 36 **** Too many targets - Going on to next de
k.Too many targeted statements in the program module. The tidy-up pro
ess
annot
ontinuewith
urrent module, so exe
ution
ontinues with the next module. Either break the moduleup into smaller modules, or re
ompile EDITOR with a larger value of k5 (x9.3).

Error messages 57TARGET : **** ERROR 37 **** Unre
ognised syntax.The statement does not
onform to ANSI-standard FORTRAN77.TARGET : **** ERROR 38 **** Expe
ting a numeri
al target.A FORTRAN statement whi
h is supposed to in
lude a numeri
al target (e.g., goto) didnot have a numeri
al target where one was expe
ted.TARGET : **** ERROR 39 **** Too many origins - Going on to next de
k.Too many origins in the program module. The tidy-up pro
ess
annot
ontinue with
urrentmodule, so exe
ution
ontinues with the next module. Either break the module up intosmaller modules, or re
ompile EDITOR with a larger value of k3 (x9.3).TARGET : **** ERROR 40 **** Target defined more than on
e.Two or more target statements use the same target number.TARGET : **** ERROR 41 **** Origin has no target.The origin refers to a non-existent targeted statement.TARGET : **** ERROR 42 **** Ambiguous targets.This error stems from the TARGET feature whi
h repla
es do-enddo stru
tures with targeteddo-loops. This is a badly designed feature be
ause it requires the enddo statement to in
ludethe do-loop index in order to perform the repla
ement. Thus the statement do i=i1,i2 mustend on the statement enddo i, not just enddo. The trouble is that
ompilers whi
h o�erthe do-enddo extension treat the do-loop index on the enddo statement as optional , notmandatory . Thus the TARGET feature to repla
e do-enddos with targeted do-loops is not asgeneral as it
ould be. In parti
ular, enddo statements whi
h do not e
ho the do-loop indexwill result in this error message being issued.TARGET : **** ERROR 43 **** Too many "do"s and/or "goto"s in this de
k.The sum of the number of do-loops and the number of goto statements (in
luding gotos im-plied by the err and end parameters in open and read statements) ex
eed ienddo-ibegdo+1,where ibegdo and ienddo are namelist input parameters (see x5.1). One must either de-
rease the number of targets in this module, or in
rease the di�eren
e between ibegdo andienddo.TARGET : **** ERROR 44 **** Too many "read"s in this de
k.The number of formatted read statements ex
eeds iendre-ibegre+1, where ibegre andiendre are namelist input parameters (see x5.1). One must either de
rease the number ofread targets in this module, or in
rease the di�eren
e between ibegre and iendre.

Error messages 58TARGET : **** ERROR 45 **** Too many "write"s in this de
k.The number of formatted write statements ex
eeds iendwr-ibegwr+1, where ibegwr andiendwr are namelist input parameters (see x5.1). One must either de
rease the number ofwrite targets in this module, or in
rease the di�eren
e between ibegwr and iendwr.TARGET : **** ERROR 46 **** More than i de
ks defined. Part of file lost.Program has more modules (subroutines or de
ks) than
an be a

ommodated by EDITORas
ompiled. Either redu
e the number of modules in the program, or re
ompile EDITORwith a larger value for k4.PARALLEL: **** ERROR 47 **** Too many variables in do-loop. In
rease "k9".The number of variables to be s
oped in the nested do-loop stru
ture being mi
ro-tasked ismore than
an be a

ommodated by EDITOR as
ompiled. Either redu
e the number ofvariables being used in the o�ending do-loop, or re
ompile EDITOR with a larger value fork9.MERGE : **** ERROR 48 **** Too many nested *reads.Like the *
all statement, as many as 10 *read statements may be nested. Sin
e it isunlikely that more than 10 nested *reads would ever be deliberate, this is probably
ausedby a
losed loop. That is,
hange de
k 1 reads
hange de
k 2 whi
h reads
hange de
k 3whi
h reads
hange de
k 1, or something to that e�e
t.ERRMSG : **** ERROR 999 **** Unspe
ified error.No guidan
e, other than to say this message should never
ome up.A.3 WarningsIn this release, there is only one warning message, per se, and this is
ompletely harmless.It is e
hoed to the user's CRT and is not pla
ed into any of the output �les.TARGET : **** WARNING **** In
rement for de
k: de
kname redu
ed from i1 to i2 .If the number of targets found in the
urrent module ex
eeds (ienddo-ibegdo)/in
, whereienddo, ibegdo, and in
 are namelist input parameters
hosen by the user (see x5.1),then the user-supplied value for in
 is redu
ed until the number of targets is less than(ienddo-ibegdo)/in
. If
hoosing in
=1 still doesn't do it, then error message 43 (or 44,or 45) will result. Note that the redu
tion of the value of in
 applies to the
urrent moduleonly. Where ever possible, EDITOR will abide by the user's
hoi
e for in
.A.4 NAMELIST errorsNamelist error messages (as opposed to the NMLST error messages des
ribed in xA.2) ariseonly at run time of software that was pre
ompiled with the namelist repla
ement option

Error messages 59turned on. These messages appear if any syntax errors are found in the namelist input dis
�les. An example of an EDITOR namelist error message follows.**, q1=1.0e-10, infile='indata' inam=1,1,2,2,3^NAMELIST ERROR 4 ---> unexpe
ted
hara
ter -
he
k syntax**The error message e
hos the o�ending line in the namelist input data �le, pla
es a
arat (^)immediately under the o�ending
hara
ter in that line, then explains what is wrong. In this
ase, there is a missing
omma. The only problem with EDITOR namelist error messagesis that only one message
an be generated at a time. Ea
h error message aborts exe
utionand thus it may take several tries before all the syntax errors are found and
orre
ted.Below is a list of the possible namelist errors along with brief des
riptions.NAMELIST ERROR 1 --->
olumn 1 reserved for
omment sentinel:
The rules of namelist input de
ks must be adhered to exa
tly. If a
hara
ter other than ablank,
, or C appears in the �rst
olumn anywhere in the input data �le, this message willbe issued.NAMELIST ERROR 2 --->
olumn 2 reserved for $ delimiterIf a
hara
ter other than a blank or $ appears in the �rst
olumn anywhere in the input data�le, this message will be issued.NAMELIST ERROR 3 ---> variable not found in namelistA variable is being set whi
h was not part of the namelist de
laration in the sour
e
ode.The usual reason for this error is a misspelled variable.NAMELIST ERROR 4 ---> unexpe
ted
hara
ter -
he
k syntaxThe usual reason for this message, as in the example above, is a missing
omma. Che
k thesyntax of the o�ending line
arefully.NAMELIST ERROR 5 ---> invalid logi
al expressionA logi
al variable has been assigned a value other than .true., .t., .false., or .f. (in-
luding the periods).NAMELIST ERROR 6 ---> namelist does not exist, or is out of sequen
eThe sour
e
ode attempts to read a namelist not found in the namelist input data �le. Thisis usually
aused by a misspelled namelist name or a namelist that appears out of order inthe data �le. Note that the order of the namelists in the data �le must be the same as theorder in whi
h the sour
e
ode reads them.

Error messages 60NAMELIST ERROR 7 ---> error reading input de
kDoes the namelist input data �le exist on dis
 in the dire
tory in whi
h the exe
utable wasexe
uted?NAMELIST ERROR 8 ---> variable not de
lared as a ve
torA s
alar is assigned values as though it were a ve
tor.NAMELIST ERROR 9 ---> next namelist begun before
losing quote foundChara
ter assignments may run over several lines. Thus, if a namelist opening sentinel $is found in the se
ond
olumn of a line before the
losing quote of the
urrent
hara
terassignment is found, this message results. A
ommon
ause of this message is if the
losingquote has been inadvertently shoved beyond the 72nd
olumn, or if the
losing quote is asingle (double) quote while the opening quote is a double (single) quote.NAMELIST ERROR 10 ---> missing opening quoteIf the �rst non-blank
hara
ter after the = in a
hara
ter assignment is not a single or adouble quote, this message is issued.NAMELIST ERROR 11 ---> blank dataA variable is assigned a null �eld.NAMELIST ERROR 12 ---> premature end of fileFile appears to have ended before the
losing sentinel $ of the
urrent namelist was found.Common
ause is if the
losing sentinel of the last namelist was inadvertently shoved beyondthe 72nd
olumn.NAMELIST ERROR 13 ---> missing $ sentinel to
lose namelistNext namelist has begun (a $ sentinel was found in
olumn 2) before the
losing sentinelof the
urrent namelist was found. Common
ause is if the
losing sentinel is inadvertentlyshoved beyond the 72nd
olumn.NAMELIST ERROR 14 ---> exponent must not ex
eed 999The EDITOR namelist will not permit exponents in real variable assignments to ex
eed 999(or be lower than �999). Obviously, a 32-bit word ma
hine will have even more stringentlimits.NAMELIST ERROR 15 ---> no more than 15 digits in single pre
isionThe tone of this message is a fossil of the days when EDITOR ran only under UNICOS, andwhere single pre
ision was 15 signi�
ant digits (double pre
ision on most other platforms).The EDITOR namelist will only allow as many as 15 signi�
ant �gures to be spe
i�ed in areal variable assignment.

