
EDITOR USER MANUALVersion 2.1David A. ClarkeInstitute for Computational AstrophysisSaint Mary's UniversityHalifax NS, Canada B3H 3C3http://www.ia.smu.a/zeus3dJune, 2004; revised Otober, 2007Copyright David A. Clarke, 2004, 2007

Contents iContentsDislaimer ii1 Introdution 11.1 VERSION 2.1 . 12 PRECOM: Preompiling soure ode 32.1 Basi preompiling . 32.2 The NAMELIST extension . 92.3 Inserting miro-tasking diretives . 132.4 Splitting a soure ode; generating a make�le 182.5 The preom.s sript �le . 193 NUMBER: Generating a numbered listing 233.1 Reformatting a �le . 233.2 The number.s sript �le . 234 MERGE: Merging soure ode 254.1 Change deks . 254.2 The merge.s sript �le . 285 TARGET: FORTRAN tidy-up 315.1 The target.s sript �le . 346 COMPARE: Comparing similar ASCII �les 366.1 Comparing entire �les . 366.2 Comparing delaration ontents . 386.3 The ompare.s sript �le . 407 SPLIT: Splitting soure ode 427.1 Splitting a �le . 427.2 The split.s sript �le . 428 CONCAT: Conatenating �les 438.1 The onat.s sript �le . 439 Installing EDITOR 449.1 Installation . 449.2 The sript �le edit21.s . 469.3 EDITOR parameters . 48A Error messages 50A.1 Fatal errors . 50A.2 Non-fatal errors . 52A.3 Warnings . 58A.4 NAMELIST errors . 58

Dislaimer iiDislaimerNOTICE: This software was developed by the author at the National Center forSuperomputing Appliations (NCSA) at the University of Illinois in Urbana-Champaign between 1988 and 1990, and is urrently maintained by the authorat the Institute for Computational Astrophysis at Saint Mary's University inHalifax, NS. It and this manual are o�ered \as is" by the author to anyone fornon-pro�t, eduational use with no expressed or implied warranty or suitability.It is requested that the author's name and this dislaimer remain assoiated withthis manual and software, as well as any desendents of this software that maybe developed by a third party.

Introdution 1EDITOR USER MANUALVersion 2.1, David A. Clarke, ICA, Otober 2007
1 Introdution1.1 VERSION 2.1EDITOR is a highly portable text manipulator written in FORTRAN77 designed to man-age and ompile large omputer odes, and plaed in the publi domain by the author(see Dislaimer on page ii). The \tar" �le dzeus35.tar.gz, available for downloading atwww.ia.smu.a/zeus3d, ontains the EDITOR pakage inluding this manual and instal-lation intrutions neessary to install and use EDITOR on the user's home platform.EDITOR is designed for soure ode written in FORTRAN, although some of its fun-tionality is independent of the ontents of the ASCII text it manipulates. It was born, inpart, out of the author's frustration in porting software from CTSS to UNICOS in 1988 whenthe NCSA swithed the operating system on its Cray mahines. For those familiar with theCTSS environment, EDITOR was initially designed to mimi the CTSS preompiler, HIS-TORIAN , muh of whose funtionality was not arried into MPPL, the �rst preompilerunder UNICOS. Sine then, EDITOR has blossomed into a rather sophistiated pakage inexess of 13,000 lines of FORTRAN apable of a variety of text manipulations. Eah of thesefuntionalities shall be referred to as a job, of whih there are seven in this release. Theseinlude:1. preompiling soure ode, inluding inserting modules (e.g., ommon blok delara-tions) into soure ode, seleting soure ode to be ompiled, replaing nameliststatements and their assoiated reads/writes with alls to subroutines in a portable li-brary, \ miro-tasking" nested do-loops, and splitting up the soure ode into modules(PRECOM, x2);2. generating a multi-olumned soure ode listing omplete with a table of ontents(NUMBER, x3);3. merging a \hange dek" with a soure ode, thereby upgrading the soure ode withoutmaking hanges diretly to the master �le (MERGE, x4);4. tidying up FORTRAN soure ode inluding relabelling targets, indentation, renum-bering ontinuation haraters, alphabetising modules, et. (TARGET, x5);5. omparing two ASCII �les and reporting the di�erenes found (COMPARE, x6), overlook-ing some di�erenes of spei�ed type;6. splitting a long �le into subroutine modules (SPLIT, x7); and

Introdution 27. onatenating all �les with a ommon suÆx found in the urrent diretory and all itssubdiretories into a single �le (CONCAT, x8).These jobs are all desribed in the setions indiated. In addition to desribing EDI-TOR's most important task (preompilation), x2 introdues the �rst-time user to languageof EDITOR. Finally, x9 desribes how EDITOR may be installed on a new platform.

Preompiling soure ode 32 PRECOM: Preompiling soure ode2.1 Basi preompilingThe main purpose of EDITOR is to preompile large FORTRAN soure odes. By default,the EDITOR preompiler reates a separate �le (whose name is the same as the original �lewith the extension .f appended) ontaining the preompiled soure listing. The �le ontain-ing the original soure ode is left as is. EDITOR was designed to mimi HISTORIAN , thepreompiler available under the Cray Time Sharing System (CTSS) whih was widely usedon Cray mahines before 1989 and, in the opinion of the author, one of the most useful andexible preompilers of its day. In the years sine, EDITOR has undergone many hangesthat has taken it beyond HISTORIAN and it remains the preompiler for the ZEUS familyof astrophysial MHD odes (www.ia.smu.a/zeus3d).To use EDITOR, one must insert various types of EDITOR ommands, all relativelyunobtrusive, into an existing FORTRAN soure ode. All EDITOR ommands go on sep-arate lines and begin with an asterisk (*) in the �rst olumn. There may be one EDITORommand per line. Depending on the task hosen, EDITOR will make from 1 to 7 passesthrough the soure ode arrying out various diretives as spei�ed by the EDITOR om-mands. During preompilation, the resulting soure ode will be standard FORTRAN, voidof any EDITOR ommands and ready for the ompiler.It is unlikely that users with small, easily managed soure odes will want to bother withany preompiler. But urators of partiularly large odes whih o�er a variety of features,run under various operating systems (OS), and modi�ed by several people simultaneouslywill want to onsider some sort of preproessor suh as EDITOR. For example, odes whihneed to operate under more than one OS will almost ertainly require a separate version foreah OS to aommodate the di�erenes among the host mahines. The last thing that aurator of a large ode wants to do is to have multiple versions of the same ode to upgradeevery time there is a hange. The preompiler in EDITOR will allow these disparate versionsto be merged into a single master ode, and thus upgrades need be implemented only one.EDITOR onsiders a soure ode as being made up of separate \deks" (a throw-bakfrom the days when omputer programs onsisted of deks of ards), whih may or may notbe grouped into designated \groups". There are two types of deks that EDITOR reognises.\Ordinary deks" normally onsist of individual program modules, suh as subroutines,funtions, and the main program. \Common deks" are piees of ode whih are to appearverbatim in one or more ordinary dek(s). Common deks an be thought of as EDITOR'sanswer to inlude statements whih is a ommon though not ANSI-standard extension ofmany FORTRAN ompilers. Normally, ommon deks onsist of ommon blok de�nitionswhih are required by more than one program module. Common deks ould also be usedas a way of \in-lining" a segment of ode into more than one plae throughout the masterode.The �rst thing a user should do in preparing a soure ode for EDITOR is to insert*dek and *dek statements at the beginning of all soure ode modules. The syntax is asfollows:*dek dekname*d dekname

Preompiling soure ode 4*dek dekname*dk deknamewhere dekname is a user-designated name for the dek unique from all other deknames.*dek (or equivalently, *d for short) tells EDITOR that everything that follows up to butnot inluding the next *dek, *d, *dek, or *dk statement belongs to the ommon dekso named. Similarly, *dek (*dk) indiates an ordinary dek. One is free, for example, togive an ordinary dek the same name as the module (i.e. program, subroutine, or funtionname) it ontains.Optionally, the user may designate \groups" of deks with the *group (or *gp for short)statement.*group groupname*gp groupnamewhere groupname is a user-designated name for the group, not neessarily unique from thosenamed in other group statements. All ordinary deks will then be onsidered part of thegroup named in the most reent group statement. The *group ommand is designed foruser onveniene; it has no e�et on how the program is ompiled. They allow, for example,the FORTRAN tidy-up routine (TARGET, see x5) to re-alphabetise all deks within a ertaingroup, then arrange the groups themselves alphabetially. In some sense, one an think ofgroups as analogous to \diretories" aiding the user to loate a partiular module within alarge soure ode.Having designated the deks (and perhaps groups), one may now insert the variouspreompiler ommands whih will be arried out during the �rst two passes the preompilermakes through the ode. The �rst pass establishes whih deks the user has de�ned, theirextent, and whih EDITOR \maros" have been set. The seond pass preompiles the soureode aording to the maro settings. In this way, the ompiler will only see that portion ofthe ode whih the user has deemed relevant to the problem at hand.There are two types of EDITOR maros { \de�nitions" and \aliases". Setting maros isdone by inserting any number of the following EDITOR ommands anywhere in the mastersoure �le, or in the hange dek if MERGE is being used in tandem with PRECOM (x4). Notethat these statements are global in that they will have e�et throughout the ode no matterwhere in the ode they appear. There is, for example, no way to impose a maro for part ofthe soure ode, then \turn it o�" for the rest.*define def1 , def2 , ...*def def1 , def2 , ...*alias alias1 alias2*al alias1 alias2where def1 , def2 , et. are user-seleted alpha-numeri keywords whih determine \ative"segments of the soure ode. The *alias statement instruts EDITOR to replae all our-renes of the alpha-numeri keyword alias1 with alias2 (exept for those whih appear inomment statements). Note that *define and *def are synonyms, as are *alias and *al.Having determined whih EDITOR maros have been set, the preompiler makes aseond pass through the soure ode to look for *if define or *if alias statements. These

Preompiling soure ode 5determine whih segments of the program are to be inluded in the preompiled version ofthe soure ode whih is ultimately sent to the ompiler. The following lists the legal syntaxfor EDITOR *if statements.1. *if define,maro { the following soure ode is kept provided the maro is de�nedby a *define statement somewhere in the �le.Note that the omma following *if define," is optional. It was introdued in orderto mimi HISTORIAN where it is not optional. Note to HISTORIAN users: thealias feature has no analogue in HISTORIAN .2. *if -define,maro { the following soure ode is kept provided the maro is notde�ned by a *define statement somewhere in the �le.3. *if def,.not.maro { same as 2. Note that def is an aeptable abbreviation fordefine.4. *if def,maro1.and.maro2 { the following soure ode is kept provided both marosare de�ned by a *def statement somewhere in the �le.5. *if def,maro1.or.maro2 { the following soure ode is kept provided either marois de�ned by a *def statement somewhere in the �le.6. *if alias maro.eq.phrase { the following soure ode is kept provided the aliasmaro has been set to the harater string phrase by an *alias statement somewherein the �le.7. *if al maro.ne.phrase { the following soure ode is kept provided the alias marohas not been set to the harater string phrase by an *alias statement somewhere inthe �le. Note that *al is an aeptable abbreviation for *alias.8. *else { the following soure ode is kept if the soure ode following the previous *if(and all the way to this *else statement) was not kept, i.e. if the truth value of theprevious *if is false. Note that *el is an aeptable abbreviation.9. *endif { loses the previous *if, *else struture. All soure ode following the*endif statement is not a�eted by the previous *if or *else statements. For every*if statement, there must be an *endif statement whih follows. Note that *ei is anaeptable abbreviation.10. *all dekname { inludes the ontents of the ommon dek dekname at the loationof the *all statement. Note that *a is an aeptable abbreviation for *all.Finally, one may insert omment statements if desired by putting an asterisk in botholumns 1 and 2. These omments will appear in the master soure ode where the userplaes them, but will not be opied over to the �le whih EDITOR prepares for the ompiler.Following is a simple example showing how these statements an be used. The funtionof the program is simply to return the time of day. Note that the line numbers in the �rst

Preompiling soure ode 6�ve olumns are inluded for referene only, and are not modi�ations made by the EDITORpreompiler.Master soure �le:1 **2 ** Selet operating system. Choies are: UNICOS, CONVEXOS, SUNOS3 **4 *define UNICOS5 **6 ** Selet i/o subroutine by setting an alias for WRITE.7 **8 *alias WRITE write19 *dek impliit10 impliit none11 *dek ommon12 *if define,UNICOS13 harater*8 tod14 *endif UNICOS15 *if define,CONVEXOS16 harater*9 tod17 *endif CONVEXOS18 *if define,SUNOS19 harater*24 tod20 *endif SUNOS21 ommon / om1 / tod22 *dek delare23 *all impliit24 *all ommon25 *dek tod26 ===+====1====+====2====+====3====+====4====+====5====+====6====+====7==27 28 program tod29 30 PURPOSE: This program returns the time of day on various systems.31 32 ---33 34 *all delare35 36 *if define,UNICOS.or.CONVEXOS37 external date38 *endif UNICOS.or.CONVEXOS39 *if define,SUNOS40 external fdate41 *endif SUNOS42 external WRITE43 44 ---45 46 Get time of day ("tod").47 48 *if define,UNICOS.or.CONVEXOS49 all date (tod)50 *endif UNICOS.or.CONVEXOS51 *if define,SUNOS52 all fdate (tod)53 *endif SUNOS

Preompiling soure ode 754 55 Write result to CRT using desired i/o routine aliased to WRITE.56 57 all WRITE58 stop59 end60 61 *dek write162 ===+====1====+====2====+====3====+====4====+====5====+====6====+====7==63 64 subroutine write165 *if alias WRITE.eq.write166 67 PURPOSE: This subroutine writes "tod" to the CRT.68 69 ---70 71 *all delare72 73 ---74 75 write(6,2000) tod76 *if define,UNICOS77 2000 format('Time of day aording to the Cray is: ',a)78 *endif UNICOS79 *if define,CONVEXOS80 2000 format('Time of day aording to the Convex is: ',a)81 *endif CONVEXOS82 *if define,SUNOS83 2000 format('Time of day aording to the Sun is: ',a)84 *endif SUNOS85 *endif86 return87 end88 89 *dek write290 ===+====1====+====2====+====3====+====4====+====5====+====6====+====7==91 92 subroutine write293 *if alias WRITE.eq.write294 95 PURPOSE: This subroutine writes "tod" to the CRT using a different96 format than WRITE1.97 98 ---99 100 *all delare101 102 ---103 104 write(6,2000) tod105 2000 format('Time of day is: ',a)106 *endif107 return108 end109 With the EDITOR maros settings as de�ned in lines 4 and 8, the preompiler would onvert

Preompiling soure ode 8this ode into the following form whih would be read by the ompiler. Note that the linenumbers from the master ode have been preserved.Preompiled soure �le:26 ===+====1====+====2====+====3====+====4====+====5====+====6====+====7==27 28 program tod29 30 PURPOSE: This program returns the time of day on various systems.31 32 ---33 10 impliit none13 harater*8 tod21 ommon / om1 / tod37 external date42 external write143 44 ---45 56 Get time of day ("tod").47 49 all date (tod)54 55 Write result to CRT using desired i/o routine aliased to WRITE.56 57 all write158 stop59 end60 62 ===+====1====+====2====+====3====+====4====+====5====+====6====+====7==63 64 subroutine write166 67 PURPOSE: This subroutine writes "tod" to the CRT.68 69 ---70 10 impliit none13 harater*8 tod21 ommon / om1 / tod72 73 ---74 75 write(6,2000) tod77 2000 format('Time of day aording to the Cray is: ',a)86 return87 end88 90 ===+====1====+====2====+====3====+====4====+====5====+====6====+====7==91 92 subroutine write2107 return108 end109 In this example, the EDITOR de�nitions are used to aount for the di�erenes in system

Preompiling soure ode 9alls under various operating systems (e.g., lines 12{20 in the master ode). They may alsobe used to tailor a ode so that the ompiler will generate a binary ode optimised for theproblem to be solved. For example, if the master soure ode is one whih omputes self-gravitating hydrodynamial ows and it has been determined that self-gravity is irrelevantto the problem at hand, one does not want to waste memory by delaring gravitationalvariables, nor does one want to perform the omputations neessary to evolve the unwantedgravitational potential. EDITOR de�nitions may be used to eliminate those portions ofthe ode peuliar to the self-gravity feature, thereby streamlining the ode for a non-self-gravitating problem.Note the two uses for alias maros illustrated in this example. Aliases an be used toselet the module to whih exeution is passed without having to hange the body of thesoure ode itself (line 57). They an also be used to prevent an unwanted segment of theode from being ompiled (line 93). While the latter funtion may be performed by thede�nition maros, the former may not and thus the alias feature represents a real extensionof the funtionality of HISTORIAN .Common deks (suh as impliit, ommon, and delare beginning on lines 9, 11, 22respetively) appear in the preompiled version of the ode only if they are inserted inthe ode by a *all statement (e.g., line 34). Common deks not referred to by a *allstatement will not appear in the preompiled version of the ode and, in partiular, theommon deks themselves are not ehoed to the preompiled version as separate modules.Common deks may all other ommon deks (e.g., lines 23 and 24), but they may not allthemselves. Calls to ommon deks may be nested (i.e., ommon dek 1 alls ommon dek2 whih alls ommon dek 3, et.) as many as 10 deep, so long as none of the ommondeks in the nest are the same (no losed loops!).2.2 The NAMELIST extensionNamelists �rst appeared at the Lawrene Livermore Labs around 1980 and was inorpo-rated as a CTSS FORTRAN extension. Sine then, most operating systems o�er FOR-TRAN77 ompilers with namelist extensions, and namelist has beome a standard featureof FORTRAN90. However, until the arrival of FORTRAN90 (sometime in 1994!), there wasno namelist standard, and this aused great headahes for the ZEUS development projetwhih, in 1990, had to operate on three platforms (UNICOS, CONVEXOS, and SUNOS, thepreursor to SOLARIS). Thus, a portable namelist emulator was developed and EDITORan be instruted to replae all namelist syntax in the ode with alls to a namelist library,whih inludes features that the FORTRAN90 namelist does not (e.g., ability to assign val-ues to 2D arrays, allowing variables passed by a subroutine argument list to be namelistvariables). The disussion in this subsetion, therefore, is restrited to the EDITOR avourof namelists.Namelists provide an extremely useful and exible way of supplying user-determined datato a program. Traditionally, FORTRAN soure odes have relied upon prompting users fordata and/or formatted reads to dis �les. For many input parameters, the former an taxthe user's patiene while the latter an be frustrating beause of the need to omply witha strit format for the input data. Namelists eliminate these problems, as illustrated in thefollowing example:

Preompiling soure ode 101 integer in, jn2 parameter (in=100, jn=100)3 4 harater*128 salar, vetor(in), array(in,jn)5 integer isalar, ivetor(in), iarray(in,jn)6 real rsalar, rvetor(in), rarray(in,jn)7 logial lsalar, lvetor(in), larray(in,jn)8 9 ...10 ...11 12 Open the ASCII file "infile" whih ontains the namelist data and13 ASCII file "outfile" to whih a namelist summary may be written.14 15 open (51, file='indata', status='old')16 open (52, file='outdata', status='unknown')17 18 Define list of parameters whih may be set by namelist "data1".19 20 namelist / data1 / salar, isalar, rsalar, lsalar21 , vetor, ivetor, rvetor, lvetor22 , array , iarray , rarray , larray23 24 Default values for namelist parameters25 26 salar = ' '27 isalar = 028 rsalar = 0.0e0029 lsalar = .false.30 do 10 i=1,in31 vetor(i) = ' '32 ivetor(i) = 033 rvetor(i) = 0.0e0034 lvetor(i) = .false.35 10 ontinue36 do 30 j=1,jn37 do 20 i=1,in38 array(i) = ' '39 iarray(i) = 040 rarray(i) = 0.0e0041 larray(i) = .false.42 20 ontinue43 30 ontinue44 45 Read namelist from logial unit 51.46 47 read (51, data1)48 49 Write a namelist summary to logial unit 52.50 51 write (52, data1)Namelists read data from an ASCII namelist input data �le (named indata in thisexample) whih the user prepares before exeuting the binary. Line 15 is an ordinary openstatement appropriate for linking an existing ASCII dis �le to the program at exeutiontime. Unit 51 was hosen arbitrarily. Most any unit number other than 5 or 6 may be hosen.The namelist statement on line 20 de�nes whih variables belong to the namelist data1 and

Preompiling soure ode 11thus whih variables may be assigned values in the namelist input data �le indata. Line 47is where the data in the namelist data1 are read from indata. As many namelists as desiredmay be so de�ned and read throughout the program and for every namelist de�ned, thereshould be a orresponding entry in the namelist input data �le indata, as desribed below.Line 51 writes a summary of the namelist settings to unit 52. This is not a neessary part ofthe namelist struture, and many users may not want to bother with this feature. Indeed,many implementations of namelist don't even o�er the option to write a summary of thenamelist settings. The EDITOR namelist does, however, support the write (or equivalently,print) statement.While it is not neessary, it may be useful to assign all the namelist parameters defaultvalues before the read statement (lines 26 through 43). This is so that in ase the userdoes not assign values to all the parameters in the namelist input data �le (by no means arequirement), all parameters will be initialised to something and hopefully to a useful defaultvalue.To use the EDITOR namelist, one must abide by the following rules:1. Do not use namelist as a variable name in any module that reads data from namelists.2. Do not name any subroutines nlsdann, where nn varies from 01 to 24.3. Link the library namelist.a for single preision appliations, and dnamelist.a fordouble preision appliations to your ode during the link step. The namelist.f anddnamelist.f soure odes and the sript �les to build the libraries are in the diretorynmlst of dzeus35.tar downloaded from www.ia.smu.a/zeus3d).Otherwise, use namelists as indiated above, and prepare your namelist input data �le as inthe following example:1 ==+====1====+====2====+====3====+====4====+====5====+====6====+====7==2 $data1 rsalar=1.0, isalar=1, lsalar=.true., salar='abdefg'3 , ivetor=3*1,2,3, ivetor(20:30)=2, ivetor(40)=4*34 , ivetor(1)=1,1,1,2,3, ivetor(20)=11*2, ivetor(40)=3,3,3,35 , iarray(1:100,1:100)=1, iarray(1:10,91:100)=26 , vetor(3)="abdefghijklmnopqrstuvwxyz01234567890ABCDEFGHIJKL7 MNOPQRSTUVWXYZ", lvetor(98)=.t.,.false.,.f. $Various aspets of this data �le warrant disussion. Again, line numbers are not part of thedata �le; they are inluded for referene only.1. Eah line in a namelist input data �le may be at most 72 haraters wide. Anythingbeyond the 72nd olumn will be ignored. Thus, one might onsider inluding a numberline, suh as line 1, whih will allow one to see at a glane whether the data extendbeyond the 72nd olumn.2. Only one of three haraters are allowed in olumn 1: , C (for \ommenting out"lines as in lines 1 and 4), or a blank. Anything else will ause an error message to begenerated and exeution to abort. Note that all lines ommented out will be ehoedto the CRT at exeution time.

Preompiling soure ode 123. Only one of two haraters are allowed in olumn 2: the $ sentinel (for opening anamelist), or a blank. Anything else will ause an error message to be generated andexeution to abort.4. The �rst word to appear after the opening $ sentinel should be the namelist name asde�ned in the program|in this ase, data1. There may be spaes between the opening$ sentinel and the namelist name, but nothing else.5. After the namelist name, the user is free to set whihever variables within the namelistto whatever values are desired. Note that the order in whih the variables are set neednot be the same as the order in whih they are listed in the namelist statement. Onedoes not need to set all the variables listed either. However, any variable set in thedata �le whih is not listed in the orresponding namelist statement in the programwill generate an error message and abort exeution.6. Variable assignments may appear anywhere between and inluding olumns 3 and 72.Variable assignments are separated by a omma and as many (inluding none) blanksas desired.7. Variables are set by typing the variable name, followed by an equals sign (=), followedby the desired value in a format onsistent with the variable type.8. Legal values whih may be assigned to a logial variable are .true., .t., .false., or.f., where the �rst two and last two are synonyms. Note that the periods must beinluded.9. Charater strings are set by enlosing the desired text inside a pair of single quotes ora pair of double quotes. If a harater string is too long to �t within the 72 olumnonstraint, one may type all the way to the 72nd olumn and resume the string inthe third olumn on the following line. Note that even with the harater string sosplit, only one opening and one losing quote should be used (e.g., lines 6 and 7). This\wrap-around" feature is supported by the EDITOR namelist for harater variableassignments only.10. Hollerith strings are not supported by the EDITOR namelist. Use true haratervariables.11. Setting values for vetors may be done in a number of ways, as illustrated on lines 3and 4. Thus ivetor=3*1,2,3 will set ivetor(1)=1, ivetor(2)=1, ivetor(3)=1,ivetor(4)=2, and ivetor(5)=3; ivetor(20:30)=2 will set inlusively the 20ththrough 30th elements of ivetor to 2; and ivetor(40)=4*3 will set the 40th through43rd elements of ivetor to 3. Note that line 4 whih is ommented out would performthe idential assignments. Note that ivetor=3*1,2,3 is, by onvention, idential toivetor(1)=3*1,2,3. The redundany in notation for assigning vetor values is sothat namelist input data �les prepared for the CTSS namelist may be read by theEDITOR namelist.

Preompiling soure ode 1312. Setting values for rank 2 arrays may be done only by using the full olon notation(line 5). This notation is peuliar to the EDITOR namelist and, so far as is known bythe author, is not supported by FORTRAN90 namelist. Setting values for arrays ofgreater rank than 2 is not supported.13. The last harater on the last line of a namelist assignment must be the losing $sentinel. Be areful that this does not go beyond the 72nd olumn. If it is left out orinadvertently plaed beyond the 72nd olumn, an error message will be generated, andexeution will abort.14. One is free to de�ne as many namelists as desired in the soure ode. However, oneone namelist is de�ned, it must be read from the namelist input data �le by a readstatement (line 47 above) before a new namelist is de�ned. Thus, only one namelistmay be pending at a time. This is not a restrition of FORTRAN90 namelist.15. The order of the namelists (not the variables, but the namelists themselves) must bethe same in the namelist input data �le as they are read by the soure ode. Thus, ifthe soure ode is written so that namelist data2 is read after namelist data1, then thevariable assignments for data2 must appear after the variable assignments for data1in the namelist input data �le. If data2 should appear before data1 in the namelistinput data �le, the read to data1 will ause the data for data2 to be skipped. Thus,when it omes time to read data2, these data will not be found and an error messagewill ensue.16. For every namelist read by the soure ode, there must be an entry with the samenamelist name in the namelist input data �le. If, for example, none of the parametersfor namelist data2 are to be assigned values, it is still neessary to inlude a minimalentry in the namelist input data �le of the form:$data2 $Failure to do so will generate an error message and abort exeution.Should any of these rules be broken, namelist error messages are generated at run time.These are disussed in xA.4.2.3 Inserting miro-tasking diretivesWhile single proessor speed is still inreasing with eah new tehnology released, most of theprogress in raw ompute power over the past deade has been through parallelisation. Twoparadigms for parallel omputing have emerged. The \Beowulf" is an example of a distributedmulti-proessing environment in whih memory is distributed over the onstituent proessors.A great deal of thought must be given to how the proessors ommuniate with eah other,and for many appliations this an be a very time-onsuming task. Shared multi-proessing(SMP) is the seond and more expensive parallel environment, but an simplify enormouslythe task of parallelising a ode. On an SMP, all proessors have aess to the same memory

Preompiling soure ode 14and ommuniation among the proessors is greatly redued. The \auto-parallelisation"feature of EDITOR is designed for appliations on SMP arhitetures.There are two basi strategies to \multi-tasking" (i.e., parallelising) a soure ode. Onemay \maro-task" a ode by arranging for the individual proessors to work on individualalls to one or more subroutine(s) whose results are independent of eah other, and/orone may \miro-task" a ode by sending separate iterations through a do-loop to separateproessors. Of the two miro-tasking is really the only way to fully exploit the inherentparallelism in a ode.Critial to miro-tasking a ode is the onept of \private" and \shared" variables.Private variables are those for whih eah proessor has a separate and independent opy.Shared variables are those whih all proessors read from and perhaps write to. The rulesfor determining whih variables are private and whih are shared are fairly straight forward.A variable is private if:1. The �rst time it appears within a do-loop struture, it appears on the left hand sideof an equals sign; and2. It is not indexed by the outer do-loop index.Otherwise the variable is shared. The key to miro-tasking is to identify orretly whihvariables are private and whih are shared|a task known as \soping". Only if the variablesare soped properly an a miro-tasked ode be generated whih yields the same results asthe original serial ode. A number of platforms o�er ompiler options to help users maro-task and miro-task their odes. In developing the ZEUS ode, the author found that theauto-tasking features provided by Cray around 1990 often made soping errors, and/or weretoo timid in some of the loops they attempted to sope and a more aggressive and aurateauto-soping feature was inorporated into EDITOR.After soping the variables in a nested loop, EDITOR inserts the appropriate \mi$"auto-tasking diretives reognised by UNICOS and SUNOS FORTRAN ompilers or \$omp"for OpenMP at the beginning of the soped loop. Should the ode then be passed throughthe ompiler's auto-tasker, the presene of these mi$ or $omp statements will tell theauto-tasker that these loops have already been soped and parallelised, and an be passedover.For all other parallelisation opportunities, the vendor's auto-tasking tools should be used.Indeed, the auto-soping features of most vendors ompilers may by now be superior toEDITOR's and it may be better to use the vendor's auto-parallelisation features exlusively.Note that the EDITOR auto-soper will only sope those variables delared at the begin-ning of the program module. Undelared salars (allowed when impliit none is not used)will probably be soped orretly by the ompiler's auto-tasker by virtue of the autosope(default(auto)) diretive inluded in all EDITOR-supplied mi$ ($omp) statementsbut, in the author's experiene, not neessarily.Below are some examples using Cray's mi$ syntax to illustrate the use of the EDITORauto-soper. There is a one-to-one orrespondene between all mi$ and $omp ommandswhih an be gleaned from the ode (edit21) or from any OpenMP manual if the reader isinterested. In all ases, assume that all variables inluding salars have been spei�ally

Preompiling soure ode 15delared as real, integer, et. at the beginning of the program module. Note that the linenumbers in the �rst 5 olumns are inluded for referene and are not modi�ations made bythe EDITOR preompiler to the soure ode.Example 1: A straight forward nested loop. EDITOR has soped the nested loop and hasinserted the appropriate mi$ diretives. Only the outer loop is miro-tasked. On a vetormahine suh as a Cray, the inner loop will be vetorised.1 mi$ do all private (k, kp1, j, jp1, i, ip1, b1av, b2av, b3av)2 mi$1 shared (kmax, jmax, imax, b1, b2, b3, btot)3 mi$1 autosope4 do 30 k=1,kmax5 kp1 = k + 16 do 20 j=1,jmax7 jp1 = j + 18 do 10 i=1,imax9 ip1 = i + 110 b1av = b1(i,j,k) + b1(ip1,j ,k)11 b2av = b2(i,j,k) + b2(i ,jp1,k)12 b3av = b3(i,j,k) + b3(i ,j ,kp1)13 btot(i,j,k) = 0.25 * (b1av**2 + b2av**2 + b3av**2)14 btot(i,j,k) = amax1 (sqrt(btot(i,j,k)), tiny)15 10 ontinue16 20 ontinue17 30 ontinueThe variable tiny (line 14) was not soped (i.e., EDITOR did not inlude it in either theprivate or the shared lists in lines 1 and 2) beause in the program from whih this examplewas extrated, tiny is a parameter and not a variable. Parameters are not soped sine theompiler replaes parameters with their assigned numerial values.Funtions and subroutines should not be soped. Note that the EDITOR auto-soperis able to distinguish between proper arrays with argument lists (suh as btot in lines 13and 14) whih are delared and soped, and intrinsi funtions (suh as sqrt in line 14)whih are not delared, nor soped. Similarly, user-written funtions whose attribute (real,integer, et.) is not delared will not be soped. User-written funtions whose attributeis delared will not be soped provided they are also delared as external . A user-writtenfuntion with delared attribute not delared external will be soped, and this may or maynot have deleterious e�ets.Example 2: If dependenies and/or redutions are found in the loop, the loop, as written,is not parallelisable and is not soped. A redution is when the value assigned to a privatevariable depends on the value of that variable as determined by a previous iteration, as isthe ase for imax below, or on another element of that variable should the variable be anarray. A dependeny is where a variable is �rst used as a shared variable, then as a privatevariable, as is the ase for ival below. A loop ontaining either a dependeny or a redutionwill, in general, generate di�erent answers depending upon whether it is run serially or inparallel and thus is non-parallelisable. Most ompilers are sophistiated enough to rewriteode to eliminate most redutions and some dependenies and thus if EDITOR �nds a non-parallel loop, it inserts a \No mi$-diretive report" below the loop (in omments) and

Preompiling soure ode 16adds no mi$ statement before it so that the ompiler an have to have a rak at it if itsauto-parallelisation feature is enabled.In addition, I/O and harater operations within a loop will prevent parallelisation.1 imax = 02 ival = i13 do 40 j=j1,j24 do 30 i=i1,i25 iarray(i,j) = ival6 ival = i + 17 imax = max0 (imax, iarray(i,j))8 30 ontinue9 40 ontinue10 ***11 *********** EDITOR NO-CMIC$-DIRECTIVE REPORT FOR LOOP 40 ***********12 ***13 ** No parallel diretives issued beause the following variable(s) **14 ** was/were found to generate dependenies or redutions: **15 ** ival (dependeny) **16 ** imax (redution) **17 ***1 do 130 j=j1,j22 do 120 i=i1,i23 hqty(i,j) = har (iqty(i,j))4 120 ontinue5 write (iodmp) (hqty(i,j), i=i1,i2)6 130 ontinue7 ***8 *********** EDITOR NO-CMIC$-DIRECTIVE REPORT FOR LOOP 130 ***********9 ***10 ** Char. operations prevented parallel diretives from being issued. **11 ** I/O prevented parallel diretives from being issued. **12 ***Example 3: Oasionally, the EDITOR autotasker needs some help auto-soping a nestedloop. On line 12 in the example below, the variable ar is indexed by mm rather than theouter loop index ny, and is assigned a value whih depends on some other element of ar.Tehnially, this onstitutes a redution and thus the loop is not parallelisable by EDITOR.However, areful examination of the index mm shows that for every value of ny, there is aunique value of mm and thus mm is really a \ghost" of ny. Hene, ar should atually be sopedas a shared variable and a redution on a shared variable does not inhibit parallelism. EDI-TOR is not sophistiated enough to realise the link between ny and mm, and thus determinesthat this loop is not parallelisable by virtue of the redution.Of ourse, the user would know that in fat, ar should be treated as a shared variable,and this information an be onveyed to EDITOR by inserting a dummy statement, suh asline 6 in the example below. Dummy statements have a ** in the �rst three olumns andare soped by the EDITOR auto-tasker. However, they are treated as inert omments bythe ompiler. The dummy statement indexes ar with ny, and thus ar is soped as shared.But this introdues another problem: If a variable is �rst soped as shared, then used laterin the loop as a private variable (line 12), this onstitutes, tehnially, a dependeny! It is abogus dependeny to be sure, but EDITOR doesn't know that. Thus, the additional �x online 1 is required. The diretive *ipdepipred instruts the EDITOR auto-tasker to ignore

Preompiling soure ode 17any parallel dependenies and any parallel redutions it may enounter in the nested do-loopstruture immediately following the diretive and auto-sope it anyway. Note that EDITORauto-soping diretives di�er from regular EDITOR ommands in that they start with a *rather than simply *. Other suh diretives inlude *ipdep (ignore parallel dependeniesonly) and *ipred (ignore parallel redutions only). Inserting both the dummy statementand the *ipdepipred diretive allows the EDITOR auto-soper to sope the loop and insertthe orret mi$ statements just before the beginning of the outer loop (and thus right afterthe *ipdepipred diretive).1 *ipdepipred2 mi$ do all private (ny, m1, n1, nx, mm, nn)3 mi$1 shared (nyz, ar, m0, nxz, n0)4 mi$1 autosope5 do 40 ny=1,nyz6 ** ar(ny) = 0.07 m1 = m0 + 2 * (ny - 1) * nxz8 n1 = n0 + 2 * (ny - 1) * nxz9 do 30 nx=1,nxz10 mm = m1 + nx11 nn = n1 - nx + 112 ar(mm) = ar(nn)13 30 ontinue14 40 ontinueExample 4: There are two situations known in whih the EDITOR auto-soper will inor-retly delare a loop safe for miro-tasking. The �rst ase is where a goto statement appearswithin the nested do-loop struture. If a goto statement redirets exeution to somewhereelse within the loop, parallelism is not a�eted and multi-tasking is desirable. However, ifexeution is taken outside the nested loop struture, parallelism is destroyed, and the loopshould not be multi-tasked. The EDITOR auto-soper has not been endowed with the abil-ity to distinguish where exeution is redireted, and so blindly sopes the loop. In this way,the EDITOR auto-soper is perhaps overly aggressive. Thus, the user should be aware ofnested loops with goto statements whih rediret exeution outside the loop and instrutthe EDITOR auto-soper to pass over the loop. This is done with the *nopar diretive.1 *nopar2 do 30 i=i1,i23 do 20 k=k1,k24 do 10 j=j1,j25 if (d(i,j,k) .gt. fator*d(ism1,j,k)) go to 406 10 ontinue7 20 ontinue8 30 ontinue9 40 ontinueNote that the *nopar is interpreted only by EDITOR. Thus, if soure ode unsopedby the EDITOR auto-soper is passed through the ompiler's auto-tasker, an attempt maystill be made by the ompiler to generate the appropriate mi$ diretives.Example 5: The seond ase where the EDITOR auto-soper breaks down is more subtle.The EDITOR auto-soper will sope nested loops in whih there is a all to a subroutine.

Preompiling soure ode 18If the user determines that the subroutine all destroys parallelism, the loop should not besoped, and the user should plae a *nopar diretive before the outer loop. Now, assumingthat the subroutine all does not destroy parallelism, one still has to be areful. There maystill be the problem of soping the variables in the subroutine argument list. In the examplebelow, the variable vp is assigned values by the subroutine all and not by an assignmentstatement expliitly in the loop itself. Thus vp is intrinsially a private variable. However,without the dummy statement (line 7), the �rst appearane of vp is not to the left of anequals sign, and thus it would be soped erroneously as shared (EDITOR is not sophistiatedenough to searh for the subroutine and sope the variables in the alling list based on theontents of the subroutine). Thus, dummy line 7 fores vp to be soped as private.There is still a potential trap, however. Normally, loal variables within a subroutinewill be onsidered private for the purpose of multitasking loops that ontain alls to thatsubroutine. This is as it should be. However, the same loal variables will be treated asshared if they are delared to be in ommon or equivalened to variables in ommon by thesubroutine alled in the loop. This will invariably yield inorret and non-repeatable results.Note that in the example below, vtmp and/or vp may be part of a ommon blok. Sine themi$ diretives expliitly tell the ompiler that these variables are private, extra opies ofthe variables will be made regardless of whether they are in ommon or not. But if thereis no way to tell the ompiler that ommon variables in a subroutine alled within a loopare to be treated as private, this will reate irreproduible results. Unless you know suhonstruts will not ause problems, it is best to avoid alls to suh routines inside a loop youwish to miro-task, or avoid miro-tasking the loop altogether.1 mi$ do all private (j, i, vtmp, vp)2 mi$1 shared (j1, j2, i1, i2, v2, vg2, v2star, qty)3 mi$1 autosope4 do 60 j=j1,j25 do 20 i=i1,i26 vtmp(i) = v2(i,j) - vg2(j)7 ** vp (i) = 0.08 20 ontinue9 all x3z1d (vtmp, vp)10 do 30 i=i1,i211 v2star(i,j) = vp(i) * qty(i)12 30 ontinue13 60 ontinue2.4 Splitting a soure ode; generating a make�leFor ode developers who prefer to work with a single master �le ontaining all the programmodules, UNIX often poses a dilemma. Two useful UNIX failities, MAKE and DBX, work bestif the soure ode is split into individual �les, one for eah program module. Using FSPLIT isunsatisfatory beause it pays no attention to whih modules have been hanged and whihhave not, foring MAKE to reompile all the program modules, not just the ones that werehanged.The EDITOR preompiler o�ers an easy way around this problem. One may instrutthe preompiler to make yet another pass through the master soure �le and this time splitit into individual �les for eah module. The naming onvention for these �les is as one

Preompiling soure ode 19might hope|the name of the module with a spei�ed extension (default is .f). One aneven speify in whih diretory these �les should be plaed. Before writing a �le to dis, thepreompiler will hek to see if there is already a �le by that name on dis in the spei�eddiretory. If there is not, a new �le is reated. If there is, the preompiler ompares line forline the version of the module it just split o� the master �le with the dis �le. If the twodi�er, the dis �le is updated. If the two are idential, the dis �le is not updated. In thisway, MAKE will not reompile unaltered program modules. For large soure odes and slowompilers, this is no small onsideration.At the same time, the EDITOR preproessor will generate a make�le if makename isspei�ed (see x2.5). The user may tell EDITOR whih ompiler, ompiler options, loader,and loader options to use in the make�le. If you need to ompile a few routines with di�erentompiler options than the majority, you may speify these speial ompiler options as wellas the routines for whih these speial options apply. In addition, the desired name for thebinary exeutable may be spei�ed. Thus, one the EDITOR preproessor has proessedthe master soure ode, the ode may be ompiled simply by typing:make -f makenamewhere makename is the name of the make�le spei�ed by the user.2.5 The preom.s sript �leA preompiled version of a FORTRAN soure ode may be generated by issuing the followingommand:sh -v preom.swhere preom.s is an ordinary C-shell sript �le as follows:1 #============== SOURCE FILE TO PRECOMPILE A SOURCE CODE ===============#2 #3 #=======================================> Get files from home diretory.4 if(! -e xedit21) p USERID/editor/xedit21 .5 #----------------------> If neessary, reate the diretory "DIRECTORY".6 if(! -e DIRECTORY) mkdir DIRECTORY7 #-----------------------> Create the input dek for EDITOR, and exeute.8 rm -f inedit9 at << EOF > inedit10 \$editpar inname='SOURCECODE'11 , ibanner=1, job=4, idump=1, inmlst=1, iutask=1, safety=0.412 , iupdate=1, ext='.f', branh='DIRECTORY'13 , makename='MAKEFILE', xeq='EXECUTABLE'14 , options='-g -C -ftrap=ommon', loptions='-g'15 , options='-fast', loptions='-fast'16 , libs='namelist.a' \$17 EOF18 hmod 755 xedit2119 ./xedit21A softopy of preom.s may be found in the editor diretory of dzeus35.tar downloadedfrom www.ia.smu.a/zeus3d. Note that the line numbers in the �rst �ve olumns are notpart of the �le and are inluded only for referene.

Preompiling soure ode 20Comments for C-shell sript �les are indiated by a # in olumn 1. For all EDITORC-shell sript �les listed in this manual, there are, by onvention, two types of omments.Those lead by a double line (==========>) indiate that the following portion of the sript�le should rarely, if ever, require hanging. Those lead by a single line (---------->)indiate segments of the sript �le whih will probably have to be altered every time thesript �le is used.The �rst segment of preom.s opies the neessary �les (in this ase, just the edit21exeutable) to the present working diretory. Note that the UNIX phrase \if(! -e ...)"ensures that the named �le will not be retrieved if it already exists in the pwd.The seond segment reates a diretory on dis into whih all soure �les split from themaster ode during preompilation (x2.4) and all orresponding objet and listing �les areplaed, should this option be used.The third segment is where the input parameters for EDITOR are spei�ed. Inputparameters are read in by a \namelist", as disussed in x2.2. Speifying the parameters inthe namelist editpar is how EDITOR is ontrolled. In the example, both SOURCECODE andDIRECTORY (as well as all words in allaps) have to be spei�ed by the user. Note that the$ sentinel is preeded by a bakslash (\). This prevents the sript �le from interpreting the$ as a ontrol harater and instead treats it as an ASCII harater to be passed (withoutthe leading bakslash) to the text �le inedit.There are 45 valid namelist parameters in editpar, but only 20 are relevant for preom-piling soure ode. These inlude six general parameters whih all or most EDITOR jobsuse, and 14 additional parameters peuliar to PRECOM.parameter desription defaultGENERALinname name of soure ode to be edited (harater*64).ibanner =1 => print banner to sreen at beginning of exeution 0=0 => no bannerjob =1 => number lines in soure ode 1=2 => tidy soure ode (retarget, indent, alphabetise)=3 => update soure ode with hange deks=4 => prepare soure ode for ompilation.=5 => ompares two files and reports loation of first"ndiff" differenes.=6 => splits master file into module files.=7 => onatenates module files to master file.idump =1 => diagnosti dumps are written to "output". 0=0 => no diagnosti dumps.outname name of outfile. If unspeified, outfile will be namedaording to internal naming onvention (harater*64).safety Memory management parameter. k2*safety lines of 0.0"inname" are read at a time. 0.0 => 0.9 (job=1,2,5,6,7),0.4 (job=3,4)PRECOM (job=4)inmlst =0 => leave NAMELIST and assoiated I/O alone. 0>0 => substitute all ourrenes of NAMELIST andassoiated I/O for alls to subroutines in(D)NAMELIST.A. A maximum of "inmlst" assignments

Preompiling soure ode 21an be made in the input dek per NAMELIST."inmlst"=1 => 1000.iutask =0 => no mirotasking attempted 0=1 => insert Cray mirotasking diretives (mi$)in front of parallelisable nested do-loops.=2 => insert OpenMP parallelisation diretives ($omp)in front of parallelisable nested do-loops.iupdate =0 => PRECOMpiled soure ode is dumped to one file. 0=1 => PRECOMpiled subroutines stored to separate files.Subroutine is written only if it is different fromversion on dis, or if it doesn't exist on dis.branh harater*32 string indiating default diretory in blankwhih to write subroutine files.ext desired extension for files (harater*8) '.f'makename name of makefile to be reated (harater*16). If blankblank, no makefile is reated. The files ompiled byMAKE are those in the diretory 'branh'.ompiler speifies ompiler to be used by MAKE. UNICOS 'f90'(harater*32) CONVEXOS 'f -'SUNOS, AIX, LINUX 'f77 -'options speifies ompiler options. For f90 (UNICOS), blankthese are appended to the string '-b \$*.o', whih isneeded for the makefile. Similar strings for SUNOS,CONVEXOS, LINUX, and AIX (harater*128).speopt speifies ompiler options for speial deks named in blankarray spedk. Oasionally, one needs to ompile a fewroutines with speial ompiler options in order for theomputations to be done orretly (harater*128).spedk those deks to be ompiled with ompiler options blankspeopt (harater*16(k4)).loader speifies loader to be used by MAKE. UNICOS 'segldr'(harater*32) CONVEXOS 'f'SUNOS, AIX, LINUX 'f77'xeq name of exeutable to be reated by MAKE (harater*64to allow for diretory speifiation as well, defaultis 'inname' with the extension '.x').loptions speifies loader options other than -o. These are blankappended to '-o \$(EXE)', whih is needed for themakefile (harater*128).libs are the libraries to be linked by the loader. As many blanklibraries an be speified as will fit in harater*512.Some notes:1. Default name to be given the preompiled dis �le (outname) is inname with theextension .f.2. There are OS-dependent defaults for the ompiler and loader. In the example ofpreom.s listed above, there are two possible ompiler options spelled out. The �rst(line 14, ommented out) is the setting for full diagnostis and to enable dbx for f77 onSUNOS (AIX, LINUX). Line 15 (not ommented out) gives the appropriate ompileroptions for full optimisation on SUNOS (AIX, LINUX).3. EDITOR is unable to interpret tab haraters. For programmers who habitually usetabs in their soure ode, these should all be replaed manually with the appropriatenumber of blanks before attempting to preproess it with EDITOR.

Preompiling soure ode 224. Should the EDITOR preompiler detet any EDITOR syntax errors, EDITOR will in-sert an error message immediately following the o�ending statement in the preompiled�le (with the .f extension). Detetion of error message will render the preompiled�le unusable for ompilation purposes, and may prevent additional passes through theode requested by the user (replaing namelists, for example). The user will be toldthat errors were deteted and how to �nd them in the preompiled dis �le. Onethe errors are orreted in the master �le, the user an attempt to preompile the �leagain. See xA for a desription of the error messages generated by EDITOR.

Generating a numbered listing 233 NUMBER: Generating a numbered listing3.1 Reformatting a �leThe NUMBER feature of EDITOR will take as input any ordinary ASCII soure ode andreformat it so that eah line of the soure ode appears with various labels. By default, aseparate �le (whose name is the same as the input �le with the extension .n appended) isreated ontaining the reformatted soure listing. The original �le is left as is.Eah line is labelled with as many as 6 labels. The �rst and third olumns of thereformatted �le is the line number sine the beginning of the �le, with the soure ode itself(72 haraters wide) in the seond olumn. The fourth olumn is the number of exeutablestatements (i.e., not inluding omments and ontinuation lines) sine the beginning of theurrent module. The statement number takes into aount the number of statements impliedby eah *all statement (x2.1). This is useful, for example, if ompiler and/or debuggerdiagnostis refer to the exeutable statement number within a module, rather than the ASCIIline number as more modern ompilers and debuggers do. The �fth olumn is the number oflines sine the beginning of the urrent module (see inumber below). The sixth olumn is the\group" name in whih the urrent module is grouped (x2.1), while the seventh olumn liststhe name of the urrent module. The user has some ontrol over what labels are put on eahline (see inumber below) and how the number of exeutable statements sine the beginningof the urrent module is omputed (see ixlude below). A full ompliment of labels willexpand an ordinary 72 olumn FORTRAN soure listing to 132 olumns, so an appropriateprinter must be used to print out the reformatted listing. In addition, EDITOR may beinstruted to plae a table of ontents at the beginning of the listing. To aid in loating amodule rapidly, the table of ontents list the modules both sequentially and alphabetially.3.2 The number.s sript �leA soure listing may be reformatted with NUMBER by issuing the following ommand:sh -v number.swhere number.s, is as follows:1 #============= SOURCE FILE TO CREATE A NUMBERED LISTING ===============#2 #3 #=======================================> Get files from home diretory.4 if(! -e xedit21) p USERID/editor/xedit21 .5 #-----------------------> Create the input dek for EDITOR, and exeute.6 rm -f inedit7 at << EOF > inedit8 \$editpar inname='SOURCECODE'9 , ibanner=1, job=1, inumber=3, itable=1, ixlude=1 \$10 EOF11 hmod 755 xedit2112 ./xedit21A softopy of number.s may be found in the editor diretory of dzeus35.tar downloadedfrom www.ia.smu.a/zeus3d.

Generating a numbered listing 24The �rst segment gets xedit21 from the user's home diretory, if needed. The seondsegment prepares the input dek for EDITOR appropriate for reformatting a soure listing.In addition to the general namelist parameters desribed in x2.5, there are three namelistparameters whih may be used spei�ally to ontrol NUMBER.parameter desription defaultNUMBER (job=1)inumber =1 => sequential numbering of soure ode only. 3=2 => sequential, statement, and by subroutine.=3 => sequential, statement, and by dek.itable =1 => reates a table of ontents (inumber=3 only) 1=0 => no table of ontentsixlude =1 => won't label line with statement number if exluded 1by *if, *else, *endif logi (inumber=3 only)=0 => labels all exeutable statements.Some notes:1. Seleting inumber=3 spei�es that line numbering in the �fth olumn will be donerelative to *dek and *dek statements, rather than FORTRAN module statementssuh as program, subroutine, funtion, et. (inumber=2).2. Setting ixlude=1 will exlude \dormant" parts of the soure ode (as determined bythe settings of the EDITOR maro de�nitions; see x2.1) from the omputation of theurrent statement number (fourth olumn).

Merging soure ode 254 MERGE: Merging soure ode4.1 Change deksOne important feature of EDITOR is the ability to merge a \hange dek" into an existingsoure ode. This feature is useful from the standpoint of keeping the hanges to a workingversion of a soure ode separate from the soure ode itself. Further, hange deks are usefulto ode development projets in whih there are several ontributors. In priniple, a uratorof a ode may gather in all hange deks and let EDITOR merge these hange deks intothe urrent master ode, thereby generating the next version. Finally, eah ode developermay independently and temporarily merge their own hange dek into the urrent version ofthe ode in order to develop and debug their hanges.Change deks onsist largely of the new lines of FORTRAN that the user wishes to plaeinto an existing ode, along with any EDITOR preompiler statements that may be required.These ode segments may either be inserted into the ode at a spei�ed loation, or replaea spei�ed part of existing ode. There are four EDITOR ommands that ontrol a MERGE:1. *insert dekname.n { inserts text immediately following the *insert ommand intothe soure ode diretly after line n in ()dek dekname.2. *delete dekname.n,m { deletes lines n through m in ()dek dekname, and replaesit with the text immediately following the *delete ommand, if any. Note that mmust be greater than n. If m is missing altogether, then m = n will be assumed.3. *ident hangedekname { identi�es the name of the hange dek to the ode developer.It has no internal (to EDITOR) funtion, and is inluded for the sole purpose ofpreserving bakward ompatibility with HISTORIAN . In pratise, it never needs to beused.4. *read �lename { replaes the statement with the ontents of the named �le. This ishow more than one hange dek may be merged with a soure �le at the same time.The line numbers m and n are relative to the most reent *()dek statement, wherethe *()dek statement itself is line 1. The line numbers may be attained most easily fromthe �fth olumn of a listing of the soure ode reformatted by NUMBER (x3).Note that *i, *d, *id and *r are valid abbreviations of *insert, *delete *ident and*read respetively. For those who don't like the fat that the delete ommand an atuallybe used to replae text, the ommand *replae (or *rp for short) is a reognised synonymfor *delete. Use the two interhangeably. Together, *delete, *insert, and *replaeommands shall be referred to as \MERGE edits".EDITOR's MERGE may be given one master soure �le and one hange dek (ontainingan arbitrary number of *reads to other hange deks if desired) and reates a new merged�le whose name, by default, is the same as the input master soure �le with the extension.m appended. The merger also generates an amalgamated hange dek with all the *readommands, if any, arried out. This hange dek has the same name as the user-spei�edhange dek with the extension .m appended and is where error messages, if any, are inserted.The original �les are not hanged.

Merging soure ode 26An example might be appropriate at this point. Following is another version of thetime-of-day program used in x2, a hange dek, and the result of having the two merged byEDITOR.Master soure �le (named, for example, tod):1 *dek tod2 ===+====1====+====2====+====3====+====4====+====5====+====6====+====7==3 4 program tod5 6 PURPOSE: This program returns the time of day on various systems.7 8 ---9 10 impliit none11 *if define,UNICOS12 harater*8 tod13 *endif UNICOS14 *if define,CONVEXOS15 harater*9 tod16 *endif CONVEXOS17 18 external date19 20 ---21 22 Get time of day ("tod").23 24 all date (tod)25 26 Write result to CRT.27 28 write (6, 2000) tod29 2000 format('Time of day is: ',a)30 stop31 endChange dek (named, for example, hgtod):1 *define UNICOS2 *delete tod.293 *if define,UNICOS4 2000 format('Time of day aording to the Cray is: ',a)5 *endif UNICOS6 *if define,CONVEXOS7 2000 format('Time of day aording to the Convex is: ',a)8 *endif CONVEXOS9 *insert tod.610 Systems inlude UNICOS and CONVEXOS.Master soure �le (tod) merged with hange dek (hgtod) to form new master soure �le(tod.m):1 *dek tod2 ===+====1====+====2====+====3====+====4====+====5====+====6====+====7==

Merging soure ode 273 4 program tod5 6 PURPOSE: This program returns the time of day on various systems.7 Systems inlude UNICOS and CONVEXOS. *8 9 ---10 11 impliit none12 *if define,UNICOS13 harater*8 tod14 *endif UNICOS15 *if define,CONVEXOS16 harater*9 tod17 *endif CONVEXOS18 19 external date20 21 ---22 23 Get time of day ("tod").24 25 all date (tod)26 27 Write result to CRT.28 29 write (6, 2000) tod30 *if define,UNICOS *31 2000 format('Time of day aording to the Cray is: ',a) *32 *endif UNICOS *33 *if define,CONVEXOS *34 2000 format('Time of day aording to the Convex is: ',a) *35 *endif CONVEXOS *36 stop37 end38 *define UNICOS *Some notes:1. MERGE ommands may not appear in the master �le, only in the hange dek.2. Anything before the �rst MERGE edit will be plaed at the end of the merged �le (e.g.,line 38 of tod.m).3. An asterisk (*) is plaed in the 74th olumn of every line put into the merged mastersoure �le by the hange dek. This asterisk is only to aid the user to see at a glanewhih lines are new to this version of the ode. If the .m �le is then passed throughPRECOM (x2), NUMBER (x3), or TARGET (x5), the asterisk in olumn 74 is not opied tothe .f, .n, or .t �le respetively.4. Note that the line numbers used in the MERGE edit statements are always those of theoriginal master �le. That is to say, the user does not have to worry that a MERGE editmade somewhere else in the hange dek might a�et the line numbering for otherMERGE edits. By the same token, one may not make a MERGE edit on a MERGE edit in

Merging soure ode 28the urrent hange dek. Changes to MERGE edits should be done diretly in the hangedek(s).5. Obviously, are should be taken to ensure that MERGE edits do not refer to lines inthe master soure that have been deleted by other MERGE edits. Suh a onit willgenerate a (non-fatal) error message (see xA.2).6. All the puntuation in the MERGE ommands is optional. *d tod 1 3" is just asvalid as *d tod.1,3". The puntuation used in these examples reets HISTORIANsyntax whih EDITOR permits for the sake of ompatibility.As a soure ode preproessor, EDITOR is probably in its most useful state when theMERGE and PRECOM features are used in tandem whih is aomplished by setting the appro-priate input parameter (x4.2). One an take a master �le and a hange dek, merge themtogether to produe a .m �le, preompile the .m �le to generate a .f �le, replae all thenamelists miro-task, it, update only those modules that were a�eted by whatever hangeyou might have made to the hange dek, and generate the new make�le, all with one exeu-tion of EDITOR. It is in this mode that the author uses EDITOR to manage the ZEUS-3Dode, and therefore the mode whih is probably the most debugged and robust. The sript�le in x4.2 is a template for using EDITOR in just this way.Curators of large odes should be warned that hange deks an beome too umber-some and numerous to make this strategy pratial. As a �rst guide, one might onsiderpermanently merging a hange dek with the master ode one it has grown to 25% the sizeof the master ode. Then a new hange dek may be started with referenes to line numbersin the new version of the master soure �le.4.2 The merge.s sript �leA merged soure listing may be generated by issuing the following ommand:sh -v merge.swhere merge.s, is as follows:1 #======= SOURCE FILE TO MERGE A CHANGE DECK INTO A SOURCE CODE ========#2 #3 #=======================================> Get files from home diretory.4 if(! -e xedit21) p USERID/editor/xedit21 .5 #========================> If neessary, reate the diretory DIRECTORY.6 if(! -e DIRECTORY) mkdir DIRECTORY7 #--> Create hange dek.8 rm -f hanges9 at << EOF > hanges10 *ident hanges11 *delete par.312 parameter (idim=100, jdim=100, kdim=100)13 *read CHANGEDECK14 EOF15 #-----------------------> Create the input dek for EDITOR, and exeute.16 rm -f inedit17 at << EOF > inedit

Merging soure ode 2918 \$editpar inname='SOURCECODE', hgdk='hanges'19 , ibanner=1, job=3, idump=1, inum=0, ipre=1, inmlst=120 , iutask=0, iupdate=1, ext='.f', branh='DIRECTORY'21 , makename='MAKEFILE', xeq='EXECUTABLE'22 , libs='namelist.lib' \$23 EOF24 hmod 755 xedit2125 ./xedit21A softopy of merge.s may be found in the editor diretory of dzeus35.tar downloadedfrom www.ia.smu.a/zeus3d.The �rst segment retrieved xedit21 from the user's home diretory, if needed. You ouldadd lines here to retrieve the soure ode and hange dek from their home diretory as well.The seond setion generates a diretory on dis just as preom.s did (x2.5) in antiipationthat the user will want to use the preompiler in tandem with the merger. The third setiongenerates the atual hange dek that will be merged with the master �le. The sript �le willreate a dis �le alled hanges after it has removed any suh dis �le whih may alreadyexist. Thus, don't run this sript �le verbatim within a diretory in whih there is a �lealled hanges that you an't live without!The �le hanges ontains the inert *ident ommand, followed by another example ofa MERGE edit. In this ase, line 3 of a dek named par is being replaed with a parameterstatement setting idim, et. to 100. This illustrates a struture that the author �nds veryuseful, and is why this spei� example has been inluded in this otherwise general template.In this ase, a program has been written with all the parameter statements plaed togetherin a ommon dek alled par. Every subroutine that requires knowledge of the parametervalues then has a *all par statement at the beginning of the delaration list. If for everyjob run, a di�erent set of parameter values is required, the easiest and most aessible plaeto make this hange is right in the sript �le whih merges and preompiles the soure ode.Thus, right in merge.s, one might inlude the most often-needed hanges using the MERGEedit strutures desribed in this setion. Then, as indiated in this template, one ould issuea *read ommand whih will bring in the bulk of the hanges being onsidered at this timewhih are in some user-supplied �le CHANGEDECK.Finally, the fourth segment reates the input dek for EDITOR appropriate for the mergebeing performed, and then exeutes EDITOR. In addition to the general namelist parametersdesribed in x2.5, there are three namelist parameters whih are peuliar to MERGE. However,if the reformatting feature of EDITOR (NUMBER, x3) is to be alled in tandem with MERGE,then inum should be set to 1 and all the input parameters peuliar to NUMBER (3.2) beomeappliable. If the preompiler is to be alled in tandem with MERGE, then ipre should be setto 1, and all the input parameters peuliar to PRECOM (x2.5) beome appliable.parameter desription defaultMERGE (job=3)hgdk name of hange dek to be merged with "inname"(harater*64).inum =1 => a NUMBERed file will be reated. 0=0 => no NUMBERed fileipre =1 => a PRECOMpiled file will be reated. 0=0 => no PRECOMpiled file

Merging soure ode 30Some notes:1. If, on the one hand, MERGE and PRECOM are performed together on the �le myprog, thenEDITOR will generate two additional soure �les, namely myprog.m and myprog.f.The former will be the result of the merger with all the preompiler ommands, ifany, remaining while the latter will be a preompiled version ready for the ompilerontaining nothing but FORTRAN (having had all the preompiler ommands arriedout and then expunged). If, on the other hand, MERGE is used with ipre=0, then onlya .m �le will be generated. Then, if myprog.m is passed through the preompiler usingpreom.s, the preompiled �le will be named myprog.m.f. Note that if the EDITORnamelist parameters in the two senarios have the same values, then the �les myprog.fand myprog.m.f will be idential .2. Should the EDITOR merger detet any EDITOR syntax errors, EDITOR will insertan error message immediately following the o�ending statement in the amalgamatedhange dek (.m extension). The user will be told that errors were deteted and howto �nd them. One the errors are orreted in the original hange dek (i.e., not the.m �le where the errors were reported), the user an attempt to merge the �les again.See xA.2 for a desription of the non-fatal error messages generated by EDITOR.

FORTRAN tidy-up 315 TARGET: FORTRAN tidy-upThe TARGET feature of EDITOR was designed to rewrite a user's soure ode with uniformorigin-target labels, ontinuation haraters, and indentation, as well as rearranging thevarious deks and groups alphabetially. TARGET an also be instruted to replae do-enddostrutures with targeted do-loops (but not the reverse|reeting the author's bias!). Bydefault, a separate �le (whose name is the same as the input �le with the extension .tappended) is reated ontaining the tidied soure listing. The original �le is left as is.TARGET's primary funtion is to resequene numbered statements (\targets") and theirorresponding \origins" to regain the order that the writer may have originally intended.Examples of origin and target statements are as follows:1 do 10 i=1,imax2 ...3 go to 204 ...5 20 ontinue6 ...7 10 ontinueLines 1 and 3 are origins while lines 7 and 5 are their respetive targets.TARGET an reognise virtually all FORTRAN strutures in whih origins and targetsmay lurk. These inlude:1. (nested) do-loops with numbered targetsdo 100 i=1,imaxdo 100 j=1,jmax100 ...2. go to statementsgo to 2020 ...3. omputed go to statementsgo to (10,20,30) i10 ...20 ...30 ...4. if statementsif (j.eq.1) go to (10,20) i10 ...20 ...5. omputed if statements,if (10,20,30) x10 ...20 ...30 ...

FORTRAN tidy-up 326. i/o statements (write, print, enode, read, deode, open)write (6,1000) x1000 format(f5.2)read (lu,end=20,err=100) x20 ...100 ...open (unit=lu,file=infile,status='old',err=10,form='unformatted')10 ...As mentioned, TARGET may be instruted to onvert all do-enddo strutures into targeteddo-loops. TARGET will san eah program module (i.e. dek, program, funtion, subroutine)for origin and targets and reassign the numerial values of the labels so that the targets(not the origins) appear sequentially (with a spei�ed inrement between eah onseutivetarget). Three levels of targets are identi�ed and are resequened independently. All do-loopand goto targets (inluding the end and err options in the parameter lists of read and openstatements) are onsidered together and by default, are assigned labels between 10 and 990.All input statements (read, deode) are resequened between 1010 and 1990, and all outputstatements (write, print, enode) are resequened between 2010 and 2990. This allows oneto identify, at a glane, whih targets belong to do/goto statements, whih belong to inputstatements, and whih belong to output statements.As part of the resequening proess, TARGET will fore all do-loop and goto statementsto \land" on a ontinue statement, thus displaing the original targeted statement byone line. For do-loop targets, the ontinue statement is put after the original targetedstatement while for goto statements, the ontinue statement is plaed before the originaltargeted statement. This leaves the logial intent of the ode intat.Besides resequening origin-target statements, TARGET may be instruted to relabel on-tinuation statements and fore uniform indentation. These three features are illustrated inthe following example:Original ode:subroutine sub1 (in, jn, x, y, array, iret) real x(in), y(jn), array(in,jn) go to (1,31) iret31 ontinuedo 10 j=1,jndo 10 i=1,in10 array(i,j) = x(i)**2. + 2.0 * x(i) * y(j). + y(j)**2if (imax.le.100) thenimax = 100elseimax = 200endif1 ontinuereturnend

FORTRAN tidy-up 33Tidied ode:subroutine (in, jn, x, y, array, iret) real x(in), y(jn), array(in,jn) go to (40,10) iret10 ontinuedo 30 j=1,jndo 20 i=1,inarray(i,j) = x(i)**21 + 2.0 * x(i) * y(j)2 + y(j)**220 ontinue30 ontinueif (imax.le.100) thenimax = 100elseimax = 200endif40 ontinuereturnendIndentation is applied to both (nested) do-loops and if-else-endif strutures as illustratedabove. Note that applying uniform indentation fores the soure ode to begin in olumn8, rather than olumn 7, the minimum allowed by FORTRAN syntax. Starting in olumn8 means that there will always be at least one spae between a ontinuation harater inolumn 6 and the �rst harater in the statement, thus improving readability. Note also thatapplying uniform indentation will preserve any vertial struture imposed by the user. Thus,in the example above, the +s remain under the =. If the appliation of uniform indentation (orresequening origins) auses the line to extend beyond the 72nd olumn, TARGET will breakthe line at the 72nd olumn (without regard to word breaks) and generate a ontinuationstatement with an ampersand (&) in olumn 6. This will not a�et the logi of the soureode, but may o�end the user's notion of aesthetis. Thus, after TARGET has �nished withthe soure ode, one merely needs to searh the tidied version for an & in olumn 6 and thenmake the desired hanges manually.Resequening ontinuation haraters will ause ontinuation statements to be givennumerial ontinuation haraters in the following sequene: 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3,et. Zero (0) is not used, sine it is an illegal ontinuation harater in FORTRAN.Finally, TARGET an be instruted to rearrange the modules alphabetially aordingto the full dek name whih onsists of the group name (as determined by the most reent*group statement; x2.1) followed by the dek name (as determined by the most reent *dekor *dek statement; x2.1). Common deks will be plaed before ordinary deks. The usermay single out a few deks to be plaed before all else regardless of where they belongalphabetially. Thus, for example, if there were a dek ontaining opening omments, or ifit was desired to plae the program before the subroutines, this may be aommodated bysetting the appropriate namelist parameters, as desribed in the next subsetion.

FORTRAN tidy-up 345.1 The target.s sript �leA soure listing may be tidied by issuing the following ommand:sh -v target.swhere target.s, is as follows:1 #============ SOURCE FILE TO TIDY UP FORTRAN SOURCE CODE ==============#2 #3 #=======================================> Get files from home diretory.4 if(! -e xedit21) p USERID/editor/xedit21 .5 #-----------------------> Create the input dek for EDITOR, and exeute.6 rm -f inedit7 at << EOF > inedit8 \$editpar inname='SOURCECODE'9 , ibanner=1, job=2, idump=110 , ibegdo= 10, ienddo= 990, ibegre=1010, iendre=199011 , ibegwr=2010, iendwr=299012 , in=10, irepl=1, ireseq=1, indent=2, ialpha=113 , first ='ABSOLUTE FIRST (C)DECK'14 , send ='ABSOLUTE SECOND (C)DECK'15 , firstd='BEFORE ALL CDECKS, BUT AFTER send'16 , firstdk='BEFORE ALL DECKS, BUT AFTER send' \$17 EOF18 hmod 755 xedit2119 ./xedit21A softopy of target.s may be found in the editor diretory of dzeus35.tar downloadedfrom www.ia.smu.a/zeus3d.The �rst segment retrieves xedit21 from the user's home diretory, if needed. Theseond segment prepares the input dek for EDITOR appropriate for tidying up a sourelisting. In addition to the general namelist parameters desribed in x2.5, there are 15 namelistparameters peuliar to TARGET. These are desribed below.parameter desription defaultTARGET (job=2)ibegdo lowest target value for "goto" and "do" stmnts. 10ienddo highest target value for "goto" and "do" stmnts. 990ibegre lowest target value for "read" and "deode" stmnts. 1010iendre highest target value for "read" and "deode" stmnts. 1990ibegwr lowest target value for "write" and "enode" stmnts. 2010iendwr highest target value for "write" and "enode" stmnts. 2990in inrement between suessive targets. 10irepl =1 => replae "do-enddo"s with targeted "do"s. 1=0 => do not replae "do-enddo"s.ireseq =1 => resequene 6th harater in ontinuation stmnts. 1=0 => no resequene.indent =0 => no uniform indentation is imposed. 2>0 => impose uniform indentation of "indent" spaes.ialpha =0 => no alphabetisation of deks. 1=1 => modulo speifiation of "first" et., "ommondeks" and "ordinary "deks" are arrangedalphabetially. "Common deks" are listedbefore "ordinary deks".

FORTRAN tidy-up 35first name of "dek" (ommon or ordinary) to be listed beforeall others (harater*16).send name of "dek" (ommon or ordinary) to be listed rightafter "first" (harater*16).firstd name of "ommon dek" to be listed before all other"ommon deks" but after "send" (harater*16).firstdk name of ordinary "dek" to be listed before all otherordinary "deks" but after "send" (harater*16).It should be noted that TARGET is partiularly sensitive to tab haraters. EDITOR isknown to make mistakes and even rash if it enounters a tab harater during a TARGET ses-sion and so, as mentioned in x2.5, all tab haraters should be replaed with the appropriatenumber of blanks.

Comparing similar ASCII files 366 COMPARE: Comparing similar ASCII �les6.1 Comparing entire �lesEDITOR may be instruted to ompare two ASCII �les harater for harater and reportthe di�erenes found in the two �les. The loations of where the �les diverge and reonvergeare reported. Obviously, for two totally dissimilar �les, suh a report may beome unwieldyas hane alignments of the two �les are disovered.What makes EDITOR's COMPARE di�erent from diff on most UNIX platforms is thatit may be instruted to ignore super�ial or unimportant di�erenes suh as those found inFORTRAN omments (i.e., lines with a or C in the �rst olumn), the number of blanks leftbetween \words", and the FORTRAN ontinuation haraters hosen (harater in olumn6). This is an attempt to get beyond the most ommon di�erenes in programming styleand unover only those di�erenes whih may alter the logi of the program. COMPARE is alsomuh better at �nding where the �les reonverge than diff. Finally, if there are an unrulynumber of di�erenes, one may instrut EDITOR to stop searhing after a spei�ed numberof di�erenes have been found.EDITOR reports the di�erenes by dumping the portion of the line from both �les wherethe di�erene was found and points to the very harater whih triggered the report. It alsotells the user on whih line the two �les reonverge. Below is an example of two �les withsome di�erenes, and the EDITOR COMPARE reports generated by omparing these two �lesun various ways.File 1 (tod1):1 program tod2 -------------> This program returns the time of day on various systems.3 harater*8 tod4 5 all date (tod)6 write (6,10) tod7 10 format('Time of day is: ',a)8 stop9 endFile 2 (tod2):1 ===+====1====+====2====+====3====+====4====+====5====+====6====+====7==2 3 program tod4 5 PURPOSE: This program returns the time of day on various systems.6 7 ---8 9 impliit none10 harater*8 tod11 12 external date13 14 ---15

Comparing similar ASCII files 3716 Get time of day ("tod").17 18 all date (tod)19 20 Write result to CRT.21 22 write (6, 2000) tod23 2000 format('Time of day is: ',a)24 stop25 endThese two versions of (presumably) the same program show di�erent programming styles.The task is to �nd all important di�erenes between these two �les, if any. In the reportthat follows, no super�ial di�erenes were ignored and COMPARE behaves muh like diff.COMPARE :COMPARE : diff "tod1 " "tod2 "COMPARE : line ontext line ontextCOMPARE : --COMPARE : 1 diff at 1 progra 1 ===+====1==COMPARE : same at 4 ^ 2 ^COMPARE : 2 diff at 5 all date (t 3 program todCOMPARE :COMPARE : Number of differenes reported = 2COMPARE :First the anatomy of this report. The �rst olumn (headed by diff) labels the di�erenessequentially. The seond olumn (headed by tod1, the name of the �rst �le) gives the linenumber and a segment of the indiated line in whih the di�erene was disovered for the �rst�le. The third olumn (headed by tod2, the name of the seond �le) gives similar informationfor the seond �le. Eah di�erene report onsists of two lines; where the �les diverge (diffat) and where the �les reonverge (same at). The \diff at" line gives the ontext ofthe �le in whih the di�erene was disovered entred over a arat (^) whih indiates the�rst harater found to be di�erent. For entirely di�erent lines, this will generally be the�rst harater in the line. The \same at" line indiates on whih line in eah �le the �lesreonverge, and ontains the arats.This partiular report is of little use. It basially states that the two �les di�er right fromthe start (note that one �le is indented with six blanks, the other with seven), happen tobe the same again where both �les have an empty omment line, then di�er throughout therest of the �les. Sine the �les never reonverge, the \same at" line for the seond di�erenereport is never issued, and thus neither are the arats. These two �les are basially toodi�erent for an all-di�erene report to be of muh use.In the seond report whih follows, di�erenes stemming from blanks were ignored. It isa bit more useful than the �rst report sine reported di�erenes are more loalised.COMPARE :COMPARE : diff "tod1 " "tod2 "COMPARE : line ontext line ontextCOMPARE : --COMPARE : 1 diff at 1 program 1 ===+====1==COMPARE : same at 1 ^ 3 ^COMPARE : 2 diff at 2 ------------ 4

Comparing similar ASCII files 38COMPARE : same at 4 ^ 4 ^COMPARE : 3 diff at 5 all dat 5 PURPOSE:COMPARE : same at 5 ^ 18 ^COMPARE : 4 diff at 6 write (6 19 COMPARE : same at 8 ^ 24 ^COMPARE :COMPARE : Number of differenes reported = 4COMPARE :The �rst di�erene reports that the �rst two lines of eah �le are di�erent (tod2 beginswith a omment, tod1 begins with the program statement) and that the two �les reonvergeagain at line 1 of tod1 and line 3 of tod2. Still, there is ha� amongst the wheat if one isnot interested in the di�erenes generated by omment statements.Finally, the third report whih follows was generated with di�erenes in omments andblanks overlooked.COMPARE :COMPARE : diff "tod1 " "tod2 "COMPARE : line ontext line ontextCOMPARE : --COMPARE : 1 diff at 3 harater*8 9 impliitCOMPARE : same at 3 ^ 10 ^COMPARE : 2 diff at 5 all date (t 12 externalCOMPARE : same at 5 ^ 18 ^COMPARE : 3 diff at 6 write (6,10) tod 22 rite (6, 2000) todCOMPARE : same at 8 ^ 24 ^COMPARE :COMPARE : Number of differenes reported = 3COMPARE :In this ase, COMPARE reports that tod2 has an impliit statement and an externalstatement whereas tod1 does not, and that the target for the write statement di�ers in thetwo versions (10 in tod1, 2000 in tod2). This is perhaps the most useful of all reports, andillustrates the power of being able to ignore seletively various types of di�erenes.6.2 Comparing delaration ontentsThe seond way EDITOR may ompare two �les is by omparing the ontents of theirrespetive delaration lists without regard to format . This mode of omparison does notextend into the body of the FORTRAN module ontaining the FORTRAN exeutables.The utility of this feature is perhaps best illustrated by an example. In an attempt toalign a subroutine with a partiular oding style, suppose one wishes to reformat all thedelarations at the beginning of a program module from the style illustrated in the �le de1to that in �le de2 below:Style 1 (�le de1):impliit noneinteger idim, jdimparameter (idim=100,jdim=100)integer i,j,is,ie,js,je,ieqs(10)real s1,v1(idim),w1(jdim),a1(idim,jdim),s2,v2(idim),w2(jdim),

Comparing similar ASCII files 39.a2(idim,jdim)s3,v3(idim),w3(jdim)s4,s5,s6,s7,s8,s9,s10,.reqs(10),reqv(3*idim+3*jdim) equivalene (ieqs(1),i),(ieqs(2),is),(ieqs(3),ie),(ieqs(4),j),.(ieqs(5),js),(ieqs(6),je)equivalene (reqs(1),s1),(reqs(2),s2),(reqs(3),s3),(reqs(4),s4),.(reqs(5),s5),(reqs(6),s6),(reqs(7),s7),(reqs(8),s8),(reqs(9),s9),.(reqs(10),s10),(reqv(1),v1(1)),(reqv(idim+1),v2(1)),.(reqv(2*idim+1),v3(1)),(reqv(3*idim+1),w1(1)),.(reqv(jdim+3*idim+1),w2(1)),(reqv(2*jdim+3*idim+1),w3(1))ommon /omi/ ieqsommon /omr/ reqs,reqv,a1,a2Style 2 (�le de2):--- IMPLICIT STATEMENT --impliit none--- PARAMETERS --integer idim , jdimparameter (idim = 100, jdim = 100)--- VARIABLES ---integer i , is , ie1 , j , js , jereal s1 , s2 , s3 , s4 , s51 , s6 , s7 , s8 , s9 , s102 , s11 , s12 real v1 (idim), v2 (idim), v3 (idim)1 w1 (jdim), w2 (jdim), w3 (jdim) real a1 (idim,jdim), a2 (idim,jdim)--- EQUIVALENCE STATEMENTS --integer ieqs (10)equivalene1 (ieqs(1),i),(ieqs(2),is),(ieqs(3),ie)2 ,(ieqs(4),j),(ieqs(5),js),(ieqs(6),je) real reqs (20)equivalene1 (reqs(1),s1),(reqs(2),s2),(reqs(2),s3)2 ,(reqs(4),s4),(reqs(5),s5),(reqs(6),s6)3 ,(reqs(7),s7),(reqs(8),s8),(reqs(9),s9)4 ,(reqs(10),s10),(reqs(11),s11),(reqs(12),s12) real reqv (3*idim+3*jdim)equivalene (reqv (1), v1 (1))1 , (reqv (idim+1), v2 (1))2 , (reqv (2*idim+1), v3 (1))3 , (reqv (3*idim+1), w1 (1))4 , (reqv (jdim+3*idim+1), w1 (1))

Comparing similar ASCII files 405 , (reqv (2*jdim+3*idim+1), w3 (1))--- COMMON BLOCKS ---ommon / omi / ieqsommon / omr / reqs , reqv , a1 , a2Upon omparing these two delaration modules, EDITOR would issue the following di�er-ene report:COMPARE :COMPARE : The following delarations were not found in file "de1 "COMPARE : real s11COMPARE : real s12COMPARE : real reqs(20)COMPARE : equivalene (reqs(2),s3)COMPARE : equivalene (reqs(11),s11)COMPARE : equivalene (reqs(12),s12)COMPARE : equivalene (reqv(jdim+3*idim+1),w1(1))COMPARE :COMPARE : The following delarations were not found in file "de2 "COMPARE : real reqs(10)COMPARE : equivalene (reqs(3),s3)COMPARE : equivalene (reqv(jdim+3*idim+1),w2(1))COMPARE :Obviously, several hanges other than formatting hanges were introdued when de1 wasreast into de2. Some of the hanges may have been deliberate (the addition of variabless11 and s12, inreasing the dimension of reqs from 10 to 20) while the remainder areprobably typos (in the equivalene statements in de2, reqs(2) and w1 appear twie whilereqs(3) and w2 do not appear at all).6.3 The ompare.s sript �leTwo soure listings may be ompared by issuing the following ommand:sh -v ompare.swhere ompare.s, is as follows:1 #================ SOURCE FILE TO COMPARE TWO LISTINGS =================#2 #3 #=======================================> Get files from home diretory.4 if(! -e xedit21) p USERID/editor/xedit21 .5 #-----------------------> Create the input dek for EDITOR, and exeute.6 rm -f inedit7 at << EOF > inedit8 \$editpar inname='SOURCECODE1'9 , in2name='SOURCECODE2'10 , ibanner=1, job=5, iompar=1, ndiff=100, ignore=0,0,0 \$11 EOF12 hmod 755 xedit2113 ./xedit21

Comparing similar ASCII files 41A softopy of ompare.s may be found in the editor diretory of dzeus35.tar downloadedfrom www.ia.smu.a/zeus3d.The �rst segment retrieves xedit21 from the user's home diretory, if needed. Youmay wish to add two similar lines to retrieve from their home diretories the two �les to beompared (SOURCECODE1 and SOURCECODE2). The seond segment prepares the input dek forEDITOR appropriate for omparing two soure listings. In addition to the general namelistparameters desribed in x2.5, there are four namelist parameters peuliar to COMPARE. Theseare desribed below.parameter desription defaultCOMPARE (job=5)in2name name of file to be ompared with "inname" (har*64).iompar =1 => report first "ndiff" differenes 1=2 => list disrepanies in delarationsndiff maximum number of differenes to report 100(iompar=1 only).ignore integer vetor indiating types of differenes to 0,0,0report (0) or ignore (1). ignore(1): ontinuationharaters; ignore(2): blanks; ignore(3): omments(iompar=1 only).Some notes:1. ignore is a vetor with 3 elements. The �rst, seond, and third elements pertain toontinuation haraters, blanks, and omments respetively. If any element is 1, thattype of di�erene is ignored, otherwise, it is reported. So, for example, if one wantedto �nd the di�erenes between two �les with di�erenes in ontinuation haratersand omments overlooked (but di�erenes in the number of blanks between wordsreported), one would set ignore=1,0,1.2. Comparison of delarations may ause an overow to our if EDITOR was ompiledwith parameter k9 set too small. See x9.3 and xA.1.

Splitting soure ode 427 SPLIT: Splitting soure ode7.1 Splitting a �leAs part of the preompilation proess, splitting up a �le was disussed in x2.4. One anperform the split outside PRECOM using SPLIT, but it does not inlude the heking featurethat the preompilation split allows. That is to say, no e�ort is made to hek if the �lebeing overwritten needs to be updated.This feature of EDITOR is very similar to fsplit. The EDITOR SPLIT names eah �leit reates with the module name and the user-spei�ed extension appended. It will allow theuser to speify in whih diretory all �les are to be plaed.7.2 The split.s sript �leA soure listing may be split by issuing the following ommand:sh -v split.swhere split.s, is as follows:1 #==== SOURCE FILE TO SPLIT A SOURCE CODE INTO FILES FOR EACH DECK =====#2 #3 #=======================================> Get files from home diretory.4 if(! -e xedit21) p USERID/editor/xedit21 .5 #========================> If neessary, reate the diretory DIRECTORY.6 if(! -e DIRECTORY) mkdir DIRECTORY7 #-----------------------> Create the input dek for EDITOR, and exeute.8 rm -f inedit9 at << EOF > inedit10 \$editpar inname='SOURCECODE'11 , ibanner=1, job=6, idump=112 , ext='.f', branh='DIRECTORY' \$13 EOF14 hmod 755 xedit2115 ./xedit21A softopy of split.s may be found in the editor diretory of dzeus35.tar downloadedfrom www.ia.smu.a/zeus3d.The �rst segment retrieves xedit21 from the user's home diretory, if needed. The seondsegment prepares the input dek for EDITOR appropriate for splitting a soure listing. Inaddition to the general namelist parameters desribed in x2.5, two of the namelist parametersused to ontrol PRECOM are also used by SPLIT. These are desribed below.parameter desription defaultSPLIT (job=6)branh harater*32 string indiating diretory in whih blankseparate files are written.ext desired extension for files (harater*8) '.sr'

Conatenating files 438 CONCAT: Conatenating �lesEDITOR's CONCAT goes beyond the UNICOS utility at by bringing together all �les withthe same spei�ed extension loated in the spei�ed diretory or any of its subdiretoriesinto a single soure �le.8.1 The onat.s sript �leSoure listings may be onatenated by issuing the following ommand:sh -v onat.swhere onat.s, is as follows:1 #=========== SOURCE FILE TO CONCATENATE FILES INTO ONE FILE ===========#2 #3 #=======================================> Get files from home diretory.4 if(! -e xedit21) p USERID/editor/xedit21 .5 #-----------------------> Create the input dek for EDITOR, and exeute.6 rm -f inedit7 at << EOF > inedit8 \$editpar outname='OUTFILE'9 , ibanner=1, job=7, idump=110 , ext='.f', branh='TOP DIRECTORY' \$11 EOF12 hmod 755 xedit2113 ./xedit21A softopy of onat.s may be found in the editor diretory of dzeus35.tar downloadedfrom www.ia.smu.a/zeus3d.The �rst segment retrieves xedit21 from the user's home diretory, if needed. Theseond segment prepares the input dek for EDITOR appropriate for onatenating sourelistings. In addition to the general namelist parameters desribed in x2.5, two of the namelistparameters used to ontrol PRECOM are also used by CONCAT. These are desribed below.parameter desription defaultCONCAT (job=7)branh harater*32 string indiating top diretory from blankwhih files are sought.ext ommon extension of files (harater*8). '.sr'

Installing EDITOR 449 Installing EDITOR9.1 InstallationThis setion desribes how to install EDITOR on your UNIX-based system. It is assumedthat the user has reated a fresh diretory alled, for example, editor v2.1 ICA and, intothat diretory, downloaded the �le dzeus35.tar from www.ia.smu.a/zeus3d. One thistar-�le is unpaked, type:ls -FC *and the following should appear on your sreen:README bldlibo* edit21.tareditor:ompare.s edit21.LINUXNAG.f edit21.sonat.s edit21.OS2GNU.f merge.sedit21 edit21.OS2WATCOM.f number.sedit21.AIX.f edit21.SUNOS.f preom.sedit21.CONVEXOS.f edit21.SUNOSF95.f split.sedit21.LINUX.f edit21.SUNOSGNU.f target.sedit21.LINUXIFC.f edit21.UNICOS.fmanuals:edit21_man.psnmlst:dnamelist dnamelist.s namelist namelist.sThese are all the �les needed to run and operate the program edit21, version 2.1 of EDITOR.EDITOR atually manages itself. That is, peppered throughout EDITOR are numerousEDITOR ommands desribed in x2.1. Other than the *dk and *d statements, these aremostly *if def...*endif onstruts to aount for the various operating systems (OS)EDITOR supports. Therefore, to get things started, preompiled versions of edit21 foreah OS supported are provided in the diretory editor, eah stripped of all EDITORommands and thus ready for the ompiler.The following instrutions are written as though the user were working under SUNOS(SOLARIS). Thus, some translation of the instrutions may be neessary for platforms otherthan SUNOS.STEP 1: Create a preliminary edit21 exeutable, xedit21. Sine edit21 manages itself,in priniple one needs the edit21 exeutable in order to ompile it! Thus, a bit of a \boot-strap" proess is required to omplete the ompilation.Go to diretory editor.1.1) If you are operating under one of the supported platforms (e.g., AIX, CONVEXOS,et.), type:f77 -o xedit21 edit21.<OS>.fwhere <OS> is the appropriate OS tag, and replae f77 -o as appropriate. This will

Installing EDITOR 45reate the preliminary xedit21 exeutable. Move on to step 2.1.2 If you are under an OS not represented in the eleven edit21.OS.f �les in diretoryeditor, you will have to modify edit21.SUNOS.f as follows. Type:f77 -o xedit21 edit21.SUNOS.freplaing f77 -o as appropriate to launh the platform's FORTRAN ompiler. This willalmost ertainly fail, iting alls to unknown subroutines suh as etime, time, fdate,and possibly system. Under SUNOS, these do the following:etime returns the pu time sine the beginning of the run in seonds;time returns the total elapsed wall-lok time in seonds (integer) sine thelast all to time;fdate returns the date in a 26 harater string with the format Mon Aug 2114:58:24 2000 (yes, there are only 24 haraters, the last two are blankfor some reason);system allows you to make a systems all (suh as removing a �le from dis)from within the FORTRAN soure ode at run time.You will have to �nd the equivalents to these under your OS, and then adjust theFORTRAN logi in edit21.SUNOS.f that depends upon these alls. For example, youmay �nd your system gives a date in a di�erent format, in whih ase you will have tohange the FORTRAN whih uses these data. The best way to see where the systemdependent stu� is is to look in edit21 (not edit21.SUNOS.f), and san for the phrase:*if def,SUNOSand then make the neessary hanges to edit21.SUNOS.f (not edit21). One all theneessary hanges have been made and presuming your �le is now alled edit21.NEWOS.fwhere NEWOS is the tag hosen for your OS (typially, the name of your OS in \allaps"),type:f77 -o xedit21 edit21.NEWOS.fThis should produe a preliminary edit21 exeutable (xedit21) needed through step 4.Step 2: From diretory editor v2.1 ICA, open the sript �le bldlibo in your text editor.The entire �le should be platform independent with the possible exeption of lines 17 and18 whih invoke the f77 ompiler. The options listed are valid for the f77 ompilers on bothSUNOS and AIX, but may be di�erent for other OSs. The intent of the options on line17 is to reate objet �les without linking (-), and to invoke the fastest safe optimisationlevel (-O4). The options in the ommented out line 18 are for full debugging. The ommentbefore line 17 indiates a bug in the SUNOS ompiler at the time of this writing that maynot apply elsewhere. Finally, f90/f95 users should make the appropriate hanges to lines 17and 18.Step 3: From the diretory nmlst, issue the following ommands:sh -v namelist.ssh -v dnamelist.s

Installing EDITOR 46These ommands will reate single- and double-preision versions of the platform-independentnamelist libraries (namelist.a and dnamelist.a respetively). The former is required foredit21 while the latter is inluded to link to double preision software that the user maywish to manage with EDITOR.Step 4: If your OS is one of the eleven supported OSs, go to step 5. If not, you must putall the hanges you made to reate edit21.NEWOS.f into the \master opy" of EDITOR,namely edit21.From the diretory editor, open edit21.NEWOS.f in one text editing window, edit21in another. Without deleting any lines in edit21, add your system-dependent hanges toedit21. Make sure eah addition begins and ends with:*if def NEWOS*endif NEWOSjust like the SUNOS, AIX, et. equivalents do. Follow the SUNOS examples already in edit21arefully. You should also make ertain that the OS tag you invented in step 1 (e.g., NEWOS)is unique, and not already used in edit21 for something else.Step 5: From the diretory editor, open edit21.s (desribed in x9.2) and replae the oneourrene of SUNOS with your own operating system tag. Save the hange. Then, even ifyou left the tag as SUNOS, type:sh -v edit21.swhih reates your �nal working version of xedit21 (replaing the temporary exeutablereated in step 1), and leaves it in the diretory editor. You are now ready to go.9.2 The sript �le edit21.sThe sript �le edit21.s used in the previous setion to install EDITOR serves as a goodexample of how the author uses EDITOR in pratise. For the purposes of this disussion,the �le is reprodued below, with an eletroni opy of a similar �le available in the diretoryeditor of dzeus35.tar downloaded at www.ia.smu.a/zeus3d.1 #============= SOURCE FILE TO CREATE THE EDITOR EXECUTABLE =============#2 #3 #=======================================> Get files from home diretory.4 if(! -e edit21) p USERID/editor/edit21 .5 if(! -e xedit21) p USERID/editor/xedit21 .6 if(! -e namelist.a) p USERID/namelist.lib/namelist.a .7 #=======================> If neessary, reate the diretory "editor2.1".8 if(! -e editor2.1) mkdir editor2.19 #---> Create the hange dek.10 rm -f hgedit11 at << EOF > hgedit12 *define SUNOS13 *delete par.10,1114 parameter (k1=1000, k2=100000, k3=2000, k4=2000, k5=200015 1 , k6=128, k7=1000, k8=1000, k9=4000)16 **read hged21

Installing EDITOR 4717 EOF18 #========================> Create the input dek for EDITOR, and exeute.19 rm -f inedit20 at << EOF > inedit21 \$editpar inname='edit21'22 , idump=1 ,job=3, ipre=1, inmlst=1, iutask=0, safety=0.423 , hgdk='hgedit'24 , iupdate=1, ext='.f', branh='editor2.1'25 , makename='makeedit', xeq='xedit21'26 , options='-g -C -ftrap=ommon', loptions='-g'27 , options='-fast', loptions='-fast'28 , libs='namelist.a' \$29 EOF30 hmod 755 xedit2131 ./xedit2132 #===> MAKE the EDITOR exeutable.33 make -f makeeditAs with previous examples, the �rst segment of edit.s retrieves the neessary �les fromthe user's home diretory, inluding the EDITOR binary exeutable if not already in theurrent diretory.The seond segment reates a diretory on dis alled editor2.1 into whih all �les splitfrom the master soure �le edit21 and objet �les one ompiled are plaed.The third segment generates the hange dek hgedit whih gets merged with the master�le edit21. This hange dek �rst sets the operating system by de�ning the appropriateEDITOR de�nition. If there were any EDITOR aliases to be set, they might be set heretoo. Next, the hange dek sets values for the parameters desribed in x9.3. Beause ofthe memory management built into EDITOR, it is unlikely that these values would everhave to be hanged from those given. Finally, the bulk of the hanges to the soure odeare delegated to a �le alled hged21 whih, in this example, is not merged with edit21beause of the double asterisk interpreted as a omment by EDITOR. Should the user wishto hange EDITOR for any reason, this is an obvious plae to link the hanges.If there were numerous EDITOR maro settings, one might onsider plaing them allin a separate �le (alled, for example, edit21.ma) and then insert the statement *readedit21.ma where the *define SUNOS statement urrently is. In this way, the sript �lewill remain onise, and only those hanges whih need to be the most aessible (settingthe parameter values, for example) would remain in the sript �le itself.The fourth segment generates the namelist input data �le inedit whih instruts theurrent version of the EDITOR binary exeutable xedit21 how to preproess edit21. Inthis example, the namelist parameters are set so that hgedit will �rst be merged intoedit21 whih is then preompiled (sine ipre=1) for SUNOS with the namelist replaementfeature on, the onditional splitting feature on, and the miro-tasking feature o� . All �lessplit from the merged master soure ode will be plaed in the diretory editor2.1 andwill have the extension .f appropriate for FORTRAN soure ode. Sine iupdate=1 andmakename are set to a non-blank harater string in the input dek, a make�le with thename makeedit will be generated. The make�le will use the default ompiler (f77 - underSUNOS) and loader (f77 under SUNOS) with high optimisation (options and loptionsboth set to -fast, appropriate for SUNOS). An optional set of ompiler and loader optionssuitable for debugging is ommented out. The library namelist.a will be linked with the

Installing EDITOR 48EDITOR objet ode to generate a binary exeutable alled xedit21. Finally, this segmentexeutes the urrent version of xedit21 and edit21 is preproessed.The �fth segment �res up the make�le makeedit generated in the previous segment.This ompiles and links the new EDITOR ode generating a new version of xedit21 andoverwriting the version of xedit21 whih did the preproessing.9.3 EDITOR parametersAs FORTRAN uses stati memory, there are numerous parameters that EDITOR requiresto set internal array sizes. For the most part, the default settings should be �ne for anyappliation on any platform. However, in ase the user needs to hange any of them, anexhaustive list of EDITOR's parameters, what they limit, and their default values are givenbelow.parameter interpretation defaultk1 maximum number of errors to be reported 1,000k2 maximum number of lines in soure ode to be proessed 100,000k3 maximum number of origins per module (TARGET) 2,000k4 maximum number of deks in soure ode 2,000k5 maximum number of targets per module (TARGET) 2,000k6 maximum number of haraters per line of soure ode 128k7 maximum number of EDITOR definitions 1,000k8 maximum number of EDITOR aliases 1,000k9 maximum number of variables within a module 4,000The purpose of the last parameter k9 depends on the EDITOR funtion. When ompar-ing delaration lists of two �les (x6.2), COMPARE will only allow as many k9 variables of eahtype (real, integer, et.). The namelist replaement feature (x2.2) will allow as many as k9variables to be de�ned in eah namelist. Finally, the miro-tasking feature (x2.3) will sopeas many as k9 variables in eah nested loop struture it enounters. The default values listedabove should be more than adequate for most purposes.The parameter k2 sets the maximum number of lines read at a time from the user'ssoure �le being proessed. A soure �le of any arbitrary size may be read. However, if thesoure ode is too long, the �le will be read in piees rather than all at one in order to avoidsurpassing the memory available on your mahine. Thus, EDITOR is built with an e�ortmade toward memory management, and this should be entirely transparent to the user. A100,000 line soure ode may be read in and proessed all at one (with k2 set as high asneed be) or in various piees. The end result will be idential. There are a few fators to beonsidered in hoosing the appropriate value of k2.1. EDITOR is slightly faster if k2 is large enough to read the entire input �le at one,but only slightly.2. The amount of memory required by EDITOR is largely ditated by k2. There arefour harater*128 arrays dimensioned with k2. Thus, the memory required by thesearrays for k2=100000 (the default) is 51.2 Mbytes. It turns out that the size of theEDITOR exeutable with k2=100000 is 52.4 Mbytes, so it is lear that the k2 arrays

Installing EDITOR 49are the dominant sink of memory. Use these numbers to guide your seletion for k2and hoose as large a value as may be onveniently handled by your mahine.3. The number of lines read by EDITOR at a time will be at most safety*k2. Thevariable safety may be set in the namelist input data �le inedit (x2.5 and x9.2) andreets the fat that the soure ode is apt to expand during preproessing. For NUMBER,the expansion is minimal (table of ontents only), and so safety=0.9 is probablyOK. For TARGET, the same. However, for MERGE the amount of expansion dependson how muh extra oding is being merged with the original �le. For PRECOM the*all statements an result in substantial expansion of the soure �le. Thus, settingsafety=0.4 or smaller may be appropriate. If safety is set too high and an overowresults, exeution will be aborted and the user will be asked to use a smaller value forsafety (see xA.1). Sine EDITOR reads only omplete deks and in general, a dekwon't happen to end after exatly safety*k2 lines, EDITOR will usually read less thansafety*k2 lines at a time. If there are individual deks with more than safety*k2lines, this will reate an overow ondition, and exeution will abort (xA.1). The usermust then do one or more of the following: resubmit the EDITOR job with a largervalue of safety (at the risk of generating overows when the new �les expand); rewritethe soure ode with smaller deks; or reompile EDITOR with a larger value of k2.If none of these an be done, EDITOR may not be used for the desired task on thehosen mahine.

Error messages 50A Error messagesError messages ome in four avours. The most serious ause EDITOR to abort exeutionand usually require it to be reompiled with higher values for one or more parameters. Theseond type onsist of error messages aused by inorret EDITOR syntax in the �les beingproessed. These are not fatal to EDITOR itself, but will mean that the �les proessedby EDITOR will be unusable for their intended purpose. EDITOR will insert these errormessages diretly below the o�ending line in the output �le. Note that original input �lessupplied by the user are never altered by EDITOR. The third type are warning messageswhih are ehoed on the terminal sreen. In this release, there is only one warning, and itis ompletely innouous. Finally, if the user's program is preproessed with the namelistreplaement feature (x2.2), syntax errors in the user's namelist input data �le will generatefatal error messages at run time.A.1 Fatal errorsFatal error messages whih abort EDITOR arise under two onditions. Either an overowhas ourred (in whih ase EDITOR may have to be reompiled with one of its parametersset to a higher value), or the �le that EDITOR was trying to read was not found or wasfound to be orrupted. All fatal error messages indiate whih EDITOR subroutine foundthe problem (of no real use exept possibly to EDITOR programmers) and what the problemis, followed by the unwelome message: ABORTS!. Internally, the ABORTS! message is alwaysfollowed by a stop statement, so this message really means what it says.These messages are listed here alphabetially, with some desriptive text interleavedwhere neessary. The �rst set of messages ome from COMPARE (x6) and, in partiular,when the delarations of two �les are being ompared. These all require that EDITOR bereompiled with a larger value of k9 (x9.3). Note that n indiates the urrent value of k9 asalready ompiled.COMPARE : Number of harater variables exeeded n. Inrease parameter k9.COMPARE : ABORTS!COMPARE : Number of data assignments exeeded n. Inrease parameter k9.COMPARE : ABORTS!COMPARE : Number of equivalenes exeeded n. Inrease parameter k9.COMPARE : ABORTS!COMPARE : Number of externals delared exeeded n. Inrease parameter k9.COMPARE : ABORTS!COMPARE : Number of integer variables exeeded n. Inrease parameter k9.COMPARE : ABORTS!COMPARE : Number of logial variables exeeded n. Inrease parameter k9.COMPARE : ABORTS!COMPARE : Number of parameters exeeded n. Inrease parameter k9.COMPARE : ABORTS!

Error messages 51COMPARE : Number of real variables exeeded n. Inrease parameter k9.COMPARE : ABORTS!COMPARE : Number of variables in ommon exeeded n. Inrease parameter k9.COMPARE : ABORTS!CONCAT (x8) has one trap whih will abort exeution should it have trouble reading apartiular line (i) in a named �le (�lename). This indiates that the �le may be orruptedor is shorter than EDITOR antiipated. Chek the ontents of the �le, partiularly aroundthe indiated line.CONCAT : Problem reading line i in file "filename"CONCAT : ABORTS!If a user-spei�ed input �le isn't atually there, the following message will be issued.Chek that �lename was spelled orretly, or that the �le is in the proper diretory.OFILE : Problem opening file "filename"OFILE : ABORTS!While EDITOR has been designed with onsiderable e�ort toward memory management(x9.3), it is still possible for overows to our. There are two types of overow. One anbe orreted only by reompiling EDITOR with a larger value for the parameter k2 (x9.3).The other may be orreted by resetting the parameter safety in the namelist input data�le indata (x2.5 and x9.2) to a lower value, then exeuting EDITOR again. Note that thelatter ase does not require reompiling EDITOR.The overowed text is not written to the intended �le, but to an emergeny �le alled\OVERFLOW.TXT" that the subroutine OVERFLOW opens, writes to, and loses before it abortsexeution. It may help to examine the ontents of this �le, but in all likelihood, all one ando is to reset k2 and/or safety. Following are the OVERFLOW fatal error messages. Theyindiate whih subroutine originally deteted the overow and whether to reompile with ahigher value for k2 or to resubmit with a lower value of safety. The last message is probablytrouble sine it implies that enough error messages were inserted to exeed array bounds.OVERFLOW: File overflow in CDECKS. Inrease parameter "k2"OVERFLOW: Overflowed text file written to file "OVERFLOW.TXT"OVERFLOW: ABORTS!OVERFLOW: File overflow in MERGE. Inrease parameter "k2"OVERFLOW: Overflowed text file written to file "OVERFLOW.TXT"OVERFLOW: ABORTS!OVERFLOW: File overflow in MERGE. Speify lower value for "safety" than xOVERFLOW: Overflowed text file written to file "OVERFLOW.TXT"OVERFLOW: ABORTS!OVERFLOW: File overflow in NMLST. Speify lower value for "safety" than xOVERFLOW: Overflowed text file written to file "OVERFLOW.TXT"OVERFLOW: ABORTS!OVERFLOW: File overflow in PARALLEL. Inrease parameter "k2"OVERFLOW: Overflowed text file written to file "OVERFLOW.TXT"

Error messages 52OVERFLOW: ABORTS!OVERFLOW: File overflow in PRECOM. Speify lower value for "safety" than xOVERFLOW: Overflowed text file written to file "OVERFLOW.TXT"OVERFLOW: ABORTS!OVERFLOW: File overflow in TARGET. Speify lower value for "safety" than xOVERFLOW: Overflowed text file written to file "OVERFLOW.TXT"OVERFLOW: ABORTS!OVERFLOW: In ERRMSG, attempt to insert error message auses a file overflowOVERFLOW: Overflowed text file written to file "OVERFLOW.TXT"OVERFLOW: ABORTS!Finally, the subroutine whih reads text one a text �le is opened (RFILE) an fall intotraps. EDITOR will always attempt to read entire deks or modules of a soure ode (x9.3).If it annot (that is, if safety*k2 is less than the number of lines in the largest dek),then exeution will abort. In addition, if the �le being read is orrupted or smaller thanantiipated, a fatal error message will be generated.RFILE : A module in file "filename" is longer than i linesRFILE : Inrease parameter "k2"RFILE : ABORTS!RFILE : Array bounds exeeded while reading file "filename"RFILE : Inrease parameter "k2"RFILE : ABORTS!RFILE : Problem reading line i in file "filename"RFILE : ABORTS!A.2 Non-fatal errorsThere are a variety of error messages that EDITOR inserts into the output �les shouldit unover any EDITOR syntax errors or some seleted FORTRAN syntax errors. Theseerrors do not abort exeution. EDITOR simply notes the error, leaves the errant line in theoutput �le (as opposed to syntatially orret EDITOR statements whih one arried outare expunged from the output �le), and moves on. Every e�ort has been made to ensurethat the error message will appear immediately after the o�ending line in the output �le.This requires a rather elaborate aounting sheme whih keeps trak of every line addedor deleted from the �le so that the pointers whih indiate where the error messages shouldbe inserted are kept up to date. This logi is prone to aws and, while the author hasn'tnoted a single ase of a misplaed error message in several years of onstant use, it is stilloneivable that the oasional error message will appear out of ontext.Non-fatal error messages may be generated only by PRECOM (x2), MERGE (x4), or TARGET(x5). The appropriate setion should be onsulted for the orret syntax of the desiredoperation. Note that the input �les are never altered by EDITOR. Thus, error messagesappear in the .f, .m, or .t output �les only, not the input �les. Nevertheless, orretionsshould be made to the original input �les|making them to the output �les where the errormessages appear will have no e�et.

Error messages 53CDECKS : **** ERROR 1 **** > 10 nested *alls. Does a *dek all itself?This indiates that the user has exeeded the internal EDITOR limit of 10 nested *allsto ommon deks. Sine it is unlikely suh a omplex struture would be deliberate, themessage suggests that perhaps the alling tree is losed. e.g., perhaps, ommon dek 1 allsommon dek 2 whih alls ommon dek 3 whih alls ommon dek 1, or something to thate�et. If so, this should be orreted.CDECKS : **** ERROR 2 **** Call made to an unknown ommon dek.A all has been made to an unde�ned ommon dek. Misspelling a ommon dek name in a*all statement is the most probable ause for this error.COLLECT : **** ERROR 3 **** Expeting a harater expression.If a *all statement appears without a ommon dek named, or if any other EDITORommand is inomplete, this error message will result. Chek syntax.COLLECT : **** ERROR 4 **** Too many swithes defined.This indiates that the user has spei�ed more swithes (de�nitions) than allowed by thearray bounds. One either needs to de�ne fewer maros, or to reompile EDITOR with alarger value of k7.COLLECT : **** ERROR 5 **** Too many aliases defined.This indiates that the user has spei�ed more aliases than allowed by the array bounds.One either needs to set fewer aliases, or to reompile EDITOR with a larger value of k8.COLLECT : **** ERROR 6 **** Too many ommon deks defined.This indiates that the user has spei�ed more ommon deks than allowed by the arraybounds. One either needs to de�ne fewer ommon deks, or to reompile EDITOR with alarger value of k4.COPY : **** ERROR 7 **** Syntax! First harater is illegal.This message is a ombined EDITOR-FORTRAN syntax error message, and indiates thatthe only allowed haraters in the �rst olumn of legal FORTRAN/EDITOR statements isa blank, a digit (0 through 9), , C, or *.COPY : **** ERROR 8 **** Syntax! EDITOR sentinel (*) not in olumn 1.This message indiates that the EDITOR ommand does not begin in the �rst olumn.EDITOR will not attempt to read statements that do not adhere to the preise syntax.COPY : **** ERROR 9 **** Syntax! Extra spae after EDITOR sentinel (*).This message indiates that the EDITOR sentinel (*) is not followed immediately by therest of the ommand. Again, strit ompliane with the syntax is required.

Error messages 54CTOI : **** ERROR 10 **** A non-numeri harater deteted.Some EDITOR ommands have �elds inside whih integers are expeted. Thus, if a userinadvertently types *delete sub1.io where the io should have been a 10, ERROR 10 willbe generated.There is no error message 11.ERRSET : **** ERROR 12 **** Number of issued errors exeeds "k1".Trouble. If one really wants to see all the errors at the same time, go ahead and reompileEDITOR with a higher value of k1. However, there is probably something really wrongwith the input �les, and this will have to be orreted. One the errors are �xed, this errormessage should go away as well.INOREX : **** ERROR 13 **** Unreognised EDITOR ommand.EDITOR didn't reognise what followed the * sentinel as a valid EDITOR ommand. Cheksyntax.INOREX : **** ERROR 14 **** More than ten nested *if statements.EDITOR only allows as many as 10 nested *if statements, whether they be *if define or*if alias. One needs to simplify the nested struture.INOREX : **** ERROR 15 **** Expeting a harater expression.See ERROR 3.INOREX : **** ERROR 16 **** Expeting a Boolean .and. or .or..If an EDITOR *if define statement lists more than one maro, these maros must beseparated by an .and. or an .or..INOREX : **** ERROR 17 **** Expeting a Boolean .eq. or .ne..An *if alias statement must have either an .eq. or a .ne. in the fourth �eld.INOREX : **** ERROR 18 **** Dangling *endif statement.More *endif statements than the number of pending *if statements have been disovered.All *endifs must have a orresponding *if statement appearing before it in the dek.INOREX : **** ERROR 19 **** Too few *endif statements in previous dek.At least one *if statement was not losed by an *endif statement by the time the previousdek was losed. All *if statements must be losed by an *endif statement before thenext dek begins. This message is plaed immediately after the *dek statement of the dekimmediately following the dek with the unbalaned *if statement(s).

Error messages 55LIST : **** ERROR 20 **** Unbalaned parentheses.A FORTRAN statement with an argument list (if, omputed goto, et.) has unbalanedparentheses. This FORTRAN syntax error is only reported when it interferes with thedesired preproessing (e.g., looking for targets at the end of an if statement).MERGE : **** ERROR 21 **** Expeting a harater expression.See ERROR 3MERGE : **** ERROR 22 **** Referene made to an undefined dek.A MERGE edit (*insert, *delete, or *replae) has been issued whih refers to a dek notfound in the master soure ode. The most likely reason is that the dekname has beenmisspelled.MERGE : **** ERROR 23 **** Expeting a line number to follow dek name.MERGE edits require at least one referene to a line number. If no line numbers were given,this error message is issued.MERGE : **** ERROR 24 **** Last line number must be greater than first.For the MERGE edit: *delete �lename.n,m, m must be greater than n.MERGE : **** ERROR 25 **** Speified range not found in dek.The spei�ed lines in the *delete statement were not found in the spei�ed dek. Chekthe �fth olumn of the soure ode formatted by NUMBER and make sure the lines do indeedexist.MERGE : **** ERROR 26 **** Cannot find speified line. Was it deleted?Probable ause of this error message is a previous *delete statement removed the line(s)that the urrent MERGE edit is trying to a�et.NMLST : **** ERROR 27 **** Missing opening delimiter /.The NMLST errors should not be onfused with the namelist error messages that mayappear during run time of the user's program should syntax errors be found in the namelistinput data �le. The NMLST errors are those generated by improper syntax of the nameliststatement in the user's soure ode itself. This error message indiates that the openingslash is absent from the namelist designation. See x2.2 for an example of proper namelistsyntax.NMLST : **** ERROR 28 **** Missing losing delimiter /.This error message indiates that the losing slash is absent from the namelist designation.See x2.2 for an example of proper namelist syntax.

Error messages 56NMLST : **** ERROR 29 **** Too many variables in namelist. Inrease "k9".This error message indiates that the user has de�ned more variables in the namelist state-ment than may be aommodated by the urrent setting of the internal parameter k9. Onemay break up the namelist into smaller namelists, or reompile EDITOR with a larger valueof k9 (x9.3).NMLST : **** ERROR 30 **** Too many vars. in namelist. Inrease "inmlst".This error message indiates that the user has de�ned more variables in the namelist state-ment than the user-seleted value of inmlst (x2.5) would allow. One may break up thenamelist into smaller namelists, or reset inmlst to a higher value.NMLST : **** ERROR 31 **** No variables found in namelist.There must be at least one valid variable listed in eah namelist de�ned.NMLST : **** ERROR 32 **** Unreognised syntax in dimension statement.In replaing the namelist statement with alls to subroutines in namelist.a, EDITOR mustmake deisions as to whih subroutines to all. In so doing, EDITOR sans the delarationsat the head of the program module to learn about the attributes (real, integer, et.) anddimensions, if any, of eah variable in the namelist. Should it �nd any FORTRAN syntaxerror in the delaration list that impedes its san, EDITOR generates this message.NMLST : **** ERROR 33 **** Blank "nlsda" suffix! Chek delarations.This error stems (usually) from some syntax error (suh as a missing omma) in the de-laration list that wasn't deteted while the delaration list was being sanned and left thevariable attribute undetermined. In this event, EDITOR is unable to determine whih ofthe namelist.lib subroutines (named nlsdann, where nn ranges from 01 to 24) to all.Chek whih variable is involved with the statement to whih this error message refers andexamine how that variable is delared in that program module.PRECOM : **** ERROR 34 **** Call made to an unknown ommon dek.See ERROR 2.TARGET : **** ERROR 35 **** Unreognised harater in first five olumns.TARGET errors refer always to inorret FORTRAN syntax whih impedes the tidy-up proess.This partiular error is generated if there is anything other than a digit (0 to 9) in the �rst5 olumns of any statement that is not a omment, blank, or EDITOR statement.TARGET : **** ERROR 36 **** Too many targets - Going on to next dek.Too many targeted statements in the program module. The tidy-up proess annot ontinuewith urrent module, so exeution ontinues with the next module. Either break the moduleup into smaller modules, or reompile EDITOR with a larger value of k5 (x9.3).

Error messages 57TARGET : **** ERROR 37 **** Unreognised syntax.The statement does not onform to ANSI-standard FORTRAN77.TARGET : **** ERROR 38 **** Expeting a numerial target.A FORTRAN statement whih is supposed to inlude a numerial target (e.g., goto) didnot have a numerial target where one was expeted.TARGET : **** ERROR 39 **** Too many origins - Going on to next dek.Too many origins in the program module. The tidy-up proess annot ontinue with urrentmodule, so exeution ontinues with the next module. Either break the module up intosmaller modules, or reompile EDITOR with a larger value of k3 (x9.3).TARGET : **** ERROR 40 **** Target defined more than one.Two or more target statements use the same target number.TARGET : **** ERROR 41 **** Origin has no target.The origin refers to a non-existent targeted statement.TARGET : **** ERROR 42 **** Ambiguous targets.This error stems from the TARGET feature whih replaes do-enddo strutures with targeteddo-loops. This is a badly designed feature beause it requires the enddo statement to inludethe do-loop index in order to perform the replaement. Thus the statement do i=i1,i2 mustend on the statement enddo i, not just enddo. The trouble is that ompilers whih o�erthe do-enddo extension treat the do-loop index on the enddo statement as optional , notmandatory . Thus the TARGET feature to replae do-enddos with targeted do-loops is not asgeneral as it ould be. In partiular, enddo statements whih do not eho the do-loop indexwill result in this error message being issued.TARGET : **** ERROR 43 **** Too many "do"s and/or "goto"s in this dek.The sum of the number of do-loops and the number of goto statements (inluding gotos im-plied by the err and end parameters in open and read statements) exeed ienddo-ibegdo+1,where ibegdo and ienddo are namelist input parameters (see x5.1). One must either de-rease the number of targets in this module, or inrease the di�erene between ibegdo andienddo.TARGET : **** ERROR 44 **** Too many "read"s in this dek.The number of formatted read statements exeeds iendre-ibegre+1, where ibegre andiendre are namelist input parameters (see x5.1). One must either derease the number ofread targets in this module, or inrease the di�erene between ibegre and iendre.

Error messages 58TARGET : **** ERROR 45 **** Too many "write"s in this dek.The number of formatted write statements exeeds iendwr-ibegwr+1, where ibegwr andiendwr are namelist input parameters (see x5.1). One must either derease the number ofwrite targets in this module, or inrease the di�erene between ibegwr and iendwr.TARGET : **** ERROR 46 **** More than i deks defined. Part of file lost.Program has more modules (subroutines or deks) than an be aommodated by EDITORas ompiled. Either redue the number of modules in the program, or reompile EDITORwith a larger value for k4.PARALLEL: **** ERROR 47 **** Too many variables in do-loop. Inrease "k9".The number of variables to be soped in the nested do-loop struture being miro-tasked ismore than an be aommodated by EDITOR as ompiled. Either redue the number ofvariables being used in the o�ending do-loop, or reompile EDITOR with a larger value fork9.MERGE : **** ERROR 48 **** Too many nested *reads.Like the *all statement, as many as 10 *read statements may be nested. Sine it isunlikely that more than 10 nested *reads would ever be deliberate, this is probably ausedby a losed loop. That is, hange dek 1 reads hange dek 2 whih reads hange dek 3whih reads hange dek 1, or something to that e�et.ERRMSG : **** ERROR 999 **** Unspeified error.No guidane, other than to say this message should never ome up.A.3 WarningsIn this release, there is only one warning message, per se, and this is ompletely harmless.It is ehoed to the user's CRT and is not plaed into any of the output �les.TARGET : **** WARNING **** Inrement for dek: dekname redued from i1 to i2 .If the number of targets found in the urrent module exeeds (ienddo-ibegdo)/in, whereienddo, ibegdo, and in are namelist input parameters hosen by the user (see x5.1),then the user-supplied value for in is redued until the number of targets is less than(ienddo-ibegdo)/in. If hoosing in=1 still doesn't do it, then error message 43 (or 44,or 45) will result. Note that the redution of the value of in applies to the urrent moduleonly. Where ever possible, EDITOR will abide by the user's hoie for in.A.4 NAMELIST errorsNamelist error messages (as opposed to the NMLST error messages desribed in xA.2) ariseonly at run time of software that was preompiled with the namelist replaement option

Error messages 59turned on. These messages appear if any syntax errors are found in the namelist input dis�les. An example of an EDITOR namelist error message follows.**, q1=1.0e-10, infile='indata' inam=1,1,2,2,3^NAMELIST ERROR 4 ---> unexpeted harater - hek syntax**The error message ehos the o�ending line in the namelist input data �le, plaes a arat (^)immediately under the o�ending harater in that line, then explains what is wrong. In thisase, there is a missing omma. The only problem with EDITOR namelist error messagesis that only one message an be generated at a time. Eah error message aborts exeutionand thus it may take several tries before all the syntax errors are found and orreted.Below is a list of the possible namelist errors along with brief desriptions.NAMELIST ERROR 1 ---> olumn 1 reserved for omment sentinel: The rules of namelist input deks must be adhered to exatly. If a harater other than ablank, , or C appears in the �rst olumn anywhere in the input data �le, this message willbe issued.NAMELIST ERROR 2 ---> olumn 2 reserved for $ delimiterIf a harater other than a blank or $ appears in the �rst olumn anywhere in the input data�le, this message will be issued.NAMELIST ERROR 3 ---> variable not found in namelistA variable is being set whih was not part of the namelist delaration in the soure ode.The usual reason for this error is a misspelled variable.NAMELIST ERROR 4 ---> unexpeted harater - hek syntaxThe usual reason for this message, as in the example above, is a missing omma. Chek thesyntax of the o�ending line arefully.NAMELIST ERROR 5 ---> invalid logial expressionA logial variable has been assigned a value other than .true., .t., .false., or .f. (in-luding the periods).NAMELIST ERROR 6 ---> namelist does not exist, or is out of sequeneThe soure ode attempts to read a namelist not found in the namelist input data �le. Thisis usually aused by a misspelled namelist name or a namelist that appears out of order inthe data �le. Note that the order of the namelists in the data �le must be the same as theorder in whih the soure ode reads them.

Error messages 60NAMELIST ERROR 7 ---> error reading input dekDoes the namelist input data �le exist on dis in the diretory in whih the exeutable wasexeuted?NAMELIST ERROR 8 ---> variable not delared as a vetorA salar is assigned values as though it were a vetor.NAMELIST ERROR 9 ---> next namelist begun before losing quote foundCharater assignments may run over several lines. Thus, if a namelist opening sentinel $is found in the seond olumn of a line before the losing quote of the urrent haraterassignment is found, this message results. A ommon ause of this message is if the losingquote has been inadvertently shoved beyond the 72nd olumn, or if the losing quote is asingle (double) quote while the opening quote is a double (single) quote.NAMELIST ERROR 10 ---> missing opening quoteIf the �rst non-blank harater after the = in a harater assignment is not a single or adouble quote, this message is issued.NAMELIST ERROR 11 ---> blank dataA variable is assigned a null �eld.NAMELIST ERROR 12 ---> premature end of fileFile appears to have ended before the losing sentinel $ of the urrent namelist was found.Common ause is if the losing sentinel of the last namelist was inadvertently shoved beyondthe 72nd olumn.NAMELIST ERROR 13 ---> missing $ sentinel to lose namelistNext namelist has begun (a $ sentinel was found in olumn 2) before the losing sentinelof the urrent namelist was found. Common ause is if the losing sentinel is inadvertentlyshoved beyond the 72nd olumn.NAMELIST ERROR 14 ---> exponent must not exeed 999The EDITOR namelist will not permit exponents in real variable assignments to exeed 999(or be lower than �999). Obviously, a 32-bit word mahine will have even more stringentlimits.NAMELIST ERROR 15 ---> no more than 15 digits in single preisionThe tone of this message is a fossil of the days when EDITOR ran only under UNICOS, andwhere single preision was 15 signi�ant digits (double preision on most other platforms).The EDITOR namelist will only allow as many as 15 signi�ant �gures to be spei�ed in areal variable assignment.

