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Preface to the instructor’s version

This document contains the instructor’s version of thirty-six lessons based on the textbook
A first course in Magnetohydrodynamics (hereafter, “the text”) suitable for a single-semester
course with 24 — 36 classes. Each lesson is typically six pages of large-font double-spaced
type designed for a 75-minute “flipped-style” class in which students are expected to have
read the student’s version of the lesson and any relevant portion of “the text” before coming
to class. With this preparedness, the instructor can use class time to discuss the lesson notes
and address students’ questions rather than writing everything down on the board with
students copying furiously. What the instructor elects to put on the board for clarity can be
copied by students in between the lines of the lesson notes on a paper copy or in an editable
PDF reader on their laptop. Each lesson concludes with a class exercise (in single-spaced,
normal-sized font) designed to reinforce some of the main points of the lesson that can be
done as part of a group discussion in 10 — 20 minutes.

The instructor’s and student’s versions of these lesson notes are not identical. Omitted from
the student’s version are:

1. answers to the end-of-class exercises; and

2. “demonstrations” such as web links for images and videos, embedded pictures with
discussion, and suggested analogies for the instructor.

The intent is for the instructor to make available to the class at the beginning of term the
entirety of the student’s version of the lessons, whereas the instructor would teach from the
instructor’s version with the current lesson projected on the overhead. Portions omitted
from their version would be seen by students for the first time during class. After each class,
the instructor would replace the student’s version of the lesson with the instructor’s version
so that students have access to the exercise answers and “demonstrations” after they’ve
been presented and for further study. To do this, one merely opens up the IKTEX document
lessons_stu.latex, scrolls down to the bottom, and replaces “stu” with “ins” for the
lesson just taught. The document is then recompiled by typing at the UNIX prompt:

ml lessons_stu

where the script file “m1” that executes the necessary I TEX commands is included in the same
directory as lessons_stu.latex from where “m1” should be executed. This will update the
PDF document lessons_stu.pdf which the instructor can upload to where students access
the lesson notes. In this way, the student’s version gradually becomes the instructor’s version
as the course unfolds.

Equations in the lesson notes are numbered by section, and thus have two decimals. For
example, Eq. (3.1.4) is the fourth equation in §3.1 of Chap. 3. In “the text”, equations are
more coarsely numbered by chapter and have just one decimal; whence Eq. (3.24) is the 24"
equation in Chap. 3 without reference to the section. Thus, equation references in these

viii



PREFACE TO THE INSTRUCTOR’S VERSION ix

notes with two decimals are to other equations in these notes, whereas equation references
with just one decimal are to those in “the text”. Further, while all chapter headings in
the lesson notes follow those in “the text”, beware that some of the section and subsection
headings and numberings do not.

These lesson notes are provided free of charge by the author of “the text” to legitimate
instructors using “the text” as required reading for their course. Further, copyright and
distribution rights remain with the author, and any use by anyone of this document beyond
teaching their course or distributing it to students in their class is a violation of copyright.

David Clarke, Halifax, NS.
October, 2024



Preface to the student’s version

Welcome to your first course in magnetohydrodynamics (MHD), what I hope will be a mem-
orable introduction to the fundamentals of how 99.99% of the baryonic universe operates!

This document contains thirty-six lessons based on the text, A first course in Magnetohy-
drodynamics (hereafter “the text”). Each lesson is typically six pages of large-font double-
spaced type designed for a 75-minute “fiipped-style” class in which you, the student, will be
expected to have read (along with any relevant portion of “the text”) before coming to class.
With this preparedness, your instructor can use class time to discuss the lesson notes and
address your questions rather than writing everything down on the board with you furiously
copying before the board is erased! What your instructor elects to put on the board for
clarity, you can copy down at a more leisurely pace in between the lines of a paper copy of
these lesson notes or in an editable PDF reader on your laptop. Each lesson concludes with
a class exercise (in single-spaced, normal-sized font) designed to reinforce some of the main
points of the lesson and which your instructor may include as part of a group discussion.

While MHD is based on four very fundamental and familiar conservation laws (mass, energy,
momentum, and magnetic flux), the mathematics is subtle and intricate, often masking the
physical beauty behind its formality. It is therefore imperative for you, the student, to keep
up with these notes and “the text” so that the “language of mathematics” doesn’t “get in
the way” but rather “speaks to you” as intended. Be sure to read each lesson before coming
to class, and do not shy away from approaching your instructor even before class if there are
key concepts you think you're missing.

On two practical matters, equations in the lesson notes are numbered by section, and thus
have two decimals. For example, Eq. (3.1.4) is the fourth equation in §3.1 of Chap. 3. In
“the text”, equations are more coarsely numbered by chapter and have just one decimal,
whence Eq. (3.24) is the 24'® equation in Chap. 3 without reference to the section. Thus,
equation references in these notes with two decimals are to other equations in these notes,
whereas equation references with just one decimal are to those in “the text”. Further, while
all chapter headings in the lesson notes follow those in “the text”, beware that some of the
section and subsection headings and numberings do not.

And with that, I wish you all a great adventure!

David Clarke, Halifax, NS.
October, 2024



LESSON 1

In this first lesson, areas of study in continuum and particle dynamics are

defined, including,
1. flurd and gas dynamics;
2. plasma physics; and
3. magnetohydrodynamics (MHD).

The approach this course takes to study MHD is then identified.

The rest of the lesson is a review of the Kinetic theory of gases, where:

1. the applicable conservation laws are surveyed;
2. a link is made between momentum transfer and pressure;
3. a link is made between average particle kinetic energy and temperature;

4. the rms speed of gas particles at a given temperature is defined.



Introduction

Definition: A fluid is one of three states of matter that flows:
1. liquid — incompressible; p (density) = constant
2. gas — compressible

3. plasma — (perhaps partially) ionised gas

Physical property distinguishing each state: temperature.

Formal definition of a fluid

Let d = mean free path of particles (distance between collisions)

Let £ = any measurable scale of interest
- physically: smallest “turbule” as fluid cascades to turbulence

- numerically: one zone

A fluid is a medium in which §l < £; “granularity” is sub-microscopic.

Fluid dynamics = hydrodynamics = continuum mechanics: physics of fluid

flow, accounting for,

- conservation of mass
- conservation of energy (classical mechanics)
- Newton’s second law

an equation of state (thermodynamics)

Ideal fluid dynamics: assumes zero dissipation, i.e., no viscosity (inviscid)

Gas dynamics: compressible fluid dynamics

2



INTRODUCTION 3

Plasma physics: collective behaviour of e~ + ions with charge separation,

Ap 2 Ol (Ap = Debye length). The Viasov-Boltzmann equation accounts for:

collisions;

electrodynamic forces arising from E and B ;

conservation laws;

Newtonian and/or relativistic dynamics,

and is beyond scope of this course.

Magnetohydrodynamics (MHD) = plasma physics with A\p < 61, or fluid

dynamics with non-zero B. This course adopts latter approach.

- Fluid can’t support “static” electric fields (free charges), but can support

B S
“induced” electric fields: %—t = —V x Ejgq.

- Collective behaviour of e~ +ions = B = J=V xB = Lorentz force
(J x B).

- MHD = HD + Lorentz forces + induction equation.



Chapter 1. Fundamentals of Hydrodynamics
1.1 Kinetic Theory of (GGases

Consider ensemble of N particles, mass m, in volume V.

“Walls” of V' may be rigid or completely flexible so that
they deform as needed to keep all N particles within V.

All particle-particle, particle-wall collisions are elastic.

Governing physical principles are known to first-year students:

dM
conservation of mass: T 0; M =Nm
. dEr
conservation of energy: 3 Pem
ds H . N
Newton’s Second Law: = = Z Foxt; S=m Z i

where:

—

Fo = forces external to V acting on particles within V:

collisions between particles outside V' with “walls” of V' (“applied”)

gravity

magnetic

viscous forces along “walls” of V'

Er = “total energy” = kinetic 4 internal + gravitational (+ magnetic)

Papp = power (rate at which work is done) by applied forces
- external collisions only

- gravitational and magnetic energy already part of Er

4



CHAPTER 1. THE FUNDAMENTALS OF HYDRODYNAMICS 5

Big question: How do we account for collisions?

-X mo% +x
Consider single particle of mass m within cube of R e N
X
side Al, velocity v = v,Z. y
| Al
After collision with wall, ¥/ = —v,4 z2® X

= AS, =mi —mi = —2mu,i = impulse to m.
Conserve momentum: AS, = 2mu,& = impulse delivered to right (+2) wall.
At time At = 2Al/v,, particle again collides with right wall.
= average rate of delivery of momentum to right wall, (F}), is:
AS, 2mu, muv?

Fx = = pumy x.
) At 2Al /v, Al

= average “pressure”’ exerted by m against right wall is:

(Fp)  (Fu)  mui  mos

T

area A2 AB VO

(p) =

For N particles, all moving in Z-direction:

N N N
Nm 1 N
p=D M = vl = T ot = ) (L)

=1 =1 =1

2

) is the mean square of v,; over the particle ensemble.

where (v

Now bring in fluid assumption: dl < Al = particle-particle collisions iso-

tropise all motions,

= () = <v§> = (v?) (no direction preferred over others)
= () = (up o+ = (o) + (v + (02) = 3(up),
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and Eq. (1.1.1) becomes:
_ Nm

9
Nmuvz

2
= = 1w 1.1.2
where v = /(v?) = root-mean-square velocity.
Now, from ideal gas law:
NkgT % 2
p = VB = T = ./6763 = ”;72]1:5 (substituting in Eq. 1.1.2)
3 1,
= EkBT = Emvrms = <K>, (113)

where kg = 1.38 x 107 JK™! (units of entropy) = Boltzmann constant,

(K') = average kinetic energy per particle.

Interpretations:

- pressure (Eq. 1.1.2): rate of transfer of momentum from particles to

surface (e.g., wall, barometer diaphragm, skin, etc.);

- temperature (Eq. 1.1.3): proportional to mean particle kinetic energy.

Let E = total internal energy of all N particles (randomly directed K'). Then,

3 1
E = N(K) = §NkBT:3(§NkBT> Y
N —
E per “degree of freedom”
m
Point particle has three degrees of freedom: transla- X

tional motion in each of z, y, z directions, each con- <

tributing A'kgT to internal energy.

Principle of Equipartition (PoE): Left to its own devices, a system distributes

energy equitably among all degrees of freedom (DoF') available to it.
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For a diatomic particle, 4 three translational, two ro-

tational, and two vibrational (3kz?, 3muv?) DoF.

Stat Mech = vibrational DoF dormant at ordinary

temperatures, while PoEE = each rotational DoF con-

tributes 3N kg1 of internal energy to ensemble.

5)
ThUS, five DoF = Ediatomic = iNkBT

Let v = number of DoF', and define:

v v

- 1+2 o, 2 monatomic 3 %

v v—1 diatomic 5 %
polyatomic |5 <v <6 L <~ <3,

where one can show v = Cp/Cy (ratio of specific heats), and where for an

adiabatic gas of density p, p o p”.
For polyatomic molecules, Stat Mech and tensor moment of inertia = v ¢ Z.

Still, difference between 7/5 and 4/3 for «y is generally unimportant.

kgT
Writing: £ = %NkBT = N , define internal energy density as,
/‘y J—
E 1 NkgT o ideal 1
e = — = = using ideal gas law
Vo oa—1 vV 41 sieale
= |p = (y—1e, (1.1.4)

most common form of ideal gas law in hydrodynamics. Another useful form:

NmkgT — MkgT pkpT
p=—r—=7— = |p=

1.1.5
mV V m m ( )

where m is average gas particle mass.
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Finally, revisiting our definition of v,y (Eq. 1.1.3),

2p
= (1.1.6)
(v =1
Preview: sound speed in an adiabatic gas is:
f)/p Urms 2 3
Cy = —_— = = = ,
p Cs Tr=1) V5

for v = 5/3. That vy and ¢ differ only by a constant of order unity suggests

a fundamental relationship exists between them (Lesson 4).

Class exercises:

(Problem 1.1) On a cold winter afternoon, you enter your winter cabin (which has not been
heated for weeks) freezing cold. You light a roaring fire in the hearth and after an hour, the
cabin is warm enough to take off your winter clothing.

a) Does the air in your cabin contain more, less, or the same total internal energy, E,
now that it is warm than when it was cold? Explain.

b) Where does all the energy from the fire go?

Answers.

a) From the ideal gas law (Eq. 1.1.4), e = p/(~y —1) and thus the total internal energy in the
cabin of volume V is: v
E=ev="2"1
v—1
Evidently, V' is constant and, despite the warmer temperature, the cabin pressure, p, also
remains constant (otherwise the door could burst open!). Thus F is unchanged.

So what does change? From Eq. (1.1.5), p o< pT'. For T to increase while p remains constant
means p must decrease; hot air, being less dense, rises.

b) Some energy from the fire heats up the solids in the room—the furniture, walls, etc. A
substantial amount of energy does work to force air through the walls, leaky doors, and
windows where the warmer cabin air both heats and expands into the colder air outdoors.
In Lesson 2 we shall refer to this expansion as “pdV work”.




LESSON 2

In this lesson, we introduce the Theorem of hydrodynamaics, from which the

three fundamental equations of ideal hydrodynamics are derived:

1. the continuity equation;
2. the total energy equation; and

3. the momentum equation.
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1.2 Theorem of hydrodynamics

Definitions

FExtensive quantity: proportional to amount of material (e.g., M, E, V|

etc., represented in upper case)

Intensive quantity: independent of amount of material (e.g., p, e, p, T,

etc., represented in lower case; T' an exception)

V extensive quantity, (), 3 a corresponding intensive quantity, ¢, such that:

AQ(V. oQ(V.
(i) = g SED KB Gy~ [y ar

- q(7,t) must be integrable (no poles of > 1°* order) over V

- Q(V,t) must be differentiable over V (no discontinuities or any order

poles); more restrictive than integrability.

Theorem 1.1. Theorem of hydrodynamics. If Q(t) is an extensive quantity

with q(7,t) its corresponding intensive quantity, then:

dQ_ dq L
E_E = EJrV (qv) = o,

where ¥ = dr/dt, and X = fv odV are “source terms”. Note that the product

qv must be differentiable over V.

0 d
dt dt /vq /VU /

where V' = V() may also vary in time. Thus,

d 1

— | qdV = lim—[/ qﬁHAth—/ qF,th]
dt Jy At—0 At V(t—i—At)( ) V(f)( )

Proof:
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1
= lim — / q(F t+At)dV
At—0 At [ V(t+At)—V (1) ( )

+/ q(F,tJrAt)dV—/ q(F,t)dV]
V(t) Vit

1 .
= Al}j{_{lo—t/AVq(T,t—f—At)dV

.1 , ,
+ AI%I—ISO A /V(t)[q(r, t+At) — q(r,t)]dV.

Integrating over AV = V (t+At) — V(t) is same as V(t+A?) VAt

integrating over closed surface, 0V, with volume
differential dV = (vAt) - (ndA). Thus,
d

1 ) . A
dt v<t>qdv = A aV‘-’(TaHAt)(vAf) - (AdA)

+/ lim q(7, t+At) — q(7, t)dv 3V
V(t) At—0 At

_ 7{ q(F,t)ﬁ-ﬁdA+/ %t t)
ov v Ot

:/ \VE (q(F,t)ﬁ)anL/ Md\/ (Gauss’ theorem)
V(t) v Ot

_ /m)(% V- (o, t)U))dV _ /V(t)a(ﬁ £)dv.
= /V(%+V-(qﬁ)—a>dv = 0,

true for any V. Thus, integrand must be zero, proving the theorem. ]

- @ is the conserved quantity (modulo X); ¢ is volume-conservative.
- fQ = v is the advective Q-flux density (units [Q]m—2s71).

- JFo = / fQ -ndA = advective Q-fluz (units [Q]s™!)
5 s o
= fluz of fg through surface ¥ (units [fg] m?).

! Note to instructor: Students may need reminding why it’s the partial derivative here, and not the full.
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- fQ also interpreted as the fluz density of Fg (units [Fg]m™2).

1.3 Conservative equations of ideal HD

Definition: Ideal HD means no dissipation of any sort.

- no viscosity (inviscid), radiation, resistivity (MHD), etc.

dM
1. Continuity: Let Q = M; q = p. Conservation of mass = o= 0.
dp S
Thus, HD theorem = 5% + V- (pv) =0, (1.3.1)

where pv is the advective mass flux density.

2. Total energy equation: Let Q) = Ev; q=ep = %pvQ + e+ po.
dEr

Conservation of energy = = Zpapp. Thus, HD theorem =-
der .
ﬁ +V- (eTU) — ZpaP]EH (132)

where p,p, is the applied power density (Js™'m™3).

Consider small “cube” of fluid, mass AM,
v(x)At v(x+Ax)At , ,
> — volume AV, side Ax, cross sectional area

p(x)AA: p(x-:l-Ax)AA AA = AV/Az. Work done on left face is:

y Fo(a)v(z)At = p(a) AA v, (z)At,
‘ Ax oV (x)

z9 X while on right face:

Fp(z+Az)v(z+Az)At = —p(z+Az) AAv,(z+Ax)Al
6V(x:—Ax)
F,(z+Ax) and v,(x + Ax) anti-parallel
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= AW = p(x)dV(x) — p(x+Ax)dV(z+Azx) (“pdV” work)
p(z+Az) v(z+Az) — p(x) v ()

— _ AxAA At
Ax N——
0w A, A
ox
AW o o a(pvx)
= A TP = A
= Papp = %;p = - a(gzx) (z-contribution only)

Including y- and z-contributions, > papp, = —V - (p¥), and Eq. (1.3.2) =

%—FV-(@T@ = —V-(pt) = |5-+V-(ler+p7) =0,] (1.33)

the total energy equation where (ep + p) ¥ = advective energy flux density.

3. Momentum equation: Let ) = S: q= 5= pu.

dS .
Newton’s 2" Law = — = Z Foi. Thus, HD theorem =
dt

05

a + V- (3 ) = Zfext; (134)
where 57 is the dyadic (outer) product of § and o:
Sy SpUp SpUy Sy
ST = |s){v]* = |s, [vx Vy vz] = | SyUs SyUy SyU;
S, S:Up S2Uy S,U,
Thus®,
B 9 5 971|%aVe SeUy S
V- (sV) = {% @_y 51 SyUy SyUy SyUs

2«Bra-ket” notation due to Dirac; see footnote 5 on page 30 of the text.
3valid in Cartesian coordinates only; see App. A in text for other coordinate systems.
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_ (8(!5@1)@) N d(s,0y) N O(s,0.)  O(syvy) N d(syvy) N d(syvs)

Ox Oy 0z = Ox oy 0z
0(s.vz) = O(syvy)  O(s:vs)
Ox * oy * 0z

= (V- (8,8), V- (5,0), V - (5.7)).

Next, fux are external force densities (N m™):
- pressure gradient;

- gravity (if any).

Net pressure force in z-direction for small cube of fluid is:

ZF‘C = F(z+Azx)+ F(z) = —p(e+Ax) AA+p(z) AA

_ A Zp@) N ap = B Ay 5 %Ay
Az —_—— Az ox
AV
1 op
= L= [, = ——-
Z U AV Z ox p(x)AA plx+Ax)AA

—_— |

AM

Including ﬁ, f; on RHS of Eq. (1.3.4) yields the momentum equation:

o
ot

V.- (57) = —=Vp—pVo. (1.3.5)

Using identity Vp = V - (pI) where I = identity matrix (exercises), we get,
05

o + YV (5T+pl) = —pV, (1.3.6)

where 5U + pll = advective momentum flux density.
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Class exercises:

1. Let C be an extensive (hydrodynamical) quantity and ¢ its corresponding intensive
quantity. Suppose C' is conserved, and thus,

ac
%—0.

a) Write down the evolution equation for the intensive quantity, c.

b) In terms of C', what kind of flux is ¢/? Justify by noting the units.

¢) In terms of C, what kind of flux is F¢ = / (c?) - ndo, — z

b ~
where X is an open surface as illustrated in the inset. T~
—
d) In terms of F¢, what kind of flux is cv”? cv

e) In terms of ¢/, what kind of flux is F¢7

2. Show that for any coordinate system, Vp = V - (pI), where [ is the identity matrix.

Answers.
Jc . .
1.a) g + V- (ct) = 0 (Theorem of hydrodynamics).
b) Units of ¢t are ([CJm™3)(ms™) = [C]m™2s™!, thus ¢ = advective flux density of C.

77/‘

“density “advective”

¢) Units of F¢ are [cv]m? = [Clm™2s™'m? = [C]s™!, thus F¢ = advective fluz of C.

d) Units of ¢v are [Fo]m™2, thus ¢t = flur density of Fe.

e) Units of F¢ are [cv]m?, thus F¢ = fluz of cv.
2. One cannot approach a problem like this by breaking up the vectors and matrices into their
Cartesian components, for then one only shows the identity true for Cartesian coordinates.

To prove true for any coordinate system, one must use vector identities such as those in
App. A in the text. Thus, from Eq. (A.24),

V:-(pl) =1-Vp+pV- 1= Vp,

as desired, since I is the identity (and constant) matrix.




