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Preface

Whenever a university professor stares down the barrel of a new course prepa-
ration, the first question invariably asked is Is there a text? For the most

part in undergraduate physics, the answer is usually Yes, and plenty to choose from.
But for a senior undergraduate or beginning graduate course in magnetohydrody-
namics (MHD), the selection is much narrower.

MHD is a relatively new branch of physics. Developed by Hannes Alfvén during
the 1940s, it didn’t gain wide acceptance among physicists writ large until the
late 1950s culminating in Alfvén’s Nobel Prize in 1970.1 As such, MHD is often
touted as a “classical afterthought”, the only branch of classical physics introduced
after Quantum Mechanics with many of its fundamentals – the Riemann problem,
magneto-rotational instability, and non-ideal effects – still being worked out in the
1990s and early aughts.

Thus, MHD has not had as long a history as other branches of physics in which
textbooks could accumulate, particularly at the undergraduate level. Indeed, MHD
has largely been considered a graduate-level subject and, because of this, the vast
majority of existing texts specialise in areas such as fusion physics, solar physics,
and planetary discs, many written for students already with some familiarity of
plasma physics or fluid dynamics.

Another extenuating circumstance is MHD is a divided field whose practition-
ers – largely plasma physicists and fluid dynamicists – approach the subject in two
very different ways. From a plasma physicist’s point of view (PoV), an MHD system
is the isotropic limit of an ensemble of charged particles – a plasma – governed by
velocity moments of the Vlasov-Boltzmann equation, a 6-D inhomogeneous partial
differential equation (PDE) at the heart of plasma physics. From a fluid dynamicist’s
PoV, an MHD system is never considered as an ensemble of particles, but rather as a
continuous medium governed by simple conservation rules that any undergraduate
physics student can understand. This leads to a hyperbolic set of equations that
can be analysed entirely in terms of waves. The two approaches couldn’t be more
different.

After thirty years of teaching graduate and undergraduate (astro)physics, it
is my considered opinion that for MHD to be approachable by undergraduates,
it needs to be taught from the fluids PoV. Wave mechanics – so fundamental in
classical mechanics, electrodynamics, and quantum mechanics – is already ingrained
in the mind of a fourth-year student. On the other hand, velocity moments of a six-

1On pages 127–128, there’s an amusing anecdote on what – or who – changed the physics
community’s collective mind on MHD, and a link to Anthony Peratt’s short biography of Alfvén.

xiii



xiv Preface

dimensional PDE are not. Further, most texts taking the plasma PoV are focused
on laboratory plasmas and fusion physics, and the wave nature of MHD is often
overlooked. To my taste, MHD is the prototype for teaching and reinforcing wave
mechanics, and this is precisely the approach I take in this text.

While there are plenty of textbooks on MHD from the plasma PoV, precious
few exist from the fluids PoV. In the survey of texts I did as part of my proposal
for this text, I found more than 100 books written over the past six decades from
the plasma PoV focused on plasma physics with a portion – sometimes substan-
tial – devoted to the “MHD limit”. Indeed, a dozen or so of these include MHD
in their titles.2 By contrast, I found two texts on MHD written entirely from the
fluids PoV and directed to senior undergraduates: Kendall & Plumpton’s Magne-
tohydrodynamics with Hydrodynamics (1964); and Galtier’s Introduction to Modern
Magnetohydrodynamics (2016).

This text offers a third. My approach focuses on the fundamentals of the subject
and teaches MHD for its own sake rather than dwelling on directed applications and
current areas of research; these, I argue, are better suited for graduate texts of which
there are plenty. I do provide numerous examples from the literature, but these
are selected to emphasise certain ideas (e.g., planetary discs with non-ideal MHD,
stellar winds with steady-state MHD, astrophysical jets with Bernoulli’s principle,
etc.) and none should distract the reader from the current discussion. Once endowed
with the fundamentals, I contend, students can carry these forward to further their
study at the graduate level, should they choose.

In keeping with the undergraduate theme, the first part – 1-D MHD in Ten
Weeks – is designed around a single goal: solving the 1-D MHD Riemann problem.
I also assert that to understand MHD, one first has to understand ordinary hydro-
dynamics (HD) which is, after all, just the zero-field limit of MHD. To these ends,
Chap. 1 introduces the student to the fundamentals of HD that includes a novel and
simple derivation of the three ideal HD equations. Chapter 2 focuses on 1-D appli-
cations of HD including sound waves, shocks, bores, and Bernoulli’s principle while
Chap. 3 develops a semi-analytic solution to the hydrodynamical Riemann problem.
In so doing, students learn how the equations of HD lead to a wave equation, and
are shown three ways to extract information about hydrodynamical waves: direct
solution of the wave equation; normal mode analysis using linear algebra; and via
Riemann invariants and their characteristic paths. In my experience, introducing
students to these methods – particularly the latter two – for the relatively simple
case of HD is critical for them to understand how they apply to the much more
complicated MHD case.

The magnetic induction, B⃗, doesn’t appear until Chap. 4 where the ideal in-
duction equation and the Lorentz force are introduced, along with Alfvén’s theorem,
magnetic helicity, and flux linking. Chapter 5 examines the MHD equations in 1-D
to uncover all three types of waves (slow, Alfvén, fast) and all discontinuities (tan-

2The most ambitious and a very recent example of this is Goedbloed, Keppens, & Poedts’
Magnetohydrodynamics of Laboratory and Astrophysical Plasmas (2019). This is a comprehensive
tour de force which could support at least three graduate-level courses.
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gential, rotational, shocks) including all three shock subtypes (slow, intermediate,
fast). Chapter 6 introduces slow and fast rarefaction fans, and then brings it all to-
gether to show students how an exact MHD Riemann solver can be assembled. As
this is a semi-analytical solution, students learn or have reinforced semi-analytical
techniques including Runge–Kutta methods, multivariate secant root finders, meth-
ods for maintaining machine accuracy, and the list goes on.

Part I is designed to be completed in twenty-five hours of instruction (ten weeks
at most Canadian universities). The four chapters in Part II, Additional Topics in
(M)HD, are independent from each other, depend only on material from Part I,
and give the instructor options to complete the semester. These include (M)HD
instabilities in Chap. 7, viscid HD (Navier–Stokes equation) in Chap. 8, steady-state
MHD in Chap. 9, and non-ideal MHD in Chap. 10. In the interest of expediency,
sections designated as “optional” can be omitted without loss of continuity.

Parts of the text may come across as “mathematically dense”; this is deliberate.
As an undergraduate, I always found it frustrating and distracting when I was unable
to fill in the large gaps left between lines of logic in the texts my professors chose,
and I was not going to produce a text that did the same. That said, the densest
parts of the mathematics can largely be skimmed on first read and certainly don’t
need to be covered in detail in class, as the main results from which the physics is
extracted are always boxed within each development. For the student like I was who
needs to know how the derivations are done, the gaps between the mathematical
steps are small enough that a careful second read should suffice.

More than 125 problems – many exploiting “teaching moments” – and several
computer projects are distributed amongst the ten chapters’ problem sections, each
generally digestible by a senior undergraduate or first-year graduate student. Prob-
lems without an asterisk can and should be done in a page or less (and often a few
lines), one asterisk indicates a two-page solution, two asterisks indicate a three to
four page solution, while three asterisks indicate a more involved problem, generally
requiring more than five pages and/or a substantive computer program to solve. A
complete solution set including the computer projects is available to the instructor
upon request.

The eight appendices are designed to remind students of particularly critical
material prerequisite to this text. Students who do not recognise, recall, or know
how to use any of this material are encouraged to review the relevant material from
previous courses. Following the appendices is a glossary of symbols used throughout
the text, a list of references, and finally an extensive index.

While this text assumes no previous knowledge of (M)HD, students should
have had second- and third-year courses in mechanics, electrodynamics, and ther-
modynamics. On the math side, students should be fluent in vector calculus (at
the level of App. A), adept at solving differential equations including PDEs such as
the wave equation, and thoroughly familiar with linear algebra and, in particular,
eigenalgebra. In addition, some experience in scientific computing (algorithm and
code development) would be beneficial.

Finally, an acknowledgement of the biases of the author is in order. While
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this text includes numerous astrophysical applications, astronomy is by no means
a prerequisite, nor is this text designed just for budding astrophysicists. I would
like to think any physicist interested in learning about fundamental MHD will find
this book useful. As for units, I follow the bulk of the physics community (but not
astronomy!) and use mks exclusively. Lastly, all program listings in this text are in
FORTRAN77, the only computer language – this old programmer would assert –
a computational scientist really needs to know!

Like many of my contemporaries, I learned MHD “at the knee of my advisors”,
by reading select chapters in certain texts, by going through journal articles, and
talking to experts. As a student and post-doctoral fellow, it always struck me as a
bit unfair that all other branches of physics seemed to be taught in more systematic
and accessible ways – dedicated courses, self-contained textbooks, problem sets at
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access to forty years ago when I started out in this game. And now as I enter my
retirement, it is my profound hope that within these pages, new students of MHD
will find a self-contained introduction to the subject that will help launch them into
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Tanner, Patrick Rogers, Jonathan Ramsey, Nicholas MacDonald, Michael Power,
and Christopher MacMackin.

I thank my editors Nicholas Gibbons, Sarah Armstrong, Stephanie Windows,
and Jane Chan at Cambridge University Press for their capable and patient guidance
of this first-time author. It definitely made my job a lot less daunting! A big thank-
you goes to Patricia Langille at Saint Mary’s Patrick Power Library for doing all
the heavy lifting in getting permissions for the copyrighted material used in this
text; she gets the first signed copy! I would also like to acknowledge the academic
freedom afforded to me over the past three decades by Saint Mary’s University that
made long-term projects like this possible. Thank you all.

This text was typeset using Donald Knuth’s TEX and Leslie Lamport’s LATEX.
Many of the figures were created using Xfig developed by Supoj Sutanthavibul, Ken
Yap, Brian V. Smith, and others. Figures from ZEUS-3D simulations were created
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domain.
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David Clarke
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1
The Fundamentals of

Hydrodynamics

Everything flows and nothing abides; everything gives way and nothing
stays fixed.

Heraclitus (c. 535–c. 475 BCE)

1.1 Definition of a fluid

The physics of hydrodynamics (HD), namely conservation of mass, conservation
of energy, and Newton’s second law, are all concepts familiar to first-year

undergraduate students, though the mathematics to solve the relevant equations is
not. Consider an ensemble of particles within some volume V , and let these particles
interact with each other via elastic collisions. We can let V remain fixed (in which
case we allow the particles to collide elastically with the walls of the container too),
or we can let V increase or decrease as the particles move apart or come together;
it does not matter. If the mass, total energy, and momentum of the ensemble of
particles are M , ET, and S⃗ respectively, then we have:

dM

dt
= 0, conservation of mass; (1.1)

dET

dt
=
∑

Papp, conservation of total energy; (1.2)

dS⃗

dt
=
∑

F⃗ext, Newton’s second law. (1.3)

Here,
∑

Papp is the rate at which work is done (power) by all forces applied to
the ensemble of particles, and

∑
F⃗ext are all forces external to and acting on the

ensemble of particles. Note that the applied forces – normally just collisions from
neighbouring ensembles of particles – are typically a subset of the external forces,
which include collisions from neighbouring particles plus forces arising from gravity,
magnetism, radiation, etc. This is because in addition to the thermal and kinetic en-
ergies, the total energy, ET, includes gravitational, magnetic, radiative, and possibly
other energies as well.

It is how we model the collisional forces from neighbouring ensembles of parti-
cles that defines both what constitutes a fluid and how Eq. (1.1)–(1.3) are further
developed. Consider a small cube with volume ∆V = (∆l)3 as shown in Fig. 1.1a.

7
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Figure 1.1. a) A single particle bounces elastically from the walls of a cube of
edge length, ∆l, imparting impulses Jx, Jy , etc. b) An x–y cut through the cube
in panel a showing one particle whose motion is entirely in the x-direction.

Let the walls of the cube be perfectly reflecting and let there be just one particle
inside the cube moving at some speed v in an arbitrary direction.

When the particle collides with the wall, both the particle and cube suffer a
change in momentum in a direction normal to the surface of the cube. Moments
later, the particle collides with a different wall, and the particle and cube suffer
changes in momentum in a direction normal to that wall. A change in momentum
is an impulse, J , which when multiplied by the time over which the collision occurs,
∆t, constitutes the average force. Thus formally, the “pressure”, p, the collision
exerts on the wall of the box is this average force divided by the area of the wall:

p ∼ J∆t

(∆l)2
.

In this scenario, the “pressure” is highly variable in time, and by no means could
the “pressure” be construed as isotropic. At a given time, the “pressure” one wall
feels will have nothing to do with the “pressures” felt by the other walls.

However, by arbitrarily increasing the number of particles, N , inside our small
volume, ∆V , the number of collisions with a given wall, n, occurring in a time ∆t
will be the same at each wall to within some arbitrarily small variance, ∆n. Put
another way, averaged over ∆t, particle collisions exert the same “pressure” on each
wall to within a variance made as small as we please by making N as large as we
please. Thus, we have rendered the particle “pressure” inside the cube isotropic
because each wall now feels the same force.

There is a contrived exception to this picture. If all the particles were to be
placed initially on the mid-plane of the cube and all were launched with the same
speed towards one wall of the cube, then it is only with this and the opposite wall
that particles would ever collide, and they would do so in a highly ordered, periodic
fashion. The remaining four walls would, in principle, never feel any collisions, and
thus the “pressure” in the cube would not be isotropic even with N chosen arbitrar-
ily large. Such a well ordered and well directed ensemble of particles is said to be
streaming and, as N is made larger, it becomes increasingly difficult in practice to
maintain streaming motion. Small perturbations will eventually cause one particle
to collide with another which in turn collide with others, and the ensuing chain
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reaction quickly reduces the streaming motion to chaos. Isotropic “pressure” (the
same “pressure” measured on each of the six walls) is once again the result.

We can now state the key criterion for an ensemble of particles to be treated as
a fluid. If there is a sufficient number of particles inside our box (volume element) of
dimension ∆l so that the motion of particles within the volume element can always
be considered isotropic, then the effect of the collisions of particles against the walls
of the volume element (which may be rigid walls, or “soft” walls of neighbouring
ensembles of particles) is to exert an isotropic “pressure” against all walls. Since
isotropy is maintained by particle–particle collisions within the volume element, we
may “mathematise” this criterion as,

δl ≪ ∆l < L, (1.4)

where δl is the mean free path (collision length) of the particles, ∆l is the length
of one side of our cubic volume element containing an arbitrarily large number of
particles, and L is the smallest length scale of interest in our physical problem. If
Ineq. (1.4) holds, we say the ensemble of particles behaves as a fluid or a continuum.
This assumption is an important one; it allows us to treat the applied forces resulting
from collisions – which otherwise could be extremely difficult to deal with – in a
very simple way, namely as an isotropic “pressure”.

1.2 A quick review of kinetic theory

To now, I have been enclosing the word pressure in quotation marks. This is be-
cause I haven’t yet made the logical connection between particle collisions (and
more specifically, the momentum transferred by particle collisions) and what we
commonly think of as pressure, such as the barometric pressure of the air. So, be-
fore we examine how Eq. (1.1)–(1.3) become the equations of hydrodynamics (HD)
under the assumption that the ensemble of particles behaves as a fluid (when Ineq.
1.4 is valid), let us review how the “pressure” and the “temperature” of a fluid re-
late to properties of the ensemble of particles. These ideas form the basis of kinetic
theory, often exposed to students for the first time in a first-year physics course.1

Consider a cube whose edges of length ∆l are aligned with the x-, y-, and z-axes
of a Cartesian coordinate system, as depicted in Fig. 1.1. Returning to our example
in the previous section, suppose a single point particle of mass m moves inside the
cube with velocity vx x̂ and collides with the wall whose normal is +x̂. If collisions
are all elastic, then the particle reflects from the wall with a velocity −vx x̂ and
thus suffers a change in momentum of ∆Sx = −2mvx. Conservation of momentum
then demands that an impulse of +2mvx be imparted against the wall. At a time
∆t = 2∆l/vx later, the same particle again collides with the wall, imparting another
impulse of +2mvx against it. Thus, the rate at which momentum is delivered to the

1For example, Halliday, Resnick, & Walker (2003).
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wall by a single particle is given by,

∆Sx

∆t
=

2mvx
2∆l/vx

=
mv2x
∆l

= ⟨F ⟩,

where ⟨F ⟩ is the average force felt by the wall. Thus, the average pressure exerted
by this one particle, defined as force per unit area, is given by,

⟨p⟩ =
⟨F ⟩
(∆l)2

=
mv2x
V

,

where V = (∆l)3 is the volume of the cube. For N particles, we simply add over all
particles:

p ≡
N∑

i=1

⟨pi⟩ =
N∑

i=1

mv2x,i
V

=
m

V

N∑

i=1

v2x,i =
mN
V

⟨v2x⟩, (1.5)

where each point particle is assumed to have the same mass, m, and where ⟨v2x⟩ =∑
v2x,i/N is the arithmetic mean of the squares of the particle velocities.
For any given particle, v2 = v2x + v2y + v2z and, for large N , one would expect

⟨v2x⟩ = ⟨v2y⟩ = ⟨v2z⟩ since one Cartesian direction shouldn’t be favoured over another.
Thus,

⟨v2⟩ = ⟨v2x⟩+ ⟨v2y⟩+ ⟨v2z⟩ = 3⟨v2x⟩, (1.6)

and Eq. (1.5) becomes,

p =
Nmv2rms

3V
, (1.7)

where,
vrms ≡

√
⟨v2⟩,

is the root-mean-square (rms) speed of the particles in the volume V . Comparing
Eq. (1.7) with the ideal gas law :

p =
NkBT

V
, (1.8)

(where kB = 1.3807× 10−23 JK−1 is the Boltzmann constant) yields:

T =
mv2rms

3kB
⇒ 3

2
kBT =

1

2
mv2rms = ⟨K⟩, (1.9)

where ⟨K⟩ is the average kinetic energy per point particle. Thus, while the pressure,
p, is a measure of the rate at which momentum is transferred from the particles of
the fluid (gas) to, for example, the diaphragm of the measuring device (barometer),
the temperature (or more precisely 3kBT/2) is a measure of the average kinetic
energy of the particles.

The randomly directed kinetic energy of a system of N particles is called its
internal energy, E, and, for the point particles under discussion, is given by,

E = N ⟨K⟩ =
3

2
NkBT.

The factor 3/2 is significant and warrants comment. A point particle, as may
be found exclusively in a monatomic gas, has three degrees of freedom of mo-
tion, namely translation in each of the three Cartesian directions (Fig. 1.2, left).
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Figure 1.2. A point particle (left) has three degrees of freedom for movement,
while a “dumb-bell” (right) has five.

From Eq. (1.6), we have ⟨v2i ⟩ = ⟨v2⟩/3 for i = x, y, z, and thus to each (transla-
tional) degree of freedom we can associate an internal energy Ei = N kBT/2, where
E = Ex + Ey + Ez = 3Ei.

Now, a diatomic molecule (essentially two point masses connected by a massless
rod) has the same three translational degrees of freedom as a monatomic particle
plus two rotational degrees of freedom, namely rotation about each of the two
principle axes orthogonal to its own axis (the x-axis in Fig. 1.2, right), for a total
of five degrees of freedom.2 Note that spinning about the x-axis itself does not
constitute a degree of freedom as the moment of inertia about this axis is essentially
zero. Because of the principle of equipartition,3 each degree of freedom stores the
same amount of kinetic energy, and the internal energy of a diatomic gas must be,

E =
5

2
NkBT.

Thus, in general, we write,

E =
1

γ − 1
NkBT, (1.10)

where γ = 5/3 for a monatomic gas, γ = 7/5 for a diatomic gas, and 4/3 ≤ γ < 7/5
for molecules more complex than diatomic.4 One can show that γ = CP /CV , the
ratio of specific heats of the gas, and that for an adiabatic gas (where heat is neither
lost nor gained from the system), p ∝ ργ , where ρ is the mass density of the gas.

Dividing Eq. (1.10) by the volume of the sample and using Eq. (1.8) gives an
expression for the internal energy density, e:

e =
E

V
=

1

γ − 1

NkBT

V
=

p

γ − 1
.

Thus, an alternate form of the ideal gas law, and the form most frequently used in

2In principle, there are also two vibrational degrees of freedom which, at “ordinary tempera-
tures”, statistical mechanics tells us are insignificant.

3Left to their own devices, systems will distribute the available energy equally among all
possible ways energy can be stored. Thus, for a large number of diatomic molecules randomly
colliding with each other and the walls of their container, one would not expect m⟨v2x⟩ to differ
significantly from m⟨v2y⟩ or m⟨v2z ⟩ any more than it should differ from Iy⟨ω2

y⟩ or Iz⟨ω2
z⟩, where Iy

and Iz are the moments of inertia about the y- and z-axes respectively.
4Polyatomic molecules are significantly more complex than diatomic molecules, and the full

power of statistical mechanics along with a tensor treatment of its moment of inertia are required
to explain the value of γ for any individual molecule.
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hydrodynamics, is,
p = (γ − 1) e, (1.11)

which states that the rate at which momentum is transferred via collisions is pro-
portional to the average kinetic energy density (i.e., per unit volume) of the random
particle motion.

Possibly the second most frequently used form of the ideal gas law in hydrody-
namics is,

p =
ρkBT

m
, (1.12)

which follows directly from Eq. (1.8) noting that ρ = Nm/V . Finally, from Eq.
(1.9) [and replacing the ‘3’ with 2/(γ − 1)], we find:

vrms =

√
2kBT

(γ − 1)m
=

√
2p

(γ − 1) ρ
. (1.13)

Thus, the rms speed goes as the square root of the temperature. We shall encounter
another characteristic speed of the gas proportional to the square root of the temper-
ature in §2.1.1, namely the sound speed, cs. Indeed, cs and vrms arise from essentially
the same physics, as will be explained when the sound speed is properly introduced.

1.3 The equations of ideal hydrodynamics

In hydrodynamics, the adjective ideal means that internal dissipative forces such as
viscosity are ignored. A fluid without (with) viscosity is said to be inviscid (viscid).
In this chapter, our discussion is exclusively restricted to inviscid flow. Viscid flow
is more the realm of terrestrial HD (though there are important applications for
astrophysical fluids as well), and is covered in some depth in Chap. 8.

We begin our discussion by defining the adjectives extensive and intensive.
Variables such as mass, volume, and energy which are proportional to the amount
of substance being measured are extensive quantities, while mass density (often
just referred to as density), energy density, and temperature are independent of the
amount of substance being studied and are examples of intensive quantities.

To give a precise relationship between extensive and intensive quantities, con-
sider a small sample of substance with volume ∆V . For every extensive quantity,
Q(V, t), of that sample, we can define a corresponding intensive quantity, q(r⃗, t),
such that,

q(r⃗, t) = lim
∆V→0

∆Q(V, t)

∆V
=

∂Q(V, t)

∂V
. (1.14)

This is a microscopic description of the system; q may well change from point to
point. A macroscopic description of the system can be obtained by integrating Eq.
(1.14) over a finite volume, V , to recover Q:

Q(V, t) =

∫

V
q(r⃗, t) dV. (1.15)
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Note that Eq. (1.15) requires that q be an integrable function of the coordinates over
the volume V , and thus q can be discontinuous and have poles of order less than
unity. On the other hand, Eq. (1.14) requires that Q be a differentiable function
of V , and thus it must be both continuous and free from any poles of any order.
Evidently, differentiability is a more restrictive requirement than integrability, and
this observation will have important consequences as we develop the theory further.

We’re now ready to introduce and prove a theorem that provides a particularly
simple way to derive the equations of hydrodynamics from the conservation laws of
Eq. (1.1)–(1.3).

Theorem 1.1. Theorem of hydrodynamics.5 If the time dependence of an extensive
quantity, Q, is given by:

dQ

dt
= Σ, (1.16)

where Σ represents the possibly time-dependent “source terms” (reasons for Q not
being “conserved”), then the evolution equation for the corresponding intensive
quantity, q(r⃗, t), is given by,

∂q

∂t
+∇ · (qv⃗) = σ, (1.17)

where v⃗ = dr⃗/dt, Q =
∫
V q dV , Σ =

∫
V σdV , and where the product qv⃗ must be a

differentiable function of the coordinates.

Proof :
dQ

dt
= Σ ⇒ d

dt

∫

V
q dV =

∫

V
σdV,

where, in general, the volume element V = V (t) also varies in time. Thus, using the
standard definition of the derivative,

d

dt

∫

V (t)
q dV = lim

∆t→0

1

∆t

[ ∫

V (t+∆t)
q(r⃗, t+∆t)dV −

∫

V (t)
q(r⃗, t)dV

]

= lim
∆t→0

1

∆t

[ ∫

V (t+∆t)−V (t)
q(r⃗, t+∆t)dV

+

∫

V (t)
q(r⃗, t+∆t)dV −

∫

V (t)
q(r⃗, t)dV

]

= lim
∆t→0

1

∆t

∫

∆V
q(r⃗, t+∆t)dV

+ lim
∆t→0

1

∆t

∫

V (t)

[
q(r⃗, t+∆t)− q(r⃗, t)

]
dV,

5This theorem is a variant of Reynolds’ transport theorem, a volume-integral application of the
Leibniz formula for the derivative of an integral.
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where, as shown in the inset, performing the volume
integral over the difference in volumes, ∆V = V (t+
∆t)−V (t), is the same as integrating over the closed
surface, ∂V , using a volume differential given by
dV = (v⃗∆t) · (n̂dA). Thus,

d

dt

∫

V (t)
q dV = lim

∆t→0

1

✟✟∆t

∮

∂V
q(r⃗, t+∆t)(v⃗✟✟∆t) · (n̂dA)

+

∫

V (t)
lim

∆t→0

q(r⃗, t+∆t)− q(r⃗, t)

∆t
dV

=

∮

∂V
q(r⃗, t)v⃗ · n̂dA+

∫

V (t)

∂q(r⃗, t)

∂t
dV

=

∫

V (t)
∇ ·
(
q(r⃗, t)v⃗

)
dV +

∫

V (t)

∂q(r⃗, t)

∂t
dV (Gauss; Eq. A.30)

=

∫

V (t)

(
∂q(r⃗, t)

∂t
+∇ ·

(
q(r⃗, t)v⃗

))
dV =

∫

V (t)
σ(r⃗, t)dV

⇒
∫

V

(
∂q

∂t
+∇ · (qv⃗)− σ

)
dV = 0.

As this is true for any V , the integrand must be zero, proving the theorem.

Note that q is not the conserved quantity, Q is (at least to within a known source
term, Σ). However, since Q is the volume-integral of q, we’ll refer to q as a volume-
conserved quantity.

The quantity qv⃗ ≡ f⃗Q is the advective flux density of Q whose units are that
of Q times m−2 s−1; this will require a little unpacking. The flux,6 FQ, of a vector
field, f⃗Q, is a measure of how much f⃗Q “passes through” a given surface area with
arbitrary normal, n̂. Mathematically,

FQ =

∮

S
f⃗Q · n̂ dA or FQ =

∫

Σ
f⃗Q · n̂ dA, (1.18)

depending on whether the surface is closed (S) or open (Σ) respectively. Thus, the
units of f⃗Q are those of FQ per unit area, and f⃗Q can also be interpreted as a flux
density of FQ. And so, FQ is the flux of f⃗Q while f⃗Q is the flux density of FQ.

An advective flux density is more specific to fluid dynamics and refers to some
quantity, Q, being advected (i.e., transported) by the flow across a surface at a
certain rate. Thus, while f⃗Q is the flux density of FQ with units of FQ per unit
area, f⃗Q = qv⃗ is also the advective flux density of Q – the volume integral of q –
with units of Q per unit area per unit time. It is the “per unit time” part that
triggers the adjective advective.

Evidently, we have four different types of “fluxes” to keep straight (flux, flux

6From the Latin fluxus or “flow”, this term was introduced to physics by Sir Isaac Newton.
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density, advective flux, advective flux density) and the literature seems to blur all
four; often you’ll find any or all of these terms used interchangeably. In this text,
while I maintain the distinction between flux and flux density, I’ve chosen to drop
the adjective advective to simplify the language a bit, relying instead on context. If
a particular flux/flux density has a “per unit time” aspect to it, it is an advective
flux/flux density; otherwise just flux/flux density.

Last point before getting to the equations of HD: Eq. (1.16) is an integral
equation (Q and Σ both being volume integrals of intensive quantities, q and σ),
and thus represents a global statement (valid over a finite sample of the fluid) on
the conservation of the extensive quantity, Q. On the other hand, Eq. (1.17) is a
differential equation (often referred to as the differential form of Eq. 1.16) and thus
represents a local statement (valid at a point) on the conservation of Q, involving the
corresponding intensive quantity, q. Global and local forms of an equation are not
identical. Because differential equations require the functions to be differentiable,
solutions of the differential form of the equations can be more restrictive than those
of the integral form where functions need only be integrable. More on this in §1.5.

Example 1.1. Let Q = M , the mass of the sample of fluid. Find the evolution
equation for the corresponding intensive quantity, q = ρ (mass density).

Solution: From Eq. (1.1), Σ = 0 ⇒ σ = 0, and Theorem 1.1 requires that:

∂ρ

∂t
+∇ · (ρ v⃗) = 0. (1.19)

This is the continuity equation; the first equation of HD.

Example 1.2. Let Q = ET, the total energy of the fluid sample7 of mass M :

ET = E +
1

2
Mv2 +Mφ,

where E is the internal (thermal) energy and φ is the gravitational potential. Find
the evolution equation for the corresponding intensive quantity, the total energy
density, namely,

eT = e+
1

2
ρv2 + ρφ, (1.20)

where once again, e is the internal energy density, whose units Jm−3 = Nm−2 are
the same as those for pressure, as expected from Eq. (1.11).

Solution: From Eq. (1.2), Σ = Papp ⇒ σ = papp, the applied power density inter-
preted as the rate at which work is done on a unit volume of the fluid sample by
all applied forces. Thus, Theorem 1.1 implies:

∂eT
∂t

+∇ · (eTv⃗) = papp. (1.21)

7When we introduce magnetism in Chap. 4, we’ll add a magnetic term to ET.
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Figure 1.3. a) A cube of edge length ∆x with external pressure forces acting
on the x-faces indicated. b) An x–y cut through the cube in panel (a) showing
both the pressure forces on and motion of the x-faces.

As discussed in §1.1, applied forces are collisions of external particles with the fluid
sample. Thus, the applied power is the rate at which work is done on the fluid
sample by the external fluid as the former expands or contracts within the latter.

To find an expression for the applied power, Papp, consider a small cube of fluid
with dimension ∆x in the x-direction and cross-sectional area ∆A = ∆V/∆x (Fig.
1.3). The pressure force exerted on the left face of the cube is F (x) = +p(x)∆A
and, in time ∆t, the left face is displaced by vx(x)∆t. Thus, the work done on the
left face by the external fluid is ∆WL = +p(x)vx(x)∆t∆A. Similarly, the work
done on the right face is ∆WR = −p(x + ∆x)vx(x +∆x)∆t∆A [since p(x + ∆x)
and v(x + ∆x) are oppositely directed; Fig. 1.3b], and the net work done on the
fluid cube is:

∆W = ∆WL +∆WR = p(x)vx(x)∆t∆A − p(x+∆x)vx(x+∆x)∆t∆A

= p(x) δV (x) − p(x+∆x) δV (x+∆x),

where δV (x) [δV (x+∆x)] is the small volume change on the left [right] face of the
cubic sample of volume ∆V by virtue of the motion of the left [right] face. Because
of its form, this work is frequently referred to as the “pdV term”.

Dividing ∆W by ∆t gives us the applied power,

Papp =
∆W

∆t
= −∆A∆x

p(x+∆x)vx(x+∆x) − p(x)vx(x)

∆x
= −∆V

∆(pvx)

∆x
,

and thus the applied power density is given by:

papp =
Papp

∆V
= −∆(pvx)

∆x
.

Taking into account similar terms in the y- and z-directions, and letting ∆ → ∂, we
have:

papp = −∇ · (p v⃗). (1.22)

Substituting Eq. (1.22) into Eq. (1.21) yields:

∂eT
∂t

+∇ · (eTv⃗) = −∇ · (p v⃗),
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⇒ ∂eT
∂t

+∇ ·
(
(eT + p) v⃗

)
= 0, (1.23)

the total energy equation and the second equation of ideal HD.

Example 1.3. Let Q = S⃗, the total momentum of the fluid sample. Find the evolu-
tion equation for the corresponding intensive quantity, q = s⃗ = ρv⃗ (the momentum
density).

Solution: From Eq. (1.3), Σ =
∑

F⃗ext ⇒ σ =
∑

f⃗ext, the external force densities.
Thus, Theorem 1.1 requires that:

∂s⃗

∂t
+∇ · (s⃗ v⃗) =

∑
f⃗ext, (1.24)

where the Cartesian representation of the divergence term is:

∇ · (s⃗ v⃗) =
(
∇ · (sxv⃗),∇ · (sy v⃗),∇ · (sz v⃗)

)
.

(See §A.4 for other orthogonal coordinate systems.)
For now, we will limit the external force densities to terms arising from pressure

gradients and gravity. In Chap. 4, we’ll add the Lorentz force, in Chap. 8 viscous
stress, and in Chap. 10, drag forces exerted between ions and neutral particles.
Starting with the pressure gradient, consider once again the small cube of fluid
with edge length ∆x and face area ∆A in Fig. 1.3a. If the pressure at the left and
right sides of the cube are respectively p(x) and p(x +∆x), then the net pressure
force acting on the cube in the x-direction is given by:

F (x+∆x) + F (x) = −p(x+∆x)∆A + p(x)∆A = −∆p

∆x
∆A∆x = −∆p

∆x
∆V.

Thus, the pressure force density in the x-direction is:

fx =
∆Fx

∆V
= −∆p

∆x
→ − ∂p

∂x
as ∆x → 0.

Accounting for all three components,

f⃗p = −∇p. (1.25)

The gravitational force density, f⃗φ, is even simpler to derive. If the fluid sample
has mass ∆M , then the gravitational force on ∆M is −∆M∇φ, where φ is the local
gravitational potential arising from all external masses, including other regions of
fluid and distant or embedded point masses (e.g., stars). Thus, f⃗φ is given by:

f⃗φ = −∆M∇φ
∆V

→ − ρ∇φ as ∆V → 0. (1.26)

Substituting both Eq. (1.25) and (1.26) into Eq. (1.24) yields the momentum
equation, the third and final equation of ideal HD:

∂s⃗

∂t
+∇ · (s⃗ v⃗) = −∇p− ρ∇φ. (1.27)
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Summary of §1.3: Equations (1.19), (1.23), and (1.27) constitute two scalar equa-
tions and one vector equation which, when combined with Eq. (1.11), (1.20), and
s⃗ = ρv⃗ (the constitutive equations), provide a closed system of equations for the fluid
flow variables, namely the volume-conserved quantities ρ, s⃗, and eT. This suite of
equations comprises our first set of equations of ideal hydrodynamics:

Equation Set 1 :

∂ρ

∂t
+∇ · (ρ v⃗) = 0; continuity

∂eT
∂t

+∇ ·
(
(eT + p) v⃗

)
= 0; total energy equation

∂s⃗

∂t
+∇ · (s⃗ v⃗) = −∇p− ρ∇φ; momentum equation

eT = e+
1

2
ρv2 + ρφ; constitutive equation 1

p = (γ − 1)e; constitutive equation 2

s⃗ = ρ v⃗. constitutive equation 3

The gravitational potential, φ, is computed by adding up all the potentials of the
contributing point masses, and/or by computing the self-gravitational potential of
the gas from the density distribution from Poisson’s equation:

∇2φ = 4πGρ. (1.28)

As a PDE, Poisson’s equation is qualitatively different from the equations of hy-
drodynamics. It has no time derivative, spatial derivatives are second order, and
Poisson’s equation is an example of an elliptical PDE rather than the hyperbolic
PDEs of HD (App. C). Analytical methods for solving Poisson’s equation can be
found in any intermediate or advanced text on electrodynamics (e.g., Paris & Hurd,
1969; Lorrain & Corson, 1970; Jackson, 1975 to suggest a few), while numerical
treatments can be found in widely available resources such as Numerical Recipes
(Press et al., 1992). We shall not address such methods in this text.

1.4 The internal energy density

Equation (1.23) governs the evolution of the total energy density, eT. We can elimi-
nate the need for the first constitutive equation by finding an evolution equation for
the internal energy density, e, alone, and our approach shall be via thermodynamics.

The combined first and second law of thermodynamics is:

TdS = dE + pdV, (1.29)

where the only new variable being introduced is S, the total entropy of the fluid



6 The MHD Riemann Problem

You don’t really understand something until you can compute it.

Michael L. Norman
computational astrophysicist

6.1 Overview

Hands down, the trickiest software I have ever written in my forty years of
scientific programming is my program to solve the MHD Riemann problem.

It’s a venture with zero-divides and near-zero divides around every corner, including
the usual and relatively simple-to-solve problems in scalar equations where the
denominator gets too close to zero, as well as the much more vexing matrix-vector
equations where rows of the Jacobian become zero or near-zero, rendering the matrix
equation insoluble or nearly insoluble (i.e., dominated by round-off error). All of
these challenges present themselves to those who dare tread forward!

On the plus side, nothing has sealed my own understanding of MHD as has the
experience of writing an exact MHD Riemann solver. Anyone with serious aspira-
tions of understanding the 1-D MHD problem needs to go through this exercise.

And so let’s start with an intuition booster. The precept of the Riemann prob-
lem is simple enough. As we did in Chap. 3 and as shown in Fig. 6.1, we start with
a left and right state where one state is set completely independently of the other.
Before t = 0, the two states are separated by an impenetrable diaphragm, D, with
one state knowing nothing of the other. Then, at t = 0 the diaphragm is removed,
and suddenly the two states can interact. One state forces its way into the other
and yet somehow, at any given time t, one must still be able to get from the left
state to the right via a unique set of allowed MHD transitions. The question is, how
do we determine these transitions?

Let’s approach this by considering a “building block” example, as depicted in
Fig. 6.2. I’m thinking of the wooden BrioTM1 train sets my kids and I used to play
with when they were little. As shown in panel a, suppose there is a vertical gap
between A and B that needs to be spanned, and we may do so only with the pieces
that come in our set. We’ll allow ourselves the latitude of positioning A and B

1It should not be lost on the reader that this train set analogy pays homage to one of the seminal
papers applying the Riemann problem to computational MHD, namely Brio & Wu (1988).
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, pL , v
L L
, B ρR , pR, v

R R
, B

D
left state right state

x
Bx

xRvxv L

Lρ

Figure 6.1. Initial set up for the 1-D MHD Riemann problem. At t = 0, the
diaphragm, D, is removed, and the two left- and right-states interact with an
arbitrary jump in (possibly) all flow variables at D as initial conditions.

horizontally as needed, but their vertical displacement must remain fixed. Suppose
further that our BrioTM pieces – to carry on with the analogy – come in a variety
of connectors and colours. Standard BrioTM pieces are made of maple or birch, and
thus light brown with round male–female track connectors at each end. Let’s suppose
our set comes in four different colours (with just one side of each piece painted), and
that all red pieces have a round male and triangular female connector (panel b),
all green pieces have a triangular male and rectangular female connector (panel c),
and all blue pieces have a rectangular male and pentagonal female connector (panel
d). Meanwhile, there is only one black piece, with two male pentagonal connectors
(panel e). Further, the red and blue pieces come as flats, ramps, and jumps with
the ramps and jumps coming in an assortment of heights, the green pieces come in
flats and jumps, and the one black piece is flat. As an added wrinkle, all red ramps
go down from the male connector while all red jumps go up, opposite to the blue

)a

)e )f

)b )c

)d

A

B

A

B

Figure 6.2. The “BrioTM train track Riemann problem”; see text for description.



185 Non-linear MHD waves

pieces where the ramps go up and the jumps go down from the male connector.
Green jumps go up or down. Finally, in whatever configuration we come up with to
connect A and B, all coloured sides must be face up.

OK, that’s what we have and those are the rules. Now let’s play!
The first thing to notice is that owing to the shapes of the connectors on each

piece, to get from A to B we’ll need to arrange the pieces in a specific order. Starting
from A, we’ll need a red piece, then a green, blue, black, blue, green, and finally a
red piece to attach to B. So a first step would be to separate the pieces by colour.

Now comes the harder part where we have to – presumably by trial and error –
start fitting pieces to see what combination gets us contiguously from A to B with
all connectors joining flatly. It may be that the manufacturer was clever enough to
make it so that for any given height difference between A and B, one and only one
set of pieces will, in aggregate, span the jump (e.g., panel f in Fig. 6.2). Or perhaps
there are numerous solutions, or maybe even none.

The BrioTM game just described is almost a perfect analogy to the 1-D MHD
Riemann problem considering just one of the components of B⊥, By say. If the
vertical distance represents the value of By (positive or negative), then the red pieces
are the fast waves coming as either rarefaction fans (ramps) or shocks (jumps), the
green pieces are the rotational discontinuities, the blue pieces are the slow waves
also coming as rarefaction fans or shocks, and the black piece is the contact across
which By is constant. The real problem, of course, is much more complicated than
this since we have not just one gap to fit, but seven – one for each of the variables
ρ, p, vx, vy , vz , By, and Bz – where each piece chosen for By, say, dictates which
piece must be used for each of the other variables. Thus, finding one set of pieces
to span the By gap doesn’t necessarily mean the accompanying pieces for ρ, p, etc.,
will span their gaps. This is starting to look a bit like a 7-D Rubik’s cubeTM!

And so, with that bit of discouragement, let’s get started!

6.2 Non-linear MHD waves

From the discussion in §5.3, we’re familiar with the MHD discontinuities (contacts,
RDs, fast and slow shocks) mentioned in the BrioTM example. All that remains
to work out before tackling the MHD Riemann problem directly are the profiles
across the fast and slow rarefaction fans (RF). Now, from our discussion in §3.5.3
on the hydrodynamical Riemann problem, we know – at least in principle – how to
determine these. Starting from Eq. (3.24), namely,2

Jp|q′p⟩ = ui|q′p⟩,

where |q′p⟩ is the derivative of the ket of primitive variables with respect to its
argument (ξi = x−uit) and Jp is the primitive Jacobian matrix (both defined in Eq.

2Rappel : This is the fifth time we’ve seen and used this equation, the last time being Eq. (5.55)
in §5.2.2.
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5.9), we found the seven eigenvalues (characteristic speeds) of Jp to be ui = vx±af ,
vx ± ax, vx ± as, and vx, where af , ax, and as are the fast, Alfvén, and slow speeds
given by Eq. (5.23)–(5.25). Thus, across each wave, |q′p⟩ is proportional to one of
the right eigenvectors (eigenkets) of Jp, namely |ri⟩, and, as given in Eq. (3.35),

|q′p(ξi)⟩ = wi(ξi)|ri⟩,

where wi is an arbitrary proportionality or scaling function of the co-moving coordi-
nate, ξi. As we did in §3.5.3, define dsi = wi(ξi)dξi as a differential of a generalised
coordinate, si, that varies from 0 on the upwind side of the i-wave to si,d on the
downwind side which can be thought of as the “width” or “strength” of the rarefac-
tion fan. Then,

d|qp(si)⟩
dsi

= |ri⟩, (6.1)

gives us a set of seven coupled, first-order ODEs which we integrate through to its
width, si,d, to find the profiles (in terms of si) of each primitive variable across the
i-wave.

And thus we can delay no longer finding the eigenkets of Jp!

6.2.1 Fast and slow eigenkets

The eigenkets of interest here are those associated with eigenvalues vx ± af and
vx±as respectively, as these describe the fast and slow rarefaction fans. The Alfvén
and entropy eigenkets (those associated with eigenvalues vx±ax and vx) correspond
to the Alfvén and entropy waves, both typically discontinuous in some of the flow
variables and thus better handled by the conservative equations (e.g., §5.3.2–5.3.4).
Further discussion of these is relegated to Problem 6.1.

Starting with the left-moving fast wave with wave speed u1 = vx − af , the
associated eigenket, |r1⟩ = |r−f ⟩, is found by solving the matrix equation (again, see
Eq. 5.9 for Jp),

(Jp − u1I)|r1⟩ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

af 0 ρ 0 0 0 0
0 af γp 0 0 0 0
0 1/ρ af 0 0 By/µ0ρ Bz/µ0ρ
0 0 0 af 0 −Bx/µ0ρ 0
0 0 0 0 af 0 −Bx/µ0ρ
0 0 By −Bx 0 af 0
0 0 Bz 0 −Bx 0 af

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r11
r12
r13
r14
r15
r16
r17

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0,

which yields seven linear equations, one of which is redundant. So let’s try ignoring
the third one (if for no other reason, because it has the most number of terms), and
write:

afr11 + ρr13 = 0; (6.2)

afr12 + γpr13 = 0; (6.3)
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afr14 −
Bx

µ0ρ
r16 = 0; (6.4)

afr15 −
Bx

µ0ρ
r17 = 0; (6.5)

Byr13 −Bxr14 + afr16 = 0; (6.6)

Bzr13 −Bxr15 + afr17 = 0. (6.7)

As r13 appears more often than any other component, let’s use that as the pivot
(scaling factor). Then, Eq. (6.2) and (6.3) give:

r11 = − ρ

af
r13; r12 = −γp

af
r13,

and multiplying Eq. (6.4) by Bx/af and adding Eq. (6.6) gives:

− a2x
af

r16 +Byr13 + afr16 = 0 ⇒ r16 = − afBy

a2f − a2x
r13. (6.8)

Similarly, Eq. (6.5) and (6.7) yield:

r17 = − afBz

a2f − a2x
r13. (6.9)

Finally, substituting Eq. (6.8) and (6.9) into Eq. (6.4) and (6.5) respectively gives
us:

r14 = − Bx

µ0ρ

By

a2f − a2x
r13 and r15 = − Bx

µ0ρ

Bz

a2f − a2x
r13.

Bringing these results together, the “minus fast eigenket” is,

|r−f ⟩ = ψf

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ρ
−γp
af

− Bx

µ0ρ

af
a2f − a2x

By

− Bx

µ0ρ

af
a2f − a2x

Bz

− a2f
a2f − a2x

By

− a2f
a2f − a2x

Bz

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6.10)

where ψf ≡ r13/af is a “scaling factor” which we’ll choose for convenience.

Evidently, the “plus fast eigenket” must be identical to Eq. (6.10) with −af →
+af , and the slow eigenkets are just the fast eigenkets with f → s. Thus, we have
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for the four fast and slow eigenkets:

|r±f,s⟩ = ψf,s

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ρ
−γp
∓af,s

± Bx

µ0ρ

af,s
a2f,s − a2x

B⃗⊥

−
a2f,s

a2f,s − a2x
B⃗⊥

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= ψf,s

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ρ
−γp
∓af,s

±sgn(Bx)
ax af,s a⊥
a2f,s − a2x

ê⊥

−√
µ0ρ

a2f,s a⊥

a2f,s − a2x
ê⊥

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6.11)

where the last four components have been combined into two 2-D vectors ∝ B⃗⊥ =
(0, By, Bz), and where ax = |Bx|/

√
µ0ρ, sgn(Bx) = Bx/|Bx|, a⊥ = |B⃗⊥|/

√
µ0ρ, and

ê⊥ = B⃗⊥/|B⃗⊥|.
While that may have seemed straight-forward enough, the kicker is the denom-

inator in the components proportional to B⃗⊥ (ê⊥). Because the 1-D MHD equations
are not strictly hyperbolic, their eigenvalues can, at times, be degenerate. In par-
ticular, we’ve already seen (e.g., Eq. 5.66) that if B⃗⊥ = 0 and ax > cs, af = ax
and the components ∝ ê⊥ for the fast eigenkets blow up. Similarly, for B⃗⊥ = 0 and
ax < cs, as = ax and the components ∝ ê⊥ for the slow eigenkets blow up.

Oops.
Our salvation are the scaling factors ψf,s, which we choose not so much to

normalise |r±f,s⟩ (which we can’t anyway since the components have different units),
but to render all singularities removable. It turns out our choices are rather limited
since, in addition, ψf,s must be chosen such that no eigenket is zeroed out. By what
has to be described as a stroke of genius and what we’ll spend the next few pages
justifying, those introduced by Roe & Balsara (1996) and used by Takahashi &
Yamada (2014) are:

ψf =

√
c2s − a2s
a2f − a2s

and ψs =

√
a2f − c2s
a2f − a2s

. (6.12)

The reader might wonder why the more “obvious” choice of, say, ψf,s = a2f,s − a2x
might not be preferred. However, it doesn’t take too long to realise that this would
result in |r±f,s⟩ = 0 for B⊥ = 0, which would mean no wave at all.

The mathematics of MHD rarefaction fans is littered with landmines (i.e., zero-
divides or, when it comes time to do the programming, near zero-divides) which
can confound even the most seasoned algebraist. In my experience, the cleanest
approach is to express everything in terms of the MHD-alphas, and then to use
the various identities among them to eliminate all differences in the denominators
where singularities can occur.

So to start, let’s recast the four identities among the speeds af , as, ax, a⊥, and
cs as listed in Problem 5.4 (Eq. 5.113–5.116), in terms of the MHD-alphas:

afas = csax ⇒ a2f
c2s

a2s
c2s

=
a2x
c2s

⇒ αfαs = αx; (6.13)

a2f + a2s = c2s + a2x + a2⊥ ⇒ αf + αs = 1 + αx + α⊥; (6.14)
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(
a2f − c2s

)(
a2f − a2x

)
= a2f a

2
⊥ ⇒ (αf − 1)(αf − αx) = αfα⊥; (6.15)

(
c2s − a2s

)(
a2x − a2s

)
= a2sa

2
⊥ ⇒ (1− αs)(αx − αs) = αsα⊥. (6.16)

Here, αf,s are the fast and slow alphas, first introduced in Problem 5.23 (Eq. 5.124).
Next, examine the fast eigenkets which, from Eq. (6.11), we can write as:

|r±f ⟩ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ψfρ

−ψfγp

∓ψfaf

±sgn(Bx)χf cs
ax
af

ê⊥

−χf cs
√
µ0ρ ê⊥

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6.17)

where, in terms of the MHD-alphas, ψf (Eq. 6.12) and χf are given by:

ψf =

√
1− αs

αf − αs
; χf = ψf

a2f
a2f − a2x

a⊥
cs

=

√
1− αs

αf − αs

αf

αf − αx

√
α⊥. (6.18)

Then, since csax = afas (Identity 6.13), and cs
√
ρ =

√
γp, we may write Eq. (6.17)

in its most compact form:

|r±f ⟩ =

⎡

⎢⎢⎢⎢⎢⎢
⎣

−ψfρ

−ψfγp

∓ψfaf

±sgn(Bx)χf as ê⊥

−χf
√
µ0γp ê⊥

⎤

⎥⎥⎥⎥⎥⎥
⎦
. (6.19)

Now, ψf and χf are much more tightly coupled than Eq. (6.18) appears to
suggest. Squaring χf and using identity (6.15), we get:

χ2
f =

1− αs

αf − αs

α2
f

(αf − αx)2
α⊥ =

1− αs

αf − αs

!!α
2
f (αf − 1)2

!!α
2
f α✄

2
⊥

✟✟α⊥

=
αf − 1

αf − αs

(1 − αs)(αf − 1)

α⊥
=

αf − 1

αf − αs
(αf − 1− αsαf︸︷︷︸

αx

+αs

︸ ︷︷ ︸
✟✟α⊥

)
1

✟✟α⊥
,

using identities (6.13) and (6.14). Thus,

χ2
f =

αf − 1

αf − αs
= ψ2

s (Eq. 6.12)

=
αf − αs + αs − 1

αf − αs
= 1− 1− αs

αf − αs
= 1− ψ2

f .

Not only is χf = ψs, χf and ψf are related to each other in the same way as sine
and cosine! Problem 6.2 completes the symmetry of these factors by showing that,

χs ≡ ψs
a2s

a2x − a2s

a⊥
cs

= ψf , (6.20)
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and thus ψ2
s + χ2

s = 1 as well.
So, let’s use these relationships to simplify the notation further by setting

µ = ψf = χs, ν = χf = ψs (and thus µ2 + ν2 = 1)3 and bring the fast and slow
eigenkets to our final form:

|r±f ⟩ =

⎡

⎢⎢⎢⎢⎢⎢⎣

−µρ

−µγp

∓µaf

±sgn(Bx) ν as ê⊥

−ν√µ0γp ê⊥

⎤

⎥⎥⎥⎥⎥⎥⎦
; |r±s ⟩ =

⎡

⎢⎢⎢⎢⎢⎢⎣

−νρ
−νγp
∓νas

∓sgn(Bx)µaf ê⊥

µ
√
µ0γp ê⊥

⎤

⎥⎥⎥⎥⎥⎥⎦
. (6.21)

It remains, then, to settle on a final form for the scaling factors µ and ν and to
demonstrate that their apparent singularities are, in fact, removable. As given by
Eq. (6.18), µ (ψf) has a singularity (but, as we’ll see, removable) at αf = αs which
happens only at the so-called triple umbilic where α⊥ = 0 and αx = 1 (and thus
αf = αx = αs = 1; that is, the fast, Alfvén, and slow speeds are triply degenerate).
If, for convenience, we let,

δx = αx − 1, (6.22)

(and thus δx ≷ 0 for αx ≷ 1), then the singularity in µ occurs when both α⊥ and
δx are zero.

By necessity, the MHD Riemann solver we’ll design will be semi-analytic. Thus,
its reliance on a computer means that even a removable singularity will trigger a
zero-divide at the triple umbilic, and we must therefore remove it manually. To do
this, it is most convenient to express µ in terms of α⊥ and δx, those quantities which
when simultaneously zero cause the singular behaviour.

Starting with the definition of the slow speed (Eq. 5.23),

a2s =
1

2

(
c2s + a2 −D

)
=

1

2

(
c2s + a2x + a2⊥ −D

)
, (6.23)

where the discriminant, D, is given by,

D =
√(

c2s + a2x + a2⊥
)2 − 4c2sa

2
x,

we have,

αs =
a2s
c2s

=
1

2

(
1 + αx + α⊥ − d

)
, (6.24)

where,

d ≡ D

c2s
=
√(

1 + αx + α⊥
)2 − 4αx =

√(
α⊥ + δx

)2
+ 4α⊥, (6.25)

after a little algebra. This, incidentally, is the most robust form for d one can use for a
computer application, since there are no subtractions under the radical. Computers,
being of finite precision, can often subtract what ought to be equal values and end
up with a small residual of “round-off noise” which can be negative as often as

3Don’t confuse µ with µ0!!
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Figure 6.3. Profiles of the fast and slow eigenket “scaling factors”, µ (left; Eq.
6.26) and ν (right; Eq. 6.27) as functions of αx = δx+1, shown for various values
of α⊥, including the limiting case of α⊥ = 0 (red ) where µ and ν are step
functions with the discontinuity at αx = 1 (δx = 0), the triple umbilic.

not. Under a radical sign, this would trigger a “floating point exception” or worse,
the dreaded “NaN” (“not a number”) error messages that cause the program to
crash, often without any indication of where the first NaN occurred! Further, even if
the difference is not purely round-off noise, subtracting two nearly equal numbers
can yield results significantly less precise than the stated precision of the machine.
Conversely, adding positive quantities suffers no such loss of machine accuracy.

Continuing from Eq. (6.24), we have,

αs =
1

2

(
2 + δx + α⊥ − d

)
= 1 +

1

2

(
δx + α⊥ − d

)

⇒ 1− αs =
1

2

(
d− δx − α⊥

)
.

Noting that αf − αs = d, we arrive at our final forms for µ and ν:

µ2 = 1− ν2 =
1− αs

αf − αs
=

1

2

(
1− δx + α⊥

d

)
; (6.26)

ν2 = 1− µ2 =
αf − 1

αf − αs
=

1

2

(
1 +

δx + α⊥

d

)
, (6.27)

with d given in terms of δx and α⊥ by Eq. (6.25).
Figure 6.3 shows µ and ν as functions of αx = δx + 1 for various values of α⊥,

including the limiting case (red ) where α⊥ = 0 (B⊥ = 0). The fact that µ2 (and
thus µ) should be a step function when α⊥ = 0 is easy to see from Eq. (6.25) and
(6.26). Setting α⊥ = 0,

d =
√
(δx)2 = |δx|

⇒ µ2 =
1

2

(
1− δx

|δx|

)
=

⎧
⎨

⎩

1, δx < 0, (αx < 1);

0, δx > 0, (αx > 1),
(6.28)
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which is the red profile in the left panel of Fig. 6.3. Evidently, the step function
is reversed for ν2 = 1− µ2 (0 for αx < 1, 1 for αx > 1), as the red profile in the
right panel shows.

The fact that µ and ν remain finite everywhere means that the apparent sin-
gularity at the triple umbilic (when αf = αs in Eq. 6.26) is removable; that is, µ2

remains finite as αf → αs (when both α⊥ and δx are zero). To find that limiting
value, we first set δx = 0 in Eq. (6.25) and (6.26) to get:

lim
δx→0

µ2 =
1

2

(

1− α⊥√
α2
⊥ + 4α⊥

)

=
1

2

(
1−

√
α⊥

α⊥ + 4

)
→ 1

2
, (6.29)

as α⊥ → 0. Similarly, ν2 → 1
2 as δx, α⊥ → 0.

This completes the justification of the scaling factors, ψf,s, chosen in Eq. (6.12).

6.2.2 Fast and slow rarefaction fans

Part of the job of the Riemann solver is to integrate Eq. (6.1) using the kets in
Eq. (6.21) to find the primitive variable profiles across any rarefaction fan that may
be part of the solution. However, without doing the actual integrations, we can
determine qualitative properties of the fast and slow fans just by examining the
kets as differential changes in the variables.

Assuming for now that Bx ≠ 0 (αx > 0), let’s start by examining the first
three components of each ket. Other than the factors µ and ν, these are identical
to the purely hydrodynamical kets in Eq. (3.34), with cs replaced with the appro-
priate wave speed. So, for the moment, let’s set B⊥ (and thus α⊥) to zero so that
for αx < 1, µ = 1 and ν = 0 (Fig. 6.3). This makes the fast kets identical to the
hydrodynamical kets for which, in §3.5.3, we concluded that density and pressure
decrease from the upwind to downwind side of the fan, while the flow speed rel-
ative to the upwind state increases. A similar comparison between the slow and
hydrodynamical fans may be made for αx > 1 where ν = 1 and µ = 0.

Noting from Fig. 6.3 that the primary effect of increasing α⊥ from zero is to
round off the discontinuities in µ and ν without changing their monotonic depen-
dence on αx, we conclude that ρ and p should decrease across any RF while the
flow speed relative to the upwind state increases. Thus, at least qualitatively, the
hydrodynamical variables ρ, p, and vx behave the same way across a fast and slow
fan as they do across a hydrodynamical fan.

A consequence of p dropping across an MHD fan is that αx = a2x/c
2
s =

B2
x/(µ0γp) rises. This is an important observation that holds for any MHD RF.

Note that αx rises only because p falls; in a 1-D problem such as this, Bx is strictly
constant. Thus, one can gain a qualitative feel for how µ and ν vary across a fan –
quantities critical to determining the variable profiles from Eq. (6.1) – by scanning
across Fig. 6.3 from left to right.

The last component in each ket in Eq. (6.21) governs the profiles of B⊥, and it is
here where the properties of the fast and slow fans diverge. For the fast fan, the last
component, −ν√µ0γp, is negative – just like the first two components governing the
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1 1
2
-D flow, definition, 34, 123

abbreviated Leibniz notation, 123, 295
accretion discs, see planetary discs
Alfvén, Hannes, ii, xiii, 102, 127–128
Alfvén number, 156, 157, 165, 344
Alfvén point, 165, 166–170, 179, 344, 346,

349, 352, 360, 371
Alfvén speed, a, ax, 127, 133, 145, 147,

148, 156, 186, 344, 360, 387, 413
trans-Alfvénic, 155

Alfvén waves, see wave families, MHD
Alfvén’s theorem, 105–106, 157, 342, 393,

396
ambipolar diffusion, 414–427

ambipolar electric field, E⃗AD, 414
ambipolar resistivity, ηAD, 433
coefficients

ambipolar, β1,2, 382, 386
coupling, γ1,2, 382
exchange-ambipolar, Qi,n, 420, 425,

427
rate, ⟨σu⟩1,2, 382, 426, 428–432

density source terms, 417–419
exchange, σ1,2, 417–419, 424, 436, 437

energy source terms, 420–423
ambipolar, ϖa

1,2, 417, 420–421
exchange, ϖx

1,2, 417, 421–423
momentum source terms, 419–420

ambipolar, f⃗ a
1,2, 380–385, 417, 419

exchange, f⃗ x
1,2, 417, 419–420

two-fluid, isothermal model, 415
two-fluid, non-isothermal model,

416–427
two-fluid resistivity, η2, 425

Ampère’s law, 106, 454, 456
anti-curl, 112, 118
applied power, Papp, 7, 16

ambipolar power density, pAD, 439
density, papp, 15, 16
electric power density, pE , 455
electromagnetic power, PEM, 458
magnetic power density, pM, 457
Poynting power density, pS, 458
resistive power density, pR, 392, 457

astrophysical jets, 62–68, 100, 366–371
Mach disc (hot spot), 62

restarting jet, 63–65
wide-angle tailed sources (WATs), 65–68

AZEuS, 366–371

barotropic gas, 20, 23, 24, 358
Bay of Fundy, 42

lunar resonance, 59
bead-on-a-rod problem, 352–353, 478–483

inertial reference frame, 481–483
non-inertial reference frame, 479–481

Bernoulli levitation, 52–54
air gap, 53
maximum supportable mass, 62

Bernoulli’s theorem, HD, 49, 47–55
gas, 49
and Kelvin–Helmholtz instability, 252
liquid, 49

Bernoulli’s theorem, MHD, 352
Bernoulli function, BM, 349–372

critical points, 359–360, 362–364, 375
as function of ρ and s, 358–359
inertial frame derivation, 372
unitless, 362, 364
value for stellar winds, 361

as a driver for outflow, 352
effective potential, φeff , 356–357, 374
role of B⃗, 352–354, 372

Biot and Savart, law of, 400, 405, 412
bores, 42–47

foaming, 43, 45, 46
lab frame, 46–47
sluice gate, 61
standing (hydraulic jump), 43, 61
tidal, 42
undulating, 43, 45, 46
velocity jump, 45

boundary conditions
axisymmetry, 334
Cauchy, 330, 334
fluid–solid (no slip), 327, 327–330, 336
free boundary, 330

bra-ket notation, ⟨ | ⟩, 30
eigenbras ⟨ |, 84–85, 96, 175, 236
eigenkets | ⟩, 83–85, 96

Brio & Wu problem, 160, 161, 183
broad-crested weir, 49–52

flowrate, 51

500
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Cardano–Tartaglia formula, 163, 467
properties of cubic roots, 169

characteristic paths, 74, 76, 78, 80,
128–129, 135, 137–139, 177, 202–203,
210

characteristic speeds, 71, 73–74, 86, 461
1-D MHD, 128, 186
Alfvén waves, 135
magnetosonic waves, 148

characteristics
Alfvén waves, A±, 135, 136, 177
calculating, 85
entropy wave, S0, 73–74, 75, 76, 86
fast/slow waves, F±, S±, 201
sound waves, J±, 73–74, 76, 201
where J±, S0 are constant, 86, 97

circulation, Γ, 24, 117
colon product of matrices, A : B, 321, 444
combined laws of thermodynamics, 18, 38
conics of PDEs, 459–461
conservation laws for MHD, 106

energy, 7
magnetic flux, 106
mass, 7
Newton’s second law, 7

conservative variables, 22
contact discontinuity, HD, 35, 258

isothermal, 57
polytrope, 58

contact discontinuity, MHD, 154, 202
continuity equation, 15

incompressible flow, 43, 258
linearised, 293
steady state, 48, 342

control volume (steady-state HD), 43
cosmic rays, 100, 286–287

pressure equation, 292
linearised, 294

pressure, pCR, 288, 289, 305
Crab nebula, 257
current density, J⃗ , 106, 143, 383, 408,

424, 435, 456
current sheet, 395, 435

de Laval nozzle, 54–55, 62
choke point, 55
de Laval’s equation, 55
in radio source 1919+479, 66

difference theory, 150–151, 178
diffusion equation, 327, 484–485

diffusion coefficient, 327, 485
Fick’s first law, 484

diffusion time scale, 327
magnetic, 393, 395

dimensional analysis, 51–52
discharge rate

flow between plates, 329, 339

Hagen–Poiseuille flow, 334
open channel flow, 331

discontinuous flow, 22, 90
downwind; definition, 34
dyadic product, 22, 111, 444
dynamos, 399, 399–406

anti-dynamos, 400–402, 434
Bullard dynamo, 399–400
Earth’s dynamo, 403–406, 434

magnetic pole drift, 403
polarity flips, 406
Taylor column, 405

kinematic vs. non-linear, 401
necessary and sufficient conditions, 403

Earth’s magnetic field, 3, 403–406, 434
eigenvalues, HD, 85

sound waves, 31
eigenvalues, MHD, 127–128, 172, 174, 186

Alfvén waves, 132
magnetosonic waves, 140–141

eigenvectors, HD
rarefaction wave, 86, 95
sound waves, 31

eigenvectors, MHD
Alfvén waves, 132, 186, 235
entropy wave, 186, 235
magnetosonic waves, 141–145, 186–190

normalisation, ψf , ψs, 188, 236
scaling factors, µ, ν, 190–192, 195,

220, 236, 238
electric energy density, eE, 455
electric field, E⃗, 453

ambipolar diffusion, E⃗AD, 414
Hall, E⃗H, 408
non-ideal MHD fluid, 385
resistive, E⃗η, 392
static vs. induced, 102
supported by a conducting medium, 102

electromagnetic force, F⃗EM, 101, 391, 454
density, f⃗EM, 381

elliptical equations, 18, 459
energy, see internal, total, or magnetic

energy
enthalpy, h, 49, 351, 356
entropy, S, 18, 38, 73

per particle, S , 19, 23
specific, s, 19

equations of HD, 18, 20, 21, 71
conservative form, 18, 80

1-D steady state, 34
differences between forms, 20–22
Eulerian form, 71
Lagrangian form, 71
primitive form, 21, 80

in 1-D, 81
1-D general solution, 84, 96
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equations of MHD (ideal), 109, 111
conservative form, 111

1-D steady state, 149
in 1-D, 124, 172

for Parker instability, 292
in most compact form, 112
primitive form, 122

1-D linearised, 140, 173
in 1-D, 124, 172

steady-state, 342
equations of MHD (non-ideal)

neutrals, ions, electrons, 416
one-fluid, isothermal model, 386

limitations, 390
one-fluid, non-isothermal model, 438
three non-ideal terms, 379

their comparison, 387–391
two-fluid, isothermal model, 427
two-fluid, non-isothermal model, 427

equilibrium, stable vs. unstable, 243
Euler number, E , 324
Eulerian reference frame, 71, 280

space-time diagrams, 74, 76, 77
Euler’s equation, HD, 20, 22, 26, 322

1-D, 72
linearised, 27, 29, 247, 260
orthogonal coordinate systems, 448–450
scaled version, 322–323, 338

Euler’s equation, MHD, 107, 177
steady state, 342, 398

evolutionary vs. non-evolutionary, 160
extensive vs. intensive var., 12, 103

relationship between, 12

Faraday’s law, 102, 385, 392, 426, 454
fast point, 165, 169, 180, 354, 360,

362–364, 375
fast speed, af , see magnetosonic speeds
flowline, 48
fluid, definition, 2, 7–9

impedance, Z0, 32
inviscid, 12, 25
viscid, 12

fluid dynamics, definition, 2
fluid mechanics, definition, 2
flux, flux density, 103

definitions, 14
HD flux densities, 22

linearised, 30
MHD flux densities, 125

flux function, f , 342–345, 358, 400
coordinate, s, 350
as lines of induction, B⃗, 342
twisting lines of induction, 344–345

flux loop, 114
Flux theorem, 103–105, 117
flux tube, 105, 347–348

flux-freezing, 105, 157, 342, 396
flux-linking, 115

on solar surface, 116
force densities, f⃗ext, 17

ambipolar, f⃗ a
1,2, 380

exchange, f⃗ x
1,2, 420

gravity, f⃗φ, 17

Lorentz, f⃗L, 107
pressure gradient, f⃗p, 17
viscous stresses, f⃗T, 318

force-free condition, 357, 374
forces

applied vs. external, 7
collisional, 7–10

Froude number, F , 263, 338

gas dynamics, definition, 2
Gauss’ law, 454
Gauss’ theorem, 14, 21, 44, 397, 403, 445,

457
generalised Ohm’s law, see electric field,

E⃗; non-ideal MHD fluid
Green’s theorem, 445

Hall MHD, 406–414, 435
Hall current, 410
Hall effect (lab), 407–408
Hall effect (plasma), 408

Hall electric field, E⃗H, 408, 426
magnetic reconnection, 411–414
proton–electron resistivity, ηp,e, 410
quadrupole magnetic moment, 413
two component model, 408–410

helicity, see magnetic helicity
helicity flux, F⃗h, 114
hydrodynamics

definition, 2
ideal, 12

hyperbolic equations, 82, 83, 128, 459
strictly vs. not strictly, 82, 128, 202

ideal gas law, 10–12, 289, 421
induction equation

ideal, 102, 109–111, 177
cf. vorticity equation, 118
linearised, 294
steady state, 342

non-ideal, 385
ambipolar diffusion, 386
Hall, 386, 408, 426
resistive, 386, 391–392, 394, 400, 402
two-fluid, 426

instabilities, see KHI, RTI, Kruskal, MRI,
Parker

intensive var., see extensive vs. intensive
var.
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intermediate point, 166, 169, 170
internal energy, E, 10–11

density, e, 11
specific, ε, 19, 73

internal energy equation
adiabatic, 20, 23
isothermal, 23
one-fluid, ambipolar, 439
resistive, 393
viscid form, 321, 337

interstellar medium (ISM), 286–288

Jacobian matrix, HD
conservative, 95
primitive, 82
sound waves, 30

Jacobian matrix, MHD
Alfvén waves, 131
conservative, 125–126, 172
magnetosonic waves, 140
primitive, 124, 127, 172, 186
Riemann problem, see Riemann

problem, MHD; Jacobian
Jupiter’s Great Red Spot, 253–254

Kelvin–Helmholtz instability (KHI),
245–255, 325

and Bernoulli’s theorem, 252
cat’s eyes, 252
condition for instability, 249
dispersion relation, 248–249
growth rate, 250
linear vs. non-linear theory, 251–252
normal mode analysis, 246–250
numerical analysis, 251–252, 254–255
slab jet, 305

Kelvin’s circulation theorem, 24, 117, 258
kinetic energy

density, k, 402
flux, K⃗ , 375

Kruskal–Schwarzchild instability, 267
dispersion relation, 267

Lagrangian derivative, 71, 73, 135, 177, 401
Lagrangian reference frame, 71, 280

space-time diagrams, 74, 75
Lagrangian velocity, 71
laminar flow, 325–336
Laplace’s equation, 25, 259, 374

pseudo-Laplacian operator, ∇̃2, 400
Larmor radius, rL, 100
liquid, definition, 2
Lorentz force, F⃗L, 3, 99, 106, 289, 396,

400, 408
density, f⃗L, 106, 143, 145, 270, 373, 383,

424
longitudinal terms, 111

orthogonal coordinate systems, 451–452
transverse terms, 111

LU decomposition, 213–214
Lundquist number, S , 387, 398

Mach number, M , 36, 55, 180
downwind of shock, 37
transonic point, 37, 40, 55
upwind of shock, 157

magnetic diffusion, 393
magnetic diffusivity, DM, 393, 403
magnetic energy, EM, 403

density, eM, 111, 402, 457
magnetic field, H⃗ , 3, 453

in astrophysics, 99–100
potential field, 374

magnetic flux, ΦB , 105–106, 110
conservation of, 105–106, 115, 157, 361

magnetic helicity, HA, 113–114
as a conserved quantity, 114
cross helicity, h×, 122
density, hA, 113–114
evolution equations, 113–114
value in flux loop(s), 115

magnetic induction, B⃗, 3, 453
magnetic reconnection, 393–399, 411–414

Hall regime, 412
quadrupole magnetic moment, 413
reconnection time scale, 413

Sweet–Parker model, 395–399
reconnection time scale, 398

X-point, 395, 398, 399, 412
magnetic topology, 114–116
magnetic torque/moment, 347–348

torque density, 347
magneto-acoustic waves, 145, 149, 201, 202

speed, aM, 145, 195
magnetohydrodynamics (MHD)

definition, 2
ideal, definition, 101

magneto-rotational instability (MRI),
268–286

angular momentum transport, 278–307
L⃗ transported per revolution, 283

Balbus & Hawley, Shaw Prize, 268, 278
comparison to KHI, 274, 285
condition for instability, 274–275
diffusion coefficient, 307
dispersion relation, 273
dynamical equations, 273
growth rate, 277–278, 306
normal mode analysis, 272–274
numerical analysis, 283–286
physical model, 275–277

magnetosonic numbers, Mf , Ms, 165, 169,
368
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magnetosonic speeds, as, af , 127, 141, 148,
186, 360

identities, 173
inequalities, 128, 173
limits, 174

Maxwell’s equations
differential form, 453
integral form, 453–454

mean free path, definition, 2
method of characteristics (MoC), 76–78

applied to Alfvén waves, 135–176
applied to Riemann problem, 78–80
as a numerical scheme, 77, 94

MHD-alpha, α, 106, 130, 157, 179, 236,
237, 388, 426

fast, slow, αf,s, 180, 189, 190, 195
identities, 188

momentum equation, HD, 17, 310
orthogonal coordinate systems, 449–450

momentum equation, MHD
Hall, 408
ideal, 107, 111, 383
ions, two-fluid, 424
linearised, 293, 294
neutrals, ions, electrons, 380

momentum, S⃗, 7
density, s⃗, 17

Navier–Stokes equation, 317–320
compressible, 319
incompressible, 320

scaled version, 323
inertial term, ∇ · (s⃗ v⃗), 318
magnetic, 401
stress force density, f⃗T, 317–318
viscid momentum equation, 318
viscid term, ∇ · (µS), 318

Newtonian fluids, 314–315, 318
non-inertial reference frame, 269–350, 352,

401, 476–483
Coriolis theorem, 478
inertial accelerations, 270–271, 350,

405–406, 478
normal mode analysis

Alfvén waves, 131–134, 175
ball on a mound, 305
explained, 247
KHI, 246–250
magnetosonic waves, 140–141
MRI, 272–274
Parker instability, 298–301
rarefaction fan, 82
RTI, 257–262
sound waves, 30–33

numerical considerations
convergence, 217, 219, 237, 238, 468–469

preserving precision, 180, 191, 208–209,
212–216, 218, 220–221

scaling, 262–264
suppressing pressure perturbations, 284

numerical MHD, 119, 139, 366–371

Ohmic resistance, see resistive MHD
outflow mechanisms

bead-on-a-rod (BRM), 353–357
critical angle (60◦), 355–357, 374
energy flux, 375
magnetic tower (MTM), 354, 373
and MHD Bernoulli theorem, 352

parabolic equations, 326, 327, 459, 485
Parker instability, 286–305

2-D equations of MHD, 292
comparison to RTI, 291
condition for instability, 289, 301–303
dynamical equation, 298
growth rate, 288, 290, 301–302
interstellar clumps, 287–288, 290, 303
normal mode analysis, 298–301
perturbation analysis, 292–294
qualitative description, 286–291
quantitative description, 291–305

particle path, 47
Pascal’s law, 318
PdV term, 16
planetary discs, 268, 426

anomalous viscosity, 268
artist’s conception, 379
formation, 354–355
number density, 388
T Tauri IM Lup, 378
temperature, 379, 388

plasma physics, definition, 3, 99
plasma-beta, β, 129
Poisson’s equation, 18
polytropic gas, 57
power, see applied power
Poynting

flux, ΦS , 107, 458
power density, pS , 107, 109, 458

vector, S⃗P, 107, 375, 458
pressure

cosmic ray, pCR, 288, 289, 305
magnetic, pM, 111, 142–145, 270, 288
MHD, p∗, 111, 271, 279
thermal, p, 17

collisional, 8
isotropic, 8–10

pressure equation, 20, 23
1-D, 72
barotropic, 26
cosmic rays, 292
linearised, 27, 29, 294
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pressure head, 44, 259
primitive variables, 22, 34
principle of equipartition, 11, 100, 303

Rankine–Hugoniot, HD, 35, 80, 90
isothermal, 57
polytrope, 57

Rankine–Hugoniot, MHD, 150, 153, 157
rarefaction fans, HD, 80

generalised coordinate, si, 86
profiles as function of si, 87
profiles as function of ui, 88, 89, 97
strength/width, 87
transition, 87, 89

rarefaction fans, MHD, 185, 192–202, 239
fast fans, 193

fast Euler fans, 193, 196, 200, 201,
204, 207

saturation, 193, 196, 201, 207, 219
switch-off fans, 193, 196, 200, 203, 236

fast/slow differences, 192, 200–202
generalised coordinate, si, 186
profiles as function of si, 186, 218
profiles as function of ui, 196–200
similarity to HD fans, 192, 195, 200
slow fans, 193–195

asymptotic limits, 193, 200
slow Euler fans, 193, 195, 200, 201,

204
switch-on fans, 194–195, 198–201

strength/width, 186, 193, 200, 207
ratio of specific heats, γ, 11
Rayleigh–Taylor instability (RTI), 256–267

Atwood number, 261
condition for instability, 261
dispersion relation, 259–261
growth rate, 261
link with KHI, 262, 265, 266
normal mode analysis, 257–262
numerical analysis, 262–267

resistive MHD, 391–406
energy dissipation, 392–393
resistive electric field, E⃗η, 392
resistivity, η, 385

Reynolds number, R , 324, 322–326
inertial vs. viscous dominance, 325
magnetic, RM, 387, 403

Riemann, Bernhard, 69
Riemann invariants, see characteristics
Riemann problem, HD

defined, 69
solution, 90–93, 98

Riemann problem, MHD
defined, 183–185
exact solver, 204–221, 239

algorithm, 210–221
constraints, 206, 210–212

fast shock, 215–216
Jacobian, 209–210, 212–214
parameters, 205–208, 210
rarefaction fans, 218–221
slow shock, 216–218
strategy, 208–209

solutions, 221–235
uniqueness, 160, 204

rms speed, vrms, 10, 12, 29, 289, 304
rotational discontinuity, 155, 165, 167,

178, 181
Runge–Kutta, sixth order, 468–475

algorithm, 473–475
derivation, 468–473
MHD rarefaction fans, 196, 218

Saha equation, 304, 416, 417–418, 437
thermal de Broglie wavelength, λe, 418

scale height, L, 289, 290, 304
secant root finder, 462–466

multivariate, 205, 210–211, 465–466
univariate, 92, 93, 205, 364, 462–465

FORTRAN77 listing, 463–465
shear layer, 245
shock tube, 33

general MHD, 149
Sod, 93

shock waves, HD, 37–42, 80
entropy condition, 38–40, 87
general frame, 58
hypersonic limit, 37
lab frame, 40–42
shock strength, 58
variable jumps, 37

shock waves, MHD, 155–172, 181, 182
entropy condition, 156, 158, 159, 163,

169–171, 181
Euler branch, 164–166, 167, 170–172,

180
evolutionary condition, 159, 163, 170,

172
fast shocks, 158–161, 164–172, 181

switch-on shocks, 157, 164–165, 166,
167, 170–172, 179, 180, 203

i → j designation scheme, 159, 167, 168
intermediate shocks, 159–161, 165–172,

181
shock types, 159, 166, 170, 171, 180

slow shocks, 158–161, 165–172, 179, 181
switch-off shocks, 167, 167

strength, 157, 207
variable jumps, 163, 207

slow point, 165, 169, 170, 180, 360, 375
slow speed, as, see magnetosonic speeds
smooth flow, 22, 72, 80, 82, 90
solar flares, 395, 398, 413

anomalous resistivity, 399
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sound speed, cs, 27, 127
adiabatic, 28
astrophysical values, 29
isothermal, ciso, 28, 388
value in dry air at STP, 29

sound waves, 26–33
frequency, ω, 28
linear algebra solution, 29–33
perturbation analysis, 26
secular equation, 31
solution to wave equation, 26–29
wave vector, k⃗, 28

space-time diagrams, 74–76, 77, 128
1-D MHD, 128, 202
Alfvén waves, 135, 137
event, 74
footprints, 76–78, 136
magnetosonic waves, 148
Riemann problem, 78–80, 90
sonic cone, 76
worldline, 74, 75

steady state
definition, 34, 341
quasi, 329, 331

stellar winds (Weber–Davis), 361–366
additional assumptions, 361
asymptotic behaviour, 365–366, 376
boundary conditions, 357
profiles for ρ, vp, ψ, 364–365, 376

Stokes’ theorem, 104, 446, 456
strain tensor, E, 316

strain components, ∂jvi, 314
streakline, 47
stream function, ψ, 258, 259, 291
streaming motion, 9
streamline, 47
streamtube, 48
stress tensor, T, 311–317

components, Tij , 311–317
cylindrical coordinates, 334–336

compressive stresses, 310, 312, 316
shear stresses, 310
trace, tr(T), 312–313, 337

relation to thermal pressure, p, 318
superfluids, 325
surface-conserved quantity, 104, 109, 110
synchrotron emission, 286

tangential discontinuity, HD, 35
tangential discontinuity, MHD, 36, 154

as limit to slow and Alfvén waves, 195
Theorem of hydrodynamics, 13–15, 103,

117
total energy equation, HD

inviscid form, 17
scaled version, 337
viscid form, 320, 337

total energy equation, MHD, 109, 110, 119
differenced 1-D steady state, 152, 178
resistive, 393, 432
steady state, 342, 372
two-fluid, non-ideal, 438

total energy, HD
ET, 7, 15
density, eT, 15

total energy, MHD
density, e∗T, 108, 393

triple umbilic, see wave families, MHD
turbulence, 243–245, 253, 262, 283, 309,

324–326
super-Alfvénic, 244

upwind; definition, 34

vector derivatives, 446–448
Cartesian coordinates, 447
cylindrical coordinates, 447
spherical polar coordinates, 447

vector identities, 443–445
with dyadics, 444–445

vector potential, A⃗, 112, 112–113, 118,
292, 293, 400–401, 456

contours as lines of B⃗, 292
evolution equation, 112

viscometer, 334, 336, 340
viscosity

kinematic, ν, 319, 324, 393, 402
shear, µ, 314, 318, 319, 328

viscous dissipation, 321
viscous flow

Couette, 334–336, 340
torque, 336, 340

forced between co-axial cylinders, 339
forced between plates, 328–329, 339
Hagen–Poiseuille, 333–334
open channel, 329–332
plane laminar, 327–328

volume-conserved quantity, 14, 18, 109, 110
vorticity, ω⃗, 23, 105, 254, 309, 319

comparison with B⃗, 24, 339
vorticity equation, 23

wave equation
Alfvén waves, 131
sound waves, 27, 246

wave families, HD, 86, 130, 202
wave families, MHD, 130, 128–149,

202–204, 206
Alfvén waves, 129, 130–139, 175

compressional, 145, 149
linear algebra solution, 131–134, 175
properties, 131, 134, 146–149, 174
torsion, 177, 354, 368
wave equation, 131
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compound wave, 160, 200, 203, 204
degeneracy, 145–149
entropy wave, 129, 202
magnetosonic waves, 129, 139–146

fast vs. slow waves, 142–145
linear algebra solution, 140–141
perturbation analysis, 139–140
properties, 141, 146–149, 174

triple umbilic, 148, 190, 191–195, 198,
200–204, 209

weakly ionised medium, 380, 383
interpretation of velocities, 384

Weber–Davis constants, 342–349, 372
angular speed, Ω0, 343–344, 369
mass load, η, 345–346, 369
specific angular momentum, l, 347–349,

369, 371
steady-state axisymmetry, 342

work-kinetic theorem, 402

Zemplén’s theorem, see shock waves;
entropy condition

ZEUS-3D, 63, 77, 119, 160, 244, 251–252,
254–257, 262–265, 283–285, 366–371


