
Clarke 9781009381475 .tex i 2/04/2025

A First Course in Magnetohydrodynamics

This text introduces readers to magnetohydrodynamics (MHD), the physics of

ionised fluids. Traditionally, MHD is taught as part of a graduate curriculum in

plasma physics. By contrast, this text – one of a very few – teaches MHD exclu-

sively from a fluid dynamics perspective, making it uniquely accessible to senior

undergraduate students. Part I of the text uses the MHD Riemann problem as

a focus to introduce the fundamentals of MHD: Alfvén’s theorem, waves, shocks,

rarefaction fans, and so on. Part II builds upon this with presentations of broader

areas of MHD: fluid instabilities, viscid hydrodynamics, steady-state MHD, and

non-ideal MHD. Throughout the text, more than 125 problems and several projects

(with solutions available to instructors) reinforce the main ideas. In addition, large-

font lesson plans for a “flipped-style” class are available free of charge to instructors

who use this text as required reading for their course. This book is suitable for

advanced undergraduate and beginning graduate students of physics, requiring no

previous knowledge of fluid dynamics or plasma physics.

David Clarke is a retired professor of astronomy and physics from Saint Mary’s Uni-

versity in Halifax, Nova Scotia. Over his thirty-year career, he has taught numerous

courses in physics and astronomy at the undergraduate and graduate levels, includ-

ing courses in fluid dynamics and MHD that inspired this text. He is co-developer

of the original ZEUS MHD code and currently the primary developer of ZEUS-3D

that he uses for his research in astrophysical jets and has made available open source

to hundreds of investigators worldwide.
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Professor Hannes Olof Gösta Alfvén (1908–1995), father of magnetohydrodynamics, 1970

Nobel Prize laureate for physics. Portrait created in 1972 by Benno Movin-Hermes (1902–

1977) using a three-colour foil method developed by the artist. Reproduced with permission

from I. Movin and the Moderna Museet, Stockholm.
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Preface

Whenever a university professor stares down the barrel of a new course prepa-

ration, the first question invariably asked is Is there a text? For the most

part in undergraduate physics, the answer is usually Yes, and plenty to choose from.

But for a senior undergraduate or beginning graduate course in magnetohydrody-

namics (MHD), the selection is much narrower.

MHD is a relatively new branch of physics. Developed by Hannes Alfvén during

the 1940s, it didn’t gain wide acceptance among physicists writ large until the

late 1950s culminating in Alfvén’s Nobel Prize in 1970.1 As such, MHD is often

touted as a “classical afterthought”, the only branch of classical physics introduced

after quantum mechanics with many of its fundamentals – the Riemann problem,

magneto-rotational instability, and non-ideal effects – still being worked out in the

1990s and early aughts.

Thus, MHD has not had as long a history as other branches of physics in which

textbooks could accumulate, particularly at the undergraduate level. Indeed, MHD

has largely been considered a graduate-level subject and, because of this, the vast

majority of existing texts specialise in areas such as fusion physics, solar physics,

and planetary discs, many written for students already with some familiarity of

plasma physics or fluid dynamics.

Another extenuating circumstance is MHD is a divided field whose practition-

ers – largely plasma physicists and fluid dynamicists – approach the subject in two

very different ways. From a plasma physicist’s point of view (PoV), an MHD system

is the isotropic limit of an ensemble of charged particles – a plasma – governed by

velocity moments of the Vlasov–Boltzmann equation, a 6-D inhomogeneous partial

differential equation (PDE) at the heart of plasma physics. From a fluid dynamicist’s

PoV, an MHD system is never considered as an ensemble of particles, but rather as a

continuous medium governed by simple conservation rules that any undergraduate

physics student can understand. This leads to a hyperbolic set of equations that

can be analysed entirely in terms of waves. The two approaches couldn’t be more

different.

After thirty years of teaching graduate and undergraduate (astro)physics, it

is my considered opinion that for MHD to be approachable by undergraduates,

it needs to be taught from the fluids PoV. Wave mechanics – so fundamental in

classical mechanics, electrodynamics, and quantum mechanics – is already ingrained

in the mind of a fourth-year student. On the other hand, velocity moments of a six-

1On pages 127–128, there’s an amusing anecdote on what – or who – changed the physics
community’s collective mind on MHD, and a link to Anthony Peratt’s short biography on Alfvén.

xiii
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dimensional PDE are not. Further, most texts taking the plasma PoV are focused

on laboratory plasmas and fusion physics, and the wave nature of MHD is often

overlooked. To my taste, MHD is the prototype for teaching and reinforcing wave

mechanics, and this is precisely the approach I take in this text.

While there are plenty of textbooks on MHD from the plasma PoV, precious

few exist from the fluids PoV. In the survey of texts I did as part of my proposal for

this text, I found more than 100 books written over the past six decades from the

plasma PoV focused on plasma physics with a substantial portion devoted to the

“MHD limit”. Indeed, a dozen or so of these textbooks include MHD in their titles.2

By contrast, I found just two texts on MHD written entirely from the fluids PoV and

directed to senior undergraduates: Kendall & Plumpton’s Magnetohydrodynamics

with Hydrodynamics (1964); and Galtier’s Introduction to Modern Magnetohydro-

dynamics (2016).

This text offers a third. My approach focuses on the fundamentals of the subject

and teaches MHD for its own sake rather than dwelling on directed applications and

current areas of research; these, I argue, are better suited for graduate texts of which

there are plenty. I do provide numerous examples from the literature, but these

are selected to emphasise certain ideas (e.g., planetary discs with non-ideal MHD,

stellar winds with steady-state MHD, astrophysical jets with Bernoulli’s principle,

etc.) and none should distract the reader from the current discussion. Once endowed

with the fundamentals, I contend, students can carry these forward to further their

study at the graduate level, should they choose.

In keeping with the undergraduate theme, the first part – 1-D MHD in Ten

Weeks – is designed around a single goal: solving the 1-D MHD Riemann problem.

I also assert that to understand MHD, one first has to understand ordinary hydro-

dynamics (HD) which is, after all, just the zero-field limit of MHD. To these ends,

Chap. 1 introduces the student to the fundamentals of HD that includes a novel and

simple derivation of the three ideal HD equations. Chapter 2 focuses on 1-D appli-

cations of HD including sound waves, shocks, bores, and Bernoulli’s principle while

Chap. 3 develops a semi-analytic solution to the hydrodynamical Riemann problem.

In so doing, students learn how the equations of HD lead to a wave equation, and

are shown three ways to extract information about hydrodynamical waves: direct

solution of the wave equation; normal mode analysis using linear algebra; and via

Riemann invariants and their characteristic paths. In my experience, introducing

students to these methods – particularly the latter two – for the relatively simple

case of HD is critical for them to understand how they apply to the much more

complicated MHD case.

The magnetic induction, �B, doesn’t appear until Chap. 4 where the ideal in-

duction equation and the Lorentz force are introduced, along with Alfvén’s theorem,

magnetic helicity, and flux linking. Chapter 5 examines the MHD equations in 1-D

to uncover all three types of waves (slow, Alfvén, fast) and all discontinuities (tan-

2The most ambitious and a very recent example of this is Goedbloed, Keppens, & Poedts’
Magnetohydrodynamics of Laboratory and Astrophysical Plasmas (2019). This is a comprehensive
tour de force which could support at least three graduate-level courses.
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gential, rotational, shocks) including all three shock subtypes (slow, intermediate,

fast). Chapter 6 introduces slow and fast rarefaction fans, and then brings it all to-

gether to show students how an exact MHD Riemann solver can be assembled. As

this is a semi-analytical solution, students learn or have reinforced semi-analytical

techniques including Runge–Kutta methods, multivariate secant root finders, meth-

ods for maintaining machine accuracy, and the list goes on.

Part I is designed to be completed in twenty-five hours of instruction (ten weeks

at most Canadian universities). The four chapters in Part II, Additional Topics in

(M)HD, are independent from each other, depend only on material from Part I,

and give the instructor options to complete the semester. These include (M)HD

instabilities in Chap. 7, viscid HD (Navier–Stokes equation) in Chap. 8, steady-state

MHD in Chap. 9, and non-ideal MHD in Chap. 10. In the interest of expediency,

sections designated as “optional” can be omitted without loss of continuity.

Parts of the text may come across as “mathematically dense”; this is deliberate.

As an undergraduate, I always found it frustrating and distracting when I was unable

to fill in the large gaps left between lines of logic in the texts my professors chose,

and I was not going to produce a text that did the same. That said, the densest

parts of the mathematics can largely be skimmed on first read and certainly don’t

need to be covered in detail in class, as the main results from which the physics is

extracted are always boxed within each development. For the student like I was who

needs to know how the derivations are done, the gaps between the mathematical

steps are small enough that a careful second read should suffice.

More than 125 problems – many exploiting “teaching moments” – and several

computer projects are distributed amongst the ten chapters’ problem sections, each

generally digestible by a senior undergraduate or first-year graduate student. Prob-

lems without an asterisk can and should be done in a page or less (and often a few

lines), one asterisk indicates a two-page solution, two asterisks indicate a three- to

four-page solution, while three asterisks indicate a more involved problem, generally

requiring more than five pages and/or a substantive computer program to solve. A

complete solution set including the computer projects is available to the instructor

upon request.

The eight appendices are designed to remind students of particularly critical

material prerequisite to this text. Students who do not recognise, recall, or know

how to use any of this material are encouraged to review the relevant material from

previous courses. Following the appendices is a glossary of symbols used throughout

the text, a list of references, and finally an extensive index.

While this text assumes no previous knowledge of (M)HD, students should

have had second- and third-year courses in mechanics, electrodynamics, and ther-

modynamics. On the math side, students should be fluent in vector calculus (at

the level of App. A), adept at solving differential equations including PDEs such as

the wave equation, and thoroughly familiar with linear algebra and, in particular,

eigenalgebra. In addition, some experience in scientific computing (algorithm and

code development) would be beneficial.

Finally, an acknowledgement of the biases of the author is in order. While
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this text includes numerous astrophysical applications, astronomy is by no means

a prerequisite, nor is this text designed just for budding astrophysicists. I would

like to think any physicist interested in learning about fundamental MHD will find

this book useful. As for units, I follow the bulk of the physics community (but not

astronomy!) and use mks exclusively. Lastly, all program listings in this text are in

FORTRAN 77, the only computer language – this old programmer would assert –

a computational scientist really needs to know!

Like many of my contemporaries, I learned MHD “at the knee of my advisors”,

by reading select chapters in certain texts, by going through journal articles, and

talking to experts. As a student and post-doctoral fellow, it always struck me as a

bit unfair that all other branches of physics seemed to be taught in more systematic

and accessible ways – dedicated courses, self-contained textbooks, problem sets at

appropriate levels – but somehow not MHD. Granted, MHD doesn’t enjoy the same

“critical mass” of students as other areas of physics, and perhaps this inaccessibility

is part of the reason why.

This text – almost two decades in the making – is the textbook I wish I had

access to forty years ago when I started out in this game. And now as I enter my

retirement, it is my profound hope that within these pages, new students of MHD

will find a self-contained introduction to the subject that will help launch them into

a fascinating, life-long adventure as I have enjoyed!

Each chapter in Part II benefitted from written projects or theses submitted by

Saint Mary’s graduate and undergraduate students taking my (M)HD course and/or

working with me as a research student in years past. For these efforts, I thank Joel

Tanner, Patrick Rogers, Jonathan Ramsey, Nicholas MacDonald, Michael Power,

and Christopher MacMackin.

I thank my editors Nicholas Gibbons, Sarah Armstrong, Stephanie Windows,

and Jane Chan at Cambridge University Press for their capable and patient guidance

of this first-time author. It definitely made my job a lot less daunting! A big thank-

you goes to Patricia Langille at Saint Mary’s Patrick Power Library for doing all

the heavy lifting in getting permissions for the copyrighted material used in this

text; she gets the first signed copy! I would also like to acknowledge the academic

freedom afforded to me over the past three decades by Saint Mary’s University that

made long-term projects like this possible. Thank you all.

This text was typeset using Donald Knuth’s TEX and Leslie Lamport’s LATEX.

Many of the figures were created using Xfig developed by Supoj Sutanthavibul, Ken

Yap, Brian V. Smith, and others. Figures from ZEUS-3D simulations were created

using PSPlot developed by Kevin E. Kohler. Countless members of the scientific

community are indebted to these people for placing their software into the public

domain.

And then there are the magnificent villages of Ménerbes and Saint-Pierre-
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Toirac, France. The most difficult sections of this text for me

to write were inspired and completed during my long séjours

there and, other than my home province of Nova Scotia, I can’t

think of anywhere else I’d rather spend months at a time than

in a small French village. So much about France charms me

including, of all things, their speed-limit signs! It’s not enough

to tell you what the speed limit is, the French also feel the need

to tell you you’re being reminded of what the speed limit is!

So in homage to my second country, all footnotes throughout

the text serving as a “reminder to the reader” are heralded by

the French translation Rappel.

And finally to my wife Jodi (MEL) to whom this text is dedicated. Words can’t

express my love and gratitude for sticking by me these nearly forty years and for

helping create such a wonderful and supportive home for our family here in Halifax.

You’re the best!

Any constructive feedback on what works and doesn’t work in this text, as well

as any error reports, omissions, redundancies, etc. are welcome and can be sent to

me directly at AfciMHD@gmail.com. Instructors of courses based on this text may

download a solution set to the problems and a fully-developed set of course lecture

notes from CUP’s website, www.cambridge.org/9781009381475.

David Clarke

Halifax, Nova Scotia

www.ap.smu.ca/~dclarke
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Introduction

At last, some remarks are made about the transfer of momentum from the

sun to the planets, which is fundamental to the theory. The importance

of magnetohydrodynamic waves in this respect are [sic] pointed out.

First published mention of the termmagnetohydrodynamic, from “On
the cosmogony of the solar system III” by Hannes Alfvén, 1942,
Stockholm’s Observatoriums Annaler, v. 14, 9.1–9.29.

The ancient Greeks knew the universe to be made up of the four elements:

earth; water; wind; and fire. Today, we know these as the four states of matter:

solid; liquid; gas; and plasma, three of which fall into the realm of fluid dynamics.

Indeed, more than 99.9% of “ordinary matter” in the universe is in the fluid state

and, in particular, the plasma (magnetohydrodynamical) state.1

Yet, as a pure science, fluid dynamics has often been omitted from many uni-

versity undergraduate physics curricula. In fact, if you want to find regularly offered

courses in fluid dynamics in a university calendar, you’re more likely to find them

among the engineering or applied mathematics offerings than physics.

One could come up with a number of reasons for this:

• areas of physics such as classical mechanics, electrodynamics, and quantum

mechanics are deemed more “fundamental” and courses such as fluid dynamics

get relegated as “optional”, if offered at all;

• analytical progress generally requires mathematics not typically understood

by most undergraduate students of physics until their fourth year; and

• historically, the really interesting problems required the use of major labora-

tory facilities (such as those available in a large engineering department) or

theorems of advanced applied mathematics.

An alternative to expensive laboratories or a degree in Applied Mathematics is

computing. While supercomputers capable of solving interesting problems in fluid

dynamics have been available since the mid 1980s, it is only since the turn of the 21st

century that cheap supercomputing has become widely available so that “ordinary”

physicists and astrophysicists can once again do interesting problems in the subject.

Indeed, many of the more “interesting” problems in astrophysics such as those

1www.plasma-universe.com/99-999-plasma/.

1
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in star formation, planetary discs, stellar evolution, the interstellar medium, forma-

tion of galaxies, galactic and extragalactic outflows and accretion, the early universe,

cosmology, even the Big Bang itself have awaited this “promised land” of cheap

supercomputing. Now that it has “arrived”, more and more of the literature in

astrophysics is being devoted to applications of fluid dynamics and, in particular,

magnetohydrodynamics. More than for any other practitioner of physics, astrophysi-

cists are finding the role of fluid dynamics is becoming increasingly important with

time, not less. For this reason alone, I would argue, university physics curricula

should be offering more courses in fluid dynamics, lest the discipline be taken over

completely by the engineers and applied mathematicians!

Before we start, let us agree on some basic terms and their uses.

1. A fluid is a state of matter that can flow. A liquid is an incompressible fluid,

while gas and plasma (ionised gas) are compressible fluids. A more technical

definition of a fluid involves the notion of granularity, where themean free path

(or collision length defined as the distance a particle in the fluid can travel,

on average, before colliding with another particle), δl, is much less than any

measurable scale length of interest (L). When δl � L, a fluid can be treated

as a continuum rather than as an ensemble of particles which simplifies the

governing equations enormously.

2. Fluid Dynamics, a term which is interchangeable with hydrodynamics (HD),

is the physics of fluid flow (compressible or incompressible), and involves the

concepts of mass and energy conservation, Newton’s second law, and an equa-

tion of state.

3. Fluid Mechanics has come to refer to fluid dynamics from an engineering van-

tage point, with more emphasis on experimentation than on theory. Typically

(but not always), a text entitled Fluid Mechanics will be an engineering text,

while a text entitled Fluid Dynamics will be a physics text. A notable ex-

ception is Landau and Lifshitz’ classic text Fluid Mechanics, which, in many

ways, is the definitive treatment of the subject from a theoretical physicist’s

perspective.

4. Gas Dynamics is compressible fluid dynamics in which all the fluid particles

are neutral.

5. Magnetohydrodynamics (MHD) is compressible or incompressible fluid in which

an appreciable fraction of the particles are charged (ionised) and where charge

neutrality is observed at all length scales of interest. Thus, within any volume

element however small, there must be as many negative charges as positive.

In an MHD fluid, circulation of charged particles at the sub-fluid length scale

implies a current and thus a magnetic field which, in turn, interacts with

ionised particles on the post-fluid length scale. Note that an MHD fluid need

not be 100% ionised for the equations of MHD to apply (e.g., Chap. 10 on
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non-ideal MHD). Neutrals in a partially (even a few percent) ionised fluid can

couple to the magnetic field via collisions with charged particles. By contrast,

a completely neutral gas can neither generate nor interact with a magnetic

field.

An MHD fluid can be created from an HD fluid by increasing the ionisation

fraction. For a gas, this can be done by increasing its temperature and thus

compressible MHD fluids are plasmas. For a liquid such as water, the ioni-

sation fraction can be increased by dissolving salts. While the earth’s oceans

permeated by the earth’s magnetic field technically constitutes an MHD fluid,

the weakness of the earth’s magnetic field (∼4 × 10−5 T, β ∼ 109 defined in

5.2)2 and the extremely low fraction of particles that are ionised renders the

MHD effects just about immeasurable.

6. Plasma Physics is the study of the collective behaviour of an ensemble of

charged particles at length scales smaller than the fluid length scale thereby

rendering the MHD equations inapplicable. Plasma physics is generally de-

scribed by theVlasov–Boltzmann equation which can account for non-fluid-like

behaviour such as charge separation and plasma oscillations. An MHD fluid

can be described as a plasma in which charge neutrality is observed at all

length scales of interest, and thus MHD is an important special case of plasma

physics. An excellent first text on plasma physics, which is beyond the scope

of this text, is Volume 1 of Francis Chen’s now-classic text Plasma Physics

and Controlled Fusion (1984).

The equations of MHD reduce to the equations of HD when the magnetic

induction ( �B) is set to zero. As we shall see, HD becomes MHD by adding the

Lorentz force to the hydrodynamic version of Newton’s second law, and by intro-

ducing Faraday’s law of induction that governs how the magnetic induction evolves.

These modifications, which will seem rather elementary when first introduced, belie

the incredible complexity magnetism provides an ionised fluid. For example, while

a hydrodynamical fluid can support compressive waves only (and thus, much of HD

can be understood in one dimension), the tension along lines of magnetic induc-

tion allow a magnetohydrodynamical fluid to support transverse waves as well, thus

requiring all three dimensions to describe.

To understand MHD is to understand wave mechanics, and much of this text is

devoted to building the students’ mathematical skills and physical intuition in this

area. By the end of Part I, the student will be able to solve the most complex MHD

problem one can do exactly (albeit, semi-analytically), namely the MHD Riemann

problem. And while the development of a general, multidimensional computer code

2Strictly speaking, it is the magnetic induction, �B, that has units tesla while the magnetic
field, �H = �B/μ (App. B), has units ampere/metre. Thus, the earth’s magnetic field is about 30
A/m. In this book, I attempt to be consistent with this distinction by using the term magnetic
field when referring to magnetism generically, and magnetic induction when reference is to �B
specifically although, for the most part and especially in astrophysics, this difference is largely
academic since all that separates them is the constant μ0.
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to solve more complex problems in MHD is beyond the scope of this book, the 1-D

Riemann problem and the ideas upon which it is based are at the core of virtually

every general computer program written and with which a whole host of interesting

(astro)physical problems become accessible.



Clarke 9781009381475 .tex 5 2/04/2025

PART I

1-D MHD IN TEN WEEKS
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1
The Fundamentals of

Hydrodynamics

Everything flows and nothing abides; everything gives way and nothing

stays fixed.

Heraclitus (c. 535–c. 475 BCE)

1.1 Definition of a fluid

The physics of hydrodynamics (HD), namely conservation of mass, conservation

of energy, and Newton’s second law, are all concepts familiar to first-year

undergraduate students, though the mathematics to solve the relevant equations is

not. Consider an ensemble of particles within some volume V , and let these particles

interact with each other via elastic collisions. We can let V remain fixed (in which

case we allow the particles to collide elastically with the walls of the container too),

or we can let V increase or decrease as the particles move apart or come together;

it does not matter. If the mass, total energy, and momentum of the ensemble of

particles are M , ET, and �S respectively, then we have:

dM

dt
= 0, conservation of mass; (1.1)

dET

dt
=
∑

Papp, conservation of total energy; (1.2)

d�S

dt
=
∑

�Fext, Newton’s second law. (1.3)

Here,
∑Papp is the rate at which work is done (power) by all forces applied to

the ensemble of particles, and
∑ �Fext are all forces external to and acting on the

ensemble of particles. Note that the applied forces – normally just collisions from

neighbouring ensembles of particles – are typically a subset of the external forces,

which include collisions from neighbouring particles plus forces arising from gravity,

magnetism, radiation, etc. This is because in addition to the thermal and kinetic en-

ergies, the total energy, ET, includes gravitational, magnetic, radiative, and possibly

other energies as well.

It is how we model the collisional forces from neighbouring ensembles of parti-

cles that defines both what constitutes a fluid and how Eq. (1.1)–(1.3) are further

developed. Consider a small cube with volume ΔV = (Δl)3 as shown in Fig. 1.1a.

7
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Figure 1.1. a) A single particle bounces elastically from the walls of a cube of
edge length, Δl, imparting impulses Jx, Jy , etc. b) An x–y cut through the cube
in panel a showing one particle whose motion is entirely in the x-direction.

Let the walls of the cube be perfectly reflecting and let there be just one particle

inside the cube moving at some speed v in an arbitrary direction.

When the particle collides with the wall, both the particle and cube suffer a

change in momentum in a direction normal to the surface of the cube. Moments

later, the particle collides with a different wall, and the particle and cube suffer

changes in momentum in a direction normal to that wall. A change in momentum

is an impulse, J , which when multiplied by the time over which the collision occurs,

Δt, constitutes the average force. Thus formally, the “pressure”, p, the collision

exerts on the wall of the box is this average force divided by the area of the wall:

p ∼ JΔt

(Δl)2
.

In this scenario, the “pressure” is highly variable in time, and by no means could

the “pressure” be construed as isotropic. At a given time, the “pressure” one wall

feels will have nothing to do with the “pressures” felt by the other walls.

However, by arbitrarily increasing the number of particles, N , inside our small

volume, ΔV , the number of collisions with a given wall, n, occurring in a time Δt

will be the same at each wall to within some arbitrarily small variance, Δn. Put

another way, averaged over Δt, particle collisions exert the same “pressure” on each

wall to within a variance made as small as we please by making N as large as we

please. Thus, we have rendered the particle “pressure” inside the cube isotropic

because each wall now feels the same force.

There is a contrived exception to this picture. If all the particles were to be

placed initially on the mid-plane of the cube and all were launched with the same

speed towards one wall of the cube, then it is only with this and the opposite wall

that particles would ever collide, and they would do so in a highly ordered, periodic

fashion. The remaining four walls would, in principle, never feel any collisions, and

thus the “pressure” in the cube would not be isotropic even with N chosen arbitrar-

ily large. Such a well-ordered and well-directed ensemble of particles is said to be

streaming and, as N is made larger, it becomes increasingly difficult in practice to

maintain streaming motion. Small perturbations will eventually cause one particle

to collide with another which in turn collide with others, and the ensuing chain
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reaction quickly reduces the streaming motion to chaos. Isotropic “pressure” (the

same “pressure” measured on each of the six walls) is once again the result.

We can now state the key criterion for an ensemble of particles to be treated as

a fluid. If there is a sufficient number of particles inside our box (volume element) of

dimension Δl so that the motion of particles within the volume element can always

be considered isotropic, then the effect of the collisions of particles against the walls

of the volume element (which may be rigid walls, or “soft” walls of neighbouring

ensembles of particles) is to exert an isotropic “pressure” against all walls. Since

isotropy is maintained by particle–particle collisions within the volume element, we

may “mathematise” this criterion as,

δl � Δl < L, (1.4)

where δl is the mean free path (collision length) of the particles, Δl is the length

of one side of our cubic volume element containing an arbitrarily large number of

particles, and L is the smallest length scale of interest in our physical problem. If

Ineq. (1.4) holds, we say the ensemble of particles behaves as a fluid or a continuum.

This assumption is an important one; it allows us to treat the applied forces resulting

from collisions – which otherwise could be extremely difficult to deal with – in a

very simple way, namely as an isotropic “pressure”.

1.2 A quick review of kinetic theory

To now, I have been enclosing the word pressure in quotation marks. This is be-

cause I haven’t yet made the logical connection between particle collisions (and

more specifically, the momentum transferred by particle collisions) and what we

commonly think of as pressure, such as the barometric pressure of the air. So, be-

fore we examine how Eq. (1.1)–(1.3) become the equations of hydrodynamics (HD)

under the assumption that the ensemble of particles behaves as a fluid (when Ineq.

1.4 is valid), let us review how the “pressure” and the “temperature” of a fluid re-

late to properties of the ensemble of particles. These ideas form the basis of kinetic

theory, often exposed to students for the first time in a first-year physics course.1

Consider a cube whose edges of length Δl are aligned with the x-, y-, and z-axes

of a Cartesian coordinate system, as depicted in Fig. 1.1. Returning to our example

in the previous section, suppose a single point particle of mass m moves inside the

cube with velocity vx x̂ and collides with the wall whose normal is +x̂. If collisions

are all elastic, then the particle reflects from the wall with a velocity −vx x̂ and

thus suffers a change in momentum of ΔSx = −2mvx. Conservation of momentum

then demands that an impulse of +2mvx be imparted against the wall. At a time

Δt = 2Δl/vx later, the same particle again collides with the wall, imparting another

impulse of +2mvx against it. Thus, the rate at which momentum is delivered to the

1For example, Halliday, Resnick, & Walker (2003).
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wall by a single particle is given by,

ΔSx

Δt
=

2mvx
2Δl/vx

=
mv2x
Δl

= 〈F 〉,

where 〈F 〉 is the average force felt by the wall. Thus, the average pressure exerted

by this one particle, defined as force per unit area, is given by,

〈p〉 =
〈F 〉
(Δl)2

=
mv2x
V

,

where V = (Δl)3 is the volume of the cube. For N particles, we simply add over all

particles:

p ≡
N∑

i=1

〈pi〉 =
N∑

i=1

mv2x,i
V

=
m

V

N∑

i=1

v2x,i =
mN
V

〈v2x〉, (1.5)

where each point particle is assumed to have the same mass, m, and where 〈v2x〉 =∑
v2x,i/N is the arithmetic mean of the squares of the particle velocities.

For any given particle, v2 = v2x + v2y + v2z and, for large N , one would expect

〈v2x〉 = 〈v2y〉 = 〈v2z〉 since one Cartesian direction shouldn’t be favoured over another.

Thus,
〈v2〉 = 〈v2x〉+ 〈v2y〉+ 〈v2z〉 = 3〈v2x〉, (1.6)

and Eq. (1.5) becomes,

p =
Nmv2rms

3V
, (1.7)

where,
vrms ≡

√
〈v2〉,

is the root-mean-square (rms) speed of the particles in the volume V . Comparing

Eq. (1.7) with the ideal gas law :

p =
NkBT

V
, (1.8)

(where kB = 1.3807× 10−23 JK−1 is the Boltzmann constant) yields:

T =
mv2rms

3kB
⇒ 3

2
kBT =

1

2
mv2rms = 〈K〉, (1.9)

where 〈K〉 is the average kinetic energy per point particle. Thus, while the pressure,

p, is a measure of the rate at which momentum is transferred from the particles of

the fluid (gas) to, for example, the diaphragm of the measuring device (barometer),

the temperature (or more precisely 3kBT/2) is a measure of the average kinetic

energy of the particles.

The randomly directed kinetic energy of a system of N particles is called its

internal energy, E, and, for the point particles under discussion, is given by,

E = N〈K〉 =
3

2
NkBT.

The factor 3/2 is significant and warrants comment. A point particle, as may

be found exclusively in a monatomic gas, has three degrees of freedom of mo-

tion, namely translation in each of the three Cartesian directions (Fig. 1.2, left).
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Figure 1.2. A point particle (left) has three degrees of freedom for movement,
while a “dumb-bell” (right) has five.

From Eq. (1.6), we have 〈v2i 〉 = 〈v2〉/3 for i = x, y, z, and thus to each (transla-

tional) degree of freedom we can associate an internal energy Ei = N kBT/2, where

E = Ex + Ey + Ez = 3Ei.

Now, a diatomic molecule (essentially two point masses connected by a massless

rod) has the same three translational degrees of freedom as a monatomic particle

plus two rotational degrees of freedom, namely rotation about each of the two

principle axes orthogonal to its own axis (the x-axis in Fig. 1.2, right), for a total

of five degrees of freedom.2 Note that spinning about the x-axis itself does not

constitute a degree of freedom as the moment of inertia about this axis is essentially

zero. Because of the principle of equipartition,3 each degree of freedom stores the

same amount of kinetic energy, and the internal energy of a diatomic gas must be,

E =
5

2
NkBT.

Thus, in general, we write,

E =
1

γ − 1
NkBT, (1.10)

where γ = 5/3 for a monatomic gas, γ = 7/5 for a diatomic gas, and 4/3 ≤ γ < 7/5

for molecules more complex than diatomic.4 One can show that γ = CP /CV , the

ratio of specific heats of the gas, and that for an adiabatic gas (where heat is neither

lost nor gained from the system), p ∝ ργ , where ρ is the mass density of the gas.

Dividing Eq. (1.10) by the volume of the sample and using Eq. (1.8) gives an

expression for the internal energy density, e:

e =
E

V
=

1

γ − 1

NkBT

V
=

p

γ − 1
.

Thus, an alternate form of the ideal gas law, and the form most frequently used in

2In principle, there are also two vibrational degrees of freedom which, at “ordinary tempera-
tures”, statistical mechanics tells us are insignificant.

3Left to their own devices, systems will distribute the available energy equally among all
possible ways energy can be stored. Thus, for a large number of diatomic molecules randomly
colliding with each other and the walls of their container, one would not expect m〈v2x〉 to differ
significantly from m〈v2y〉 or m〈v2z 〉 any more than it should differ from Iy〈ω2

y〉 or Iz〈ω2
z 〉, where Iy

and Iz are the moments of inertia about the y- and z-axes respectively.
4Polyatomic molecules are significantly more complex than diatomic molecules, and the full

power of statistical mechanics along with a tensor treatment of its moment of inertia are required
to explain the value of γ for any individual molecule.
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hydrodynamics, is,
p = (γ − 1) e, (1.11)

which states that the rate at which momentum is transferred via collisions is pro-

portional to the average kinetic energy density (i.e., per unit volume) of the random

particle motion.

Possibly the second most frequently used form of the ideal gas law in hydrody-

namics is,

p =
ρkBT

m
, (1.12)

which follows directly from Eq. (1.8) noting that ρ = Nm/V . Finally, from Eq.

(1.9) [and replacing the ‘3’ with 2/(γ − 1)], we find:

vrms =

√
2kBT

(γ − 1)m
=

√
2p

(γ − 1) ρ
. (1.13)

Thus, the rms speed goes as the square root of the temperature. We shall encounter

another characteristic speed of the gas proportional to the square root of the temper-

ature in 2.1.1, namely the sound speed, cs. Indeed, cs and vrms arise from essentially

the same physics, as will be explained when the sound speed is properly introduced.

1.3 The equations of ideal hydrodynamics

In hydrodynamics, the adjective ideal means that internal dissipative forces such as

viscosity are ignored. A fluid without (with) viscosity is said to be inviscid (viscid).

In this chapter, our discussion is exclusively restricted to inviscid flow. Viscid flow

is more the realm of terrestrial HD (though there are important applications for

astrophysical fluids as well), and is covered in some depth in Chap. 8.

We begin our discussion by defining the adjectives extensive and intensive.

Variables such as mass, volume, and energy which are proportional to the amount

of substance being measured are extensive quantities, while mass density (often

just referred to as density), energy density, and temperature are independent of the

amount of substance being studied and are examples of intensive quantities.

To give a precise relationship between extensive and intensive quantities, con-

sider a small sample of substance with volume ΔV . For every extensive quantity,

Q(V, t), of that sample, we can define a corresponding intensive quantity, q(�r, t),

such that,

q(�r, t) = lim
ΔV→0

ΔQ(V, t)

ΔV
=

∂Q(V, t)

∂V
. (1.14)

This is a microscopic description of the system; q may well change from point to

point. A macroscopic description of the system can be obtained by integrating Eq.

(1.14) over a finite volume, V , to recover Q:

Q(V, t) =

∫

V

q(�r, t) dV. (1.15)
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Note that Eq. (1.15) requires that q be an integrable function of the coordinates over

the volume V , and thus q can be discontinuous and have poles of order less than

unity. On the other hand, Eq. (1.14) requires that Q be a differentiable function

of V , and thus it must be both continuous and free from any poles of any order.

Evidently, differentiability is a more restrictive requirement than integrability, and

this observation will have important consequences as we develop the theory further.

We’re now ready to introduce and prove a theorem that provides a particularly

simple way to derive the equations of hydrodynamics from the conservation laws of

Eq. (1.1)–(1.3).

Theorem 1.1. Theorem of hydrodynamics.5 If the time dependence of an extensive

quantity, Q, is given by:
dQ

dt
= Σ, (1.16)

where Σ represents the possibly time-dependent “source terms” (reasons for Q not

being “conserved”), then the evolution equation for the corresponding intensive

quantity, q(�r, t), is given by,
∂q

∂t
+∇ · (q�v) = σ, (1.17)

where �v = d�r/dt, Q =
∫
V
q dV , Σ =

∫
V
σdV , and where the product q�v must be a

differentiable function of the coordinates.

Proof :

dQ

dt
= Σ ⇒ d

dt

∫

V

q dV =

∫

V

σdV,

where, in general, the volume element V = V (t) also varies in time. Thus, using the

standard definition of the derivative,

d

dt

∫

V (t)

q dV = lim
Δt→0

1

Δt

[ ∫

V (t+Δt)

q(�r, t+Δt)dV −
∫

V (t)

q(�r, t)dV

]

= lim
Δt→0

1

Δt

[ ∫

V (t+Δt)−V (t)

q(�r, t+Δt)dV

+

∫

V (t)

q(�r, t+Δt)dV −
∫

V (t)

q(�r, t)dV

]

= lim
Δt→0

1

Δt

∫

ΔV

q(�r, t+Δt)dV

+ lim
Δt→0

1

Δt

∫

V (t)

[
q(�r, t+Δt)− q(�r, t)

]
dV,

5This theorem is a variant of Reynolds’ transport theorem, a volume-integral application of the
Leibniz formula for the derivative of an integral.
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where, as shown in the inset, performing the volume

integral over the difference in volumes, ΔV = V (t+

Δt)−V (t), is the same as integrating over the closed

surface, ∂V , using a volume differential given by

dV = (�vΔt) · (n̂dA). Thus,
d

dt

∫

V (t)

q dV = lim
Δt→0

1

��Δt

∮

∂V

q(�r, t+Δt)(�v��Δt) · (n̂dA)

+

∫

V (t)

lim
Δt→0

q(�r, t+Δt)− q(�r, t)

Δt
dV

=

∮

∂V

q(�r, t)�v · n̂dA+

∫

V (t)

∂q(�r, t)

∂t
dV

=

∫

V (t)

∇ · (q(�r, t)�v)dV +

∫

V (t)

∂q(�r, t)

∂t
dV (Gauss; Eq. A.30)

=

∫

V (t)

(
∂q(�r, t)

∂t
+∇ · (q(�r, t)�v)

)
dV =

∫

V (t)

σ(�r, t)dV

⇒
∫

V

(
∂q

∂t
+∇ · (q�v)− σ

)
dV = 0.

As this is true for any V , the integrand must be zero, proving the theorem.

Note that q is not the conserved quantity, Q is (at least to within a known source

term, Σ). However, since Q is the volume-integral of q, we’ll refer to q as a volume-

conserved quantity.

The quantity q�v ≡ �fQ is the advective flux density of Q whose units are those

of Q times m−2 s−1; this will require a little unpacking. The flux,6 FQ, of a vector

field, �fQ, is a measure of how much �fQ “passes through” a given surface area with

arbitrary normal, n̂. Mathematically,

FQ =

∮

S

�fQ · n̂ dA or FQ =

∫

Σ

�fQ · n̂ dA, (1.18)

depending on whether the surface is closed (S) or open (Σ) respectively. Thus, the

units of �fQ are those of FQ per unit area, and �fQ can also be interpreted as a flux

density of FQ. And so, FQ is the flux of �fQ while �fQ is the flux density of FQ.

An advective flux density is more specific to fluid dynamics and refers to some

quantity, Q, being advected (i.e., transported) by the flow across a surface at a

certain rate. Thus, while �fQ is the flux density of FQ with units of FQ per unit

area, �fQ = q�v is also the advective flux density of Q – the volume integral of q –

with units of Q per unit area per unit time. It is the “per unit time” part that

triggers the adjective advective.

Evidently, we have four different types of “fluxes” to keep straight (flux, flux

6From the Latin fluxus or “flow”, this term was introduced to physics by Sir Isaac Newton.
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density, advective flux, advective flux density) and the literature seems to blur all

four; often you’ll find any or all of these terms used interchangeably. In this text,

while I maintain the distinction between flux and flux density, I’ve chosen to drop

the adjective advective to simplify the language a bit, relying instead on context. If

a particular flux/flux density has a “per unit time” aspect to it, it is an advective

flux/flux density; otherwise just flux/flux density.

Last point before getting to the equations of HD: Eq. (1.16) is an integral

equation (Q and Σ both being volume integrals of intensive quantities, q and σ),

and thus represents a global statement (valid over a finite sample of the fluid) on

the conservation of the extensive quantity, Q. On the other hand, Eq. (1.17) is a

differential equation (often referred to as the differential form of Eq. 1.16) and thus

represents a local statement (valid at a point) on the conservation ofQ, involving the

corresponding intensive quantity, q. Global and local forms of an equation are not

identical. Because differential equations require the functions to be differentiable,

solutions of the differential form of the equations can be more restrictive than those

of the integral form where functions need only be integrable. More on this in 1.5.

Example 1.1. Let Q = M , the mass of the sample of fluid. Find the evolution

equation for the corresponding intensive quantity, q = ρ (mass density).

Solution: From Eq. (1.1), Σ = 0 ⇒ σ = 0, and Theorem 1.1 requires that:

∂ρ

∂t
+∇ · (ρ�v) = 0. (1.19)

This is the continuity equation; the first equation of HD.

Example 1.2. Let Q = ET, the total energy of the fluid sample7 of mass M :

ET = E +
1

2
Mv2 +Mφ,

where E is the internal (thermal) energy and φ is the gravitational potential. Find

the evolution equation for the corresponding intensive quantity, the total energy

density, namely,

eT = e+
1

2
ρv2 + ρφ, (1.20)

where once again, e is the internal energy density, whose units Jm−3 = Nm−2 are

the same as those for pressure, as expected from Eq. (1.11).

Solution: From Eq. (1.2), Σ = Papp ⇒ σ = papp, the applied power density inter-

preted as the rate at which work is done on a unit volume of the fluid sample by

all applied forces. Thus, Theorem 1.1 implies:

∂eT
∂t

+∇ · (eT�v) = papp. (1.21)

7When we introduce magnetism in Chap. 4, we’ll add a magnetic term to ET.
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Figure 1.3. a) A cube of edge length Δx with external pressure forces acting
on the x-faces indicated. b) An x–y cut through the cube in panel (a) showing
both the pressure forces on and motion of the x-faces.

As discussed in 1.1, applied forces are collisions of external particles with the fluid

sample. Thus, the applied power is the rate at which work is done on the fluid

sample by the external fluid as the former expands or contracts within the latter.

To find an expression for the applied power, Papp, consider a small cube of fluid

with dimension Δx in the x-direction and cross-sectional area ΔA = ΔV/Δx (Fig.

1.3). The pressure force exerted on the left face of the cube is F (x) = +p(x)ΔA

and, in time Δt, the left face is displaced by vx(x)Δt. Thus, the work done on the

left face by the external fluid is ΔWL = +p(x)vx(x)ΔtΔA. Similarly, the work

done on the right face is ΔWR = −p(x + Δx)vx(x + Δx)ΔtΔA [since p(x + Δx)

and v(x + Δx) are oppositely directed; Fig. 1.3b], and the net work done on the

fluid cube is:

ΔW = ΔWL +ΔWR = p(x)vx(x)ΔtΔA − p(x+Δx)vx(x+Δx)ΔtΔA

= p(x) δV (x)− p(x+Δx) δV (x+Δx),

where δV (x) [δV (x+Δx)] is the small volume change on the left [right] face of the

cubic sample of volume ΔV by virtue of the motion of the left [right] face. Because

of its form, this work is frequently referred to as the “pdV term”.

Dividing ΔW by Δt gives us the applied power,

Papp =
ΔW

Δt
= −ΔAΔx

p(x+Δx)vx(x+Δx)− p(x)vx(x)

Δx
= −ΔV

Δ(pvx)

Δx
,

and thus the applied power density is given by:

papp =
Papp

ΔV
= −Δ(pvx)

Δx
.

Taking into account similar terms in the y- and z-directions, and letting Δ → ∂, we

have:
papp = −∇ · (p�v). (1.22)

Substituting Eq. (1.22) into Eq. (1.21) yields:

∂eT
∂t

+∇ · (eT�v) = −∇ · (p�v),
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⇒ ∂eT
∂t

+∇ · ((eT + p)�v
)
= 0, (1.23)

the total energy equation and the second equation of ideal HD.

Example 1.3. Let Q = �S, the total momentum of the fluid sample. Find the evolu-

tion equation for the corresponding intensive quantity, q = �s = ρ�v (the momentum

density).

Solution: From Eq. (1.3), Σ =
∑ �Fext ⇒ σ =

∑ �fext, the external force densities.

Thus, Theorem 1.1 requires that:

∂�s

∂t
+∇ · (�s�v) =

∑
�fext, (1.24)

where the Cartesian representation of the divergence term is:

∇ · (�s�v) =
(
∇ · (sx�v),∇ · (sy�v),∇ · (sz�v)

)
.

(See A.4 for other orthogonal coordinate systems.)

For now, we will limit the external force densities to terms arising from pressure

gradients and gravity. In Chap. 4, we’ll add the Lorentz force, in Chap. 8 viscous

stress, and in Chap. 10, drag forces exerted between ions and neutral particles.

Starting with the pressure gradient, consider once again the small cube of fluid

with edge length Δx and face area ΔA in Fig. 1.3a. If the pressure at the left and

right sides of the cube are respectively p(x) and p(x + Δx), then the net pressure

force acting on the cube in the x-direction is given by:

F (x+Δx) + F (x) = −p(x+Δx)ΔA + p(x)ΔA = −Δp

Δx
ΔAΔx = −Δp

Δx
ΔV.

Thus, the pressure force density in the x-direction is:

fx =
ΔFx

ΔV
= −Δp

Δx
→ − ∂p

∂x
as Δx→ 0.

Accounting for all three components,

�fp = −∇p. (1.25)

The gravitational force density, �fφ, is even simpler to derive. If the fluid sample

has mass ΔM , then the gravitational force on ΔM is −ΔM∇φ, where φ is the local

gravitational potential arising from all external masses, including other regions of

fluid and distant or embedded point masses (e.g., stars). Thus, �fφ is given by:

�fφ = −ΔM ∇φ
ΔV

→ − ρ∇φ as ΔV → 0. (1.26)

Substituting both Eq. (1.25) and (1.26) into Eq. (1.24) yields the momentum

equation, the third and final equation of ideal HD:

∂�s

∂t
+∇ · (�s�v) = −∇p− ρ∇φ. (1.27)
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Summary of 1.3: Equations (1.19), (1.23), and (1.27) constitute two scalar equa-

tions and one vector equation which, when combined with Eq. (1.11), (1.20), and

�s = ρ�v (the constitutive equations), provide a closed system of equations for the fluid

flow variables, namely the volume-conserved quantities ρ, �s, and eT. This suite of

equations comprises our first set of equations of ideal hydrodynamics:

Equation Set 1 :

∂ρ

∂t
+∇ · (ρ�v) = 0; continuity

∂eT
∂t

+∇ · ((eT + p)�v
)
= 0; total energy equation

∂�s

∂t
+∇ · (�s�v) = −∇p− ρ∇φ; momentum equation

eT = e+
1

2
ρv2 + ρφ; constitutive equation 1

p = (γ − 1)e; constitutive equation 2

�s = ρ�v. constitutive equation 3

The gravitational potential, φ, is computed by adding up all the potentials of the

contributing point masses, and/or by computing the self-gravitational potential of

the gas from the density distribution from Poisson’s equation:

∇2φ = 4πGρ. (1.28)

As a PDE, Poisson’s equation is qualitatively different from the equations of hy-

drodynamics. It has no time derivative, spatial derivatives are second order, and

Poisson’s equation is an example of an elliptical PDE rather than the hyperbolic

PDEs of HD (App. C). Analytical methods for solving Poisson’s equation can be

found in any intermediate or advanced text on electrodynamics (e.g., Paris & Hurd,

1969; Lorrain & Corson, 1970; Jackson, 1975 to suggest a few), while numerical

treatments can be found in widely available resources such as Numerical Recipes

(Press et al., 1992). We shall not address such methods in this text.

1.4 The internal energy density

Equation (1.23) governs the evolution of the total energy density, eT. We can elimi-

nate the need for the first constitutive equation by finding an evolution equation for

the internal energy density, e, alone, and our approach shall be via thermodynamics.

The combined first and second law of thermodynamics is:

TdS = dE + pdV, (1.29)

where the only new variable being introduced is S, the total entropy of the fluid
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sample.8 If the mass of the sample, M = ρV , is fixed, then:

dV = −M
ρ2
dρ,

and Eq. (1.29) becomes:

TdS = dE − Mp

ρ2
dρ. (1.30)

Define s ≡ S/M and ε ≡ E/M to be the specific entropy and specific internal

energy respectively. As the term density is used to connote per unit volume, so the

term specific is used to connote per unit mass. Note, for example, that the specific

internal energy and internal energy density are related by e = ρε, and while e ∝ p,

the pressure (Eq. 1.11), ε ∝ T , the temperature.

With these definitions, Eq. (1.30) becomes,

dε

dt
− p

ρ2
dρ

dt
= T

ds

dt
, (1.31)

where I’ve divided through by the differential dt to obtain an expression relating

time derivatives.

Now, because ε = e/ρ, we have:

dε

dt
=

1

ρ

de

dt
− e

ρ2
dρ

dt
.

Further, from continuity (Eq. 1.19) and use of the chain rule for partial derivatives,

we have:

∂ρ

∂t
+ �v · ∇ρ+ ρ∇ · �v =

dρ

dt
+ ρ∇ · �v = 0 ⇒ dρ

dt
= −ρ∇ · �v.

Substituting these into Eq. (1.31) yields:

1

ρ

de

dt
+
p+ e

ρ
∇ · �v = T

ds

dt
. (1.32)

Another invocation of the chain rule gives us:

de

dt
=

∂e

∂t
+ �v · ∇e,

and thus, upon multiplying through by ρ, Eq. (1.32) becomes:

∂e

∂t
+ �v · ∇e + e∇ · �v = −p∇ · �v + ρT

ds

dt

⇒ ∂e

∂t
+∇ · (e�v) = −p∇ · �v + p

m

kB

ds

dt
,

where the ideal gas law (1.12) has been used to replace ρT with pm/kB. Finally, by

defining the unitless entropy per particle, S ≡ ms/kB, we obtain:

∂e

∂t
+∇ · (e�v) = −p

(
∇ · �v − dS

dt

)
. (1.33)

8Unavoidably, S is an over-used symbol. It has already been defined and indeed is used through-
out the text as the closed surface of integration. Here, it is being used to represent the total entropy
of the fluid (an extensive quantity), while the vector �S represents the total momentum.
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For an adiabatic process, the entropy per particle remains constant, and we arrive

at our final form for the evolution equation for internal energy density:

∂e

∂t
+∇ · (e�v) = −p∇ · �v. (1.34)

Note that Eq. (1.34) can replace Eq. (1.20) and (1.23), thus giving rise to a somewhat

simpler set of hydrodynamical equations:

Equation Set 2 :

∂ρ

∂t
+∇ · (ρ�v) = 0; continuity

∂e

∂t
+∇ · (e�v) = −p∇ · �v; internal energy equation

∂�s

∂t
+∇ · (�s�v) = −∇p− ρ∇φ; momentum equation

p = (γ − 1)e; constitutive equation 2

�s = ρ�v. constitutive equation 3

1.5 Primitive, integral, and conservative form

For a so-called barotropic gas (where p is a function of ρ only; both adiabatic and

isothermal gases are examples of barotropes), it is left to Problem 1.5 to derive the

so-called pressure equation:

∂p

∂t
+ �v · ∇p = −ρ dp

dρ
∇ · �v. (1.35)

It is further left to Problem 1.2 to show that the continuity equation, (Eq. 1.19),

and the momentum equation, (Eq. 1.27), combine to yield an evolution equation

for the velocity:
∂�v

∂t
+ (�v · ∇)�v = −1

ρ
∇p−∇φ, (1.36)

where, in Cartesian coordinates, we have:

(�v · ∇)�v = (�v · ∇vx, �v · ∇vy , �v · ∇vz).
(See A.4 for other orthogonal coordinate systems.) Equation (1.36) is known as

Euler’s equation named for Leonhard Euler (1707–1783), the Swiss mathematician

and physicist often described as the most prolific mathematician of all time.9

9www.wikipedia.org/wiki/Leonhard Euler
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Collecting Eq. (1.35) and (1.36) with the continuity equation, (Eq. 1.19), gives

us our third set of HD equations:

Equation Set 3 :

∂ρ

∂t
+∇ · (ρ�v) = 0; continuity

∂p

∂t
+ �v · ∇p = −ρ dp

dρ
∇ · �v; pressure equation

∂�v

∂t
+ (�v · ∇)�v = −1

ρ
∇p−∇φ. Euler’s equation

These three equations form a closed set; no constitutive equations are necessary.

Equation Set 3 is said to be in primitive form because it governs the time evolution

of the three so-called primitive variables ρ, p, and �v.

Finally, one can write down the equations of ideal HD in integral form by

performing volume integrals on each term of Eq. Set 1, this time setting φ = 0.

This yields a set of integro-differential equations highly reminiscent of the funda-

mental conservation laws (Eq. 1.1–1.3) upon which our current discussion is based.

Accordingly, I have designated these as Equation Set 0 :

Equation Set 0: Integral Equations of Ideal HD

∂M

∂t
+

∮

S

ρ�v · n̂ dσ = 0; (1.37)

∂ET

∂t
+

∮

S

(eT + p)�v · n̂ dσ = 0; (1.38)

∂�s

∂t
+

∮

S

ρ(�v�v) · n̂ dσ = −
∮

S

pn̂dσ, (1.39)

with constitutive equations:

M =

∫

V

ρdV ; ET =

∫

V

eT dV ; eT =
p

γ − 1
+
ρv2

2
; and �s =

∫

V

ρ�v dV,

and where S is the surface (not entropy!) enclosing the volume element V . Because

all spatial derivatives in Eq. Set 1 are either perfect divergences or perfect gradients,

their volume integrals can be replaced with surface integrals by the use of Gauss’

theorem (Eq. A.30 and A.31). Note that the same cannot be done with the internal

energy equation in Eq. Set 2 and the pressure and Euler’s equations in Eq. Set 3

because of the imperfect divergences and gradients in these equations.

The integral form in Eq. Set 0 completely exposes the three conservation laws

upon which fluid dynamics is based. For each equation, the time rate of change of

the extensive quantity within a given volume element, V , however large or small is

determined completely by the (advective) flux density of that quantity (integrand
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of the surface integral) passing through the closed surface, S.10 Since Eq. Set 0

follows so directly from Eq. Set 1, Eq. Set 1 is said to be in conservative form.

The distinction between conservative and primitive forms is more than seman-

tic. To be valid, the primitive equations require that the primitive variables p, �v,

and thus ρ be individually differentiable – and therefore continuous – everywhere.

This necessarily precludes discontinuities in ρ, p, and �v and thus the primitive equa-

tions are valid only for smooth flow. On the other hand, the conservative equations

only require that the functions (flux densities) ρ�v, �v(eT + p), and ρ�v�v + p I11 be

continuous,12 and not necessarily the primitive variables individually. Thus, the

conservative equations in terms of the conservative variables (ρ, eT, �s) can, in prin-

ciple, admit solutions with discontinuities in ρ, p, and �v (i.e., discontinuous flow)

so long as these discontinuities combine to yield continuous flux densities. We shall

exploit this observation when we write down the Rankine–Hugoniot jump conditions

in 2.2.3, and then again for MHD in 5.3.

Of course, in addition to discontinuous solutions, the conservative equations

also admit all smooth solutions admitted by the primitive equations, and thus the

conservative set of equations is the more general of the two. Still, there are times

when use of the primitive equations is far more convenient, as we shall see when we

discuss the all-important Riemann problem in Chap. 3 and 6.

Problem Set 1

1.1 On a cold winter afternoon, you enter your winter cabin (which has not been

heated for weeks) freezing cold. You light a roaring fire in the hearth and after an

hour, the cabin is warm enough to take off your winter clothing.

a) Does the air in your cabin contain more, less, or the same total internal energy,

E, now that it is warm than when it was cold? Explain.

b) If you conclude that the air contains less or the same internal energy after

being heated as before, where does all the energy from the fire go?

1.2 Derive Euler’s equation (Eq. 1.36 in the text) from the continuity and momen-

tum equations (Eq. 1.19 and 1.27). Your proof should be valid for all coordinate

systems, not just Cartesian.

Hint: Vector identity (A.21) from App. A should be particularly helpful.

10Note that in this picture, the pressure p contributes to the flux densities of both �S and ET.
11�v�v is the dyadic product of �v with itself creating a rank 2 tensor (matrix; see Eq. A.16), while

I is the “identity tensor”, which you can think of as the identity matrix.
12To see how one arrives at the conclusion that the momentum equation, (1.27), only requires

that ρ�v�v + p I be continuous, it is instructive to note that formally, ∇p = ∇ · (p I). Try it!
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1.3 Derive the internal energy equation for an adiabatic gas (Eq. 1.34 in the text)

from the hydrodynamical equations alone by substituting the definition for eT (Eq.

1.20) into the total energy equation (Eq. 1.23) and then by using the continuity

equation (Eq. 1.19) and Euler’s equation (Eq. 1.36) to simplify.

Hint: The gravitational potential, φ, solves Poisson’s equation (Eq. 1.28) and, as

such, has no explicit time dependence. Thus, you can set ∂φ/∂t = 0.

1.4∗

a) Equation (1.34) in the text is the evolution equation for the internal energy

of an adiabatic gas. Show that the analogous equation for an isothermal gas

is:
∂e

∂t
+∇ · (e�v) = 0. (1.40)

Physically, what do you suppose is happening in an isothermal gas to maintain

its isothermality?

b) For an adiabatic gas, we argued that the unitless entropy per particle, S,
remains constant in time. Find dS/dt for an isothermal gas.

c) We can model a real gas by an equation of state of the form p = κρn where, in

principle, both κ and the power-law index n could vary from point to point.

For an adiabatic gas, n = γ, while for an isothermal gas, n = 1 (why?). Argue

that for a real gas, 1 < n < γ and thus the isothermal and adiabatic conditions

represent limits in between which a given real gas should be found.

1.5∗ A barotropic equation of state is one where the pressure depends only on the

density, that is p = p(ρ).

a) Starting with the internal energy density equation for an adiabatic gas, Eq.

(1.34) in the text, show that:

∂p

∂t
+ �v · ∇p = −γp∇ · �v. (1.41)

b) Starting with the continuity equation and assuming a barotropic equation of

state, derive the “pressure equation”, Eq. (1.35).

c) Show that for an adiabatic gas where p ∝ ργ , Eq. (1.35) reduces to Eq. (1.41).

1.6 The vorticity is defined as �ω = ∇× �v, and is a measure of fluid circulation.

a) Starting from either Eq. (1.27) or (1.36) in the text and assuming the fluid to

be barotropic (as defined in Problem 1.5), show that the evolution equation

for the vorticity is given by:
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∂�ω

∂t
= ∇× (�v × �ω). (1.42)

Hint : Vector identity (A.15) in App. A might be of help.

b) If the fluid is not barotropic [e.g., p = p(ρ, e)], show that Eq. (1.42) is still

valid if the fluid is incompressible, that is where the density may be taken as

constant in both space and time and thus the continuity equation (Eq. 1.19)

reduces to ∇ · �v = 0.

1.7 Define the circulation, Γ, of a fluid about a closed loop, C, to be:

Γ =

∮

C

�v · d�l.

By inspection, Γ is non-zero only if there is net circulation about the loop, whence

its name.

a) Show that:

Γ =

∫

Σ

�ω · d�σ, (1.43)

where Σ is the open surface enclosed by the closed loop, C, and �ω = ∇ × �v

is the vorticity defined in Problem 1.6. This should be a one-liner. Thus, the

circulation, Γ, can also be interpreted as the “vorticity flux” passing through

a closed loop.

b) Prove that for a barotropic (Problem 1.5) or incompressible (ρ = constant)

fluid,
dΓ

dt
= 0.

This is Kelvin’s circulation theorem, and asserts that vorticity flux is a con-

served quantity for inviscid barotropic flow.

Hint: Start with Eq. (1.43) and examine dΓ/dt, noting that the surface over

which the integral is performed, Σ, is also time-dependent; this must somehow

be taken into account in taking the time derivative. If this doesn’t seem like a

familiar problem, review the proof of the theorem of hydrodynamics (Theorem

1.1 in the text). Finally, you should come to a point where Eq. (1.42) from

Problem 1.6 would be useful; feel free to use it!

Discussion: As we shall see in Chap. 4, lines of magnetic induction and vortex lines

share many properties since both �ω and �B are solenoidal (∇ · �ω = ∇ · �B = 0),

and both are governed by an “induction equation” (cf. Eq. 1.42 and 4.4). Given

that magnetic flux is a conserved quantity, it should then come as no surprise that

vorticity flux is also conserved.

An immediate consequence of Kelvin’s circulation theorem is that if a barotropic

or incompressible fluid starts off with zero vorticity (and thus zero circulation ev-

erywhere), it must develop in a such way to maintain zero vorticity. If it didn’t, then
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one could find a patch of area through which Γ �= 0, violating Kelvin’s theorem.

Note that dissipative encounters with walls or introduction of viscosity (numeri-

cal or physical) into the fluid, which are not present in Euler’s equation used to

prove Kelvin’s theorem, could cause an initially irrotational fluid to develop vortic-

ity. Otherwise, Kelvin’s theorem essentially states that for an inviscid fluid, “once

irrotational, always irrotational”.

If one can establish that �ω = ∇ × �v = 0 for all time, then the velocity field

can be expressed as the gradient of a scalar; �v = ∇ψ. Such a velocity potential can

be useful, particularly for incompressible fluids where ∇ · �v = 0 since this means

the velocity potential will satisfy Laplace’s equation, ∇2ψ = 0. In this case, all

the mathematics used in problems in electrostatics and, in particular, in potential

theory can be brought to bear on solving Laplace’s equation instead of the much

more difficult Euler’s equation.
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Selected Applications of

Hydrodynamics

I chatter over stony ways, in little sharps and trebles;

I bubble into eddying bays, I babble on the pebbles . . .

And out again I curve and flow to join the brimming river;

For men may come and men may go, but I go on forever.

Lord Alfred Tennyson (1809–1892)
from The Song of the Brook, 1842

2.1 Sound waves

So many phenomena in physics can be described in terms of waves, and Ten-

nyson’s babbling brook is a prime example. Gravity waves1 ripple the interface

between the water and air – two fluids of very different density – and within each

fluid, sound waves propagate. For most of us, sound waves are an important method

of communication and gaining information about the environment. If one does not

see the on-coming truck, for example, its sound will be a clue to get out of the way!

Likewise for a fluid, the propagation of sound waves is how one region of the fluid

“knows” what the next is doing, and to react accordingly.

In this section, we identify sound waves by finding the wave equations hidden

within the fluid equations derived in the previous chapter. We then look at these

waves in two very useful ways: first, as solutions to the wave equation itself; then

second as an algebraic “eigen-problem”, where the eigenvalues and eigenvectors of

the governing equations provide all the information we need to understand how

waves propagate through the fluid.

2.1.1 Wave equation approach

Consider the barotropic pressure equation (Eq. 1.35) and Euler’s equation (Eq. 1.36)

in the absence of gravity (φ = 0):

∂p

∂t
+ �v · ∇p = −ρp′(ρ)∇ · �v; (2.1)

∂�v

∂t
+ (�v · ∇)�v = −1

ρ
∇p, (2.2)

1Not gravitational waves which are rather different!

26
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where p′ = dp/dρ. Now consider small perturbations in the co-moving frame of the

fluid to what is otherwise a static state. Thus, let:

ρ = ρ0 + ερp; �v = ε�vp; p = p0 + εpp; p′ = p′0 + εp′p, (2.3)

where ρ0 and p0 are constants,2 where quantities with the subscript ‘p’ are the

perturbations, and where p′0 is p′ evaluated at ρ0. Thus, ρp � ρ0, pp � p0, p
′
p � p′0,

and vp = |�vp| � cs, where cs is the sound speed to be introduced later in this

subsection. Following common practice in perturbation theory, ε is just a label

(whose formal value is 1) used to identify second and higher order terms which are

systematically ignored in a first-order perturbation analysis.

Substituting Eq. (2.3) into Eq. (2.1) and (2.2) gives:

ε
∂pp
∂t

+ ε2�vp · ∇pp = −ε(ρ0 + ερp)(p
′
0 + εp′p)∇ · �vp; (2.4)

ε
∂�vp
∂t

+ ε2(�vp · ∇)�vp = − ε

ρ0 + ερp
∇pp, (2.5)

where the fact that ρ0 and p0 are constant in both time and space has been used

to simplify the derivatives. Further, a binomial expansion yields:

ε

ρ0 + ερp
=

ε

ρ0

(
1 + ε

ρp
ρ0

)−1

=
ε

ρ0

(
1− ε

ρp
ρ0

+ . . .

)
. (2.6)

Substituting Eq. (2.6) into Eq. (2.5), and then dropping all terms of order ε2 in Eq.

(2.4) and (2.5), we get:
∂p

∂t
= −ρ0 p′0 ∇ · �v; (2.7)

∂�v

∂t
= − 1

ρ0
∇p, (2.8)

setting all remaining factors of ε to 1 and dropping all subscripts ‘p’ (since ∇p =

∇pp, etc.). Equations (2.7) and (2.8) are, respectively, the linearised pressure and

Euler equations in the co-moving frame of the fluid. The adjective “linearised” refers

to the fact that by restricting the solutions to small perturbations, the one and only

non-linear term, (�v · ∇)�v, is eliminated.3

Taking the time-derivative of Eq. (2.7) and then using Eq. (2.8), we get:

∂2p

∂t2
= −ρ0p′0

∂

∂t
(∇ · �v) = −ρ0p′0 ∇ ·

(
∂�v

∂t

)
= −ρ0p′0 ∇ ·

(
− 1

ρ0
∇p
)

= p′0∇2p,

resulting in a wave equation:
∂2p

∂t2
= c2s ∇2p, (2.9)

in which the speed of wave propagation in the co-moving frame of the fluid is,

cs ≡
√
p′0 =

√
dp

dρ

∣∣∣∣∣
ρ0

. (2.10)

2There is no �v0 since we are in the co-moving frame of the fluid.
3In the “lab frame”, this term becomes (�v0 · ∇)�v and, while not eliminated, is rendered linear

because of the leading �v0 instead of �v.
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These small perturbations are sound waves and, accordingly, cs is the sound speed.

For the special cases of an adiabatic (p ∝ ργ) and isothermal (p ∝ ρ) equations of

state for a gas, we have:

cs =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

√
γp

ρ
=

√
γkBT

m
adiabatic sound speed;

√
p

ρ
=

√
kBT

m
isothermal sound speed,

(2.11)

using the ideal gas law, Eq. (1.12), and where m is the average mass per particle.4

Now, the solution to the 1-D wave equation (∇2 → ∂2/∂x2) is:

p(x, t) = f(kx− ωt) + g(kx+ ωt), (2.12)

where f (g) is an arbitrary function describing a wave or a pulse moving in the +x̂

(−x̂) direction, and where p(x, 0) = f(kx) + g(kx) is the pressure distribution at

t = 0. Here, k = 2π/λ is the wave number, λ is the wavelength, ω = 2πν is the

angular frequency (rad s−1), and ν is the frequency (Hz). Evidently, the wave speed

is cs = λν = ω/k, and thus,
ω = kcs, (2.13)

is the so-called dispersion relation, giving ω in terms of k. The reader may recall

from classical mechanics that when the group velocity, vg = dω/dk, is equal to the

phase velocity, vp = ω/k, the medium is non-dispersive; that is, all wavelengths

travel at the same propagation speed. Since from Eq. (2.13), vg = vp = cs, an

ordinary gas is an example of a non-dispersive medium.

One can easily verify that Eq. (2.12) solves the 1-D wave equation as follows.

Let ξ± ≡ x± cst. Then p(x, t) = f(kξ−) + g(kξ+) and we have by the chain rule,

∂p

∂t
=

df

d(kξ−)
∂(kξ−)
∂t

+
dg

d(kξ+)

∂(kξ+)

∂t
= −f ′kcs + g′kcs

⇒ ∂2p

∂t2
= c2sk

2
(
f ′′ + g′′

)
,

where ′ indicates differentiation with respect to the argument. Similarly,

∂2p

∂x2
= k2

(
f ′′ + g′′

) ⇒ ∂2p

∂t2
= c2s

∂2p

∂x2
,

and p(x, t) in Eq. (2.12) solves the 1-D wave equation.

To summarise what we’ve just shown, any function whose dependence upon the

independent variables, x and t, has the form ξi = x−uit where ui is the wave speed,

is a solution to the wave equation, a fact we’ll use frequently throughout this text.

In the same vein, Problem 2.1 shows that,

p(�r, t) = f(�k · �r − ωt) + g(�k · �r + ωt), (2.14)

solves the 3-D wave equation, Eq. (2.9), where �k is the wave vector whose magnitude

is the wave number and whose direction is the direction of wave propagation.

4Rappel : kB is the Boltzmann constant.
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Problem 2.2 shows that the velocity function, v(x, t), also obeys a wave equa-

tion with wave speed cs =
√
p′0 and thus has a solution similar in form to Eq. (2.12).

Therefore, the two quantities set into oscillation by the passage of a sound wave are

pressure (transporting potential energy density since p ∝ e) and vx (transporting

kinetic energy density, 1
2ρv

2
x). Since, in 1-D, vx is in the direction of wave propa-

gation, sound waves are said to be longitudinal as opposed to transverse, such as

those propagating along a taut wire.

We conclude this subsection with a comment on the nature of the sound speed

itself. Regardless of whether the gas is isothermal or adiabatic, Eq. (2.11) tells

us that cs ∝ √
T . Now, whatever the thermodynamics of the gas may be, sound

waves generally propagate adiabatically simply because heat flow is not normally

responsive enough to maintain strict isothermality within the small packets of fluid

undergoing the rapid oscillations caused by the passage of a sound wave.

Thus, let’s set some “yardsticks” by considering the adiabatic sound speed (first

of Eq. 2.11), namely,

cs =

√
γkBT

m
. (2.15)

For dry air at STP, m = 4.81 × 10−26 kg (average mass of the atmospheric con-

stituents) and γ = 7/5 (99% of the atmosphere is diatomic). Thus the speed of

sound at the surface of the earth is cs ∼ 20.0
√
T ∼ 331 m s−1 (for T = 273K), or

about 1,200 km/hr. On the other hand, an astrophysical fluid is typically monatomic

and consists mostly of hydrogen (75%) and helium (25%). Therefore, the average

mass per particle is 7mp/4 ∼ 2.9 × 10−27 kg in a neutral astrophysical gas, and

7mp/9 ∼ 1.3 × 10−27 kg in a fully ionised gas. Thus, for a neutral gas, cs ∼ 90
√
T

(e.g., ∼ 3 km/s for T ∼ 1,000K), and for a completely ionised gas, cs ∼ 130
√
T

(e.g., ∼ 40 km/s for T ∼ 105 K).

Finally, on comparing Eq. (2.15) and (1.13), we find:

cs
vrms

=

√
2

γ(γ − 1)
,

which is about 1.34 (1.89) for a monatomic (diatomic) gas. Thus, the sound speed

is less than, but on the order of, the rms speed of the gas particles. That the two

speeds should be so closely related makes sense since, at the particle level, it is only

through particle–particle collisions that information of the passage of a wave may

be propagated.

2.1.2 Eigenvalue approach

Most authors introduce sound waves by developing the wave equation as done in

the previous subsection but, to my taste, this is not the most physically transparent

approach. Consider again the linearised pressure and Euler equations, this time in

1-D and in the lab frame from which the fluid is in motion (i.e. v0 �= 0):

∂p

∂t
+ v0

∂p

∂x
= −ρ0c2s

∂v

∂x
⇒ ∂p

∂t
+

∂

∂x
(v0p+ ρ0c

2
sv) = 0;
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∂v

∂t
+ v0

∂v

∂x
= − 1

ρ0

∂p

∂x
⇒ ∂v

∂t
+

∂

∂x

(
p

ρ0
+ v0v

)
= 0,

where c2s = p′0 is taken to be constant. In “matrix” form, these equations can be

written as,

∂

∂t

[
p

v

]
+

∂

∂x

[
v0p+ ρ0c

2
sv

p/ρ0 + v0v

]
= 0 (2.16)

⇒ ∂

∂t

[
p

v

]
+

[
v0 ρ0c

2
s

1/ρ0 v0

]
∂

∂x

[
p

v

]
= 0. (2.17)

If we define:

|q〉 ≡
[
p

v

]
and |f〉 ≡

[
v0p+ ρ0c

2
sv

p/ρ0 + v0v

]
,

where |q〉 is the “column vector”, or ket,5 of primitive variables p and v6 and |f〉
is the ket of (advective) flux densities, then Eq. (2.16) and (2.17) may be written

more compactly as:

∂|q〉
∂t

+
∂|f〉
∂x

= 0 ⇒ ∂|q〉
∂t

+ J
∂|q〉
∂x

= 0, (2.18)

where:

J =

[
v0 ρ0c

2
s

1/ρ0 v0

]
, (2.19)

is the so-called Jacobian matrix, whose (i, j)th matrix element is given by:

Jij =
∂fi
∂qj

. (2.20)

As we saw in the previous subsection, both p and v satisfy the wave equation

and therefore so must |q〉. From our conclusion at the end of 2.1.1, |q〉 can then be

written in the form,7

|q(x, t)〉 = |q̃(ξi)〉, (2.21)

where ξi = x − uit, i = 1, 2, is the coordinate co-moving with the wave whose

wave speed in the rest frame of the fluid is ui. Eq. (2.21) is known as a normal

mode solution, where “normal mode” – a term from classical mechanics – refers

to the fact that all points of interest in a system oscillate at the same frequency.

The general solution is then a linear combination of all normal mode solutions with

coefficients determined by applying boundary conditions.

5The designation of a column vector as |a〉 (“ket”) and a row vector as 〈b| (“bra” as in “hat”,
not “bra” as in “hot”) is due to Paul Dirac. This notation is most commonly used in quantum
mechanics, but equally applicable here. In this convention, the inner (“dot”) product of two vectors
is always the matrix product of a “bra” (a row vector ≡ a 1 × n matrix) and a “ket” (a column
vector ≡ an n× 1 matrix). This product, known as a “bra-ket”, or bracket, generates a scalar and
is written 〈a|b〉 (cf., �a ·�b in “normal” vector notation). In this book, where it is useful to indicate
whether a vector is a row or a column, we shall use Dirac’s bra-ket notation liberally.

6Rappel : In the last chapter, the primitive variables were defined as the set (ρ, p, �v), whereas
the conservative variables were defined as the set (ρ, eT, �s).

7The “tilde” (̃ ) over the q recognises that formally, while the functions q(x, t) and q̃(ξi) may
be equal numerically, they are not the same functions of their argument(s) and thus should be
represented by different names.
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To this end, start by differentiating |q(x, t)〉 in Eq. (2.21) with respect to t and

x:
∂|q〉
∂t

=
∂ξi
∂t

d|q̃〉
dξi

= −ui|q̃ ′〉 and
∂|q〉
∂x

=
∂ξi
∂x

d|q̃〉
dξi

= |q̃ ′〉, (2.22)

where ′ indicates differentiation with respect to ξi. Substituting Eq. (2.22) directly

into the second of Eq. (2.18) yields:

J|q̃ ′〉 = ui|q̃ ′〉, (2.23)

which must be true for the normal mode solution to be valid. Since J is a matrix,

|q̃ ′〉 a column vector, and ui are scalars, Eq. (2.23) is an “eigen-equation” where

the eigenvalues of J, namely ui, are the allowed wave speeds, and where |q̃ ′〉 are

proportional to the associated eigenvectors or eigenkets, |ri〉.
To find the eigenvalues of J, we rewrite Eq. (2.23) as,

(J− uiI)|q̃ ′〉 ≡ A|q̃ ′〉 = 0, (2.24)

where I is the identity matrix. Now, if the matrix A had an inverse, we could

immediately write,

A−1A|q̃ ′〉 = A−1× 0 ⇒ |q̃ ′〉 = 0,

and the trivial solution would be the only solution to Eq. (2.24). Therefore, for

there to be non-trivial solutions, A must be singular (possess no inverse) and thus

its determinant must be zero. This condition leads to the so-called secular or char-

acteristic equation; that is,

detA = det(J− uiI) =

∣∣∣∣
v0 − ui ρ0c

2
s

1/ρ0 v0 − ui

∣∣∣∣

= (v0 − ui)
2 − c2s = (v0 − ui + cs)(v0 − ui − cs) = 0

⇒ u1 = v0 − cs and u2 = v0 + cs, (2.25)

are the two eigenvalues and thus wave speeds. These correspond to sound waves

moving in the −x̂ (left, u1), and +x̂ (right, u2) directions within a fluid moving at

speed v0 relative to the lab frame.

Next, let the eigenket associated with u1 = v0 − cs be |r1〉 ∝ |q̃′〉. To find it, we

write the matrix equation (2.23) as,

(J− u1I)|r1〉 = 0 ⇒
[
cs ρ0c

2
s

1/ρ0 cs

][
r11
r12

]
= 0.

Breaking this up into ordinary algebraic equations, we get,

csr11 + ρ0c
2
sr12 = 0 and

1

ρ0
r11 + csr12 = 0,

where, as usual, one of the equations is redundant for correctly determined eigen-

values. That is, we can evaluate only one of the components of the eigenket |r1〉 in
terms of the other, in which case we find,

r11 = −csρ0r12 ≡ −Z0r12,
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where Z0 is the impedance of the fluid. Thus, the eigenket associated with u1 is:

|r1〉 =

[
r11
r12

]
=

[−Z0

1

]
r12 =

[−Z0

1

]
, (2.26)

choosing r12 = 1 as our “normalisation”.8

From Eq. (2.23), we have |q̃ ′
1〉 ∝ |r1〉, and we write:

|q̃ ′
1(ξ1)〉 = w′

1(ξ1)|r1〉, (2.27)

where, for convenience, the proportionality factor, w′
1, is expressed as the first

derivative of some function, w1, of the co-moving coordinate ξ1 = x− (v0 − cs)t. In-

tegrating with respect to ξ1 (and with respect to which the eigenkets are constant),

we get:
|q1(x, t)〉 = |q̃1(ξ1)〉 = w1(ξ1)|r1〉,

since |q1(x, t)〉 = |q̃(ξ1)〉. In a similar manner, associated with the second eigenvalue,

u1 = v0 + cs, is the eigenket:

|r2〉 =

[
Z0

1

]
, (2.28)

and thus the solution for the right -moving wave is:

|q2(x, t)〉 = |q̃2(ξ2)〉 = w2(ξ2)|r2〉,
where w2 is an arbitrary function of ξ2 = x − (v0 + cs)t. Therefore, the general

solution is the superposition of the left- and right-moving waves, and we have:

|q(x, t)〉 = |q1(x, t)〉 + |q2(x, t)〉 = w1(ξ1)|r1〉+ w2(ξ2)|r2〉. (2.29)

To find the functions (coefficients) w1 and w2, we apply initial conditions. At t = 0,

|q(x, 0)〉 = |q̃(x)〉 – presumably a known function – and we’ve got,

|q̃(x)〉 =

[
p̃(x)

ṽ(x)

]
= w1(x)|r1〉+ w2(x)|r2〉 = w1(x)

[−Z0

1

]
+ w2(x)

[
Z0

1

]

⇒ p̃(x) = −w1(x)Z0 + w2(x)Z0 and ṽ(x) = w1(x) + w2(x),

which, when solved for w1(x) and w2(x), yield,

w1(x) =
1

2

(
ṽ(x)− 1

Z0
p̃(x)

)
and w2(x) =

1

2

(
ṽ(x) +

1

Z0
p̃(x)

)
.

Substituting these expressions into Eq. (2.29) yields,

|q(x, t)〉 =

[
p(x, t)

v(x, t)

]
= w1(ξ1)

[−Z0

1

]
+ w2(ξ2)

[
Z0

1

]

=
1

2

⎡

⎣
p̃(ξ2) + p̃(ξ1) + Z0

(
ṽ(ξ2)− ṽ(ξ1)

)

ṽ(ξ2) + ṽ(ξ1) +
1

Z0

(
p̃(ξ2)− p̃(ξ1)

)

⎤

⎦ . (2.30)

8Since the eigenket components have different units, the term “normalisation” seems out of
place given what is “normalised” won’t have magnitude unity. For fluid eigenkets, a better term
might be “scaled for convenience”, although “normalised” is so well established in the vernacular,
that we seem to be stuck with it.
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Figure 2.1. A perturbation is initially applied to the pressure profile [p̃(x)], but
not to the velocity profile [ṽ(x) = 0]. As time progresses, half of the pressure
pulse moves off in each direction, while waves closely related to the pressure
waves develop in the velocity profile. These profiles were determined by direct
application of Eq. (2.30) which the reader is encouraged to verify.

Note that Eq. (2.30) is specific enough to construct a plot of the pressure and

velocity profiles for all time given the initial profiles, p̃(x) and ṽ(x). An example of

this is shown in Fig. 2.1. Problems 2.3–2.5 give the reader the opportunity to study

Fig. 2.1 further, and to use Eq. (2.30) to determine the waveforms launched by a

given initial perturbation.

In this subsection, we’ve introduced a normal mode, linear algebraic method to

analyse the wave nature of the fluid equations in the particularly simple setting of

1-D linearised hydrodynamics. In so doing, we found a systematic way to identify

the various waves the system can support, to calculate their wave speeds from the

reference frame of the fluid or the lab, and to evaluate the eigenkets which, as

Eq. (2.30) and Fig. 2.1 exemplify, determine the profiles of the flow variables as

a function of position and time. In due course, we shall apply these methods to

the more complicated cases of non-linear hydrodynamics ( 3.5) where we’ll discover

another type of wave known as a rarefaction fan, and to 1-D MHD ( 5.2) where

we’ll find that the 7 × 7 Jacobian matrix with variable matrix elements supports

seven waves rather than the two found here.

2.2 Rankine–Hugoniot jump conditions

Figure 2.2 depicts what is sometimes called a shock tube: a steady-state9 flow of gas

along the x-axis with all transverse derivatives (∂/∂y, ∂/∂z) set to zero. Without

9“Steady state” means all explicit time derivatives, e.g. ∂ρ/∂t, are zero. Conversely, implicit
time dependence, e.g. dρ/dt = ∂ρ/∂t + �v · ∇ρ = �v · ∇ρ, need not be zero.
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Figure 2.2. 1 1
2
-D fluid flow, as viewed from the reference frame J.

loss of generality, we shall assume flow is from left to right and vz = 0 (e.g., align

ŷ with the component of �v perpendicular to x̂). Thus, even though we assume no

transverse derivatives, we allow for a transverse velocity;10 a situation often referred

to as “1 1
2 -D flow”.

Let J be a fixed reference line dividing the fluid into two “states”: an upwind

state 1 (from J to state 1 in Fig. 2.2, one must go against the flow, i.e. “upwind”) and

a downwind state 2 (from J to state 2, one must go with the flow, i.e. “downwind”).

Note that J is not a physical barrier but a fixed reference line with respect to which

flow velocities are measured.

Let the primitive variables be (ρ1, p1, vx1 , vy1) and (ρ2, p2, vx2 , vy2) in states

1 and 2 respectively. As depicted in Fig. 2.2, the two states are in contact with

and possibly in motion relative to each other (i.e., �v1 �= �v2) at J. Now, it is quite

conceivable J corresponds to nothing significant at all, in which case the upwind

and downwind states are identical. On the other hand, J could be parked on top of

a stationary feature in the flow – a “jump”, if you will, in some of the variables –

that renders the two states different. Thus, what we really want to know is: How

do the downwind fluid variables depend upon the upwind values?

To answer this, we begin with the differential equations in conservative form

(Eq. Set 1) so that discontinuities in the primitive variables at J may be admit-

ted, and impose upon them the assumptions of steady state (∂/∂t = 0) and zero

transverse derivatives. Thus, ∂/∂x→ d/dx and we have:

d

dx
(ρvx) = 0;

d

dx

(
1
2ρv

2vx +
γ

γ − 1
pvx

)
= 0;

d

dx
(ρv2x + p) = 0;

d

dx
(ρvyvx) = 0,

after substituting the constitutive equations into the total energy and momentum

equations, and where v2 = v2x + v2y. These ODEs are trivial to integrate and, when

applied to the conditions of Fig. 2.2, lead to the so-called Rankine–Hugoniot jump

10Strictly speaking, in an actual laboratory shock tube, vy = 0 too.
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conditions :11

ρ2vx2 = ρ1vx1 ; (2.31)

1
2ρ2v

2
2vx2 +

γ

γ − 1
p2vx2 = 1

2ρ1v
2
1vx1 +

γ

γ − 1
p1vx1 ; (2.32)

ρ2v
2
x2

+ p2 = ρ1v
2
x1

+ p1; (2.33)

ρ2vy2vx2 = ρ1vy1vx1 . (2.34)

2.2.1 Case 1: Trivial solution

Obviously, ρ2 = ρ1, p2 = p1, vx2 = vx1 , and vy2 = vy1 solve Eq. (2.31)–(2.34),

and such a solution corresponds to the possibility we already guessed, namely J

corresponds to nothing significant in the flow. This solution is referred to as the

trivial solution, and is consistent with a uniform gas flowing at a constant velocity,

�v1 = �v2.

2.2.2 Case 2: Tangential discontinuity

Suppose vx1 = vx2 = 0. Then Eq. (2.31), (2.32), and (2.34) are satisfied trivially,

while Eq. (2.33) requires p2 = p1. No constraints are placed on ρ nor vy, and

thus these variables may jump by an arbitrary amount across J. This phenomenon

is known as a tangential discontinuity. Because the pressure is constant across a

tangential discontinuity, the ideal gas law, Eq. (1.12), requires that a density jump

be accompanied by a temperature jump equal to its inverse. Thus:

T2
T1

=
ρ1
ρ2
.

Note that for a given pressure, the gas with the higher temperature will also have

a higher specific entropy, and thus there is an entropy jump as well.

A meteorological example of a tangential discontinuity that may or may not

include a density jump is wind shear, which can play havoc with air travellers

particularly near take-off or landing. Another example which may or may not include

a jump in vy is a weather front. A cold front is where cool dry air displaces warm

moist air while a warm front is the reverse. Typically, both fronts can result in

significant precipitation as the hot, moist, and less-dense air12 rises over the cool,

dry, denser air, cools, and releases its moisture as rain or snow.

Finally, a tangential discontinuity across which vy is constant (and thus can

11Named for Scottish physicist William Rankine (1820–1872) and French engineer Pierre Hugo-
niot (1851–1887) who pioneered the theoretical explanation of shock waves.

12Notwithstanding our physiological impression that hot, muggy air is “heavier” (denser) than
cool, dry air, the reverse is actually true. At STP, every 22.4 litres of air, dry or humid, contains
one mole of particles. For humid air, a good number of molecules such as N2, O2, CO2, and Ar
have been displaced by significantly less massive H2O molecules, and thus humid air is less dense
than dry air.
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be set to zero with an appropriate Galilean transformation) is called a contact

discontinuity (CD), or simply a contact. Note that in a strictly 1-D hydrodynamical

flow, there can be no transverse accelerations (e.g., in the y-direction) and thus

a shear cannot develop spontaneously. Therefore, a contact is the only type of

tangential discontinuity to arise in 1-D HD. By contrast, in an MHD fluid gradients

in the x-direction can give rise to a Lorentz force in the y-direction and tangential

discontinuities with a velocity shear can arise spontaneously in 1-D MHD, a subject

we shall revisit in 5.3.

2.2.3 Case 3: Shock

Suppose now that vx1 , vx2 �= 0. Right away we see that Eq. (2.31) and (2.34)

require vy2 = vy1 which can be set to zero by applying an appropriate Galilean

transformation. Therefore, let us simplify the notation slightly by setting v1 = vx1

and v2 = vx2 . Then, substituting Eq. (2.31) into Eq. (2.33) yields:

p2 = ρ1v
2
1 + p1 − ρ1v1v2, (2.35)

while dividing Eq. (2.31) into Eq. (2.32) yields:

v22
2

+
γ

γ − 1

p2v2
ρ2v2

=
v21
2

+
γ

γ − 1

p1
ρ1
. (2.36)

Next, substitute Eq. (2.31) and (2.35) into Eq. (2.36) to get:

v22
2

+
γ

γ − 1

v2
ρ1v1

(ρ1v
2
1 + p1 − ρ1v1v2) =

v21
2

+
γ

γ − 1

p1
ρ1
,

and, after some straight-forward algebra, we obtain a quadratic in v2/v1:

γ + 1

2

(
v2
v1

)2
−
(
γ +

c21
v21

)
v2
v1

+
γ − 1

2
+
c21
v21

= 0, (2.37)

where c21 = γp1/ρ1 is the square of the sound speed (introduced in 2.1) in state 1.

Using the quadratic formula on Eq. (2.37), one finds:

v2
v1

=
γ +M−2

1 ± (1−M−2
1 )

γ + 1
, (2.38)

where M1 ≡ v1/c1 is the Mach number, named for Ernst Mach (1838–1916), the

Austrian (Czech) mathematician, physicist, and philosopher best known for the

Mach principle (relating all motion with the inertia of all else) who also happened

to be the first to describe supersonic motion in a gas.13

The +root of Eq. (2.38) yields v2/v1 = 1 (thus recovering case 1), while the

−root yields:

v2
v1

=
M2

1 (γ − 1) + 2

M2
1 (γ + 1)

= 1− 2
M2

1 − 1

M2
1 (γ + 1)

. (2.39)

13www.wikipedia.org/wiki/Ernst Mach
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Thus, from Eq. (2.31) we have:

ρ2
ρ1

=
v1
v2

=
M2

1 (γ + 1)

M2
1 (γ − 1) + 2

= 1 + 2
M2

1 − 1

M2
1 (γ − 1) + 2

. (2.40)

Next, rearranging Eq. (2.35) gives us:

p2 = p1 + ρ1v
2
1

(
1− v2

v1

)
,

which, after substituting ρ1 = γp1/c
2
1 and Eq. (2.39), yields:

p2
p1

=
2γM2

1 − γ + 1

γ + 1
= 1 + 2γ

M2
1 − 1

γ + 1
. (2.41)

Equations (2.39)–(2.41) are solutions to the Rankine–Hugoniot jump conditions

(Eq. 2.31–2.34) describing simultaneous jumps in the primitive variables ρ, p, and

v across the reference line J in Fig. 2.2. When such conditions exist in nature, it is

called a shock wave, or simply a shock.

Other aspects of a shock are self-evident from the present discussion. For ex-

ample, the temperature jump is given by the ideal gas law, Eq. (1.12), with Eq.

(2.39) and (2.41):

T2
T1

=
p2
p1

ρ1
ρ2

=
p2
p1

v2
v1

=

(
1 + 2γ

M2
1 − 1

γ + 1

)(
1− 2

M2
1 − 1

M2
1 (γ + 1)

)
,

which, after a little manipulation, can be expressed as:

T2
T1

= 1+
2(γ − 1)

(γ + 1)2

(
γ +

1

M2
1

)
(M2

1 − 1). (2.42)

Finally, the downwind Mach number, M2, is given by:

M2
2 =

(
v2
c2

)2
=

v22ρ2
γp2

=
v2v1ρ1
γp2

=
v21ρ1
γp1

p1
p2

v2
v1

= M2
1

γ + 1

2γM2
1 − γ + 1

M2
1 (γ − 1) + 2

M2
1 (γ + 1)

⇒ M2
2 =

M2
1 (γ − 1) + 2

2γM2
1 − γ + 1

= 1− (γ + 1)(M2
1 − 1)

2γM2
1 − γ + 1

. (2.43)

Note that all jumps and the downwind Mach number have been expressed

in terms of γ (embodying the thermodynamics of the gas) and the upwind Mach

numberM2
1 (embodying the kinematics of the gas). These dependencies are depicted

in Fig. 2.3.

Evidently, M1 is the critical parameter to determine the nature of a shock. For

transonic flow (M1 = 1), the right-hand sides of Eq. (2.39)–(2.43) reduce to unity.

Thus, M1 = 1 corresponds to the trivial case of 2.2.1.

For hypersonic flow (M1 � 1), Eq. (2.39)–(2.43) have the following limits:

lim
M2

1→∞
v2
v1

→ γ − 1

γ + 1
< 1; (2.44)
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Figure 2.3. Graphical representations of Eq. (2.39)–(2.43) and (2.53) for various
values of γ, with all variables defined in the text. All velocities and Mach numbers
are relative to the reference frame of the shock. As shown in the text, a necessary
condition for a shock to exist is M1 > 1, and thus all plots start at M1 = 1.

lim
M2

1→∞
ρ2
ρ1

→ γ + 1

γ − 1
> 1; (2.45)

lim
M2

1→∞
p2
p1

→ 2γ

γ + 1
M2

1 → ∞; (2.46)

lim
M2

1→∞
T2
T1

→ 2γ(γ − 1)

(γ + 1)2
M2

1 → ∞; (2.47)

lim
M2

1→∞
M2

2 → γ − 1

2γ
< 1. (2.48)

Table 2.1 summarises these limits for various values of γ. In particular, across a

hypersonic shock, the speed drops while the density, pressure, and temperature

rise. Meanwhile, M2 < 1 indicates that flow downwind of the shock is subsonic

(relative to the shock). As we’ll see, these results are general and hold for all values

of M2
1 > 1, not just hypersonic flow.

It turns out that it is impossible to attain the shock jump conditions for sub-

sonic flow (M1 < 1). To see this, we must evaluate the entropy jump across a shock,

and then invoke the combined first and second law of thermodynamics (Eq. 1.29):

S2 − S1 = ΔS =

∫ 2

1

dS =

∫ 2

1

dE

T
+

∫ 2

1

pdV

T
, (2.49)

where ΔS is the change in entropy across the shock. To this end, from Eq. (1.10)
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γ v2/v1 ρ2/ρ1 p2/p1 T2/T1 M2
2

5/3 0.250 4 1.250M2
1 0.313M2

1 0.200

7/5 0.167 6 1.167M2
1 0.194M2

1 0.143

4/3 0.143 7 1.143M2
1 0.163M2

1 0.125

Table 2.1. Entries show the limits of Eq. (2.39)–(2.43) for the given value of γ

in the limit as M2
1 → ∞.

we get:

dE =
1

γ − 1
NkBdT, (2.50)

and from the ideal gas law, pV = NkBT , we have,

pdV + V dp = NkBdT

⇒ pdV = NkBdT − V dp = NkBdT −NkBT
dp

p
. (2.51)

Substituting Eq. (2.50) and (2.51) into Eq. (2.49) yields:

ΔS =
NkB
γ − 1

∫ 2

1

dT

T
+NkB

∫ 2

1

dT

T
−NkB

∫ 2

1

dp

p
. (2.52)

As before (page 19), define the unitless entropy per particle,14 S = (γ − 1)S/NkB.

Then, on performing the integrations in Eq. (2.52), we get,

ΔS = γ ln
T2
T1

− (γ − 1) ln
p2
p1

= ln

[(
p2ρ1
p1ρ2

)γ (
p2
p1

)1−γ
]

= ln

[
p2
p1

(
ρ1
ρ2

)γ]
= ln

(
p2/ρ

γ
2

p1/ρ
γ
1

)
= ln

κ2
κ1
,

(2.53)

where κ is the “constant” in the adiabatic equation of state, namely p = κργ .

Equation (2.53) gives us a very simple and practical result: The entropy jump

across a shock is proportional to the logarithm of the ratio of the kappas.

We can now express ΔS in terms of M2
1 and γ. Substituting Eq. (2.40) and

(2.41) into Eq. (2.53) yields:

ΔS = ln

(
2γM2

1 − γ + 1

γ + 1

)
+ γ ln

(
M2

1 (γ − 1) + 2

M2
1 (γ + 1)

)
. (2.54)

To find the critical points, if any, of ΔS(M2
1 ) (ΔS expressed as a function of M2

1 ),

we set its first derivative to zero. After a little algebra, we find:

d(ΔS)
d(M2

1 )
=

(M2
1 − 1)2(γ − 1)

M2
1 [2γM

2
1 − (γ − 1)][M2

1 (γ − 1) + 2]
= 0,

14Here, and out of convenience, S is defined with an extra factor of (γ − 1).
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Figure 2.4. Equation (2.54) showing graphically that ΔS > 0 ⇒M2
1 > 1.

which, by inspection, yields just one critical point, namely M2
1 = 1. A little addi-

tional algebra shows that the second derivative is zero atM2
1 = 1, and thus M2

1 = 1

is an inflection point of ΔS(M2
1 ). Thus, there are no extrema and ΔS(M2

1 ) is a

monotonic function of M2
1 ∈ (0,∞). Evaluating Eq. (2.54) at M2

1 = 1, we find

ΔS = 0 meaning there is no entropy change for the transonic, trivial case. Further,

as M2
1 → ∞, we find,

lim
M2

1→∞
ΔS → lnM2

1 > 0.

Thus, ΔS(M2
1 ) is a monotonically increasing function with a root and inflection

point at M2
1 = 1, and therefore positive definite for M2

1 > 1 and negative definite

for M2
1 < 1.15 Figure 2.4 is a graphical representation of Eq. (2.54) for γ = 5/3 and

4/3 showing clearly that ΔS > 0 ⇒M2
1 > 1.

As the second law of thermodynamics states that all spontaneous processes in

an isolated system will result in ΔS ≥ 0, we may finally conclude that the shock

solution to the Rankine–Hugoniot jump conditions is possible only for M2
1 ≥ 1.

Since M2
1 = 1 corresponds to the trivial case, we may state thatM2

1 > 1 for shocks,

which are therefore inherently supersonic phenomena.

Having established that M2
1 > 1 for shocks, we can determine whether the flow

variables increase or decrease across any shock – not just hypersonic ones – simply

by inspecting Eq. (2.39)–(2.43). This leads us to the following general result:

v2 < v1; ρ2 > ρ1; p2 > p1; T2 > T1; M2
2 < 1, (2.55)

known as Zemplén’s theorem (or the entropy condition).

So far, all discussion has considered the shock from its own frame of reference.

However, setting up a “standing shock” in the laboratory may not be as practical

as a moving shock, such as that illustrated in Fig. 2.5. In this case, supersonic fluid

moves along a 1-D tube and collides with the closed end, exciting a shock wave

that moves in the upwind direction with an unknown speed. It would, therefore, be

useful to express the jump conditions in terms of the upwind Mach number relative

15In fact, upon inspection of the first term in Eq. (2.54), we see that ΔS �∈ R for 0 ≤ M2
1 < γ−1

2γ
.
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Figure 2.5. A 1-D shock tube, as viewed from the reference frame of the post-
shock gas (the lab frame), shown here in grey. S indicates the shock which is
moving to the left at a speed V relative to the lab frame.

to the closed end of the tube (M1) instead of the upwind Mach number relative to

the shock itself (M1).

To this end, let u1 > 0 (left to right) be the velocity of the preshock gas in the

“lab frame”, and let V < 0 (right to left) be the propagation velocity of the shock

(Fig. 2.5). The shocked gas is at rest relative to the end of the tube, and is therefore

in the lab frame. Thus the speed of the shocked gas relative to the lab is u2 = 0,

and the Galilean transformation between the shock frame J in Fig. 2.2 and the lab

frame must be:
v1 = u1 − V ; v2 = −V . (2.56)

From Eq. (2.39), we have:

v2
v1

=
v21(γ − 1) + 2c21
v21(γ + 1)

⇒ v2v1(γ + 1) = v21(γ − 1) + 2c21. (2.57)

Substituting the transformation Eq. (2.56) into Eq. (2.57) yields:

(u1 − V)(−V)(γ + 1) = (u1 − V)2(γ − 1) + 2c21

⇒ V2

u21
− V
u1

3− γ

2
− γ − 1

2
− c21
u21

= 0.

The roots of the quadratic are:

V
u1

=
3− γ

4
±
√(

γ + 1

4

)2
+

1

M2
1

,

where M1 = u1/c1 is the Mach number of the preshock gas relative to the lab

frame.

Only one of these roots is physical. The +root requires V > 0 which is contrary

to our assumption and thus discarded. For γ > 1, γ + 1 > 3 − γ, and the −root

assures V < 0, as desired. Thus, we find:

V
u1

= 1−Q ⇒ MS

M1
= − V/c1

u1/c1
= Q− 1,

where,

Q ≡
√(

γ + 1

4

)2
+

1

M2
1

+
γ + 1

4
>

γ + 1

2
> 1,
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Figure 2.6. Naturally occurring tidal bores propagating along the Peticodiac
River in New Brunswick. The left image (photo credit David Milligan) shows an
undulating bore, while the right image (photo credit Charles LeGresley) shows a
foaming bore, both propagating along the river from right to left. Note that the
ends of the undulating bore are actually foaming; why? (Answer in the text.)

and where MS is the Mach number of the shock (relative to the sound speed in the

upwind gas) as measured in the lab frame. Note that MS is taken to be positive,

even though V is negative.

It is left to Problem 2.8 to show that the jump conditions in terms of speeds

(Mach numbers) measured in the lab frame (where the shocked gas is stagnant) are

given by:

ρ2
ρ1

=
Q

Q− 1
;

p2
p1

= 1 + γM2
1Q;

T2
T1

= (Q− 1)

(
1

Q + γM2
1

)
. (2.58)

2.3 Bores and hydraulic jumps (optional)

The provinces of New Brunswick and Nova Scotia are separated by the Bay of

Fundy, in which the greatest difference in sea level between low and high tides

can be found on the planet.16 Whilst the average tidal range around the world is

between two and three metres, the tidal range in the Minas Basin, one of the inlets

off the Bay of Fundy, can be seventeen metres during the new and full moon.

The physical reasons for these extraordinarily high tides makes for a fun physics

problem in its own right (and so, see Problem 2.12). However, it’s not the tides

themselves that interest us here, but one of their many consequences. As the tides

rush in and push into the many rivers that empty into the bay, the oppositely flowing

waters trigger some of the most impressive tidal bores one can find anywhere.

As discussed below, bores come in various flavours including undulating bores,

16Incidentally, another Canadian body of water, Ungava Bay in Québec’s far north, exhibits
a tidal range very similar to the Fundy tides. Indeed, local proponents of each site engage in a
colourful argument over whose site actually has the highest tides, with many experts (but not all!)
suggesting the true answer lies somewhere within the statistical uncertainties.
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Figure 2.7. (left) A laminar stream of water from a kitchen faucet strikes the
bottom of a sink, setting up a common example of a standing bore or hydraulic
jump. (Photo credit: Petr Vita and his kitchen sink!) (right) A schematic of a
standing bore, showing the two depths of water and two flow speeds on either
side of the discontinuity, B, that is established as a consequence of the applicable
conservation laws, and the control volume (C.V.) used to analyse it.

foaming bores, and standing bores17 (a.k.a., hydraulic jumps). Figure 2.6 shows

examples of the former two moving up the Peticodiac River from the Bay of Fundy

towards Moncton, New Brunswick. The left image shows an undulating bore, while

the right image shows a more energetic foaming bore used to advantage in this

photograph by several surfers being pushed up-river! Indeed, a thriving “white water

rafting” industry is sustained by the foaming tidal bores each province experiences

twice daily.

While shocks do propagate within “incompressible” fluids, they do so by ex-

ploiting the very little bit of compressibility incompressible fluids actually have.

In a strictly incompressible fluid, bores are mathematically the most similar phe-

nomenon to shocks that propagate, though they are much more properly described

as gravity waves, relying as they do on the restoring force the earth’s background

gravitational field provides.

An example of a standing bore can easily be set up in your kitchen sink (left

panel of Fig. 2.7), something most people have probably seen so many times that

they’ve long since ceased to notice. In the schematic of a standing bore shown in

the right panel of Fig. 2.7, the water depth jumps at B from h1 upstream of B

to h2 > h1 downstream. Question: What upstream and downstream water speeds

relative to B, v1 and v2, are necessary to sustain the observed depths, h1 and h2?

A useful construct for such problems is a control volume (C.V.), depicted in red

in the right panel of Fig. 2.7. With the control volume fixed to the reference frame

of B (the bore), the flow into and out of the C.V. is in steady state (no dependence

on time). Then, for incompressible flow (ρ = constant), the continuity equation (Eq.

1.19) becomes:

�
��

0

∂tρ+∇ · (ρ�v) = ρ∇ · �v = 0 ⇒ ∇ · �v = 0, (2.59)

17Not to be confused with your professor!
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which, integrated over the C.V. gives:
∫

V

∇ · �v dV =

∮

S

�v · n̂ dσ = 0, (2.60)

using Gauss’ theorem.

Note that �v = vxx̂ is perpendicular to the surface normal, n̂, at both the top

and bottom of the C.V. Further, �v = 0 along the portions of the C.V. not in contact

with water. Thus, the only parts of the C.V. that contribute to the surface integral

in Eq. (2.60) are the portions of the vertical sides immersed in water, and Eq. (2.60)

becomes:

−v1h1w + v2h2w = 0 ⇒ v1h1 = v2h2 (continuity), (2.61)

where w is some arbitrary width into the page.

Next, in steady state, the x-component of the momentum equation (Eq. 1.27)

is:

����
0

∂tsx +∇ · (sx �v + px̂) = 0,

which, when integrated over the C.V., gives:
∫

V

∇ · (sx�v + px̂) dV =

∮

S

(ρv2x + p)x̂ · n̂ dσ = 0, (2.62)

since sx = ρvx and �v = vxx̂. Once again, only the ends of the C.V. (where n̂ = ±x̂)
contribute to the surface integral, and Eq. (2.62) becomes:

−ρv21�wh1 −�w
∫ h2

0

pL(z)dz + ρv22�wh2 +�w
∫ h2

0

pR(z)dz = 0, (2.63)

where pL/R(z) is the pressure profile at the left/right side of

the C.V. which, as the following argument shows, can be de-

termined using standard freshman physics.

Consider the column of water delineated by the dashed

line in the inset whose cross-sectional area is A and depth is

d. Evidently, the atmospheric pressure pushes down on the

column with a force patmA, and the weight of the column

measured at P is ρAgd, where ρ is the density of water and

g = 9.81m s−2 is the usual acceleration of gravity. Thus, the

water pressure at P must be:

p(d) =
1

A
(patmA+ ρAgd) = patm + ρgd,

where the depth, d, is known as the pressure head. Thus, for depths d1,2 = h1,2 − z,

where z is the vertical coordinate depicted in the right panel of Fig. 2.7, we have:

pL(z) =

{
patm + ρg(h1 − z), 0 < z < h1;

patm, h1 < z < h2;

pR(z) = patm + ρg(h2 − z), 0 < z < h2.

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
(2.64)
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This allows us to evaluate the integrals in Eq. (2.63):

∫ h2

0

pL(z) dz = patm z
∣∣h2

0
+ ρg

(
h1z − 1

2z
2
)h1

0
= patm h2 + ρg

h21
2
;

∫ h2

0

pR(z) dz = patm z
∣∣h2

0
+ ρg

(
h2z − 1

2z
2
)h2

0
= patm h2 + ρg

h22
2
,

which, when substituted into Eq. (2.63) gives:

ρv22h2 − ρv21h1 +����patm h2 + ρg
h22
2

−����patm h2 − ρg
h21
2

= 0

⇒ g
h22 − h21

2
= v21h1

h2
h2

− v22h2
h2
h2

= v21
h1
h2

(h2 − h1),

using Eq. (2.61). Note how all terms involving patm cancel out.

Solving for v1, then using Eq. (2.61) to find v2, we get our final result:

v1 =

√
gh2(h1 + h2)

2h1
; and v2 = v1

h1
h2

=

√
gh1(h1 + h2)

2h2
, (2.65)

the unique speeds that support the given upstream and downstream depths, h1 and

h2 that conserve both momentum and mass conservation.

Having considered the continuity and momentum equations, it is reasonable

to ask why the energy equation wasn’t needed. It is left to Problem 2.13 to show

that for an incompressible fluid, one cannot conserve mass, momentum, and energy

simultaneously at B. Thus energy is not conserved across a bore, but rather is

dissipated in one of two ways:

1. For h2/h1 � 1.3, waves are excited downstream of the jump (deeper side),

transporting energy away from B. This is an undulating bore shown in the

left panel of Fig. 2.6.

2. For h2/h1 � 1.3, the bore becomes turbulent downstream, and energy is

dissipated as heat, noise, and waves. This is a foaming bore shown in the right

panel of Fig. 2.6.

Tidal bores, such as those shown in Fig. 2.6, are triggered when the incoming

tide meets outgoing flow from a river. At the river mouth where the velocity differ-

ential is the greatest, the bore has the greatest height and energy and, if sufficiently

high, begins its journey up the river as a foaming bore. As it advances, its energy is

dissipated, height differential diminished, and the bore evolves into an undulating

bore, starting in the centre of the river where h1 is the greatest, and eventually

including the edges where h1 is the least. The wavelength of undulations is evi-

dently determined by factors such as g, h2 − h1, and properties of the water such

as its density and viscosity. For water, the critical point where a bore switches from

foaming to undulating is at h2/h1 ∼ 1.3, a semi-empirical result that also depends

upon the intrinsic properties of the fluid.
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2.3.1 Bores in the “lab frame”

An advancing tidal bore is typically observed

from the riverbank which, given the relative

speeds of the river flow and the advancing

bore, is approximately the frame of reference

of the shallower water, i.e., the river as it flows

into the ocean. Let us refer to this reference

frame as L – the “lab frame” – in analogy with the situation depicted in Fig. 2.5

where we similarly considered a shock wave. Thus, and as illustrated in the inset,

taking the upstream flow-speed, u1 (relative to L), to be zero, we have:

u1 = 0; u2 = v2 − v1; V = −v1,
where, as before, v1 and v2 are respectively the upstream and downstream flow

speeds relative to the bore, B, and V is the speed of the left-moving bore relative

to L. Thus, from Eq. (2.65),

V = −
√
gh2(h1 + h2)

2h1
; (2.66)

and u2 =

(
1− h1

h2

)
v1 = −(h2 − h1)

√
g(h1 + h2)

2h1h2
, (2.67)

where for both V and u2, the leading negative sign means motion relative to L is

leftward.

Example 2.1. In five hours, a tidal bore travels at a constant speed along a 36-km

inlet of average depth h1 = 0.2 m.

a) Find the average height (above the undisturbed water) of the bore.

b) Is the bore undulating or foaming?

Solution: a) Assuming the undisturbed (shallow) end of the bore is at rest relative

to the observer, the bore speed is given by Eq. (2.66):

V = −
√
gh2(h1 + h2)

2h1
⇒ gh22 + gh1h2 − 2h1V2 = 0

⇒ h2 =
−h1 +

√
h21 + 8h1V2/g

2
, (2.68)

discarding the − root to keep h2 > 0.

From the problem description, V = (36 km)/(5 hr) = 2m s−1. Thus, with g =

9.81m s−2 and 〈h1〉 = 0.2m, Eq. (2.68) ⇒ 〈h2〉 = 0.316m, and the average height

of the bore above the undisturbed water is:

〈h〉 = 〈h2〉 − 〈h1〉 = 0.116 m.
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Figure 2.8. a) A streamline is always tangential to the local velocity vector. b)
A streamtube is a “pencil of fluid” bounded on all sides by streamlines.

b) To determine the nature of the bore,

〈h2〉
〈h1〉 =

0.316

0.2
= 1.58 > 1.3 ⇒ foaming bore.

2.4 Bernoulli’s theorem

We begin our discussion of Bernoulli’s theorem with some definitions:

Streamline: A streamline is a path in a fluid whose tangents are everywhere parallel

to the local velocity vector. This definition can easily be mathematised. If, as in

Fig. 2.8a, the tangent to the streamline at point P is characterised by a “rise” of dy

over a “run” of dx, then for the tangent to be parallel to the local velocity vector,

(vx, vy), we have in 2-D:
dy

dx
=

vy
vx
,

which, in principle, can be solved to yield y(x), the path describing the streamline.

An entirely analogous but slightly more complicated procedure can be followed to

find a streamline in 3-D.

Streakline: A streakline is a line in the fluid created by the convection of a tracer

(e.g., smoke, dye) that is continually released into the fluid at a fixed location.

When people think of a streamline, they are often thinking, in fact, of a streakline

(e.g., the smoke streaks created by an engineer in a wind tunnel that pass over the

surface of, say, a vehicle being examined for its aerodynamic properties). In general,

streaklines and streamlines are different.

Particle path: A particle path is the trajectory of an individual point being con-

vected with the fluid. Thus, a particle path is the locus of points at different times

representing the position of the same particle, whereas a streakline is the locus of

points representing the positions of different particles at the same time.

Flowline: In a steady-state fluid (one characterised by setting all the ∂/∂t terms to
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zero), streamlines, streaklines, and particle paths are all the same, and are referred

to collectively as flowlines. If the flow is not in steady state, then all three paths

are, in general, different.

Streamtube: A streamtube (or in steady state, a flowtube) is a “pencil of fluid”

bounded by streamlines (flowlines), as depicted in Fig. 2.8b.

Since, by definition, flow does not cross streamlines, the “walls” of a streamtube

are as impervious to the fluid as though they were physical barriers, and the only

matter entering or leaving a streamtube will be through its “ends” (Fig. 2.8b). We

may formalise this idea by considering the integral form of the continuity equation

(Eq. 1.37) in the steady state: ∮

S

ρ�v · n̂ dσ = 0.

If S is the closed surface of a flowtube, then only the “ends” of the flowtube (Ain and

Aout in Fig. 2.8b) contribute to the integral, since �v ⊥ n̂ everywhere else. Therefore

we have, ∮

S

ρ�v · n̂ dσ = ρoutvoutAout − ρinvinAin = 0,

where ρin/out and vin/out are mean values across Ain/out, and where the velocity is

the component parallel to the area normal, n̂. The negative sign arises because �vin
and �Ain are antiparallel. Thus we can write:

ρoutvoutAout = ρinvinAin, (2.69)

which, loosely translated, means “what goes in must come out”. Note that ρvA, with

units kg s−1, is a mass flux and Eq. (2.69) is a statement of mass flux conservation.

Thus, for an arbitrary flowtube cross-section, A, whose normal is parallel to the

flow, we have:
ρvA = constant. (2.70)

Note that if mass flux weren’t conserved, the mass in any given volume would either

accumulate or disappear over time, contradicting the steady-state assumption.

Bernoulli’s theorem identifies another useful constant along streamlines for fluid

flow in the steady state, and can be derived in a number of ways. Here we begin

with the total energy equation (Eq. 1.23) setting ∂eT/∂t = 0:

∇ · (eT + p)�v = ∇ ·
(
eT + p

ρ
ρ�v

)
= ρ�v · ∇

(
eT + p

ρ

)
+
eT + p

ρ �����0∇ · (ρ�v) = 0,

where the continuity equation (Eq. 1.19) in steady state allows us to set the last

term to zero. Thus, on dividing through by ρ �= 0, we have,

�v · ∇
(
eT + p

ρ

)
= 0,

and �v is everywhere perpendicular to the gradient of the function B ≡ (eT + p)/ρ.

This is equivalent to saying �v – which maps out streamlines – is everywhere parallel
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to lines of constant B (or tangential to surfaces of constant B in 3-D), and we have,

B =
v2

2
+
e+ p

ρ
+ φ = constant along streamlines, (2.71)

where Eq. (1.20) has been used to replace the total energy density, eT. This is

Bernoulli’s theorem, named for Daniel Bernoulli (1700–1782), the Dutch/Swiss

physicist and a contemporary of Johan Euler. The Bernoulli family was a bit of

a mathematical dynasty in the 18th century, including his father, Johann (a pro-

fessor of mathematics at Basel whose most famous pupil was Euler himself), his

brother, Nicolas Bernoulli, and his uncle, Jacob Bernoulli. Daniel’s interests took

him mostly into applied mathematics and physics.18

Bernoulli’s theorem takes on a variety of forms depending on the equation of

state one uses for e. The two studied in this text are for ideal gases (compressible or

incompressible), and ideal liquids (strictly incompressible). The former is obtained

by using the ideal gas law, Eq. (1.11), to substitute e = p/(γ − 1) into Eq. (2.71):

Bgas =
v2

2
+

γ

γ − 1

p

ρ
+ φ =

v2

2
+ h + φ = constant along streamlines, (2.72)

where,
h =

γp

(γ − 1)ρ
=

c2s
γ − 1

, (2.73)

is the enthalpy of the gas. As for liquids (which do not obey the ideal gas law),

the internal energy density is essentially independent of the pressure, and depends

almost exclusively on the temperature. Indeed, the pressure in a liquid can vary

dramatically even if e and ρ remain constant to within one part in 10>6 and we

shall therefore take ρ as constant. Further, if the liquid is isothermal, e will be

constant in which case, Bernoulli’s theorem takes on the form:

Bliq ≡ B − e

ρ
=

v2

2
+
p

ρ
+ φ = constant along streamlines. (2.74)

Note that for terrestrial examples (gases and liquids), one takes φ = gz, where g is

the acceleration of gravity, and z is the vertical distance from a reference height.

Bernoulli’s theorem is a powerful tool for analysing some fluid problems, but it

is worth remembering the restrictions under which Bernoulli’s theorem applies. For

Eq. (2.71) to be valid, the flow must be in a steady state, and one must be considering

events along the same streamline. While these restrictions may seem severe, it turns

out they’re not as restrictive as one may at first think as the examples below and

several of the problems in the problem set illustrate.

Broad-crested weir19

In certain parts of the world where sudden rushes of water, particularly near moun-

tain bases, are a risk to lives and property, arroyos (as they are known in south-

18www.wikipedia.org/wiki/Daniel Bernoulli
19Adapted from an example in Tom Faber’s text, Fluid Dynamics for Physicists (1995).
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Figure 2.9. Cross section of a “broad-crested weir” used to measure flow rate in
an “arroyo”. The adjective “broad-crested” refers to the fact that R � D, where
R is the radius of curvature of the weir and D is the depth of water passing over
the weir.

western U.S.) are constructed to redirect the flow away from homes, roads, etc.

These arroyos are often built with a broad-crested weir (Fig. 2.9) which is not

meant to restrict the flow, but to provide an astonishingly simple way of measuring

the flow rate (e.g., m3 s−1) through the arroyo.

As shown in Fig. 2.9, an asymmetric mound, or weir, is built across an arroyo

so that its “blunt-end” faces upstream, while the downstream side tapers gradually

back to the level of the arroyo floor. Somewhat upstream of the weir is a vertical

pole with markings indicating the height of water above the crest of the weir.

Question: How does the flow rate through the arroyo depend upon water depth?

One can clearly imagine such a flow to be (very nearly) in steady state, isothermal,

and exhibit easily identified streamlines. For example, shown in Fig. 2.9 are three

streamlines, the top corresponding to the surface of the water. Thus, this problem

is a natural application of Bernoulli’s theorem for an isothermal liquid.

Consider two points along the surface, A and B. Point A is chosen to be far

enough back from the crest of the weir so that the water surface at A is approxi-

mately level, and point B is some arbitrary point between A and the crest of the

weir. As shown in Fig. 2.9, δ1 is the vertical distance between the arroyo floor and

the water level at point B, while δ2 is the vertical distance between the water level

at point B and the water level at point A. For convenience, let δ = δ1 + δ2.

Consider the flowline along the surface. Here, pA = pB = patm, the atmospheric

pressure, and thus Eq. (2.74) becomes:

1
2v

2
A + gzA = 1

2v
2
B + gzB,

where φ = gz (appropriate near the surface of the earth), and where z is the vertical

height relative to the bottom of the arroyo. With vA ∼ 0 and zA− zB = δ2, we have:

1
2v

2
B = gδ2 ⇒ vB =

√
2gδ2.

Let the width of the arroyo be W . Then at B, the cross-sectional area of the flow is

δ1W , the flow rate is Q = vBδ1W m3 s−1, and thus the flow rate per unit width of
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the arroyo is q = Q/W = vBδ1. Therefore:

q = δ1
√

2gδ2 ⇒ δ2 =
q2

2gδ21
.

But,

δ = δ1 + δ2 = δ1 +
q2

2gδ21
, (2.75)

and this distance is minimised when point B is directly over the crest of the weir.

To find this minimal distance, we set:

dδ

dδ1
= 1− q2

gδ31
= 0 ⇒ δ1 =

(
q2

g

)1/3
.

Substituting this result into Eq. (2.75) yields:

δmin =

(
q2

g

)1/3
+
q2

2g

(
g

q2

)2/3
=

3

2

(
q2

g

)1/3

⇒ q =

√

g

(
2

3
δmin

)3
, (2.76)

which is our final result. With Eq. (2.76), one can calibrate a pole upstream of the

weir to read the flow rate, q, instead of, or in addition to, the water depth above

the crest of the weir, δmin.

This is a good place to pause and either introduce or remind the reader of a very

useful technique known as dimensional analysis which can often yield qualitatively

and sometimes quantitatively useful formulæ based on nothing more than an anal-

ysis of the units of the variables involved. While this method cannot be applied in

all situations, in those where it can be applied it serves as a very useful check on

what may have been a rather extensive and physically complex derivation.

In the present example of the broad-crested weir, one must first list all variables

upon which the flow rate past the weir could possibly depend. Ignoring dissipative

forces as we have done, one might list the density of water, ρ, the width of the arroyo,

W , in addition to quantities such as g and δmin, the water depth. Upon reflection,

however, one soon realises that the rate at which things fall under the influence of

gravity does not depend on mass, and thus ρ cannot be relevant. Further, since q

is the flow rate per unit width of the arroyo, W is also irrelevant leaving us only

with g and δmin. The question then is, how could a quantity such as q, with units

m2 s−1, depend upon g, with units m s−2, and δmin, with units m? This can be easily

determined by first supposing that:

q ∝ ga δbmin,

and then comparing the units on the left and right sides of the equation to determine

a and b. Thus,
m2s−1 = (ms−2)a (m)b

⇒ 2 = a+ b and − 1 = −2a ⇒ a = 1
2 and b = 3

2 .
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Figure 2.10. A cross-sectional cut through an apparatus designed to demon-
strate Bernoulli levitation. Air coming down the hose at speed v0 is deflected
radially by the disc of mass M , and forced to flow through the gap of thickness
d between the plate and the disc.

And so with no physics other than identifying the independent variables, we have

determined that:
q ∝

√
g δ3min,

in agreement with Eq. (2.76). Evidently, the physics is needed in this case only to

determine the order-unity proportionality constant, namely (2/3)3/2 ∼ 0.54.

Bernoulli levitation

Figure 2.10 depicts a device designed to demonstrate a somewhat counter-intuitive

consequence of Bernoulli’s theorem. A circular plate with a hole in the middle is

fitted with a hose, the other end of which is connected to an air supply. By setting

the air pump to draw air in through the hole, a disc of massM brought up under the

plate would, with sufficient suction, be drawn into the plate and supported against

its own weight. No surprise there. But what if the airflow were reversed, and air

were forced out of the hole? Surely then the disc would be pushed away from the

plate and fall.

Bernoulli would beg to differ.

As shown in Fig. 2.10, an air supply forces air at a constant speed v0 through

a hole of radius a at the centre of the circular plate. A circular disc of mass M

and radius R is brought up to within a distance d of the circular plate, both held

horizontally, so that the centre of the disc is directly under the centre of the hole

through which air is flowing. This redirects air from its initially downward direction

to a radially outward direction through the narrow gap between the plate and disc.

We shall use the form of Bernoulli’s theorem applicable to ideal gases to demon-

strate a phenomenon known as Bernoulli levitation. Consider two points, P and Q,

along the streamline as indicated in Fig. 2.10. P is taken to be a distance r from the

centre of the hole, and thus pP = p(r) and vP = v(r). Q is taken to be sufficiently far

away from the apparatus so that vQ = 0 and pQ = patm, the atmospheric pressure.
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Since P and Q have the same gravitational potential, Eq. (2.72) requires:

p(r) + 1
7ρv

2(r) = patm, (2.77)

where γ = 7/5, appropriate for a diatomic gas such as air, and where ρ is taken as

constant since all velocities are well under the sound speed.20

Next, from Eq. (2.70), we conserve mass in the steady state by equating the

mass flux through the hose (with cross-sectional area πa2) to the mass flux flowing

past any radius r inside the gap (with cross-sectional area 2πrd). Thus,

ρv0πa
2 = ρv(r)2πrd

⇒ v(r) =
v0a

2

2rd
. (2.78)

Substituting Eq. (2.78) into Eq. (2.77), we get:

p(r) = patm − ρv20a
4

28 r2d2
. (2.79)

Thus, the pressure inside the gap is less than atmospheric pressure, and it is this

difference in pressure that holds up the disc when air flows out of the hole.

The net force acting on the disc is the vector sum of the pressure difference,

patm − p(r), integrated over the surface of the disc acting upwards, Fp, and the

thrust of the air flow acting downwards, T (what our intuition might have lead us

to conclude that the disc would be pushed away from the plate). For the former,

we integrate over annuli concentric with the hole to get:

Fp =

∫ R

a

2πr
(
patm − p(r)

)
dr =

∫ R

a

πρv20a
4

14 rd2
dr =

πρv20a
4

14 d2
ln(R/a).

For the latter, we consider the time rate of change of momentum, S, as air is

redirected by the disc from vertical to horizontal:

T =
δS

δt
=

δm

δt
v0 =

ρπa2v0δt

δt
v0 = ρπa2v20 .

To find the thickness of the air gap, d, we set:

Fp − T = Mg ⇒ πρv20a
4

14 d2
ln(R/a)− ρπa2v20 = Mg

⇒ a2ln(R/a)

14 d2
=

Mg

ρπa2v20
+ 1,

where, had we ignored the thrust acting downwards, the last term (1) on the right-

hand side (RHS) would be absent. Solving for d, we get:

d =

√
1

14

a2ln(R/a)

Mg/(ρπa2v20) + 1
. (2.80)

For “typical” numbers appropriate for a device constructed to demonstrate Bernoulli

20For comfortably subsonic speeds, gases are largely incompressible in the sense that by their
own actions and motions, ρ will not change appreciably.
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Figure 2.11. Inside the chamber of a de Laval nozzle, gas with pressure pc and
density ρc is “choked down” to a cross-sectional area Achoke at the choke point
as it rushes to escape through the nozzle and into the ambient gas of pressure pa
and density ρa.

levitation, M = 0.1 kg, R = 0.1 m, a = 0.01 m, v0 = 10 m s−1, and ρ = 1.2 kgm−3.

Equation (2.80) then yields d = 0.78 mm. If one ignores the thrust [i.e., dropped

the “+ 1” term in the denominator of Eq. (2.80)], one finds d = 0.80 mm. Thus,

the thrust makes ∼ 2.5% difference for these parameters. The fact that d is smaller

with the thrust taken into account than without may seem surprising, at first. Note,

however, that a greater pressure difference is required to balance both the weight

and the thrust than the weight alone, and thus d must be correspondingly smaller.

Equation (2.80) tells us that no matter how small v0 may be, there is a finite

gap, d, however small, that allows the disc to be supported against its own weight.

But surely this cannot be true for a mass of arbitrary size! In fact, we can see from

Eq. (2.79) that if d is too small, p(r) becomes negative. By requiring p(r) > 0, it is

left to Problem 2.17 to show that, for a given a and R, there is indeed a maximum

mass Bernoulli levitation can support. However, for the parameters given above, this

mass is almost five times greater than the maximum mass supportable by suction.

Thus, blowing air out of the hose can actually be more effective at supporting weight

than the “intuitively obvious” case of sucking it in!

de Laval nozzle

Gustaf de Laval (1845–1913), a Swedish engineer of French descent, developed the

theory and performed the first experiments on what would prove to be the crux of

rocket design: a nozzle that can optimally convert the thermal energy of extremely

hot gas into kinetic energy of a projectile, such as a rocket.

Figure 2.11 is a schematic diagram of what is now called a de Laval nozzle. It

turns out that for a given chamber pressure and density (presumably set by the rate

of combustion in the rocket), there is a critical cross-sectional area of the throat

of the nozzle, Achoke, that maximises the thrust. A nice application of Bernoulli’s

theorem will show that if A > or < Achoke, thrust is necessarily reduced.

Start with Bernoulli’s theorem for an ideal gas (Eq. 2.72 ignoring φ):

v2

2
+

γ

(γ − 1)

p

ρ
= constant.

Differentiating this and the steady-state continuity equation (Eq. 2.70) with respect
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to position along the chamber, x, yields the following two expressions:

v
dv

dx
+
c2s
ρ

dρ

dx
= 0; (2.81)

1

ρ

dρ

dx
+

1

v

dv

dx
+

1

A

dA

dx
= 0, (2.82)

where c2s = dp/dρ = γp/ρ has been explicitly assumed in deriving Eq. (2.81).

Dividing Eq. (2.81) by c2s gives:

1

ρ

dρ

dx
= −M

2

v

dv

dx
,

where M = v/cs is the Mach number. When substituted into Eq. (2.82), we get de

Laval’s equation:

(M2 − 1)
A

v

dv

dx
=

dA

dx
. (2.83)

Equation (2.83) is surprisingly subtle. For example, for the flow to be transonic

(M2 = 1) requires either dA/dx = A′ = 0 (thus locating the transonic point at the

choke point where A is an extremum), or dv/dx = v′ → ∞ (i.e., a shock). As shocks

convert kinetic energy into thermal energy, a shock along the flow is undesirable for

the purpose of maximising thrust. Thus, we either need to avoid a transonic point

altogether, or arrange for it to be located at the choke point of the nozzle.

Second, given that gas is accelerated from rest within the chamber, gas must

start off as subsonic flow. Equation (2.83) tells us that whenM2 < 1, flow accelerates

along the chamber (and thus v′ > 0) provided A′ < 0, i.e. the cross-sectional area

of the chamber decreases in the direction of flow, as is the case on the left side of

the choke point, Achoke, in Fig. 2.11. However, by the same token, if the flow is

still subsonic to the right of the choke point where A′ > 0, v′ < 0 and the flow

decelerates, contrary again to the purpose of maximising the thrust.

Now, should the flow become supersonic past the choke point, v′ > 0 for A′ > 0.

That is, forM2 > 1, the flow speed actually increases with increasing cross-sectional

area. Thus, subsonic flow before the choke point and supersonic flow after seems to

be the best way to maximise thrust, and this is possible only if a transonic point is

located at the choke point of the nozzle. This was de Laval’s discovery and design,

and is why every nozzle on every rocket ever built is called a de Laval nozzle. Indeed,

as explored in Problem 2.20, de Laval nozzles could arise in nature too.

Of course, this places a requirement on the value of Achoke in Fig. 2.11. If Achoke

is too small, subsonic flow will become supersonic before reaching the choke point,

triggering a shock and reconverting some of the kinetic energy of the gas back to

thermal energy. Conversely, if Achoke is too large, flow will not reach the transonic

point by the time it reaches the throat of the chamber, and post-throat flow will

be subsonic and decelerate. In practice, the optimal value for Achoke then depends

upon the volume of gas forced out of the chamber per second (m3 s−1), the average

mass of particles in the gas (kg), and the power liberated by the combustion (J s−1).

These ideas are explored further in Problem 2.18.
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2.1 Show by direct substitution that Eq. (2.14) in the text solves the 3-D wave

equation, Eq. (2.9). You may do your proof in Cartesian coordinates, if you like.

2.2 Equation (2.9) is a wave equation in p derived from Eq. (2.7) and (2.8).

a) Derive from these same equations a wave equation for �v, namely,

∂2�v

∂t2
= p′0∇(∇ · �v). (2.84)

b) Show that for a plane wave propagating in the x direction (and thus �v = vxx̂),

this reduces to:
∂2vx
∂t2

= p′0
∂2vx
∂x2

.

2.3 Equation (2.30) in the text gives the pressure and velocity fluctuations for a

propagating 1-D sound wave for all positions and time.

a) By integrating over all space (e.g., −∞ < x <∞), show that the momentum

of the gas is conserved.

b) By looking at Fig. 2.1 in the text, can you tell if total energy is being con-

served? If you think it is, explain why. If you think it isn’t, explain where the

energy is either coming from or going to.

2.4 Suppose, in Fig. 2.1 in the text, the initial pressure perturbation in a sound

wave at t = 0, p̃(x), is centred at x = 0 and has a width Δx = 2. Suppose further

that the height of the pulse on the left (right) is 0.003 (0.001), all in arbitrary units,

and that the sloped portion of the perturbation begins and ends at x = ∓0.5. Let

ρ0 = 1, p0 = 0.6, and v0 = 0, again in arbitrary units.

a) If the gas is monatomic, what is the sound speed in these arbitrary units

(neglecting the pressure and density fluctuations caused by the passage of the

sound wave itself)?

b) At what time does the left edge of the pulse reach x = −4?

c) What is the pressure and velocity at x = 0 and t = 0.5, again in these arbitrary

units?

d) What is the pressure and velocity at x = 3 and t = 3?
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2.5∗ Suppose, at t = 0, the pressure and velocity perturbation profiles of a sound

wave are given by:

p̃(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0.002 −0.5 ≤ x ≤ 0,

0.001 0 < x ≤ 0.5,

0 elsewhere;

ṽ(x) =

{
0.003 −0.5 ≤ x ≤ 0.5,

0 elsewhere.

Suppose further that ρ0 = 1
2 , p0 = 5

14 , v0 = 0, and the gas is diatomic. All units are

arbitrary.

a) What is the unperturbed (adiabatic) sound speed in these arbitrary units?

b) Sketch with some quantitative accuracy and in a manner similar to Fig. 2.1 in

the text the profiles of the pressure and velocity perturbations at t = 0, 0.3,

and 0.6.

2.6∗

a) Similar to what is done in the text for an adiabatic gas, solve the Rankine–

Hugoniot jump conditions for an isothermal shock, and include in your solu-

tions an expression for the post-shock Mach number.

Hint : To start, you’ll want to replace Eq. (2.32) in the text with the integral

form of Eq. (1.40) in 1-D and steady state, from which you should find p1v1 =

p2v2. Recall also that the isothermal sound speed is given by c2s = p/ρ (Eq.

2.11).

b) Show that across an isothermal shock, the temperature remains the same and

entropy actually decreases. Why is the latter result not a violation of the

second law of thermodynamics?

c) Is there such a thing as an isothermal contact discontinuity? Explain.

2.7∗ A polytropic gas is one where p = κργ , and where κ is strictly constant.

Thus, for the two states depicted in Fig. 2.2 in the text, κ2 = κ1 and Eq. (2.53)

then requires that entropy be uniform and strictly conserved across a shock. A

polytropic gas differs from an adiabatic gas in that the latter admits spatially and

temporally varying values of κ, and thus entropy is not strictly conserved.

a) Similar to what we did in class for an adiabatic gas, solve the Rankine–

Hugoniot jump conditions for a polytropic shock, and show that the jump

in speed relative to the shock, φ = v2/v1, is given by the transcendental

equation:
1− φ−γ

φ− 1
= γM2

1 , (2.85)

where M1 = v1/cs1 is the Mach number, and the sound speed is given by Eq.
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Figure 2.12. (Problem 2.9) A 1-D shock tube viewed from a reference frame
relative to which the shocked gas has speed, u2, and the shock, S, has speed V.

(2.10) in the text. Express the jumps in ρ and p in terms of φ, as well as the

post-shock Mach number in terms of φ.

Hint : For this problem, consider only Eq. (2.31) and (2.33) in the text, and

replace p directly with κργ .

b) Are contact discontinuities even admitted? Explain.

2.8∗

a) Verify all three of Eq. (2.58) in the text.

b) Suppose you wanted to excite a 1-D shock inside a long tube with one end

closed off and with shock strength ζ = p2/p1 = 5.00±0.02, where p2 (p1) is the

postshock (preshock) pressure. From the frame of reference of the postshock

gas (e.g., the “lab frame” as described in 2.2.3), with what speed (with

uncertainty) must air be launched into the tube to attain such a shock? (You

may assume γ = 7/5 for air.)

2.9∗∗

a) In terms of the shock strength, ζ = p2/p1 where p2 (p1) is the postshock

(preshock) pressure, show that the density jump, ρ2/ρ1, is given by:

ρ2
ρ1

=
1 + βζ

β + ζ
, (2.86)

where β = (γ + 1)/(γ − 1).

b) A slightly more general “lab frame” than introduced in 2.2.3 is depicted in

Fig. 2.12 where the postshock gas has a non-zero residual speed, u2, relative to

the observer. From this frame of reference, show that in terms of the preshock

speed, u1 > 0, and the shock strength, ζ, we have:

V = u1 − cs,1
√
α(1 + βζ) and u2 = u1 − cs,1

ζ − 1

γ
√
α(1 + βζ)

, (2.87)

where V is the propagation speed of the shock, α = (γ − 1)/2γ, and cs,1 =√
γp1/ρ1 is the sound speed in the preshock fluid. Note that if the postshock
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(downwind) state were on the left in Fig. 2.12, u1 < 0 and the terms propor-

tional to cs,1 would be added rather than subtracted.

c) Relative to the preshock fluid, which has the greatest magnitude: V or u2? i.e.,

which of |V − u1| and |u2 − u1| is larger?

2.10 Show that the shock jump conditions in the lab frame, namely Eq. (2.58)

in the text, go to the same limiting functions (namely Eq. 2.45, 2.46, and 2.47) as

M2
1 → ∞ as do the shock jump conditions in the shock frame (namely Eq. 2.40,

2.41, and 2.42), as M2
1 → ∞.

2.11 Suppose the temperature jump across a contact is T2/T1. Show that the

entropy jump across the contact is given by:

ΔS = γ ln

(
T2
T1

)
.

2.12∗∗ The tides of the Bay of Fundy.

a) As depicted in Fig. 2.13, a bathtub of length L is filled with water to a depth

h. If the water is driven to slosh back and forth in such a way that the water

surface remains planar, show that the potential energy of the bathwater, U ,

is given by:

U =
ρLwg

6
y2,

where ρ is the density of water, w is the width of the tub, and y is the

additional depth of water above h at the left end of the tub (x = 0).

b) Show that the kinetic energy, K, of the horizontal motion of the water is given

by:

K =
ρwL3

60h

(
dy

dt

)2
.

Here, we assume the amplitude of oscillation is sufficiently small that we can

ignore the contribution of the vertical motion to the kinetic energy.

c) Assuming the oscillation is weakly damped and thus energy dissipation is

very small, set E = U +K = constant and show that the water level rises and

falls as a simple harmonic oscillator. Thus, find its natural frequency, ω0, and

period of oscillation, T0.

For small damping, the resonant frequency ωr ≈ ω0. Therefore, what is the

resonant period of oscillation for a tub with L = 1.5m and h = 0.3m? Does

this jibe with your intuition? (Surely every kid discovered that sliding back

and forth along the bottom of the tub with just the “right” frequency will

spill water onto the floor!)
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Figure 2.13. (Problem 2.12) A bathtub with an oscillating water level.

d) The Bay of Fundy is about 250 km long. If we model it as a big bathtub

sloshing back and forth as it is driven by solar and lunar tidal forces, the bay

itself would represent half of the tub with the other half stuck into the Gulf of

Maine. Thus, take L ∼ 500 km and use h ∼ 50m as its effective depth. What

is the resonant period of oscillation? Compare this with the driving frequency

of the moon, which you can work out from the fact that there are two high

tides every time the moon returns to the same right ascension (longitude) in

the sky.

You should find the driving frequency of the moon to be darn near the resonant

frequency of the bay, and we can explain its extraordinarily high tides as a

resonance phenomenon. To calculate the actual amplitude (y ∼ 8m) is a bit

more complicated, as this depends on damping terms such as the viscosity of

sea water and the resistance to flow from the bottom and sides of the bay.

2.13∗ The claim was made on page 45 of the text that one cannot simultaneously

conserve mass, momentum, and energy across a bore. This problem explores that

assertion.

a) Starting with the energy equation, Eq. (1.23) in the text, where the total

energy density, eT, is given by Eq. (1.20), show that in the steady state,

integrating around the control volume in Fig. 2.7 results in a net power per

unit width leaving the control volume given by:

PCV =
ρg3/2

4

√
h2 + h1
2h2h1

(h2 − h1)
3,

where h2 and h1 are the depths of the water of density ρ downstream and

upstream of the bore. Since PCV �= 0 except for h2 = h1 (no jump), energy is

not conserved across a bore.

b) In terms of ξ = h2/h1, what percentage of the mechanical power (i.e., ex-

cluding thermodynamic terms arising from internal energy and atmospheric

pressure) entering the control volume from the upstream side is dissipated by

the bore?

c) Using your result from part b), what fraction of mechanical power is dissi-
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pated by an undulating bore with ξ = 1.2? By a foaming bore with ξ = 1.5?

(Answers: 0.10% and 1.08% respectively).

2.14 As shown in the inset, a sluice gate with pressure head, d, behind it is raised

a height h1 � d, allowing water to stream out at a constant speed. Because of an

obstacle downstream, an hydraulic jump (H; stationary in the frame of reference of

the gate) is established in the flow.

a) What is the depth, h2, and speed, v2, of the

water downstream of the jump?

b) If d = 1m and h1 = 1 cm, is the jump (bore)

undulating or foaming?

Hint : To find the constant flow speed, v1, be-

tween the gate and the jump, construct a suit-

able streamline between the reservoir and the re-

gion between the gate and the jump, and use

Bernoulli’s theorem for liquids.

2.15∗ As shown in the inset, a sluice gate with a constant pressure head d = 5.00m

behind it is raised a height h1 = 5.00× 10−3m, allowing water to stream out at a

constant speed, u1 (to be determined).

Because of a barrier at a distance L =

3.00m downstream of the gate, a bore

moving from the barrier towards the

gate is established in the flow. From the

moment the sluice gate is opened, how

long does it take for the bore to reach

the gate in seconds? You should assume

the problem is “slab symmetric”; that

is, derivatives into the page are zero.

2.16 Show that Bernoulli’s theorem is valid across a steady-state, normal shock

(‘normal’ meaning the streamline is parallel to the shock normal). That is to say with

φ = 0, show that Eq. (2.72) in the text is consistent with the integrated conservative

equations, Eq. (2.31)–(2.32), used to derive the Rankine–Hugoniot jump conditions.

2.17

a) Consider again the example of Bernoulli levitation described in 2.4 and de-

picted in Fig. 2.10 in the text. Show that the maximum mass that can be
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supported by this mechanism (ignoring the counter-thrust) is given by:

Mmax =
2πa2 ln(R/a) patm

g
,

where all variables are defined in the text.

b) What is the maximum mass supportable by sucking air in through the hose?

c) What is the ratio of the maximum mass supportable by Bernoulli levitation

to that supportable by suction?

2.18 Consider again the de Laval nozzle discussed in 2.4 in the text. Using no more

than simple dimensional analysis arguments, determine how the cross sectional

area of the choke point, Achoke, depends upon the physical quantities that could

reasonably determine it (listed at the end of 2.4).

2.19∗ Extragalactic jets are long (∼ 106 light years), collimated supersonic “beams”

of plasma emitted roughly along the rotation axes and from the “accretion discs” of

giant black holes (∼109M�21) residing at the centres of the most massive galaxies.22

Jets transport a small fraction of the accreting matter back into the intergalactic

medium (IGM) and with it much of the angular momentum, thus allowing the ma-

terial left behind in the accretion disc to fall into the black hole (a.k.a., an active

galactic nucleus ; AGN). Figure 2.14 shows a 6-cm radio image of what is often

referred to as the “prototypical” extragalactic radio source, Cygnus A.23 Emission

from most every extragalactic radio source is via the synchrotron mechanism by

which relativistic electrons spiral about magnetic fields.

Figure 2.15 shows the “anatomy” of a jet, as known from numerical simulations

such as those in Fig. 2.16. Ultra-hot (109 K or more) jet material from the AGN

moves at near-light speeds from left to right in the figure, and impacts against the

much denser IGM at the right. By terrestrial standards, the IGM is a near-perfect

vacuum with about 1–100 particles per cm3. However, the jet is even lighter at a

few tens of particles per cubic metre, a factor of a million less. As a comparator,

water is only about 800 times denser than air. So, even more so than a jet of air

blasting into water, the progress of an astrophysical jet is slowed dramatically by

the inertia of the IGM, causing a terminal “Mach disc” or “Mach stem” to form at

the end of the jet. Here, jet material shocks, has most of its kinetic energy converted

to thermal energy, and forms a “hot spot” from which highly pressurised material

“squirts” out laterally in all directions inflating a “bubble”, more commonly known

as a “cocoon” or “lobe”.

As much as the jet may be slowed at the hot spot, it still moves through the

IGM supersonically (relative to the low sound speed there), exciting a “bow shock”

21M� ∼ 2× 1030 kg is the mass of the sun.
22For a quick review of the subject, see Clarke et al., 2008.
23The “A” is used by radio astronomers to indicate this is the brightest radio source (at 1400

MHz) in the constellation Cygnus. The second brightest is thus Cygnus B, and so on.
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Figure 2.14. (Problem 2.19) A 6-cm radio image of the western half of the ex-
tragalactic radio source, Cygnus A, observed with the National Radio Astronomy
(NRAO) Very Large Array (VLA) radio telescope near Socorro NM. A “reversed”
grey scale is used, rendering the brightest emission black. The AGN is buried in
the bright spot in the lower left from which a thin jet emanates. The supersonic
jet impacts against the IGM at the brightest (darkest) “hot spots” in the right
of the image, inflating the lobe/cocoon as seen (from Perley et al., 1984, © AAS,
reproduced with permission).

that leads the advancing jet. Separating the shocked jet material (cocoon) from the

shocked ambient material is a contact discontinuity which is Kelvin–Helmholtz ( 7.1)

and Rayleigh–Taylor ( 7.2) unstable, as indicated by the wiggly line representing

the contact in Fig. 2.15. It is only the jet material (which does not cross the contact)

that contains any appreciable magnetic field (coming from the AGN), and thus it

is only the jet and cocoon/lobe that emit synchrotron radiation and are visible in

radio images. Thus, the emission in Fig. 2.14 corresponds to everything inside the

contact discontinuity only. In particular, then, the bow shock excited in the ambient

medium is not visible even though it must be there.

A small but significant subset of extragalactic radio sources exhibit “nested

lobes” in which a younger, more energetic, and smaller lobe seems to be inflating

within an older, less energetic, and larger lobe.24 A prevailing model to describe such

a phenomenon is the “restarting jet” model25 in which a jet, for whatever reason,

ceases to flow for some time, then resumes well after the original jet has disappeared.

Simulations show that while the jet is “off”, the lobe inflated by the previous jet

relaxes and cools only slightly, so that the “restarted jet” propagates through a hot

and diffuse relic lobe as opposed to the denser and colder IGM through which the

original jet propagated. Among other things, this model suggests that the restarting

jet should be more ballistic in nature than the original jet.

Figure 2.16 shows stills from a ZEUS-3D simulation of a restarting jet, where

the first image is shown just before the first jet is turned off, the second after the

24For example, see Saripalli et al. (2003).
25For example, see Bridle et al. (1986).
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Figure 2.15. (Problem 2.19) A cartoon of a numerical simulation of the jet
in Cygnus A (Fig. 2.14). All features discussed in the text are labelled. The
streamline to be used for the problem is the line joining points A and B to the
right of the diagram.

lobe has relaxed somewhat and just before the jet is resumed, the third soon after

the jet is restarted, and the fourth just after the restarted jet has penetrated the

relic lobe and resumed pushing its way into the IGM. One of the controversies of

the “restarting jet” model has to do with the putative bow shock excited by the

restarted jet as it moves through the relic lobe. Such a shock should re-energise

the relativistic particles in the old lobe material, and thus be plainly visible. To

date, among the many known candidate restarting jets, no bow shock has ever been

observed drawing into question the restarting jet model.

So, finally to the problem. Assume that the ratio of jet density to IGM density,

η = ρj/ρx (‘x’ for “ex ternal”), and the Mach number of the jet relative to the sound

speed in the IGM, Mx, are known and the same for the original and restarted jets.

Assuming a monatomic gas, use Bernoulli’s theorem to show that relative to the

relic lobe material, the Mach number of the restarting jet, Mc (‘c’ for “cocoon”),

cannot exceed 2, and that for “typical” values for η (∼ 10−6) and Mx (∼ 100) in an

extragalactic jet, restarting jets actually move subsonically through the relic lobe,

thus explaining the observed absence of bow shocks.

Here’s how to proceed:

- You have Mx and you want Mc. So start by finding Mj, the Mach number of

the jet relative to the jet sound speed, in terms of Mx and η.

- Make the reasonable assumption that the thermal pressure in the jet and the

IGM are roughly equal; if they weren’t, one would expand into the other until

they were.
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Figure 2.16. (Problem 2.19) Snapshots of a ZEUS-3D simulation of a restarting
jet in 3-D showing 2-D density slices (red, high; blue, low) through the cen-
tral plane of the computational domain at four different epochs: upper left, just
before the jet is turned off; upper right, just before the jet is resumed; lower
left, just after the jet has been resumed; lower right, just after the restarted jet
resumes penetrating the IGM.

- To get Mc from Mj, you need to relate unshocked jet conditions to shocked

jet (cocoon) conditions. You do this by linking a point in the jet (point A in

Fig. 2.15) with a point in the cocoon (point B) by a streamline, and applying

Bernoulli’s theorem.

- Another fair assumption here is that the cocoon is in a state of transonic

turbulence (as confirmed by the simulations) and, as such, you can safely take

vc ∼ cs,c.

- algebra . . .

If you make any further assumptions in your calculations, be sure to state them

clearly, and give some justification for them as I have done for those I suggest above.

2.20∗ Figure 2.17 shows the Wide Angle Tail radio source, 1919+479 with its

320 kpc western jet that is apparently deflected by almost 90◦ to the south, before

continuing on for another 800 kpc as a much wider “plume”.26 (See the prologue to

26Burns et al. (1986)



Clarke 9781009381475 .tex 66 2/04/2025

66 Selected Applications of Hydrodynamics

Figure 2.17. (Problem 2.20) A VLA image of the Wide-Angle Tail radio galaxy,
1919+479 showing 20-cm radio emission (4′′.5 resolution) in fine contours and
x-ray emission (1′.8 resolution) in heavier contours. The core of the radio source
(AGN) – an unlabelled feature halfway between features 13 and 14 – launches
two jets. The “western jet” whose brightest spots are features 14 and 15, seems
to disappear from this image shortly after feature 15, but can be traced in higher
sensitivity images through to feature 7 where it does, in fact, end. A long (800
kpc) “plume” emerges from feature 7, continuing on through and beyond feature
1. The “eastern jet” is also traceable from features 13 through and beyond 8, but
doesn’t exhibit the same abrupt turn as the western jet (from Burns et al., 1986;
© AAS, reproduced with permission).

Problem 2.19 for an introduction to jets.) Both the length and the brightness of the

plume indicate the flow in the plume is likely supersonic yet, in the laboratory, it is

not known how to deflect a supersonic jet much past its Mach angle [tan−1(1/M)]

without completely disrupting it.

As illustrated in Fig. 2.18, one explanation for the bend in the western jet of

1919+479 is the spontaneous formation of a de Laval nozzle. Suppose a “cloud”

(e.g., an HI region) of mass mc is parked at feature 7 in Fig. 2.17. If a narrow,

supersonic jet of cross-sectional area Aj impinges upon the cloud and bores a hole

into it, jet material will shock on entry, slow to the co-moving frame of the cloud,

and inflate a cavity. As the cavity grows, it will breach the surface of the cloud

somewhere else venting shocked jet material back into the IGM. In the case of

1919+479, this vent is presumably at the base of the plume and, if this vent forms
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a de Laval nozzle, gas will be reaccelerated to supersonic speeds allowing the plume

to carry on, as observed.

That a de Laval nozzle would form all on its own is actually quite plausible.

As shown in 2.4 in the text, the flow rate through the nozzle is maximum when

the flow speed at the throat of the nozzle is transonic. With material inside the

cavity “anxious” to escape, it is quite conceivable that the system would attain the

right conditions at the vent to achieve maximum flow-through, and indeed, such a

scenario has been observed in numerical simulations. The big question is, could a

cloud stay put long enough for a plume 800 kpc in length (impressive, even for this

class of radio sources) to form? Wouldn’t the peculiar motion of the cloud (say its

orbit about the nucleus of 1919+479) move it out of the way over the lifetime of

the plume? Wouldn’t the jet carve the cloud up into shards? Even if both of these

questions turn out null, what of the thrust of the plume? Wouldn’t the thrust of

the venting material force the cloud to move northwards, and thus out of the way

of the jet long before the plume could achieve its observed length?

So finally, here is the question. In order for the thrust of the venting plume

material not to push the cloud out of the way, what is the lower limit of the mass

of the cloud, mc, in terms of the jet flow variables, ρj and vj, the radius of the jet

as it enters the cloud, rj, the presumed age of the plume, τp, and whatever other

variable may seem applicable and observationally accessible?

Figure 2.18. A schematic of a de
Laval model to explain the appar-
ent ability of the supersonic jet in
1919+479 to bend by almost 90◦ with-
out disrupting.

Author’s note: This problem was posed

to me as a beginning PDF just as I have

posed it to you here. I give hints be-

low to lead you to my solution, but I

encourage you to try the problem first

without using these hints; who knows,

my hints might bias you and prevent

you from coming up with a better an-

swer!

Hints: Set up the problem with two

sets of primitive variables as suggested

in Fig. 2.18: (ρj, pj, vj) just before the

jet enters the cloud, and (ρn, pn, vn) at

the throat of the purported de Laval

nozzle. Let the cross-sectional areas of

the jet as it enters the cloud and the

throat of the nozzle be Aj and An re-

spectively.

- Write down an expression for the reaction force, Fc, on the cloud from the

thrust of the venting plasma in terms of ρn, vn, etc.

- Write down an expression for the conservation of mass between the entrance

and exit of the cloud in terms of jet and nozzle values.



Clarke 9781009381475 .tex 68 2/04/2025

68 Selected Applications of Hydrodynamics

- Connect the jet and nozzle values by a streamline and conserve the Bernoulli

function. You might note that the Mach number for an extragalactic jet rela-

tive to its own sound speed, Mj, is typically ≥10 and sometimes much greater

than 10, which could help simplify one of your expressions along the way.

- A bit of kinematics, plus the notion that the cloud shouldn’t move more than

a jet diameter over the lifetime of the plume (otherwise the jet has to bore a

new hole), and you should arrive at:

mc ≥ π

8
ρjv

2
j rjτ

2
p for γ = 5/3. (2.88)

For “typical” values (ρj ∼ 10−25 kgm−3, vj ∼ 0.1c, rj ∼ 0.5 kpc, τp ∼ 108 yr), Eq.

(2.88) requires that mc > 3× 109 M�, and this is a problem since extensive optical

observations at the bend of the western jet fail to show any significant Hα emission

which would be expected if more than 109M� of gas were parked there.27 I have

not since seen a convincing resolution to this problem, though my (and I would

have thought Occam’s) suggestion is projection effects are exaggerating what is in

fact a modest deflection angle at feature 7. However, in a private communication,

one of this project’s investigators dismissed this suggestion on the grounds that it

would then make this already longest jet-plume structure known to be “ridiculously

longer”.

27Pinkney et al. (1994)
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3
The Hydrodynamical Riemann

Problem

With every simple act of thinking, something lasting and substantial en-

ters our soul.†

Bernhard Riemann (1826–1866)

Bernhard Riemann of Hanover, Germany may not have been as prolific in

his short life as many of the mathematical greats such as Euler, Gauss, and

Dirichlet by whom he was most influenced, but he is still regarded as one of the

most brilliant mathematicians of the 19th century.1 He is best known for his work

in complex analysis (e.g., the Cauchy–Riemann conditions) and for what is now

known as Riemannian geometry, the framework upon which Einstein built his gen-

eral theory of relativity some 60 years later. But most famous of all is what is known

as the Riemann hypothesis ,2 which he stated without proof in a paper published in

1859 concerning the number of primes less than x. Also known as the Riemann con-

jecture, it is the last of the great unsolved problems from the 19th century and still

considered by some to be the most important unsolved problem in number theory.

To the person who finally proves or disproves this conjecture goes a “Millennium

Prize” of 1 million, still not collected as of this writing!

While Riemann was not a fluid dynamicist, his pioneering methods in the theory

of hyperbolic partial differential equations – of which the HD equations are prime

examples (see App. C) – has had a profound effect on the way we think of fluids.

In particular, the Riemann problem is defined as a system of hyperbolic differential

equations with two piecewise constant states as initial conditions. At the heart of

this problem lies the realisation that the solution to hyperbolic equations can be

considered to be the superposition of waves, one for each independent variable.

For fluid dynamics, the initialisation of a typical Riemann problem is illustrated

in Fig. 3.1. Two constant “left” and “right” states are brought into contact at

position D and at time t = 0. This is not the “shock tube” problem addressed in

2.2; no assumption of steady state is being made here. In particular, the question

posed by the Riemann problem is ‘What is the spatial dependence of the primitive

variables at some later time?’

In this chapter, we shall build up the tools necessary to follow Riemann’s

†From H. Weber, 1876, Bernhard Riemann’s Gesammelte Mathematische Werke, p. 477, trans-
lation by Google Translate.

1www.wikipedia.org/wiki/Bernhard Riemann
2The real part of every non-trivial zero of the (Riemann) zeta function, ζ(z), is 1

2
.

69
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Figure 3.1. Initial set up for the Riemann problem. At t = 0, the diaphragm,
D, is removed, and the two constant states interact with an arbitrary jump in
(possibly) all flow variables at D.

thinking and to solve the problem that now bears his name. Among other reasons,

this problem is important to fluid dynamics because it is at the base of some of the

most robust and widely used computational algorithms for solving general problems

in (magneto)hydrodynamics.

3.1 Eulerian and Lagrangian frames of reference

By the chain rule, the full time-derivative of a function f(�r, t) is:

df(�r, t)

dt
=

∂f(�r, t)

∂t
+
∂f(�r, t)

∂x

dx

dt
+
∂f(�r, t)

∂y

dy

dt
+
∂f(�r, t)

∂z

dz

dt
, (3.1)

where, in general, the position of a point in the fluid, �r = (x, y, z), has its own time-

dependence; i.e., it moves. If it doesn’t, only the partial time derivative survives.

So what do all the terms in Eq. (3.1) actually mean? Suppose, for the moment,

f = ρ, the fluid density. Consider an observer comoving with a small parcel of fluid

with a fixed mass, ΔM , and a variable volume, Δτ . As this volume compresses or

expands from outside influences, the change in density inside Δτ is measured by

the ∂ρ/∂t term. Let us call this the intrinsic rate of change of the density.

Now consider an observer in an inertial “lab frame” watching a fixed volume,

ΔV , into and out of which fluid is moving at some velocity �v = (dx/dt, dy/dt, dz/dt).

In addition to the intrinsic changes to the density that happen in all frames of

reference, matter inside ΔV will leave and other matter of possibly different density

will flow in to replace it. These extrinsic rates of change will also cause the density

inside ΔV to change, and are accounted for by the ∂ρ/∂x, ∂ρ/∂y, and ∂ρ/∂z terms.

If we associate the time derivatives of the coordinates (dx/dt, etc.) with the

components of the flow velocity, �v (something we are not necessarily obliged to do),

it is customary to write Eq. (3.1) as:

Dvf(�r, t)

Dt
=

∂f(�r, t)

∂t
+ vx

∂f(�r, t)

∂x
+ vy

∂f(�r, t)

∂y
+ vz

∂f(�r, t)

∂z

=
∂f(�r, t)

∂t
+ �v · ∇f(�r, t).

(3.2)

Here we have used the upper-case ‘D’ instead of the lower case ‘d’ to denote the full
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time derivative, and the subscript ‘v’ to indicate which velocity is associated with

the time derivatives of the coordinates.

The construct Dvf/Dt is called the Lagrangian derivative (also known as the

material derivative), named after Joseph-Louis Lagrange (1736–1813), the Sardinian

(Italian) born but French bred physicist/mathematician responsible for many ideas

in classical mechanics and hydrodynamics.3 The velocity associated with the La-

grangian derivative is called the Lagrangian or characteristic velocity, and when

that velocity is the fluid flow velocity, the subscript is normally dropped from the

notation (e.g., Df/Dt).

In fact, we’ve been using Lagrangian derivatives all along, but never referred

to them as such. For example, by rewriting the continuity equation:

∂ρ

∂t
+∇ · ρ�v = 0 ⇒ ∂ρ

∂t
+ �v · ∇ρ+ ρ∇ · �v = 0 ⇒ Dρ

Dt
= −ρ∇ · �v,

we see that the Lagrangian derivative (with characteristic speed, �v) was always

there.

When �v is the flow velocity relative to the lab frame, we call this the Eulerian

reference frame in which Eq. Set 3 (page 20) may be written:

Equation Set 4 (Eulerian fluid equations):

Dρ

Dt
= −ρ∇ · �v; continuity

Dp

Dt
= −ρc2s ∇ · �v; pressure equation

D�v

Dt
= −1

ρ
∇p−∇φ. Euler’s equation

Alternately, we can examine the fluid from within its co-moving frame, as

though we were corks bobbing up and down in a stream. This is known as the La-

grangian reference frame where �v is set to 0 and the Lagrangian derivative becomes:

Df(�r, t)

Dt
=

∂f(�r, t)

∂t
.

Thus, in the Lagrangian frame, Eq. Set 3 becomes:

Equation Set 5 (Lagrangian fluid equations):

∂ρ

∂t
= −ρ∇ · �v; continuity

∂p

∂t
= −ρc2s ∇ · �v; pressure equation

∂�v

∂t
= −1

ρ
∇p−∇φ. Euler’s equation

Note that being in the co-moving frame of the fluid means that �v = 0 locally,

3www.wikipedia.org/wiki/Joseph-Louis Lagrange
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and thus ∇·�v is not necessarily zero too. Further, since no two elements of the fluid

are necessarily in the same frame of reference, examining all the fluid in its co-moving

frame means, in principle, having to go to a different frame of reference for every

point of the fluid at every point in time. Thus, the concept of a Lagrangian frame of

reference has limited applicability for a general fluid. However, for a steady-state,

uniformly moving fluid, or even a general 1-D fluid, the concept of a Lagrangian

frame of reference can be very useful, as we shall see later in this section. Lagrangian

and Eulerian frames of reference will also play a role in our understanding the all-

important magneto-rotational instability in 7.3.

3.2 The three characteristics of hydrodynamics

We start with the 1-D non-linear form of the pressure and Euler’s equations, Eq.

(1.41) and (1.36), in the Eulerian frame with φ = 0:

1

ρcs

∂p

∂t
+

v

ρcs

∂p

∂x
+ cs

∂v

∂x
= 0; (3.3)

∂v

∂t
+ v

∂v

∂x
+

cs
ρcs

∂p

∂x
= 0, (3.4)

where Eq. (3.3) was divided through by ρcs to give it the same units as Eq. (3.4),

and where the placement of cs in both the numerator and denominator of the third

term in Eq. (3.4) is deliberate. Note that by starting with the primitive differential

form of the equations, we are restricting our discussion to smooth flow ( 1.5) and,

in particular, exclusive of the formation of shocks and even contacts. Should we

encounter discontinuities in our drive to solve Riemann’s problem (and we will!),

we shall have to incorporate, somehow, the Rankine–Hugoniot jump conditions

( 2.2) into our discussion.

Now, for an adiabatic gas where c2s = dp/dρ = γp/ρ:

dp = c2sdρ = c2sγd

(
p

c2s

)
= γdp− 2γp

cs
dcs = γdp− 2ρcsdcs

⇒ 1

ρcs
dp =

2

γ − 1
dcs, (3.5)

a rather useful identity. Thus, Eq. (3.3) and (3.4) become:

2

γ − 1

∂cs
∂t

+
2v

γ − 1

∂cs
∂x

+ cs
∂v

∂x
= 0; (3.6)

∂v

∂t
+ v

∂v

∂x
+

2cs
γ − 1

∂cs
∂x

= 0. (3.7)

Adding and subtracting Eq. (3.6) and (3.7) yield:

∂

∂t

(
v +

2cs
γ − 1

)
+ (v + cs)

∂

∂x

(
v +

2cs
γ − 1

)
= 0; (3.8)
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∂

∂t

(
v − 2cs

γ − 1

)
+ (v − cs)

∂

∂x

(
v − 2cs

γ − 1

)
= 0, (3.9)

and suddenly the inherent symmetry in the pressure and Euler’s equations is re-

vealed. So strong is this symmetry, that an entirely new way of thinking about the

fluid equations emerges.

By defining the characteristics,

J+ = v +
2cs
γ − 1

; (3.10)

J− = v − 2cs
γ − 1

, (3.11)

with characteristic speeds,
c± = v ± cs, (3.12)

(c± = ±cs in the Lagrangian frame), Eq. (3.8) and (3.9) can be written more

compactly as:
D+J +

Dt
= 0;

D−J−

Dt
= 0, (3.13)

using the Lagrangian derivative defined by Eq. (3.2), and where D± is compact

notation for Dc± . Thus, the pressure and Euler’s equations have been converted

into Lagrangian derivatives of two characteristics, J ±, and we interpret Eq. (3.13)

as follows: In the co-moving reference frame with characteristic speed, c±, the char-

acteristic J± is constant.

Equation Set 3 has three equations and three unknowns, and yet our analysis

has only uncovered two characteristics of the flow. Symmetry suggests a third char-

acteristic must exist independent of J ± and whose Lagrangian derivative is also

zero, and one need not search long to find such a quantity. For an adiabatic gas,

entropy is conserved,
dS

dt
=

∂S

∂t
+ v

∂S

∂x
= 0,

while for an isothermal gas, the specific internal energy (ε = p/ρ ∝ T ) is conserved,

dε

dt
=

∂ε

∂t
+ v

∂ε

∂x
= 0.

Interpreting these conservation statements as Lagrangian derivatives each with char-

acteristic speed,
c0 = v, (3.14)

(c0 = 0 in the Lagrangian frame) allows us to identify S as the third characteristic

for an adiabatic fluid, and ε for an isothermal fluid.

We can combine these two seemingly different variables into a single third

characteristic, S0, as follows:

S0 =
p

ρn
, (3.15)

where n = γ (1) for an adiabatic (isothermal) gas. From Eq. (2.53), S ∝ ln(S0) and
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Figure 3.2. Space-time diagrams showing a) three characteristic paths emanat-
ing from the event (x0, 0) and arriving at three separate events at t = t1 from a
Lagrangian frame (C0 is vertical ⇒ c0 = v = 0 ⇒ Lagrangian), b) same as panel
a but for an Eulerian frame, c) three characteristic paths from different events
at t = 0 converging on the same event (x0, t1) from a Lagrangian frame, and d)
same as panel c but for an Eulerian frame. Here, the flow speed relative to the
Eulerian frame is evidently v0 = cs/4 from left to right.

so if S is constant in the co-moving frame of an adiabatic fluid, so is S0. Similarly,

ε = e/ρ = p/[ρ(γ−1)], and so if ε is constant in the co-moving frame of an isothermal

fluid, so is S0.

Together, the three quantities – J ± and S0 – are known as Riemann invariants

or, alternately, characteristics of the flow and associated with each is a character-

istic speed ; c± = v ± cs and c0 = v respectively. The first two characteristics are

essentially forward- (v + cs) and backward- (v − cs) moving sound waves, while the

third characteristic in the co-moving frame of the fluid is known as an entropy wave.

3.3 Characteristic paths and space-time diagrams

A useful construct to visualise the role characteristics play in fluid dynamics are

space-time diagrams. Space-time diagrams such as those in Fig. 3.2 plotted with one

spatial (position) coordinate along the horizontal axis and time along the vertical

axis are referred to as 1+1-D diagrams. A point on a space-time diagram is called

an event, while a path on a space-time diagram is called a worldline. Worldlines
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characteristic characteristic characteristic

(Riemann invariant) speed path

J + = v + 2cs/(γ − 1) c+ = v + cs C+

S0 = p/ρn
∗

c 0 = v C0

J − = v − 2cs/(γ − 1) c− = v − cs C−

∗n = γ for adiabatic gas, n = 1 for isothermal gas.

Table 3.1. Summary of symbols and expressions used to specify the three fluid

characteristics. Table entries in the first two columns are for an Eulerian reference

frame. For a Lagrangian reference frame, set v = 0.

record how a particle’s position changes in time, and those parallel to the t-axis

represent stationary particles while those with a horizontal component indicate

moving particles. Evidently, the local slope of a worldline is inversely proportional

to the particle speed, and typically one chooses a critical speed to the dynamics

to be represented by worldlines inclined at some prominent angle, say 45◦, relative
to the t-axis. Finally, worldlines of characteristics are called characteristic paths, or

just paths for short. Table 3.1 summarises the quantities and symbols associated

with the three characteristics, their speeds, and paths introduced in this section.

For fluid dynamics, an important critical speed is the sound speed and so here

we’ll incline worldlines of particles or waves propagating at cs relative to the origin of

a space-time diagram at ±45◦. Figures 3.2a and 3.2c are plotted from a Lagrangian

reference frame where x0 is in the co-moving frame of the fluid. Thus, the worldline

of a fluid element at x0 is vertical (parallel to the t-axis) since, in this frame, its

velocity is zero. Suppose further that from event (x0, 0), all three characteristic

waves are launched as shown in Fig. 3.2a. Since the entropy wave is also co-moving

with the fluid, its characteristic path, C0, must be vertical too while the paths of

the right- and left-moving sound waves – C+ and C− respectively – are inclined at

±45◦ relative to the t-axis, all as shown.4

Exploiting the third dimension, one could plot a

2+1-D space-time diagram with two spatial dimen-

sions along the horizontal (x) and perpendicular (z)

axes and time still along the vertical axis, as shown

in the inset. Obviously, plotting a fully 3+1-D space-

time diagram is problematic, unless one is adept at

drawing in 4-D! On the 2+1-D space-time diagram,

the volume of revolution one obtains by rotating the

paths C± about the path C0 (e.g., Fig. 3.2a) is called

4As the waves move away from (x0, 0), both the speed of sound and the local rest frame
may change, causing the worldlines to stray from the straight lines used to depict them in Fig.
3.2. However, for the region in the space-time diagram sufficiently local to (x0, 0), we can safely
construct our worldlines as straight lines.
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the sonic cone and events which lie within the sonic cone can be reached by event

(x0, 0) at subsonic speeds. Meanwhile, events lying above the z–x plane but below

the sonic cone can be reached from (x0, 0) only supersonically. For simplicity, all

remaining discussion will be confined to 1+1-D spacetime diagrams.

Figure 3.2b is the space-time diagram for the same waves illustrated in Fig.

3.2a but from an Eulerian frame of reference. In this frame, the flow speed, v0, is

evidently cs/4 from left to right (> 0) since the entropy wave in panel b moves one

quarter the distance moved by the sound wave in panel a in the same time, t1. In

general, for flow speeds greater (less) than zero and relative to the t-axis, the path

C+ is inclined at an angle greater (less) than 45◦, the path C− is inclined at an

angle less (greater) than 45◦, and the path C0 leans to the right (left).5 Note that

C0 will always lie between paths C±.
Analysis of a fluid system using its characteristics and characteristic paths

is known loosely as the method of characteristics (MoC) whose power lies in the

fact that at each point along a characteristic path, the corresponding characteristic

(Riemann invariant) remains constant. The “ingredients” of a given characteristic,

namely ρ, p, and v, may well change, but they will do so in a manner that will

preserve the invariance of the affected characteristic. Thus, the value of J + at the

event (x0 + c+t1, t1) in Fig. 3.2b is the same as its value at the event (x0, 0), and

every event along C+ in between. Similarly, the values of S0 at event (x0 + c0t1, t1)

and J− at event (x0 + c−t1, t1) are the same as they were at event (x0, 0).

Figures 3.2a and 3.2b depict three characteristic paths diverging from a com-

mon event at t = 0 and intersecting the t = t1 line at three different places. In

this way, we know something about the flow variables at three different events at

t = t1, but not enough to determine all three flow variables at any one of them.

For example, knowing the value of J+ at event (x0 + c+t1, t1) is not enough to

determine what the values of ρ, v, and p are from Eq. (3.10); two more pieces of

information are needed to make a unique determination. Thus, we use the paths as

depicted in Fig. 3.2c and 3.2d where C± and S0 are launched from different events

at t = 0 which, by virtue of their characteristic speeds and where their footprints

are placed on the t = 0 axis, converge on the same future event, (x0, t1). Thus, if

J ±
0 and S0

0 are known at t = 0 and since they are invariant along their respective

paths,

J ±(x0 − c±t1, t0) = J ±
0 and S0(x0 − c0t1, t0) = S0

0 ,

then at event (x0, t1), Eq. (3.10), (3.11), and (3.15) yield:

J ±
0 = v(x0, t1)± 2

γ − 1

√
γp(x0, t1)

ρ(x0, t1)
and S0

0 =
p(x0, t1)

ρ(x0, t1)γ
, (3.16)

which can be solved (Problem 3.1) for the primitive variables at event (x0, t1):

5Indeed, for supersonic flow, the designation left-moving and right-moving may lose its literal
meaning; from the Eulerian frame, “left-moving” waves can actually move rightwards for v0 > cs.
Thus, the designation left- and right-moving will be used as though viewed from the co-moving
Lagrangian frame of reference.
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Figure 3.3. Schematic diagram showing how the method of characteristics could
be used to design a numerical algorithm for solving the fluid equations in 1-D in
an Eulerian reference frame. The first subscript on the characteristic path labels
(C±,0) indicate from which time the characteristics are evaluated, and the second
subscript indicates the nearest grid point to the characteristic footprint.

ρ(x0, t1) =

[
1

γS0
0

(
γ − 1

4
(J +

0 − J −
0 )

)2] 1
γ−1

; (3.17)

p(x0, t1) =

(
1

S0
0

) 1
γ−1

[
1

γ

(
γ − 1

4
(J+

0 − J −
0 )

)2] γ
γ−1

; (3.18)

v(x0, t1) =
J+
0 + J−

0

2
. (3.19)

Herein lies a possible numerical scheme for hydrodynamics. If, for example,

at t = t0 one had a 1-D array of locations, xi, i = 1, n, at which each of the

flow variables were known, then at each location and for a given time step, δt, one

could compute all the characteristics that will converge at all the grid points at the

future time, t1 = t0 + δt. This would require interpolating the flow variables to the

footprints of each of the characteristic paths as suggested in Fig. 3.3, computing all

the characteristics from the interpolated data, then combining them as done in Eq.

(3.17)–(3.19) to obtain the flow variables at the advanced time t1. This algorithm

is then repeated for as many time steps as needed to advance the problem forward

the desired amount of time. Such schemes have been tried, and are not widely used

because they lack the numerical constraints to ensure mass and energy conservation

and, as shown in Problem 3.2, small uncertainties in the flow variables at a given

time are grossly exaggerated as time progresses. However, characteristics do play

a prominent role in a full-scale upwinded MHD computer program,6 where flux

densities (rather than the flow variables themselves) are computed using data that

are “upwind” along each characteristic path (i.e., from t = t1 towards t = t0)

converging on the event where the flux density is computed.

Finally, Fig. 3.4 shows four space-time diagrams in the Eulerian frame in which

6My fluid solver, ZEUS-3D, is a partially upwinded MHD code owing to its use of characteristics
and is available open source from www.ap.smu.ca/~dclarke/zeus3d/.
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Figure 3.4. Space-time diagrams from an Eulerian reference frame showing how
characteristic paths converge onto an event (x0, t1) in the case of: a) supersonic
motion to the left; b) subsonic motion to the left; c) subsonic motion to the right;
and d) supersonic motion to the right.

characteristic paths from the present converge on a unique point in the future. Panel

a shows the diagram for v < 0 and supersonic (|v| > cs), panel b shows the case for

v < 0, subsonic; panel c shows the case for v > 0, subsonic; and panel d shows the

case for v > 0, supersonic. Notice in the supersonic cases, all characteristic paths

converge onto the future point from the same side of the x = x0 axis, while for the

subsonic cases, characteristic paths converge onto the future point from both sides.

Figure 3.4 sheds some light on why numerical hydrodynamics codes can have

difficulty transmitting subsonic fluid flow cleanly across a boundary of the compu-

tational domain. Imagine in panels c and d that x0 corresponds to the right-hand

boundary of the grid. In the case of supersonic flow (panel d), all information needed

at x0 to determine the flow variables there at t1 is provided by the right-leaning

characteristic paths whose footprints lie in the computational domain. The foot-

print values of the characteristics can then be calculated from (interpolations of)

the known grid values. However, in the case of subsonic flow, one of the pieces of

information needed at x0 to determine the flow variables there at t1 must come

from a left-leaning characteristic path (in this case, C−) whose footprint lies outside
the computational domain and is therefore unknown. A guess must be made for

this value (possibly an extrapolation; always dodgy), and this guess will invariably

lead to an incomplete transmission of the subsonic wave; e.g., part of the wave

may be reflected back into the grid, introducing errors – possibly large – into the

computational data.

3.4 The MoC and the Riemann problem

Clean and useful applications of the method of characteristics described in the pre-

vious section exist (e.g., Problems 5.12–5.15 in Chap. 5), but the Riemann problem

is not such a case. However, the concept of the Riemann invariants and their char-

acteristic paths still play a fundamental role.

Here, we’ll examine what happens in the Riemann problem illustrated in Fig.

3.1 for t > 0 using the MoC. For illustration, we’ll assume vL = vR = 0, cs,L > cs,R,

and pL > pR, although our discussion won’t depend unduly on these choices.
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Figure 3.5. An attempt to follow the Riemann problem for three “time steps”
using the MoC. From the original discontinuity at D develop three waves, namely
the rarefaction fan (RF) on the left side, a contact discontinuity (CD) in the
middle, and a shock (S) to the right. See text for details.

Figure 3.5 is a space-time diagram showing the development of the solution

over three “time steps”. At t = 0, the only point of interest is D, where p and ρ

(and in general, v as well) are discontinuous. The C0 path is launched vertically

from D at t = 0 since there is no fluid motion at this time, while C± move off into

the right (R) and left (L) states respectively at the local sound speeds. Thus, C±

are given subscripts R and L respectively in the figure. Because cs,L > cs,R, C−
L is

inclined more from the vertical than C+
R .

Since pL > pR, state L pushes into state R, accelerating fluid between C−
L and

C+
R to the right. Thus, all characteristic paths launched at t = δt lean slightly more

to the right than they did at t = 0. During the second time step, fluid between C−
L

and C+
R is further accelerated to the right, and thus characteristic paths launched

at t = 2 δt lean even more to the right, and so it goes. During this process, two new

states open up: state 1 between C−
L and C0 and state 2 between C0 and C+

R .

As the characteristic paths lean more and more to the right, two interesting

phenomena occur. First, the path C−
L launched at t = 0 continues to propagate

into state L, demarcating fluid to its left that has yet to be affected by the original

discontinuity from fluid to its right which has. However, at point A in Fig. 3.5, the

new left characteristic path, C−
1 , does not lie on top of the original left characteristic

path, C−
L , because of the new rightward motion of the fluid (v is now > 0) and thus

fluid between these paths is aware of the conditions at D, but not at A. The region

between C−
L and C−

1 (whose intersections with t = 3 δt are shown respectively as

points a and b in the figure) is known as a rarefaction fan in which the fluid is only

partially affected by the original discontinuity. In a space-time diagram, rarefaction

fans are characterised by diverging characteristic paths, and represent another type

of wave supported by the fluid equations. They did not arise in our examination of

the Rankine–Hugoniot jump conditions because a rarefaction fan is not a steady-
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state solution. By its very nature, a rarefaction fan is always widening and thus

continually reducing the gradients of the flow variables within it.

A rarefaction fan is consistent with smooth flow, and thus is a solution of

both the conservative and primitive fluid equations. A reasonable way to think of

a rarefaction fan is like a sandbox divided into two halves by a divider with the

sand level on one side of the divider much higher than the other. If the divider is

suddenly removed, sand from the high side will spill into the low side, causing what

was a discontinuity in the sand level to evolve into a profile with ever-diminishing

slope. In the case of a fluid, the sand height is analogous with the fluid pressure.

Second, in the right state C+
R demarcates fluid to its right that has not yet been

affected by the discontinuity at D from fluid to its left that has. However, unlike

in state L where the rightward leaning of the characteristic paths caused them to

diverge, here paths launched from the right state at t = 0 converge to the same

worldline labelled S in Fig. 3.5.

What is the nature of S? At an infinitesimal distance to its right, the fluid

remains completely in the right state, whereas at an infinitesimal distance to its

left, the fluid is completely in the new state 2 . Unlike state L where a “transition”

region – the rarefaction fan – opened up between states L and 1 , no such transition

region opens up between states R and 2 , and we say that C+
R has steepened into a

shock (whence the designation S). The fact that a shock has spontaneously formed

from the initial conditions of a Riemann problem indicates its solution cannot be

found with the assumption of smooth flow, and the conclusions of the previous

section must be augmented with the Rankine–Hugoniot jump conditions ( 2.2).

Further, we can no longer think of C+
R (S) as a worldline of constant J+, embedded

in a smoothly flowing medium. Indeed and as we shall see, C+
R has developed into

a worldline of converged C+ characteristic paths with multiple values of J +. Thus,

C+
R carries with it a jump in J+, consistent with its identification as a shock.

Finally, at the end of 3.5.3 we’ll identify the worldline C0 as a contact dis-

continuity, carrying with it jumps in density, temperature, and entropy, but not in

pressure nor velocity.

A simplified space-time diagram for the Riemann problem is shown in Fig.

3.6. All of Fig. 3.5 can be thought of as being contained within the “dot” at D

(t1 � δt), and the slopes of all characteristic paths have attained their asymptotic

values. As suggested in 3.3, we can imagine trying to find the values of the flow

variables in the intermediate states by tracing certain paths from a typical point in

state 2 , say, back to the original state at t = 0. The problem with this strategy

is immediately clear from Fig. 3.6. Both paths C− and C0 must cross a shock while

C+ must cross a contact, and the conclusions that the Riemann invariants must be

constant along their respective characteristic paths all the way to the t = 0 baseline

no longer holds because those conclusions were based on the assumption of smooth

flow. In a very real sense, the shock and contact become baselines for characteristic

paths that strike them, and since the flow variables along lines of discontinuity are

not knowable from the method of characteristics, we have no hope of evaluating the

Riemann invariants J − and S0 at their bases for use in Eq. (3.17)–(3.19).
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Figure 3.6. In attempting to trace characteristics from the intermediate states,
1 and 2 , to the initial states, L and R, at t = 0, characteristics encounter dis-
continuities which are discontinuous in the Riemann “invariants”, thereby thwart-
ing the MoC.

A similar problem exists for characteristic paths converging on a point in inter-

mediate state 1 . There, while both C0 and C+ can be traced back to t = 0 crossing

only the continuous rarefaction fan, C− must cross both the contact and the shock.

Clearly, the Riemann problem cannot be solved using the MoC alone. A differ-

ent strategy must be developed to account for changes in the primitive variables as

various waves created in the Riemann problem are crossed. The Rankine–Hugoniot

jump conditions already tell us how the flow variables change across discontinuities

such as shocks and contacts. What remains is to determine is how the flow variables

change across smooth transitions such as the rarefaction fan.

3.5 Non-linear hydrodynamical waves

3.5.1 Hyperbolic system of equations

Consider now all three primitive equations of 1-D ideal HD (Eq. Set 3 on page 21

with φ = 0), deliberately arranged in a fashion to suggest a matrix formalism:

∂ρ

∂t
+ v

∂ρ

∂x
+ ρ

∂v

∂x
= 0;

∂p

∂t
+ v

∂p

∂x
+ γp

∂v

∂x
= 0;

∂v

∂t
+

1

ρ

∂p

∂x
+ v

∂v

∂x
= 0,

(3.20)

which can be written in matrix notation as,

∂

∂t

⎡

⎣
ρ

p

v

⎤

⎦+

⎡

⎣
v 0 ρ

0 v γp

0 1/ρ v

⎤

⎦ ∂

∂x

⎡

⎣
ρ

p

v

⎤

⎦ = 0 ⇒ ∂|q〉
∂t

+ J
∂|q〉
∂x

= 0, (3.21)
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where,

|q〉 =

⎡

⎣
ρ

p

v

⎤

⎦ and J =

⎡

⎣
v 0 ρ

0 v γp

0 1/ρ v

⎤

⎦, (3.22)

are, respectively, the ket7 of primitive variables and the Jacobian matrix, reminiscent

of the formalism introduced in 2.1.2. Unlike our analysis there for sound waves, we

have made no attempt to linearise the equations, and thus this discussion is general

for smooth flow.

As defined in App. C, a system of equations in the form of Eq. (3.21) is hyper-

bolic if the following conditions are met:

1. The eigenvalues of the Jacobian matrix J are real;

2. The eigenvectors of J are linearly independent.

Hyperbolicity is significant since solutions of such systems of equations can be de-

scribed in terms of waves with speeds, ui, given by the eigenvalues of the Jacobian. If

all eigenvalues are distinct (as they are for HD), the system of equations is said to be

strictly hyperbolic. Conversely, if conditions permit degeneracy among the eigenval-

ues (as is the case in MHD), the system is said to be not strictly hyperbolic which,

as we shall see in 5.3 and Chap. 6, poses numerous algebraic and computational

challenges – difficult but surmountable – in arriving at a solution.

So to proceed, we postulate – as we did in 2.1.2 – a normal mode wave solution

to Eq. (3.21) of the form:
|q(x, t)〉 = |q̃(ξi)〉, (3.23)

where ξi = x − uit is a coordinate co-moving with the so-called i-family of waves

moving at wave speed ui, and where |q̃(x)〉 represents the initial conditions of the

ket of variables |q〉.
On substituting Eq. (3.23) into Eq. (3.21), we get Eq. (2.23) renumbered here

for convenience,
J|q̃ ′〉 = ui|q̃ ′〉, (3.24)

where the prime (′) indicates differentiation with respect to ξi, where ui is an eigen-

value of J (a wave speed), and where |q̃ ′〉 is proportional to the corresponding

eigenket, |ri〉. As we saw for the linearised hydrodynamical case in 2.1.2, the eigen-

kets determine the profiles of the primitive variables as a function of position and

time. We’ll return to this in 3.5.3 for the non-linear case begun here.

3.5.2 Left and right eigenvectors (optional)

For non-linear HD, Eq. (3.21) represents three equations in three unknowns which,

as we’ll see, give rise to three distinct wave families. In 1-D MHD with seven equa-

tions in seven unknowns ( 5.2), seven wave families are admitted. So, before evalu-

ating the eigenvalues and eigenkets specifically for non-linear HD, let’s develop the

7Rappel : Dirac’s “bra-ket notation” is explained in footnote 5 on page 30.
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theory for a general hyperbolic system of n equations in n unknowns, where n is

the dimension of |q〉.
Consider the “eigen-equation”,

J |ri〉 = ui|ri〉, i = 1, 2, . . . , n. (3.25)

Because they appear to the right of J in Eq. (3.25), the eigenkets, |ri〉, are frequently
referred to as right eigenvectors. Now, we can assemble all n of Eq. (3.25) into a

single matrix equation by creating a matrix of right eigenvectors, R, whose ith

column is |ri〉:
|r1〉 |r2〉 |rn〉
↓ ↓ ↓

u1 |r1〉 u2 |r2〉 un |rn〉
↓ ↓ ↓

J

⎡

⎢⎢⎢⎣

r11 r21 · · · rn1
r12 r22 · · · rn2
...

...
. . .

...

r1n r2n · · · rnn

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

u1r11 u2r21 · · · unrn1
u1r12 u2r22 · · · unrn2

...
...

. . .
...

u1r1n u2r2n · · · unrnn

⎤

⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎣

r11 r21 · · · rn1
r12 r22 · · · rn2
...

...
. . .

...

r1n r2n · · · rnn

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

u1 0 · · · 0

0 u2 · · · 0
...

...
. . .

...

0 0 · · · un

⎤

⎥⎥⎥⎦

⇒ JR = RU. (3.26)

Note that Rji, the (j, i)th element of R, is rij (indices reversed), the jth component

of the ith eigenket, and that Uij = uiδij , where δij = 1, i = j; 0, i �= j is the usual

Kronecker-delta. Thus, U is a diagonal matrix with the eigenvalues, ui, strung along

its main diagonal. Note further the order of matrix multiplication is important; for

example, the right-hand side (RHS) of Eq. (3.26) cannot be written as UR. (If this

is not obvious to you, try it!)

Invoking once again the hyperbolicity of Eq. (3.21), the eigenkets (and thus

the columns of matrix R) are linearly independent, and R−1 exists. Thus, we can

multiply Eq. (3.26) on the right by R−1 to get:

JRR−1 = J = RUR−1,

and, in the language of linear algebra, J is similar to U. That is, a set of elementary

row reduction operations (e.g., Gauss–Jordan elimination steps) can be used to

row-reduce the Jacobian matrix, J, to the diagonal matrix of eigenvalues, U.

Now multiplying Eq. (3.26) on both sides by R−1, we get:

R−1JRR−1 = R−1RUR−1 ⇒ LJ = UL, (3.27)

where L ≡ R−1. In a similar way that Eq. (3.25) is the “column-decomposition” of

Eq. (3.26), we can write down the “row-decomposition” of Eq. (3.27) as:

〈li|J = 〈li|ui, i = 1, 2, . . . n.
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This, too, is an eigen-equation, but this time the eigenvectors are row vectors (bras)

appearing on the left side of the matrix J. Accordingly, L is the matrix of the

eigenbras or left eigenvectors, 〈li|. Note that |ri〉 is the ith column of the matrix

R, while 〈li| is the ith row of the inverse matrix L = R−1, and thus will not, in

general, be the same as 〈ri| (the eigenket written as a bra). However, both types of

eigenvectors share the same eigenvalues.

Note that if 〈li| = 〈ri|, this would require that the rows of R−1 be the same

as the columns of R; that is to say R−1 = RT where the superscript T indicates a

matrix transpose (rows made into columns). A matrix whose inverse is its transpose

is known as an orthogonal matrix, which form an interesting subset of matrices in

their own right (e.g., they can be interpreted as rotations of coordinate systems).

We shan’t divert our attention to the properties of orthogonal matrices here, and

instead refer the interested reader to any elementary text in linear algebra.8

For examples of how the left- and right-eigenvectors can interact, consider the

following two theorems.

Theorem 3.1. Let ξi = xi − uit be the coordinate co-moving with the i-family of

waves, and let |q̃(x)〉 be the known initial conditions of |q〉. Then the general solution

to Eq. (3.21) is,

|q(x, t)〉 =

n∑

i=1

〈li|q̃(ξi)〉|ri〉. (3.28)

Proof : As eigenkets of a hyperbolic system of equations, |ri〉 form a linearly inde-

pendent set of n vectors and thus span the n-dimensional vector space. As such,

any ket may be written as a linear combination of |ri〉, including the solution ket

itself:

|q(x, t)〉 =

n∑

i=1

fi(ξi)|ri〉, (3.29)

where fi(ξi) are to-be-determined functions of ξi. Multiplying through by 〈lj |, we
get:

〈lj |q(x, t)〉 = 〈lj |
n∑

i=1

fi(ξi)|ri〉 =

n∑

i=1

fi(ξi)〈lj |ri〉 =

n∑

i=1

fi(ξi)δij = fj(ξj),

since LR = I (identity matrix), and thus 〈lj |ri〉 = δij . Imposing initial conditions

at t = 0, |q(x, 0)〉 = |q̃(x)〉, we can write:

fi(x) = 〈li|q(x, 0)〉 = 〈li|q̃(x)〉 ⇒ fi(ξi) = 〈li|q̃(ξi)〉,
after time, t. Substituting this into Eq. (3.29) leads us to Eq. (3.28).

Theorem 3.1 is little more than a formalisation of the method already used in

2.1.2: find the normal mode solutions (∝ |ri〉), write the general solution as a linear

8For example, Gerald Bradley’s A Primer of Linear Algebra (1975) is an excellent first book
on the subject.
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combination of these (Eq. 3.29), find the coefficients, and then apply boundary

conditions.

Theorem 3.2. The characteristics of the flow (Riemann invariants) are given by,

χi =

∫
〈li|dq〉, (3.30)

where |dq〉 = d|q〉 is the ket of differential flow variables. Note that the construct

〈a|b〉 in elementary vector notation is just �a ·�b, the inner or dot product.

Proof : Multiplying Eq. (3.21) on the left by L, we get,

L
∂|q〉
∂t

+ LJ
∂|q〉
∂x

= 0 ⇒ L
∂|q〉
∂t

= −UL
∂|q〉
∂x

, (3.31)

using Eq. (3.27). Now, defining |dχ〉 ≡ L|dq〉, Eq. (3.31) becomes:

∂|χ〉
∂t

= −U
∂|χ〉
∂x

⇒ ∂χi

∂t
+ ui

∂χi

∂x
= 0 ⇒ Duiχi

Dt
= 0, (3.32)

since U is a diagonal matrix, and where Dui/Dt is the Lagrangian derivative with

respect to the eigen (characteristic) speed, ui, defined by Eq. (3.2). As shown by

Eq. (3.13), a quantity whose Lagrangian derivative is zero is a characteristic of

the flow (remains constant in the co-moving frame) and thus χi is a characteristic.

Therefore, from its definition,

|dχ〉 = L|dq〉 ⇒ dχi = 〈li|dq〉 ⇒ χi =

∫
〈li|dq〉.

Problems 3.5, 3.6, and 3.7 show how Theorems 3.1 and 3.2 may be used in practice.

3.5.3 Hydrodynamical rarefaction fans

Returning now to the specific case of non-linear HD begun in 3.5.1, we evaluate

the three eigenvalues of J given by Eq. (3.22). Thus,

|J− uI| =
∣∣∣∣∣∣

v − u 0 ρ

0 v − u γp

0 1/ρ v − u

∣∣∣∣∣∣
= −(u− v)

[
(u− v)2 − c2s

]
= 0,

(since c2s = γp/ρ) and the wave speeds (eigenspeeds) are:

u1 = v − cs; u2 = v; u3 = v + cs, (3.33)

arranged in ascending order. These are none other than the characteristic speeds

uncovered in 3.2 (Eq. 3.12 and 3.14), where each speed is associated with one of

three families of waves. The 1-family wave with eigenspeed u1 is left-moving (relative

to the fluid) and can be a shock wave for discontinuous flow, or a rarefaction fan

(RF) for continuous flow. The 2-family wave has eigenspeed u2 = v and, as such,
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is co-moving with the fluid. This is an entropy wave, an example of which is the

contact discontinuity discussed in 2.2.2. Finally, the 3-family wave with eigenspeed

u3 is similar to the 1-family wave but right-moving. Affiliated with the 1-, 2-, and

3-wave families are, respectively, the three characteristic paths C−, C0, and C+ and

their associated Riemann invariants J−, S0, and J + described in 3.2.

While the eigenvalues tell us how fast each wave propagates, the eigenkets

tell us how the primitive variables vary across each continuous wave. To this end,

following the usual methods (and as detailed in 2.1.2), it is left to Problem 3.3 to

show that the eigenkets of J associated with each of the eigenvalues are:

|r1〉 =

⎡

⎣
−ρ
−γp
cs

⎤

⎦; |r2〉 =

⎡

⎣
1

0

0

⎤

⎦; |r3〉 =

⎡

⎣
−ρ
−γp
−cs

⎤

⎦, (3.34)

with suitable “normalisation”.9 From Eq. (3.24), the derivatives of the solution

vectors, |q′(ξi)〉, i = 1, 2, 3, must be proportional to the eigenvectors, |ri〉, and thus

we may write:

|q′(ξi)〉 =

⎡

⎣
ρ′(ξi)
p′(ξi)
v′(ξi)

⎤

⎦ = wi(ξi)|ri〉, (3.35)

where wi(ξi) is an arbitrary scaling factor and a function of the co-moving coordi-

nate, ξi, this time – again, for convenience – not defined as its derivative (cf., Eq.

2.27). As Problem 3.8 shows, Eq. (3.34) and (3.35) are enough to prove the following

theorem on how the Riemann invariants relate to continuous 1- and 3-family waves:

Theorem 3.3.

1. While J− is constant along the C− characteristic path, J + is constant across

the associated 1-family RF.

2. While J+ is constant along the C+ characteristic path, J− is constant across

the associated 3-family RF.

3. S0 is constant across both 1- and 3-family RFs.

Now, unlike in 2.1.2, there is no need here to evaluate wi. Rather, we’ll use

it to define a generalised coordinate, dsi = widξi, where si varies from 0 on the

upwind side of the i-family wave, to some maximum value on the downwind side,

si,d. Thus, for the 1-family wave, Eq. (3.35) becomes:

d

w1dξ1

⎡

⎣
ρ

p

v

⎤

⎦ ≡ d

ds1

⎡

⎣
ρ

p

v

⎤

⎦ =

⎡

⎣
−ρ
−γp
cs

⎤

⎦ ⇒

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dρ

ρ
= −ds1;

dp

p
= −γds1;

dv = csds1.

(3.36)

9Each component of |r3〉 is negative to accommodate a sign convention we shall adopt where
the generalised coordinate, s3, increases from right to left; all will be made clear within the next
page or two.
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The first two equations integrate trivially to get:

ρ(s1) = ρue
−s1 and p(s1) = pue

−γs1 , (3.37)

where ρu and pu are the known upwind values of ρ and p. Next, since the sound

speed is given by:

cs(s1) =

√
γp(s1)

ρ(s1)
= cs,u e

− γ−1
2 s1 , (3.38)

where cs,u =
√
γpu/ρu, we can integrate the last of Eq. (3.36) to get:

v(s1) = vu +
2cs,u
γ − 1

(
1− e−

γ−1
2 s1
)
, (3.39)

where vu is the known upwind value of v. Together, Eq. (3.37) and (3.39) give

the profiles of the primitive variables across the continuous 1-family wave – a 1-

rarefaction fan – as a function of the generalised coordinate, s1. Evidently, as one

traverses a rarefaction fan from the upwind to downwind side, the density and

pressure decrease exponentially (as a function of s1) while the flow speed relative

to the upwind state increases, all of which are opposite to what happens across a

shock (e.g., Zemplén’s theorem; Eq. 2.55).

A measure of the strength or width of a rarefaction fan is how close to zero the

pressure drops. As in Problem 2.8 for shocks, we define for the 1-rarefaction,

ζ1 =
pd
pu
, (3.40)

where pd is the pressure downwind of the 1-rarefaction. For shocks, ζ > 1 with shock

strength increasing as ζ → ∞, whereas for rarefactions, ζ < 1 with rarefaction width

increasing as ζ → 0. Thus, immediately downwind of the 1-rarefaction, we have from

the second of Eq. (3.37):

p(s1,d) = pd = pue
−γs1,d ⇒ ζ1 = e−γs1,d ⇒ e−s1,d = ζ

1/γ
1 .

Substituting this into Eq. (3.37)–(3.39), the transitions for all variables including cs
across a 1-rarefaction from the upwind to downwind states in terms of ζ1 are:

ρd = ρuζ
1/γ
1 ; pd = puζ1; cs,d = cs,uζ

γ−1
2γ

1 ;

vd = vu +
2cs,u
γ − 1

(
1− ζ

γ−1
2γ

1

)
.

(3.41)

These expressions will be useful in solving the HD Riemann problem in 3.6.

A useful physical interpretation of ∇ ·�v is that it distinguishes regions of com-

pression from expansion. Thought of in 1-D, if ∇·�v = dvx/dx > 0, fluid is accelerat-

ing in the direction of flow (expansion), whereas if dvx/dx < 0, fluid is decelerating

in the direction of flow (compression). For shocks, ∇ · �v < 0, and thus, as we found

in 2.2.3, shocks waves are compressive. Conversely, from the third of Eq. (3.36),

dv

ds1
= cs > 0,
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Figure 3.7. Typical profiles across the three non-linear wave families: a) 1-family
rarefaction fan; b) 2-family entropy wave; and c) 3-family rarefaction fan. The
leading edge of each wave advances into the upwind state while the trailing edge
leaves behind a new downwind state. For the 1- and 3-waves, velocity profiles
(green, v1) are given in the reference frame of the upwind state and are such that
the wave always widens with time. For the entropy wave (panel b), both p and v
are continuous and the width of the wave (Δξ2; = 0 for a contact discontinuity)
remains constant. The generalised coordinates, si, are represented in red (along
horizontal axes) which, by definition, exist only within the wave itself beginning
at zero at the upwind state, increase monotonically across the fan, and end at
some maximum value at the downwind state.

since, in the upwind reference frame, flow is in the +x-direction.10 Thus, rarefaction

fans are expansive waves whose leading edge moves into upwind fluid at speed

u1,u = vu − cs,u which forever pulls away from its trailing edge moving away from

the downwind state at the lesser speed u1,d = vd − cs,d (Fig. 3.7a).

Turning now to the profiles of ρ, p, cs, and v across the 1-rarefaction, instead

of functions of s1 as in Eq. (3.37)–(3.39), we prefer to express them as functions

of the self-similar coordinate, x/t.11 For this, we set the characteristic coordinate,

ξ1 = x−u1t (e.g., Eq. 3.23), to zero to put us in the co-moving frame of the 1-wave,

from which we can write,
x

t
= u1 = v − cs, (3.42)

using the first of Eq. (3.33). Thus, for a fixed time t, plotting profiles of ρ, p, and

v against u1 would look just like plotting them against x (position across the wave

scaled by t) from the co-moving frame of the wave, which is what we want.

To this end, from Eq. (3.38) and (3.39), Eq. (3.42) becomes,

u1 = v − cs = vu +
2cs,u
γ − 1

(
1− e−

γ−1
2 s1
)− cs,u e

−γ−1
2 s1 ,

⇒ e−
γ−1
2 s1 =

2cs,u + (vu − u1)(γ − 1)

cs,u(γ + 1)
. (3.43)

10As depicted in Fig. 3.7a, the wave speed of the 1-rarefaction fan, u1 = v − cs, is in the
−x-direction, but the flow speed of the fluid relative to the upwind state is in the +x-direction.

11A “self-similar system” is one whose only change in time is its scale. For example, other than
its diameter (scale), a spherical balloon always looks the same as it’s blown up; it’s always “similar
to itself”. When x and t appear exclusively as x/t in an equation, doubling each of x and t does
nothing to x/t and thus the equation value, and the system described by this equation remains
“similar to itself”. Such an equation is said to be “self-similar” and x/t its “self-similar coordinate”.
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Substituting Eq. (3.43) into each of Eq. (3.37)–(3.39), we find after a little algebra:

ρ(u1) = ρu

(
2cs,u + (vu − u1)(γ − 1)

cs,u(γ + 1)

) 2
γ−1

; (3.44)

p(u1) = pu

(
2cs,u + (vu − u1)(γ − 1)

cs,u(γ + 1)

) 2γ
γ−1

; (3.45)

cs(u1) =
2cs,u + (vu − u1)(γ − 1)

γ + 1
; (3.46)

v(u1) =
2(cs,u + u1) + vu(γ − 1)

γ + 1
. (3.47)

These expressions will also be useful in the next section in finding the full solution

to the hydrodynamical Riemann problem.

It is left as an exercise to show that in terms of the pressure drop ζ3 = pd/pu,

transitions across the continuous 3-wave (3-rarefaction fan) are given by:

ρd = ρuζ
1/γ
3 ; pd = puζ3; cs,d = cs,uζ

γ−1
2γ

3 ;

vd = vu − 2cs,u
γ − 1

(
1− ζ

γ−1
2γ

3

)
,

⎫
⎪⎬

⎪⎭
(3.48)

identical in form to Eq. (3.41) except for a single sign change in the expression for

vd. It is left to Problem 3.10 to show that in terms of the eigenspeed u3 = v + cs,

profiles across the 3-rarefaction fan (e.g., Fig. 3.7c) are given by:

ρ(u3) = ρu

(
2cs,u + (u3 − vu)(γ − 1)

cs,u(γ + 1)

) 2
γ−1

; (3.49)

p(u3) = pu

(
2cs,u + (u3 − vu)(γ − 1)

cs,u(γ + 1)

) 2γ
γ−1

; (3.50)

cs(u3) =
2cs,u + (u3 − vu)(γ − 1)

γ + 1
; (3.51)

v(u3) =
2(u3 − cs,u) + vu(γ − 1)

γ + 1
, (3.52)

identical to Eq. (3.44)–(3.47) except for differences in sign and subscript number.

Finally, for the continuous 2-wave with eigenspeed u2 = v, we have from Eq.

(3.35):

d

ds2

⎡

⎣
ρ

p

v

⎤

⎦ =

⎡

⎣
1

0

0

⎤

⎦ , (3.53)

which means both p and v are constant, and Δρ = Δs2, an arbitrary transition

across the 2-wave (e.g., Fig. 3.7b). If the change in ρ is abrupt, the 2-wave is a

contact discontinuity as identified in 2.2.2. However, for a continuous wave the

change in ρ will be smooth, such as – to revisit an example cited in 2.2.2 – any real
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weather front, where heat conductivity and turbulence can render the transitions

in density and temperature continuous over many kilometres.

3.6 Solution to the HD Riemann problem

Believe it or not, a strategy for solving the hydrodynamical Riemann problem has

emerged! For simplicity, we’ll consider all 2-family waves as contacts, while 1- (left-

leaning) and 3- (right-leaning) family waves are rarefaction fans for smooth flow or

shocks for discontinuous flow. For smooth flow, transitions across rarefactions are

given by Eq. (3.41) or (3.48), while for discontinuous flow, jumps across contacts

and shocks are given by the Rankine–Hugoniot jump conditions developed in 2.2.

To determine whether the 1- and 3-family waves are rarefactions or shocks, we need

only look at the pressure which drops downwind across a rarefaction but rises across

a shock. Thus, between states L (upwind) and 1 (downwind) in Fig. 3.6, the left-

moving rarefaction fan requires p1 < pL, while a left-moving shock would require

the opposite, p1 > pL. Of course, p1 is not known a priori, and thus one needs to

check both possibilities for each of the 1- and 3-families. This gives rise to the four

possible space-time diagrams illustrated in Fig. 3.8, with the correct solution being

the one that gives the appropriate transitions in pressure (rise across a shock, drop

across a rarefaction).

Referring to any panel of Fig. 3.8, the initial data for Riemann’s problem are

(ρL, pL, vL) and (ρR, pR, vR), acting respectively as the upwind states for wave fam-

ilies 1 and 3. Our task is to find their respective downwind states, (ρ1, v1, p1) and

(ρ2, v2, p2). Now, the fact that the 2-wave is always a contact discontinuity simpli-

fies the task considerably, since we can set v1 = v2 and p1 = p2. Thus, we must find

four variables: ρ1, p1, v1, and ρ2. In the case of a rarefaction fan, it propagates at

the local characteristic speed which varies across the fan such that ∇ · �v > 0 (posi-

tive divergence). Thus, and as we’ve already seen, the rarefaction fan broadens as it

propagates. Conversely, a shock propagates at the local shock speed with essentially

zero width and a negative divergence, as determined by the Rankine–Hugoniot jump

conditions.

1-wave:

→ If the 1-wave is a rarefaction, use the first and last of Eq. (3.41) to find ρ1
and v1 in terms of ζ1 = p1/pL (Eq. 3.40), the pressure transition across the

1-rarefaction:

ρ1 = ρL ζ
1/γ
1 ; (3.54)

v1 = vL +
cs,L
αγ

(1− ζα1 ) , (3.55)

where α = (γ − 1)/2γ. Note that for Eq. (3.54) and (3.55) to apply, ζ1 < 1

and thus v1 > vL.
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Figure 3.8. Four possible configurations for the solution to the Riemann prob-
lem: a) pL > p1 = p2 > pR; b) pL < p1 = p2 < pR; c) pL > p1 = p2 < pR;
and d) pL < p1 = p2 > pR. Labels indicating family numbers are above the wave
characteristic paths, while labels indicating wave type (rarefaction fan, contact
discontinuity, shock) are near the base. Contacts necessarily lean in the direction
shown in cases a and b, while in cases c and d the contact could lean either way.

→ If the 1-wave is a shock, the form of the Rankine–Hugoniot jump conditions

suitable for this frame of reference was derived in Problem 2.9 (Eq. 2.86 and

2.87). Thus, in terms of ζ1, the post-shock density and velocity, ρ1 and v1, are

given by:

ρ1 = ρL
1 + β ζ1
β + ζ1

; (3.56)

v1 = vL − cs,L
ζ1 − 1

γ
√
α(1 + βζ1)

, (3.57)

where β = (γ +1)/(γ − 1). The advance speed of the shock into the left state

is given by:
VS = vL − cs,L

√
α(1 + βζ1). (3.58)

It was shown in the same problem that |VS− vL| > |v1 − vL|; the shock moves

faster relative to the left medium than the speed of the shocked gas following

it. Note that for Eq. (3.56) and (3.57) to apply, ζ1 > 1 and thus v1 < vL.

3-wave:

→ If the 3-wave is a rarefaction, use the first and last of Eq. (3.48) to find ρ2
and v2 = v1 in terms of ζ3 = p1/pR (Eq. 3.40), the pressure transition across

the 3-rarefaction:
ρ2 = ρR ζ

1/γ
3 ; (3.59)

v1 = vR − cs,R
αγ

(1− ζα3 ) . (3.60)

Note that for Eq. (3.59) and (3.60) to apply, ζ3 < 1 and thus v1 < vR.
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→ If the 3-wave is a shock, the post-shock density and velocity, ρ2 and v1, are

given by:

ρ2 = ρR
1 + βζ3
β + ζ3

; (3.61)

v1 = vR + cs,R
ζ3 − 1

γ
√
α(1 + βζ3)

. (3.62)

The advance speed of the shock into the right state is given by:

VS = vR + cs,R
√
α(1 + βζ3). (3.63)

Note that for Eq. (3.62) and (3.62) to apply, ζ3 > 1 and thus v1 > vR.

With these expressions, we can construct an explicit algorithm for a Riemann-solver.

1. Assuming two rarefactions, equate Eq. (3.55) to Eq. (3.60) and solve for p1
(Problem 3.11).

If ζ1 < 1 and ζ3 < 1, then:

a) compute v1 using either Eq. (3.55) or (3.60);

b) compute ρ1 from Eq. (3.54);

c) compute ρ2 from Eq. (3.59).

Else,

2. Assuming a 1-rarefaction and a 3-shock, equate Eq. (3.55) to Eq. (3.62) and

solve for p1 using a secant root finder (e.g., D.1 in App. D).

If ζ1 < 1 and ζ3 > 1, then:

a) compute v1 using either Eq. (3.55) or (3.62);

b) compute ρ1 from Eq. (3.54);

c) compute ρ2 from Eq. (3.61).

Else,

3. Assuming a 1-shock and a 3-rarefaction, equate Eq. (3.57) to Eq. (3.60), and

solve for p1 using a secant root finder.

If ζ1 > 1 and ζ3 < 1, then:

a) compute v1 using either Eq. (3.57) or (3.60);

b) compute ρ1 from Eq. (3.56);

c) compute ρ2 from Eq. (3.59).

Else,
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Figure 3.9. The Sod shock-tube solution given by the Riemann solver designed
in this section (solid lines) including the internal structure of the rarefaction fan
(note the slight curvature in each of the ρ and p plots) with the initial data
superposed (dashed lines). Features a–d are explained in the text.

4. Assuming two shocks, equate Eq. (3.57) to Eq. (3.62), and solve for p1 using

a secant root finder.

If ζ1 > 1 and ζ3 > 1, then:

a) compute v1 using either Eq. (3.57) or (3.62);

b) compute ρ1 from Eq. (3.56);

c) compute ρ2 from Eq. (3.61).

This algorithm will find the levels in the two intermediate states 1 and 2 . To

determine how far each wave has travelled in a given time, one uses the characteristic

speeds for the rarefaction fans, and the shock speeds given by Eq. (3.58) and (3.63)

for shocks.

Finally, profiles across the 1-rarefaction fan as functions of the self-similar co-

ordinate, u1 = x/t (Eq. 3.42), are given by Eq. (3.44)–(3.47). Similarly, profiles

across the 3-rarefaction fan in terms of u3 = x/t (for ξ3 = 0) are given by Eq.

(3.49)–(3.52).

Figure 3.9 depicts the so-called Sod shock-tube problem, first introduced by G.

A. Sod as a test and discriminator for hydrodynamical computer algorithms (Sod,

1978). The left and right states match Sod’s original problem, namely (ρL, pL, vL) =

(3, 3, 0) and (ρR, pR, vR) = (1, 1, 0) with γ = 5/3. Shown are the primitive variables

and the sound speed after some arbitrary time. Locations of the wave fronts are

indicated by the “vectors” a–d, and correspond to the labels in Fig. 3.5. Thus, in

units of the self-similar variable u = x/t, |a| = (vL− cs,L), |b| = (v1− cs,1), |c| = v1,

and |d| = VS , where VS is given by Eq. (3.63).
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This is an example of a Riemann problem with one rarefaction fan and one

shock (e.g., Fig. 3.8a, b), and is typical of problems in which vL = vR = 0. Whether

the rarefaction fan is on the left or right simply depends on whether pL > pR or

pL < pR. To obtain two rarefaction fans (e.g., Fig. 3.8c), the left and right sides

must initially “pull apart” (thus vR − vL > 0 and typically > cs) while two shocks

(e.g., Fig. 3.8d) are obtained when the left and right sides “push together” (thus

vR − vL < 0 and typically < −cs).

Problem Set 3

3.1 Show how Eq. (3.17)–(3.19) in the text follow from Eq. (3.16).

3.2∗∗ This problem comes under the category “You don’t really understand some-

thing until you can compute it”. So, get ready to calculate. . .

a) Consider a 1-D compressible monatomic gas, and suppose at t = 0 the profiles

for the three primitive variables are given by:

ρ(x, 0) = 1.0 + 0.4 x; p(x, 0) = 0.6 + 0.6 x; v(x, 0) = 0.5− 0.2 x,

where all units are arbitrary. Thus, at event (x, t) = (0.0, 0.0), the primitive

variables have values (ρ, p, v) = (1.0, 0.6, 0.5). Use the method of character-

istics to estimate the primitive variables at event (0.0, 0.1), and report your

results to five decimal places.

b) Suppose we wanted ρ to be estimated within a fractional uncertainty, δ, of

0.01 (1%). If each of the Riemann invariants were known to within a fractional

uncertainty of ε, find ε in terms of δ using whatever (standard) means of

uncertainty propagation you like. Specifically, replace ρ with ρ(1 ± δ), J±
0

with J ±
0 (1 ± ε), and S0

0 with S0
0 (1 ± ε) in Eq. (3.17), and solve for ε. (You

should get ε ∼ 0.0022.)

c) We would now like an estimate of what ε might actually be, and see how this

compares to the value of ε we computed in part b to keep the uncertainty in

ρ to within 1%.

One way to proceed is to note that the base of the characteristic path C+

was set by c+ evaluated using primitive variables at x = 0. But one could,

with equal justification, use primitive variables at x = x+ to evaluate c+. The

main reason we don’t is the obvious “catch-22”: We’d need to know where

x+ is to evaluate the primitive variables in order to get c+, but we need c+

to know what x+ is! So, we do the next best thing. Think of c+ evaluated

using the primitive variables at x = 0 as your “preliminary guess” of c+, and

think of x+ based on the preliminary c+ as your “preliminary guess” of x+.
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Using the primitive variables evaluated at the preliminary x+ (part a), update

your guess of c+ and thus your guess of x+; call this x̃+. Now, compute the

primitive variables at x̃+ and, from these, compute J+
0 (x̃+). One estimate

of your uncertainty in J+
0 is the fractional difference between J +

0 (x̃+) and

J +
0 (x+) computed in part a. How much greater (or smaller) is this quantity

than what you found in part b to keep the fractional uncertainty in ρ to within

1%? (Answer: 4–5 times smaller).

3.3 Consider the primitive Jacobian, J, for non-linear HD given by Eq. (3.22)

in the text. Given the eigenvalues of J in Eq. (3.33), show that the corresponding

eigenkets are given by Eq. (3.34).

3.4∗∗∗

a) Equation (3.21) in the text was derived using the 1-D primitive equations

(and setting φ = 0). Start instead with the 1-D conservative equations, and

show that they can be written in the form:

∂|qc〉
∂t

+
∂|f〉
∂x

= 0, (3.64)

where |qc〉 =
⎡

⎣
ρ

eT
s

⎤

⎦ (ket of conservative variables), and |f〉 is the ket of flux

densities.

b) Show that Eq. (3.64) may be written in the same form as Eq. (3.21), where

the matrix elements of the conservative Jacobian, Jc, are given by Eq. (2.20).

In particular, you should find that:

Jc =

⎡

⎢⎢⎢⎢⎢⎣

0 0 1

−γseT
ρ2

+ (γ − 1)
s3

ρ3
γs

ρ

γeT
ρ

− 3(γ − 1)
s2

2ρ2

−(3− γ)
s2

2ρ2
γ − 1 (3− γ)

s

ρ

⎤

⎥⎥⎥⎥⎥⎦
.

c) Find the eigenvalues and eigenkets of Jc. For the latter, you should find:

|r1〉 ∝
⎡

⎣
1

hT − vcs
v − cs

⎤

⎦; |r2〉 ∝
⎡

⎣
1

v2/2

v

⎤

⎦; |r3〉 ∝
⎡

⎣
1

hT + vcs
v + cs

⎤

⎦,

where hT ≡ c2s
γ − 1

+
v2

2
is the “total specific enthalpy” of the system.

d) Why do you suppose the primitive and conservative sets of equations yield

the same eigenvalues (e.g., compare your eigenvalues in part c with Eq. 3.33

in the text), but different eigenvectors (Eq. 3.34)?
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3.5∗

a) Use Theorem (3.1) in the text to derive Eq. (2.30) describing the propaga-

tion of sound waves. Thus, for the linearised hydrodynamic Eq. (2.17), you

will need to compute the left and right eigenvectors of the Jacobian, do the

appropriate inner products, etc., to finally obtain Eq. (2.30).

b) Use Theorem (3.2) to find the Riemann invariants for sound waves, and use

Eq. (3.32) to confirm the functions you found are indeed characteristics of the

flow.

3.6∗∗ This problem works with the full set of non-linear HD Eq. (e.g., Eq. 3.21

and 3.22 in the text), rather than the linearised pressure and Euler equations of

Problem 3.5.

a) Using the eigenkets in Eq. (3.34), find the three eigenbras, 〈l1|, 〈l2|, and 〈l3|.

b) From Theorem (3.1), find the evolution equation for the ket:

|q(x, t)〉 =

⎡

⎣
ρ(x, t)

p(x, t)

v(x, t)

⎤

⎦ ,

given the initial variable profiles:

|q̃(x)〉 =

⎡

⎣
ρ̃(x)

p̃(x)

ṽ(x)

⎤

⎦ .

In addition to recovering Eq. (2.30) for p(x, t) and v(x, t) (but with a non-

constant impedance), you will find an evolutionary equation for ρ(x, t).

c) In the context of the discussion in 2.1.2 (and thus, for example, assume the co-

moving frame where ṽ = 0), how do you interpret your expression for ρ(x, t)?

In particular, describe what happens to an initial density perturbation,

ρ̃(x) =

{
ρ0 + ρp, |x| < a;

ρ0, |x| ≥ a,

for t > 0, and check that mass is conserved.

3.7∗ Consider the three primitive equations of 1-D ideal hydrodynamics, as em-

bodied by Eq. (3.20) and (3.21) in the text.

a) Use Theorem 3.2 to find the Riemann invariants, J± given by Eq. (3.10) and

(3.11).

b) Using the same logic, try finding the Riemann invariant associated with the

entropy wave, S0, given by Eq. (3.15). What goes wrong, and why doesn’t

Theorem 3.2 work for this case?



Clarke 9781009381475 .tex 97 2/04/2025

97 Problem Set 3

Enormous hint : If you start blindly with the eigenkets in Eq. (3.34) of the text, the

eigenbras will lead you to trouble in doing the required integrals. However, by first

multiplying |r1〉 and |r3〉 by 1/cs (renormalisation), the integrals are much easier.

Note that such a move is tantamount to multiplying a first-order ODE through by

an “integrating factor” to render it “exact”.

3.8∗ In 3.2, we found that along the worldline of each characteristic, C± and C0,

its associated Riemann invariant, J ± and S0, is conserved. This problem shows

that these same Riemann invariants are conserved across 1- and 3-rarefaction fans,

but perhaps not in a way you might expect.

a) Show that across a 1-rarefaction, both J + = v + 2cs/(γ − 1) and p/ργ are

conserved.

b) Show that across a 3-rarefaction, both J− = v − 2cs/(γ − 1) and p/ργ are

conserved.

c) Finally, show that J+ = v+2cs/(γ−1) is not conserved across a 3-rarefaction,

and that J− = v − 2cs/(γ − 1) is not conserved across a 1-rarefaction.

d) The 1-characteristic path is a locus of “events” at the same location, but

at different times – an historical record of a single point – along which J −

is conserved but J + and S0 aren’t. Conversely, a line across a 1-wave is a

locus of events at different locations but at the same time – a “snapshot” of

a continuum of points – along which both J+ and S0 are conserved, but J −

isn’t. Similarly, along a 3-characteristic path, J + is conserved but J− and

S0 aren’t, whereas across a 3-wave, J− and S0 are conserved and J + isn’t.

What is the analogous statement for the 2-characteristic path/wave?

3.9∗ Equations (3.44)–(3.47) in the text give the profiles of the primitive variables

and the sound speed across a 1-rarefaction fan and were derived by direct integration

of the right 1-eigenvector of the Jacobian (Eq. 3.36).

Rederive these equations by using just the fact that, as shown in Problem 3.8, the

Riemann invariants,

J + = v +
2cs
γ − 1

and S0 =
p

ργ
,

are conserved across a 1-rarefaction fan.

3.10∗ Starting with Eq. (3.35) in the text for the 3-family wave, verify Eq. (3.49)–

(3.52) for the profiles across the 3-rarefaction.

3.11 If the solution to a Riemann problem consists of two rarefactions, show that
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the pressure between the rarefactions is given by:

p1 =

(
cs,L + cs,R + γα(vL − vR)

cs,L p
−α
L + cs,R p

−α
R

)1/α
, (3.65)

where α = (γ − 1)/(2γ).

3.12∗∗∗ Following the algorithm set out in 3.6 in the text, write a computer

program to generate the intermediate values, (ρ1, v1, p1, ρ2) of a Riemann hydrody-

namical problem for given (input) left and right states, (ρL, vL, pL) and (ρR, vR, pR).

If there are any shocks in the solution, your code should also report the shock speed.

You do not need to include the internal profiles of rarefaction fans.

Use your program to fill in the following table for a γ = 5/3 adiabatic gas.

left state right state intermediate states shock speeds
ρL pL vL ρR pR vR ρ1 p1 v1 ρ2 VSL VSR

3.0 3.0 0.0 1.0 1.0 0.0 — — — — — —

1.0 0.6 0.0 0.2 3.0 0.0 — — — — — —

1.0 0.6 1.5 0.4 0.8 −2.0 — — — — — —

2.0 1.0 −2.0 1.0 0.4 −0.2 — — — — — —

For three of the possible configurations, a root finder will be needed to find the

intermediate pressure. See App. D in the text for a “cheap-and-cheerful” root finder

using the secant method.

Computer project

P3.1 Write a computer program to calculate the intermediate states, including the

smooth transitions across rarefaction fans, of the hydrodynamical Riemann problem.

If you’ve already done Problem 3.12, you may use that program as a starting point

for this, if you like.

Your program should report on the screen, in a data file, or both all intermediate

values (ρ1, p1, v1, and ρ2) as well as speeds of any shocks that may arise. In addition,

you should plot ρ, p, v, and cs as functions of the self-similar variable, u = x/t,

similar to Fig. 3.9 on page 93 (without the reference points and dashed lines). Once

your program is working, do all four Riemann problems listed in Problem 3.12,

giving all numerical values asked for in the table as well as generating a plot as

described above for each problem.
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4
The Fundamentals of

Magnetohydrodynamics

When pondering the heavens, and what it all could be:

the sun, the stars, the northern lights; I’m thinking MHD!

4.1 A brief introduction to MHD

When a gas is heated enough that random collisions start knocking off elec-

trons from constituent atoms, a fourth state of matter emerges: a plasma.

For a hydrogen gas, temperatures of a few thousand K will cause some of the H

atoms to lose their electrons, and the gas becomes a plasma with a mix of neutral

and charged particles. At higher temperatures still (∼105 K for hydrogen), plasmas

become fully ionised and all particles are charged. Evidently, unlike the transition

between a solid and a liquid or for the most part a liquid to a gas, there is no sudden

phase change demarcating a transition from gas to plasma.

Still, the behaviour of a significantly ionised plasma is radically different from

that of a neutral gas, and at the root of these differences lies the differential mo-

tion of the negatively and positively charged ions. Because the mass of an ion is

two thousand or more times greater than that of an electron, fluid dynamical and

electromagnetic forces within the plasma accelerate the negative and positive ions

very differently. And while local charge neutrality can still be assumed, positive and

negative currents within the same fluid element will differ, and it is this difference

that leads to the generation of a net magnetic field.1 Since the Lorentz force “binds”

charged particles to magnetic field (that is, they can spiral along magnetic field lines

but cannot cross them), the presence of a magnetic field makes the dynamics of a

plasma completely different from that of a neutral gas.

It is often stated that 99.9% of the baryonic matter of the universe is in the

plasma state,2 and thus the role of magnetism in astrophysics is ubiquitous. Sun

spots and solar flares are tied to the solar magnetic field and its internal dynamos.

The coronal wind from the sun and the interception of these particles by the earth’s

1This is what is known in MHD and plasma physics as a dynamo, a mechanism by which
magnetic field is generated. A very famous dynamo is the one at work in the earth’s core where
differentially moving currents within the molten rock generate the earth’s magnetic field, protecting
us from the solar wind and making life as we know it possible on the surface of the planet. We
look at dynamos in some detail in 10.3.4.

2See, for example, www.plasma-universe.com/99-999-plasma/.

99
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magnetic field result in the most spectacular terrestrial example of astrophysical

magnetism; the aurora borealis/australis (cover image).

However, these phenomena are mere hints of the role magnetism plays in astro-

physics. The very existence of the sun and the conditions in which life could evolve

would not be possible without magnetism which plays a critical role – as important

as gravity – in allowing stars to form from interstellar gas clouds. In the interstel-

lar medium, energy seems to be divided into three roughly equal parts: thermal

energy within the gas; kinetic energy stored in cosmic rays;3 and magnetic energy

in the field permeating the galaxy. Indeed, the principle of equipartition4 is widely

believed to spread well beyond the galaxy and apply to the huge extragalactic radio

lobes associated with a class of galaxies known as active galaxies (e.g., Fig. 2.14),

and the intergalactic medium itself; magnetic field is everywhere.

Even in systems where the magnetic energy density is orders of magnitude less

than the thermal and cosmic ray components, magnetic field still plays a fundamen-

tal role. Consider an extragalactic radio jet (e.g., Fig. 2.14 and 2.17), in which the

matter number density, n, is as scant as one particle per m−3. So rarefied is such

a medium that the mean-free path of a single particle, given by l = 1/(σn) where

σ ∼ 10−20m2 is its effective cross-sectional area, is of order 1020 m, greater than

a typical jet diameter (∼ 1 kpc ∼ 3× 1019m). In such a system, particle collisions

simply cannot isotropise the medium, and thus if collisions were the only interaction

among the particles, material in extragalactic jets and their associated lobes could

not be treated as a fluid.

However, with even a trace magnetic induction (e.g., B ∼ 10−12T), the Larmor

radius, rL, of a proton moving at an appreciable fraction of the speed of light (e.g.,

v ∼ 108 m/s), is given by:

rL =
mv

qB
∼ 1012m,

seven orders of magnitude smaller than the diameter of the jet. Therefore, in this

setting it is the trace magnetic induction that provides the isotropisation of indi-

vidual particle motions and not the particle–particle collisions as has been assumed

until now. Since the fluid model doesn’t care what causes isotropy, only that the

system is isotropic, a trace magnetic induction among the particles saves the fluid

model in even the most rarefied of systems in the universe.

Modern astrophysics, therefore, starts with magnetohydrodynamics (MHD),

with further complications coming from dissipation, radiative processes, relativistic

effects, (self-) gravitation, etc., much of which (but not all!) lie beyond the scope of

this text.5

3Cosmic rays (CR) consist of a small fraction of gas particles which are promoted by various
means to relativistic and ultra-relativistic energies. We’ll talk more about CR in 7.4.

4Rappel : See footnote 3 on page 11.
5For a more comprehensive and graduate level text on the physics of astrophysical and terres-

trial MHD, see Goedbloed et al., 2019.
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Figure 4.1. a) A flat square of metal (grey) is placed within an external electric
field, �Eext, instantly driving opposite charges apart. b) Charges move as far as
they can go (e.g., to opposite edges of the metal), setting up an internal electric
field, �Eint, which in equilibrium (so that no further charges move), has the same
magnitude but opposite direction as �Eext. c) �Eint and �Eext cancel, leaving �E = 0
within the metal only.

4.2 The ideal induction equation

When a plasma is only partially ionised, many complicating dissipative effects

emerge such as fluid resistivity, the Hall effect, and ambipolar diffusion. We shall

discuss these in detail in Chap. 10. In this chapter, we begin our exploration of non-

dissipative ideal MHD where one assumes the plasma to be fully ionised (and thus

a perfect conductor), and where one considers fluid elements of sufficient size that

charge neutrality (but not equal positive and negative current densities!) within

each element can be assumed.

Now, as any upper-year physics student knows, a perfect conductor cannot sup-

port an electric field.6 What this means in practice is if a metal is placed within a

background electric field (e.g., Fig. 4.1a), then within a light-crossing time (shortest

possible time scale of the system), charges within the metal begin to move in op-

posite directions; free negative electrons move against �Eext whilst positive electron

“holes” move with �Eext. This continues until the internal electric field, �Eint, induced

by this charge separation (Fig. 4.1b), exactly cancels out �Eext and renders the net

electric field within the metal zero (Fig. 4.1c).

The situation within a plasma is rather more complicated. Here, both negative

and positive charges are free to move and, as already explained, the difference in

how the negative and positive currents are driven results in a net magnetic field.

Thus, the generalisation of the “no electric field within a metal” conclusion for a

completely ionised fluid is that in a very short time scale, the net electromagnetic

force – the sum of the electric and Lorentz forces, �FEM (Eq. B.4 in B.1) – is what

goes to zero by virtue of charge motion and redistribution, and not the electric field.

That is to say, in an ideal MHD fluid we have,

�FEM = q( �E + �v × �B) = 0, (4.1)

where q is the charge on the particle and �B is the magnetic induction (a.k.a.,

6I’ll get back to this piece of “common knowledge” in footnote 8.
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magnetic flux density7) with mks units Tesla (T = Wbm−2). Thus,

�Eind = −�v × �B, (4.2)

is the induced electric field (units Vm−1) within the ionised medium.8

Combining Eq. (4.2) with the differential form of Faraday’s law (third of Eq.

B.1), namely,

∇× �E = −∂
�B

∂t
, (4.3)

gives us,

∂ �B

∂t
= ∇× (�v × �B). (4.4)

This is the so-called ideal induction equation that will be part of our focus for the

rest of this chapter and indeed Part I. In passing, I note that since so many (as-

tro)physical applications (but by no means all!) assume a non-dissipative medium,

the adjective ideal is often dropped out of convenience when referring to Eq. (4.4).

However, this usage is strictly incorrect and I shall continue to refer to it by its full

name, the “ideal induction equation”, particularly since non-ideal MHD is discussed

in such depth in Chap. 10.

Before closing out this section, a quick reminder to the reader of the difference

between a static and an induced electric field is in order. A static electric field is

one generated by isolated charges, either within or external to the medium. It is

conservative (∇ × �Estat = 0) and can be represented with open electric field lines

whose ends coincide with point charges, such as in the metal square depicted in Fig.

4.1. In non-relativistic, ideal MHD, the fluid is considered to be a conductor of such

great efficacy that under the influence of a background static electric field, charges

move in times short compared to all other relevant time scales thereby cancelling

out the static electric field within the fluid, again just as in Fig. 4.1.

On the other hand, an induced electric field, such as that given by equation

(4.2), is not conservative (since, by Eq. 4.3, its curl is non-zero), and its field lines

are closed. Induced electric field lines do not start and end on isolated point charges

and, as such, cannot be eliminated by a redistribution of point charges within the

fluid. It is a necessary consequence of a time-varying magnetic induction, can drive

currents just like a static electric field, and is the reason why the physics of even

ideal MHD is so rich.

7 �B is an example of a nonadvective flux density. See App. B for a review of the essential
elements of electrodynamics for MHD.

8It is precisely this fact that the physics community writ large failed to recognise in the 1940s
and 50s that led to the resistance to Alfvén’s theory of magnetohydrodynamics and much of his
grief. The criticism of the day was that no conductor could support an electric field, based on
the common experience that conductors are metals for which this assertion is true. However, in a
system such as a plasma – also a conductor – where negative and positive charges are free to move
but in different ways, it is the net electromagnetic force (Eq. 4.1) that is zeroed out, not just �E.
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4.3 Alfvén’s theorem

As defined by the second of Eq. (1.18), the flux, Φ,

of a vector field, �φ, passing through an open surface,

Σ, is given by,

Φ ≡
∫

Σ

�φ · n̂dσ, (4.5)

where, as shown in the inset, n̂ is a unit vector nor-

mal to the surface where a given field line of �φ passes

through. In this context, �φ is also considered as the flux density of Φ and, in the

language of Chap. 1, Φ is also the extensive quantity (defined over a region) associ-

ated with the intensive vector quantity �φ (defined at a point). However, unlike pure

hydrodynamics where the extensive quantity Q is defined as the volume integral of

its associated intensive quantity, q (Eq. 1.15), here Φ is defined as the open surface

integral of �φ.

The Theorem of hydrodynamics (Theorem 1.1) introduced in 1.3 relates the

time-evolution equation of an intensive quantity, q, to that of its associated volume-

integrated extensive quantity Q, the proof of which depended upon Gauss’ theorem.

It might come as no surprise, then, that a similar theorem can be constructed to

relate the time evolution equation of an intensive vector quantity, �φ, to that of

its associated surface-integrated extensive quantity Φ whose proof depends upon

Stokes’ theorem.

Theorem 4.1. The flux theorem. Let Φ be the flux (extensive quantity) of a vector

field, �φ (intensive quantity), over an open surface Σ. If its time dependence is,

dΦ

dt
= Ψ, (4.6)

where Ψ is the possibly time-dependent “source term” (reason why Φ might not be

“conserved”), then the evolution equation for its associated vector field, �φ (�r, t), is

given by,
∂�φ

∂t
= ∇× (�v × �φ) + �ψ, (4.7)

where �v = d�r/dt, Ψ =
∫
Σ
�ψ · n̂dσ is the flux of vector field �ψ, n̂ is the unit vector

normal to the area differential dσ, and where �v × �φ is a differentiable function of

the coordinates.

Proof : We start with,9

dΦ

dt
= Ψ ⇒ d

dt

∫

Σ

�φ · n̂ dσ =

∫

Σ

�ψ · n̂ dσ,

9The reader might want to glance back at Theorem 1.1 to convince themself that the following
argument involving Stokes’ theorem is fundamentally the same.
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where Σ = Σ(t) is also, in principle, time variable. Then, using the standard defini-

tion of the derivative,

dΦ

dt
=

d

dt

∫

Σ(t)

�φ (�r, t) · n̂ dσ

= lim
Δt→0

1

Δt

[ ∫

Σ(t+Δt)

�φ (�r, t+Δt) · n̂ dσ −
∫

Σ(t)

�φ (�r, t) · n̂ dσ
]

= lim
Δt→0

1

Δt

[ ∫

Σ(t+Δt)−Σ(t)

�φ (�r, t+Δt) · n̂ dσ +

∫

Σ(t)

�φ (�r, t+Δt) · n̂ dσ

−
∫

Σ(t)

�φ (�r, t) · n̂ dσ
]

= lim
Δt→0

1

Δt

∫

ΔΣ

�φ (�r, t+Δt) · n̂ dσ + lim
Δt→0

∫

Σ(t)

�φ (�r, t+Δt)− �φ (�r, t)

Δt
· n̂ dσ,

where, as shown in the inset, integrating over the

difference in areas, ΔΣ = Σ(t+Δt)−Σ(t), is the

same as integrating around the closed contour,

∂Σ, with area differential n̂ dσ = �vΔt× d�l :10

dΦ

dt
= lim

Δt→0

1

��Δt

∮

∂Σ

�φ (�r, t+Δt) · (�v��Δt× d�l )

+

∫

Σ(t)

∂�φ (�r, t)

∂t
· n̂ dσ

=

∮

∂Σ

(
�φ (�r, t)× �v

) · d�l +
∫

Σ(t)

∂�φ (�r, t)

∂t
· n̂ dσ,

using vector identity (A.1). We now use the first flavourof Stokes’ theorem in A.2,

namely Eq. (A.35), to restore the first integral to a surface integral:

dΦ

dt
=

∫

Σ(t)

∇× (�φ × �v ) · n̂ dσ +

∫

Σ(t)

∂�φ

∂t
· n̂ dσ =

∫

Σ(t)

�ψ · n̂ dσ

⇒
∫

Σ(t)

(
∂�φ

∂t
−∇× (�v × �φ )− �ψ

)
· n̂ dσ = 0,

true for any open surface, Σ. Thus, the integrand is zero, proving the theorem.

Parroting our discussion after Theorem 1.1, �φ is not the conserved quantity here,

Φ is. However, since Φ is the surface-integral of �φ, we’ll refer to �φ as a surface-

conserved quantity. Further, Eq. (4.6) involves surface integrals Φ and Ψ over a

macroscopic open surface Σ, and thus represents a global statement (valid over a

finite area) on the evolution of the extensive, conserved quantity Φ. On the other

hand, Eq. (4.7) is a differential equation (differential form of Eq. 4.6) and represents

10Rappel : the area of a parallelogram is the cross product of the two non-parallel sides with
order determined by the right-hand rule.
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a local statement (valid at a point) on the evolution of Φ expressed in terms of its

corresponding intensive, surface-conserved quantity �φ.

The flux theorem is general for any vector field and its associated flux. In fact,

the reader who did Problem 1.7 relating the fluid vorticity, �ω = ∇× �v, to its flux,

namely the circulation, Γ, should have found this discussion very familiar.

Alfvén’s theorem applies specifically to the magnetic induction, and gives the

conditions for which the magnetic flux,

ΦB =

∫

Σ

�B · n̂dσ, (4.8)

is conserved (units of ΦB are Webers, Wb = Tm2). Given our efforts to derive the

ideal induction equation and prove the flux theorem, the proof of Alfvén’s theorem

is straightforward.

Theorem 4.2. Alfvén’s theorem. In an ideal MHD system, the magnetic flux within

any open surface that evolves with the fluid is conserved. That is,

dΦB

dt
= 0. (4.9)

Proof : Suppose for the moment that the evolution equation for ΦB is given by,

dΦB

dt
= Ψ,

where Ψ is a source term for ΦB. Now, from Eq. (4.7), we can immediately write

down the evolution equation for its associated intensive vector field, �B:

∂ �B

∂t
= ∇× (�v × �B ) + �ψ,

where Ψ =
∫
Σ
�ψ · n̂dσ and �ψ serves as a source term for �B. But from Eq. (4.4),

∂ �B

∂t
= ∇× (�v × �B ) ⇒ �ψ = 0 ⇒ Ψ = 0,

proving the theorem.

Figure 4.2. A flux tube with
sides defined by �B, and where
at the ends, ΦB,in = ΦB,out.

Physically, Alfvén’s theorem asserts that in

ideal MHD, the magnetic induction is “frozen

in” the fluid, a concept known as flux-freezing.

Any fluid motion causing a given open sur-

face to distort, shrink, twist, expand, or what-

ever does so without gaining or losing any

magnetic flux through it. One can imagine,

therefore, a “pencil” of fluid or, as it is com-

monly referred to, a flux tube (Fig. 4.2) whose

sides are made up of lines of induction and, by
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Alfvén’s theorem, whose magnetic flux passing through its ends remains constant

regardless of how that flux tube evolves in the fluid.11 Indeed, since ∇· �B = 0 (why

does this matter?), we also know that the net flux entering the flux tube, ΦB,in,

must equal the net flux leaving, ΦB,out, since no flux enters or leaves the flux tube

along its sides where �B ⊥ n̂, the surface normal.

Furthermore, if one considers a flux tube of arbitrarily small radius, then the

fluid within the flux tube can only follow along lines of induction and never cross

them, lest the fluxes through the ends of the tube change. This is not to say that

fluid motion is entirely dictated by where lines of magnetic induction lie; far from

it. In the give and take of all the MHD forces, either the fluid follows �B, or lines of

induction get dragged around and twisted mercilessly by the fluid, or something in

between; all cases are consistent with the idea of magnetic flux being frozen within

the fluid, i.e. flux-freezing. We shall come to quantify this “tug-of-war” between �B

and �v in Chap. 5 when we define the MHD-alpha.

We have therefore added to our august list of three conservation principles for

ideal fluid dynamics a fourth, which in their entirety now include:

1. conservation of mass, M (Eq. 1.1);

2. conservation of total energy, ET (Eq. 1.2);

3. conservation of momentum, �S (Newton’s second law, Eq. 1.3); and now,

4. conservation of magnetic flux, �ΦB (Eq. 4.9).

4.4 Modifications to the momentum equation

As we’ve seen, in the presence of magnetic induction, a charged particle, q, moving

at velocity �v is subject to the Lorentz force,

�FL = q�v × �B.

Therefore, an ensemble of charged particles described by a charge density ρq =

dq/dV moving collectively at an ensemble velocity �v is subject to a Lorentz force

density,
�fL = ρq�v × �B = �J × �B, (4.10)

where �J = ρq�v is the current density (SI units: Am−2). Now, from Ampère’s law12

(App. B), we have,
�J =

1

μ0
∇× �B, (4.11)

11This should remind the reader of a streamtube defined in 2.4 and illustrated in Fig. 2.8.
12The displacement current in the more general Maxwell–Ampère law, namely (1/c2) ∂ �E/∂t, is

ignored on the grounds that the factor 1/c2 makes it negligible for non-relativistic fluid motions.
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and thus Eq. (4.10) can be written as,

�fL =
1

μ0
(∇× �B)× �B. (4.12)

Adding this force density directly to the RHS of Eq. (1.27) gives us the momentum

equation for ideal MHD:

∂�s

∂t
+∇ · (�s�v) = −∇p− ρ∇φ+

1

μ0
(∇× �B)× �B. (4.13)

The effect of the Lorentz force density to Euler’s Eq. (1.36) is evidently:

∂�v

∂t
+ (�v · ∇)�v = −1

ρ
∇p−∇φ +

1

ρμ0
(∇× �B)× �B. (4.14)

4.5 The MHD Poynting power density

From Eq. (B.17) in App. B and Eq. (4.2) above, we define the MHD Poynting vector

in free space as:
�SP =

1

μ0

�Eind × �B =
1

μ0

�B × (�v × �B). (4.15)

Further, from Eq. (B.18), the MHD Poynting flux through an open surface Σ is:

ΦS =

∫

Σ

�SP · n̂ dσ =
1

μ0

∫

Σ

[
�B × (�v × �B)

] · n̂ dσ, (4.16)

while, according to Eq. (B.19), the MHD Poynting power density must be:

pS = −∇ · �SP = − 1

μ0
∇ · [ �B × (�v × �B)]. (4.17)

The Poynting flux, whether for ideal MHD or other more general electromag-

netic systems, is interpreted as the rate at which energy is transported into or out

of a given volume by the electromagnetic fields. In particular, ΦS , whose units are

Watts, is the magnetic power passing through a given surface (a flux), while pS ,
whose units are Wm−3, is the rate of magnetic energy transport per unit volume,

and is thus a power density.

The reader unfamiliar with the Poynting flux and its relationship to Maxwell’s

equations is directed to App. B which contains a brief, but self-contained review of

the subject.

4.6 Modifications to the total energy equation

From Eq. (B.13) in App. B, the energy density of the magnetic induction is B2/(2μ0).

Thus, we define the total MHD energy density, e∗T, to be:
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e∗T = eT +
B2

2μ0
= e+

ρv2

2
+ ρφ+

B2

2μ0
, (4.18)

and then examine the time derivative of e∗T. Thus,

∂e∗T
∂t

=
∂e

∂t
+ ρ

∂v2/2

∂t
+
v2

2

∂ρ

∂t
+ φ

∂ρ

∂t
+

1

μ0

∂B2/2

∂t

= −∇ · (e�v)− p∇ · �v + ρ�v ·
(
−�v · ∇�v − 1

ρ
∇p−∇φ+

1

ρμ0
(∇× �B)× �B

)

− v2

2
∇ · (ρ�v)− φ∇ · (ρ�v) + 1

μ0

�B · [∇× (�v × �B)],

where the continuity equation (Eq. 1.19), the internal energy equation (Eq. 1.34),

the ideal induction equation (Eq. 4.4), and Euler’s equation modified for the Lorentz

force (Eq. 4.14) have all been used to replace the time derivatives. Note also the

use of the identity:
∂A2/2

∂t
= �A · ∂

�A

∂t
,

for any vector �A, and the fact that the gravitational potential, φ, has no explicit time

dependence (e.g., Eq. 1.28), whence ∂φ/∂t = 0. Using numerous vector identities

from App. A, we can continue to develop the expression for ∂e∗T/∂t to get:

∂e∗T
∂t

= −∇ · (e�v)−∇ · (p�v)−∇ · (ρφ�v)− v2

2
∇ · (ρ�v)− ρ�v · (�v · ∇�v)

+
1

μ0

(
�v · (∇× �B)× �B + �B · ∇ × (�v × �B)

)

= −∇ · [(e + p+ ρφ)�v]−∇ ·
(
ρv2

2
�v

)
+ ρ�v ·

(
∇v2

2
− �v · ∇�v

)

− 1

μ0

(
∇× �B · (�v × �B)− �B · ∇ × (�v × �B)

)

= −∇ ·
[(
e+

ρv2

2
+ ρφ+ p

)
�v

]
− 1

μ0
∇ ·
(
�B × (�v × �B)

)

+ ρ
���������� 0

�v ·
(
�v × (∇× �v)

)
,

where the last term is zero since �v ⊥ �v × �A for any vector �A. Note that eT (and

not e∗T!) has appeared in the first term on the RHS, and the second term is just

the MHD Poynting power density, pS = −∇ · �SP, from Eq. (4.17). Thus, the total

energy equation for MHD can be written more compactly as:

∂e∗T
∂t

+∇ · [(eT + p)�v + �SP

]
= 0. (4.19)

The fact that the Poynting power density has shown up reflects its interpretation

as the rate at which work is done on (by) the magnetic field by (on) the fluid. Like

the “pdV ” term that contributed to Eq. (1.34), the Poynting term is an “applied

power density” that prevents total energy from being conserved in the co-moving

frame of the fluid.
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4.7 The equations of ideal MHD

We are now in a position to write down the complete set of ideal MHD equations.

Equation Set 6 :

∂ρ

∂t
+∇ · (ρ�v) = 0; (4.20)

∂e∗T
∂t

+∇ · (eT�v) = −∇ ·
(
p�v +

1

μ0

�B × (�v × �B)

)
; (4.21)

∂�s

∂t
+∇ · (�s�v) = −∇p− ρ∇φ+

1

μ0
(∇× �B)× �B; (4.22)

∂ �B

∂t
−∇× (�v × �B) = 0, (4.23)

where:

e∗T = eT +
B2

2μ0
; p = (γ − 1)

(
eT − 1

2ρv
2 − ρφ

)
; �s = ρ�v,

are the constitutive equations. As usual and where convenient, the total energy and

first constitutive equations may be replaced with either the internal energy equation

(Eq. 1.34) or the pressure equation (Eq. 1.41) where use of the latter also eliminates

the need for the second of the constitutive equations. Note that neither Eq. (1.34)

nor (1.41) are modified by the addition of the magnetic induction. Further, the

momentum and third constitutive equations may be replaced with the MHD Euler

equation (Eq. 4.14).

The ideal induction equation is fundamentally different from the other hydro-

dynamical equations. The second term on the left-hand side (LHS) of Eq. (4.20)–

(4.22) are perfect divergences, whereas the second term on the LHS of Eq. (4.23)

is a perfect curl. As stressed previously, this stems from the fact that the hydro-

dynamical variables ρ, eT, and �s are volume-conserved quantities whereas �B is a

surface-conserved quantity. At this point, some further discussion on the significance

of this distinction is in order.

In the absence of source terms, the hydrodynamical equations have the form:

∂q

∂t
+∇ · (q�v) = 0,

where q is any of ρ, eT, and �s. Integrated over a volume, V , with surface, S, this

yields: ∫

V

∂q

∂t
dV =

dQ

dt
= −

∫

V

∇ · (q�v)dV = −
∮

S

q�v · d�σ,

upon invoking Gauss’ theorem, and where Q =
∫
V q dV . This has the physical

interpretation that the quantity Q inside a fixed volume V changes only if there is
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a net (advective) flux density of Q, q�v, passing across the closed surface, S. This is

the nature of a volume-conserved quantity.

On the other hand by integrating the ideal induction equation over an arbitrary

open surface, Σ, we get:

∫

Σ

∂ �B

∂t
· n̂ dσ =

dΦB

dt
=

∫

Σ

∇× (�v × �B) · n̂ dσ = −
∮

C

�Eind · d�l,

using Eq. (4.2) and Stokes’ theorem, where C is the circumference of the open sur-

face Σ. Now,
∮
C
�Eind · �dl = E is the net emf induced around C (Eq. B.8). Thus,

the magnetic flux, ΦB, passing through C changes only if a non-zero E drives a

current around C, inducing additional magnetic flux (Biot and Savart). This is the

nature of the surface-conserved vector quantity, �B. That the magnetic induction

and momentum density obey different types of conservation laws and, related to

this, that �B is subject to the solenoidal condition (∇ · �B = 0) whereas �s is not,

point to fundamental mathematical differences between the two vector fields. This

has profound effects both on their physical influence on the fluid and, for the com-

putationalist, the design of the numerical algorithms required to solve the equations

of MHD accurately (e.g., Clarke, 1996). On that subject, see also Problem 4.8.

There are alternate forms for the total energy, momentum, and ideal induction

equations that are often useful. For the former, identity (A.2) allows us to write:

�B × (�v × �B) = �vB2 − (�v · �B) �B,

and thus Eq. (4.21) becomes:

∂(e∗T)
∂t

+∇ · (eT�v) = −∇ ·
(
p�v +

B2

μ0
�v − 1

μ0
(�v · �B) �B

)

⇒ ∂(e∗T)
∂t

+∇ ·
[(
e∗T + p+

B2

2μ0

)
�v − 1

μ0
(�v · �B) �B

]
= 0. (4.24)

For the momentum equation, identities (A.15) and (A.23) allow us to write:

(∇× �B)× �B = ( �B · ∇) �B − 1

2
∇B2 = ∇ · ( �B �B)− 1

2
∇B2,

with the latter being aided by the solenoidal condition on �B. Both forms con-

veniently divide the Lorentz force into two terms. The first term [( �B · ∇) �B or

∇ · ( �B �B)] contains “shear” derivatives (e.g., By ∂Bz/∂y that involve different com-

ponents of the magnetic induction) and thus can be thought of as describing “trans-

verse Lorentz forces”. Meanwhile, the second term (12∇B2) contains nothing but

“compressive” derivatives (e.g., ∂B2
y/∂x, each involving only one component of the

magnetic induction) and thus can be thought of as describing “longitudinal Lorentz

forces”. The latter term may be combined with the pressure gradient in the mo-

mentum equation to give an alternate form for the MHD momentum equation:

∂�s

∂t
+∇ · (�s�v) = −∇

(
p+

B2

2μ0

)
− ρ∇φ+

1

μ0
∇ · ( �B �B). (4.25)
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Note that in both places where the pressure, p, appears in Eq. (4.24) and (4.25),

it is accompanied by B2/(2μ0). Thus, we define the MHD pressure to be:

p∗ = p+
B2

2μ0
≡ p+ pM, (4.26)

where the magnetic pressure, pM, exists by virtue of the magnetic induction. Phys-

ically, pM acts just like a thermal pressure; it is isotropic and its gradients can push

fluid around. Note also that the magnetic pressure is identical in form to the mag-

netic energy density (Eq. B.13 in App. B) and thus, while e/p = γ − 1 for a gas,

eM/pM = 1. It turns out for many applications, the MHD equations are easier to

handle if both thermal and magnetic ratios of energy density to pressure are the

same, and for this reason in a few applications, some investigators have set γ = 2,

even though this doesn’t correspond to any real gas (e.g., Brio & Wu, 1988).

Finally and notwithstanding the discussion distinguishing the volume-conser-

vative hydrodynamic equations from the surface-conservative ideal induction equa-

tion, we can “force” the latter into what looks like volume-conservative form by

invoking vector identity (A.22):

∇× (�v × �B) = ∇ · ( �B �v − �v �B),

noting that in general, the dyadic product of two vectors (see Eq. A.16) doesn’t

commute (with the notable exception of two parallel vectors, like �s and �v). With

this identity, we can write down an alternate form of the ideal induction equation:

∂ �B

∂t
+∇ · (�v �B − �B �v) = 0,

which has both theoretic and practical importance and is the form we shall use in

Chap. 6 where we solve the MHD Riemann problem.

We therefore have the following alternate set of ideal MHD equations:

Equation Set 7 :
∂ρ

∂t
+∇ · (ρ�v) = 0; (4.27)

∂e∗T
∂t

+∇ ·
[
(e∗T + p∗)�v − 1

μ0
(�v · �B) �B

]
= 0; (4.28)

∂�s

∂t
+∇ ·

(
�s�v + p∗I− 1

μ0

�B �B

)
= −ρ∇φ; (4.29)

∂ �B

∂t
+∇ · (�v �B − �B�v

)
= 0, (4.30)

where:

p∗ = (γ − 1)(e∗T − 1

2
ρv2 − ρφ) + (2− γ)

B2

2μ0
; �s = ρ�v,

are the constitutive equations. Note also the use of the vector identity ∇p∗ = ∇·p∗I,
introduced in footnote 12 on page 22, where I is the identity tensor (matrix).
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With the gravity term ignored, we declared Eq. Set 1 on page 18 (describing

hydrodynamics in 3-D) to be in conservative form because, when integrated over

volume, all spatial derivatives disappeared via applications of various flavours of

Gauss’ theorem. The same is true for Eq. Set 7 (again, when φ = 0) with Stokes

replacing Gauss for Eq. (4.30), and thus these are the ideal MHD equations in con-

servative form. It is left to Problem 4.9 to gather together the ideal MHD equations

in primitive form.

Finally, by defining kets of conservative variables, |q〉, and flux densities, |�f 〉,

|q〉 ≡

⎡

⎢⎢⎢⎢⎣

ρ

e∗T
�s

�B

⎤

⎥⎥⎥⎥⎦
and |�f 〉 ≡

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

ρ�v

(e∗T + p∗)�v − 1

μ0
(�v · �B) �B

�s�v + p∗I− 1

μ0

�B �B

�v �B − �B�v

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

,

and dropping φ, Eq. Set 7 can be written in its most compact form:

∂t|q〉+∇ · |�f 〉 = 0, (4.31)

where ∂t ≡ ∂/∂t. Advanced texts and journal articles on MHD will often start off

their discussion by writing the equations in this or a similar form, what I think of

as “the F = ma of MHD”.

4.8 Vector potential and magnetic helicity (optional)

Problem 4.5 asks the reader to prove what may already be taken for granted: any

solenoidal vector field, �B, may be written as the curl of another vector, �A. That is,

∇ · �B = 0 ⇒ �B = ∇× �A, (4.32)

where, if �B is the magnetic induction, �A is known as the vector potential. The

proof is actually rather subtle, and for the reader who has yet to go through it, I

strongly recommend Problem 4.5. It provides a mathematical appreciation for what

it means to perform an anti-curl, and yields very practical expressions for anyone

with aspirations to work in numerical MHD. Consider it a right-of-passage!

Given Eq. (4.32), the ideal induction equation (Eq. 4.4) can be written as,

∂

∂t
∇× �A = ∇× ∂ �A

∂t
= ∇× (�v × �B)

⇒ ∇×
(
∂ �A

∂t
− �v × �B

)
= 0 ⇒ ∂ �A

∂t
− �v × �B = ∇V , (4.33)

where V is a scalar function of the coordinates with units of electric potential
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(JC−1). In electrodynamics, how one selects V is referred to as a choice of gauge

and, for the particular choice ∇V = 0, Eq. (4.33) reduces to,

∂ �A

∂t
= �v × �B = − �Eind, (4.34)

using Eq. (4.2). This gives a very convenient evolution equation for �A.

An important quantity in MHD is the so-called magnetic helicity. In general,

the helicity density of a vector field, �φ, is defined as,

hφ = �φ · (∇× �φ), (4.35)

an intensive quantity, whereas the helicity of the same vector field is,

Hφ =

∫

V

hφ dV =

∫

V

�φ · (∇× �φ) dV, (4.36)

an extensive quantity. As we shall see, the helicity is a measure of the complexity

or topology of the vector field. For example, if �φ is completely planar and thus no

“streamlines” cross or loop each other, Hφ will turn out to be zero. However, should

loops of �φ link other loops of �φ (think “chainlinks”), Hφ �= 0 with the sign of Hφ

depending on whether loops of like-parity or counter-parity are linked.

For �φ = �A, the vector potential, we get the magnetic helicity density,

hA ≡ �A · (∇× �A) = �A · �B. (4.37)

Examining first its time-variation, we have,

∂hA
∂t

= �A · ∂
�B

∂t
+ �B · ∂

�A

∂t
= �A · (∇× (�v × �B)

)
+ �B · (�v × �B +∇V), (4.38)

using Eq. (4.4) and (4.33). Now,

�A · (∇× (�v × �B)
)
= ∇ · [(�v × �B)× �A

]
+ (�v × �B) ·

�B︷ ︸︸ ︷
∇× �A

= ∇ · [( �A · �v) �B − ( �A · �B︸ ︷︷ ︸
hA

)�v
]
+������� 0

(�v × �B) · �B,

using vector Identity (A.2). Further,

�B · (�v × �B +∇V) = ������� 0
�B · (�v × �B) +∇ · (V �B),

since ∇ · �B = 0. Substituting these two vector identities into Eq. (4.38), we get,

∂hA
∂t

+∇ · (hA�v) = ∇ · [( �A · �v + V) �B], (4.39)

an evolution equation for the magnetic helicity density. This should remind the

reader very much of the time evolution equation for total energy density (e.g., Eq.

1.23 for ideal HD, Eq. 4.24 for ideal MHD) which, like Eq. (4.39), have two terms

on the LHS of the form ∂q/∂t+∇ · (q�v) which express the conservative nature of
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Figure 4.3. a) A single flux loop is shown with volume V , surface area S en-
closing V , circumference C looping S (dashed line), interior surface Σ bounded
by C (grey disc), and cross-sectional area Σ×. b) Two flux loops of volumes V1

and V2 with magnetic inductions �B1 and �B2 linking each other like two links of
a chain.

q. Further, the “source terms” on the RHS of Eq. (4.39) form a perfect divergence,

again just like the total energy density equations.

Writing Eq. (4.39) as,

∂hA
∂t

+∇ · [hA�v − ( �A · �v + V) �B] = 0,

so that it looks even more like Eq. (1.23) and (4.24), we identify the helicity flux

density,
�Fh ≡ hA�v − ( �A · �v + V) �B ⇒ ∂hA

∂t
+∇ · �Fh = 0, (4.40)

casting the evolution equation for the magnetic helicity density very much like a

volume-conserved hydrodynamical quantity.

Finally, integrating Eq. (4.39) over a volume, V , we have,
∫

V

[
∂hA
∂t

+∇ · (hA�v)
]
dV =

∫

V

∇ · [( �A · �v + V) �B]dV

⇒ dHA

dt
=

∮

S

( �A · �v + V) �B · n̂ dσ, (4.41)

where S is the surface enclosing V , and where the theorems of hydrodynamics

(Theorem 1.1) and Gauss (Eq. A.30) were used. Eq. (4.41) is an evolution equation

for the magnetic helicity. In particular, if the volume, V , encloses the entire system,

then no flux density crosses S and the surface integral on the RHS of Eq. (4.41)

vanishes. Thus, like the total mass, total energy, and magnetic flux, the magnetic

helicity, HA, is a conserved quantity of ideal MHD.

4.8.1 Magnetic topology

A good application of magnetic helicity is its role in quantifying magnetic topology.

Consider the single flux loop depicted in Fig. 4.3a, where a flux loop is a flux tube

wrapped into a toroid. Like a flux tube, the sides of a flux loop are defined by the

same lines of induction as the fluid evolves in time. Thus, by definition, �B along
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the surface, S, is everywhere perpendicular to the surface normal and the surface

integral in Eq. (4.41) is zero. That is, magnetic helicity is conserved within a flux

loop. What’s more, we can evaluate the conserved value of the magnetic helicity

within the isolated flux loop.

In the inset, a portion of the toroid in Fig. 4.3a is

shown with a typical infinitesimal volume, dV = dl dσ×,
indicated where d�l lies along the circumference contour

C and thus parallel to �B, and dσ× is an infinitesimal

of the cross-sectional area, Σ×. And so,

HA =

∫

V

�A · �B dV =

∫

Σ×

∮

C

�A · �B dl dσ×

=

∫

Σ×

∮

C

�A · d�lB dσ×,

using Eq. (4.36) and since �B ‖ d�l. Now, since magnetic flux is conserved, the mag-

netic flux through the cross section Σ× must be the same at each point around C,

and we may pull the flux integral outside the contour integral over d�l to get,13

HA =

∫

Σ×
B dσ×

︸ ︷︷ ︸
ΦB× (Eq. 4.8)

∮

C

�A · d�l = ΦB×

∫

Σ

(∇× �A︸ ︷︷ ︸
�B

) · n̂ dσ = ΦB×ΦB,

using the first flavour of Stoke’s theorem (Eq. A.35). To be clear, dσ× is an infinites-

imal of area on Σ× while dσ is an infinitesimal of area on Σ (Fig. 4.3a). And since
�B either lies along Σ (and thus perpendicular to n̂) within V or else is zero within

the “hole” of the torus, ΦB = 0 and so, for the single flux loop, HA = 0.

Well, that’s pretty neat. So what if we complicate things a bit by linking a

flux loop of volume V1 with magnetic induction �B1 by another flux loop of volume

V2 with magnetic induction �B2, as shown in Fig. 4.3b? This is an example of a

non-co-planar topology and, in a qualitative sense, is more complex than the single

co-planar loop in Fig. 4.3a whose magnetic helicity we just found to be zero.

The good news is the mathematics is identical except for one easy difference.

The magnetic flux passing through the hole of V1 is now the magnetic flux carried

within V2:

ΦB2 =

∫

Σ×,2

B2 dσ×,2 �= 0,

and so the magnetic helicity of flux loop V1 is,

HA,1 = ΦB1ΦB2 �= 0.

By symmetry, the magnetic helicity of flux loop V2 is,

HA,2 = ΦB2ΦB1 ,

13This mathematical manoeuvre is actually a little more subtle than presented, for one must
also justify that the contour integral of �A over d�l can be “pulled out” of the flux integral. This is
justified a posteriori by the fact that

∮
C

�A · d�l ends up being the magnetic flux passing through
the “hole” of the flux loop (area Σ in Fig. 4.3a), which does not depend upon which cross-section,
Σ×, one chooses to integrate over.
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Figure 4.4. Coronal loops on the sun’s surface, many of which intertwine other
loops (photo credit: Solar Dynamics Observatory, NASA).

and so the total magnetic helicity of the combined volume V1 + V2 is,

HA,1+2 = 2ΦB1ΦB2 = 2

∫

Σ×,1

B1dσ×,1
∫

Σ×,2

B2dσ×,2.

More generally, should loops V1 and V2 actually be spirals and loop each other N1

and N2 times respectively, the total magnetic helicity becomes,

HA,1+2 = (N2 +N1)ΦB1ΦB2 .

The take-away from this analysis is that magnetic helicity can be interpreted

as a quantitative measure of the topological complexity of an MHD system. A

coplanar field configuration – being the simplest – has zero-helicity. However, should

magnetic field loops link each other, the configuration is fully 3-D and it can no

longer be described as co-planar. In this case, helicity is non-zero with the sign of

HA depending on whether the normals of the interlinking flux loops (as determined

from the right-hand rule for �B) are inclined by an angle 0 ≤ θ ≤ π/2 (HA,1+2 > 0)

or π/2 ≤ θ ≤ π (HA,1+2 < 0).

A spectacular example of flux-linking in nature are coronal loops on the sur-

face of the sun. Figure 4.4, from NASA’s Solar Dynamics Observatory (SDO),

shows numerous loops of plasma following lines of magnetic induction many of

which are intertwined in a complex fashion giving rise to numerous solar phenomena

including sunspots, solar flares, and solar prominences. A NASA video showing the

dynamics of coronal loops is mesmerising.14

14www.youtube.com/watch?v=HFT7ATLQQx8
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Problem Set 4

4.1 The statement was made near the end of 4.1 that “even a trace magnetic

induction” can reduce the Larmour radius to much less than the diameter of the

jet, and thus preserve the fluid model even for extragalactic outflow. However, the

adjective trace was not justified. Sure, 10−12T (10−8G) seems “small”, but what

is small in an environment where the density is only one particle per m3?

We’ll introduce quantities such as the “plasma-beta” and “MHD-alpha” in 5.2 to

quantify what we mean by a “weak” or “strong” magnetic induction. For now, let’s

just use the ratio of kinetic to magnetic energy densities,

fKM =
1
2ρv

2

B2/2μ0
, (4.42)

as a measure of magnetic strength (which we’ll come to know as the square of the

Alfvén number).

a) For the numbers given in 4.1 and assuming the jet is made up of ionised

hydrogen, find a numerical value for fKM. Therefore, is the energy of jet flow

magnetically or kinetically dominated?

b) For a monatomic gas (γ = 5/3), what is the maximum Mach number of the

jet flow before thermal energy density falls below magnetic energy density?

4.2 Gauss’ Law for magnetic induction (one of Maxwell’s four equations of elec-

tromagnetism) states that ∇ · �B = 0, and is often characterised as “the redundant

of Maxwell’s equations”. Show that if one can assume that ∇ · �B = 0 at t = 0

(presumably corresponding to conditions during the Big Bang), then the ideal in-

duction equation, Eq. (4.4) in the text which never invoked either of Gauss’ laws

for its derivation, requires that ∇ · �B = 0 for all time.

4.3 This is a semi-qualitative problem to aid in the students’ understanding of the

two main theorems in this text: Theorems 1.1 (Theorem of hydrodynamics) and 4.1

(The flux theorem).

a) List two similarities and two differences between these two theorems.

b) Consider the circulation, Γ, defined in Problem 1.7 as,

Γ =

∮

C

�v · d�l,

where C is the closed loop defining an open surface Σ within an ideal fluid.

Show that Γ can also be thought of as a vorticity flux, where the vorticity is
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given by �ω = ∇×�v (Problem 1.6). Then, assuming boundary conditions such

that Kelvin’s circulation theorem,

dΓ

dt
= 0,

applies (Problem 1.7), use Theorem 4.1 to write down an evolution equation

for �ω and thus �v.

c) The integral form of Gauss’ Law for an electric field in free space is (first of

Eq. B.2),

ΦE =

∮

S

�E · d�σ =
qenc
ε0

,

where qenc is the free charge enclosed within a closed surface S. If qenc is

constant and thus dΦE/dt = 0, why doesn’t Theorem 4.1 apply, and thus why

can’t we immediately write,

�E = ∇× (�v × �E) ?

(Hint: One sentence is sufficient to answer this part.)

4.4

a) Show that ∇ · �ω = 0, where �ω is the vorticity as defined in Problem 1.6 of

Problem Set 1. (This is a one-liner.)

b) Compare the time-evolution equation for the vorticity, as given in Problem

1.6, with the ideal induction equation, Eq. (4.4) in the text. This, along with

the fact that both �B and �ω are solenoidal (their divergences are zero) make for

a very tempting argument that vorticity and magnetic vector fields must be

everywhere and for all time proportional to each other, but they’re not. What

is it that makes vorticity and magnetism so fundamentally different? From

the full set of MHD equations, identify at least two important deviations from

the otherwise perfect symmetry implied by the preamble to this problem.

4.5∗ Show that ∇ · �B = 0 ⇐⇒ ∃ �A | �B = ∇× �A, where �A is the magnetic vector

potential. The ⇐ part is trivial, but the ⇒ part may take some thinking.

Hint : One way to approach the ⇒ problem is to come up with a functional form for
�A that works using a process that is sometimes referred to as taking the anti-curl .

Note that whatever you find, your solution will not be unique, since ∇ × �A =

∇ × ( �A + ∇ψ) and �A is therefore ambiguous to within a term ∇ψ, where ψ is

an arbitrary scalar function. In electrodynamics, this ambiguity is known as gauge

freedom. Thus, you might start by considering a particular and possibly simpler

form for �A such as �A = (Ax, Ay, 0), and see where that leads you. Whatever you do

get for �A, you should verify that taking its curl does indeed give you back �B.
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4.6 Show that the MHD total energy equation (either Eq. 4.21 or Eq. 4.28 in the

text) is equivalent to the hydrodynamical total energy equation, Eq. (1.23), with

an explicit magnetic source term on the right-hand side. Thus, show that:

∂eT
∂t

+∇ · �v (eT + p) = �Eind · �J,

where eT is given by Eq. (1.20), �Eind is given by Eq. (4.2), and �J is given by Eq.

(4.11), all in the text.

4.7 If �B is the magnetic induction, prove the vector identities:

(∇× �B)× �B +∇B2

2
= ( �B · ∇) �B = ∇ · ( �B �B),

required to derive the alternate form of the MHD momentum equation, that is Eq.

(4.25) in the text.

4.8∗ This problem reads long because it enters an important realm that isn’t

discussed in the text: computational methods. Have no fear, the solution is not as

long as the problem description!

In computational MHD, one sets up a discrete grid made up of a number of zones

where, within each zone, the fluid variables are considered constant (Fig. 4.5a).

Differences in fluid variables from one zone to the next give rise to differences in

pressure, inertia (momentum), and magnetic stresses which, when reconciled by the

differenced MHD equations, determine updated fluid variables after the given time

step, the duration of which is set by criteria for numerical accuracy and stability.

Again for reasons of numerical accuracy and stability, where one places the variables

within each zone can be critical. As shown in Fig. 4.5b, numerical codes such as

ZEUS-3D are based on a staggered mesh in which scalars such as ρ are zone-centred,

components of primary vectors such as �v and �B are face-centred, and components

of secondary vectors such as �A are edge-centred. See the caption of Fig. 4.5b for

further explanation. As this problem is designed to show, this strategy is particularly

important in ensuring that the numerical divergence of �B is both initialised and

remains at zero, which is not necessarily guaranteed even if ∇ · �B = 0 analytically.

a) For illustration, consider the magnetic induction described analytically as,

�B =

(
2
√
x,− y√

x
, 0

)
, (4.43)

where all quantities are unitless and where, for the purpose of this exercise, Bz

and all z-derivatives are assumed to be zero. Show that analytically,∇· �B = 0.

(This should be a one-liner.)

b) Let’s now evaluate the magnetic divergence numerically, which we do using
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Figure 4.5. (Problem 4.8) a) A 2-D grid suitable for a numerical MHD cal-
culation is depicted. Zones in the x- and y-directions are indexed with i and j
respectively. “Active zones” (upon which the full MHD equations are applied at
each time step) are marked with solid lines, “boundary zones” (upon which cer-
tain boundary conditions are specified) with dashed lines. b) The (i, j)th zone is
shown with the locations of certain flow variables indicated. On a staggered mesh
such as ZEUS-3D, scalars such as density are considered to be “zone-centred”,
and thus ρ(i, j) takes on the value of the density at the centre of the zone. Pri-
mary vector components such as Bx and By are “face-centred”, and thus Bx(i, j)
and By(i, j) take on the values of Bx and By at the centres of the zone faces to
which they are normal. Shown also are Bx(i+1, j) and By(i, j+1). Secondary
vector components such as Az (vector potential) are typically “edge-centred”,
and thus Az(i, j) takes on the value of Az at the indicated zone-edge.

the differenced form of ∇ · �B. Thus, on our discrete grid and at the (i, j)th

zone (Fig. 4.5b),

∇ · �B ≈ δBx

δx
+
δBy

δy

=
Bx(i+1, j)−Bx(i, j)

δx
+
By(i, j+1)−By(i, j)

δy
,

(4.44)

where, in the case depicted in Fig. 4.5b, δx = δy = 1.

Using Eq. (4.43), evaluate each of Bx(i, j), Bx(i+1, j), By(i, j), and By(i, j+1)

given the values of x and y at the relevant faces and zone-centres in Fig. 4.5b.

Then, using Eq. (4.44), evaluate the numerical divergence. (Answer: 0.0119)

Commentary: Such a non-zero numerical divergence gives rise to “numerical

monopoles” which can have devastating first-order effects on a numerical so-

lution causing it to depart qualitatively from an analytical solution, should

one exist. We absolutely must ensure that ∇ · �B = 0, even numerically!! But

how?

c) By integrating the components of Eq. (4.43), find a suitable vector potential

of the form �A = Az ẑ. Don’t overthink this; the integrations are pretty easy.

Evaluate your expression for Az at each of the four edges depicted in Fig. 4.5b.
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Then, using the differenced form of the curl (where z-derivatives are zero),

Bx(i, j) =
Az(i, j+1)−Az(i, j)

δy
;

By(i, j) = −Az(i+1, j)−Az(i, j)

δx
,

⎫
⎪⎪⎬

⎪⎪⎭
(4.45)

evaluate again Bx(i, j), Bx(i+1, j), By(i, j), and By(i, j+1). From these values,

evaluate the numerical divergence using Eq. (4.44) (you should get dead zero).

d) Generalise the previous result by substituting Eq. (4.45) directly into Eq.

(4.44) without assuming values for δx and δy. In a numerical application, this

should convince you of the importance of:

- a staggered mesh; and

- using the vector potential to initialise the magnetic induction.

e) Having taken the trouble to use the vector potential to initialise a numerically

divergence-free magnetic induction, we’d like to evolve �B numerically in such

a way to keep it that way. There are a variety ways to do this,15 but a partic-

ularly simple one is to update the vector potential, Az, with Eq. (4.34) from

the text which, for the z-component and in differenced form, is given by,

δAz(i, j)

δt
= −Eind(i, j) ⇒ δAz(i, j) = −Eind(i, j) δt,

where δt is the time step, and where the edge-centred induced electric field,

Eind(i, j) = ṽy(i, j)B̃x(i, j)− ṽx(i, j)B̃y(i, j),

is evaluated from suitable interpolations (indicated by the tilde )̃ of the face-

centred velocity and magnetic induction components at the present time step.

Az(i, j) is then replaced with Az(i, j) + δAz(i, j), and these updated vector

potentials are used in Eq. (4.45) to update the components of the magnetic

induction which, as part d) shows, remains divergence-free.

Now suppose after n time steps we have an active 2-D grid of updated,

divergence-free magnetic induction, Bx and By (heavy arrows in the inset),

and we now wish to set values for Bx and By in the boundary zones (dashed

lines in the inset). Typically, boundary values are not set using an evolution

equation like the ideal induction equation, but rather on the physical condi-

tions prevailing at that boundary. Thus, a boundary could be reflecting (e.g.,

a non-conducting wall), periodic, or “flow out”, meaning all waves of material

and field are passed across the boundary with minimal (ideally zero) reflection

back into the active zones.

15One of the first such algorithms is Constrained Transport, developed by Evans & Hawley
(1988).
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And so now finally the last question. Con-

sider a 2-D grid with two layers of bound-

ary zones as depicted in Fig. 4.5a and the

inset. Suppose that the boundary condi-

tion is applied only to the perpendicular

(to the boundary normal) components of

the magnetic induction (light arrows in

the inset). Show that the parallel compo-

nents can then be set by using the numer-

ical divergence (Eq. 4.44) and imposing

the solenoidal condition.

Additional commentary: All these ideas can be applied straight-forwardly (but cau-

tiously!) to a 3-D grid where, in particular to part e), there are now two components

of the magnetic induction perpendicular to each surface normal.

4.9 Write down the ideal MHD equations in primitive form. Thus, you seek a set of

evolution equations, most if not all are already derived and/or written down in the

text, for the primitive variables ρ, p, �v, and �B for which no constitutive equations

are required for closure.

4.10∗ The cross helicity density, h×, is defined as,

h× = �v · �B,
where �v and �B are the usual velocity and magnetic induction vector fields. It is a

measure of the linkages between the vorticity (�ω = ∇ × �v; see Problems 4.3 and

1.6) and the magnetic induction.

a) Show that for ideal MHD, the time evolution for h× is given by,

∂h×
∂t

+∇ · (h×�v) = ∇ ·
(
v2

2
− γε

)
�B, (4.46)

where ε is the specific internal energy defined by Eq. (1.31) in 1.4.

b) From Eq. (4.46) and the Theorem of hydrodynamics (Theorem 1.1), under

what circumstances is the cross helicity, H× =
∫
V
h×dV , a conserved quantity?
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We have to learn again that science without contact with experiments

is an enterprise which is likely to go completely astray into imaginary

conjectures.†

Hannes Alfvén (1908–1995)
father of MHD

We open this chapter with two changes of note. First, from this point for-

ward we shall use the “abbreviated Leibniz notation” for partial derivatives,

namely,

∂ξ ≡ ∂

∂ξ
; ∂ξη ≡ ∂2

∂η∂ξ
; etc.

Second, our discussion in this and Chap. 6 shall be limited to 1 1
2 -D, first defined at

the beginning of 2.2. Thus, while quantities may vary only in the x-direction, say

(and thus ∂y = ∂z = 0; that’s the ‘1-D’ part), transverse vector components (e.g.,

vy, Bz, etc.) can, in general, be non-zero (that’s the extra ‘ 12 -D’ bit).

With that, let us proceed . . .

In one dimension, the ideal MHD equations simplify sufficiently for us to make some

significant analytic progress. In particular, we’ll be able to identify the nature of

the waves governing the physics of an MHD system and use this insight to obtain

quantitative solutions. To begin with, we see that in 1-D we have only two com-

ponents of the magnetic induction to worry about. For if in Cartesian coordinates,

quantities vary in the x-direction only, then the x-component of the ideal induction

equation becomes:

∂tBx = ∂y(vxBy − vyBx)− ∂z(vzBx − vxBz) = 0,

and Bx is constant in time. Further, the solenoidal condition requires:

∇ · �B = ∂xBx = 0,

and Bx is also constant in space. Thus, Bx is constant everywhere for all time and

we need only concern ourselves with the y- and z-components of the ideal induction

equation. In our discussions, the fact that Bx = constant will be used frequently as

Bx is passed back and forth across the differential operators ∂t and ∂x as needed.

†From Evolution of the Solar System with G. Arrhenius, 1976, p. 257 (NASA SP; 345).

123
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5.1 Primitive and conservative equations of MHD

As can be readily derived from either Eq. Set 6 or 7 or indeed from the set of 3-D

primitive equations in Problem 4.9, the 1-D (∂y = ∂z = 0) primitive equations of

MHD in Cartesian geometry with φ = 0 are:

Equation Set 8: Primitive form

∂tρ+ vx∂xρ+ ρ∂xvx = 0; (5.1)

∂tp+ vx∂xp+ γp∂xvx = 0; (5.2)

∂tvx + vx∂xvx +
1

ρ
∂xp+

By

μ0ρ
∂xBy +

Bz

μ0ρ
∂xBz = 0; (5.3)

∂tvy + vx∂xvy − Bx

μ0ρ
∂xBy = 0; (5.4)

∂tvz + vx∂xvz − Bx

μ0ρ
∂xBz = 0; (5.5)

∂tBy + vx∂xBy +By ∂xvx −Bx∂xvy = 0; (5.6)

∂tBz + vx∂xBz +Bz ∂xvx −Bx∂xvz = 0, (5.7)

where no constitutive equations are required to close the system (Problem 5.1).

These seven equations may be written more compactly as:

∂t|qp〉+ Jp∂x|qp〉 = 0, (5.8)

where the ket of primitive variables, |qp〉, and the Jacobian matrix for the primitive

variables, Jp, are given by:

|qp〉 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ

p

vx
vy
vz
By

Bz

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; Jp =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vx 0 ρ 0 0 0 0

0 vx γp 0 0 0 0

0 1/ρ vx 0 0 By/μ0ρ Bz/μ0ρ

0 0 0 vx 0 −Bx/μ0ρ 0

0 0 0 0 vx 0 −Bx/μ0ρ

0 0 By −Bx 0 vx 0

0 0 Bz 0 −Bx 0 vx

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.9)

Similarly, from Eq. Set 7, one can write down the 1-D “conservative” equations

of MHD in Cartesian geometry:



Clarke 9781009381475 .tex 125 2/04/2025

125 Primitive and conservative equations of MHD

Equation Set 9: Conservative form

∂tρ+ ∂x(ρvx) = 0; (5.10)

∂te
∗
T + ∂x

(
vx(e

∗
T + p∗)− Bx

μ0
�v · �B

)
= 0; (5.11)

∂tsx + ∂x(ρv
2
x + p∗) = 0; (5.12)

∂tsy + ∂x

(
ρvxvy − BxBy

μ0

)
= 0; (5.13)

∂tsz + ∂x

(
ρvxvz − BxBz

μ0

)
= 0; (5.14)

∂tBy + ∂x(vxBy − vyBx) = 0; (5.15)

∂tBz + ∂x(vxBz − vzBx) = 0, (5.16)

where the constitutive equations:

e∗T =
1

2
ρv2 +

p

γ − 1
+
B2

2μ0
; p∗ = p+

B2

2μ0
; si = ρvi; B2 =

∑

i

B2
i ,

i = x, y, z, are required to close the equation set. Note that in the conservative

equations, all pressures are p∗, the sum of thermal and magnetic pressures (Eq.

4.26), as opposed to p (the thermal pressure alone) for the primitive equations.

The conservative equations can be written in their most compact form as (cf.,

Eq. 4.31):

∂t|qc〉+ ∂x|f〉 = 0, (5.17)

where |qc〉 and |f〉 are the kets of conservative variables and flux densities respec-

tively:

|qc〉 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ

e∗T
sx
sy
sz
By

Bz

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; |f〉 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρvx
vx(e

∗
T + p∗)−Bx(�v · �B)/μ0

ρv2x + p∗

ρvxvy −BxBy/μ0

ρvxvz −BxBz/μ0

vxBy − vyBx

vxBz − vzBx

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.18)

In terms of the Jacobian matrix for the conservative variables, Jc, Eq. (5.17) is

written:

∂t|qc〉+ Jc ∂x|qc〉 = 0, (5.19)

where the (i, j)th element of Jc is given by Eq. (2.20), and repeated here for conve-

nience:

Jij = ∂qjfi. (5.20)

In order to evaluate these elements, it is first necessary to express all flux densities in
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terms of the conserved variables, using the constitutive equations above. Performing

the straight-forward, though tedious manipulations, we get (Problem 5.2):

Jc =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0 0

∂ρf2 γ
sx
ρ

∂sxf2 ∂syf2 ∂szf2 ∂Byf2 ∂Bzf2

∂ρf3 γ − 1 (3 − γ)
sx
ρ

(1− γ)
sy
ρ

(1− γ)
sz
ρ

∂Byf3 ∂Bzf3

−sxsy/ρ2 0 sy/ρ sx/ρ 0 −Bx/μ0 0

−sxsz/ρ2 0 sz/ρ 0 sx/ρ 0 −Bx/μ0

∂ρf6 0 By/ρ −Bx/ρ 0 sx/ρ 0

∂ρf7 0 Bz/ρ 0 −Bx/ρ 0 sx/ρ

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.21)

where:

∂ρf2 = −γ sxe
∗
T

ρ2
+ (γ − 1)

sxs
2

ρ3
− (2 − γ)

sxB
2

2μ0ρ2
+

Bx

μ0ρ2
�s · �B;

∂sxf2 = γ
e∗T
ρ

− (γ − 1)
2s2x + s2

2ρ2
+ (2− γ)

B2

2μ0ρ
− B2

x

μ0ρ
;

∂syf2 = −(γ − 1)
sxsy
ρ2

− BxBy

μ0ρ
;

∂szf2 = −(γ − 1)
sxsz
ρ2

− BxBz

μ0ρ
;

∂Byf2 = (2− γ)
sxBy

ρ
− syBx

ρ
;

∂Bzf2 = (2− γ)
sxBz

ρ
− szBx

ρ
;

∂ρf3 = −s
2
x

ρ2
+
γ − 1

2

v2

ρ2
;

∂Byf3 = (2− γ)
By

μ0
;

∂Bzf3 = (2− γ)
Bz

μ0
;

∂ρf6 = − 1

ρ2
(sxBy − syBx);

∂ρf7 = − 1

ρ2
(sxBz − szBx).

Evidently, the Jacobian for the conservative equation (Eq. 5.21) is rather more

complicated than that for the primitive equation (Eq. 5.9) and thus used only when

absolutely needed.
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5.2 MHD wave families

In 3.5.3, we introduced the ideas of wave families. As we saw, the three independent

equations contained in Eq. (3.21) led to three wave families for 1-D HD. Thus, with

the seven independent equations contained in Eq. (5.8), we might expect seven

wave families to emerge for 1-D MHD, and this is exactly what happens. Our first

task, then, is to identify and describe these wave families. For now, the waves we

seek will be linear, and thus use of the simpler primitive equations – valid only for

smooth-flow – is justified.

As we did in 3.5.3, start by finding the eigenvalues of the Jacobian, Jp:
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

vx − u 0 ρ 0 0 0 0

0 vx − u γp 0 0 0 0

0 1/ρ vx − u 0 0 By/μ0ρ Bz/μ0ρ

0 0 0 vx − u 0 −Bx/μ0ρ 0

0 0 0 0 vx − u 0 −Bx/μ0ρ

0 0 By −Bx 0 vx − u 0

0 0 Bz 0 −Bx 0 vx − u

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

−(u− vx)
(
(u − vx)

2 − a2s
)(
(u− vx)

2 − a2x
)(
(u− vx)

2 − a2f
)
= 0, (5.22)

where:

a2s =
1

2

(
a2 + c2s −

√(
a2 + c2s

)2 − 4a2xc
2
s

)
; (5.23)

a2x =
B2

x

μ0ρ
; (5.24)

a2f =
1

2

(
a2 + c2s +

√(
a2 + c2s

)2 − 4a2xc
2
s

)
, (5.25)

and where:

a2 =
B2

μ0ρ
=

B2
x +B2

y +B2
z

μ0ρ
; c2s =

γp

ρ
, (5.26)

with details left to Problem 5.3. Here, af,s are the fast and slow magnetosonic speed,

a is the Alfvén speed with ax being the x-component, and cs is, as usual, the ordinary

sound speed.

The Alfvén speed is named for the Swedish physicist, Hannes Alfvén (1908–

1995; page ii)1 who, among other accomplishments, was the first (with N. Herlofson)

in 1950 to detect and identify non-thermal (synchrotron) radiation from the cosmos,

was the first in 1963 to predict the large-scale filamentary nature of the universe,

and is universally regarded as the inventor and father of MHD for which he was

awarded the 1970 Nobel Prize in physics.

1See www.ap.smu.ca/~dclarke/AfciMHD/HA_bio_Peratt.pdf for Anthony Peratt’s short biog-
raphy of Alfvén and www.ap.smu.ca/~dclarke/AfciMHD/HA_centennial.pdf for Bibhas De’s pic-
torial prepared on the occasion of Alfvén’s centenary.
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When his theory predicting the existence of what are now known as Alfvén

waves was first published (Alfvén, 1942), it was received with considerable criti-

cism and ridicule. This was the first time anyone ever suggested that electromag-

netic waves of any sort could be supported by a conducting medium – in this

case a plasma – and exactly opposite to what had been presumed “obvious” since

Maxwell, namely that all conductors attenuate electromagnetic waves within a skin

depth. Comments such as ‘If such a thing were possible, Maxwell himself would have

discovered it!’ were often how Alfvén’s ideas were dismissed. The turning point is

said to have occurred during one of Alfvén’s lectures at the University of Chicago

in the late 1950s where none other than Enrico Fermi was in attendance. Fermi is

said to have uttered audibly at the end of Alfvén’s presentation: ‘Of course! ’, after

which – so continues the story – everyone was saying ‘Of course! ’ Very soon there-

after, Alfvén waves were indisputably created in the lab, and MHD quickly gained

wide acceptance. Relatively speaking, then, MHD is a rather new branch of physics.

The seven eigenvalues of the 1-D MHD equations – the characteristic speeds –

are given by the roots of Eq. (5.22):2

u1 = vx − af ; u2 = vx − ax; u3 = vx − as; u4 = vx;

u5 = vx + as; u6 = vx + ax; u7 = vx + af ,
(5.27)

and since these are real (and, as we’ll see in 6.2.1, the eigenkets are linearly inde-

pendent from each other), the system of 1-D MHD equations is hyperbolic (App.

C). However, unlike the HD equations ( 3.5), the eigenvalues of the 1-D MHD equa-

tions can be degenerate (e.g., in certain cases, it’s possible for a = ax = cs or

af = ax = as) and, as such, the 1-D MHD equations are not strictly hyperbolic. As

we’ll see, this has profound consequences for both MHD shocks and rarefaction fans

and will introduce a myriad of algebraic headaches along the way. More on this in

due course.

Because the equations are hyperbolic (albeit not strictly), the seven eigenvalues

represent seven wave speeds each identifying an MHD wave family with an asso-

ciated characteristic path. Following the convention introduced in 3.5.3, the seven

wave families in MHD are referred to as the i-family, i = 1, . . . , 7, with associated

characteristic paths C−
f , C−

x , C−
s , C0, C+

s , C+
x , and C+

f illustrated in the space-time

diagram of Fig. 5.1.

It is left to Problem 5.5 to show that:

as ≤ cs ≤ af ;

as ≤ a ≤ af ;

as ≤ ax ≤ af ,

(5.28)

and thus, the wave speeds listed in Eq. (5.27) are in ascending order from the most

negative to the most positive, justifying the order in which the characteristic paths

are arranged in Fig. 5.1. Note the ≤ signs (rather than <) in Ineq. (5.28). These

portend the possible degeneracy of the eigenvalues, and the “not-strictly hyperbolic”

2We shall postpone listing the eigenkets until 6.2 when we actually need them.
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Figure 5.1. A space-time diagram illustrating the seven MHD wave families
labelled as described in the text. From arbitrary left, L, and right, R, states,
six piecewise constant intermediate states, 1 – 6 , open up between neighbouring
characteristic paths. The subscripts f, x, and s indicate the fast, Alfvén, and slow
paths respectively, superscripts −, + indicate left-leaning and right-leaning paths
respectively, while C0 indicates the entropy characteristic path.

nature indicated above. Among other things, degenerate eigenvalues will mean one

or more of the characteristic paths actually lie on top of each other on a space-

time diagram, and careful consideration of these cases will have to be made when

it comes time to solve the 1-D MHD equations in 5.3.5 and 6.2.2.

Referring again to Fig. 5.1, the seven MHD wave families come in four distinct

types. Families 1 and 7 are fast magnetosonic waves, families 2 and 6 are Alfvén

waves, families 3 and 5 are slow magnetosonic waves, and family 4 is an entropy

wave, the one wave type shared by the HD and MHD cases. Families 1, 2, and

3 are left-moving waves (with left-leaning, −, characteristic paths), while families

5, 6, and 7 are right-moving waves (with right-leaning, +, characteristic paths).

Recall that the designations “left” and “right” are with respect to the co-moving

(Lagrangian) frame of the fluid. Family 4 is the entropy wave co-moving with the

fluid, and thus neither left- nor right-moving.

At times, we will find it useful to consider how the MHD equations reduce to

the ordinary HD case as �B → 0, and for this we need a convenient comparator. The

most common in use is the so-called plasma-beta, defined as the ratio of thermal to

magnetic pressures:

β ≡ 2μ0p

B2
. (5.29)

Magnetically dominated MHD is characterised by β < 1 while thermally dominated

MHD is characterised by β > 1 and, as β → ∞, the MHD system becomes hy-

drodynamical. Interestingly, many systems exhibit a qualitative transition in their

properties across a relatively narrow range of β, typically within a factor of a few

on either side of unity, while outside this transition region, changing the relative

importance of the magnetic induction – even by orders of magnitude – can have

quantitatively minor effects only. The numerical simulation of astrophysical jets

(e.g., Fig. 2.16) is a prime example. Thermally dominated jets with β > 5, say, are

qualitatively indistinguishable even for β � 1, while magnetically dominated jets
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with β < 1
5 , say, are qualitatively indistinguishable even for β � 1. Yet, with all

other parameters the same (density, flow speed, etc.), thermally and magnetically

dominated jets look nothing like each other.3

In our discussions, however, it will be more useful to have a comparator based

on the ratio of Alfvén (and later on, magnetosonic) to sound speeds that goes to 1

as the speeds become degenerate, and goes to 0 as B → 0. For this, we define the

MHD-alpha,

α ≡ B2

μ0γp
. (5.30)

Evidently, 6
5 ≤ αβ = 2/γ ≤ 3

2 , and the two measures are each other’s reciprocal to

within a factor of order unity.

In the context of wave families, as α → 0, we’ll see that the fast wave in

MHD becomes an ordinary sound wave in HD, while both the slow and Alfvén

waves become degenerate with the entropy wave. Alfvén waves have no analogue in

ordinary HD. Again as we’ll see, they are characterised by jumps in the transverse

components of �v and �B, and are thus often referred to as shear Alfvén waves. On

the other hand, fast and slow waves (wave families 1, 7 and 3, 5 in MHD) bear some

resemblance to wave families 1 and 3 in HD. While they have both a longitudinal

and transverse character, they can develop into either discontinuous shock waves

or smooth-flow rarefaction fans. Thus, one speaks of fast and slow shocks and fast

and slow rarefaction fans, all studied in depth in 5.3 and 6.2.

Before that, however, we need more insight into the nature of the simple (linear)

waves in MHD. In the next two subsections, we first examine Alfvén waves and then

fast and slow magnetosonic waves by isolating and studying the “kernels of physics”

within the full set of 1-D MHD equations responsible for each wave.

5.2.1 (Shear) Alfvén waves

Mathematically, shear Alfvén waves pose the simplest wave problem in all of fluid

dynamics, simpler even than that of ordinary sound waves studied in 2.1. This

affords us an opportunity to review the methodology used so far to analyse the

wave properties of (M)HD with a minimum of algebraic distraction, while at the

same time revealing much about this important type of wave. As mentioned, it was

the discovery of Alfvén waves in the lab that brought MHD into the mainstream of

physics.

In 2.1.1, we identified and studied sound waves by examining a subset of the

full hydrodynamical equations (Euler and pressure equations) and, in that case, the

linearised versions. This allowed us to derive a wave equation, determine the wave

propagation speed, deduce which variables are oscillating (vx and p), and conclude

that the waves are longitudinal. In 2.1.2, we re-examined the Euler and pressure

equations in terms of their eigenvalues and eigenkets, which in turn allowed us to

write down very specific expressions for how wave forms are transmitted in a 1-D

3Compare Clarke et al. (1986, magnetised jet) with Clarke et al. (1989, thermal jet) which
differ only in their plasma-beta.
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system. Finally, in 3.2, we exploited the inherent symmetry of the pressure and

Euler’s equations and identified both the Riemann invariants and their characteristic

paths for 1-D HD in general, and sound waves in particular. We shall revisit each

of these methodologies here for Alfvén waves.

Wave equation approach

Starting with the conservative equations4 (5.13) and (5.15), we assume that each of

ρ, vx, and Bx are constant. Dividing Eq. (5.13) through by ρ, Eq. (5.15) through

by
√
ρ, and setting ax = Bx/

√
μ0ρ (Eq. 5.24), ay = By/

√
μ0ρ, they become:

∂tvy + vx∂xvy − ax∂xay = 0; (5.31)

∂tay + vx∂xay − ax∂xvy = 0, (5.32)

which, in the co-moving frame of the fluid (vx = 0), give:

∂tvy = ax∂xay and ∂tay = ax∂xvy.

These combine to yield a wave equation for each of vy and ay:

∂2t vy = a2x∂
2
xvy and ∂2t ay = a2x∂

2
xay. (5.33)

These are Alfvén waves causing oscillations in both vy (transporting kinetic energy

density 1
2ρv

2
y) and ay (transporting potential energy density 1

2ρa
2
y = B2

y/2μ0). Since

the oscillating quantities are the transverse components of the velocity and the

magnetic induction, Alfvén waves are transverse (whence the designation shear),

as opposed to sound waves which are longitudinal (since their oscillating quantities

are vx and p; 2.1.1). Note further that in deriving Eq. (5.33), there was no need to

linearise Eq. (5.31) and (5.32) as was necessary for ordinary sound waves (Eq. 2.9).

Thus, Alfvén waves are linear and can have arbitrary amplitude without developing

into non-linear waves such as shocks and rarefactions.

Shear Alfvén waves have no analogue in a non-magnetised fluid. As the mag-

netic induction is reduced to zero, these waves simply disappear; they don’t, for

example, “morph” into sound waves. As transverse waves propagating along the

prevailing lines of magnetic induction, they are analogous to vibrations propagating

along a wire under tension; no wire, no waves. Like a tension wire, lines of induc-

tion resist being bent, and this affords the fluid a restorative capacity to transverse

perturbations that does not exist in a non-magnetised medium.

Eigenvalue (normal mode) approach

Writing Eq. (5.31) and (5.32) in matrix form, we have,

∂t|q(x, t)〉+ J ∂x|q(x, t)〉 = 0, (5.34)

4Unlike sound waves, Alfvén waves result in discontinuous jumps in the affected flow variables
(transverse components of �v and �B), and thus we start with the conservative equations which
admit such solutions. However, if you follow the math carefully, you will see that in the end it does
not matter in this case whether we start with the conservative or primitive form of the equations.
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where,

|q(x, t)〉 =

[
vy
ay

]
and J =

[
vx −ax
−ax vx

]
,

and where again, J is the Jacobian matrix. As we did in 2.1.2, we look for normal

mode solutions by setting |q(x, t)〉 = |q̃(ξ)〉 with ξ = x− ut, and then note that,

∂t|q̃(ξ)〉 = (∂tξ)|q̃ ′〉 = −u|q̃ ′〉 and ∂x|q̃(ξ)〉 = (∂xξ)|q̃ ′〉 = |q̃ ′〉,
where ′ indicates differentiation with respect to ξ. Thus, Eq. (5.34) becomes:

J|q̃ ′〉 = u|q̃ ′〉, (5.35)

the same eigen-equation as Eq. (2.23), whose eigenvalues are given by:
∣∣∣∣
vx − u −ax
−ax vx − u

∣∣∣∣ = 0 ⇒ (vx − u)− a2x = 0 ⇒ u± = vx ± ax,

the same Alfvén characteristic speeds found in Eq. (5.27) and identified (in the

co-moving frame) by Eq. (5.33). These correspond to left- and right-moving Alfvén

waves moving at speed ax within a fluid moving at speed vx relative to a “lab

frame”.

The eigenkets tell us how the affected variables vary across the wave. Starting

with the left-moving wave, we find |r−〉 by solving:

(J− u−I)|r−〉 = 0 ⇒
[
ax −ax
−ax ax

][
r−1
r−2

]
= 0

⇒ axr
−
1 − axr

−
2 = 0 ⇒ r−2 = r−1 ⇒ |r−〉 = r−1

[
1

1

]
,

where r−1 is a normalisation constant chosen for convenience (e.g., r−1 = 1/
√
2).

Similarly, for the right-moving wave,

|r+〉 = r+2

[−1

1

]
,

where r+2 is the normalisation constant.

Since |q̃ ′〉 are proportional to the eigenkets (Eq. 5.35), we have for the left- and

right-moving waves:

|q̃−′〉 = w−′(ξ−)|r−〉 and |q̃+′〉 = w+′(ξ+)|r+〉,
where w−′ and w+′ are the proportionality functions (expressed as derivatives for

convenience; cf. 2.1.2), which are functions of ξ− = x − u−t and ξ+ = x − u+t

respectively. These integrate trivially (because |r−〉 and |r+〉 are independent of ξ±)
to:

|q̃−〉 = w−(ξ−)|r−〉 and |q̃+〉 = w+(ξ+)|r+〉,
and the complete solution is just their sum:

|q(x, t)〉 = |q̃−〉+ |q̃+〉 = w−(ξ−)|r−〉+ w+(ξ+)|r+〉.
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To find the functions w− and w+, we apply initial conditions, namely |q(x, 0)〉 =

|q̃(x)〉 at t = 0. Thus,

|q̃(x)〉 =

[
ṽy(x)

ãy(x)

]
= w−(x)

[
1

1

]
+ w+(x)

[−1

1

]

⇒ w−(x) =
1

2

(
ãy(x) + ṽy(x)

)
and w+(x) =

1

2

(
ãy(x) − ṽy(x)

)

⇒ |q(x, t)〉 =
[
vy(x, t)

ay(x, t)

]
=

1

2

[
ṽy(ξ

−) + ṽy(ξ
+) + ãy(ξ

−)− ãy(ξ
+)

ãy(ξ
−) + ãy(ξ

+) + ṽy(ξ
−)− ṽy(ξ

+)

]
. (5.36)

This solution is very similar to Eq. (2.30) for linearised HD (sound) waves and,

other than variable name changes, is essentially a repeat of its derivation. As shown

in Problem 5.11, Eq. (5.36) can also be obtained using the formalism developed in

3.5.2 and, in particular, from Eq. (3.28).

To give a concrete example, consider a uniform �B in the x-direction such that

Bx/
√
μ0 = 1 in a uniform, quiescent medium where ρ = 1 (all units arbitrary).

Thus, the x-component of the Alfvén speed is ax = Bx/
√
μ0ρ = 1. Let the system

be disturbed by a “wind shear” pulse of magnitude vy = 1 and width Δx = 1

centred at the origin. For By = 0 at t = 0, the initial conditions are thus:

ṽy(x) =

{
1, −0.5 ≤ x ≤ 0.5;

0, elsewhere,
and ãy(x) =

B̃y√
μ0ρ

= 0, (5.37)

as depicted in the top panels of Fig. 5.2. Note that this is not a “perturbation”,

but rather a “wollop” (since vy = ax) which is fine for Alfvén waves which remain

linear regardless of amplitude.

To find profiles for vy and ay at t = 0.3, say, evaluate Eq. (5.36) at ξ− = x+0.3

(vx = 0) and ξ+ = x− 0.3 using the functional form for ṽy and ãy in Eq. (5.37):

ṽy(x+ 0.3) =

{
1, −0.5 ≤ x+ 0.3 ≤ 0.5;

0, elsewhere
=

{
1, −0.8 ≤ x ≤ 0.2;

0, elsewhere,

ṽy(x− 0.3) =

{
1, −0.5 ≤ x− 0.3 ≤ 0.5;

0, elsewhere
=

{
1, −0.2 ≤ x ≤ 0.8;

0, elsewhere.

Substituting these along with ãy(ξ
−) = ãy(ξ

+) = 0 into Eq. (5.36), we get:

vy(x, 0.3) =
1

2

[{
1, −0.8 ≤ x ≤ 0.2;

0, elsewhere
+

{
1, −0.2 ≤ x ≤ 0.8;

0, elsewhere

]

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
2 , −0.8 ≤ x < −0.2;

1, −0.2 ≤ x < 0.2;
1
2 , 0.2 ≤ x ≤ 0.8;

0, elsewhere,

;
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Figure 5.2. Left two columns: Profiles of vy(x, t) and ay(x, t) at t = 0 (top),
t = 0.3 (middle), and t = 0.6 (bottom) after a uniform medium with �B/

√
μ0 = x̂,

ρ = 1 (arbitrary units) is disturbed by a velocity shear given by Eq. (5.37). Ar-
rows indicate direction of motion of the discontinuities. Right column: Distortion
of lines of magnetic induction by the passage of the Alfvén wave. Grey bands
indicate where vy = 1 (dark), vy = 0.5 (light) and vy = 0 (white).

ay(x, 0.3) =
1

2

[{
1, −0.8 ≤ x ≤ 0.2;

0, elsewhere
−
{
1, −0.2 ≤ x ≤ 0.8;

0, elsewhere

]

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
2 , −0.8 ≤ x < −0.2;

0, −0.2 ≤ x < 0.2;

− 1
2 , 0.2 ≤ x ≤ 0.8;

0, elsewhere.

These profiles are shown in the second row of Fig. 5.2. It is left as an exercise to

verify the profiles at t = 0.6 in the bottom row of the figure.

The right column of Fig. 5.2 provides an intuition boost of why oppositely di-

rected pulses of ay = By/
√
μ0ρ should have opposite signs. At first glance, this is a

necessary consequence of magnetic flux conservation, but this still begs the question:

‘Which direction gets the negative pulse?’ As velocity shear bends the axial mag-

netic induction, a y-component in �B develops. For the line of induction to remain

contiguous, By must be positive and point upward across the left-propagating wave,

and negative and point downward across the right-propagating wave. Note that the

solution after t = 0.6 is simply the two left- and right-moving pulses separating ever

further apart, with the region in between once again quiescent (vy = 0) with a purely

axial magnetic induction, �B/
√
μ0 = x̂. The effect of the Alfvén wave’s passage is

simply to have shifted all lines of induction upwards by a distance Δx vy/ax.
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Characteristic approach (optional)

Finally, let us examine shear Alfvén waves in terms of their characteristics and,

as described in 3.3, determine their evolution using the Method of Characteristics

(MoC). As this is one of only a few problems where the MoC can be used to obtain an

exact solution, it is a good problem to examine. Here, we shall relax the requirement

that ρ be constant (but still require vx = constant), and start again with Eq. (5.4)

and (5.6), this time in the form:5

∂tvy + vx∂xvy − 1√
μ0ρ

ax ∂xBy = 0; (5.38)

1√
μ0ρ

∂tBy + vx
1√
μ0ρ

∂xBy − ax ∂xvy = 0, (5.39)

where, as before, ax = Bx/
√
μ0ρ and Eq. (5.39) has been divided by

√
μ0ρ to give

it the same units as Eq. (5.38). Adding and subtracting Eq. (5.38) and (5.39) then

yields:

∂tvy + (vx − ax) ∂xvy +
1√
μ0ρ

[
∂tBy + (vx − ax) ∂xBy

]
= 0;

∂tvy + (vx + ax) ∂xvy − 1√
μ0ρ

[
∂tBy + (vx + ax) ∂xBy

]
= 0,

which can be written more compactly as:

D±
t vy ∓

1√
μ0ρ

D±
t By = 0, (5.40)

where,
D±

t = ∂t + (vx ± ax) ∂x,

is the Lagrangian derivative, first introduced in 3.1. Equations (5.40) aren’t quite in

the same form as previous characteristic equations (e.g., Eq. 3.13). Having relaxed

the requirement that ρ be constant, the LHS of Eq. (5.40) is not a perfect derivative,

and thus these equations are not in the form:

D±
t A± = 0,

which would clearly identify the Riemann invariants,A±, as explicit functions of vy,
By, and possibly ρ. Nevertheless, Eq. (5.40) still identify two characteristic speeds,

namely c± = vx±ax corresponding to oppositely directed Alfvén waves, and we can

still proceed with the MoC ( 3.3) without (yet) having Riemann invariants explicitly

identified.

The Alfvén characteristic paths, C±, are shown in Fig. 5.3a. This two-charac-

teristic system is considerably simpler than the three-characteristic hydrodynamical

system described in 3.3 not only because there is one less characteristic, but also

because the problem remains linear regardless of the amplitude of the waves.

For small enough time steps, or for problems where the profiles for vy and

By are piecewise constant and thus where the length of the time step does not

5Note that an entirely analogous development can be followed for vz and Bz . Indeed, Alfvén
waves can operate independently in the y- and z-directions.
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Figure 5.3. a) Two Alfvén waves are launched from a common point and prop-
agate in opposite directions at characteristic speeds c± tracing out characteristic
paths C± in a space-time diagram. As drawn, 0 < vx < ax. b) Two Alfvén char-
acteristic paths from different points at t = 0 intersect at a common event at
t = t∗. Using the MoC, the advanced values v∗y and B∗

y can be determined from
the values of vy , By, and ρ at the path footprints.

matter, we can replace the differential Eq. (5.40) with the corresponding forward-

differenced equations between the advanced-time values of vy and By (v∗y and B∗
y),

and the present values of vy and By at the bases, or footprints of the characteristic

paths, C± (v±y and B±
y ; see Fig. 5.3b). This yields two algebraic equations:

v∗y − v+y − 1√
μ0ρ+

(B∗
y −B+

y ) = 0; (5.41)

v∗y − v−y +
1√
μ0ρ−

(B∗
y −B−

y ) = 0. (5.42)

It is left to Problem 5.14 to show that the appropriate values for ρ to use in these

differenced equations are indeed the values at the path footprints, namely ρ±.
Upon rearranging Eq. (5.41) and (5.42), we find:

v∗y +
B∗

y

μ0

√
ρ−

= v−y +
B−

y√
μ0ρ−

and v∗y − B∗
y√

μ0ρ+
= v+y − B+

y√
μ0ρ+

,

and thus, we make the small leap of logic to assert that:

A− = vy +
By√
μ0ρ−

and A+ = vy − By√
μ0ρ+

, (5.43)

are constant along C− and C+ respectively; that is, A± are the Riemann invariants

for Alfvén waves.

Next, solving Eq. (5.41) and (5.42) directly for v∗y and B∗
y (the advanced values)

yields:

v∗y =
1√

ρ− +
√
ρ+

(√
ρ−v−y +

√
ρ+v+y +

B−
y −B+

y√
μ0

)
; (5.44)

B∗
y =

√
ρ−ρ+√

ρ− +
√
ρ+

[
B−

y√
ρ−

+
B+

y√
ρ+

+
√
μ0

(
v−y − v+y

)
]
. (5.45)

In the case where v−y = v+y = v0 and B−
y = B+

y = B0 (i.e., footprints for both
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Figure 5.4. The MoC as applied to the same shear Alfvén wave problem as
depicted in Fig. 5.2. The left panels show the MoC solution of the left- and right-
moving Alfvén waves from t = 0 to t = 0.3 after they have moved a distance 0.3
in arbitrary units, whereas the right panels show the MoC solution from t = 0
to t = 0.6 after moving a distance 0.6. Heavy arrows on the bottom panels show
the direction of motion of each jump. See text for further explanation.

characteristic paths are in the same state), these equations reduce to:

v∗y = v0; B∗
y = B0, (5.46)

and neither vy nor By changes, as expected. When ρ− = ρ+ = ρ, Eq. (5.44) and

(5.45) reduce to:

v∗y =
1

2

[
v−y + v+y +

1√
μ0ρ

(B−
y −B+

y )

]
; (5.47)

B∗
y =

1

2

[
B−

y +B+
y +

√
μ0ρ(v

−
y − v+y )

]
, (5.48)

as one would expect from Eq. (5.36).

To exemplify the MoC, we revisit the problem portrayed in Fig. 5.2 in units

where μ0 = 1. Both top panels of Fig. 5.4 echo the initial conditions of the problem,

while the middle panels are space-time diagrams illustrating characteristic paths

originating at t = 0 constructed so that pairs of C± meet at two designated times in

the future. The left half of Fig. 5.4 corresponds to t = 0.3 after an Alfvén wave has

propagated a distance of 0.3 (all in arbitrary units), while the right half corresponds

to t = 0.6. Note that all paths have the same slope (to within a minus sign), since
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ax = 1 everywhere. As described below, the bottom panels of the figure illustrate

the profiles of the variables after the indicated times as determined by the MoC.

In the middle panels of Fig. 5.4, the footprints of red characteristic paths lie

within the original pulse in vy (−0.5 < x < 0.5) and carry with them information

that at t = 0, vy = 1 and By = 0. The footprints of black characteristic paths

lie outside this domain (|x| > 0.5) and carry with them information that both vy
and By are zero. By t = 0.3 (bottom left panel of Fig. 5.4), the distance between

footprints of each pair, C±, arriving at the same point is 0.6 (less than the width

of the original pulse in vy) and there exist points at t = 0.3 – those between

points ‘c’ and ‘d’ in the left-middle panel – for which both path footprints lie within

−0.5 < x < 0.5. Since characteristics propagate along their paths with the Alfvén

speed (Eq. 5.26), point ‘c’ is located at axt = 0.3 right of the left side of the original

pulse (i.e., at −0.2), and point ‘d’ is at 0.2. Thus, characteristic paths intersecting

at points within −0.2 < x < 0.2 all transmit information that vy = 1, By = 0 and,

from Eq. (5.46),

vy(|x| < 0.2, t = 0.3) = 1 and By(|x| < 0.2, t = 0.3) = 0,

a region of width 0.4 at t = 0.3 in which the profiles of the original pulse are

preserved (bottom left panel of Fig. 5.4). As time progresses, this domain narrows

until by t = 0.5 (time for an Alfvén wave to move half the original width of the

pulse in vy), it is “squeezed out” of existence, after which no points retain the initial

profiles.

Returning to the left-middle panel, both characteristic paths of points left of

point ‘a’ and right of point ‘f’ have their footprints outside the region −0.5 < x <

0.5, and both carry information that vy = 0 and By = 0. At t = 0.3, point ‘a’ is

located at x = −0.5− ax(0.3) = −0.8 and point ‘f’ is located at x = 0.8 and thus,

again by Eq. (5.46), we have,

vy(|x| > 0.8, t = 0.3) = 0 and By(|x| > 0.8, t = 0.3) = 0.

For points between points ‘a’ and ‘c’ (e.g., point ‘b’), the footprint of C+ lies

outside −0.5 < x < 0.5 (black) while the footprint of C− lies within (red). Thus,

the information these points receive is v+y = 0, v−y = 1, and B±
y = 0, and Eq. (5.47)

and (5.48) yield:

vy(−0.8 < x < −0.2, t = 0.3) =
1

2
and By(−0.8 < x < −0.2, t = 0.3) =

1

2
.

At t = 0.3, this region has a width of 0.6 and represents a new state that manifests

as a “shelf” of height 1
2 on the left side of the original vy profile, and a pulse in By

of height 1
2 (bottom panels of Fig. 5.4). As time progresses, this shelf widens (heavy

arrows in the bottom panels indicate direction of motion of each jump) until t = 0.5

when its width reaches its steady-state value of 1, the same as the original pulse.

Similarly, for points between points ‘d’ and ‘f’ (e.g., point ‘e’), the footprint

of C+ lies inside −0.5 < x < 0.5 while the footprint of C− lies without. Thus, the

information these points receive is v+y = 1, v−y = 0, and B±
y = 0, and Eq. (5.47)
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and (5.48) yield:

vy(0.2 < x < 0.8, t = 0.3) =
1

2
and By(0.2 < x < 0.8, t = 0.3) = −1

2
.

At t = 0.3, this region also has a width of 0.6 and manifests as a “shelf” of height
1
2 on the right side of the original vy profile, and a pulse in By of depth − 1

2 .

At t = 0.5 when characteristic paths from each side of the initial pulse in vy
have met in the middle, the left-shelf meets up with the right-shelf and the original

vy profile has been completely consumed. At this time, the new states have reached

their maximum width of 1, and move off in opposite directions as pulses (Alfvén

waves) with speed ±1.

By t = 0.6 (right side of Fig. 5.4), the distance between footprints of each

pair, C±, arriving at the same point is 1.2, too wide to fit inside the original pulse.

Thus, no points at t = 0.6 receive information from both characteristic paths about

the original pulse, and nowhere is the original profile of vy preserved (bottom right

panel). Indeed, in the middle right panel, paths arriving at points between points

‘c’ and ‘d’ straddle the region −0.5 < x < 0.5 and both footprints lie outside

the original pulse. Thus, these points receive information from both characteristic

paths that vy = 0 and By = 0 creating a “gap” in the profiles between the left- and

right-moving Alfvén waves which, at t = 0.6, has a width of 0.2.

As it must, the MoC yields the same solution as normal mode analysis (eigen-

algebra), and which of the two methods one uses is a matter of taste. While the

former may seem more dependent upon visuals and less formulaic than the latter, it

is no less rigorous and being able to think in terms of characteristics can be of great

benefit to the intuition when thinking of more complicated systems. While the shear

Alfvén wave problem consists of just two characteristics and can be handled with

very simple algebra, the full MHD problem has seven characteristics, each carrying

certain information (a Riemann invariant) about the state of the variables at the

footprint of their respective characteristic path to future times. Each point in the

future, therefore, must be consistent with each of the seven pieces of information

arriving there. Indeed, many of the better known MHD research codes incorporate

the transmission of information along characteristic paths into their design not so

much for “accuracy”, but for existential reasons. It turns out, without the use of

characteristics, numerical (M)HD codes can be manifestly unstable, and incapable

of many applications.

5.2.2 Fast and slow magnetosonic waves

To gain insight into the nature of waves travelling at speeds af and as (Eq. 5.25

and 5.23), start by linearising the primitive equations for 1-D MHD. In the spirit of

2.1.1 where two of the three hydrodynamical equations were linearised for sound

waves, consider a 1-D MHD fluid in its unperturbed rest frame (�v0 = 0) with a

constant axial magnetic induction, Bx, and write:

ρ = ρ0 + ερp; p = p0 + εpp; By = By,0 + εBy,p;

vx = εvx,p; vy = εvy,p; vz = εvz,p,
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where here, the subscript “p” stands for “perturbation”, not “primitive”. Thus,

ρp � ρ0, etc., and ε = 1 is used as a “smallness label”, just as in 2.1.1. Without

loss of generality, assume that the magnetic induction lies entirely in the x–y plane.

Then, if θ is the angle between �B and x̂, tan θ = By,0/Bx.

Substituting the above expressions for the flow variables in Eq. (5.1)–(5.7),

then dropping all terms of order ε2 yields the following linearised equations:

∂tpp + γp0 ∂xvx,p = 0; (5.49)

∂tvx,p +
1

ρ0
∂xpp +

By,0

μ0ρ0
∂xBy,p = 0; (5.50)

∂tvy,p − Bx

μ0ρ0
∂xBy,p = 0; (5.51)

∂tBy,p +By,0 ∂xvx,p −Bx ∂xvy,p = 0. (5.52)

The linearised equation for vz reduces to ∂tvz,p = 0, and thus we take vz to be

constant for the remainder of this discussion. Bz is taken as zero and, as in the

hydrodynamical case, the continuity equation is isolated by the linearisation process.

Thus, there remain a system of four equations and four unknowns to solve.

As usual, Eq. (5.49)–(5.52) can be written in the more compact form,

∂t|q(x, t)〉 + J ∂x|q(x, t)〉, (5.53)

where,

|q(x, t)〉 =

⎡

⎢⎢⎣

pp
vx,p
vy,p
By,p

⎤

⎥⎥⎦ and J =

⎡

⎢⎢⎣

0 γp0 0 0

1/ρ0 0 0 By,0/μ0ρ0
0 0 0 −Bx/μ0ρ0
0 By,0 −Bx 0

⎤

⎥⎥⎦ . (5.54)

Here, |q(x, t)〉 is the ket of perturbations to the variables, and J is the usual Jacobian

matrix.

Next, assume a normal mode solution of the form |q(x, t)〉 = |q̃(ξ)〉, where

ξ = x− ut and u is the wave speed. Substituting this into Eq. (5.53) gives us:

J|q̃ ′〉 = u|q̃ ′〉, (5.55)

where ′ indicates differentiation with respect to ξ, an eigen-equation we’ve seen

numerous times already (e.g., Eq. 2.23 in 2.1.2, Eq. 3.24 in 3.5.1, and Eq. 5.35 in

5.2.1). Thus, the eigenvalues, u, of J are found by solving the secular equation,

det(J− uI) = 0,

which after a little algebra (Problem 5.7) yields the following quadratic in u2:

u4 − u2(a20 + c2s,0) + c2s,0a
2
x = 0, (5.56)

where:

c2s,0 =
γp0
ρ0

; a20 = a2x + a2y,0; a2x =
B2

x

μ0ρ0
; a2y,0 =

B2
y,0

μ0ρ0
.
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The two roots of Eq. (5.56) are therefore given by:

a2s =
1

2

(
a20 + c2s,0 −

√(
a20 + c2s,0

)2 − 4a2xc
2
s,0

)
; (5.57)

a2f =
1

2

(
a20 + c2s,0 +

√(
a20 + c2s,0

)2 − 4a2xc
2
s,0

)
, (5.58)

the fast and slow magnetosonic speeds given by Eq. (5.23) and (5.25) but here

expressed in terms of the unperturbed variables. Since Eq. (5.56) is in fact a quartic

in u, there must be four eigenvalues of J which, in ascending order, are:

u−f = −af ; u−s = −as; u+s = as; u+f = af . (5.59)

Note that here, since the fluid is considered in its unperturbed rest frame, vx,0 = 0.

Having recovered the fast and slow waves from Eq. (5.49)–(5.52), we identify

these as the “kernel of physics” from the more general set of 1-D Eq. (5.1)–(5.6) that

capture the essence of fast and slow magnetosonic waves. All we need to know about

linear magnetosonic waves can be gleaned from Eq. (5.49)–(5.52) or, equivalently,

Eq. (5.55). These equations describe the simultaneous oscillation of the longitudinal

(vx) and transverse (vy) velocity components (“carriers” of kinetic energy density),

along with the thermal pressure (p) and the transverse magnetic (By) component

(“carriers” of potential energy density). Since both vx and vy oscillate, these waves

are simultaneously transverse and longitudinal. They are neither sound waves nor

Alfvén waves, although in certain limits, their nature reduces to one of these types

of waves (see discussion near the end of this section, as well as 5.2.3).

The eigenkets tell us about how the flow variables – in this case their pertur-

bations – behave across the waves. To find them, we solve,

(J− u±mI)|r±m〉 = 0,

where m = f or s. After a little algebra and with suitable “normalisation”, the

eigenkets are found to be,

|r±m〉 =

⎡

⎢⎢⎢⎢⎣

±c2s,0ρ0(a2x − a2m)/am

a2x − a2m

axay,0

∓ay,0am√
μ0ρ0

⎤

⎥⎥⎥⎥⎦
. (5.60)

Like the eigenvalues, the eigenkets are completely made up of the undisturbed vari-

able values.

From Eq. (5.55), |q̃ ′〉 are evidently proportional to the eigenkets and, as we’ve

done before (e.g., Eq. 2.27 in 2.1.2), we can write:

|q̃ ′〉 = w′(ξ)|r±m〉 ⇒ |q̃〉 = w(ξ)|r±m〉,

since |r±m〉 are constant and independent of ξ = x − ut, and where w′(ξ) is an
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arbitrary integrable function of ξ. Thus,

|q̃〉 ∝ |r±m〉 ⇒

⎡

⎢⎢⎢⎢⎣

p̃

ṽx

ṽy

B̃y

⎤

⎥⎥⎥⎥⎦
∝

⎡

⎢⎢⎢⎢⎣

±c2s,0ρ0(a2x − a2m)/am

a2x − a2m

axay,0

∓ay,0am√
μ0ρ0

⎤

⎥⎥⎥⎥⎦
.

From this, we see immediately that:

ṽx
ṽy

=
a2x − a2m
axay,0

⇒ ṽx/ṽy
Bx/By,0

=
a2x − a2m
a2x

⎧
⎨

⎩
< 0 for am = af ;

> 0 for am = as,
(5.61)

where branching into two cases is a direct consequence of the third of Ineq. (5.28).

Herein lies our first piece of real insight into the difference between fast and

slow waves. Evidently, the ratio of the x- and y-components of the velocity per-

turbation has a different sign than the ratio of the x- and y-components of the

unperturbed magnetic induction for fast waves, and the same sign for slow waves.

As shown in Fig. 5.5, this means that the compression and shearing of the magnetic

induction by the MHD forces work together to maximise the variation of By for fast

waves, but work against each other to minimise the variation of By for slow waves.

With a greater amplitude of magnetic induction variation comes a greater restoring

magnetic force and thus a higher wave frequency. For a given wavelength, a higher

frequency means a higher propagation speed (u = fλ); whence af > as.

Another way to see this effect is to examine the ratio of the fourth and third

components of |r±m〉, namely,

B̃y

ṽy
= ∓��ay,0am

√
μ0ρ0

ax��ay,0
⇒ ãy

ṽy
= ∓am

ax
, (5.62)

whose magnitude is greater than unity for fast waves (af > ax) and less than unity

for slow waves (as < ax; see again Ineq. 5.28). Thus, for a given perturbation in vy,

fast waves evoke a greater perturbation in ay (and thus By), while slow waves evoke

a smaller perturbation in ay (and thus By); the same effect shown in Fig. 5.5.

Still another way to understand the difference between fast and slow waves

is to examine the ratio of magnetic pressure perturbations to thermal pressure

perturbations caused by the passage of the two waves. Magnetic pressure is given

by pM = 1
2 (B

2
x +B2

y), and since Bx = constant in 1-D (x-direction), perturbations

to the magnetic pressure are given by,

δpM = p̃M = δ

(
B2

y

2μ0

)
=

By

μ0
δBy =

By,0

μ0
B̃y, (5.63)

keeping only first-order terms. Therefore,

p̃M
p̃

=
By,0

μ0

B̃y

p̃
= −By,0

μ0

ay,0a
2
m

√
μ0ρ0

c2s,0ρ0(a
2
x − a2m)

=
a2y,0
c2s,0

a2m
a2m − a2x

, (5.64)
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Figure 5.5. For an unperturbed magnetic induction with Bx/By,0 > 0 as shown
in panel a, velocity perturbations for the fast and slow waves have two possible
orientations as shown, and as determined by Eq. (5.61). Consider a rectangular
parcel of fluid whose main diagonal gives the orientation (but not the magnitude)
of �B. In particular, By = Bx tan θ, where Bx is constant and where θ is the angle
between the main diagonal and the x-axis. In panel b, the passage of the fast
magnetosonic wave causes a compression of the fluid parcel (horizontal velocity
vectors pointed inwards) followed by an expansion (horizontal velocity vectors
pointed outwards). Accompanying the horizontal velocity vectors are the appro-
priately directed vertical velocity vectors as indicated in panel a, and together
the horizontal and vertical velocity vectors distort the fluid parcel as shown in
panels b and c. In the case of the fast wave, both the compression and the shear
of the fluid parcel tend to increase θ (and thus By), while both the expansion
and its accompanying shear tend to decrease it half a period later. In panel c, the
passage of the slow magnetosonic wave has a different effect. While the compres-
sion of the fluid parcel works to increase θ (By), the shear works to decrease it.
Then, as the fluid parcel expands, the expansion tends to decrease θ (By) while
its accompanying shear tends to increase it. Thus, the amplitude of variation for
By (indicated by the difference θmax − θmin) is greater for the fast wave than for
the slow wave.

using the ratio of the fourth and first components of |r±m〉. Thus, for am = af > ax,

the magnetic and thermal pressure perturbations have the same sign, and thus work

together in driving the wave. On the other hand, for am = as < ax, the magnetic

and thermal pressure perturbations have opposite sign, and work against each other

thereby reducing the restoring force and as a consequence the speed of the wave.

Figure 5.6 shows how these ideas distinguish the two types of magnetosonic

waves. According to Eq. (5.64), a local maximum of thermal pressure must corre-

spond to a local maximum of magnetic pressure for a fast wave, and a local minimum

of magnetic pressure for a slow wave. In either case, the resulting x-variation of By

generates a current density,

�J =
1

μ0
∇× �B =

1

μ0
(0, 0, ∂xBy),
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Figure 5.6. A succession of compressions and rarefactions in a magnetosonic
wave results in an x-variation of the thermal pressure (grey scale) and transverse
magnetic induction (arrows), the latter establishing Lorentz forces that contribute
to the net restoring force available to the waves. For fast waves where the thermal
and magnetic pressure variations are in phase (Eq. 5.64), the thermal pressure
and magnetic restoring forces (−dp/dx and fx respectively) are additive (panel
a), while for slow waves where the two variations are out of phase, the restoring
forces partially cancel (panel b). These drive the longitudinal aspect of the waves.
The transverse aspect of the waves is driven by the Lorentz shear force, fy . For
both wave types, when By is at a peak, the Lorentz shear force distorts the
original fluid cell (dashed rectangle) to a parallelogram so that the slope of the
main diagonal (a measure of By ; see caption of Fig. 5.5) is reduced. Conversely,
when By is at a low, the Lorentz shear forces distort the fluid cell so that the
slope of the main diagonal (and thus By) increases.

which combines with the magnetic induction to create a Lorentz force density,

�fL = �J × �B = (−JzBy, JzBx, 0) =
1

μ0
(−By,0, Bx, 0) ∂xB̃y, (5.65)

where only the first-order terms have been retained. The x-component of the Lorentz

force density is a magnetic pressure term, −∂xpM (e.g., Eq. 5.63), which contributes

to the thermal pressure force density, −∂xp̃. As shown in Fig. 5.6, these pressure

forces are additive for fast waves and partially (perhaps completely) cancel for

slow waves. The y-component of the Lorentz force density is solely responsible for

the transverse nature of magnetosonic waves and, as shown in Fig. 5.6, is always

restorative (tries to bring the perturbation back into equilibrium), regardless of

whether the wave is slow or fast. For the fast wave, the added restorative force is

not required to assure the propagation of the wave, since the two pressure forces

are additive. However, for the slow wave where the two pressure forces work against
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each other and may actually cancel, the transverse restorative force is critical to its

propagation; without it, the slow wave could be stifled.

In the θ → π/2 (Bx → 0) limit, it is easy to show that as → 0, and thus

the slow waves are extinguished. So are shear Alfvén waves since they require a

longitudinal magnetic induction to carry the transverse waves and thus, only the

fast magnetosonic waves remain. In this limit, the fast waves propagate with a speed

a2M = a2f (θ = π/2) = a2+c2s,0 and, because there is no longitudinal component of the

magnetic induction, the transverse component of the Lorentz force density is zero

(Eq. 5.65). Thus, such waves are purely compressional (longitudinal) in nature and

are often referred to as magneto-acoustic waves.6 In the further limit as By → 0,

magneto-acoustic waves become ordinary sound waves moving at the sound speed,

while in the opposite limit of a cold (i.e., pressureless) gas, magneto-acoustic waves

move at the Alfvén speed and are known as compressional Alfvén waves, as opposed

to the shear Alfvén waves discussed in 5.2.1.

In the θ → 0 (By,0 → 0) limit, all three types of waves exist, but with some

degeneracy. From Eq. (5.65), we see the x-component of the restoring Lorentz force

density disappears (but not the y-component, as B̃y can still oscillate to first order

about zero), and thus the magnetic pressure term no longer contributes to the

longitudinal restoring force. From Eq. (5.58) and (5.57), we see that for θ = 0 (and

thus a0 = ax), the fast and slow speeds become:7

a2f (θ = 0) = 1
2

(
c2s,0 + a20 +

√
(c2s,0 + a20)

2 − 4c2s,0a
2
0

)

= 1
2

(
c2s,0 + a20 +

√
(c2s,0 − a20)

2
)

= max(c2s,0, a
2
0);

a2s (θ = 0) = 1
2

(
c2s,0 + a20 −

√
(c2s,0 − a20)

2
)

= min(c2s,0, a
2
0).

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(5.66)

Thus, disturbances launched directly along lines of magnetic induction are either

sound or Alfvén waves or, at the very least, propagate with one of these speeds.

In fact, fast and slow waves do reduce to ordinary shear Alfvén and sound

waves when launched along induction lines; the faster of the two being the vestigial

fast wave, the slower the slow wave. Setting By,0 = 0, Eq. (5.49)–(5.52) reduce to:

∂tpp + γp0 ∂xvx,p = 0; (5.67)

∂tvx,p +
1

ρ0
∂xpp = 0; (5.68)

∂tvy,p − Bx

μ0ρ0
∂xBy,p = 0; (5.69)

∂tBy,p −Bx ∂xvy,p = 0. (5.70)

6There is no agreement within the literature on how the terms “magnetosonic” and “magneto-
acoustic” are to be used. Some authors use them as I do, some use them interchangeably, while
others use magneto-acoustic as the general case (of which there is the slow and fast variety) and

magnetosonic for the special case being discussed here. Sorry, it’s just the way it is!
7The appearance of “max-min” functions is most easily verified by noting that

√
q2 = |q|. As

we’ll see, much of the curious algebra arising in 1-D MHD can be traced to the presence of these
max-min functions.
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α� 1 α = 1 α � 1

af cs

√
1 + α sin2 θ cs

√
1 + sin θ a

√
1 +

sin2 θ

α

as a cos θ
√

1− α sin2 θ cs

√
1− sin θ cs cos θ

√
1− sin2 θ

α

Table 5.1. Magnetosonic speeds for three different limits of the MHD-alpha,

α = a2/c2s , and where cos θ = ax/a.

Equations (5.67) and (5.68) are simply the 1-D version of Eq. (2.7) and (2.8) which

describe an ordinary sound wave, while Eq. (5.69) and (5.70) are equivalent to

Eq. (5.31) and (5.32) in the rest frame of the fluid (vx,0 = 0) which describe a

shear Alfvén wave. No variable in one pair of equations appears in the other, and

we conclude that without a transverse component of the magnetic induction, the

magnetic and thermal effects decouple completely into sound and Alfvén waves. In

magnetically dominated systems (α > 1; see Eq. 5.30), the fast wave becomes the

transverse shear Alfvén wave and the slow wave becomes the longitudinal sound

wave, while in thermally dominated systems (α < 1), the reverse is true. For α = 1,

the waves are degenerate; both the sound wave and shear Alfvén wave move with

the same speed and it becomes academic whether one associates the vestigial fast

or slow wave with the sound or shear Alfvén wave.

5.2.3 Summary of MHD waves

If we, as a species, had evolved within an MHD (ionised) atmosphere instead of the

hydrodynamical (neutral) one we live in,8 surely our senses would have evolved to

use the additional wave information available to us. A thunder clap within an MHD

atmosphere, such as that surrounding the sun, would launch all types of waves,

and our array of senses would first detect the fast waves (which carry pressure

fluctuations just like sound waves, and therefore would be audible) as relatively

high-pitched sound, followed sometime later by the shear Alfvén wave which, while

not carrying pressure fluctuations and thus inaudible, would result in a sudden

gust of wind transverse to the direction between the observer and the disturbance,

followed still later by the audible slow waves at a relatively low pitch. The statements

on the relative pitches of the fast and slow waves stem from the requirement that

v = fλ. For a given wavelength (determined to first order by the scale length of the

disturbance causing the thunder clap), the fast wave must have a higher frequency

than the slow wave in order to have a higher propagation speed.

Further, various observers would have differing impressions of the same thun-

der clap depending on their position relative to where the clap occurred. Those

connected to the disturbance by a prevailing line of induction (and according to

whom the transverse component of �B is zero) would feel first a wind shear, then an

8Let’s not worry about how life could have evolved in temperatures exceeding 105 K!
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Figure 5.7. Space-time diagrams showing the plus-characteristic paths for var-
ious points in α-cos θ space, where the top (bottom) row is indicative of a ther-
mally (magnetically) dominated gas. The slope of each characteristic path is
proportional to the reciprocal of the characteristic speed as measured from the
co-moving frame of the fluid (vx = 0). Thus, from left to right starting at the
vertical, the first characteristic path encountered is always the entropy path (co-
incides with the t-axis in the co-moving frame of the fluid), followed by the slow,
Alfvén, and fast characteristic paths.

audible rumble for α > 1 (magnetically dominated) or, for α < 1, the rumble first,

then the wind shear. Meanwhile, an observer whose line of sight to the disturbance

is perpendicular to the prevailing lines of induction would hear only the fast wave

since, in the co-moving frame of the fluid, neither the Alfvén wave nor the slow wave

can propagate in this direction. Further, since the fast speed is a maximum in this

orientation, this observer would detect the clap as a higher pitched sound than any

other observer, and before any other observer at the same distance from the clap.

It is a useful exercise to understand how the MHD waves become the hydro-

dynamical waves in the limit as a → 0 and, in the other extreme, what happens

to MHD waves in the limit of a cold (e.g., collisionless or pressureless) gas where

cs → 0. Table 5.1 lists the fast and slow speeds for various regimes of the MHD-alpha

whose derivation is left as an exercise.

In the thermally dominated regime (α � 1), it’s clear from Table 5.1 that the

slow wave speed becomes degenerate with the Alfvén speed (ax = a cos θ). This
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Figure 5.8. Polar diagrams representing the characteristic speeds of the slow
(inner curve), Alfvén (middle curve), and fast (outer curve) waves for α = 1

4

(panel a), α = 1 (panel b), and α = 4 (panel c). In each case, the wave speed is
proportional to the distance between the origin and where a ray inclined at angle
θ (angle between �B and the x-axis) intersects a given curve, as exemplified by
the dashed line in panel c.

is apparent in the top row of Fig. 5.7, where even when the sound speed is only

three times that of the Alfvén speed, the slow and Alfvén characteristics are barely

discernible. It is shown in Problem 5.10 (Eq. 5.117) that compressional forces in

slow waves cancel as α → 0, leaving only the transverse magnetic forces to drive

the wave. Thus, in this limit, the slow and Alfvén waves are, in fact, the same wave.

On the other hand, Problem 5.10 also shows that the magnetic driving force for

the fast wave falls off as α, leaving only the thermal pressure gradient. Thus, in the

limit α → 0, fast waves becomes ordinary sound waves.

Regardless of α, the slow and Alfvén waves are degenerate with the entropy

wave when Bx = 0 (left side of Fig. 5.7), and become non-degenerate for cos θ > 0

(θ < π/2). The slow wave path reaches a maximum angle relative to the vertical at

cos θ = 1 becoming degenerate with the fast wave path only when α = 1. Conversely,

at both the α → 0 and α → ∞ extremes, the slow and entropy waves remain

degenerate to first order, and thus their paths are vertical on a space-time diagram.

As for the Alfvén characteristic path, for α < 1 it too reaches a maximum inclination

relative to the vertical, where it once again becomes degenerate with the slow path

(top row of Fig. 5.7). However, for α > 1, the Alfvén path continues to separate from

the slow path as θ → 0, leaning further and further to the right until it becomes

degenerate with the fast characteristic path at cos θ = 1 (bottom row). The α = 1

case is interesting in that both the slow and Alfvén paths become degenerate with

the fast path at cos θ = 1. This is the only point in α-cos θ parameter space where

this occurs, and we will come to know this as the triple umbilic ( 6.2.1).

Finally, Fig. 5.8 is a polar plot of the speeds of the three MHD waves where the

characteristic speed is proportional to the distance between the origin and where a

ray at angle θ intersects a given curve (as exemplified by the dashed line in panel

c). Plots for α = 1
4 , 1, and 4 are given. Note that the fast “curve” always contains

the Alfvén “curve” which always contains the slow “curve”, a direct consequence
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Figure 5.9. 1 1
2
-D MHD fluid flow, as viewed from the reference frame J.

of the last of Ineq. (5.28). There are, however, places where the curves touch, and

these indicate where two and even all three waves become degenerate. For thermally

dominated gas (Fig. 5.8a), the fast wave is always distinct from the slow and Alfvén

waves whose curves shrink into the origin and disappear altogether in the limit

α → 0 (B → 0). In this limit, only the fast wave remains and has become an

ordinary sound wave. For magnetically dominated gas (Fig. 5.8c), the Alfvén wave

is degenerate with the slow (and entropy) wave at cos θ = 0, and with the fast wave

at cos θ = 1. Lastly, regardless of α, only the fast wave has a non-zero propagation

speed at θ = π/2, and it is here that the fast wave is referred to as the magneto-

acoustic wave. As discussed in 5.2.2, the magneto-acoustic wave becomes a sound

wave as α→ 0, and a compressional Alfvén wave as α→ ∞.

As much as the degenerate behaviour of the eigenvalues affect the nature of

the linear waves, they pose even greater challenges in the non-linear waves, as we

shall see in the next section for shocks and in 6.2 for rarefaction fans.

5.3 The MHD Rankine–Hugoniot jump conditions

In 2.2, we considered the 1 1
2 -D steady-state shock tube problem for ideal hydro-

dynamics. Here, we revisit this subject for 1 1
2 -D ideal MHD. The principles and

procedures are identical as in 2.2; only the algebra is trickier and the results cor-

respondingly richer. To wit, for the MHD problem we must solve five equations in

three scalars and two 2-D vectors.

Figure 5.9 depicts an MHD shock tube with an upwind (1) and downwind (2)

state delineated by and in the reference frame of J. Without loss of generality, let

the flow be from left to right and identify states 1 and 2 by their primitive variables

(ρ1, p1, vx1 , �v⊥1 , �B⊥1) and (ρ2, p2, vx2 , �v⊥2 , �B⊥2) respectively. As was shown at the

beginning of this chapter, Bx is constant in time and space in 1-D (represented

by the long, red arrow in Fig. 5.9), and we need not include it among the down-

wind variables to be determined. However, Bx cannot be ignored, as the downwind

variables do depend upon it in sometimes unexpected ways.

Now, if J corresponds to nothing physical in the flow, the upwind and downwind

states would be identical; only if J were to coincide with a discontinuity would the
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two states differ (recognise this discussion from 2.2?). Therefore, the question posed

here is: Given values for the primitive variables in the upwind state, what steady-

state values could these same variables assume in the downwind state?

To this end,9 we start with the conservative form of the 1 1
2 -D MHD equations,

Eq. (5.10)–(5.16), which, as has been emphasised before, is the form of the equations

valid across discontinuous flow. In 1-D steady state where ∂t → 0 and ∂y = ∂z =

0 ⇒ ∂x → d/dx, these equations reduce to:

d

dx
(ρvx) = 0; (5.71)

d

dx

[
vx

(
eT + p+

B2

μ0

)
− Bx

μ0

�B · �v
]
= 0; (5.72)

d

dx

(
ρv2x + p+

B2
⊥

2μ0

)
= 0; (5.73)

d

dx

(
ρvx�v⊥ − Bx

�B⊥
μ0

)
= 0; (5.74)

d

dx

(
vx �B⊥ −Bx�v⊥

)
= 0, (5.75)

where:

1. p∗ = p+B2/2μ0 and e∗T = eT +B2/2μ0 have been substituted everywhere;

2. in Eq. (5.72), B2 = B2
x + B2

⊥ with the B2
x term retained because, while

d(B2
x)/dx is zero, d(vxB

2
x)/dx may not be and will instead cancel out part

of the Bx( �B · �v) term;

3. y- and z-components of momentum and induction equations have been com-

bined into two 2-D vector equations, (5.74) and (5.75).

As was true in 2.2, these ODEs are trivial to integrate and, when applied to the

conditions of Fig. 5.9, lead to the MHD Rankine–Hugoniot jump conditions :

Δ(ρvx) = 0; (5.76)

Δ

[
vx

(
eT + p+

B2

μ0

)
− Bx

μ0

�B · �v
]
= 0; (5.77)

Δ

(
ρv2x + p+

B2
⊥

2μ0

)
= 0; (5.78)

Δ

(
ρvx�v⊥ − Bx

�B⊥
μ0

)
= 0; (5.79)

Δ
(
vx �B⊥ −Bx�v⊥

)
= 0, (5.80)

where Δq ≡ q2 − q1 indicates the difference, if any, in the quantity q across J.

9Much of the development presented in this section follows Takahashi & Yamada (2014),
hereafter referred to as TY14.
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Before proceeding, we need to establish a few theorems from difference theory

most of which the reader will surely recognise as analogous to well-known theorems

of differential calculus. In what follows, f and g are two independent functions of

x10 and a is a constant.

Theorem 5.1. (Addition Rule) Δ(f + g) = Δf +Δg.

Proof : This is really quite self-evident. Developing the LHS, we get:

Δ(f + g) = (f2 + g2)− (f1 + g1) = (f2 − f1) + (g2 − g1) = Δf +Δg.

Theorem 5.2. (Product Rule) Δ(fg) = 〈f〉Δg + 〈g〉Δf , where 〈q〉 ≡ 1
2 (q2 + q1).

Proof : Developing the RHS, we get:

〈f〉Δg + 〈g〉Δf =
f2 + f1

2
(g2 − g1) +

g2 + g1
2

(f2 − f1)

=
f2g2 −���f2g1 +���f1g2 − f1g1 + g2f2 −���g2f1 +���g1f2 − g1f1

2

= f2g2 − f1g1 = Δ(fg).

Corollary 5.1. (Scalar Rule) Δ(ag) = aΔg.

Proof : This, too, is self-evident. Formally, it is a special case of Theorem 5.2 in

which f = a is a constant and thus 〈f〉 = a, Δf = 0.

Theorem 5.3. (Average Theorem) 〈fg〉 = 〈f〉〈g〉+ 1
4ΔfΔg.

Proof : Starting with the RHS:

〈f〉〈g〉+ 1

4
ΔfΔg =

f2 + f1
2

g2 + g1
2

+
1

4
(f2 − f1)(g2 − g1)

=
f2g2 +���f2g1 +���f1g2 + f1g1 + f2g2 −���f2g1 −���f1g2 + f1g1

4

=
f2g2 + f1g1

2
= 〈fg〉.

And now to the task at hand. By applying Theorem 5.1 and Corollary 5.1 to Eq.

(5.78)–(5.80), one can easily show that:

MΔvx +Δp+
1

2μ0
ΔB2

⊥ = 0; (5.81)

10The functions f and g could be scalar or vector, and if vector the multiplicative operator is
understood to be the dot product.
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MΔ�v⊥ − Bx

μ0
Δ �B⊥ = 0; (5.82)

Δ
(
vx �B⊥

)−BxΔ�v⊥ = 0, (5.83)

where M ≡ ρ1vx1 = ρ2vx2 is the constant mass flux density (Eq. 5.76). Further,

Eq. (5.82) and (5.83) can be used to eliminate Δ�v⊥:

MΔ
(
vx �B⊥

)− B2
x

μ0
Δ �B⊥ = 0. (5.84)

Turning now to the differenced total energy equation, Eq. (5.77), start by setting

eT = e+ 1
2ρv

2 (Eq. 1.20) and then expand the dot products to get:

Δ

[
vx

(
e+

ρv2x
2

+
ρv2⊥
2

+ p+
�
��
B2

x

μ0
+
B2

⊥
μ0

)
− Bx

μ0

(
���Bxvx + �B⊥ · �v⊥

)]
= 0

⇒ Δ(pvx)

γ − 1
+

M
2

(
Δv2x +Δv2⊥

)
+Δ(pvx) +

1

μ0
Δ
(
vxB

2
⊥ −Bx

�B⊥ · �v⊥
)

︸ ︷︷ ︸
Q

= 0, (5.85)

using Theorem 5.1 and Corollary 5.1 repeatedly and the ideal gas law (Eq. 1.11)

to replace e with p/(γ − 1). While it may be tempting to combine the two terms

proportional to Δ(pvx), we won’t do that just yet (see, however, Problem 5.17).

Instead, proceed by examining the quantity Q:

Q = Δ
(
vxB

2
⊥ −Bx

�B⊥ · �v⊥
)
= Δ

[
�B⊥ · (vx �B⊥ −Bx�v⊥

)

= 〈 �B⊥〉 ·Δ
(
vx �B⊥ −Bx�v⊥

)
︸ ︷︷ ︸

= 0; Eq. 5.83

+Δ �B⊥ · 〈vx �B⊥ −Bx�v⊥〉 (Theorem 5.2)

= Δ �B⊥ · 〈vx �B⊥〉 − BxΔ �B⊥︸ ︷︷ ︸
μ0MΔ�v⊥; Eq. 5.82

· 〈�v⊥〉

= Δ �B⊥ · 〈vx〉〈 �B⊥〉+Δ �B⊥ · 1
4
ΔvxΔ �B⊥ − μ0MΔ�v⊥ · 〈�v⊥〉 (Theorem 5.3)

=
〈vx〉
2

ΔB2
⊥ +

Δvx
4

(
ΔB⊥

)2 − μ0M
2

Δv2⊥ (Theorem 5.2 used twice).

Substituting this result into Eq. (5.85), we get:

0 =
Δ(pvx)

γ − 1
+

M
2

(
Δv2x +���Δv2⊥

)
+Δ(pvx) +

〈vx〉
2μ0

ΔB2
⊥ +

Δvx
4μ0

(
ΔB⊥

)2 −����M
2
Δv2⊥

=
Δ(pvx)

γ − 1
+MΔvx〈vx〉+Δp〈vx〉+ 〈p〉Δvx +

〈vx〉
2μ0

ΔB2
⊥ +

Δvx
4μ0

(
ΔB⊥

)2

(Theorem 5.2 used twice)

=
Δ(pvx)

γ − 1
+ 〈p〉Δvx +

Δvx
4μ0

(
ΔB⊥

)2
+ 〈vx〉

(
MΔvx +Δp+

ΔB2
⊥

2μ0︸ ︷︷ ︸
= 0; Eq. 5.81

)
,



Clarke 9781009381475 .tex 153 2/04/2025

153 The MHD Rankine–Hugoniot jump conditions

and we arrive at the simplified form of the differenced energy equation we’ll use to

examine discontinuities at J:

Δ(pvx)

γ − 1
+ 〈p〉Δvx +

Δvx
4μ0

(
ΔB⊥

)2
= 0. (5.86)

Aside: I pause to comment on the curious nature of Eq. (5.86). The 1-D internal

energy equation, Eq. (1.34), is the same whether �B = 0 or not. Thus, if one were

to go about differencing it directly assuming steady state, one might write:

���
0

∂te+ ∂x(evx) = −p∂xvx ⇒ Δ(pvx)

γ − 1
+ p̃Δvx = 0,

since e = p/(γ − 1). Granted, one would never attempt to do this in the first place

given the non-conservative nature of the p∂xvx term which leads to the conundrum

of what p̃ is. Still, if one were to “guess” that p̃ should be 〈p〉, one would then

recover all of Eq. (5.86) except the magnetic term. How could a “bad guess” for p̃

squelch a magnetic term?

I don’t really have a satisfying answer to this question. I’m not at all suggesting

that something is suspicious with Eq. (5.86); indeed the fault is in trying to treat

the non-conservative internal energy equation in a conservative fashion.

Still, I do find this curious . . .

To recap our progress so far, we have reduced the MHD Rankine–Hugoniot

jump conditions to a system of three equations in three unknowns:

MΔvx +Δp+
1

2μ0
ΔB2

⊥ = 0; Eq. (5.81)

MΔ(vx �B⊥)− B2
x

μ0
Δ �B⊥ = 0; Eq. (5.84)

Δ(pvx)

γ − 1
+ 〈p〉Δvx +

Δvx
4μ0

Δ
(
B⊥
)2

= 0, Eq. (5.86)

with the unknowns being Δvx, Δp, and Δ �B⊥. Once these variables have been found,

the remaining two can be easily determined. From Eq. (5.76), it is left to Problem

5.18 to show:

Δρ = − ρ1Δvx
vx1 +Δvx

, (5.87)

while the jump in the transverse velocity, Δ�v⊥, can be found using either Eq. (5.82)

or (5.83):

Δ�v⊥ =
Bx

μ0MΔ �B⊥ =
1

Bx
Δ
(
vx �B⊥

)
. (5.88)
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5.3.1 Case 1: Trivial solution

Obviously, Δρ = Δvx = Δ�v⊥ = Δ �B⊥ = Δp = 0 solves all jump conditions,

and such a solution is the possibility already suggested, namely J corresponds to

nothing significant in the flow. As in 2.2.1, this is known as the trivial solution,

and is consistent with a uniform gas flowing at a constant velocity, vx1 = vx2 .

5.3.2 Case 2: Contact discontinuity

If vx = 0 (and thus M = 0) and Bx �= 0, then Eq. (5.84) ⇒ Δ �B⊥ = 0, from

which it follows that Eq. (5.81) ⇒ Δp = 0 (recall from Theorem 5.2 that 1
2ΔB

2
⊥ =

Δ �B⊥ · 〈 �B⊥〉). Further, Eq. (5.83) ⇒ Δ�v⊥ = 0 and right away we know that the

thermal pressure, p, and transverse vectors, �v⊥ and �B⊥, are all constant. Since

vx = 0, none of the equations can tell us anything about the density jump, and thus

Δρ is arbitrary.

This is identical to the contact discontinuity (contact) identified in 2.2.2. As

noted there, because the pressure is constant, the density jump must be accompanied

by an inverse jump in temperature as well as a jump in entropy and, just as for HD,

contacts are sometimes called entropy waves.

5.3.3 Case 3: Tangential discontinuity

If vx = 0 and Bx = 0 (but �B⊥ �= 0), a tangential discontinuity (TD) is the result. In

this case, all Rankine–Hugoniot jump conditions, Eq. (5.76)–(5.80) are trivialised

(0 = 0) except for Eq. (5.78), which reduces to,

Δ

(
p+

B2
⊥

2μ0

)
= Δp∗ = 0, (5.89)

and thus the total pressure – thermal plus magnetic – must be continuous across J,

but not necessarily p and �B⊥ individually. Thus, across a TD, vx = 0, Bx = 0, Δρ

and Δ�v⊥ are arbitrary, as are Δp and Δ �B⊥ so long as Δ
(
p+B2

⊥/2μ0

)
= 0.

Note that if �B⊥ = 0 as well, we recover the hydrodynamical limit where the

distinction between a TD and a contact depends only on whether a previously

existing wind shear – a jump in �v⊥ – exists across J ( 2.2.2). In pure HD, there

is no way in 1-D to generate a shear and thus it would need to be present as part

of the initial conditions. On the other hand, for MHD even in 1-D, shear Lorentz

forces can cause a wind shear to be generated spontaneously, and the distinction

between a contact and a TD is much more certain depending, as it does, on the

presence of Bx.

And so here is another curiosity. How close to zero must Bx/B⊥ actually be

before a contact yields to a TD? Does it have to be dead zero, for example, or could

it be 10−6? 10−12? 10−100? And what power does Bx hold over the other variables

that not until its last “epsilon” of value is extinguished can Δ�v⊥ – which is supposed

to be zero across a contact – suddenly take on any arbitrary value across a TD? Or
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when Δp and Δ �B⊥ are supposed to be zero individually for a contact, suddenly

need only obey the constraint Δ
(
p+B2

⊥/2μ0

)
= 0 for a TD?

The answer has to do with the imposed symmetries and the time scales over

which steady state is achieved. Still, such conundrums give glimmers of the touchy

properties posed by the algebra of MHD which we’ll encounter head-on in 5.3.5.

5.3.4 Case 4: Rotational discontinuity

Having exhausted all possibilities where vx = 0 (remember, vx is the speed relative

to J), we now consider the case where vx �= 0. However and for the moment, let’s

continue to suppose Δvx = 0 ⇒ Δρ = 0, and density is constant across J. Further

suppose that Bx �= 0. Then, Eq. (5.86) requires Δ(pvx) = vxΔp = 0 (Corollary 5.1)

⇒ Δp = 0, and pressure is constant across J. Therefore, Eq. (5.81) ⇒ ΔB2
⊥ = 0

too, although this doesn’t necessarily mean Δ �B⊥ = 0; �B⊥ could still rotate!

Since Δ �B⊥ �= 0, vx = constant, and M = ρvx, Eq. (5.84) requires that,

(
ρv2x − B2

x

μ0

)
Δ �B⊥ = 0 ⇒ v2x =

B2
x

μ0ρ
⇒ |vx| = |Bx|√

μ0ρ
= ax, (5.90)

and, relative to J, the fluid moves at the Alfvén speed, a condition described as

trans-Alfvénic. Of course, from the fluid’s frame of reference, it is J that propagates

at the Alfvén speed and therefore J must represent a type of Alfvén wave.

Finally, substituting Eq. (5.90) into Eq. (5.88), we find,

Δ�v⊥ = sgn(vxBx)
Δ �B⊥√
μ0ρ

≡ sgn(vxBx)Δ�a⊥, (5.91)

where sgn(x) ≡ x/|x|. Thus, across J, both direction and magnitude of �v⊥ jump by

an amount, modulo a sign, equal to the change in the transverse Alfvén velocity.

Therefore, for Bx �= 0, vx �= 0, and Δvx = 0, ρ, p, and B⊥ are all constant

across J, �B⊥ can rotate, and �v⊥ can jump both in magnitude and direction. This

phenomenon is known as a rotational discontinuity (RD), and is unique to MHD;

there is no analogue in pure hydrodynamics. Propagating along the fluid at the

Alfvén speed, an RD is nothing more than a shear Alfvén wave that rotates �B⊥
without changing its magnitude.

5.3.5 Case 5: Fast, slow, and intermediate shocks

And now the real fun begins.

We now relax all assumptions about vx, presuming neither vx nor Δvx is zero.

Right away, Eq. (5.76) tells us there will be a density jump which, from our ex-

perience in 2.2.3, means we expect to form shock waves. Further and unlike the

previous cases, no terms in Eq. (5.81), (5.84), and (5.86) drop out and, in order to

determine the jumps across J, we must now solve for the downwind values, those

with subscript ‘2’ in Fig. 5.9, in terms of the upwind values with subscript ‘1’.
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To this end, start by spelling out the differences in Eq. (5.88) to find,

1

Bx

(
vx2

�B⊥2 − vx1
�B⊥1

)− Bx

ρ1vx1μ0

(
�B⊥2 − �B⊥1

)
= 0.

Multiplying through by Bx/vx1 we get:

vx2

vx1

�B⊥2 − �B⊥1 −
a2x1

v2x1

(
�B⊥2 − �B⊥1

)
= 0, (5.92)

where ax1 = |Bx|/√μ0ρ1 is the upwind longitudinal Alfvén speed.

Now, let φx ≡ vx2/vx1 . In 2.2.3, we established the entropy condition (a.k.a.,

Zemplén’s theorem) in which only compressive shocks (η ≡ ρ2/ρ1 > 1) obey the

second law of thermodynamics whereby entropy is increased. Since ρvx is a conserved

quantity (Eq. 5.76), φx = 1/η and we must have φx < 1 for a physical shock.11

Continuing with Eq. (5.92), we have:

φx �B⊥2 − �B⊥1 −
1

A2
x1

(
�B⊥2 − �B⊥1

)
= 0, (5.93)

where Ax1 = vx1/ax1 (a known quantity) is the so-called Alfvén number in the

upwind state relative to Bx. The Alfvén number plays a similar role as the Mach

number (defined after Eq. 2.38), where the divisor is now the Alfvén speed, ax (or

more generally, a) rather than the sound speed, cs. Then, solving for the downwind

value, B⊥2 , in Eq. (5.93), we get:

�B⊥2 =
A2

x1
− 1

A2
x1
φx − 1

�B⊥1 . (5.94)

This equation tells us immediately that �B⊥2 is either parallel or antiparallel to �B⊥1 ,

and we write,
�B⊥1 = B⊥1 ê⊥ and �B⊥2 = B⊥2 ê⊥,

where ê⊥ is a unit vector giving the direction of both �B⊥1 and �B⊥2 if we allow

the magnitude, B⊥2 , to take on negative values. (Without loss of generality, we

may assume B⊥1 ≥ 0.) Note that ê⊥ could be in the y-direction, z-direction, or

somewhere in between. Regardless, ê⊥ remains unchanged by the shock and Eq.

(5.94) may be reduced to the scalar equation,

b =
A2

x1
− 1

A2
x1
φx − 1

, (5.95)

where b ≡ B⊥2/B⊥1 . Note that as A2
x1
φx → 1, b → ∞, and the jump in B⊥ is

infinite across J. The only way this can happen is if B⊥1 = 0 and B⊥2 �= 0; this

is the so-called “switch-on shock” discussed further starting on page 164. Note also

that asBx → 0 (and Ax1 → ∞), b→ 1/φx = η, and the jump in transverse magnetic

induction is the same as the jump in density. This is a common understanding of

the term “flux-freezing” though this view is inaccurate. Flux-freezing – introduced

11Should the reader wish to consult TY14 (see footnote 9), note that they use v̂ instead of φx

and state incorrectly twice that v̂ > 1 for a physical shock. These clearly must be typos, since
their subsequent algebra all seems correct.
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in 4.3 in the context of Alfvén’s theorem – means that in ideal MHD, magnetic

flux through an open surface transported by the fluid is conserved; it says nothing

about whether the density and contained magnetic induction must track each other.

For example, across an MHD shock, fluid can be compressed along the longitudinal

magnetic induction without necessarily affecting the transverse component, B⊥.
As we’ll see, a prime example of this is across a slow shock where the transverse

magnetic induction actually decreases even as the fluid is compressed.

Next, we turn to Eq. (5.81). With the differences spelled out and using machi-

nations similar to those in deriving Eq. (5.95), we get:

ζ = 1 + γM2
1 (1− φx)− γα⊥1

2
(b2 − 1). (5.96)

Here, ζ ≡ p2/p1 is the ratio of pressures (defined as the shock strength in Problem

2.8), M1 = vx1/cs1 is the upwind Mach number, cs1 =
√
γp1/ρ1 is the upwind

adiabatic sound speed, α⊥1 = a2⊥1
/c2s1 = A⊥1/M

2
1 is the upwind MHD-alpha (first

defined on page 130) relative to B⊥, a⊥1 = |B⊥1 |/√μ0ρ1 is the upwind transverse

Alfvén speed, and A⊥1 = v1/a⊥1 is the upwind Alfvén number relative to B⊥. All
quantities with a subscript ‘1’ are known.

Finally, it is left to Problem 5.18 to show that with some straight-forward

algebra, Eq. (5.86) can be developed to yield,

(ζ − 1)(1 + φx)

γ
− (ζ + 1)(1− φx)− (γ − 1)α⊥1

2
(1 − φx)(b− 1)2 = 0, (5.97)

with no new quantities defined. Equations (5.95)–(5.97) are partial solutions (no

variable has yet been isolated) to the Rankine–Hugoniot jump conditions giving

the jumps in vx, B⊥, and p (variables φx, b, and ζ respectively) in terms of each

other across a shock. Solving these equations for φx, say (as we’ll do starting with

Eq. 5.100 on page 162), the jump in density is then given by:

η ≡ ρ2
ρ1

=
1

φx

, (5.98)

while the jump in �v⊥ can be found from Eq. (5.79):

�v⊥2 − �v⊥1 =
Bx

ρ1vx1μ0
(b− 1) �B⊥1 . (5.99)

Note that in general, �v⊥ is not proportional to ê⊥; the latter indicates the direction
of �B⊥, not �v⊥.12 Thus, Eq. (5.99) tells us that only the component of �v⊥ parallel

to �B⊥ is modified by the shock; the component of �v⊥ perpendicular to �B⊥ remains

unchanged. Note further, with a suitable Galilean transformation (e.g., one in which

�v⊥1 → 0), �v⊥2 can be made proportional to ê⊥; this observation will be relevant

when it comes time to design our MHD Riemann solver in Chap. 6.

12The ⊥ subscript indicates only that �v⊥ and �B⊥ are perpendicular to the x-axis. The actual
direction of each vector may be different.
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Qualitative description of MHD shocks

Before we take the bull by the horns and actually solve Eq. (5.95)–(5.99), there is

much we can learn from a qualitative assessment of Eq. (5.95).

First, note that,

A2
x1
φx =

v 	2x1
μ0ρ1

B2
x

vx2

��vx1

=
vx2μ0ρ2
B2

x

vx2 = A2
x2
,

using Eq. (5.76) for the second equality and where Ax2 is the downwind Alfvén

number relative to Bx. Thus, Eq. (5.95) can be written as:

b =
A2

x1
− 1

A2
x1
φx − 1

=
A2

x1
− 1

A2
x2

− 1
,

and four possible cases present themselves:

1. If both upwind and downwind flows are super-Alfvénic (A2
x1
−1 > 0, A2

x2
−1 >

0), b > 0 ⇒ �B⊥2 ‖ �B⊥1 . Further, since φx < 1 for a physical shock, the

numerator,A2
x1
−1, is greater (more positive) than the denominator,A2

x1
φx−1,

and b > 1. Thus, B⊥ is enhanced and B⊥2 > B⊥1 ≥ 0.

2. If both upwind and downwind flows are sub-Alfvénic (A2
x1
−1 < 0,A2

x2
−1 < 0),

b > 0 (ratio of two negative numbers) and �B⊥2 is still parallel to �B⊥1 . Further,

since φx < 1, the numerator is still greater than the denominator, but this time

because the former is less negative (and therefore smaller magnitude) than the

latter. Thus, in this case, b < 1 ⇒ B⊥ is diminished and 0 ≤ B⊥2 < B⊥1 .

3. If the upwind flow is super-Alfvénic (A2
x1

− 1 > 0) and the downwind flow is

sub-Alfvénic (A2
x2

− 1 < 0), b < 0 and �B⊥ changes sign across J (i.e., �B⊥2

is antiparallel to �B⊥1 ; B⊥2 < 0 if B⊥1 > 0). Since the numerator is greater

than the denominator,

A2
x1

− �1 > A2
x1
φx − �1 ⇒ �

�A2
x1

> �
�A2
x1
φx ⇒ 1 > φx,

satisfying the entropy condition. Whether this possibility enhances or dimin-

ishes |B⊥| cannot be determined from these qualitative arguments.

4. Finally, if the upwind flow is sub-Alfvénic (A2
x1
−1 < 0) and the downwind flow

is super-Alfvénic (A2
x2

− 1 > 0), the numerator is less than the denominator,

A2
x1

− 1 < A2
x1
φx − 1 ⇒ 1 < φx,

violating the entropy condition. This possibility is therefore discarded as un-

physical.

Since the flow speeds for possibility 1 are faster than for possibility 2, the former

is designated a fast shock while the latter a slow shock. For a fast shock, both the

upwind and downwind speeds are super-Alfvénic and B⊥ is enhanced, while for

a slow shock, both the upwind and downwind speeds are sub-Alfvénic and B⊥ is

diminished. For both cases, the sign of �B⊥ is conserved. Thus, possibility 3 seems
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discontinuity vx Δvx Bx Δρ Δ�v⊥ ΔB⊥ Δp

contact = 0 = 0 �= 0 arbitrary = 0 = 0 = 0

tangential = 0 = 0 = 0 arbitrary arbitrary �= 0(1) �= 0(1)

rotational = ax = 0 �= 0 = 0 Δ �B⊥/
√
μ0ρ = 0(2) = 0

fast shock > ax < 0 arbitrary > 0 �= 0 > 0(3) > 0

slow shock < ax < 0 arbitrary > 0 �= 0 < 0(3) > 0

intermediate ≷ ax
(4) < 0 arbitrary > 0 �= 0 �= 0(5) > 0

(1)so that Δ
(
p+B2

⊥/2μ0

)
= 0. (2)direction can change.

(3)direction remains constant. (4)vx1 > ax1 but vx2 < ax2 .
(5)direction flips by 180◦.

Table 5.2. Summary of properties of the six types of discontinuities allowed by

the MHD Rankine–Hugoniot jump conditions.

like an intermediate case, where the upwind speed is super-Alfvénic, the downwind

speed is sub-Alfvénic, B⊥ may be enhanced or diminished, and the sign of �B⊥ is

switched. Accordingly, possibility 3 is referred to as an intermediate shock. Table

5.2 gives a summary of what we have learned qualitatively so far about the six

discontinuities allowed by the MHD Rankine–Hugoniot jump conditions.

A designation scheme for MHD shocks based on the upwind and downwind

flow speeds introduced by Liberman & Velikovich (1986) is depicted in Fig. 5.10.

Here, the fast magnetosonic (af), Alfvén (ax), and slow magnetosonic (as) speeds

introduced in 5.2 (Eq. 5.25–5.23) are used to divide “velocity space” into four re-

gions: region 1 is super-fast; region 2 sub-fast, super-Alfvénic; region 3 sub-Alfvénic,

super-slow; and region 4 sub-slow. In Problem 5.26, you will show that upwind of

a fast shock, the flow speed is super-fast (region 1), while downwind the speed is

sub-fast/super-Alfvénic (region 2). Accordingly, fast shocks are designated as 1 → 2

shocks. Similarly, slow shocks are designated as 3 → 4 shocks, while the remaining

four possibilities (2 → 4, 1 → 4, 2 → 3, 1 → 3) are all intermediate shocks since

each switches the sign of B⊥ (case 3 above). These four flavours of intermediate

shocks are designated respectively as types Ia, Ib, IIa, and IIb (Fig. 5.10).

There is nothing controversial about fast and slow shocks. Both are well studied,

observed extensively in the laboratory, known to be stable (e.g., survive unchanged

when perturbed slightly), and, at least for ideal MHD, perfectly understood math-

ematically.

Intermediate shocks, on the other hand, are a different matter. Even though

they satisfy the entropy condition, many have argued they should be rejected as

unphysical on the grounds they violate something called the evolutionary condition.

Simply put, a physical state is evolutionary if it remains intact when perturbed. In

classical mechanics, a pencil standing on its sharpened tip is certainly consistent

with Newton’s laws of mechanics and yet, because even the slightest vibration in
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Figure 5.10. Liberman–Velikovich designation scheme for MHD shocks based
on the upwind and downwind velocity quartiles spanned by the shock.

the table or gust of air would send it toppling, it is not regarded as a “physically

interesting solution”. It would never occur spontaneously in nature and is considered

non-evolutionary. An example in general relativity is the worm hole. While formally

a solution to Einstein’s field equations, a worm hole collapses to a black hole should

a single photon enter its midst. While technically physical, non-evolutionary states

do not necessarily represent physically interesting solutions.

By many accounts, intermediate shocks are non-evolutionary. Of course, the

motivation to declare them as such is great because with them, the solution to

the MHD jump conditions (and therefore the Riemann problem; next chapter) is

not always unique. It would require additional physics – which at the time of this

writing forms much of the controversy – to determine whether an intermediate shock

is to be inserted as part of a solution, or whether an “ordinary” fast or slow shock

should be used instead. This makes life more complicated. On the other hand, if

intermediate shocks can be rejected as non-evolutionary, the need to search for this

additional physics disappears, and life is made simple again.

There are two “gotchas” to this line of thinking. First, certain numerical sim-

ulations, such as the famous Brio & Wu (1988) Riemann problem depicted in Fig.

5.11, seem to insist on inserting an intermediate shock plus a rarefaction fan where

a slow shock and a rotational discontinuity would do. The analytical solution (lines)

and the ZEUS-3D13 numerical solution (bubbles) agree everywhere except one place

where they disagree qualitatively. In the portion of the domain 1.76 < x1 < 1.91,

the “evolutionary” analytical solution inserts an RD and a slow shock, whereas the

numerical solution inserts a type Ia intermediate shock attached to a slow rarefac-

tion; a so-called slow compound wave. What’s more, it’s not just ZEUS that favours

the intermediate shock. Virtually all numerical codes do the same and, at the time

of this writing, it is still an open question why.

13Rappel : For those interested in examining ZEUS-3D, see footnote 6 on page 77.



Clarke 9781009381475 .tex 161 2/04/2025

161 The MHD Rankine–Hugoniot jump conditions

Figure 5.11. Profile of the transverse magnetic induction, B2 = B⊥, in the
“Brio & Wu problem” showing the ZEUS-3D solution (open circles; one per
zone) and the analytical solution (solid lines) with dashed lines for reference.
The left panel shows the entire computational domain (0 ≤ x1 ≤ 5.5) resolved
with 550 zones showing, from left to right, a left-moving fast rarefaction, a left-
moving intermediate shock with an attached slow rarefaction (ZEUS-3D) or a
left-moving RD followed closely by but not attached to a slow shock (analytical),
a right-moving slow shock, and finally a right-moving fast rarefaction. The right
panel shows the region where the numerical and analytical solutions disagree in
a ZEUS-3D simulation with 20 times the resolution in the left panel. Regardless
of resolution (and thus numerical dissipation), the numerical solution puts a type
Ia intermediate shock at x1 ∼ 1.76 (which changes the sign and magnitude of B2

and takes a super-Alfvénic flow to sub-slow) and attaches to it a slow rarefaction,
forming a compound wave. Conversely, the analytical solution puts an RD at
x1 ∼ 1.76 (which changes the sign but not the magnitude of B2) and a weak
slow shock (which changes the magnitude but not the sign of B2) at x1 ∼ 1.91.
Both pairs of features are consistent with the rest of the solution and thus, with
intermediate shocks allowed, the solution is not unique.

Hada (1994), Markovskii (1998), and Inoue & Inutsuka (2007) all suggest that

dissipation may be key. All numerical codes are slightly dissipative – some more

than others – and these authors suggest that even the slightest amount of dissi-

pation could render some intermediate shocks evolutionary, allowing them to ap-

pear spontaneously in a physical solution. What’s more – and this is the second

“gotcha” – Chao (1995), Feng & Wang (2008), and Feng et al. (2009) claim to have

observational evidence of intermediate shocks in the earth’s magnetosphere.

Therefore, it may end up being that in 100% ideal MHD, intermediate shocks

do not appear spontaneously, whereas with even the slightest amount of dissipation,

they may become physically relevant. Further, dissipation could be that extra bit

of physics to make a solution unique. This is another curio of MHD, by the way, in

which some quantity not being exactly zero – dissipation in this case – can have a

qualitative effect on the solution.

It’s a fascinating subject, and one that will engage people for years. We’ll

certainly not come to any conclusions about intermediate shocks in this text and

after this chapter, we’ll continue without examining them any further.
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Quantitative solution to R-H equations

And now the algebra. Start by using Eq. (5.95) to eliminate b in Eq. (5.96) and

(5.97):

ζ = 1 + γM2
1 (1− φx)− γα⊥1

2

[(
A2

x1
− 1

A2
x1
φx − 1

)2
− 1

]
, and (5.100)

(ζ − 1)(1 + φx)

γ
− (ζ + 1)(1− φx)

− (γ − 1)α⊥1

2

(
A2

x1
− 1

A2
x1
φx − 1

− 1

)2
(1− φx) = 0.

(5.101)

Next, substitute Eq. (5.100) into Eq. (5.101):

M2
1 (1 − φ2x)−

α⊥1

2

[(
A2

x1
− 1

A2
x1
φx − 1

)2
− 1

]
(1 + φx)

− 2(1− φx)− γM2
1 (1− φx)

2 +
γα⊥1

2

[(
A2

x1
− 1

A2
x1
φx − 1

)2
− 1

]
(1− φx)

− (γ − 1)α⊥1

2

(
A2

x1
− 1

A2
x1
φx − 1

− 1

)2
(1− φx) = 0,

(5.102)

and we get our first expression in just one unknown, φx. The first thing to note is:

(
A2

x1
− 1

A2
x1
φx − 1

)2
− 1 =

A4
x1

− 2A2
x1

+ �1−A4
x1
φ2x + 2A2

x1
φx − �1

(A2
x1
φx − 1)2

=
A4

x1
(1− φ2x)− 2A2

x1
(1− φx)

(A2
x1
φx − 1)2

=
M2

1 (1− φx)

(M2
1φx − αx1)

2

(
M2

1 (1 + φx)− 2αx1

)
,

where αx1 =M2
1 /A

2
x1

= a2x1
/c2s1 is the upwind MHD-alpha for Bx. Similarly,

A2
x1

− 1

A2
x1
φx − 1

− 1 =
A2

x1
− �1−A2

x1
φx + �1

A2
x1
φx − 1

=
M2

1 (1− φx)

M2
1φx − αx1

.

Substituting these into Eq. (5.102) and multiplying through by: 2
(M2

1φx − αx1)
2

M2
1 (1− φx)

,

(allowed since 1− φx > 0), we get:

2(M2
1φx − αx1)

2

(
1 + φx − 2

M2
1

− γ(1− φx)

)
− (γ − 1)M2

1α⊥1(1− φx)
2

− α⊥1

(
M2

1 (1 + φx)− 2αx1

)
(1 + φx)

+ γα⊥1

(
M2

1 (1 + φx)− 2αx1

)
(1− φx) = 0.

(5.103)

This is evidently a cubic in φx which, for convenience, I rewrite gathering all like
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powers in φx together with the coefficients simplified as much as practical:

φ3x − φ2x

(
H+ 2

αx1

M2
1

+
γ

γ + 1

α⊥1

M2
1

)

+
φx
M2

1

(
2Hαx1 +

αx1α1

M2
1

− 2− γ

γ + 1
α⊥1

)

− αx1

M4
1

(
Hαx1 +

γ − 1

γ + 1
α⊥1

)
= 0,

(5.104)

where α1 = αx1 + α⊥1 is the upwind MHD-alpha (Eq. 5.30), and where:

H ≡ 1

γ + 1

(
2

M2
1

+ γ − 1

)
.

This is the “hydrodynamical term”, which is all that remains in the limit as �B → 0,

and thus αx1 → α⊥1 → 0. That is, in this limit Eq. (5.104) reduces to:

φx = H, (5.105)

which is Eq. (2.39). The pure HD case seems so simple, now, doesn’t it!

Equation (5.104) gives φx, the jump in longitudinal speed relative to the shock

and the inverse of η, the density jump, completely in terms of the thermodynamics,

γ, the upwind Mach number, M1, and the two upwind MHD-alphas, αx1 and α⊥1 .

There is something very satisfying about this result since it expresses φx so cleanly

and explicitly in terms of the union of all the physics that could possibly affect it.

Being a cubic, Eq. (5.104) admits as many as three independent solutions.

Using a suitable root-finder (e.g., App. D) or the Cardano–Tartaglia formula for a

cubic (App. E), the physical root is the one that is real, and satisfies the entropy and

possibly evolutionary conditions. Imposition of the latter (if we choose to exclude

intermediate shocks) is most conveniently done by requiring b ≥ 0 (Eq. 5.95). With

φx selected, Eq. (5.95) and (5.98) determine b and η respectively. Once b is known,

Eq. (5.96) is used to find ζ while Eq. (5.99) is used to find the jump in �v⊥. This,
then, determines the jumps in all variables, and the shock is specified.

Limits of �B and the “switch-on shock”

An interesting limit of Eq. (5.104) is Bx → 0 (αx1 → 0), where the magnetic

induction is completely transverse to the propagation direction. In this case, we

arrive at the quadratic:

φ2x −
(
H +

γ

γ + 1

α⊥1

M2
1

)
φx − 2− γ

γ + 1

α⊥1

M2
1

= 0, (5.106)

where only the + root gives φx > 0. Thus, Eq. (5.106) admits a unique solution for

φx, and this will correspond to a fast shock. Recall in 5.2.2 it was determined that

in the direction perpendicular to the prevailing magnetic induction, only the fast

wave propagates since in that limit, both the slow and Allfvén speeds go to zero.
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It follows, then, that in the absence of longitudinal magnetic induction, only a fast

shock can be triggered.

An even more interesting limit – because of its hidden surprise – is B⊥1 → 0

(α⊥1 → 0), where the magnetic induction is now completely longitudinal. At first

blush, one might think that since in 1-D, Bx is constant ∀x, t, Bx would act just

like an inert wire running through the fluid. Thus, in this limit, the shock should

simply reduce to the pure hydrodynamical case.

So let’s investigate this. In the limit where α⊥1 → 0 and setting M2
1 = A2

x1
αx1 ,

Eq. (5.104) reduces to:

φ3x − φ2x

(
H +

2

A2
x1

)
+ φx

(
2H
A2

x1

+
1

A4
x1

)
− H
A4

x1

= (φx −H)

(
φx − 1

A2
x1

)2
= 0,

(5.107)

and there are two roots (one doubly degenerate) to this cubic. The first root, φx =

H, is the HD limit (commonly referred to as an Euler shock) which we intuited

above. The second root,

φx =
1

A2
x1

, (5.108)

is a purely MHD phenomenon known as a switch-on shock , so-called because of its

rather surprising property of creating B⊥ seemingly out of nothing! B⊥1 = 0 and

Bx is constant across the shock, yet B⊥2 �= 0. It is left to Problem 5.21 to show that

for a switch-on shock, the strength of the post-shock transverse magnetic induction

is given by:

B⊥2

Bx
≡ b⊥ =

√
(
A2

x1
− 1
)(

γ + 1− 2

αx1

− (γ − 1)A2
x1

)
, (5.109)

and that in terms of b⊥,

ζ = 1 + γM2
1 (1 − φx)− γαx1

2
b2⊥, and (5.110)

�v⊥2 − �v⊥1 =
Bx

μ0M
�B⊥2 =

B2
x b⊥
μ0M ê⊥. (5.111)

Here, ê⊥ is the unit vector giving the direction of �B⊥2 which, as unsatisfying as

it may be, is completely unconstrained by the Rankine–Hugoniot jump conditions

(Eq. 5.76–5.80). Once again, the extreme limits in 1-D MHD lead to puzzling con-

clusions.

We can always bunt, and suggest that the transverse direction is restricted to

the y-direction, in which case ê⊥ = ŷ. But this is a bunt, for there is no escaping

the fact there are two independent orthogonal directions, ŷ and ẑ, and where ê⊥
points in that 2-D subspace is a legitimate question.

As a member of the fast family of waves, a switch-on shock becomes a fast

shock should the upwind perpendicular field differ from zero even infinitesimally.

And, since a fast shock is incapable of rotating the perpendicular component of the
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magnetic induction, ê⊥ should be in the direction of �B⊥1 , however small it may be.

But if we insist on taking B⊥1 to exactly zero – even if just in our imaginations –

then to set ê⊥, all we can resort to is to suggest its direction be determined by the

asymptotic downwind field onto which it must match with rotational discontinuities

being the only possibility of altering its direction along the way.

Failing even that, well then, your guess on ê⊥ is as good as mine.

It is also left to Problem 5.21 to show that switch-on shocks occur only for:

max(1, αx1) < M2
1 <

1

γ − 1

(
αx1(γ + 1)− 2

) ≡ M2
on, (5.112)

where Mon is the maximum Mach number for a “switch-on shock”. The right in-

equality follows from the fact that since φx < 1, Eq. (5.108) ⇒ A2
x1
> 1 and thus

the second factor under the radical sign in Eq. (5.109) must be positive so that

b⊥ ∈ R. Then, since A2
x1
> 1, the “switch-on” shock must be a member of the fast

family of shocks and the left inequality follows by demanding that vx1 > af1 , the

upwind fast speed which, for a longitudinal field, is given by Eq. (5.66).

It is left to Problem 5.22 to show that no value of M2
1 can satisfy Ineq. (5.112)

unless αx1 > 1. Thus, the LHS of Ineq. (5.112) can be replaced with 1 < αx1 . So,

while an Euler shock is always mathematically possible in the limit as B⊥1 → 0,

“switch-on” shocks are allowed only for αx1 > 1 (thus magnetically dominant), and

then only when M1 < Mon. Within this range, both the Euler and “switch-on”

shocks are permitted by the physics, and we are faced with a non-unique solution.

As we shall see, uniqueness can be restored by applying the “evolutionary condition”

to discard one of the possibilities as “physically uninteresting”.

Shock loci, “switch-off shocks”, and “Euler branches”

We now turn to the general solutions for an adiabatic MHD gas (γ = 5/3) depicted

in Fig. 5.12 (αx1 = 0.5) and 5.13 (αx1 = 5.0). In each case, the variables ζ, φx, and

b⊥ are plotted against M1 for the values of α⊥1 indicated in the legends.

Starting with Fig. 5.12 (where αx1 < 1 ⇒ Bx is relatively weak), the left panels

show loci of points corresponding to fast shocks (solid lines) For these, loci of b⊥
start where B⊥2 = B⊥1 , and then rise for increasing M1, consistent with B⊥ rising

across fast shocks. As Problem 5.26 shows, each fast locus starts on a fast point

(where the fast magnetosonic number, Mf1 = vx1/af1 = 1; different for each α⊥1),

and continues indefinitely as M1 → ∞. The combined slow and intermediate shock

loci (dashed lines) are huddled on the left side of the left panels, and shown in better

detail and for additional values of α⊥1 in the right panels of the figure. As is also

shown in Problem 5.26, these begin on a slow point (where the slow magnetosonic

number,Ms1 = vx1/as1 = 1) and end on an Alfvén point (where the Alfvén number,

Ax1 = vx1/ax1 = 1). In the lower right panel, one can see how the slow (solid

lines) and intermediate (dashed lines) shock loci can be distinguished. As noted

previously, slow shocks decrease B⊥ while preserving its sign, while intermediate

shocks change the sign of B⊥.
Given what we know about hydrodynamical shocks (e.g., review Fig. 2.3 in
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Figure 5.12. Solutions to the MHD Rankine–Hugoniot shock jump conditions
for an adiabatic (γ = 5/3) gas with αx1 = 0.5 (weak Bx). Panels from top to
bottom show ζ, φx, and b⊥ (all defined in the text) as a function of upwind
sonic Mach number, M1. The left panels show loci of fast shocks (solid lines)
and slow/intermediate shocks (dashed lines) for α⊥1 = 5, 1, 0.2, and 0 (Euler).
The right panels are essentially a blow-up of the portion of the left panels in
0.2 ≤ M1 ≤ 0.8 showing the “super-loci” (as defined in the text) of slow shocks
(solid lines), intermediate type I shocks (longer dashes), and intermediate type
II shocks (shorter dashes) at values of α⊥1 ranging from 5 (strong B⊥1) to 0.2
(weak B⊥1). Note that where (super-)loci begin and end is determined by the
“entropy condition” which demands that all physical shocks increase the pressure
(ζ > 1) and decrease the speed (φx < 1).

2.2), there is nothing particularly surprising about the fast shock loci in the left

panels of Fig. 5.12. These loci are nestled in such a fashion that as α⊥1 → ∞, each

locus begins at a higher value of M1 (faster fast point) and, as α⊥1 → 0, the loci

tend towards the “Euler” solution (purple�) which is identically the γ = 5/3 HD

shock in Fig. 2.3. Note that the Euler shock locus starts at M1 = 1, as expected for

an HD shock. Since αx1 < 1, no switch-on shock appears in the figure.

In the right panels of Fig. 5.12, we see something new. The loci of slow shocks

(solid lines) begin at the slow point and continue until the Alfvén point where
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b⊥ = 0. From this point, the slow shock loci join continuously with the type I

intermediate shock loci (longer dashes), and these continue until the intermediate

point, where M1 reaches the maximum value it attains along any given shock locus.

Here, the type I loci join smoothly with the type II loci (shorter dashes) which

curve back towards lower M1, ending finally at the Alfvén point which, as shown in

Problem 5.26, corresponds to a rotational discontinuity where B⊥2 = −B⊥1 . Taken

collectively, the types I and II loci form double-valued functions ofM1, starting and

ending on an Alfvén point and reaching an extremity in M1 at the intermediate

point where the transition between type I shocks (2, 1 → 4 where the post-shock

speed is sub-slow like a slow shock) and type II shocks (1, 2 → 3 where the post-

shock speed is super-slow but sub-Alfvénic) occurs. Taken individually, the types I

and II loci are single-valued functions of M1.
14

Evidently, the slow and both types of intermediate shock loci form a single,

continuous, smooth “super-locus” of points, and it is for this reason that intermedi-

ate shocks are generally considered to be part of the slow family of shocks. Indeed,

mathematically there are really just two loci of points per pair of values (αx1 , α⊥1),

namely the fast locus and the super-locus just identified.15 It is only for physical

reasons that we bother subdividing the super-locus into three sub-loci (five, when

types Ib and IIb show themselves as they do for αx1 > 1).

In the top two right panels of Fig. 5.12, note that as α⊥1 → 0, the super-loci

shrink upon themselves and collapse to the Alfvén point at B⊥1 = 0. Thus, as is

true when Bx → 0, there is no slow family of shocks for B⊥1 = 0 when αx1 < 1.

Glancing at the bottom right panel of Fig. 5.12, all super-loci of b⊥ intersect at

b⊥ = 0 and the Alfvén point, where the slow and intermediate type I loci join.

This critical point is known as a switch-off shock, since post-shock the transverse

magnetic induction, B⊥2 (b⊥), is reduced to zero. This is the opposite effect of a

switch-on shock, which manages to produce a non-zero B⊥2 from none.

Turning now to Fig. 5.13 (where αx1 > 1 ⇒ Bx is relatively strong), things

start to get interesting. Again, the left panels show the fast shock loci (with the

slow/intermediate loci suppressed so as not to clutter the plots), and the right panels

show the slow/intermediate shock super-loci.

The super-loci in the right panels bear some resemblance to those in Fig. 5.12

with two important exceptions. First, unlike αx1 < 1 where the super-loci collapses

to the Alfvén point as B⊥1 → 0 (switch-off shock), when αx1 > 1 the slow portion of

the super-loci converge to a locus of points representing slow shocks across which B⊥
remains zero. This is known as the slow Euler branch. Second, notice the domains of

the abscissæ in the left and right panels. While the slow portions of the super-loci

never overlap (in M1) with the fast loci, the intermediate loci do. When αx1 >

1, portions of the intermediate loci are super-fast, and thus overlap the fast loci

providing three possible shock solutions for each value ofM1. Note that these super-

14Technically, the intermediate shocks in the right panels of Fig. 5.12 are type Ia and type IIa;
types Ib and IIb don’t show up here. See footnote 15 for further discussion.

15Note that even the fast locus and slow super-locus join smoothly, but appear separate because
portions of these “hyper-loci” have been omitted on grounds they violate the entropy condition
(Fig. 5.14).
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Figure 5.13. Same as Fig. 5.12, except αx1 = 5 (stronger Bx). Left panels
show loci of fast shocks for α⊥1 ranging from 1 (cs1 = a⊥1 , “equipartition”) to 0
(B⊥1 = 0, Euler) in which the “switch-on” shock (brown ) emerges. The right
panels show the slow (solid lines) and intermediate (dashed lines) shocks for α⊥1

ranging from 10 (strong B⊥1) to 0. Here, the “Euler branch” (brown ) is limited
to its “slow half”, in which the upwind speed is sub-Alfvénic.

fast portions of the super-loci correspond to type Ib (1 → 4; upwind super-fast,

downwind sub-slow) and type IIb (1 → 3; upwind super-fast, downwind super-slow

but sub Alfvénic) intermediate shocks. This behaviour is not seen in Fig. 5.12, and

it is useful to understand its algebraic origin before delving further into the physics.

To this end, examine φx for the case of αx1 = 5 and α⊥1 = 0.1, shown as the

green♦ line in the left panel of Fig. 5.13 and the violet� line in the right panel

where only the portions of the roots declared as physical are shown. Conversely,

Fig. 5.14 shows both the real (solid lines) and imaginary (dashed lines) parts of all

three roots (candidate values of φx) as functions of M1 without any of the physical

constraints applied.

It may take a little staring at the two figures before recognising the portions

of the totality of roots shown in Fig. 5.14 which survive the physical constraints to

warrant inclusion in the middle panels of Fig. 5.13. For αx1 = 5, the Alfvén point

(where Ax1 = 1) is located at M1 = Ax1

√
αx1 =

√
5 ∼ 2.24, precisely where the
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Figure 5.14. Shown are all three roots (root numbering 1, 2, 3 follows con-
vention in App. E) of Eq. (5.104) as a function of M1 for the case αx1 = 5,
α⊥1 = 0.1 (middle panels of Fig. 5.13; green♦ line left, violet
 line right), with
solid/dashed lines representing the real/imaginary parts. Because of the nature
of a cubic, roots are either real or complex conjugates. For the latter, this means
any complex roots come in pairs with the imaginary part of one being the nega-
tive of the other, and the two real parts degenerate. Thus, for M1 � 2.24 (

√
αx1 ,

the Alfvén point), the imaginary parts of roots 2 and 3 are each other’s reflection
through the φx = 0 axis, and only the real part of root 3 can be seen (blue�),
since the plotter plotted root 3 after and thus on top of root 2 (green♦). Similarly
for M1 � 3.18 (intermediate point) where the complex conjugate roots reappear
for roots 1 and 3.

imaginary parts of roots 2 (green♦) and 3 (blue�) converge to the φx = 0 axis.

Thus, for M1 <
√
5, roots 2 and 3 are rejected on the grounds they are not real,

leaving only root 1 (red ) corresponding to the slow shock in Fig. 5.13. Note further

that the slow point, where Ms1 = vx1/as1 = 1, corresponds to M1 ∼ 0.98 (see Eq.

5.125 in Problem 5.23), and that forM1 < 0.98, the real part of root 1 is greater than

1. Thus, based on the entropy condition (second law of thermodynamics requiring

φx < 1), we reject even root 1 for values ofM1 below the slow point where Fig. 5.13

shows no physical shocks of any sort.

For the relatively narrow domain of 2.24 �M1 � 3.18, all three roots are real.

For values of M1 beyond the Alfvén point, root 1 becomes a type I intermediate

shock since, for slow shocks, the pre-shock speed must be sub-Alfvénic. Where the

imaginary parts of roots 2 and 3 converge (Alfvén point), the real parts (green♦ and

blue� solid lines) begin to diverge. As it happens, their value where they diverge is

just over 1 (∼ 1.02) and thus both are rejected by the entropy condition. However,

both roots fall rapidly with M1 – root 3 faster than root 2 – and where root 3 first

falls below 1.0, it corresponds to the type II intermediate shock in Fig. 5.13. At a

slightly greater value of M1 (the fast point, as a matter of fact, where M1 ∼ 2.26;

see Eq. 5.125), root 2 falls below 1.0 and emerges as the fast shock locus in Fig.

5.13 which remains real and physical for all greater values of M1.
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Where the real parts of root 1 (representing a type I intermediate shock) and

root 3 (a type II intermediate shock) join, M1 → ∼ 3.18. This is evidently the

intermediate point (where type I transitions to type II) and thus the downwind

slow point. Thereafter, the imaginary parts of roots 1 and 3 emerge, rendering these

roots no longer physical. Note that with increasingM1, the Alfvén point is where the

imaginary parts disappear, while the intermediate point is where they re-emerge.

Their real parts remain degenerate for all values of M1 beyond the intermediate

point which represents the furthest extent inM1 for the slow super-loci. Note further

that while the Alfvén point is always left of the fast point, the intermediate point

can be either to the left or the right of the fast point. In this case, it is to the

right which means that for the range of M1 between the fast and intermediate

points, there are three physical solutions, as noted above. Incidentally, where the

intermediate solutions occur at the same values of M1 as the fast solution, the

preshock speeds are all super-fast, which makes each of the intermediate shocks of

subtype b (Fig. 5.10). Where intermediate shocks appear before the fast point, the

pre-shock speed is super-Alfvénic and sub-fast, making them subtype a.

To recap, for all values ofM1, the algebra always admits three candidate shock

solutions. Physical shocks are selected as those corresponding to real roots of φx
whose values are between 0 and 1 (entropy condition). This will lead to no solution

for points slower than the slow point and a unique (slow) solution between the slow

and Alfvén points. Then, starting from the Alfvén point, there is at least one (type

I), two (types I and II) or even three (types I, II, and fast) solutions available for each

value ofM1 until the intermediate point. If the intermediate point is before the fast

point, there are two solutions (types I and II) immediately before the intermediate

point and none between it and the fast point. If the intermediate point is beyond the

fast point, there are three solutions between the two points, then a unique solution

(fast) beyond the intermediate point. Lastly, if one were to apply the evolutionary

condition thereby eliminating intermediate shocks, one would always have either a

unique solution (slow or fast) or, in the regions before the slow point and between

the Alfvén and fast points, no shock solution at all.

Returning our attention now to Fig. 5.13, the prominent feature in the left panels

is the switch-on shock locus (brown ), particularly apparent in the lower left panel

of b⊥. It has appeared because αx1 > 1 and exists within the finite range of M1

determined by Ineq. (5.112). As mentioned above, it – together with the Euler shock

locus (cyan×) – is simply a fast shock in the limit as B⊥1 → 0. However, a little

further examination reveals things may not be quite so simple. Notice that over

the range of M1 in which the switch-on shock exists, there also exists part of the

Euler branch and, if both solutions are valid at the same time, the shock locus for

B⊥1 = 0 is double-valued over this part of the domain of M1. Yet, all fast shock

loci, including in the limit as B⊥1 → 0, must be single-valued. So what gives?

Figure 5.15 shows how the complete set of shock loci (in b⊥) in the left panel

tend towards the Euler + switch-on shock configuration in the right panel. The left

panel shows for a progression of ever-decreasing α⊥1 (B⊥1 → 0) the slow shock loci

(long dashes) merging into type I intermediate shock loci (medium dashes) merging
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Figure 5.15. Left panel shows the progression of all MHD shock loci for b⊥ from
α⊥1 = 1 (cs1 = a⊥1 , red ), to α⊥1 = 10−7 (cyan×) for a strong longitudinal
magnetic induction (αx1 = 5, same as Fig. 5.13). Long dashes represent slow
shock loci, medium dashes type I loci, short dashes type II loci, and solid lines
fast loci. On comparing this to the right panel showing the Euler (red ) and
switch-on (green♦) shock loci only (B⊥1 = 0), it becomes clear that the switch-
on branch corresponds entirely to a portion of a fast locus, while the Euler branch
corresponds to three separate shocks, namely fast (right of the switch-on arc),
type I intermediate (within the switch-on arc) and slow (left of the switch-on
arc).

into type II intermediate shock loci (short dashes). There is then a real gap between

where the type II loci end and the fast shock loci (solid lines) begin, with the gap

narrowing for decreasing α⊥1 (B⊥1 → 0). As we saw above, type II intermediate

and fast loci do join, but with points that violate the entropy condition (i.e., where

φx1 > 1).

In addition, as α⊥1 decreases from 1 → 10−7 (red → cyan× in the left

panels of Fig. 5.15), the type I intermediate shock loci (medium dashes) becomes

more horizontal and extend further under the fast shock loci until at α⊥1 = 10−7

(cyan×), the type I locus as one moves to the right just about touches the fast locus

as one moves to the left. Just at the point where they might touch, the type I locus

darts downward yielding to the type II locus (short dashes), while the fast locus

darts upward and continues in a single-valued fashion to form what, in isolation,

might be identified as the switch-on shock locus of points.

In comparing this with the right panel of Fig. 5.15 which shows the Euler (red )

and switch-on (green♦) branches only, it should be clear, now, what corresponds to

what. The Euler locus actually corresponds to three shocks in the limit as B⊥1 → 0.

To the right of the arched switch-on shock locus of points, the Euler branch is a

fast shock; within the arc, a type I intermediate shock; and to the left of the arc, a

slow shock. Finally, the switch-on shock itself is evidently a continuation of the fast

shock portion of the Euler branch.
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In this picture, the portion of the Euler branch within the switch-on shock arc –

the portion that renders the combined Euler+ switch-on solution double-valued –

is as physical or unphysical as a type I intermediate shock. If we are dismissing

intermediate shocks on the grounds of the evolutionary condition, we must also

dismiss this portion of the Euler branch and, as such, the limit of the fast shock as

B⊥1 → 0 is single valued, as expected.

Indeed, the division of the α⊥1 = 0 case into Euler and switch-on branches is

perhaps a confusing and even inaccurate distinction, but one we are probably stuck

with given the historical development of the subject. As we’ve seen, the fast portion

of the Euler branch combined with the switch-on branch is really a single locus of

points corresponding to a fast shock in the limit as α⊥1 → 0 (where M1 > Mon for

the Euler part and
√
αx1 < M1 < Mon for the switch-on part; Ineq. 5.112), with

the remaining portion of the Euler branch (1 < M1 <
√
αx1) belonging to the slow

family of waves and having nothing do to with fast shocks at all.

And with that, we terminate our discussion of intermediate shocks.

Problem Set 5

5.1

a) Derive Eq. Set 8 (page 124 in the text) from the primitive equations of MHD

(e.g., such as those you would have written down for Problem 4.9).

b) Show how Eq. Set 8 may be written in the forms of Eq. (5.8) by determining

the primitive Jacobian.

5.2∗∗

a) Derive Eq. Set 9 (page 125 in the text) from the conservative equations of

MHD (either Eq. Set 6 on page 109 or Eq. Set 7 on page 111).

b) Show how Eq. Set 9 may be written in the forms of Eq. (5.17) by determining

the conservative Jacobian.

5.3∗∗ Find the eigenvalues of the primitive Jacobian matrix, Jp, given by Eq. (5.9)

in the text. If you think your algebra is pretty good, this problem will test that

thesis!

Hint : Finding the eigenvalues of Jp requires finding the determinant of a 7× 7 ma-

trix (with lots of zeros, true, but still . . . ), and solving a seventh-order polynomial.

Without a sensible strategy, this could be a rather daunting task.

On the latter, do not attempt to develop the determinant into a polynomial of the
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form:

au7 + bu6 + · · ·+ gu+ h = 0,

as this will tell you little about the roots. Rather, try to get the expression into the

form:

(u− u1)(u− u2) · · · (u− u7) = 0,

from which the roots can be picked off. You can give yourself an even better algebraic

target if you just think a little about what form the roots will actually have. For

the three HD equations, the roots (wave speeds) were (u − vx), (u − vx − cs), and

(u − vx + cs), where the last two, when multiplied together, have the form [(u −
vx)

2 − c2s ], a difference of squares (page 85 in the text). Guided by this experience,

we might expect the 7× 7 determinant to boil down to an expression of the form:

(u− vx)[(u− vx)
2 − a21][(u − vx)

2 − a22][(u− vx)
2 − a23] = 0,

where a1, a2, and a3 are three wave speeds whose form should become self-evident

as the algebra unfolds.

5.4∗ From Eq. (5.23)–(5.25) in the text, and defining the perpendicular Alfvén

speed as,

a2⊥ =
B2

y +B2
z

μ0ρ
= a2 − a2x,

prove the following identities:

a) afas = csax; (5.113)

b) a2f + a2s = c2s + a2x + a2⊥; (5.114)

c)
(
a2f − c2s

)(
a2f − a2x

)
= a2f a

2
⊥; (5.115)

d)
(
c2s − a2s

)(
a2x − a2s

)
= a2sa

2
⊥. (5.116)

5.5∗ Verify inequalities (5.28) in the text, namely;

as ≤ cs ≤ af ;

as ≤ a ≤ af ;

as ≤ ax ≤ af .

5.6∗ Starting with the primitive 1-D MHD Eq. (5.1)–(5.7) given in the text, derive

the linearised version of these equations, namely Eq. (5.49)–(5.52) assuming Bz = 0.

Why does this process allow us to ignore the linearised continuity equation and the

equation for vz?
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5.7∗ Evaluate the eigenvalues and eigenvectors of the linearised Jacobian matrix

in Eq. (5.54) in the text, and thus verify Eq. (5.59) and (5.60).

5.8∗∗ Consider an MHD atmosphere composed of completely ionised Hydrogen

(75%) and Helium (25%) whose temperature is 105 K. A detector picks up a “loud”

fast magnetosonic wave with an audio spectrum that peaks at 1 kHz. Thirty seconds

later, the detector detects the wind shear associated with the passage of the Alfvén

wave, and another 45 seconds pass before the slow wave is detected. The on-board

magnetometer and directional indicators determine that the waves are propagating

at an angle of 30◦ relative to the magnetic field orientation, which we will assume is

the same where the waves were launched. You may also assume that the atmosphere

is “still”; that is, the detector is in the co-moving frame of the fluid.

a) What is the MHD-alpha (α = a2/c2s ) of the atmosphere? (Hint : You’re going

to end up with a quartic in
√
α! Chin up, nothing the root finder on my

vintage 1981 HP calculator can’t handle!)

b) How far away is the disturbance that launched the waves?

c) What is the peak frequency of the slow wave spectrum?

d) What would the detector detect (including peak frequency, if appropriate) if

the same disturbance were propagating 90◦ relative to the magnetic field?

5.9∗ Verify the expressions in Table 5.1 in the text. The α = 1 entries are exact,

whereas all other entries are derived from the first two non-zero terms of a binomial

expansion of Eq. (5.59) in the text.

5.10∗

a) Show that when α� 1, the ratio of magnetic and thermal pressure perturba-

tions in a slow magnetosonic wave is given by:

p̃B
p̃

= −1 + α cos2θ +O(α2). (5.117)

b) Evidently, as α → 0, p̃B/p̃ → −1. Show that this means in this limit, slow

waves lose their compressional nature. What remains to drive the slow waves?

If nothing else, this problem will test your ability to work with binomial expansions

and to know how many terms one must keep in order to maintain consistent order

throughout your expression.

5.11 Solve Eq. (5.34) in the text, namely,

∂t|q(x, t)〉 + J ∂x|q(x, t)〉 = 0,
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for the shear Alfvén wave using Theorem (3.1), namely,

|q(x, t)〉 =

n∑

i=1

〈li|q̃(ξi)〉|ri〉. Eq. (3.28)

Thus, you will need to find the left eigenvectors as outlined in 3.5.2 to assemble

your solutions.

Discussion: The fact that this route gives you the identical result as Eq. (5.36) –

obtained by integrating the right eigenvectors then applying initial conditions –

may seem a little puzzling. How can these two apparently disparate methods give

mathematically equivalent results?

What’s going on is actually quite subtle. In matrix algebra, taking the inverse is

analogous to a Green’s function approach in solving differential equations. Opera-

tionally, in solving for the proportionality functions w±(x) just before Eq. (5.36) in
the text, one is actually doing the same algebraic manoeuvres one does in taking a

matrix inverse; it’s just a little bit disguised.

Regardless, the lesson here is the following: One can solve a hyperbolic system of n

equations either via the left eigenvectors (and thus one must invert an n×n matrix)

or by integrating the right eigenvectors and applying initial conditions (and thus one

must solve n equations in n unknowns). Each approach gives the identical results.

5.12∗∗ The inset shows initial profiles for vy and By at t = 0 in a 1-D Cartesian

geometry where ∂y = ∂z = 0. In units where μ0 = 1, suppose ρ = 1, Bx = 1, and

let vx = vz = Bz = 0.

a) Using the eigenvalue approach, determine the

profiles of vy and By at time t = h/2.

b) Repeat using the Method of Characteristics, be-

ing sure to include as part of your solution a dia-

gram analogous to Fig. 5.4 in the text.

5.13∗ The inset shows initial profiles for vy and By at t = 0 in a 1-D Cartesian

geometry, where ∂y = ∂z = 0. In units where μ0 = 1, suppose ρ = 1, Bx = 1, and

let vx = vz = Bz = 0.

a) Using the eigenvalue approach, determine the

profiles of vy and By at time t = 1.5.

b) Repeat using the Method of Characteristics, be-

ing sure to include as part of your solution a dia-

gram analogous to Fig. 5.4 in the text.
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Figure 5.16. (Problem 5.14) While characteristic path C− passes through a
region of constant density, C+ passes through two regions of different densities.

5.14∗ Since Eq. (5.41) and (5.42) in the text are the differenced form of Eq. (5.40),

replacing D±
t qy with q∗y − q±y (where q = v or B) is obvious. However, replacing

ρ – which does not appear inside the differential – with ρ± instead of, say, ρ∗ or
1
2 (ρ

∗ + ρ±) is not so obvious.

Consider point * in Fig. 5.16 (aD-type point as defined in Fig. 5.4 in the text). Since

the characteristic path C− is entirely embedded in medium 2 (where ρ = ρ2), there

is no ambiguity in what value should be assigned to ρ in Eq. (5.42): ρ∗ = ρ− = ρ2,

and the use of ρ− in Eq. (5.42) is justified. However, the path C+ passes through

both medium 1 (where ρ = ρ1) and medium 2 (where ρ = ρ2 < ρ1 for the sake of

argument), and it is not so clear what value of ρ should be used along C+ when

applying Eq. (5.41).

We can, however, justify setting ρ = ρ+ = ρ1 in Eq. (5.41) by performing the MoC

in two steps, as shown in Fig. 5.16. Let t′ be an intermediate time between t0 and

t∗ that corresponds to when the path C+ crosses the interface between media 1 and

2. To obtain the values of v∗ and B∗ at t = t∗, one could first evaluate v and B at

points A and B at t = t′. In this case, all four characteristic paths joining t = t0
to points A and B are completely embedded in either medium 1 or medium 2, and

there is no ambiguity in assigning values for ρ in Eq. (5.41) and (5.42). With vA,

BA, vB, and BB evaluated, we then solve Eq. (5.41) and (5.42) once more to find

v∗ and B∗ from paths originating from points A and B, again with no ambiguity

on what values to use for ρ along each of the two characteristic paths originating

from t = t′.

Perform this two-step process to evaluate v∗ and B∗, and show that one gets the

same result as would be obtained had one simply done the one step MoC calculation

directly from t0 to t∗, using the densities at the bases of the characteristics paths

in Eq. (5.41) and (5.42).

5.15∗ In 5.2.1, an Alfvén wave propagating in 1-D Cartesian geometry (∂y = ∂z =

0) along the x-axis was found to “kink” a magnetic field in its wake by adding a
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Figure 5.17. (Problem 5.15) a) Two characteristics paths, C±, emanate from the
same location at t = 0 in the co-moving frame of the fluid (vz = 0) and propagate
in opposite directions at characteristic speeds ±az. b) Two characteristics paths
from different locations at t = 0 converge at the same event at t = t∗. The fact
that the slopes of C± have the same magnitude means that ρ+ = ρ− was assumed.
c) A uniform Bz crosses a density jump at z = 0, with ρ = ρ1 for z < 0 and
ρ = ρ2 for z > 0. At t = 0, the medium with density ρ1 begins to rotate about
the z-axis.

y (and/or z) component to a pre-existing x component. This was referred to as a

shear Alfvén wave.

By contrast, in 1-D cylindrical geometry (“axisymmetry”; ∂r = ∂ϕ = 0), an Alfvén

wave propagating along the z-axis “twists” a magnetic field in its wake by adding a

ϕ-component to a pre-existing z-component describing a torsion Alfvén wave. In this

problem, we’ll examine torsion Alfvén waves using the Method of Characteristics

(MoC) just as we did for shear Alfvén waves in 5.2.1.

a) Show that in axisymmetric cylindrical coordinates with vz = vr = 0, the ϕ

components of the MHD Euler and ideal induction equations reduce to:

∂tvϕ =
Bz

μ0ρ
∂zBϕ; ∂tBϕ = Bz ∂zvϕ. (5.118)

b) Show how Eq. (5.118) can be written as,

D±
t vϕ ∓ 1√

μ0ρ
D±

t Bϕ = 0, (5.119)

where D±
t = ∂t ± az∂z are the Lagrangian derivatives.

Discussion: Since Eq. (5.119) are identical in form to Eq. (5.40) in the text,

their interpretation in terms of characteristic paths follows suit. Thus, as il-

lustrated in Fig. 5.17a, we can think of each event in the present emanating

two characteristic paths into the future, each carrying with it a piece of infor-

mation (a Riemann invariant) regarding vϕ and Bϕ. Alternately, as shown in

Fig. 5.17b, we can think of two characteristic paths originating from different

events in the present converging on some future event at t = t∗. Since a unique

piece of information (Riemann invariants, A±) is transported along each path,

these may be used to solve for v∗ϕ and B∗
ϕ at t = t∗ and, in particular, following
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the reasoning in the text:

v∗ϕ =
1√

ρ− +
√
ρ+

(√
ρ− v−ϕ +

√
ρ+ v+ϕ +

B−
ϕ −B+

ϕ√
μ0

)
; (5.120)

B∗
ϕ =

√
ρ−ρ+√

ρ− +
√
ρ+

(
B−

ϕ√
ρ−

+
B+

ϕ√
ρ+

+
√
μ0

(
v−ϕ − v+ϕ

)
)
, (5.121)

identical in form to Eq. (5.44) and (5.45). You aren’t being asked to derive

these; they are being given here for use in the next part.

c) Figure 5.17c depicts a uniform axial magnetic field Bz = 1 (in units where

μ0 = 1) in cylindrical geometry where the density is given by,

ρ(z) =

{
ρ1 = 16, z < 0;

ρ2 = 1, z ≥ 0.

As usual, all units are arbitrary.

Suppose at t = 0, the denser fluid (z < 0) starts rotating about the z-axis at

angular speed ω = 1; i.e., at r = 1, vϕ = 1. Use the MoC to find the profiles

of vϕ and Bϕ at t = 1 and r = 1, assuming Bϕ = 0 at t = 0.

Your solution should include a diagram similar to Fig. 5.4 in the text showing

pairs of characteristic paths, C±, emanating from the t = 0 axis converging

on various points at t = 1, some of which with both footprints in z < 0, some

with one footprint in z < 0 and one in z > 0, and some with both in z > 0.

This diagram should then show explicitly how the invariants transported along

these paths result in the profiles of vϕ and Bϕ at t = 1, and should include

specific distances (in the arbitrary units of the problem) travelled by the

various wavefronts by that time.

5.16 Consider the rotational discontinuity described in 5.3.4 in the text. What

does the RD become if Bx = 0?

5.17 As an alternative to Eq. (5.86) in the text, show that the energy equation,

Eq. (5.77), can be written as:

γ

γ − 1
Δ(pvx) +

M
2
Δv2x +

1

μ0
Δ
(
vxB

2
⊥
)− B2

x

2μ2
0M

ΔB2
⊥ = 0.

This is similar to the version of the energy equation used by Torrilhon (2003, J.

Plasma Phys., v. 69, p. 253) in his article “Uniqueness conditions for Riemann

problems of ideal MHD”.

5.18

a) Verify Eq. (5.87) in the text.
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b) Show how Eq. (5.97) follows from Eq. (5.86).

5.19 In addition to Eq. 5.104 in the text, a cubic in φx whose coefficients depend

upon the upwind sonic Mach number and the MHD-alphas, show that φx is also

given by the quadratic,
(

2b

b− 1
− αx(γ + 1)− bα⊥(γ + b)

)
φ2x

+

(
−2

b+ 1

b− 1
+ 2αxγ + γα⊥(b+ 1)

)
φx

+
2

b− 1
− (αx + α⊥)(γ − 1) = 0,

(5.122)

whose coefficients depend now upon b – the jump in B⊥ – rather than M2
1 . This

equation will be useful in building the MHD Riemann solver in Chap. 6.

5.20 Show that a slow shock cannot exist if the upwind perpendicular component

of the magnetic field, B⊥1 �= 0 and the downwind Alfvén Mach number, Ax2 = 1

(i.e., the post-shock flow speed relative to the slow shock is the Alfvén speed).

Hints : First, show that if Ax2 = 1, then φxA
2
x1

= 1. Then use Eq. (5.103) in the

text to show that φx = 1, and thus there can be no jump.

5.21∗ For the “switch-on shock”, verify from the text:

a) Eq. (5.109), (5.110), (5.111); and

b) Ineq. (5.112),

5.22

a) Show that no value ofM2
1 can satisfy Ineq. (5.112) in the text unless αx1 > 1.

Thus, to exist, a switch-on shock requires that the longitudinal Alfvén speed

be greater than the sound speed.

b) Therefore, show that for a switch-on shock,

αx1(γ − 1)

αx1(γ + 1)− 2
< φx < 1. (5.123)

5.23 The MHD-alpha relative to the longitudinal magnetic field,

αx =
B2

x

γμ0p
=

a2x
c2s

= M2
A,

can also be interpreted as the square of the ordinary Mach number of the flow at

the so-called Alfvén point (MA), where the flow speed is equal to the longitudinal
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Alfvén speed. In a similar vein, we can define the ordinary Mach number of the fast

point (M+) and the slow point (M−), where the flow speed is equal to the fast- and

slow-speeds respectively. Thus,

M2
+ =

a2f
c2s

= αf and M2
− =

a2s
c2s

= αs, (5.124)

defining the fast and slow MHD-alphas, αf,s, in analogy with αx.

Show that,

M2
± = αf,s =

1

2

(
α+ 1±

√
(α + 1)2− 4αx

)

=
1

2

(
α+ 1±

√
(α − 1)2+ 4α⊥

)
,

(5.125)

where α = a2/c2s = B2/γμ0p, as originally defined on page 130 of the text.

5.24 In all the discussion surrounding Fig. 5.15 in the text of what portions of the

Euler and switch-on branches correspond to the fast, type I, and slow loci, did it

occur to you there was no mention of the type II locus? In the left panel of Fig. 5.15

and for α⊥1 = 10−7 (cyan), the type II locus looks to be a reflection through the

b⊥ = 0 axis of the portion of the fast shock locus that corresponds to the switch-on

shock in the limit of α⊥1 → 0. But the right panel shows no analogue of the type

II shock locus. Where did it go?

I’m looking for a semi-quantitative, or even qualitative answer here. Your dis-

cussion might touch on things such as the double degeneracy of the switch-on shock

root (Eq. 5.108) in Eq. (5.107), and what it means for B⊥ to change sign across a

shock when the pre-shock value is zero.

5.25∗ When writing the program necessary to generate Fig. 5.12, 5.13, and 5.15

in the text, I found that Eq. (5.95),

b =
A2

x1
− 1

A2
x1
φx − 1

,

was problematic in the limit as α⊥ → 0. For the asymptotic switch-on solutions

where φx → A−2
x1

, the denominator becomes dominated by machine round-off error

and starts to yield intolerably inaccurate values for b. When such things occur, a

good computational scientist will search for alternate forms for the expression that

is giving numerical round-off problems, even if that expression ends up being more

cumbersome.

a) Starting with Eq. (5.96) and (5.97) in the text, show that:

b = (γ − 1)ξ ±
√[

(γ − 1)ξ − 1
]2

+ 2ξA2
⊥1

(γ + 1)(φx −H), (5.126)

where ξ =
1− φx
2φx

, and the remaining symbols are as they are used in the

text.
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b) For what values of φx might you expect machine round-off errors to be prob-

lematic for Eq. (5.126)? Thus, explain how one can use Eq. (5.95) and (5.126)

in tandem to yield reliable values for b for all values of φx.

c) How might one determine which of the two roots should be used in Eq. (5.126)?

5.26∗

a) Using the entropy condition (i.e., φx ≤ 1), show that for a fast shock, the

upwind speed must be greater than the fast speed, whereas for a slow shock,

the upwind speed must be greater than the slow speed.

Hint : You might start with Eq. (5.104) and set φx = 1 to find the critical

Mach numbers which should correspond to the Mach numbers at the Alfvén,

fast, and slow points given in Problem 5.23.

b) Prove that type II intermediate shock loci (e.g., the short-dashed portions of

the super-loci on the right panels of Fig. 5.12 and 5.13 in the text) end on a

rotational discontinuity.

Hint : Consider using Eq. (5.126) from Problem 5.25.

5.27∗ Consider the shock loci in b⊥ for αx1 = 5 and α⊥1 = 1 (and thus α1 = 6)

in the left panel of Fig. 5.15 in the text (red lines). State the criterion needed to

determine and then calculate to four significant figures the values of M1 at which:

a) the slow shock locus begins;

b) the slow shock locus ends and the type Ia intermediate shock locus begins;

c) the type Ia intermediate shock locus ends and the type Ib intermediate shock

locus begins;

d) the type Ib intermediate shock locus ends and the type IIa intermediate shock

locus begins (for this part, just state the criterion and then estimate the value

of M1 from Fig. 5.15 in the text; I have yet to find a way to calculate M1 for

the intermediate point!);

e) the type IIa intermediate shock locus ends and the type IIb intermediate shock

locus begins;

f) the type IIb intermediate shock locus ends.

g) the fast shock locus begins.

h) What solutions, if any, exist between where the type IIa shock locus ends and

the fast shock locus begins? If there are no solutions, why not?

i) On a b⊥ vs. M1 graph, draw by hand with some attention to accuracy the
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slow-family super-locus and the fast locus indicating clearly where each of the

six shock loci begin and end.

You may use any of the results in the text as you like, including from other problems

in this problem set.

5.28

a) Show that b⊥ =
√
α⊥1/αx1 ≡ b⊥0 at the beginning of both the slow and fast

shock loci (i.e., at the slow and fast points respectively where φx → 1).

b) At the end of the slow super-locus (i.e., at the end of the type IIa intermediate

shock locus) where Ax1 → 1 and φx → 1, show that b⊥ = −b⊥0 .

Hint : For part a), you might want to start by considering Eq. (5.95) in the text,

whereas for part b), Eq. (5.126) from Problem 5.25 might be more suitable.
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You don’t really understand something until you can compute it.

Michael L. Norman
computational astrophysicist

6.1 Overview

Hands down, the trickiest software I have ever written in my forty years of

scientific programming is my program to solve the MHD Riemann problem.

It’s a venture with zero-divides and near-zero divides around every corner, including

the usual and relatively simple-to-solve problems in scalar equations where the

denominator gets too close to zero, as well as the much more vexing matrix-vector

equations where rows of the Jacobian become zero or near-zero, rendering the matrix

equation insoluble or nearly insoluble (i.e., dominated by round-off error). All of

these challenges present themselves to those who dare tread forward!

On the plus side, nothing has sealed my own understanding of MHD as has the

experience of writing an exact MHD Riemann solver. Anyone with serious aspira-

tions of understanding the 1-D MHD problem needs to go through this exercise.

And so let’s start with an intuition booster. The precept of the Riemann prob-

lem is simple enough. As we did in Chap. 3 and as shown in Fig. 6.1, we start with

a left and right state where one state is set completely independently of the other.

Before t = 0, the two states are separated by an impenetrable diaphragm, D, with

one state knowing nothing of the other. Then, at t = 0 the diaphragm is removed,

and suddenly the two states can interact. One state forces its way into the other

and yet somehow, at any given time t, one must still be able to get from the left

state to the right via a unique set of allowed MHD transitions. The question is, how

do we determine these transitions?

Let’s approach this by considering a “building block” example, as depicted in

Fig. 6.2. I’m thinking of the wooden BrioTM1 train sets my kids and I used to play

with when they were little. As shown in panel a, suppose there is a vertical gap

between A and B that needs to be spanned, and we may do so only with the pieces

that come in our set. We’ll allow ourselves the latitude of positioning A and B

1It should not be lost on the reader that this train set analogy pays homage to one of the seminal
papers applying the Riemann problem to computational MHD, namely Brio & Wu (1988).

183
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Figure 6.1. Initial set up for the 1-D MHD Riemann problem. At t = 0, the
diaphragm, D, is removed, and the two left- and right-states interact with an
arbitrary jump in (possibly) all flow variables at D as initial conditions.

horizontally as needed, but their vertical displacement must remain fixed. Suppose

further that our BrioTM pieces – to carry on with the analogy – come in a variety

of connectors and colours. Standard BrioTM pieces are made of maple or birch, and

thus light brown with round male–female track connectors at each end. Let’s suppose

our set comes in four different colours (with just one side of each piece painted), and

that all red pieces have a round male and triangular female connector (panel b),

all green pieces have a triangular male and rectangular female connector (panel c),

and all blue pieces have a rectangular male and pentagonal female connector (panel

d). Meanwhile, there is only one black piece, with two male pentagonal connectors

(panel e). Further, the red and blue pieces come as flats, ramps, and jumps with

the ramps and jumps coming in an assortment of heights, the green pieces come in

flats and jumps, and the one black piece is flat. As an added wrinkle, all red ramps

go down from the male connector while all red jumps go up, opposite to the blue

Figure 6.2. The “BrioTM train track Riemann problem”; see text for description.
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pieces where the ramps go up and the jumps go down from the male connector.

Green jumps go up or down. Finally, in whatever configuration we come up with to

connect A and B, all coloured sides must be face up.

OK, that’s what we have and those are the rules. Now let’s play!

The first thing to notice is that owing to the shapes of the connectors on each

piece, to get from A to B we’ll need to arrange the pieces in a specific order. Starting

from A, we’ll need a red piece, then a green, blue, black, blue, green, and finally a

red piece to attach to B. So a first step would be to separate the pieces by colour.

Now comes the harder part where we have to – presumably by trial and error –

start fitting pieces to see what combination gets us contiguously from A to B with

all connectors joining flatly. It may be that the manufacturer was clever enough to

make it so that for any given height difference between A and B, one and only one

set of pieces will, in aggregate, span the jump (e.g., panel f in Fig. 6.2). Or perhaps

there are numerous solutions, or maybe even none.

The BrioTM game just described is almost a perfect analogy to the 1-D MHD

Riemann problem considering just one of the components of B⊥, By say. If the

vertical distance represents the value of By (positive or negative), then the red pieces

are the fast waves coming as either rarefaction fans (ramps) or shocks (jumps), the

green pieces are the rotational discontinuities, the blue pieces are the slow waves

also coming as rarefaction fans or shocks, and the black piece is the contact across

which By is constant. The real problem, of course, is much more complicated than

this since we have not just one gap to fit, but seven – one for each of the variables

ρ, p, vx, vy, vz , By, and Bz – where each piece chosen for By, say, dictates which

piece must be used for each of the other variables. Thus, finding one set of pieces

to span the By gap doesn’t necessarily mean the accompanying pieces for ρ, p, etc.,

will span their gaps. This is starting to look a bit like a 7-D Rubik’s cubeTM!

And so, with that bit of discouragement, let’s get started!

6.2 Non-linear MHD waves

From the discussion in 5.3, we’re familiar with the MHD discontinuities (contacts,

RDs, fast and slow shocks) mentioned in the BrioTM example. All that remains

to work out before tackling the MHD Riemann problem directly are the profiles

across the fast and slow rarefaction fans (RF). Now, from our discussion in 3.5.3

on the hydrodynamical Riemann problem, we know – at least in principle – how to

determine these. Starting from Eq. (3.24), namely,2

Jp|q′p〉 = ui|q′p〉,
where |q′p〉 is the derivative of the ket of primitive variables with respect to its

argument (ξi = x−uit) and Jp is the primitive Jacobian matrix (both defined in Eq.

2Rappel : This is the fifth time we’ve seen and used this equation, the last time being Eq. (5.55)
in 5.2.2.
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5.9), we found the seven eigenvalues (characteristic speeds) of Jp to be ui = vx±af ,
vx ± ax, vx ± as, and vx, where af , ax, and as are the fast, Alfvén, and slow speeds

given by Eq. (5.23)–(5.25). Thus, across each wave, |q′p〉 is proportional to one of

the right eigenvectors (eigenkets) of Jp, namely |ri〉, and, as given in Eq. (3.35),

|q′p(ξi)〉 = wi(ξi)|ri〉,
where wi is an arbitrary proportionality or scaling function of the co-moving coor-

dinate, ξi. As we did in 3.5.3, define dsi = wi(ξi)dξi as a differential of a generalised

coordinate, si, that varies from 0 on the upwind side of the i-wave to si,d on the

downwind side which can be thought of as the “width” or “strength” of the rarefac-

tion fan. Then,

d|qp(si)〉
dsi

= |ri〉, (6.1)

gives us a set of seven coupled, first-order ODEs which we integrate through to its

width, si,d, to find the profiles (in terms of si) of each primitive variable across the

i-wave.

And thus we can delay no longer finding the eigenkets of Jp!

6.2.1 Fast and slow eigenkets

The eigenkets of interest here are those associated with eigenvalues vx ± af and

vx±as respectively, as these describe the fast and slow rarefaction fans. The Alfvén

and entropy eigenkets (those associated with eigenvalues vx±ax and vx) correspond

to the Alfvén and entropy waves, both typically discontinuous in some of the flow

variables and thus better handled by the conservative equations (e.g., 5.3.2–5.3.4).

Further discussion of these is relegated to Problem 6.1.

Starting with the left-moving fast wave with wave speed u1 = vx − af , the

associated eigenket, |r1〉 = |r−f 〉, is found by solving the matrix equation (again, see

Eq. 5.9 for Jp),

(Jp − u1I)|r1〉 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

af 0 ρ 0 0 0 0

0 af γp 0 0 0 0

0 1/ρ af 0 0 By/μ0ρ Bz/μ0ρ

0 0 0 af 0 −Bx/μ0ρ 0

0 0 0 0 af 0 −Bx/μ0ρ

0 0 By −Bx 0 af 0

0 0 Bz 0 −Bx 0 af

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r11
r12
r13
r14
r15
r16
r17

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0,

which yields seven linear equations, one of which is redundant. So let’s try ignoring

the third one (if for no other reason, because it has the most number of terms), and

write:
afr11 + ρr13 = 0; (6.2)

afr12 + γpr13 = 0; (6.3)
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afr14 − Bx

μ0ρ
r16 = 0; (6.4)

afr15 − Bx

μ0ρ
r17 = 0; (6.5)

Byr13 −Bxr14 + afr16 = 0; (6.6)

Bzr13 −Bxr15 + afr17 = 0. (6.7)

As r13 appears more often than any other component, let’s use that as the pivot

(scaling factor). Then, Eq. (6.2) and (6.3) give:

r11 = − ρ

af
r13; r12 = −γp

af
r13,

and multiplying Eq. (6.4) by Bx/af and adding Eq. (6.6) gives:

−a
2
x

af
r16 +Byr13 + afr16 = 0 ⇒ r16 = − afBy

a2f − a2x
r13. (6.8)

Similarly, Eq. (6.5) and (6.7) yield:

r17 = − afBz

a2f − a2x
r13. (6.9)

Finally, substituting Eq. (6.8) and (6.9) into Eq. (6.4) and (6.5) respectively gives

us:

r14 = − Bx

μ0ρ

By

a2f − a2x
r13 and r15 = − Bx

μ0ρ

Bz

a2f − a2x
r13.

Bringing these results together, the “minus fast eigenket” is,

|r−f 〉 = ψf

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ρ
−γp
af

− Bx

μ0ρ

af
a2f − a2x

By

− Bx

μ0ρ

af
a2f − a2x

Bz

− a2f
a2f − a2x

By

− a2f
a2f − a2x

Bz

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6.10)

where ψf ≡ r13/af is a “scaling factor” which we’ll choose for convenience.

Evidently, the “plus fast eigenket” must be identical to Eq. (6.10) with −af →
+af , and the slow eigenkets are just the fast eigenkets with f → s. Thus, we have
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for the four fast and slow eigenkets:

|r±f,s〉 = ψf,s

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ρ
−γp
∓af,s

± Bx

μ0ρ

af,s
a2f,s − a2x

�B⊥

− a2f,s
a2f,s − a2x

�B⊥

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= ψf,s

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ρ
−γp
∓af,s

±sgn(Bx)
ax af,s a⊥
a2f,s − a2x

ê⊥

−√
μ0ρ

a2f,s a⊥
a2f,s − a2x

ê⊥

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6.11)

where the last four components have been combined into two 2-D vectors ∝ �B⊥ =

(0, By, Bz), and where ax = |Bx|/√μ0ρ, sgn(Bx) = Bx/|Bx|, a⊥ = | �B⊥|/√μ0ρ, and

ê⊥ = �B⊥/| �B⊥|.
While that may have seemed straight-forward enough, the kicker is the denom-

inator in the components proportional to �B⊥ (ê⊥). Because the 1-D MHD equations

are not strictly hyperbolic, their eigenvalues can, at times, be degenerate. In par-

ticular, we’ve already seen (e.g., Eq. 5.66) that if �B⊥ = 0 and ax > cs, af = ax
and the components ∝ ê⊥ for the fast eigenkets blow up. Similarly, for �B⊥ = 0 and

ax < cs, as = ax and the components ∝ ê⊥ for the slow eigenkets blow up.

Oops.

Our salvation are the scaling factors ψf,s, which we choose not so much to

normalise |r±f,s〉 (which we can’t anyway since the components have different units),

but to render all singularities removable. It turns out our choices are rather limited

since, in addition, ψf,s must be chosen such that no eigenket is zeroed out. By what

has to be described as a stroke of genius and what we’ll spend the next few pages

justifying, those introduced by Roe & Balsara (1996) and used by Takahashi &

Yamada (2014) are:

ψf =

√
c2s − a2s
a2f − a2s

and ψs =

√
a2f − c2s
a2f − a2s

. (6.12)

The reader might wonder why the more “obvious” choice of, say, ψf,s = a2f,s − a2x
might not be preferred. However, it doesn’t take too long to realise that this would

result in |r±f,s〉 = 0 for B⊥ = 0, which would mean no wave at all.

The mathematics of MHD rarefaction fans is littered with landmines (i.e., zero-

divides or, when it comes time to do the programming, near zero-divides) which

can confound even the most seasoned algebraist. In my experience, the cleanest

approach is to express everything in terms of the MHD-alphas, and then to use

the various identities among them to eliminate all differences in the denominators

where singularities can occur.

So to start, let’s recast the four identities among the speeds af , as, ax, a⊥, and
cs as listed in Problem 5.4 (Eq. 5.113–5.116), in terms of the MHD-alphas:

afas = csax ⇒ a2f
c2s

a2s
c2s

=
a2x
c2s

⇒ αfαs = αx; (6.13)

a2f + a2s = c2s + a2x + a2⊥ ⇒ αf + αs = 1 + αx + α⊥; (6.14)
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(
a2f − c2s

)(
a2f − a2x

)
= a2f a

2
⊥ ⇒ (αf − 1)(αf − αx) = αfα⊥; (6.15)

(
c2s − a2s

)(
a2x − a2s

)
= a2sa

2
⊥ ⇒ (1− αs)(αx − αs) = αsα⊥. (6.16)

Here, αf,s are the fast and slow alphas, first introduced in Problem 5.23 (Eq. 5.124).

Next, examine the fast eigenkets which, from Eq. (6.11), we can write as:

|r±f 〉 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ψfρ

−ψfγp

∓ψfaf

±sgn(Bx)χf cs
ax
af
ê⊥

−χf cs
√
μ0ρ ê⊥

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6.17)

where, in terms of the MHD-alphas, ψf (Eq. 6.12) and χf are given by:

ψf =

√
1− αs

αf − αs
; χf = ψf

a2f
a2f − a2x

a⊥
cs

=

√
1− αs

αf − αs

αf

αf − αx

√
α⊥. (6.18)

Then, since csax = afas (Identity 6.13), and cs
√
ρ =

√
γp, we may write Eq. (6.17)

in its most compact form:

|r±f 〉 =

⎡

⎢⎢⎢⎢⎢⎢⎣

−ψfρ

−ψfγp

∓ψfaf

±sgn(Bx)χf as ê⊥
−χf

√
μ0γp ê⊥

⎤

⎥⎥⎥⎥⎥⎥⎦
. (6.19)

Now, ψf and χf are much more tightly coupled than Eq. (6.18) appears to

suggest. Squaring χf and using identity (6.15), we get:

χ2
f =

1− αs

αf − αs

α2
f

(αf − αx)2
α⊥ =

1− αs

αf − αs



α
2
f (αf − 1)2



α
2
f α	

2
⊥

��α⊥

=
αf − 1

αf − αs

(1− αs)(αf − 1)

α⊥
=

αf − 1

αf − αs
(αf − 1− αsαf︸︷︷︸

αx

+αs

︸ ︷︷ ︸
��α⊥

)
1

��α⊥
,

using identities (6.13) and (6.14). Thus,

χ2
f =

αf − 1

αf − αs
= ψ2

s (Eq. 6.12)

=
αf − αs + αs − 1

αf − αs
= 1− 1− αs

αf − αs
= 1− ψ2

f .

Not only is χf = ψs, χf and ψf are related to each other in the same way as sine

and cosine! Problem 6.2 completes the symmetry of these factors by showing that,

χs ≡ ψs
a2s

a2x − a2s

a⊥
cs

= ψf , (6.20)
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and thus ψ2
s + χ2

s = 1 as well.

So, let’s use these relationships to simplify the notation further by setting

μ = ψf = χs, ν = χf = ψs (and thus μ2 + ν2 = 1)3 and bring the fast and slow

eigenkets to our final form:

|r±f 〉 =

⎡

⎢⎢⎢⎢⎢⎢⎣

−μρ
−μγp
∓μaf

±sgn(Bx) ν as ê⊥
−ν√μ0γp ê⊥

⎤

⎥⎥⎥⎥⎥⎥⎦
; |r±s 〉 =

⎡

⎢⎢⎢⎢⎢⎢⎣

−νρ
−νγp
∓νas

∓sgn(Bx)μaf ê⊥
μ
√
μ0γp ê⊥

⎤

⎥⎥⎥⎥⎥⎥⎦
. (6.21)

It remains, then, to settle on a final form for the scaling factors μ and ν and to

demonstrate that their apparent singularities are, in fact, removable. As given by

Eq. (6.18), μ (ψf) has a singularity (but, as we’ll see, removable) at αf = αs which

happens only at the so-called triple umbilic where α⊥ = 0 and αx = 1 (and thus

αf = αx = αs = 1; that is, the fast, Alfvén, and slow speeds are triply degenerate).

If, for convenience, we let,
δx = αx − 1, (6.22)

(and thus δx ≷ 0 for αx ≷ 1), then the singularity in μ occurs when both α⊥ and

δx are zero.

By necessity, the MHD Riemann solver we’ll design will be semi-analytic. Thus,

its reliance on a computer means that even a removable singularity will trigger a

zero-divide at the triple umbilic, and we must therefore remove it manually. To do

this, it is most convenient to express μ in terms of α⊥ and δx, those quantities which

when simultaneously zero cause the singular behaviour.

Starting with the definition of the slow speed (Eq. 5.23),

a2s =
1

2

(
c2s + a2 −D

)
=

1

2

(
c2s + a2x + a2⊥ −D

)
, (6.23)

where the discriminant, D, is given by,

D =

√(
c2s + a2x + a2⊥

)2 − 4c2sa
2
x,

we have,

αs =
a2s
c2s

=
1

2

(
1 + αx + α⊥ − d

)
, (6.24)

where,

d ≡ D

c2s
=

√(
1 + αx + α⊥

)2 − 4αx =

√(
α⊥ + δx

)2
+ 4α⊥, (6.25)

after a little algebra. This, incidentally, is the most robust form for d one can use for a

computer application, since there are no subtractions under the radical. Computers,

being of finite precision, can often subtract what ought to be equal values and end

up with a small residual of “round-off noise” which can be negative as often as

3Don’t confuse μ with μ0!!
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Figure 6.3. Profiles of the fast and slow eigenket “scaling factors”, μ (left; Eq.
6.26) and ν (right; Eq. 6.27) as functions of αx = δx+1, shown for various values
of α⊥, including the limiting case of α⊥ = 0 (red ) where μ and ν are step
functions with the discontinuity at αx = 1 (δx = 0), the triple umbilic.

not. Under a radical sign, this would trigger a “floating point exception” or worse,

the dreaded “NaN” (“not a number”) error messages that cause the program to

crash, often without any indication of where the first NaN occurred! Further, even if

the difference is not purely round-off noise, subtracting two nearly equal numbers

can yield results significantly less precise than the stated precision of the machine.

Conversely, adding positive quantities suffers no such loss of machine accuracy.

Continuing from Eq. (6.24), we have,

αs =
1

2

(
2 + δx + α⊥ − d

)
= 1 +

1

2

(
δx + α⊥ − d

)

⇒ 1− αs =
1

2

(
d− δx − α⊥

)
.

Noting that αf − αs = d, we arrive at our final forms for μ and ν:

μ2 = 1− ν2 =
1− αs

αf − αs
=

1

2

(
1− δx + α⊥

d

)
; (6.26)

ν2 = 1− μ2 =
αf − 1

αf − αs
=

1

2

(
1 +

δx + α⊥
d

)
, (6.27)

with d given in terms of δx and α⊥ by Eq. (6.25).

Figure 6.3 shows μ and ν as functions of αx = δx + 1 for various values of α⊥,
including the limiting case (red ) where α⊥ = 0 (B⊥ = 0). The fact that μ2 (and

thus μ) should be a step function when α⊥ = 0 is easy to see from Eq. (6.25) and

(6.26). Setting α⊥ = 0,
d =

√
(δx)2 = |δx|

⇒ μ2 =
1

2

(
1− δx

|δx|
)

=

⎧
⎨

⎩
1, δx < 0, (αx < 1);

0, δx > 0, (αx > 1),
(6.28)
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which is the red profile in the left panel of Fig. 6.3. Evidently, the step function

is reversed for ν2 = 1 − μ2 (0 for αx < 1, 1 for αx > 1), as the red profile in the

right panel shows.

The fact that μ and ν remain finite everywhere means that the apparent sin-

gularity at the triple umbilic (when αf = αs in Eq. 6.26) is removable; that is, μ2

remains finite as αf → αs (when both α⊥ and δx are zero). To find that limiting

value, we first set δx = 0 in Eq. (6.25) and (6.26) to get:

lim
δx→0

μ2 =
1

2

(
1− α⊥√

α2
⊥ + 4α⊥

)
=

1

2

(
1−
√

α⊥
α⊥ + 4

)
→ 1

2
, (6.29)

as α⊥ → 0. Similarly, ν2 → 1
2 as δx, α⊥ → 0.

This completes the justification of the scaling factors, ψf,s, chosen in Eq. (6.12).

6.2.2 Fast and slow rarefaction fans

Part of the job of the Riemann solver is to integrate Eq. (6.1) using the kets in

Eq. (6.21) to find the primitive variable profiles across any rarefaction fan that may

be part of the solution. However, without doing the actual integrations, we can

determine qualitative properties of the fast and slow fans just by examining the

kets as differential changes in the variables.

Assuming for now that Bx �= 0 (αx > 0), let’s start by examining the first three

components of each ket. Other than the factors μ and ν, these are identical to the

purely hydrodynamical kets in Eq. (3.34), with cs replaced with the appropriate

wave speed. So, for the moment, let’s set B⊥ (and thus α⊥) to zero so that for

αx < 1, μ = 1 and ν = 0 (Fig. 6.3). This makes the fast kets identical to the hydro-

dynamical kets for which, in 3.5.3, we concluded that density and pressure decrease

from the upwind to downwind side of the fan, while the flow speed relative to the

upwind state increases. A similar comparison between the slow and hydrodynamical

fans may be made for αx > 1 where ν = 1 and μ = 0.

Noting from Fig. 6.3 that the primary effect of increasing α⊥ from zero is to

round off the discontinuities in μ and ν without changing their monotonic depen-

dence on αx, we conclude that ρ and p should decrease across any RF while the

flow speed relative to the upwind state increases. Thus, at least qualitatively, the

hydrodynamical variables ρ, p, and vx behave the same way across a fast and slow

fan as they do across a hydrodynamical fan.

A consequence of p dropping across an MHD fan is that αx = a2x/c
2
s =

B2
x/(μ0γp) rises. This is an important observation that holds for any MHD RF.

Note that αx rises only because p falls; in a 1-D problem such as this, Bx is strictly

constant. Thus, one can gain a qualitative feel for how μ and ν vary across a fan –

quantities critical to determining the variable profiles from Eq. (6.1) – by scanning

across Fig. 6.3 from left to right.

The last component in each ket in Eq. (6.21) governs the profiles of B⊥, and it is

here where the properties of the fast and slow fans diverge. For the fast fan, the last

component, −ν√μ0γp, is negative – just like the first two components governing the
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density and pressure profile – and B⊥ falls across a fast RF when ν �= 0. Conversely,

the last component in the slow ket, μ
√
μ0γp, is positive, and B⊥ rises across a slow

fan so long as μ �= 0.

Fast fans

As the magnitude of a vector, B⊥ is positive definite and cannot become negative.

This means that a fast fan can saturate, and its “width” in terms of its generalised

coordinate, si, is limited to where B⊥ falls to zero (si,max). A fast fan need not be

wide enough to allow B⊥ to fall to zero but, when it does, it is referred to as a –

you guessed it – switch-off fan.

If B⊥ = 0 on the upwind side, there are two scenarios for a fast fan. First, for

αx ≥ 1 upwind of the fan, ν = 1 (12 for αx = 1) and, since αx increases across the

fan, ν remains pegged at 1 (Fig. 6.3). This obliges B⊥ to decrease across the fan

which it can’t do starting as it does from zero on the upwind side. We conclude,

therefore, that a fast RF cannot be launched from an upwind state in which B⊥ = 0

and α ≥ 1. This, by the way, includes the triple umbilic (B⊥ = 0, αx = 1).

Second, for αx < 1, ν = 0 and both B⊥ and v⊥ remain constant. Thus, B⊥
can stay at zero (not being obliged to fall in this case) and, with μ = 1 and af =

cs, the hydrodynamical variables ρ, p, and vx vary just as they do across a pure

hydrodynamical fan. Such a fan is referred to as a fast Euler fan, where the moniker

“Euler” is used just as it is for shocks when B⊥ = 0 (page 164). Note that a fast

Euler fan can also saturate since αx – which starts < 1 and then rises across the

fan – cannot rise beyond unity lest ν go from 0 to 1, obliging B⊥ – already at 0 –

to start decreasing. Thus, a fast Euler fan cannot pass through the triple umbilic.

Let us summarise what we now know about fast fans. Across any fan, fast or

slow, ρ and p fall while vx and αx rise. Across a fast fan, B⊥ falls and the fan can

only be as wide as it takes for B⊥ to get to zero. If B⊥ > 0 upwind of a fast fan

and reaches zero on the downwind side, it is referred to as a “switch-off fan”. If

the upwind B⊥ is already zero, then no fast fan can exist for upwind αx ≥ 1 (since

this would require B⊥ to fall below zero), while for upwind αx < 1, a fast Euler fan

(where B⊥ starts and remains at zero) can exist, saturating should αx reach unity

(the triple umbilic).

Slow fans

For slow fans, the roles of μ and ν are reversed. Changes in the hydrodynamical

variables are governed by ν (μ for fast fans), and changes in the magnetic variables,

v⊥ and B⊥, are governed by μ (ν for fast fans). Further and as already noted, B⊥
rises across a slow fan when μ > 0, which leads to very different conclusions from

those of the fast fan.

Slow fans don’t saturate in the same way fast fans do; rather, they asymptote

to the point where ρ and p approach zero without ever actually reaching it. Since

B⊥ rises from its upwind value across a slow fan, B⊥ approaches an asymptotic

limit as p→ 0, a value which can be determined only by integrating Eq. (6.1).
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Figure 6.4. Profiles of B⊥ (in units where μ0 = 1) as functions of the generalised
coordinate for the 3-family wave, s3, across switch-on (slow) fans for 0 < αx < 1.
Profiles for αx just under 1 are labelled with δx = αx−1 < 0. As αx→1 (δx → 0),
the asymptotic value of B⊥ is progressively smaller and, in the limit where αx = 1
(triple umbilic), B⊥ asymptotes to zero. Thus, there is no practical distinction
between a switch-on RF launched from the triple umbilic and a slow Euler fan.

For B⊥ = 0 on the upwind side, there are again two cases. For αx > 1, μ = 0

and thus B⊥ remains at zero. Further, ν = 1, as = cs, and the hydrodynamical

variables vary just as they do across a pure hydrodynamical fan. Such a fan is

called a slow Euler fan, analogous to a fast Euler fan but with different upwind

values of αx: < 1 for a fast Euler fan; > 1 for a slow Euler, the realm from which

no fast fan of any sort can be launched.

Staying with a zero B⊥ on the upwind side, for αx < 1, μ starts at 1 and

B⊥ immediately starts to rise. Such slow fans are referred to as – you guessed it

again – switch-on fans. However, since B⊥ does not stay at zero, μ does not remain

at unity and instead decreases monotonically across the fan. Referring to the left

panel of Fig. 6.3, since both α⊥ = B2
⊥/(μ0γp) and αx = B2

x/(μ0γp) increase as one

progresses across the fan, the evolution of μ can be understood by starting at the

red α⊥ = 0 profile where μ = 1, and then dropping to profiles of progressively

higher values of α⊥ (e.g., green♦, then blue�, then magenta�, etc.) as one also

scans from left to right, accounting for the increasing value of αx. Unlike the fast

fan, the slow fan with an upwind B⊥ = 0 can pass through the point αx = 1, which

for it is not the triple umbilic since within the fan, B⊥ > 0.

It is the relative rate at which each of these factors, namely an increasing B⊥
(increasing α⊥) and a decreasing p (increasing αx), cause μ to fall from unity that

determines the asymptotic value of B⊥ for a switch-on fan. If the upwind value

of αx � 1 where the profiles of μ are relatively flat (left panel of Fig. 6.3), then

increasing αx does not affect μ appreciably, and μ drops relatively gradually as B⊥
rises. By the time αx increases past unity, the growth of B⊥ has been governed
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by relatively high values of μ, and thus the asymptotic value to which it rises is

relatively high (e.g., the red profile in Fig. 6.4).

Conversely, if the upwind value of αx is just under unity, then as seen in the

middle of the left panel of Fig. 6.3, the profiles of μ dive down towards zero rapidly

for a small increase in αx, and B⊥ has little room to grow asymptotically as p→ 0,

as shown by the sequence of profiles in Fig. 6.4. In the limiting case as the upwind

value of αx → 1 (δx → 0; i.e., a slow fan launched from the triple umbilic), B⊥ has

zero room to grow (an infinitesimal increase in αx takes μ to zero), and such a fan

is of no practical difference from an Euler fan. Therefore, one can safely include the

αx = 1 case with αx > 1, and refer to it as a slow Euler fan as well.

To summarise what we know about slow fans for αx > 0, hydrodynamical vari-

ables fall while both αx and B⊥ rise, with all values approaching their asymptotic

limits as p→ 0. If the upwind B⊥ = 0 and 0 < αx < 1 (as = ax), B⊥ grows across

what is called a “switch-on fan” whose width can take it past the αx = 1 point. If

the upwind B⊥ = 0 and αx ≥ 1 (as = cs), B⊥ remains zero across what is called a

“slow Euler fan”.

Zero axial field

So far, we’ve tacitly been assuming Bx �= 0. When Bx → 0 (and thus αx → 0), there

are no singularities in Eq. (6.21), (6.26), and (6.27) to concern us and accounting

for this case is simple. With a little algebra, Eq. (6.26) and (6.27) become in the

limit αx → 0 (δx → −1),

μ2 → 1

α⊥ + 1
and ν2 → α⊥

α⊥ + 1
. (6.30)

Further, the slow alpha (Eq. 6.24) becomes:

αs =
1

2

(
1 + α⊥ −

√
(α⊥ − 1)2 + 4α⊥

)
= 1 + α⊥ −

√
(α⊥ + 1)2 = 0,

since α⊥ +1 > 0. Thus, αs (and as) is zero, and the slow wave neither develops nor

propagates. By contrast, the fast alpha is given by:

αf =
1

2

(
1 + α⊥ +

√
(α⊥ − 1)2 + 4α⊥

)
= 1 + α⊥

⇒ a2f = c2s + a2⊥ = a2M,

where aM is the magneto-acoustic speed introduced in 5.2.2. Thus, the fast RF

survives in the Bx → 0 limit as a magneto-acoustic fan. Indeed, for α⊥ → 0 (and

thus we are truly at the hydrodynamical limit with both components of �B zero),

μ→ 1, ν → 0, af → cs, and the fast ket in Eq. (6.21) is identical in every way to the

hydrodynamical ket in Eq. (3.34). It is therefore the fast MHD fan which becomes

the ordinary HD fan in the hydrodynamical limit, while the slow and Alfvén waves

merge with the contact forming a tangential discontinuity ( 5.3.3).
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Examples of MHD rarefaction fans

Figures 6.5–6.7 on pages 197 and 198 show profiles (left → right is upwind →
downwind) for the primitive variables ρ, p, vx, v⊥, and B⊥,4 and either α⊥ or αx

for the three kinds of fast rarefaction fans discussed. Figures 6.8–6.10 on pages 198

and 199 show the same variables for the three types of slow fans. These profiles

were determined using a sixth-order Runge–Kutta integrator (App. F) to solve Eq.

(6.1) using the kets in Eq. (6.21) with μ and ν given by Eq. (6.26) and (6.27).

The computational details are postponed to 6.4.3 with the algorithm for the MHD

Riemann solver. Here, I just wish to give the reader a feel for what various types of

MHD fans actually look like and some of the differences among them.

The first thing to note on Fig. 6.5–6.10 is the use of the self-similar independent

variable, x/t = ui
5 rather than the generalised coordinate, si, used in Fig. 6.4 over

which the integrations are actually performed. This is similar to what was done in

3.5.3 for the hydrodynamical fans except there, it was possible to find an expression

linking the generalised and self-similar coordinates (Eq. 3.43), which was then used

to find profiles for the primitive variables in closed form (Eq. 3.44–3.47). Here,

no such closed-form expressions exist, and we must use Runge–Kutta to find the

variable profiles in terms of si [e.g., ρ(si)], and then use these solutions to generate

the self-similar coordinate, x/t, from the generalised one. And so, starting from the

co-moving coordinate, ξi = x − uit, we set ξi to zero to put us in the co-moving

frame of the fan from which we can write,

x

t
= ui = vx(si)± af,s(si), (6.31)

where af,s are given by Eq. (5.23)–(5.25). Once generated, it is then simply a

matter of plotting the flow variables against x/t as the independent variable rather

than si.

The “regular” fan in Fig. 6.5 and the “switch-off” fan in Fig. 6.6 were launched

from the same upwind state (ρ = 3, p = 3, vx = v⊥ = 0, Bx = 2, and B⊥ = 1 ⇒
αx = 0.8, α⊥ = 0.2, all in arbitrary units). The only difference between them is

the “switch-off” fan is saturated; that is, integrated until B⊥ reaches zero which,

as the reader will note, occurs while p is still well above zero. For these fans, it

does not matter whether the upwind values αx ≷ 1 or α⊥ ≷ 1; qualitatively they

look identical. It should also be noted that choosing non-zero upwind values for vx
and v⊥ is tantamount to making a Galilean transformation, leaving profiles for the

Galilean invariants (ρ, p, B⊥, and αx,⊥) unchanged. Only the velocity profiles are

affected, and then just shifted by the choice of upwind vx,⊥.
The fast Euler fan in Fig. 6.7 was launched from the upwind state ρ = 3, p = 3,

vx = v⊥ = 0, Bx = 2, and B⊥ = 0.0, differing from the first two fast fans only in the

4For convenience, all values for Bx and B⊥ given from here until the end of 6.2 including Fig.
6.5–6.10 are in units where μ0 = 1. To restore units, multiply any given value of Bx or B⊥ by√
μ0.

5Rappel : ui = v ± af are the eigenspeeds for the right- (+) and left- (−) moving fast waves,
while ui = v ± as are the eigenspeeds for the right- and left-moving slow waves. Forgotten what
“self-similar” means? See footnote 11 on page 88.
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Figure 6.5. Upwind (left) to downwind (right) profiles of the primitive variables
and α⊥ across a regular (non-saturated) fast RF. As is typical of fast fans, B⊥
and α⊥ fall monotonically. In this and the following five figures, B⊥ is given in
units where μ0 = 1.

choice for B⊥. Notably, αx = 0.8 < 1 upwind of the fan. As this fan was integrated

until αx = 1, this is a saturated fast Euler fan. A non-saturated fast Euler fan would

look just like Fig. 6.7, with the profiles ending somewhere to the left of where they

do in the figure with αx, in particular, never reaching 1. As discussed above, fast

Figure 6.6. Profiles of the primitive variables and αx across a “switch-off fan”,
a saturated fast RF where B⊥ → 0. Since B⊥ > 0 everywhere except the most
immediately downwind point, αx can pass through 1.
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Figure 6.7. Profiles of the primitive variables and αx across a fast Euler RF.
Note that this fan is saturated, since αx → 1.

fans with B⊥ = 0 cannot pass through the αx = 1 point (triple umbilic); indeed,

no fast RF can be launched from an upwind state where B⊥ = 0 and αx ≥ 1.

Turning now to the slow fans, the “regular” slow fan in Fig. 6.8 and the “switch-

on” fan in Fig. 6.9 were launched from the upwind state ρ = 3, p = 3, vx = v⊥ = 0,

and Bx = 2 ⇒ αx = 0.8, with B⊥ being the only difference: 1 for the regular fan;

0 for the switch-on fan. Other than the steepness at which B⊥ and v⊥ rise from the

Figure 6.8. Profiles of the primitive variables and α⊥ across a regular slow RF.
As is typical of slow fans, B⊥ and α⊥ rise monotonically.
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Figure 6.9. Profiles of the primitive variables and αx across a “switch-on fan”, a
slow RF where upwind, B⊥ = 0 and αx < 1. Because B⊥ > 0 everywhere except
the most immediately upwind point, αx can pass through 1.

upwind state in the switch-on fan, there is little to distinguish the profiles in the

two figures. Note that the switch-on fan is launched from an upwind state in which

αx < 1. Once launched, B⊥ begins rising immediately, and the fan behaves just like

a regular slow fan where αx can rise as far as the fan is integrated (in this case to

a final value of αx ∼ 3).

Figure 6.10. Profiles of the primitive variables and αx across a slow Euler RF,
where upwind B⊥ = 0 and αx ≥ 1. If this fan were launched from the triple
umbilic, αx would have started at 1, and risen from there.
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Slow fans don’t saturate as fast fans do, but rather asymptote towards p→ 0.

A fast fan ends at a finite value of its generalised coordinate, si, once B⊥ reaches

zero, whereas for a slow fan, si → ∞ as p → 0. However, with respect to the self-

similar coordinate, x/t, as p asymptotes to zero, x/t = ui reaches a corresponding

asymptotic value, and the width of the fan in real space is finite. It is a curious

thing, then, that in generalised space the width of a slow fan is not bounded while

in real space it is and, as further discussed in 6.4.3, this can pose computational

challenges if one attempts to integrate a slow fan out too far.

Finally, Fig. 6.10 shows the profiles for a slow Euler fan launched from the

upwind state ρ = 3, p = 1.2, vx = v⊥ = 0, Bx = 2, and B⊥ = 0, differing from that

for the switch-on fan (Fig. 6.9) only in the value for p. Notably, here the upwind

αx = 2 > 1 as required for slow Euler fans and, since αx rises across all MHD

fans, αx remains above unity and B⊥ remains at zero. Interestingly, there is little

to distinguish fast and slow Euler fans (Fig. 6.7 and 6.10) other than αx which, for

a fast fan is ≤ 1 and for a slow fan is ≥ 1. Indeed, a fast saturated Euler fan ending

on the triple umbilic (αx = 1, af = as) could join smoothly with a slow Euler fan

launched from the triple umbilic forming a compound wave which, in every way,

would be described as a single, ordinary, hydrodynamical RF threaded by an axial

component of the magnetic induction where αx < 1 on the upwind side and > 1 on

the downwind side. This case is revisited in 6.3.

Summary

Figure 6.11. Loci for fast (a, b)
and slow (c, d) RF described in the
text. The triple umbilic (α⊥ = 0,
αx = 1) is located where the fast
and slow Euler regions meet.

The phenomenology of MHD fans is com-

plex – at least as complex as MHD

shocks – and there is much to consider.

Figure 6.11 is therefore offered to give the

reader a pictorial summary of the various

types of MHD fans described, and to help

put them into context with each other.

As we’ve seen, αx and/or α⊥ can vary

across a given MHD fan. Thus, plotting

α⊥ as a function of αx on an αx–α⊥ graph

such as Fig. 6.11 yields a unique locus of

points for each RF. Loci a and b represent

typical fast fans while c and d represent

slow fans. Arrows on the loci indicate pro-

gression across the fan from the upwind to

downwind side, reflecting the fact that αx

increases across all MHD fans. Fast fans

whose loci end on the αx > 1 portion of

the αx-axis (highlighted in magenta) are the switch-off fans (e.g., b), while slow

fans whose loci start on the αx < 1 portion (highlighted in red) are the switch-on

fans (e.g., d). Not all fast fans are switch-off (e.g., a). However, by extending locus
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a downwind (dashed line) to intersect the αx-axis where α⊥ = 0, one can see where

it would become a switch-off fan were it integrated to saturation. Similarly, not all

slow fans are switch-on (e.g., c). However, by extending locus c upwind to intersect

the αx-axis (dashed line) shows how the fan could have been switch-on for a suitably

modified upwind state. Loci of fast fans (or their downwind extensions) end on the

αx > 1 portion of the αx-axis, while loci of slow fans (or their upwind extensions)

start on the αx < 1 portion of the αx-axis.

So what do these loci represent physically? Recall from Theorem 3.3 in 3.5.3

that across the minus (left) hydrodynamical RF, the Riemann invariant J + is

constant, and similarly across the plus (right) RF, J − is constant. Extrapolating

this idea to MHD fans, across the minus fast and slow fans, the Riemann invariants

F+ and S+ are constant, respectively. Thus, were one to express F+, say, as a

function of αx and α⊥, contours of F+(αx, α⊥) on an αx-α⊥ graph would be lines

of constant F+ and thus correspond to loci of minus fast fans such as loci a and b

in Fig. 6.11. Similarly, contours of S+(αx, α⊥) would correspond to loci of minus

slow fans, such as c and d in the figure. Note that we didn’t need to specify the

functional forms for F+(αx, α⊥) and S+(αx, α⊥)6 in order to draw this conclusion.

The fact that loci representing RF on an αx-α⊥ graph correspond to contours

of a continuous function such as its associated Riemann invariant means that fast

(slow) loci never cross other fast (slow) loci, and the two sets of loci are nested as

shown in Fig. 6.11. Further, a fast locus can never start from the magenta region

(α⊥ = 0, αx > 1), since this is where the fast loci (or their extensions) end, while

a slow locus can never end in the red region (α⊥ = 0, αx < 1), since this is where

all slow loci (or their extensions) begin.

On the other hand, fast loci can start from (and remain within) the red region

(α⊥ = 0, αx < 1) and slow loci can start from (and remain within) the magenta

region (α⊥ = 0, αx > 1); these represent the Euler fans. Note that the locus of a

fast Euler fan can extend no further than the triple umbilic (α⊥ = 0, αx = 1), lest

it intersect the end point of a non-Euler fast locus.

Fast loci all point downward since α⊥ drops along them. Those intersecting

the αx-axis at relatively high values of αx do so with greater slope than those

intersecting the axis at αx � 1 where, in the extreme, a fast Euler locus intersects

the magenta region (α⊥ = 0, αx > 1) at αx = 1 with zero slope. Loci for “nearly

Euler” fast fans (starting with αx � 1) and with a large upwind value of B⊥ (e.g.,

α⊥ > 1) hug the α⊥ axis as B⊥ falls, turn sharply near the origin, then continue by

hugging the αx axis until they intersect it at αx very slightly greater than 1. The

innermost unlabelled fast locus in Fig. 6.11 exemplifies this.

Fast fans launched from within the green region (αx = 0, α⊥ > 0) are the

magneto-acoustic fans across which Bx remains zero. Thus, loci for such fans are

confined to this region, and drop along the α⊥ axis from the upwind to downwind

state. Fast fans launched from the blue region (αx = α⊥ = 0) are pure hydrody-

6In fact, finding F± and S± as functions of αx and α⊥ is a problem to which I do not know
the solution, and thus I have neither included it in the text nor relegated it to the problem set!
I’d be happy to credit any reader who submits such a solution in any future edition, with a wink
to Cambridge University Press!
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namical fans. Loci for such fans have zero length (i.e., remain at the origin) on an

αx vs. α⊥ plot, since �B remains zero across their width. This, of course, doesn’t

mean they don’t exist – hydrodynamical fans most certainly do! – they just don’t

show up on a magnetic plot such as Fig. 6.11.

Loci for slow fans are straight lines7 and all point upward reflecting the fact

that B⊥ increases across a slow fan. All slow loci (or their upwind extensions) start

from within the αx < 1 (red) region of the αx-axis, and the greater the value of

αx from which they start, the lesser their slope. At the extremes, for αx = 0 the

slope of the locus is infinite (vertical), and such slow fans do not propagate (since

as = 0 there). Thus, slow fans cannot be launched from the α⊥-axis (blue and green

regions) of Fig. 6.11. At the other extreme where αx → 1 (triple umbilic), the slope

is zero and a slow Euler fan is launched (where α⊥ stays zero).

6.3 Space-time diagrams

In 3.6, we saw that for the strictly hyperbolic equations governing ordinary HD,

the solution to the Riemann problem always consists of three distinct wave families:

family 1 (3) is a left (right) moving shock or RF, and family 2 is an entropy wave

(contact discontinuity). This simplified the solution to the hydrodynamical Riemann

problem a lot more than we may have appreciated at the time.

For the not strictly hyperbolic equations governing MHD, the possibility that

the eigenspeeds can be partially or fully degenerate means that no single space-

time diagram typifies all solutions to the 1-D MHD Riemann problem. Figure 6.12

catalogues the possible diagrams that can describe the left side of an MHD Riemann

solution, where the full MHD Riemann solution will be, in general, any two panels

(with the right side reflected) spliced together at the family 4 wave.

Panel a shows the “normal case”, where Bx �= 0 and B⊥ �= 0, the latter even

after changes caused by the passage of the fast and slow waves. Here, the left-most

characteristic path represents a 1-wave (a fast shock or fan) which can change the

magnitude of all primitive variables but not the directions of �B⊥ and �v⊥, followed
by the path of a 2-wave (rotational discontinuity or Alfvén wave) which can change

only the direction of �B⊥ and the direction and magnitude of �v⊥, followed by the

path of a 3-wave (a slow shock or fan) which also can only affect the magnitudes of

the flow variables, followed finally by the path of a 4-wave (contact discontinuity).

The contact, the reader will recall ( 5.3.2), is an entropy wave in the co-moving

frame of the fluid (and thus vx = 0 on both sides) across which p, �B⊥, and �v⊥ are

constant, while ρ can jump arbitrarily.

For Bx = 0 (αx = 0), ax = as = 0 and neither the Alfvén nor slow wave exists.

This is a non-linear version of a magneto-acoustic wave ( 5.2.2), and leads to the

7I have yet to prove this analytically, and my only evidence of this are the numerous computer-
generated plots of α⊥ vs. αx I created to motivate Fig. 6.11 and the surrounding discussion. Proof
lies in finding an analytical function for the slow Riemann invariants S±(αx, α⊥).
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Figure 6.12. Left sides of the four space-time diagrams that can represent so-
lutions to the 1-D MHD Riemann problem. In keeping with Fig. 6.2, red, green,
blue, and black characteristic paths represent wave families 1, 2, 3 and 4. For
argument’s sake, paths are drawn assuming 0 < vx < as. Each panel corresponds
to one of the cases described in the text: a) “normal” (Bx �= 0, B⊥ �= 0); b)
“magneto-acoustic” (Bx = 0) where the family 4 wave becomes a tangential dis-
continuity; c) “partial degeneracy” (B⊥ = 0, αx ≷ 1) between families 1 and 3;
and d) full degeneracy (B⊥ = 0, αx = 1; triple umbilic) between families 1 and
3 whose waves are attached and propagate together as a compound wave.

characteristic paths in Fig. 6.12b. Here, the path of a fast 1-wave precedes that of the

4-wave, resembling the left side of the hydrodynamical space-time diagram in Fig.

3.8. For B⊥ > 0 upwind, the fast wave can be an ordinary shock or an ordinary RF,

but not, as Problem 6.4 shows, a “switch-off” fan. With αx = 0, B⊥ drops across the

fan in lockstep with p and, for a wide enough fan, B⊥ reaches zero asymptotically

at the same rate as p, rather than abruptly and before p reaches zero as required of

a switch-off fan. Meanwhile, the 4-wave becomes a tangential discontinuity ( 5.3.3)

where p+B2
⊥/2μ0 is continuous rather than p. If B⊥ = 0 upwind, the fast wave is

pure hydrodynamical (switch-on shock being precluded since this requires αx > 1),

and the 4-wave remains an ordinary contact discontinuity. Indeed, with both Bx

and B⊥ zero, the MHD Riemann problem reduces to the hydrodynamical Riemann

problem of 3.6.

A fast wave can generate B⊥ = 0 on its downwind side in one of three ways:

as an Euler shock; an Euler fan; or a switch-off fan. In each case, with no B⊥
to rotate, there can be no rotational discontinuity and the characteristic pattern

resembles Fig. 6.12c where the characteristic path of the slow 3-wave follows that

of the 1-wave with no 2-wave in between. If the fast and slow speeds are degenerate

(as happens should the triple umbilic fall between the two waves), they are attached

and propagate as one compound wave (Fig. 6.12d).

An Euler shock or fan occurs if the upwind B⊥ is already zero and the upwind

αx < 1 (af = cs; partial degeneracy). Since αx falls across a shock, an Euler shock

can be of arbitrary strength delivering an even lower value of αx to its downwind

side. Conversely, the width of an Euler fan is limited, since αx rises across a fan

but cannot rise beyond 1 (i.e., the triple umbilic where af = ax = cs = as; full

degeneracy). If the upwind αx > 1, a fast shock would be a switch-on shock and

thus would not deliver B⊥ = 0, while a fast RF cannot be launched from such an

upwind state.

For a non-zero upwind B⊥, only a switch-off fan can deliver a zero B⊥ on the
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downwind side; a 1-shock can’t since B⊥ rises across a fast non-Euler shock. A

switch-off fan can be launched from any αx > 0, and can deliver any downwind

value of αx greater than its upwind value. Thus, should the upwind αx be < 1, it

is possible for the switch-off fan to end at αx = 1, i.e., the triple umbilic.

Thus, there are two cases in which the triple umbilic can fall between the fast

and slow wave: a saturated fast Euler fan; and a switch-off fan that delivers αx = 1

to its downwind side. In either of these (unusual) cases, the downwind speed of the

fast wave is degenerate with the upwind speed of the following slow wave, and the

two waves are joined at the triple umbilic, propagating as a single compound wave.

Now, the only slow wave that can be launched from the triple umbilic is a

slow Euler fan. A slow non-Euler shock cannot be launched from the triple umbilic

because it would require B⊥ to drop below zero, while a slow Euler shock strictly

requires αx < 1, not the triple umbilic’s value of 1. Finally, starting from B⊥ = 0, a

non-Euler fan would be a switch-on fan, again requiring αx < 1. Thus, a compound

wave crossing the triple umbilic can be either a switch-off fan attached to a slow

Euler fan (for B⊥ �= 0 upwind of the fast wave), or two Euler fans (for B⊥ = 0

upwind of the fast wave). Both cases are depicted in Fig. 6.12d.

6.4 An MHD Riemann solver

Fundamental to the design of our Riemann solver will be our ability to make very

educated guesses. Starting at the left state (state L in Fig. 5.1), we’ll “guess our

way” to state 3 immediately to the left of the CD by guessing answers to:

1. Is the 1-family wave a shock or an RF and how strong or wide is it?

2. If �B⊥ �= 0 downwind of the 1-family wave, by what angle does the RD rotate

it?

3. Is the 3-family wave a shock or an RF and how strong or wide is it?

Similarly, starting at the right state (state R in Fig. 5.1), we’ll “guess our

way” to state 4 immediately to the right of the CD where we’ll compare notes. If

p3 = p4, vx,3 = vx,4, �v⊥,3 = �v⊥,4, and �B⊥,3 = �B⊥,4 as must all be true across a CD

(remember, the jump in ρ across a CD is arbitrary), then based on the assumption

that the solution to the 1-D MHD Riemann problem is unique,8 we’re done!

Of course, odds are slim to none we’ll guess all the right answers on the first

attempt, and without some quantitative strategy to guide our subsequent guesses,

finding a satisfactory solution could take forever!

Fortunately, such a strategy exists, and one so efficient that a solution good to

8And there’s the rub, as it is well known that the full solution to the 1-D MHD Riemann
problem is not unique (e.g., Takahashi & Yamada, 2014)! However, uniqueness is restored if one
assumes the “evolutionary condition” introduced in 5.3.5 in which intermediate shocks are not
allowed. This is our strategy here.
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within ten digits of accuracy can usually be found with less than ten guesses, all

within a millisecond on a laptop! Hard to believe? Well then, read on . . .

6.4.1 Problem parameters

The main engine of the Riemann solver is a secant root finder. Now, a simple

univariate secant root finder – based on finding the value of one variable that

satisfies one constraint – was used in our algorithm for the HD Riemann problem

in 3.6. There, we had two waves, namely a left- and right-moving shock or RF

each of unknown strength, and two constraints, namely both pressure and velocity

had to be constant across the contact discontinuity (CD). Because we could write

down closed expressions for the downwind velocities in terms of the unknown wave

strengths (i.e., ζ; see Eq. 3.55, 3.57, 3.60, and 3.62), setting them equal across the

CD was tantamount to applying the constraint on velocity, leaving a single equation

in a single unknown, namely p. This could be solved analytically when both waves

were rarefaction fans (e.g., Eq. 3.65), and with a univariate secant root finder ( D.1)

in the three cases when at least one wave was a shock.

Now, had analytical expressions for the downwind velocities not been available

and downwind values of the primitive variables had to be determined numerically,

we would have been left with two unknown variables – the left- and right-moving

wave strengths – with two constraints to apply at the CD. For this, a bivariate root

finder – one that finds values for two independent variables so that two independent

constraints are satisfied simultaneously – would have been needed.

This is more like the case for the MHD Riemann problem. Here, we do not

have the luxury of analytically closed expressions for the velocities that link the

left and right states all the way to their side of the CD. Worse, we have six waves

of unknown strength and six constraints at the CD (each of p, vx, vy , vz, By and

Bz constant) rather than two and two for the HD case. Now, as we’ll soon see,

the MHD problem can be whittled down to five unknown wave strengths (which

we’ll call problem parameters, or just parameters for short) and five independent

constraints. However, as everything is evaluated numerically, what we’ll end up

with are ten numbers – five on each side of the CD – and our task will be to find

values for all five parameters such that the differences in all five pairs of numbers

across the CD are simultaneously zero.

What is needed here is a multivariate secant root finder – something I myself

had never come across until looking to solve this problem – which is derived for

the interested reader in D.2 in App. D. While this root finder plays a key role in

solving the MHD Riemann problem, knowledge of its derivation is not prerequisite

to understanding and even implementing the algorithm. Thus, the reader may safely

postpone reading D.2 until a later time.

The first thing to identify are the six parameters describing the current guesses

for the strengths of the six waves, namely the left-moving 1-, 2-, and 3-waves [fast,

rotational discontinuity (RD), and slow respectively], and the right-moving 5-, 6,-

and 7-waves (slow, RD, and fast respectively). The 4-wave, of course, is the CD – or
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the tangential discontinuity (TD) when Bx = 0 – across which the six constraints

(two for the TD) are applied.

The strengths of each of the fast and slow waves and whether they are shocks

or RFs will be embodied by four parameters, ψ1, ψ2, ψ3, and ψ4 for the left fast,

right fast, left slow, and right slow waves respectively. The reason for this specific

order shall become apparent in due course. The parameters ψ5 and ψ6 indicate the

strengths of the left- and right-moving RDs respectively.

Beginning with the RD, its “strength” is nothing other than the angle through

which �B⊥ is rotated, and so we’ll interpret ψ5 and ψ6 as these rotation angles. Herein

lies the “whittling-down” of independent parameters alluded to above. Suppose the

orientation of �B⊥ in the left and right states is χL and χR respectively. Then, since

neither the slow nor the entropy waves are capable of rotating �B⊥, both RDs must

rotate �B⊥ to the same orientation, and we have,

χL + ψ5 = χR + ψ6 ⇒ ψ6 = ψ5 + χR − χL, (6.32)

and ψ6 is determined by ψ5. This means we can set our guess for the orientation of
�B⊥ downwind of both RDs to χ = χL +ψ5 (with no further need for ψ6) where the

components of �B⊥ are evidently given by:

By,d = B⊥ cosχ; and Bz,d = B⊥ sinχ. (6.33)

Here, the upwind value of the magnitude B⊥ can be used since it is constant across

an RD. Then, given Eq. (6.33), the downwind perpendicular components of the

velocity can be computed from Eq. (5.91), which we rewrite here as:

�v±
⊥,d = �v⊥,u ∓ sgn(Bx)√

μ0ρ
( �B⊥,d − �B⊥,u), (6.34)

where the subscripts ‘d’ and ‘u’ refer to downwind and upwind values respectively.

The superscript ± on the LHS refers to the right-moving 6-family (+), and left-

moving 2-family (−) RD, while the corresponding ‘∓’ on the RHS reflects the fact

that in the frame of reference of the RD,

vx =

⎧
⎪⎨

⎪⎩

−ax = − |Bx|√
μ0ρ

, for the right-moving RD; and

+ax, for the left-moving RD.

With now just five independent parameters, ψj , j = 1 : 5, we’ll need five inde-

pendent constraints across the CD, fi(ψj), i = 1 : 5, to evaluate them. For these,

we’ll take:
f1(ψj) = p4 − p3 = 0; f2(ψj) = vx4 − vx3 = 0;

f3(ψj) = vy4 − vy3 = 0; f4(ψj) = vz4 − vz3 = 0;

f5(ψj) = B⊥4 −B⊥3 = 0,

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
(6.35)

where B2
⊥ = B2

y + B2
z , and where subscripts 3 and 4 refer to states 3 and 4 on

the left and right sides of the CD respectively.

Turning now to shocks and RFs, in many respects one can think of these two
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phenomena as ying and yang; two halves of one continuum. Quantities such as

−∇ · �v, log η (density jump) and log ζ (pressure jump) are all positive across a

shock, negative across an RF, and zero when each becomes infinitesimally weak.

Further, a shock of infinitesimal strength generates jumps in the primitive variables

infinitesimally different from differences in the primitive variables across an RF of

infinitesimal width. Thus, we can reasonably expect a single continuous parameter,

ψj , to describe the strength of the shock when ψj > 0, say, and the width of the RF

when ψj < 0, with ψj = 0 corresponding to either being infinitesimally weak. So the

question becomes, what physical parameter of a fast or slow shock that uniquely

identifies it shall we attribute to ψj > 0 and, likewise, what physical parameter of

the fast or slow RF shall we attribute to ψj < 0?

Let’s start with the left-moving fast wave separating states L and 1 , and thus

the parameter ψ1. From the top left panels of Fig. 5.12 and 5.13,9 we see that the

strength of a fast shock, ζ = p1/pL, is a monotonic function of ML, where ML

(upwind Mach number relative to the shock) begins at an easy-to-identify point

(namely, the fast point where ML = afL/csL = M+; Problem 5.23), and has no

upper bound. Further, we know how to compute φx = vx1/vxL fromML (Eq. 5.104)

from which jumps in all other variables follow: b = B⊥1/B⊥L (Eq. 5.95); η = ρ1/ρL
(Eq. 5.98); ζ (Eq. 5.96); and �v⊥1 (Eq. 5.99). Thus,ML provides a convenient physical

parameter that uniquely identifies a fast shock, and we can take for 0 < ψ1 <∞:

ML =
afL
csL

+ ψ1.

As for the fast RF, the most convenient parameter to characterise it is its width,

s1,d, the upper limit to which Eq. (6.1) are integrated. Now, as we’ve seen, fast fans

can saturate (page 193); that is, there is a maximum width, s1,max, to which a fast

fan can be integrated lest B⊥ be forced below zero or, in the case of a fast Euler

fan, lest it be forced through the triple umbilic. Thus, for −∞ < ψ1 < 0, the width

of the left-moving fast RF will be taken to be:

s1,d = min(−ψ1, s1,max),

where details of how s1,max is computed are left to the algorithm described in 6.4.3

(subroutine RF).

Thus, for a left-moving fast wave – be it a shock or RF – a guess for ψ1 can be

used to set its strength or width:

ML =
afL
csL

+ ψ1, ψ1 ≥ 0;

s1,d = min(−ψ1, s1,max), ψ1 < 0.
(6.36)

A similar expression may be written for ψ2, the right-moving fast wave parameter.

Referring now to the top right panels of Fig. 5.12 and 5.13, the slow portions

of the ζ super-loci (solid lines) are monotonic and single-valued functions of the

upwind Mach number,M , and thus, in principle,M could be used as the parameter

9Note that upwind and downwind states 1 and 2 in Fig. 5.12 and 5.13 correspond to states L
and 1 respectively here.
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to identify slow shocks as well. However, for each slow locus, M begins at the slow

point (Mmin = as/cs = M−) and ends at the Alfvén point (Mmax = ax/cs = MA;

Problem 5.23), and it is the latter limit that can be problematic numerically. For

example, one gets into round-off error problems near the switch-off limit where even

with 64-bit arithmetic, MA may not be known with sufficient precision.

It turns out that for a slow shock, the jump in B⊥, b, is a better quantity to

characterise its strength than M . The limits of b are perfectly well known – exactly

1 for an asymptotically weak shock, and exactly 0 for a switch-off shock – and, in

the case where the upwind B⊥ is zero, the only type of slow shock permitted is

an Euler shock which can be treated as a hydrodynamical shock as an easy special

case. Further, Eq. (5.122) from Problem 5.19 allows us to compute φx from b, from

which all other flow variable jumps follow. Thus, to identify uniquely a left-moving

slow shock, we take for 0 < ψ3 <∞:

b = max(0, 1− ψ3).

As for slow fans, unlike their fast counterparts, they do not saturate. Rather,

both ρ and p asymptotically approach 0 as the width to which the left-moving

slow fan is integrated, s3,d, approaches ∞, and this can cause numerical headaches.

Should an extreme fan width make ρ and p too close to zero, numerical noise could

render cs =
√
γp/ρ incalculable. In 6.4.3, we shall describe traps to prevent s3,d

from getting too wide, but in the meantime we take for −∞ < ψ3 < 0:

s3,d = −ψ3,

as the current guess of the width of the slow fan. Thus, for the left-moving slow

wave, we take for the strength of a shock or the width of an RF,

b = max(0, 1− ψ3), ψ3 ≥ 0;

s3,d = −ψ3, ψ3 < 0.
(6.37)

A similar expression may be written for ψ4, the parameter for the right-moving slow

wave.

6.4.2 Strategy for the Riemann solver

Now that we have numerical parameters to embody our guesses (however inaccurate)

for the strengths/widths of all waves, we use them to compute our way to states

3 and 4 on either side of the CD (Fig. 5.1). Thus, starting from the known left

state, L, we compute the downwind state for the fast 1-wave whose strength or

width is determined by ψ1, giving us the flow variables in state 1 . Taking this

guessed state 1 as upwind to the RD, we rotate �B⊥ to orientation angle χL + ψ5

and modify �v⊥ accordingly to give us state 2 . Taking this “doubly guessed” state

2 as upwind to the slow 3-wave whose strength/width is determined by ψ3, we

compute its downwind state and thus the flow variables in state 3 just to the left

of the CD. This process is repeated starting from the known right state R and,
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using parameters ψ2, ψ5, and ψ4, we determine the flow variables in state 4 just

to the right of the CD.

With states 3 and 4 now “triply guessed” each, we evaluate fi(ψj) as defined

in Eq. (6.35), none of which – except by an astonishing stroke of blind luck – will

be zero. Thus, we need a systematic way to determine by what amounts we should

“improve” our guesses of ψj – call these δψj – so that our next evaluations of fi(ψj)

will be closer to zero. This is where the multivariate secant root finder comes in.

As shown in D.2, we assemble the five parameters and five constraints into

5-kets |ψ〉 and |f(ψj)〉, and find the ket of “improvements”, |δψ〉, by solving the

matrix equation, Eq. (D.6),

J|dψ〉 = −|f(ψj)〉, (6.38)

where elements of the Jacobian matrix, J, are given by Eq. (D.7),

Jij =
∂fi
∂ψj

≈ fi(ψ1, . . . , ψ5)− fi(ψ1, . . . , ψj−δψj , . . . , ψ5)

δψj
. (6.39)

Note there are actually six separate evaluations of states 3 and 4 required for Eq.

(6.39). That is, fi must be evaluated for six sets of parameters: the unperturbed set;

for ψ1 perturbed but not ψ2–ψ5; for ψ2 perturbed but not ψ1, ψ3–ψ5; etc. Further,

for there to be a solution to Eq. (6.38), J must be invertible (non-singular); that is,

det J �= 0. As it turns out, this is the most computationally delicate problem to be

faced in designing a robust Riemann solver for it is not enough for det J �= 0, it also

cannot be nearly zero. By “nearly”, I mean within an order of magnitude or two

times machine accuracy. Anything closer, and the solution is vulnerable to undue

influence by machine round-off error and completely unreliable.

The possibility that J can be singular stems from the fact that the 1-D MHD

equations are not strictly hyperbolic; that is, the eigenvalues (wave speeds) can

be degenerate. As we’ve seen, at the triple umbilic (where B⊥ = 0 and αx = 1),

af = ax = as and the eigenvalues are triply degenerate. As a worst-case scenario, it

is one our algorithm must be able to handle.

To illustrate, should B⊥ = 0 in state 1 (downwind of the 1-fast wave and

upwind of the 2-RD), there is nothing for the RD to rotate and thus the RD should

not exist. How is this manifest in the Jacobian? With nothing to rotate, rotation

angles ψ5 and ψ5 + δψ5 should give us exactly the same values for fi(ψj), and

we expect the fifth column of the Jacobian, ∂fi/∂ψ5, to be zero. A matrix with

a column (or row) of zeros has determinant 0 which means it has no inverse and

cannot be used to solve Eq. (6.38).

Further, that the system is independent of ψ5 means there are only four param-

eters and thus, in principle, one of the five functions, fi(ψj), should be redundant. If

these functions were expressed analytically, we’d say that one of the functions was a

linear combination of the other four, and eliminate it from the system of equations

to be solved. Numerically, if a column (or row) of the Jacobian is zero, we’ll elim-

inate it and apply some criterion to select a row (or column) to eliminate as well

to restore the Jacobian to a square matrix of lower dimension which, without any
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further rows or columns of zeros, should have an inverse. In the algorithm presented

in 6.4.3, you will see how this is put into practice (subroutine Jij).

Last thing before we get to the true nitty-gritty is to address the case where Bx = 0,

for it is here that fundamental changes to our approach are needed.

When Bx = 0, the slow and Alfvén (RD) waves don’t exist and the space-

time diagram consists of just three characteristic paths; two paths for the left- and

right-fast waves and one for a tangential discontinuity (TD) in between (e.g., Fig.

6.12b). Superficially, this resembles the hydrodynamical case, exemplified by Fig.

3.8. Thus, we have just two parameters to control the fast waves, ψ1 and ψ2, along

with two constraints across the TD which, in 5.3.3, were determined to be:

f1(ψ1, ψ2) = vx4 −vx3 = 0; f2(ψ1, ψ2) = p4+
B2

⊥4

2
−
(
p3 +

B2
⊥3

2

)
= 0, (6.40)

the last coming from Eq. 5.89. This is why we listed the ψs with the two fast

parameters first. In this order, all one has to do to switch from the five-parameter,

Bx �= 0 problem to the two-parameter, Bx = 0 problem is change the do-loop limit

from 5 to 2.

6.4.3 Algorithm for an exact MHD Riemann solver

And so finally, dear reader, we arrive at the reckoning. Do we, as Michael Norman

so aptly asks, understand 1-D MHD enough to compute it? All the bits are in place

and we need only assemble them. As the saying goes, the devil is in the details and,

to be sure, there are many details.

This subsection is structured as follows. The main loop – a multivariate secant

root finder – is described first, with items requiring further clarification enclosed

in a rectangular box . You can think of these as subroutines for which detailed

algorithms follow the main loop sequentially. Targets are enclosed in
�

�

�

�

boxes with

rounded corners; these you can think of as the old FORTRAN “go to” statements

(gotta love ‘em!).

Main loop

1. Set number of parameters and constraints: n =

{
2, Bx = 0;

5, Bx �= 0.

2. Set error tolerance for convergence (εmax = 10−8), initial step size for Runge–

Kutta integration (δs0 = 10−3), and trigger for use of binomial expansions

(εmin = 10−4).

3. Initialise δψj and ψj : δψj = 10−6 and 〈ψj | =
[
0.1, 0.1, 0.1, 0.1, 12 (χR−χL)

]
are

as good as any (χL, χR defined on page 206).
�

�

�

�

A .
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4. Compute fi(ψj) , and calculate error: ε =

( n∑

j=1

f2
i (ψj)

)1/2
.

a) If ε < εmax, solution has converged;
�

�

�

	

go to B .

5. Compute n sets of “diminished” values for fi(ψj) , one for each set of pa-

rameters:

(ψ1−δψ1, ψ2, ψ3, ψ4, ψ5); (ψ1, ψ2−δψ2, ψ3, ψ4, ψ5); (ψ1, ψ2, ψ3−δψ3, ψ4, ψ5);

(ψ1, ψ2, ψ3, ψ4−δψ4, ψ5); (ψ1, ψ2, ψ3, ψ4, ψ5−δψ5),

for n = 5, and just the first two for n = 2.

6. Compute n2
r Jacobian elements, Jij , using data from steps 4 and 5, where

n− nr = number of rows (columns) of zeros or near-zeros removed from J by

Jij .

7. Using LU decomposition, solve Eq. (6.38) for nr values of δψj .

a) If no solution is found, LU re-initialises ψj , δψj .
�

�

�

�

Go to A to restart

convergence.

b) If solution is found:

i) align δψj , j = 1 : nr, with ψj , j = 1 : n, by inserting rows as

needed, setting inserted values of δψj to initial value (step 3);

ii) set new guesses: ψj + δψj → ψj (with ψ5 modulo 2π);

iii)
�

�

�

	

go to A .
�

�

�

�

B .

8. Perform output ; stop.

In addition, the main loop needs a few niceties, such as counters to prevent too many

iterations from being performed for convergence and/or too many reinitialisations

of the parameters, ψj . In other words, at some point one has to admit defeat! Some

screen output would be useful, such as the parameter guesses at the end of each

cycle, values of the Jacobian elements particularly as the code is being debugged,

and final values of the primitive variables in the intermediate states at convergence.

And now for the subroutines . . .

Subroutine fi(ψj)

Here, we compute our way from the known left and right states to the left and right

sides of the CD (TD) using our guesses for ψj .
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9. Starting from the left state |qL〉 = [ρL pL vxL vyL vzL ByL BzL ]
T:

a) if ψ1 > 0, set ML from Eq. (6.36), find |q1〉 downwind a fast shock ;

b) if ψ1 < 0, set s1,d from Eq. (6.36), find profiles across and |q1〉 downwind
a fast RF .

If Bx = 0 (n = 2), skip steps 10 and 11; set |q2〉 and |q3〉 to |q1〉.
10. Using |q1〉 as upwind state: set χ = χL + ψ5, find downwind state |q2〉 from

Eq. (6.33) and (6.34).

11. Using |q2〉 as upwind state:

a) if ψ3 > 0, set b from Eq. (6.37), find |q3〉 downwind a slow shock ;

b) if ψ3 < 0, set s3,d from Eq. (6.37), find profiles across and |q3〉 downwind
a slow RF .

12. Starting from the right state, |qR〉 = [ρR pR vxR vyR vzR ByR BzR ]
T, repeat

steps 9–11 to find states |q6〉, |q5〉, and |q4〉.

13. a) For Bx �= 0, evaluate fi(ψj), i, j = 1, . . . , 5 from Eq. (6.35).

b) For Bx = 0, evaluate fi(ψj), i, j = 1, 2 from Eq. (6.40).

Subroutine Jij

14. Calculate n2 elements of J from Eq. 6.39 using input fi(ψj) and diminished

fi(ψj).

To protect against “near-zeros”, let zero=1.0d-13 (i.e., within an order of

magnitude of machine round-off error for double precision arithmetic) and set

to 0 any numerator and any element Jij in Eq. (6.39) whose absolute value is

less than zero.

As discussed on page 209, the kth column of the Jacobian will be zero if the kth

parameter converges before the rest (in which case ∂kfi = 0), and the kth row will

be zero if the kth function is satisfied before the rest (in which case fk(ψj) = 0 and

∂jfk = 0). We eliminate such columns (rows) by “squeezing them out” and then

“squeezing out” an equal number of rows (columns) to restore the Jacobian as a

square matrix that can be used in Eq. (6.38) to find δψj for the parameters that

have yet to converge. This is the critical step in designing a robust Riemann solver.

First, if fi(ψj) are independent of ψk, ∂kfi = 0 and column k is zero.

15. Flag columns of J for which cj =
n∑

i=1

|Jij | = 0.
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16. For each column flagged, flag row with smallest value of ri =

n∑

j=1

|Jij |.

17. Squeeze out flagged rows and columns.

For example, if third column is zero, overwrite third column with fourth, and

fourth with fifth; doing the same for rows should leave a square matrix.

Second, if fk(ψj) = 0 , fk has converged, ∂jfk = 0, and row k is zero.

18. If fi(ψj) = 0, flag row i of J.

19. For each row flagged, flag column with smallest value of cj =

n∑

i=1

|Jij |.

20. Squeeze out flagged rows and columns.

Should leave a square matrix with dimension nr ≤ n, where n − nr = total

number of rows/columns eliminated in this step and step 17.

Subroutine LU

I’m going to bunt on this one, as there are all kinds of robust linear algebra rou-

tines out there, many based on so-called LU decomposition (e.g. and where else,

Numerical Recipes, Press et al., 1992).

To give the uninitiated reader an idea of what is being discussed, the premise

of LU decomposition is as follows. Any matrix, A, can be expressed as a product of

a lower- and upper-triangular matrix,10

A = LU,

so that a system of linear equations,

A|x〉 = |b〉,
where |x〉 is the ket of unknowns being solved for, can be written as,

LU|x〉 = |b〉,
which can be expressed as two separate matrix equations,

L|z〉 = |b〉 and U|x〉 = |z〉.
Thus, knowing L, U, and |b〉, one solves the first for |z〉, then the second for |x〉.
The point is, a system of linear equations with a lower triangular matrix can be

solved simply by forward-substitution, while a system with an upper triangular

matrix can be solved by backward substitution; no need for Gauss–Jordan elimina-

tion. Even including the decomposition, this method is a factor of three times less

computationally intensive than inverting a general n×n matrix (Press et al., 1992).

Thus, what one is looking for is a routine that when given A = J and |b〉 =

10A lower- (upper-) triangular matrix is one with zeros above (below) the main diagonal.
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−|f(ψj)〉, it returns |x〉 = |δψ〉, the changes to the parameters you’re looking for to

make the next – and we hope – better guess.

A feature you’ll want to build into such a routine is a trap should the Jacobian

turn out to be singular. Despite the effort made in Jij to eliminate rows and

columns of zeros, this still doesn’t guarantee J will be invertible. One of the tasks of

LU decomposition is to shuffle the rows so that no zero lands on the main diagonal.

If det J �= 0, this is always possible; otherwise, it isn’t and there’s no solution.

Since the Jacobian should not be singular, if it is this is a sign the secant root

finder has gone astray and may be stuck in a local minimum in the sometimes-

complicated solution space with no chance of finding its way out. What I do in

this stead is reset the parameters ψj randomly to something between ±0.5, reset

the parameter differentials to their initial value (step 3), and instruct the calling

routine to restart the convergence process. I find for most cases where my original

starting point
[
0.1, 0.1, 0.1, 0.1, 12 (χR − χL)

]
leads the secant root finder down a

rabbit hole, reissuing random values as described gets it back on track.

Subroutine output

I’m going to bunt on this one as well, as the details will depend very heavily on

the nature of the graphics packages available to the reader and the programmer’s

preference of output. Instead, I just list the output files I have found useful, along

with some tips in how these may be assembled.

- I create a ten-column ascii file suitable for use by widely available graphics

packages such as GNUPLOTTM able to read and plot column-separated datafiles.

My columns include the self-similar position variable x/t = u (where u is the

shock speed for shocks, vx±af,s for RFs, ax for RDs, and vx for the CD/TD),

followed by nine variables (ρ, p, eT, vx, vy, vz, By, Bz, χ), where eT is the total

energy density and χ is the orientation angle of �B⊥.

The overall width of the solution space is determined by the difference between

the speeds of the leading edges of the 1- and 7-waves, which I widen by about

20% so that I can include some of the original left and right states in my

solution profiles (e.g., Fig. 6.13–6.30).

For a discontinuity located at ui, say, one needs only two points to describe

it: the variable values just “epsilon” upwind of ui and the variable values just

“epsilon” downwind of ui. Continuous waves (RFs) are resolved by whatever

steps the Runge–Kutta scheme uses to compute their profiles, and I gather all

these data in ascending order of ui in this single ascii file.

- I create a post-script plot file (using Kevin Kohler’s PSPLOT package) based

on data in the ascii file described above to create plots such as those in Fig.

6.13–6.30.

- Finally, I create a second ascii file with the convergent values of the parame-

ters, ψj , along with the values of the primitive variables in each of the eight
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levels across the solution space. These data were used to create Tables 6.1 and

6.2 respectively in 6.4.4.

Subroutine fast shock

States L and 1 are, respectively, the upwind and downwind states for the 1-family

(left-moving) fast shock (e.g., Fig. 5.1), while states R and 6 are those for the

7-family (right-moving) fast shock. In what follows, I shall use subscript 1 for the

upwind state and 2 for the downwind state, with the understanding that all discus-

sion is general for both families.

In finding the downwind state of a fast shock, the delicate part is the downwind

value for B⊥. For the most part, Eq. (5.95) can be used to find b from which we

set B⊥2 = bB⊥1 . However, for B⊥1 = 0, we must evaluate b⊥ instead (Eq. 5.109 for

switch-on shocks, 0 for fast Euler shocks) and set B⊥2 = b⊥Bx.

Still, other numerical issues lurk. It turns out that Eq. (5.95) is rather fragile,

and can be dominated by roundoff error when φxA
2
x1

− 1 falls below ∼ 10−6 even

in double-precision arithmetic. Thus, for φxA
2
x1
− 1 � 10−3, I switch to Eq. (5.126)

to evaluate b, which can be used safely so long as one is comfortably away from

the Euler branch (φx ∼ H; Eq. 5.105 and discussion following Eq. 5.107). This

constraint poses no problem, since in the vicinity of an Euler shock, Eq. (5.95) is

perfectly reliable (Problem 5.25).

As a consequence of dodging these “numerical landmines” the following algo-

rithm may seem rather riddled with conditionals.

21. Evaluate upwind MHD-alphas, αx1 =
B2

x

μ0γp1
and α⊥1 =

B2
⊥1

μ0γp1
.

22. Find φx from Eq. (5.104) using a cubic root finder (e.g., App. E).

a) Root with maximum real part should be pure real; take this as φx. Other

roots are intermediate shocks.

b) If B⊥ = 0, the discriminant Δ (Eq. E.1) is also zero. Since Δ is the

difference between two numbers, numerical noise may render Δ < 0

which is a problem for
√
Δ needed to evaluate the roots. Thus, set

Δ = 0 directly if B⊥ < zero.

23. Evaluate ε =

∣∣∣∣1−
αx1

φxM2
1

∣∣∣∣.

a) If ε > zero, then:

i) if ε > 0.001, evaluate b from Eq. (5.95);

ii) if ε ≤ 0.001, evaluate b from Eq. (5.126).

b) If ε ≤ zero, evaluate Mon =

√
αx1(γ + 1)− 2

γ − 1
(Eq. 5.112). Then:
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i) if M1 ≥Mon, b⊥ = 0 (Euler branch);

ii) if M1 < Mon, evaluate b⊥ from Eq. (5.109).

The quantity φx = vx2/vx1 gives the jump in flow speed relative to the shock. To find

speeds in the x-direction relative to the “lab frame” (ux1 , ux2) in which the shock

speed is V (< 0 for 1-family, > 0 for 7-family), we use the Galilean transformations:

ux1 = vx1 + V ⇒ V = ux1 − vx1 ; (6.41)

ux2 = vx2 + V = φxvx1 + ux1 − vx1 ⇒ ux2 = ux1 + vx1(φx − 1). (6.42)

where ux1 is the known upwind flow speed in the lab frame, and,11

vx1 =

{
M1cs1 , for 1-family waves;

−M1cs1 , for 7-family waves.
(6.43)

With this, we can now evaluate the downwind state.

24. Evaluate ρ2 =
ρ1
φx

(Eq. 5.98) and downwind flow speed, ux2 (Eq. 6.42).

25. a) If b were evaluated in step 23 (ε > zero), evaluate:

i) ζ from Eq. (5.96), and then p2 = ζp1;

ii) �v⊥2 from Eq. (5.99), where M = ρ1vx1 and vx1 from Eq. (6.43);

iii) �B⊥2 = b �B⊥1 .

b) If b⊥ were evaluated in step 23 (ε ≤ zero), evaluate:

i) ζ from Eq. (5.110), and then p2 = ζp1;

ii) �v⊥2 from Eq. (5.111);

iii) �B⊥2 = b⊥Bxê⊥, where ê⊥ = (0, cosχ, sinχ).

As suggested after Eq. (5.111), χ can be set to the asymptotic

downwind value. If, for example, the 1-shock is switch-on, then
�B⊥L = 0 and we take χ = χR. If �B⊥R = 0 as well, then taking

χ = 0 is as good a guess as any.

Subroutine slow shock

For a slow shock, the main thing to be aware of is there are four cases that need

separate treatment. For all the attention in the literature about “non-regular switch-

off waves” and the special consideration they warrant, a switch-off shock is not one

11Relative to the left-moving shock, upwind fluid moves in the +x-direction, whereas relative
to the right-moving shock, upwind fluid moves in the −x-direction.
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of these cases. Rather, it is handled easily as a limit to one of the four identified

here.

Relative to a slow shock, the upwind speed is super-slow, sub-Alfvénic. Thus,

a2s1
c2s1

≤ M2
1 ≤ a2x1

c2s1
= αx1 , (6.44)

where again, subscripts 1 and 2 refer to upwind/downwind states respectively. Fur-

ther, it’s easy to show from Eq. (5.95) that,

M2
1 = αx1

b− 1

φxb− 1
. (6.45)

With these reminders, the downwind state of a slow shock is set as follows.

26. Case 1: Bx = 0 ⇒ no slow shock; set downwind state = upwind state; return.

Else,

27. Evaluate upwind MHD-alpha, αx1 =
B2

x

μ0γp1
.

28. Case 2: B⊥1 = 0, αx1 < 1 ⇒ no slow shock; set downwind state = upwind

state and ψj = 0; return. Else,

29. Case 3: B⊥1 = 0, αx1 ≥ 1 ⇒ slow Euler shock.

a) a2s1 = c2s1 (Eq. 5.66), and Eq. (6.44) ⇒ 1 ≤M2
1 ≤ αx1 .

b) Since b is irrelevant for an Euler shock, set M2
1 = 1 + (αx1 − 1) tanhψ

instead.

Here, tanh is a convenient function to map ψ ∈ [0,∞) →M2
1 ∈ [1, αx1).

c) Set φx from Eq. (5.105) and b = 1.

30. Case 4: B⊥1 �= 0 ⇒ ordinary slow shock.

a) If ψ > 1, set ψ = 1 before setting b = 1−ψ. All ψ ∈ [1,∞) is treated as

ψ = 1, and limiting ψ prevents secant finder from letting ψ → ∞ and

getting lost.

Note that ψ = 1 (b = 0) is the switch-off shock limit.

b) Multiply Eq. (5.122) by (b− 1) to make it “NaN-proof”; find φx.

Take lesser of two roots for φx; the other is > 1, violating the entropy

condition.

c) Evaluate M2
1 from Eq. (6.45).

If b = 1, Eq. (6.45) is singular. Thus, set M2
1 = a2s1/c

2
s1 (slow point)

instead.

31. For cases 3 and 4, we now have b, φx, and M
2
1 from which we evaluate:
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a) ρ2 =
ρ1
φx

and downwind flow speed, ux2 , from Eq. (6.42);

b) ζ from Eq. (5.96), and then p2 = ζp1;

c) �v⊥2 from Eq. (5.99), where M = ρ1vx1 and vx1 is given by Eq. (6.43);

d) �B⊥2 = b �B⊥1 .

Subroutine RF

We now arrive at the most ticklish part of the algorithm. I strongly advise the reader

intent on developing an MHD Riemann solver to first write an “RF program”, one

whose only task is to compute (and plot) the primitive variable profiles across a

rarefaction fan – fast or slow – for a given upwind state (Project P6.1). Fig. 6.5–

6.10 show examples of such plots determined from my own RF program. Once this

has been debugged and understood, it can be incorporated as a module into the

Riemann solver itself.

Unlike shocks, I find it more efficient to discuss fast and slow RFs together, as

their differences computationally turn out to be rather minor. This is perhaps the

only way in which rarefaction fans are “easier” to handle than shocks!

To find the variable profiles across an MHD RF, we solve Eq. (6.1) in terms of

the generalised coordinate, s:

d|q(s)〉
ds

= |r±f,s〉,

seven coupled first-order ODEs in seven unknowns for which a sixth-order Runge–

Kutta (RK) algorithm is particularly well-suited. There are numerous RK algo-

rithms “out there” (e.g., and as always, Numerical Recipes), and the one I use is

described in App. F. The reader unfamiliar with RK methods is encouraged to read

this appendix before continuing.

At first cut, the generic RK algorithm described in App. F can be pasted

directly here. To render it specific to MHD RFs, I set the error tolerance and

initial step size (errmax and h in step 1 of the RK algorithm) to εmax and δs0
set in step 2 above, and the function yprime needs Eq. (6.21) for the function

derivatives (eigenkets), including Eq. (6.26) and (6.27) for μ and ν. These are the

easy bits. More subtle are the changes needed to accommodate idiosyncrasies of fans

with certain upwind states, and to avoid excessive round-off error should differences

of very nearly equal values be required. All such issues that I’ve encountered are

enumerated below.

Before entering the RK loop (
�

�

�

�

A on page 473),

32. If upwind B⊥ = 0 and αx ≥ 1, there is no fast RF (page 193).

Set downwind state to upwind state and ψj to 0; skip RK loop (
�

�

�

�

B on page

474).
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33. If Bx = 0, there is no slow RF (page 196).

Set downwind state to upwind state; skip RK loop (
�

�

�

�

B on page 474).

For Bx = 0, there is no slow parameter ψ to reset.

From within the RK loop,

34. Fast fans can saturate (page 193), and their maximum width, si,max, is finite.

a) To detect saturation:

i) compute εs = δs/s, where δs is current step size (h in App. F);

ii) if εs < εmax (error tolerance), fan is saturated. Set ψ = −s, down-
wind �B⊥ = 0, and exit RK loop (

�

�

�

�

B on page 474).

b) For upwind B⊥ > 0, a saturated fast fan is a switch-off fan which can be

no deeper in s than that which makes B⊥ = 0. Should either component

of �B⊥ change sign,12 the step size, δs (h in App. F), is too large:

i) set δs→ δs

2
;

ii) return to top of adaptive RK loop (
�

�

�

�

A on page 473) to redo step.

c) For upwind B⊥ = 0 and αx < 1, a saturated fast fan is a fast Euler fan

reaching the triple umbilic (αx = 1; Fig. 6.11). No special considerations

are needed since, as it turns out, εs < εmax before round-off error pushes

s through the triple umbilic.

35. Slow and HD ( �B = 0) fans asymptote to their maximum “strength” as p→ 0

and si → ∞ (page 193). If s gets too large (and p too small), underflow errors

can occur (e.g., cs =
√
γρ/p) and/or the secant root finder can get lost as it

reaches deeper and ever deeper into a fan in a futile search of a solution that

may not exist.

To detect if the asymptotic limit has been reached:

a) compute εvx = δvx/vx, where δvx is the difference in vx over the current

step;

b) if εvx < zero13 (round-off error limit defined in step 14), fan has asymp-

toted. Set ψ = −s and exit RK loop (
�

�

�

�

B on page 474).

At my count, there are four opportunities for numerical round off error to dominate

12This would be unphysical as the only waves capable of changing the direction of �B⊥ (a
sign change is tantamount to a rotation of π radians) are intermediate shocks and rotational
discontinuities.

13There is no point in checking the fractional change in p or ρ, since these are approaching zero
and their fractional changes may well remain of order unity.
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the solution of an RF, all caused by differences of two nearly equal quantities when

calculating |r±f,s〉 (Eq. 6.21); these need to be evaded. Quantities dependent upon

differences include the discriminant d (Eq. 6.25), the slow speed as (Eq. 6.23), the

scaling factors μ and ν (Eq. 6.26, 6.27), and δx = αx − 1 (Eq. 6.22).

36. The right-most equality in Eq. (6.25) renders d “difference-free”:

d =
D

c2s
=

√(
δx + α⊥

)2
+ 4α⊥, (6.46)

and this is the form that should be used.

37. Assuming a robust value for af (i.e., using Eq. 6.46 with no differences),

identity (6.13) allows us to bypass the difference in as (Eq. 6.23) altogether:

as =
csax
af

. (6.47)

38. There are two numerical considerations for μ and ν.

a) Problem 6.7 shows that for B⊥ > 0 but ε� 1 (Eq. 6.57), μ2 (Eq. 6.26)

for δx + α⊥ > 0, and ν2 (Eq. 6.27) for δx + α⊥ < 0, are dominated by

round-off error. Thus, for ε < εmin (step 2), use power-series expansions

in ε (Eq. 6.58) for μ2 or ν2.

b) There is a numerical issue in launching a slow fan from the triple umbilic

(fast fans cannot be launched from upwind states where B⊥ = 0 and

δx ≥ 0, so for them this concern is moot.) While Eq. (6.56) is analytically

correct, numerically it is imperative to use instead,

μ2 =

{
1, δx < 0;

0, δx ≥ 0,
and ν2 =

{
0, δx < 0;

1, δx ≥ 0,
(6.48)

when α⊥ = 0. That is, the triple umbilic, where δx = 0 and μ2 = ν2 = 1
2 ,

should be absorbed into the δx > 0 case where μ2 = 0 and ν2 = 1.

Why? Slow fans launched from the triple umbilic are slow Euler fans

across which B⊥ remains zero (page 195). Further, as we saw in 6.2,

δx increases across any MHD RF. Thinking analytically, starting at the

triple umbilic with μ2 = 1
2 , infinitesimally into the fan both B⊥ and δx

are infinitesimally greater than zero. However, even as an infinitesimal,

δx > 0 where μ2 = 0 and B⊥ can grow no further. It remains at its

infinitesimal seed value, and thus effectively zero.

Numerically, infinitesimals are replaced with small differences and start-

ing with μ2 = 1
2 means that after the first integration step into the fan,

B⊥ will be non-zero (second of Eq. 6.21) by a small but non-infinitesimal

amount. Thus, integration across the rest of the fan will grow B⊥ as

though it were a switch-on fan, ignoring the fact this “seed field” is

really a result of discretisation error.



Clarke 9781009381475 .tex 221 2/04/2025

221 An MHD Riemann solver

Lesson: When launching a slow fan numerically, treat the triple umbilic

as though δx > 0, and thus use Eq. (6.48) to compute μ2 and ν2.

39. Finally, the most awkward case to program is when αx → 1, and δx = αx − 1

is dominated by round-off error.

Problem 6.6 shows that for � � 1 (Eq. 6.52), δx should be set by Eq. (6.53)

instead of αx − 1. However, it leaves open the question of how to evaluate the

numerator, Δp = p− pcr where pcr = B2
x/γ, given that this too is a difference

dominated by round-off error when αx → 1.

In an RF program (page 218), Δp in the upwind state can be specified as

a number free from round-off error. In launching an RF as part of a trial

solution, an exact MHD Riemann solver would still set the upwind Δp to

the difference between the upwind pressure and critical pressure. While this

“seed value” may be “noisy”, its noise will be drowned out by the signal of

integration across the rest of the RF so long as each integration step adds no

more noise to Δp.

So how do we accomplish this? To the upwind value of Δp, one adds the

change in total pressure across each successive RK interval. Since pressure falls

monotonically across an RF, p will soon – perhaps only after a few intervals –

be significantly different from pcr (i.e., once � > εmin), at which point δx can

be safely computed from αx−1. However, within these first few critical steps,

each addition to Δp will have full precision and thus, modulo the seed value,

so will δx set by the power series in � (Eq. 6.53).

The trick is to ensure that each time a pressure is needed, pcr + Δp agrees

with p to within machine round-off error. Thus, the current value of Δp will

have to be known to subroutines RunKut and Yprime (App. F), and Δp

will have to be taken through the same Richardson Extrapolation steps as

the primitive variables. Further, allowances will have to be made to “undo”

the last contribution to Δp should a step need to be retaken (e.g., step size

found to be too large). For my own RF program and Riemann solver, I found

keeping accurate track of Δp to be rather invasive to the programming. Still, it

was the critical step that allowed my RF program to integrate any MHD RF,

including a slow fan with upwind α⊥ = 0 and δx = 10−95 (thus, just barely

a switch-on fan) with full precision without confusing it for a slow Euler fan.

(The only reason I could not specify 0 < δx < 10−95 is such a fan asymptotes

with B⊥ < 10−38 which my single-precision graphics routines cannot handle

without generating underflows.)

6.4.4 Sample problems

In this final section, I give solutions to eighteen Riemann problems in both graphical

and tabular form for the reader looking to calibrate their own Riemann solver
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(Project P6.2).14 If eighteen seems excessive, be aware that this is a case where

solving one problem perfectly does not guarantee the next problem won’t crash

your program or worse, yield a wrong but seemingly plausible answer! Indeed, even

now that my program can solve all these problems satisfactorily, it is still vulnerable

to becoming lost in local minima of the solution space, and generating the occasional

glitch as noted in the footnotes and figure captions in the following pages.

So, for the reader at the end of their rope trying to get their own solver working,

or for the reader who just wants a working (however imperfect) Riemann solver

without having to go through the exercise of programming it for themselves (but

beware, Mike may not think you really understand it!), my own code along with

my RF program – warts and all – is available open source (in FORTRAN 77, of

course!) from the “software bar” on my website given at the end of the Preface.

Figures 6.13–6.30 (pages 224–232) show my solution to each Riemann problem.

Those taken from the literature are cited in the Figure captions, where S76 refers

to Sod (1976), RJ95 refers to Ryu & Jones (1995), F02 refers to Falle (2002),

and TY13 refers to Takahashi & Yamada (2013). Each figure shows profiles of

the primitive variables (ρ, p, vx, vy , vz, By, Bz),
15 along with total energy density,

eT, and magnetic orientation angle, χ = tan−1(Bz/By), the latter being the best

indicator of RDs.

Table 6.1 lists the convergent values of the five parameters for each problem

referred to by their corresponding figure number. These values may be useful only

if my algorithm is followed carefully. It is quite possible to come up with another

perfectly good algorithm in which the parameters are scaled or used differently

that, while giving essentially identical solutions to each Riemann problem, may do

so with different convergent values of ψj .

Finally, values of the primitive variables in states L, 1 – 6 , and R (Fig. 5.1) for

each problem are given in Table 6.2 following the figures (pages 233–235). Missing

states are identical to the state listed immediately before where it would have been

inserted in the table. Thus, for the first problem listed in Table 6.2 (the Sod shock-

tube in Fig. 6.13), states 2 and 3 (not listed) are identical to state 1 (listed),

and states 5 and 6 (not listed) are identical to state 4 (listed).

And there you have it! At this point, it should seem in retrospect that the algorithm

for the HD Riemann problem described in 3.6 and assigned as project P3.1 was

utter child’s play!

14As done for rarefaction fans at the end of 6.2, all values for Bx, By and Bz given from here
until the chapter’s end including all plots and tables are in units where μ0 = 1. To restore units,
multiply any given value of Bx, By , or Bz by

√
μ0.

15I’ve not been entirely consistent with my use of vx. In subroutine fast shock of the algorithm
just described, vx indicates flow speed relative to the shock while ux indicates flow speed relative
to the lab (e.g., Eq. 6.42). For subroutine RF, vx indicates flow speed relative to the lab. In Fig.
6.13–6.30 and Table 6.2, I use vx as I do for rarefaction fans: flow speed relative to the lab.
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Fig. ψ1 ψ2 ψ3 ψ4 ψ5

6.13 −0.3478274 0.2426354 — — —

6.14 −0.2099834 0.0398941 −0.2313041 0.1786934 0.5987685

6.15 1.532796 9.580935 −0.0129561 0.2559795 0.0

6.16 1.132760 −0.1427370 0.7044264 −0.1025533 0.0

6.17 0.3855998 0.3207335 0.1012232 0.1227875 −0.2066066

6.18 1.022167 −0.1255906 0.6094286 −0.2758066 0.2025473

6.19 11.77350 16.95098 — — —

6.20 −0.8678615 −0.8678615 — — —

6.21 −0.8638215 0.1391506 −0.0917579 0.2682388 0.0

6.22 0.0 −1.037517 0.0 0.0 0.0

6.23 0.0144678 0.0246186 0.9999959 0.0 0.0

6.24 −0.0618703 −0.0202970 −0.7930968 0.2390264 0.5015874

6.25 −0.5904023 −0.2991020 0.0212305 0.3926217 3.141593

6.26 −0.6643923 −0.7833611 0.3208446 0.4637182 3.141593

6.27 0.0710332 5.088679 −0.0326858 0.4084126 0.0

6.28 −1.165195 0.0 0.0 0.0 0.0

6.29 −1.326030 −0.8692138 0.9999569 0.9102257 −3.141580

6.30 0.0963136 0.1096111 −0.7925678 −0.8419474 −1.263669

Table 6.1. Convergent values (with fractional tolerance 10−8) of the five pa-

rameters, ψj , quantifying the strength/width of each wave in the solutions to

the Riemann problems represented in the indicated figures, where j = 1, . . . , 5

correspond to the left and right fast waves, left and right slow waves, and the

left RD respectively. For ψ1 – 4, positive (negative) values indicate shocks (RF).

Switch-off shocks are indicated by ψ3,4 ∼ 1; switch-off RFs and switch-on waves

don’t have such definite values. The units of ψ5 are radians. For Bx = 0, ψ3,4,5

are not used, and their values are entered as em-dashes (—). For problems with

Bx �= 0, values of ψj set to 0.0 indicate that particular wave is absent in the so-

lution, and the corresponding upwind and downwind states are identical. While

zeros for ψ5 were dead zero, those for ψ1 – 4 were, in fact, of order 10−6. Conver-

gence of the functions, fi(ψj), to within tolerance does not necessarily mean the

parameters converge to the same tolerance.
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Figure 6.13. Original Sod shocktube from S76; B = 0 exactly (hydrodynami-
cal). From left to right: (fast) RF; CD; (fast) shock.

Figure 6.14. Modified Sod shocktube for MHD with Bx = 2, B⊥L,R = 1. From
left to right: fast RF; RD; slow RF; CD; slow shock; RD; fast shock. In this and
all remaining figures in this chapter, Bx, By, and Bz are given in units where
μ0 = 1.
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Figure 6.15. Figure 1a from RJ95 (2-D field; Bz = 0). From left to right: fast
shock; slow RF; CD; slow shock; fast shock. With Bz = 0 and ByL,R with the
same sign, there are no RDs.

Figure 6.16. Figure 1b from RJ95 (2-D field; Bz = 0). From left to right: fast
shock; slow shock; CD; slow RF; fast RF.
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Figure 6.17. Figure 2a from RJ95 (3-D field; Bz �= 0). From left to right: fast
shock; RD; slow shock; CD; slow shock; RD; fast shock.

Figure 6.18. Figure 2b from RJ95 (3-D field; Bz �= 0). From left to right: fast
shock; RD; slow shock; CD; slow RF; RD; fast RF. The “spikes” in vz and Bz

are real (near degeneracy of slow and Alfvén speeds).
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Figure 6.19. Figure 3a from RJ95 (tangential field; Bx = 0). From left to right:
fast shock; TD; fast shock. Slow waves and RDs do not exist for Bx = 0.

Figure 6.20. Figure 3b from RJ95 (tangential field; Bx = 0). From left to right:
fast RF; fast RF. The symmetry of the initial conditions preclude a TD.
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Figure 6.21. Figure 4a from RJ95 (switch-on shock). From left to right: fast
RF; slow RF; CD; slow shock; switch-on (fast) shock.

Figure 6.22. Figure 4b from RJ95 (switch-off RF). From left to right: CD;
switch-off (fast) RF.
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Figure 6.23. Figure 4c from RJ95 (switch-off shock). From left to right: fast
shock; switch-off (slow) shock; CD; fast Euler shock.

Figure 6.24. Figure 4d from RJ95 (switch-on RF). From left to right: fast Euler
RF; switch-on (slow) RF; CD; slow shock; RD; fast RF.
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Figure 6.25. Figure 5a from RJ95. From left to right: fast RF; RD; slow shock;
CD; slow shock; fast RF. All finite-difference solutions replace the RD + slow
shock with a slow compound wave (intermediate shock + slow RF); see Fig. 5.11.

Figure 6.26. Figure 5b from RJ95 (compound wave). From left to right: fast RF;
RD; slow shock; CD; slow shock; fast RF. All finite-difference solutions replace
the fast RF + RD with a fast compound wave (fast RF + intermediate shock).
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Figure 6.27. Figure 6 from F02. From left to right: fast shock; slow RF; CD;
slow shock; fast shock (no RDs).

Figure 6.28. Figure 2 from F02 showing a single fast RF.



Clarke 9781009381475 .tex 232 2/04/2025

232 The MHD Riemann Problem

Figure 6.29. Figure 10 from TY13. From left to right: fast RF; switch-off (slow)
shock; CD; slow Euler shock, switch-off (fast) RF. The two RDs (absent in TY13)
rotating By by π radians (including when By = 0!) point to a bug in my program.

Figure 6.30. A tricky problem. From left to right: fast shock; RD, slow RF;
CD; slow RF; RD; fast shock. My program had to restart the problem twice
(reshuffling initial guesses each time) before finding this solution.
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Fig. s ρ p vx vy vz By Bz Bx

6.13 L 3.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0
1 2.1187 1.6802 0.42399 0.0 0.0 0.0 0.0
4 1.3592 1.6802 0.42399 0.0 0.0 0.0 0.0
R 1.0 1.0 0.0 0.0 0.0 0.0 0.0

6.14 L 3.0 3.0 0.0 0.0 0.0 1.0 0.0 2.0
1 2.6024 2.3671 0.21433 −0.15479 0.0 0.67497 0.0
2 2.6024 2.3671 0.21433 −0.22758 0.23582 0.55754 0.38043
3 2.1472 1.7181 0.40771 −0.06504 0.34673 0.75259 0.51351
4 1.3772 1.7181 0.40771 −0.06504 0.34673 0.75259 0.51351
5 1.0301 1.0507 0.06962 −0.30207 0.18500 0.91633 0.62524
6 1.0301 1.0507 0.06962 −0.05502 −0.07336 0.66559 0.88746
R 1.0 1.0 0.0 0.0 0.0 0.6 0.8

6.15 L 1.0 20.0 10.0 0.0 0.0 1.4105 0.0 1.4105
1 2.6797 150.98 0.72113 0.23138 0.0 3.8388 0.0
3 2.6713 150.19 0.72376 0.35683 0.0 4.0379 0.0
4 3.8508 150.19 0.72376 0.35683 0.0 4.0379 0.0
5 3.7481 143.57 0.70505 −0.38803 0.0 5.4271 0.0
R 1.0 1.0 −10.0 0.0 0.0 1.4105 0.0

6.16 L 1.0 1.0 0.0 0.0 0.0 1.4105 0.0 0.84628
1 1.9185 3.6772 −1.6671 0.35507 0.0 2.8715 0.0
3 2.8547 7.6463 −1.8550 −1.2026 0.0 0.84874 0.0
4 0.08513 7.6463 −1.8550 −1.2026 0.0 0.84874 0.0
5 0.08682 7.9017 −1.7992 0.05545 0.0 0.48640 0.0
R 0.1 10.0 0.0 0.0 0.0 0.56419 0.0

6.17 L 1.08 0.95 1.2 0.01 0.5 1.0155 0.56419 0.56419
1 1.4903 1.6558 0.60588 0.11235 0.55686 1.4383 0.79907
2 1.4903 1.6558 0.60588 0.22157 0.30125 1.5716 0.48702
3 1.6343 1.9317 0.57538 0.04760 0.24734 1.4126 0.43772
4 1.4735 1.9317 0.57538 0.04760 0.24734 1.4126 0.43772
5 1.3090 1.5844 0.53432 −0.18411 0.17554 1.6103 0.49899
6 1.3090 1.5844 0.53432 −0.09457 −0.04729 1.5078 0.75392
R 1.0 1.0 0.0 0.0 0.0 1.1284 0.56419

6.18 L 1.0 1.0 0.0 0.0 0.0 1.6926 0.0 0.84628
1 1.7577 3.0321 −1.5336 0.33873 0.0 3.1166 0.0
2 1.7577 3.0321 −1.5336 0.29068 0.47290 3.0529 0.62695
3 2.8307 7.3663 −1.7507 −1.2739 0.15159 1.1924 0.24487
4 0.08324 7.3663 −1.7507 −1.2739 0.15159 1.1924 0.24487
5 0.08823 8.1157 −1.5878 2.0417 0.83250 0.24227 0.04975
6 0.08823 8.1157 −1.5878 2.0247 1.0 0.24732 0.0
R 0.1 10.0 0.0 2.0 1.0 0.28209 0.0

6.19 L 0.1 0.4 50.0 0.0 0.0 −0.28209 −0.56419 0.0
1 0.38714 81.660 25.033 0.0 0.0 −1.0921 −2.1842
4 0.39044 81.609 25.033 0.0 0.0 1.1014 2.2029
R 0.1 0.2 0.0 0.0 0.0 0.28209 0.56419

6.20 L 1.0 1.0 −1.0 0.0 0.0 1.0 0.0 0.0
1 0.49633 0.31114 0.0 0.0 0.0 0.49633 0.0
R 1.0 1.0 1.0 0.0 0.0 1.0 0.0

Table 6.2. Values of the primitive variables in each unique state (state identifier,

s, indicated in column 2) of the problems depicted in Fig. 6.13–6.30, and as

described in the text.
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Table 6.2, continued . . .

Fig. s ρ p vx vy vz By Bz Bx

6.21 L 1.0 1.0 0.0 0.0 0.0 1.0 0.0 1.0
1 0.59955 0.42629 0.81237 −0.59961 0.0 0.28431 0.0
3 0.55151 0.37090 0.89416 −0.54470 0.0 0.31528 0.0
4 0.41272 0.37090 0.89416 −0.54470 0.0 0.31528 0.0
5 0.22337 0.12402 0.24722 −0.91164 0.0 0.43086 0.0
R 0.2 0.1 0.65 0.0 0.0 0.0 0.0

6.22 L 0.4 0.52467 −0.66991 0.98263 0.0 0.0 0.0 1.3
4 0.67910 0.52467 −0.66991 0.98437 0.0 0.0011016 0.0
R 1.0 1.0 0.0 0.0 0.0 1.0 0.0

6.23 L 0.65 0.5 0.667 −0.257 0.0 0.54969 0.0 0.75
1 0.66041 0.51342 0.64401 −0.24512 0.0 0.56470 0.0
3 0.84690 0.79673 0.44079 −0.94 0.0 0.0 0.0
4 1.0369 0.79673 0.44079 −0.94 0.0 0.0 0.0
R 1.0 0.75 0.4 −0.94 0.0 0.0 0.0

6.24 L 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.7
1 0.94000 0.90202 0.07906 0.0 0.0 0.0 0.0
3 0.65158 0.48972 0.32267 0.80740 0.44275 0.66003 0.36194
4 0.49734 0.48972 0.32267 0.80740 0.44275 0.66003 0.36194
5 0.29768 0.19743 −0.01858 0.23388 0.12825 0.86736 0.47563
6 0.29768 0.19743 −0.01858 0.01055 1.0 0.98921 0.0
R 0.3 0.2 0.0 0.0 1.0 1.0 0.0

6.25 L 1.0 1.0 0.0 0.0 0.0 1.0 0.0 0.75
1 0.65673 0.49618 0.65790 −0.26700 0.0 0.54966 0.0
2 0.65673 0.49618 0.65790 −1.6235 0.0 −0.54966 0.0
3 0.66535 0.50709 0.64841 −1.6053 0.0 −0.53799 0.0
4 0.27400 0.50709 0.64841 −1.6053 0.0 −0.53799 0.0
5 0.11571 0.08793 −0.27717 −0.19847 0.0 −0.88576 0.0
R 0.125 0.1 0.0 0.0 0.0 −1.0 0.0

6.26 L 1.0 1.0 0.0 0.0 0.0 1.0 0.0 1.3
1 0.72751 0.58848 0.55942 −0.57673 0.0 0.34899 0.0
2 0.72751 0.58848 0.55942 −1.3951 0.0 −0.34899 0.0
3 0.91190 0.86059 0.30152 −1.2382 0.0 −0.23702 0.0
4 0.60378 0.86059 0.30152 −1.2382 0.0 −0.23702 0.0
5 0.32246 0.27931 −0.55835 −0.79046 0.0 −0.44197 0.0
R 0.4 0.4 0.0 0.0 0.0 −1.0 0.0

6.27 L 0.5 10.0 0.0 2.0 0.0 2.5 0.0 2.0
1 0.54231 11.452 −0.57430 2.1369 0.0 2.7519 0.0
3 0.53172 11.082 −0.53022 2.3251 0.0 2.8649 0.0
4 0.43257 11.082 −0.53022 2.3251 0.0 2.8649 0.0
5 0.19609 2.2397 −2.3747 −3.6537 0.0 4.8427 0.0
R 0.1 0.1 −10.0 0.0 0.0 2.0 0.0

16The fact that By is not exactly zero in the intermediate states means this is an approximate
switch-off rarefaction fan; Ryu & Jones’ (1995) solution is also approximate by a similar amount.
This problem reveals a weakness in my algorithm as changing any of p, vx, or vy in the left state L
by even the slightest amount can trigger numerous false starts, NaNs, even failure to converge. At
this writing, I don’t know the cause of this vulnerability, although the fact that vy is not exactly
constant across the CD may be a clue.
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Table 6.2, continued . . .

Fig. s ρ p vx vy vz By Bz Bx

6.28 L 1.0 0.23270 −4.6985 −1.0851 0.0 1.9680 0.0 −0.7
117 0.72702 0.13678 −4.0577 −0.83485 0.0 1.3551 0.0
R 0.72700 0.13680 −4.0577 −0.83490 0.0 1.3550 0.0

6.29 L 1.0 1.0 0.0 0.0 0.0 1.0 0.0 0.75
1 0.42671 0.24185 1.2214 −0.76375 0.0 0.10978 0.0
2 0.42671 0.24185 1.2214 −1.0999 0.0 −0.10978 0.0
3 0.55674 0.37925 0.95327 −0.93182 0.0 0.0 0.0
4 0.25132 0.37925 0.95327 −0.93182 0.0 0.0 0.0
5 0.11159 0.08276 −0.26216 −0.93167 0.0 −5.27×10−5 0.0
R 0.125 0.1 0.0 0.0 0.0 −0.32988 0.0

6.30 L 10.0 0.36 0.003 0.0 3.0 0.3 0.0 0.28
1 11.306 0.44198 −0.03032 0.00426 3.0 0.34386 0.0
2 11.306 0.44198 −0.03032 −0.06709 2.9025 0.10396 −0.32777
3 6.7098 0.18524 0.00552 −0.01150 2.7273 0.23170 −0.73054
4 0.06709 0.18524 0.00552 −0.01150 2.7273 0.23170 −0.73054
5 0.11519 0.45606 0.37841 0.58237 0.85481 0.09202 −0.29012
6 0.11519 0.45606 0.37841 −0.04329 0.0 0.30436 0.0
R 0.1 0.36 0.0 0.0 0.0 0.26 0.0

Problem Set 6

6.1∗∗ Show that with appropriate normalisation, the eigenkets associated with the

entropy and Alfvén waves are given by:

|rs〉 =

⎡

⎢⎢⎢⎢⎢⎣

1

0

0
�0
�0

⎤

⎥⎥⎥⎥⎥⎦
and |r±x 〉 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

∓ sgn(Bx)√
μ0ρ

êx × �B⊥

êx × �B⊥

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

, (6.49)

respectively, where êx is a unit vector in the longitudinal (x) direction. You may

assume Bx �= 0.

6.2 Prove Eq. (6.20) in the text, namely,

χs ≡ ψs
a2s

a2x − a2s

a⊥
cs

= ψf ,

17This problem sets the conditions for the upwind and downwind states (L and R) for a fast
RF, and thus the precision of the input values (five significant figures) will mean the intermediate
states (1–6) will agree with the downwind state to within a few parts in 104. This is reflected by
the reported differences between states 1 and R. Similar differences are found among the remaining
intermediate states.
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where ψf and ψs are given by Eq. (6.12).

6.3∗∗∗ To drive home how the eigenkets in Eq. (6.21) are derived and to gain

familiarity with the relationships among the MHD-alphas and the scaling factors μ

and ν, this problem takes the reader through finding the eigenbras (left eigenvectors)

of the Jacobian for the 1-D primitive ideal MHD equations, Jp (Eq. 5.9 in 5.1).

As discussed in 3.5.2, one way to find the eigenbras, 〈li|, i = 1, . . . , 7, is to create

the right eigenvector matrix, R, with eigenket |rj〉 forming the jth column and find

its inverse, L, whose ith row is 〈li| (Eq. 3.27). However, unless your algebra is far

better than mine, it’s a Herculean task to invert any but the simplest 7× 7 matrix.

If it doesn’t seem like it should be so bad, I invite you to give it a try! It took me an

entire weekend to find L, and even then I gave up before routing out the last error

or two!

A much better way is to evaluate 〈li| directly from the Jacobian by solving the

matrix equation,
〈li|(Jp − ui I) = 0, i = 1, . . . , 7. (6.50)

a) Following the steps taken in 6.2.1 to obtain the fast and slow (magnetosonic)

eigenkets in Eq. (6.21), start with Eq. (6.50) to show that the fast and slow

eigenbras are given by:

〈l±f | =
1

2

[
0 − μ

γp
∓μaf
c2s

±sgn(Bx)
νas
c2s

ê⊥ − ν√
μ0γp

ê⊥
]
;

〈l±s | =
1

2

[
0 − ν

γp
∓νas
c2s

∓sgn(Bx)
μaf
c2s

ê⊥
μ√
μ0γp

ê⊥
]
,

(6.51)

where all variables have the same meaning as in the text.

Hint : Normalisation of the eigenbras is achieved by noting that 〈li|rj〉 = δij for

which you will make copious use of the relationships among the MHD-alphas

(Eq. 6.13–6.16), and the scaling factors, μ and ν (Eq. 6.26 and 6.27).

b) Complete the set by finding the entropy and Alfvén eigenbras, 〈ls| and 〈l±x |.

c) Assemble the left and right eigenvector matrices, L and R, using your eigenbras

for L and the eigenkets in Eq. (6.21) and (6.49) for R, the latter from Problem

6.1. By doing the matrix multiplication, confirm that LR = I. (And if you

found that tedious, finding L by inverting R using elementary row operations

is 72 = 49 times worse!)

6.4 Show that there can be no switch-off fan for Bx = 0. That is, for Bx = 0, show

that B⊥ asymptotes to zero in the same way that the thermal pressure does, namely

B⊥ → 0 as the generalised coordinate si → ∞. (For a switch-off fan, si → si,d, a

finite quantity).
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6.5∗

a) Show that on a graph with x =
√
αx = ax/cs > 0 on the abscissa and

y =
√
α⊥ = a⊥/cs > 0 on the ordinate, contours of constant αs form a set

of confocal hyperbolæ, while contours of constant αf form a set of confocal

ellipses. Where is the focal point for each set?

b) Sketch, with some attempt at accuracy, a representative sample of each set of

contours on the same plot over the domain x, y ∈ (0, 3).18

6.6 A critical quantity in evaluating profiles across an MHD rarefaction fan is,

δx = αx − 1, (Eq. 6.22)

as it appears both directly and indirectly via the discriminant d (Eq. 6.25) in the

normalisation factors for the eigenkets, μ and ν (Eq. 6.26 and 6.27). In a computer

application and in the vicinity of αx → 1, δx becomes dominated by machine round-

off error which, so long as it is being added to a much greater quantity, is innocuous.

However, as is the case for μ and ν, δx is often being added to α⊥, and near the triple

umbilic where both αx → 1 and α⊥ → 0, quantities such as μ and/or ν will inherit

the machine round-off noise dominating δx, leading to all sorts of computational

woes.

We therefore need an alternate expression for δx that retains its precision as αx → 1.

a) Define,

� =
p− pcr
pcr

, (6.52)

where pcr = B2
x/μ0γ is the “critical pressure” which, when p = pcr, αx = 1.

Show that for � � 1,

δx = −� +�2 −�3 + · · · . (6.53)

With three terms in the expansion, Eq. (6.53) should give δx accurate to

12 significant figures (i.e., nearly double precision) for � ≤ 10−4, say. For

� > 10−4, one would then use Eq. (6.22).

b) Note that in evaluating �, one just can’t set the numerator to Δp = p− pcr,

as this would entirely defeat the purpose! For αx → 1, Δp is the difference of

two nearly equal numbers, and thus dominated by machine round-off error!

In a numerical scheme, can you suggest an alternate strategy for keeping

track of Δp that would not be dominated by numerical noise in the event

αx → 1? Hint : domination by numerical noise happens when two nearly equal

quantities are subtracted. Adding numbers, however, even a lot of them. . .

18This problem was inspired by Fig. 1 in Roe & Balsara (1996).
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6.7 The most critical quantities in evaluating profiles across an MHD rarefaction

fan are the eigenket normalisations, μ and ν (Eq. 6.26 and 6.27), rewritten here as:

μ2 = 1
2 (1− f); ν2 = 1

2 (1 + f), (6.54)

where,

f =
δx + α⊥√

(δx + α⊥)2 + 4α⊥
. (6.55)

In a computing application, we must avoid differences of nearly equal quantities

as these are dominated by machine round-off error. For μ2 and ν2, the concern is

therefore when f → ±1 which cannot be avoided simply by “upping the machine

precision”.

From Eq. (6.28) and (6.29) in the text, it was shown that for α⊥ = 0,

μ2 =

⎧
⎪⎪⎨

⎪⎪⎩

1, δx < 0;
1
2 , δx = 0;

0, δx > 0,

and ν2 = 1− μ2 =

⎧
⎪⎪⎨

⎪⎪⎩

0, δx < 0;
1
2 , δx = 0;

1, δx > 0,

(6.56)

all perfectly well-behaved values. Thus, we may proceed assuming α⊥ > 0.

Further, for δx+α⊥ = 0 and α⊥ > 0, f = 0 and, from Eq. (6.54), μ2 = ν2 = 1
2 (same

as the δx = α⊥ = 0 case in Eq. 6.56). Thus, we may proceed assuming δx+α⊥ �= 0.

a) So with α⊥ > 0 and δx + α⊥ �= 0, define,

ε =
α⊥

(δx + α⊥)2
, (6.57)

where 0 < ε <∞. Show that: lim
ε→0

f = sgn(δx + α⊥), where sgn(x) =
x

|x| .

b) Even though α⊥ > 0, ε can still be arbitrarily close to zero forcing f arbitrarily

close to ±1, which remains problematic for μ2 or ν2. Show that for ε� 1:

μ2 = ε− 3ε2 + 10ε3 − · · · for δx + α⊥ > 0;

ν2 = ε− 3ε2 + 10ε3 − · · · for δx + α⊥ < 0,

⎫
⎬

⎭ (6.58)

give values for μ2 and ν2 in the domains indicated accurate to at least 10–11

significant figures for ε < 10−4 using the three terms shown.

Computer projects

P6.1: Write a computer program to find the profile across any MHD rarefaction

fan. In addition to the variable values in the upwind state, your input specifications
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will need to include whether the fan is fast or slow, and how “wide” the fan should

be (upper limit of integration). Thus, you will be solving the seven first-order ODEs

in Eq. (6.1) in the text, using Eq. (6.21) for the function derivatives (eigenkets),

and Eq. (6.26) and (6.27) for μ and ν, the eigenket “normalisations”. See 6.4.3

(subroutine RF on page 218) for guidance.

For starters, your program should be able to reproduce Fig. 6.5–6.10 whose upwind

states are described in the figure captions.

In general, your program should be able to:

- detect when a fast or slow rarefaction fan is not possible from the given upwind

state;

- detect when a fast fan has saturated, and integrate to this limiting value;

- detect if a fast saturated fan is Euler or switch-off;

- distinguish between a slow Euler fan and a switch-on fan (both requiring

B⊥ = 0 in the upwind state) even for |δx| < 10−32;

- launch a slow fan from the triple umbilic.

Suggestion: You might, like I did, consider writing your program in units where

μ0 = 1. It simplifies what values have to be entered for the magnetic induction

components, and it simplifies how the plots are done.

P6.2: Following the algorithm in 6.4.3, write a computer program to give the

“exact” and unique solution to any MHD Riemann problem, adhering to both the

entropy and evolutionary conditions (i.e., no intermediate shocks, but all switch-on

and switch-off waves accounted for).

Confirm the integrity of your program by reproducing Fig. 6.15–6.30 in the text,

whose left and right states are all listed in Table 6.2.

Suggestion: See suggestion for project P6.1!
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ADDITIONAL TOPICS IN (M)HD
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7 Fluid Instabilities

with thanks to Joel Tanner, B.Sc. (SMU), 2005; M.Sc. (SMU), 2007. †

I am an old man now, and when I die and go to heaven, there are two

matters on which I hope for enlightenment. One is quantum electrody-

namics and the other is the turbulent motion of fluids. About the former,

I am really rather optimistic.

Sir Horace Lamb (1849–1934)
addressing the British Society for the Advancement of Science, 1932

All physical systems have points of equilibrium, where the net force exerted

on all or part of the system is zero. In such cases, the question is whether a

slight departure from equilibrium results in the system returning to its equilibrium

point – a condition referred to as stable equilibrium – or whether that slight depar-

ture causes the system to move further away from equilibrium, a condition known

as unstable equilibrium.

Figure 7.1. A ball in a dip
(a) and atop a mound (b) il-
lustrating stable and unstable
equilibria.

The usual analogy made at this point in

the discussion is of a ball caught in a dip in

the ground vs. one perched on top of a mound.

As shown in Fig. 7.1 a, a nudge to the ball in

the valley causes the ball to roll up the hill a

short distance, stop, return to the bottom of

the dip with a non-zero speed which carries it

through the equilibrium point and up the other

side, stop again, and so it goes. Allowing for dis-

sipative forces, the ball eventually settles back

to its equilibrium position. This exemplifies a

stable equilibrium.

Alternatively, to nudge the ball on top of

the mound in Fig. 7.1 b causes the ball to roll

away from its perch and accelerate, never to

return (unaided) to the top of the mound. This

exemplifies an unstable equilibrium, or instability .

Fluids can also exhibit instabilities and, as we’ll see, all lead to a state of chaotic

(but not random!) motion in the fluid known as turbulence (Fig. 7.2), a subject that

has confounded physicists before and since Sir Horace. And while a full treatment

†Ph. D. (Yale), 2014
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Figure 7.2. An image from a ZEUS-3D simulation of super-Alfvénic turbulence,
a portion of which is used as chapter banners in this text. Shown is a line-of-
sight integration of B2/2μ0 through a fluid cube initialised with a weak magnetic
field (α  1). As the turbulent motion twists and stretches �B, kinetic energy is
converted to magnetic energy, and the system asymptotes towards trans-Alfvénic
turbulence. While turbulence cannot be described as random (there is clearly
structure), it is chaotic producing a filamentary structure reminiscent of the fila-
ments observed in giant radio lobes such as those in Cygnus A (Fig. 2.14). Indeed,
super- and trans-Alfvénic turbulence is the state in which the interstellar and
inter-galactic media are thought to exist, begun and driven by fluid instabilities.

of turbulence is beyond the scope of this text,1 a good start is to understand the

nature of its precursors, i.e., fluid instabilities.

Like the ball caught in the dip or perched on the mound, certain fluid equilibria

1See Galtier (2016) for a senior undergraduate level text that treats (M)HD turbulence in
considerable depth.
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Figure 7.3. a) A shear layer in an otherwise uniform fluid in the frame of
reference of the lab. b) The same shear layer from the frame of reference of the
upper fluid (region u ) with a sinusoidal perturbation applied to the shear layer.

can be shown to be stable or unstable. In this chapter, we’ll examine four such cases

with a similar strategy for each. First, we’ll identify one or more variables (e.g.,

pressure, velocity, etc.) with the potential of “running away” from equilibrium.

We then derive an equation of motion for that variable from the linearised fluid

equations and look to their normal mode solutions2 and their frequencies, ω, to

distinguish between stable (ω ∈ R) and unstable equilibria (ω ∈ I).3 Our linearised

analysis will only be able to determine what starts the instability and how it grows

initially. In two cases, ZEUS-3D simulations are used to supplement the discussion

to show how the instability progresses from the linear to the non-linear regime, and

then ultimately towards the onset of turbulence.

7.1 Kelvin–Helmholtz instability

A shear layer is a narrow width of fluid (a layer) across which the flow speed along

the layer changes significantly. Figure 7.3a shows a simplified shear layer from the

“lab frame” in which the flow speed changes from +v0 for y > 0 (the upper region

u ) to −v0 for y < 0 (the lower region l ) across an arbitrarily thin layer at y = 0.

Left alone, an inviscid fluid would continue to flow like this in perpetuity, and thus

a shear layer represents an equilibrium state in ideal hydrodynamics.

Now, what if a shear layer is perturbed in the y-direction (as depicted in Fig.

7.3b)? Will the disturbance grow in time and thus exhibit an instability, or will it

decay in time and thus indicate a stable equilibrium? If the disturbance grows, at

what rate does it grow and what determines that rate?

As we’ll see, under the right circumstances a shear layer is unstable to trans-

verse perturbations and our mathematical approach – which can be described in

a number of ways including linear analysis, perturbation theory or, as we’ll call it,

normal mode analysis – will lead us to what I would argue is the most fundamental

fluid instability of ideal hydrodynamics: the Kelvin–Helmholtz instability (KHI).

2Rappel : “Normal mode solutions” are defined after Eq. 2.21 on page 30.
3See Problem 7.1 on how this method can be applied even to the ball in Fig. 7.1.
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7.1.1 Normal mode analysis of the KHI

We wish to consider the time-evolution of a small-amplitude perturbation applied

to a shear layer, where y = Y (x, t) describes the shape of the shear layer as a

function of x and t. Since the distortions are small, we can use the “linearised” fluid

equations from 2.1.1 where all speeds are measured from within the rest frame of

the unperturbed fluid. Thus, in the rest frame of the upper fluid here (region u in

Fig. 7.3b), the pressure is governed by the same wave equation developed in 2.1.1,

namely:
∂2p

∂t2
= ∂ttp = c2s ∇2p, Eq. (2.9)

where c2s = γp0/ρ0 is the square of the sound speed for an adiabatic gas, and

where p0 and ρ0 are the unperturbed pressure and density respectively. Note that

both layers must have the same pressure, p0, in order for the system to start in

equilibrium, but they need not have the same density. Here, we have chosen to set

the density of both layers to the same value, ρ0, to simplify the calculations.

To proceed, we seek normal mode solutions to Eq. (2.9) of the form:

p(x, y, t) = P (y) ei(kx−ωut), (7.1)

where P (y) is the y-dependent amplitude of the perturbation, ωu is the frequency

of the normal mode as measured from the rest frame of upper region u , and k

is the wave number, a Galilean invariant (independent of frame from which it is

measured). Since the Fourier components of any general function are the normal

modes, no loss of generality is suffered by assuming such a form for p.

P (y) is determined by substituting Eq. (7.1) into Eq. (2.9). To this end, we

have:

∂ttp = −ω2
uP (y) e

i(kx−ωut);

∇p =

(
ikP (y),

dP (y)

dy
, 0

)
ei(kx−ωut);

∇ · (∇p) = ∇2p =

(
−k2P (y) + d2P (y)

dy2

)
ei(kx−ωut).

Thus, Eq. (2.9) becomes:

−ω2
uP (y)�����

ei(kx−ωut) = c2s

(
−k2P (y) + d2P (y)

dy2

)
�����
ei(kx−ωut)

⇒ d2P (y)

dy2
=

(
k2 − ω2

u

c2s

)
P (y) ≡ β2

u P (y)

⇒ P (y) = Ae−βuy +Beβuy, (7.2)

where A and B are constants of integration and βu is defined for convenience. In

region u , y > 0 and we must set B = 0 in order for P (y) → 0 as y → +∞. Thus,

P (y) = Ae−βuy,
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and Eq. (7.1) becomes:

p(x, y, t) = Ae−βuy ei(kx−ωut). (7.3)

Aside: For the reader unfamiliar with normal mode analysis, let’s take a breather

and look at what just happened.

In 2.1.1 where the wave equation (Eq. 2.9) was first developed from the lin-

earised Euler and pressure equations, we found that any function of �r and t would

solve it so long as �r and t came in the form �k ·�r±ωt, where �k = kêk is the wave vec-

tor, and where k and ω are as defined above. Now certainly, the function ei(kx−ωt)

satisfies this criterion (taking êk = ı̂, for example), but we could still choose any

function of kx− ωt. Why the exponential?

There are at least three compelling reasons I can think of.

1. A more “general” solution can always be expressed as a linear combination

of its Fourier components, each of which is an exponential with an imaginary

argument. Thus, anything we learn about what it means for a single Fourier

component to solve Eq. (2.9) applies to the “general solution” too.

2. In perturbation analysis, we actually perturb the fluid in the y-direction with

a pure cosine (or sine) wave which is just the real (or imaginary) part of our

trial solution. So, in this case, ei(kx−ωt) actually is the general solution!

3. Finally, it’s the simplest choice mathematically. Grace of the exponential, by

the time we get to Eq. 7.2, all occurrences of x and t have disappeared leaving

us with an easy-to-solve ODE for the amplitude, P (y).

Now, we’re still only part way there. Our goal is to get a single expression relating ω

and k; the so-called dispersion relation. But we still have the shape of the interface,

Y (x, t), to examine along with the facts that both p and Y remain continuous across

the interface as the perturbation evolves. This is what’s coming up.

Next, the linearised Euler equation for vy is,

∂tvy = − 1

ρ0
∂yp =

βu
ρ0
Ae−βuy ei(kx−ωut),

and since the x-component of the velocity in the rest frame of region u , vx,u, is

zero, we have at y = 0:

vy =
dY

dt
= ∂tY + vx,u∂xY = ∂tY,

where, as mentioned at the top of the section, Y (x, t) gives the shape of the boundary

layer as it evolves in time (Fig. 7.3b). Therefore:

∂ttY = ∂tvy

∣∣∣
y=0

= − 1

ρ0
∂yp
∣∣∣
y=0

=
βu
ρ0
Aei(kx−ωut), (7.4)



Clarke 9781009381475 .tex 248 2/04/2025

248 Fluid Instabilities

which can be integrated twice over time to get:

Y (x, t) = − βu
ρ0ω2

u

Aei(kx−ωut). (7.5)

We can transform the expressions for p and Y (Eq. 7.3 and 7.5) to the lab

frame by the following simple argument. Perturbations with wave number k and

thus wavelength λ = 2π/k will have the same wavelength regardless of the frame of

reference in which they are observed (as already stated, k is a Galilean invariant).

This is not true of the frequency. Suppose in the rest frame of region u , the waves

are moving in the +x-direction, and suppose further that we observe f = ωu/2π

crests of the wave passing by each second. Then, to shift to the lab frame as depicted

in Fig. 7.3a, we must move with a velocity v0 into the wavetrain and thus the number

of crests we observe passing by per second must increase. Thus, transforming the

above discussion to the lab frame is tantamount to applying a Doppler shift where

the frequency observed in the lab frame, ω, is given by:

ω = ωu + kv0 ⇒ ωu = ω − kv0. (7.6)

Substituting Eq. (7.6) into each of Eq. (7.3) and (7.5) yields:

p>(x, y, t) = Ae−βuy ei[kx−(ω−kv0)t]; (7.7)

Y>(x, t) = − βu
ρ0(ω − kv0)2

Aei[kx−(ω−kv0)t]. (7.8)

where the subscript > indicates these expressions are valid for y > 0. Further, in

terms of ω,

βu =

√

k2 − (ω − kv0)2

c2s
.

Expressions valid for the lower region l in Fig. 7.3 can be extracted directly

from Eq. (7.7) and (7.8) simply by replacing v0 with −v0, and by noting that:

P (y) = B e+βly; βl =

√

k2 − (ω + kv0)2

c2s
,

in order for P (y) → 0 as y → −∞. Thus:

p<(x, y, t) = B eβly ei[kx−(ω+kv0)t]; (7.9)

Y<(x, t) =
βl

ρ0(ω + kv0)2
B ei[kx−(ω+kv0)t], (7.10)

where the subscript < indicates these expressions are valid for y < 0. Note that

there is no negative sign leading the RHS of Eq. (7.10). This is because from Eq.

(7.4), ∂ttY< and thus Y< ∝ ∂ypl ∝ e+βly and not e−βuy as is the case for Y>.

To obtain the dispersion relation (how ω depends upon k), we exploit the

singular property of p and Y that they must be continuous across the shear layer.

Thus, at y = 0, we set p> = p< and Y> = Y< to get:

Aeikv0t = B e−ikv0t; (7.11)
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− βu
(ω − kv0)2

Aeikv0t =
βl

(ω + kv0)2
B e−ikv0t. (7.12)

Dividing Eq. (7.12) by Eq. (7.11) yields:

−βu(ω + kv0)
2 = βl(ω − kv0)

2

⇒
(
k2 − (ω − kv0)

2

c2s

)
(ω + kv0)

4 =

(
k2 − (ω + kv0)

2

c2s

)
(ω − kv0)

4

⇒
(
ω2 − k2v20

kcs

)2
= 2(ω2 + k2v20),

after some straight-forward algebra. Additional algebraic manipulations yield:

(
ω

kcs

)4
−
(
ω

kcs

)2
2(M2 + 1) +M2(M2 − 2) = 0, (7.13)

where M = v0/cs is the Mach number of the flow relative to the lab frame. This is

the dispersion relation, whose roots are given by:
(
ω

kcs

)2
= M2 + 1±

√
4M2 + 1,

and thus four possible frequencies are admitted:

ω1,2 = ±kcs
√
M2 + 1 +

√
4M2 + 1;

ω3,4 = ±kcs
√
M2 + 1−

√
4M2 + 1,

⎫
⎪⎪⎬

⎪⎪⎭
(7.14)

where the perturbation, Y (x, t), develops as a linear combination of these four

modes:

Y (x, t) =
4∑

j=1

Cj(x, t) e−iωj t.

The first two frequencies, ω1 and ω2, are real and thus produce oscillatory responses.

Since they differ only by a sign, they both represent the same normal mode. The

second two frequencies, ω3 and ω4, are real when:

M2 + 1 >
√

4M2 + 1 ⇒ M4 + 2M2 + 1 > 4M2 + 1 ⇒ M4 > 2M2

⇒ M2 > 2.

That is, when M2 > 2, ω3 and ω4 also produce oscillatory responses and also

represent the same normal mode. Thus, the shear layer responds to the perturbation

with a linear combination of two normal modes with frequencies ω1 and ω3, and the

system is stable.

On the other hand, for 0 < M2 < 2, ω3 and ω4 are imaginary, and we set:

ω3 = iχ; ω4 = −iχ,
where :

χ = kcs

√√
4M2 + 1−M2 − 1 ∈ R for M2 < 2. (7.15)
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Then:

e−iω3t = eχt exponentially growing;

e−iω4t = e−χt exponentially decaying.

Thus, after some time t, the ω3 term dominates all other terms and the shear layer

is unstable to normal mode perturbations. In this case,

Y (x, t) ∝ eχt,

which has an e-folding growth-time, τKH, of,

τKH =
1

χ
∝ 1

kcs
=

λ

2πcs
, (7.16)

where λ is the wavelength of the normal mode. Evidently, the shorter the wave-

length, the shorter the growth-time, and thus the faster the instability grows. It

would seem that infinitely small wavelengths would grow infinitely fast, but this is

not the case in practice. Viscous damping and/or surface tension along the shear

layer preferentially damp out short-wavelength perturbations, and thus the very

short wavelengths do not grow at all. But of the wavelengths not seriously affected

by dissipative forces, Eq. (7.16) tells us the shorter ones grow most rapidly.

Finally, we’ve seen that for M2 > 2, the growth rate of the instability is the

least (zero). At what Mach number is the growth rate the greatest? From Eq. (7.16),

the shortest growth-time for a given wavelength corresponds to the greatest value

for χ, and thus of χ2. Therefore, from Eq. (7.15),

1

(kcs)2
d(χ2)

d(M2)
=

4

2
√
4M2 + 1

− 1 = 0

⇒
√
4M2 + 1 = 2 ⇒ 4M2 + 1 = 4 ⇒ M2 = 3/4.

Thus, the shear layer is most unstable when the Mach number for each of the upper

and lower regions relative to the lab frame is
√
3/2, or when their relative Mach

number is
√
3.

This is the Kelvin–Helmholtz instability, named for William Thomson (Lord

Kelvin)4 and Hermann von Helmholtz5 who first studied the effect in the mid-19th

century. Our analysis of the KHI has been entirely in the so-called linear regime,

a reference to the fact that only the linearised Euler and pressure equations have

been consulted. As we’ll see in the next subsection, the sole non-linear term in the

HD equations, namely �v · ∇�v in Euler’s equation, is a complete game-changer once

the amplitude of the perturbation can no longer be considered “small” compared

to its wavelength.

4Thomson (1824–1907; www.wikipedia.org/wiki/Lord Kelvin) was the first British scientist
elevated to the House of Lords, becoming Lord Kelvin. This is the same Kelvin who formulated
the combined first and second laws of thermodynamics and for whom the temperature scale is
named.

5Helmholtz (1821–1894; www.wikipedia.org/wiki/Hermann von Helmholtz) may be better
known to the reader for his work in electrodynamics and the “Helmholtz equation”.
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Figure 7.4. Images from a ZEUS-3D simulation of a Kelvin–Helmholtz unstable
shear layer showing a) the instability still in its “linear regime” where the pertur-
bation can still be described by four wavelengths of a sine wave, b) the onset of
its “non-linear regime”, c) well into its non-linear regime where the waves start
to “break”, d) further yet into the non-linear regime as the wave crests wrap up
into spirals, and e) the development of vortices known as “cat’s eyes”.

7.1.2 The development of the KHI

Figure 7.4 shows five snapshots from a ZEUS-3D6 simulation (800× 200 zones) of a

shear layer perturbed by four wavelengths (4λ) of a sinusoidally varying transverse

velocity with an amplitude 0.001 cs. The top fluid (blue) moves from left to right,

while the bottom fluid (white) moves from right to left, each with the same speed,

M = 0.5 (and thus a relative Mach number of 1). Panel a shows the shear layer

after several growth times where the amplitude of the perturbation has grown to

∼ 0.01λ, still small enough to be considered in the linear regime and therefore well-

described by four wavelengths of a sine wave. In panel b about 1.6 growth times

later, the perturbation amplitude has grown to more than 5% of λ, and the non-

linear effects are just beginning to appear (little “barbs” to the right of each peak).

By panel c, non-linear effects are well-developed and waves start to “break”, forming

a sequence of “curls” like those you might find on top of a soft-serve ice cream cone.

As the white and blue fluids wrap themselves around each other, the “curls” become

“swirls” and four cells of clockwise-spinning fluid form by panel d. As the instability

progresses, “swirls” become “whirls” as the two fluids wrap themselves up tightly

enough to start mixing, leaving four distinct vortices commonly known as “cat’s

6Rappel : See footnote 6 on page 77.
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eyes” (panel e). Left alone, these “whirls” of fluid continue to spin in a clockwise

sense, driven as they are by the right-moving fluid above them and left-moving fluid

below, much like ball-bearings caught between two oppositely moving planks.

The time from initial perturbation until Fig. 7.4a where the sinusoidal dis-

tortions can just be seen is roughly the same as the time between panels a and

d. Thus, while it takes a while for the non-linear regime to begin, once it does it

rapidly takes over. To be clear, all the analysis that concluded an instability exists

with a growth rate given by Eq. (7.15) and (7.16) was done in the linear regime and

thus applicable only to a little after Fig. 7.4a. Everything thereafter is completely

unknown to the linear analysis, and it is only through simulations such as this that

we can know how the instability unfolds once tripped. Still, the linear analysis is

important since it is what tells us whether an equilibrium state is stable or not and

whether there is something interesting to pursue numerically.

Now, with all this mathematical and numerical analysis, we still haven’t devel-

oped a physical model. On what physical grounds does the KHI operate?

The KHI can be explained in terms of Bernoulli’s theorem ( 2.4) for a gas:

Bgas =
v2

2
+

γ

γ − 1

p

ρ
+ φ = constant along streamlines. Eq. (2.72)

Consider the rectangular region of fluid strad-

dling the shear layer in the top panel of the inset

(dashed lines). Flow along the upper boundary

of the rectangle (which lies along a streamline)

moves from left to right with speed v0, while

along the lower boundary (also a streamline),

flow moves from right to left also at speed v0.

As the perturbation bends the shear layer (in-

set, bottom panel), the rectangular box is also

bent, forcing fluid moving along the upper boundary to travel further in the same

time than fluid moving along the lower boundary. Thus, as a result of the perturba-

tion, fluid above the shear layer speeds up (vu > v0) while fluid below slows down

(vl < v0). Assuming the gravitational potential, φ, is the same above and below the

shear layer, for Bgas to remain constant, p must decrease above the shear layer and

increase below, creating a pressure difference that drives the instability.

7.1.3 The KHI in nature

I give two examples of natural phenomena attributable to the Kelvin–Helmholtz

instability, one terrestrial, one extraterrestrial.

Because the KHI is preferentially excited at the subsonic speeds of the upper

atmosphere, clouds – which often form at shear layers where two air masses meet –

can serve as “tracers” of the KHI as it develops. Figure 7.5 shows a spectacular

example of this where clouds “light up” a KHI along an atmospheric shear layer

that is well into its non-linear regime and bears a strong resemblance to Fig. 7.4c. As
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Figure 7.5. Kelvin–Helmholtz instabilities forming a line of “soft-serve ice cream
curls” in clouds over Wyoming (photo credit: Brooks Martner, NOAA).

panels d and e of Fig. 7.4 showed us, the fate of this beautiful sequence of “soft-serve

ice cream curls” is to develop into whirling vortices, i.e. cat’s eyes. Because each

vortex spins within non-spinning fluid, its surface is itself a shear layer that, in

principle, is Kelvin–Helmholtz unstable and can shed off smaller vortices of its own.

As we’ll see qualitatively in 8.5, this cascade into smaller and smaller vortices is

how the KHI develops into turbulence, something anyone who has ever flown on an

airplane will have experienced first hand.

Figure 7.6. Jupiter’s Great Red Spot
thought to be a KHI-driven “cat’s eye”
(photo credit: Voyager 1, NASA).

The most spectacular extrater-

restrial example of a KHI-driven

cat’s eye has to be the Great Red

Spot on Jupiter (Fig. 7.6). Note the

examples of smaller amplitude KHI

in the surrounding atmosphere and

within the red spot itself. The white

oval in the lower right of Fig. 7.6 is

likely another KHI-driven vortex.

If what we know today is the

same feature that was first observed

by Robert Hooke in 1664, the Great

Red Spot is a very long-lived fea-

ture indeed. This means it must es-

sentially be 2-D (planar) in nature

because a fully 3-D vortex cascades

into turbulence very quickly (e.g., Ryu et al., 2000). While its origin is still not fully

understood, the red spot is widely believed to be a feature confined between two lay-

ers of Jupiter’s stratified atmosphere, and thus approximately 2-D. Since Jupiter’s

banded atmosphere rotates differentially with bands nearer the equator rotating
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Figure 7.7. Growth of a sinusoidal perturbation along a shear layer as a func-
tion of relative Mach number between a right-moving upper and left-moving lower
layer (2M) as computed by ZEUS-3D on a 500× 150 Cartesian grid. Images are
taken at t = 2.7 (in units of a horizontal sound-crossing time), just at the tran-
sition between linear and non-linear behaviour for the 2M = 1.5 run. Contours
show the normal component of vorticity across the shear layer whose thickness
is ∼ 0.04 in units of x1.

faster than those nearer the poles, there is shear between the bands which drives

the KHI, creating vortices like the Great Red Spot. The spot’s colour is thought to

result from redder material being dredged up from below by the vortex.

7.1.4 Numerical analysis of the KHI (optional)

Here we examine the linear regime of the Kelvin–Helmholtz instability from a nu-

merical standpoint. Numerous analytical problems (e.g., the Riemann problem)

exist that can be used to verify numerical MHD algorithms such as those used in

ZEUS-3D, but analytic multi-dimensional solutions are few and far between. There-

fore, another good reason to study the linear regime of a multi-dimensional problem

such as the KHI is to provide a calibrator/check for an MHD code before setting it

loose on the full non-linear problem.

Figure 7.7 shows contours of the vorticity (�ω = ∇×�v) component normal to the

page (an excellent indicator of shear) from a series of ZEUS-3D simulations showing

the early development of a KHI across a shear layer. Images differ only in the relative

Mach number between the right-moving upper layer and the left-moving lower layer,

which label each frame (2M). Each image is taken at 2.7 sound-crossing times (the

time needed for sound to travel the width of the box, L = 1, less than three times)

after a sinusoidal perturbation with λ = L is applied to the shear layer. It is apparent

from these snapshots that the maximum growth rate occurs in 1.25 < 2M < 1.5,

whereas the results we worked out from linear theory predicts maximum growth at
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Figure 7.8. Growth of a sinusoidal perturbation along a 2M = 1.5 shear layer as
a function of the wavelength of the perturbation. All images are taken at t = 0.75
sound crossing times. The numerical results confirm linear theory’s prediction
that growth rate varies inversely as the wavelength of the perturbation.

2M =
√
3 ∼ 1.73. This actually represents reasonable agreement, given that the

linear theory is for an infinitely thin shear layer, whereas the simulations require

a finite thickness (in this case, 0.04 times the width of the box) to prevent “hair-

trigger” instabilities caused by grid discretisation errors from breaking up a too-thin

shear layer right from the beginning. Further, some non-linear effects are surely

playing a role by t = 2.7, particularly for the large-amplitude 2M = 1.5 simulation.

The simulations also agree with the linear theory prediction that the shear

layer is unconditionally stable for 2M ≥ 2
√
2 ∼ 2.83. Not shown in Fig. 7.7 are the

cases for 2M = 2.5 and 3.0, the former showing only the slightest perturbation at

t = 3, and the latter showing little motion even at t = 12.

Figure 7.8 shows the development of perturbations of wavelengths L, L/2, L/3,

and L/4 each at 0.75 sound crossing times. Shown in each frame are two contours

of the normal vorticity at the centre of the shear layer whose thickness, as described

above, had to be non-zero for numerical stability. Such a thickness adds a scale

length to the problem, which therefore has to be scaled down with the wavelength

if it is to have a comparable effect in all runs. With this in mind, the simulations

agree with our results from linear theory (Eq. 7.16) that the amplitude of the

perturbation varies (roughly) as the inverse of the wavelength. In fact, note that

for λ = L/4, the perturbation has already grown sufficiently for non-linear effects

(deviation from a sine-wave) to have become apparent.
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Figure 7.9. Density colour contours of a ZEUS-3D 200 × 700 zone simulation
of an RTI with A = −0.2 (Atwood number; see text) triggered by a perturbation
to the contact discontinuity separating the denser fluid atop the less dense fluid
(amplitude 2.5% of box-width, w; panel a). In the initial “linear-regime”, growth
is exponential as denser material pushes into less dense material in a uniform
gravitational field, g = c2s/w. “Non-linear effects” are already apparent by panel b
where minute beginnings of the KHI along what is now a tangential discontinuity
(TD) can be seen. By panel c, KHI “wavelets” are clearly seen all along the
TD and, through panels d and e, development of the KHI “fractalises” the TD,
producing a significant mixing layer as falling heavier material forms a “Rayleigh–
Taylor finger”.

7.2 Rayleigh–Taylor instability

Named for Lord Rayleigh7 and Sir Geoffrey Taylor,8 the Rayliegh–Taylor instability

(RTI) is triggered when a lighter (less dense) fluid supports a heavier (denser) fluid

in a gravitational field. If the boundary between the fluids is dead flat and still, the

heavier fluid can remain on top of the lighter fluid forever. However, any perturba-

tion to the boundary layer will grow in time, resulting in “fingers” of heavier fluid

sinking into lighter fluid which is thereby displaced upwards (e.g., Fig. 7.9). This

process enables the system to reduce its net potential energy by moving heavier fluid

71842–1919, born John William Strutt, Lord Rayleigh made numerous contributions to physics
including the discovery of Argon (1904 Nobel Prize) and describing how light scatters off particles
smaller than its wavelength (Rayleigh-scattering), explaining for the first time why the sky is blue!
(www.wikipedia.org/wiki/John William Strutt, 3rd Baron Rayleigh)

81886–1975; fluid dynamicist and wave theorist, Taylor is probably best known by students of
physics for his first paper as an undergraduate on how light produces fringes even when passing
through a slit one photon at a time. (www.wikipedia.org/wiki/G. I. Taylor)
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Figure 7.10. The Crab Nebula (a.k.a. M1) in the constellation Taurus is a rem-
nant of a supernova first recorded by Chinese astronomers in 1054, bright enough
at the time to be seen in broad daylight. Today where there was once a star, a
pulsar resides at the centre of the nebula which modern astronomy interprets as a
blast wave from the supernova explosion still accelerating outwards as evidenced
by the web of Rayleigh–Taylor fingers giving the nebula its filamentary appear-
ance (photo credit: NASA, STSci).

below the lighter fluid, and is what most people think of as the RTI.

Rayleigh was the one who first described the phenomenon; Taylor was the

one to point out that this phenomenon also occurs in an accelerating fluid when

less dense fluid pushes denser fluid. Probably the most famous example of this in

astrophysics is the Crab Nebula (Fig. 7.10) in which a supernova blast wave is

forcing hot, rarefied gas to accelerate into denser shocked material, resulting in the

myriad of filaments observed.

7.2.1 Normal mode analysis of the RTI

Unlike the Kelvin–Helmholtz instability ( 7.1) which is entirely fluid-driven, the

RTI requires an external agent – either a background gravitational field or a driver

to accelerate the fluid – to manifest. Therefore, our approach to analyse it will be

little different. We will still examine the instability in its “linear regime” using the

linearised fluid equations and normal mode solutions to determine the conditions

for instability and growth rate. However, not being driven by pressure and velocity

fluctuations as the KHI, we shan’t analyse the RTI with a wave equation. Instead,

we’ll examine what happens to the velocity field directly as the heavier fluid begins
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to displace lighter fluid “beneath it”.

Figure 7.11. Initial con-
ditions for the Rayleigh–
Taylor instability.

Consider two incompressible, inviscid, stagnant

fluids with uniform densities ρu �= ρl occupying the

upper and lower regions of a volume of height 2L as

depicted in Fig. 7.11. The interface between the two

fluids is initially horizontal (dashed line at y = 0)

and the fluids are embedded in a uniform gravi-

tational field, �g = −gĵ. For simplicity, assume z-

symmetry (∂z = 0), vz = 0, and that at t = 0, the

fluids are in pressure balance. Thus, the interface

can be interpreted as a contact discontinuity.

At t = 0, the interface is perturbed by the func-

tion Y (x, 0), depicted as a small-amplitude cosine

wave in Fig. 7.11. The question we wish to answer

is whether the interface returns to its equilibrium

position (dashed line), or whether the perturbation

grows. In case of the former, what is the relaxation

time and/or oscillation frequency and, in case of the latter, what is the growth time?

Our first task, then, is to find an expression for Y (x, t) describing how the

initial distortion, Y (x, 0), changes in time. Since Y (x, t) tracks the interface – and

thus the contact discontinuity – between the two fluids, its motion in the y-direction

must be the fluid motion, namely vy. Thus, as a start, write (as we did for the KHI),

∂tY (x, t) = vy

∣∣∣
y=Y

, (7.17)

anticipating that a time-integration would yield Y (x, t).

To this end, we have seen elsewhere (e.g., Problem 1.6, Eq. 2.59 in 2.3) that for

an incompressible fluid, the continuity equation (Eq. 1.19) reduces to∇·�v = 0. Thus,

like the magnetic induction, the velocity field is solenoidal and may be described by

a “vector potential” which, in this context, is called the stream function, �ψ:

�v = ∇× �ψ = (∂yψz ,−∂xψz, ∂xψy − ∂yψx),

since ∂z = 0. Because vz = 0, we are free to set ψx = ψy = 0 and the stream

function is adequately described by,

�ψ = (0, 0, ψ) ⇒ �v = (∂yψ,−∂xψ, 0), (7.18)

where we have set ψz = ψ.

Now, by Kelvin’s circulation theorem (Problem 1.7), the vorticity flux of an

inviscid fluid is conserved and, since the initial conditions in Fig. 7.11 are of a

stagnant fluid in which �ω = ∇ × �v = 0 everywhere, the fluid remains irrotational

and we have,

∇× �v = ∇× (∇× �ψ) = −∇2 �ψ +∇(����
0

∇ · �ψ) = 0,

using Identity (A.27), and where ∇ · �ψ = ∂zψ = 0 by the assumption of symmetry.
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Thus,
∇2 �ψ = ∇2ψẑ = 0 ⇒ ∇2ψ = 0, (7.19)

and the scalar stream function, ψ, solves Laplace’s equation. And so, as we did for

the pressure in examining the KHI (Eq. 7.1), we seek normal mode solutions of Eq.

(7.19) for the stream function, ψ, of the form,

ψ(x, y, t) = Ψ(y)ei(kx−ωt+φ), (7.20)

where k = 2π/λ is the wave number of the normal mode of wavelength λ and

angular frequency ω, and where φ is some arbitrary phase set for convenience.

To find the amplitude function, Ψ(y), substitute Eq. (7.20) into Eq. (7.19):

−k2Ψ(y)������
ei(kx−ωt+φ) +

d2Ψ(y)

dy2
������
ei(kx−ωt+φ) = 0 ⇒ d2Ψ(y)

dy2
= k2Ψ(y)

⇒ Ψ(y) = Ae−ky +Beky.

Requiring the amplitude, Ψ, to remain finite (indeed, go to zero) as y → ±∞
requires that B = 0 for y > 0 and A = 0 for y < 0, and we write:

Ψ(y) =

⎧
⎨

⎩
Ae−ky, y > 0;

Beky, y < 0.

Then, since the velocity field is continuous across y = 0, so is the stream function,

Ψ(0+) = Ψ(0−) ⇒ A = B,

and Eq. (7.20) becomes,

ψ(x, y, t) = Ae−k|y|ei(kx−ωt+φ). (7.21)

Thus, to first order, we have from Eq. (7.17),9

∂tY = vy

∣∣∣
y=0

= −∂xψ
∣∣∣
y=0

= −ikAei(kx−ωt+φ),

and, integrating over time, we get,

Y (x, t) = �
[
k

ω
Aei(kx−ωt+φ)

]
, (7.22)

where �[ ] indicates the “real part”.

To determine whether Y (x, t) is stable to perturbations requires knowledge of

the all-important dispersion relation, ω(k). If ω ∈ R, the temporal part of Y (x, t),

namely e−iωt, is oscillatory and the interface is stable. On the other hand, if ω ∈ I

(and so let us set ω = iχ where χ > 0 ∈ R), then e−iωt = eχt grows exponentially

with time and the interface is unstable.

Finding ω(k) is done most straight-forwardly by considering the pressure per-

turbations that result as the fluid responds to the evolving distortion. To this end,

9In fact, Eq. (7.17) would have us evaluate vy at y = Y , where the interface is actually
located. Evaluating vy at y = 0 instead introduces “second-order” errors, which can be ignored in
the “linear-regime”.
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consider points ‘a’ and ‘b’ in Fig. 7.11. Since �g is uniform, pressure increases with

depth (what we referred to as the “pressure head” in 2.3) and therefore the weight

of the overhead fluid (e.g., Eq. 2.64). Thus, at equilibrium (when the fluid interface

is at y = 0), the pressure at ‘a’ (with pressure head L− ya) is,

pa = ρug(L− ya),

whereas at ‘b’, the pressure is,

pb = ρugL− ρlgyb,

since the density changes from ρu to ρl at y = 0, and noting that yb < 0. Therefore,

at any point in the fluid with vertical coordinate y, we may write at equilibrium,

p0(y) =

⎧
⎨

⎩
ρugL− ρugy, y > 0;

ρugL− ρlgy, y < 0.

Perturbing the interface by Y (x, t) introduces an x-dependence to the depth

at which ρu jumps to ρl leading to a pressure perturbation, p′(x, y, t), to the upper

and lower regions. Including p′u,l, the total pressure at any point in the fluid is now

given by,

p(x, y, t) =

⎧
⎨

⎩
ρugL− ρugy + p′u(x, y, t), y > Y ;

ρugL− ρlgy + p′l(x, y, t), y < Y,
(7.23)

which, because the interface is a contact discontinuity, must be continuous at y =

Y (x, t):10

p(x, Y +, t) = p(x, Y −, t)

⇒ ���ρugL− ρugY + p′u(x, Y, t) = ���ρugL− ρlgY + p′l(x, Y, t)

⇒ p′u(x, Y, t) − p′l(x, Y, t) = gY (ρu − ρl). (7.24)

To find p′u,l, we turn to the x-component of the linearised Euler equation:

∂tvx = −1

ρ
∂xp =

⎧
⎪⎪⎨

⎪⎪⎩

− 1

ρu
∂xp

′
u, y > Y ;

− 1

ρl
∂xp

′
l, y < Y,

(7.25)

since p′u,l contain the only x-dependence in p (Eq. 7.23). Thus, for y > Y and since

vx = ∂yψ (Eq. 7.18),

p′u(x, y, t) = −ρu
∫
∂t∂yψdx = −ρu

∫
(−iω)(−k)Ae−k|y|ei(kx−ωt+φ)dx

= −ρuωAe−k|y|ei(kx−ωt+φ),

using Eq. (7.21).

10Here, because the leading-order terms ρugL cancel, we are obliged to carry second-order
terms, and thus must make the match at y = Y instead of y = 0.
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Similarly,
p′l(x, y, t) = ρlωAe

−k|y|ei(kx−ωt+φ),

and Eq. (7.24) becomes,

−ρuω
Ae−k|Y |������
ei(kx−ωt+φ) − ρlω
Ae−k|Y |������

ei(kx−ωt+φ) = g
k

ω

A������
ei(kx−ωt+φ)(ρu − ρl),

using Eq. (7.22). Setting e−k|Y | ∼ 1 and solving for ω, we finally arrive at the dis-

persion relation,

ω(k) =

√
gk
ρl − ρu
ρl + ρu

≡
√
gkA, (7.26)

where,
A =

ρl − ρu
ρl + ρu

, (7.27)

is the so-called Atwood number.

Evidently, when the density in the lower fluid is the greater, A > 0, ω ∈ R,

and the temporal portion of Eq. (7.22) is oscillatory. The interface is stable to

perturbations and the system oscillates about its equilibrium point (dashed line in

Fig. 7.11) with a period,

T =
2π

ω
=

√
2πλ

gA
, (7.28)

since λ = 2π/k. This is entirely analogous to the “kitchen experiment” in which

the centre of a level surface of water in a glass is quickly depressed, then released.

Buoyancy-driven water waves (a.k.a. gravity waves) ensue until damping forces

bring the water surface back to rest.

On the other hand, should the density in the upper fluid be the greater and

A < 0, ω ∈ I and the temporal part of Y (x, t) is exponential. Letting ω = iχ where

χ > 0 ∈ R, χ =
√
gk|A| > 0 and we have from Eq. (7.22),

Y (x, t) = Y0e
χt �[iei(kx+φ)

]
, (7.29)

where Y0 = kA/χ. In this case, the perturbation grows exponentially with an e-

folding growth time given by,

τRT =
1

χ
=

√
λ

2πg|A| . (7.30)

Whether oscillatory or exponential, the characteristic times for the RTI are

proportional to
√
λ. Thus, the period of oscillation, T , or the growth-time, τRT, are

shorter for shorter wavelengths. Recalling Eq. (7.16) from 7.1 in which the KHI

growth time τKH ∝ λ, the wavelength dependence of the RTI is evidently weaker

than that of the KHI.

As stressed before, this analysis is valid for the linear regime only, based as

it is on the linearised Euler equation (Eq. 7.25) and invocations of Y � λ. With

full non-linear hydrodynamics engaged, the development of the instability departs

markedly from the simple conclusion from linear analysis that the amplitude of

the initial cosine wave just increases in time. As seen in Fig. 7.9, the boundary
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layer between “fingers” of heavier fluid and the lighter fluid into which it falls is

a tangential discontinuity (shear layer plus density jump) and subject to Kelvin–

Helmholtz instabilities. KHI-induced eddies are compounded by those formed as

heavy fluid comes into contact with, for example, a lower boundary or obstacle

preventing it from falling further and, once again, the fluid cascades to turbulence.

While the linear model still predicts that the final state is one in which the two fluids

switch places, the ensuing turbulence and, should the fluids be miscible, mixing

yields qualitatively different outcomes between the linear and non-linear regimes.

7.2.2 Numerical analysis of the RTI (optional)

Just for fun, I tested the predictions from linear theory with results from a series

of ZEUS-3D simulations. For a fully non-linear, compressible MHD code such as

ZEUS-3D, one has to be careful not to trigger the non-linear and compressible as-

pects of the solution for which it is designed. Further, one must avoid boundary

effects and minimise numerical truncation errors that lead to an effective viscosity

since the linear theory is insensitive to both. These requirements point to well-

resolved runs with distant boundaries above and below the fluid interface, periodic

boundaries to each side, and small-amplitude perturbations. Each run can be exe-

cuted for one or two oscillation periods for stable perturbations (A > 0), or just a

few growth times for unstable perturbations (A < 0) since, in the latter case, even

after t = 3τRT the perturbation amplitude grows by a factor of e3 ∼ 20 which, if the

initial amplitude is too large, could mean the simulation is already in the non-linear

regime.

Testing first the prediction that A > 0 leads to stable oscillations with a period

given by Eq. (7.28), I set up a 2-D (x–y) box of fluid with width −0.5 ≤ x ≤ 0.5

(units arbitrary), height −10.0 ≤ y ≤ 10.0, with density,

ρ(y) =

{
0.8, y > 0;

1.2, y < 0,

(A = 0.2) in a gravitational field �g = −1ĵ, and initialised this in hydrostatic equilib-

rium (pressure gradient exactly balancing the gravitational field). I then initialised

four modest-resolution simulations,11 perturbing the interface at y = 0 with a co-

sine wave of amplitude Y0 = 0.04 and four different wavelengths: λ = 1, 1
2 ,

1
3 , and

1
4 in units of the box width, w.

Aside: Numerical considerations

As a practical matter, I set cs = 1 at the top of the box which, assuming a diatomic

gas, means a pressure ptop = 4/7 in these arbitrary units. Thus, at the fluid interface

11To reproduce these results, I used 250 horizontal zones in −0.5 ≤ x ≤ 0.5 for a zone width
of 0.004, 100 vertical zones in −0.1 ≤ y ≤ 0.1 for a zone height of 0.002, and 100 geometrically
increasing vertical zones in each of −10 ≤ y ≤ −0.1 and 0.1 ≤ y ≤ 10 to remove the boundaries
well away from the interface.



Clarke 9781009381475 .tex 263 2/04/2025

263 Rayleigh–Taylor instability

where y = 0, the pressure has increased by the “weight” of the fluid “overhead” to,

p0 = ptop + ρgL = 8 4
7 ,

where L = 10.0 is the pressure head.

So what do all these “unitless numbers” actually mean? As we’ll see in 8.5,

the ideal fluid equations are scale-free. That is, one can solve the ideal equations

of hydrodynamics without attention to the units of the flow variables; everything

simply scales to however the flow variables were set at t = 0 without any inherent

length scale developing in the solution.12

Conversely, including gravity introduces an inherent scaling to Euler’s equa-

tion specified by the Froude number, F (e.g., Problem 8.6). Having already set

scaling for length (R) and the sound speed (V ), the scaling for �g (G) cannot be set

independently, and whatever value we choose for G then determines F ,

F =
V√
GR

,

(Eq. 8.63) whose value in the simulation must be the same as its “real-world” value

after scaling is restored. For example, where the two fluids meet at y = 0 and where

the perturbation is imposed,

c2s =
γp0
ρu

=
(7/5)(60/7)

4/5
= 15,

which is our V 2. This with R = 1 and G = 1 means F =
√
15 and thus any “real-

world” attribution we wish to make to this simulation must have the same Froude

number. And so, if we wanted to relate this to an experiment done on Earth with

g = 9.81m s−2 and cs = 331m s−1 (273K),

F =
cs√
gw

=
√
15 ⇒ w ∼ 750m,

making our box ∼ 15 km tall; hardly what one would call a practical experiment!

Alternately, if one wanted a more “reasonable” box size say of 1m wide and 20m

tall in Earth’s gravitational field,

cs =
√
15 gw ∼ 12ms−1,

corresponding to a temperature < 0.4K! Again, hardly practical. I’ll leave it to the

reader to work out what g would have to be to have a 1 m wide 20 m high box with

a sound speed of 331m s−1 (it’s big!).

So why not choose a scaling for gravity, say, that would make this numerical

experiment correspond to one done on Earth? For g = 9.81, w = 1, and cs = 331,

F ∼ 100, which means that for the numerical simulation, we must choose,

g =
15

1002 1
= 0.0015,

12For a more complete description of what it means for an equation to be scale-free, the reader
might skip ahead to read the first page and a half of 8.5, none of which depends upon anything
previous in Chap. 8.
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Figure 7.12. On the left is a plot of Eq. (7.28) (blue line) showing the oscillation
period, T , as a function of perturbation wavelength, λ (in units where the box
width, w = 1), for a fluid with an Atwood number A = 0.2 (see text) in a
gravitational field g = 1 (units arbitrary). The red crosses show periods measured
from ZEUS-3D simulations where the initial amplitude Y0 = 0.04λ is resolved
with 20 zones. The numerical simulations show the correct dependence on λ but
with slightly longer periods consistent with the small amount of numerical and
artificial viscosities not known to the linear theory.

On the right is a sequence of images from the λ = 1 simulation (full box
width, w, resolved with 250 zones) showing from top to bottom one full period
of oscillation with each image spaced ∼ T/8 apart. Heavy fluid is shown in pink,
lighter fluid blue.

a low number. Why low? Another numerical issue is numerical stability, which

requires one to operate with time steps so that no signal – be it moving fluid or

a sound wave – can move more than one zone width during a single time step.

To numericists, this is known as the Courant–Friedrichs–Lewy (CFL) condition,13

and violating it triggers numerical oscillations so severe that the entire solution

can be consumed by infinities within twenty time steps! As Rayleigh–Taylor flow is

comfortably subsonic, the time step is governed by the sound speed, δt ∝ 1/cs and,

with such a low value for g, the small time step means it can take tens of thousands

of time steps just to reach one growth time, making the simulation impractical. By

“boosting” gravity by almost three orders of magnitude, the results are qualitatively

identical, but can be had at a fraction of the compute time.

Figure 7.12 summarises the results from these simulations. The left side shows

what Eq. (7.28) predicts for the oscillation period (blue line) as a function of normal

mode wavelength, assuming A = 0.2, w = 1, and g = 1. The results of the four

13Courant, et al. (1928). Well before the invention of the electronic computer, the CFL condition
was discovered by fluid simulations done in a room full of desks arranged in a 2-D grid with graduate
students seated in each madly doing slide-rule calculations in their “zone”, passing their results
to the students ahead, behind, and to their sides after each “time step”!
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ZEUS-3D simulations at the different perturbation wavelengths are shown with

red crosses. The agreement is satisfactory (� 2.5% discrepancy for each), with the

numerical simulations consistently a little greater than the linear theory. I attribute

this to the small amounts of artificial viscosity imposed for numerical stability and

numerical viscosity which comes with the territory on a discretised grid.

The right side of Fig. 7.12 shows a sequence of density images (pink ρ = 1.2,

blue ρ = 0.8) roughly T/8 apart from the λ = 1 simulation. Because of the inherent

artificial and numerical viscosities, the perturbation evolves like a damped harmonic

oscillator for which the amplitude of oscillation is given by,

A(t) = A0e
−γt,

where γ is the damping coefficient. Using data from the simulation [initial amplitude,

A0, and amplitude after one period, A(T )], I found that,

γ =
1

T
ln

A0

A(T )
∼ 0.01,

which, when compared to the natural oscillation frequency ω = 2π/T ∼ 1.1 (for

T ∼ 5.76) means γ � 0.01ω, corresponding to a rather weakly damped oscillator.

As for the prediction of instability for A < 0 with a growth rate given by Eq.

(7.30), the ZEUS-3D simulations can confirm this only qualitatively. Using the same

box as the previous test (−0.5 ≤ x ≤ 0.5, −10.0 ≤ y ≤ 10.0) but with the heavier

fluid on top (A = −0.2, g = 1), I ran three simulations with differing resolutions

to follow a single wavelength perturbation, λ = 1, of initial amplitude 0.0025 (in

units of box width w) for 3.4 growth times (where, for the values used, τRT ∼ 0.892;

Eq. 7.30). During this time, the linear theory predicts the amplitude should grow

to about 0.075, very near the edge of the linear regime but where the perturbation

should still look like a cosine wave.

The solid line in the left side of Fig. 7.13 shows the growth of the amplitude in

time as predicted by the linear theory (Eq. 7.29) along with amplitudes measured

from the three simulations shown in coloured crossed (blue, green, and red for low,14

medium, and high resolution). In each case, the expected simple exponential growth

rate is not observed. All simulations vastly underestimate the growth rate of the

instability at the beginning, and only achieve the growth rate predicted by linear

theory by t ∼ 2τRT. The fact that this holds true regardless of resolution leads me

to believe this is not a numerical artefact, but may be pointing to something real.

And on that, I’m going to go out on a bit of limb here.

It may just be that there is no true linear regime for the Rayleigh–Taylor insta-

bility. The right side of Fig. 7.13 shows the density image of the high-resolution run

(2,000 zones horizontally – ten times that of Fig. 7.9 – for a zone width of 0.0005,

and 800 zones vertically in −0.1 ≤ y ≤ 0.1 for a zone height of 0.00025 to resolve

the initial amplitude with ten zones) at t = 1.5τRT (panel a) and t = 3.4τRT (panel

b). A quick glance at panel a seems to confirm what linear theory predicts; a cosine

14The “low” resolution run actually had 500 zones across w, 2.5 times more than the simulation
shown in Fig. 7.9. Therefore, the terms “low”, “medium”, and “high” should be regarded as relative
comparators.
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Figure 7.13. On the left is a plot of Eq. (7.29) (with x = 0, φ = 0; solid line)
illustrating the linear theory prediction that the amplitude of a normal mode
perturbation grows with e-folding time τRT given by Eq. (7.30). For A = −0.2,
g = 1, and λ = 1, τRT ∼ 0.892, the reciprocal of the slope shown. Results from
ZEUS-3D runs (low, medium, and high resolutions shown as blue, green, and red
crosses; see text) indicate a much slower beginning to the instability than linear
theory predicts. While the numerical results reach the expected growth rate by
t ∼ 2τRT (dashed line), that it takes two growth times to reach this agreement
regardless of resolution is remarkable.

The right side reveals what may be at the root of the disagreement. Panel
a shows the perturbed interface (ρu = 1.2, pink; ρl = 0.8, blue) for the high
resolution (2,000 zones in −0.5 ≤ x ≤ 0.5, 800 zones in −0.1 ≤ y ≤ 0.1) run
at t = 1.5τRT. While the interface in the main panel looks “normal” enough,
the inset clearly shows the beginning of a Kelvin–Helmholtz instability. The
wavelength of the “mini-KHI” is ∼ 0.016 which is resolved by 32 zones, ruling
out the possibility these may be numerical in origin. By t = 3.4τRT (panel b),
the mini-KHI have developed into numerous “mini-RTI” eating into the cosine
perturbation and rendering it almost unrecognisable.

wave with growing amplitude. Measurement of that amplitude, however, shows it

to be only about 55% of the predicted amplitude and further, one can see along the

interface that minute structures have formed which, as the inset shows, are actu-

ally the early onset of the Kelvin–Helmholtz instability. As the heavier fluid begins

to sink, the contact discontinuity develops a shear (and thus becomes a tangential

discontinuity) which makes it vulnerable to the KHI. Each KHI “wavelet” acts as

a perturbation in its own right with a wavelength much smaller than the original

perturbation (in this case, λKH ∼ 0.016). Since the e-folding time for the RTI is

τRT ∝ √
λ (Eq. 7.30), perturbations caused by the KHI grow

√
1.0/0.016 ∼ 8 times

faster than the initial λ = 1 perturbation. Thus, by t = 3.4τRT (panel b), numerous

“mini Rayleigh–Taylor instabilities” have developed all along the interface consum-

ing the original λ = 1 cosine-wave in a myriad of fine “RT-fingers” taking it clearly

outside the realm of the “linear regime”. It is my suspicion, then, that the develop-

ment of the KHI and subsequent RTI so soon into the run taps into the potential
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energy of the falling fluid and slows its progress – at least initially – pre-empting

the linear regime almost before it can even get started.

7.2.3 Kruskal–Schwarzchild instability

When a magnetic induction, �B = Bz ẑ, is added to the mix, the RTI becomes

the Kruskal–Schwarzchild instability (KSI). The mathematical principles are the

same – normal mode analysis on a perturbed boundary layer – but its execution is

rather more complicated than the RTI, and I’m not convinced going through the

process again provides much “value-added”. Instead, we’ll save the heavier-lifting

mathematics for the two uniquely MHD instabilities (those with no HD counterpart)

in 7.3 (magneto-rotational instability; MRI), and 7.4 (Parker instability) and just

quote the final result for the KSI with a bit of physical interpretation.

By adding �B = Bẑ to our initial conditions, Eq. (7.26) becomes,15

ω2(k) = gk
ρl − ρu
ρl + ρu

+
2

μ0

( �B · �k)2
ρl + ρu

, (7.31)

where the first term is identical to the RTI criterion, and where �k = kêk is the wave

vector of the perturbation (as opposed to the simpler wave number, k, introduced

for the RTI). In the pure HD case, the direction in which the perturbation is applied

within the z–x plane does not matter, and only the scalar wave number was needed.

In the MHD case, because �B sets a preferred direction – in this case ẑ – the direction

of the applied perturbation does matter and the full wave vector, �k, is required.

And so we see that provided �k �⊥ �B, the magnetic term introduces stability to

the RTI. That is, for ρl > ρu, nothing changes; from Eq. (7.31), ω2(k) > 0 and

the response to the perturbation remains oscillatory. However, for ρl < ρu which

triggers instability in the pure HD case, we see from Eq. (7.31) that provided,

2

μ0
( �B · �k)2 > gk(ρl − ρu),

ω2(k) remains positive and the RTI is stabilised even if ρu > ρl.

The physical interpretation is simple enough. Think of �B as providing “floor

joists” for the upper, heavier layer. So long as those joists are strong enough and in

the “right direction”, the heavier fluid is supported against gravity from falling into

the lighter fluid below, and the RTI is suppressed. The “right direction” is when

perturbing oscillations are along lines of induction, where each line of induction

resists being bent and therefore the perturbation. When �k · �B = 0, perturbing

oscillations are not resisted by �B since there is no cohesion amongst neighbouring

lines of induction, and matter simply slips through the “joists”.

15The interested reader is referred to Galtier (2016) for an approachable derivation.
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7.3 Magneto-rotational instability

While the first accounts of the magneto-rotational instability (MRI) were reported

by Velikhov (1959) and Chandrasekhar (1960) in the context of Couette flow in the

laboratory ( 8.6.5), it was not known to astrophysicists until rather later. Friske

(1969) did apply the MRI to the problem of stellar interiors, but it wasn’t until the

early 1990s that the full impact of the MRI on astrophysics was appreciated.

And this impact is profound.

Since the 1970s, astrophysicists have known that stars form from collapsing

gas clouds in the interstellar medium and that on the road to becoming a star,

gas collects in what is known as an accretion disc.16 This “gravitational weigh-

station” is a consequence of angular momentum conservation. While the rotation

of a gas cloud at the onset of collapse can be minute, it is magnified many orders

of magnitude as the cloud collapses from something of order a parsec in diameter

to one comparable to Jupiter’s orbit about the sun. Just as the rotation of a figure

skater increases as their arms are brought in, the spin of a collapsing gas cloud

increases to the point where the centrifugal force prevents further collapse, and gas

collects instead in a flat disc rotating at such a rate that the central portion cannot

collapse any further to form a star as we know it.

And yet stars form. Somehow, sufficient angular momentum is transferred to

the outer disc to allow the inner portion to collapse enough to trigger nuclear fusion.

But what could that mechanism be? This question so perplexed astrophysicists that

for two decades, this unknown property was referred to as “anomalous viscosity”. In

the 1970s, the only known physical property of a disc that could transport angular

momentum outwards was viscosity (Chap. 8), and yet no one had any idea how

such a diffuse medium could be sufficiently viscid to allow such transport to occur.

Think of “anomalous viscosity” as the astrophysical equivalent to the 17th century

cartographers’ warning “there be dragons here!”.

As the story goes, numerous papers in the late 1980s and early 90s were being

published with all kinds of speculation of what this anomalous viscosity could be,

and the very pragmatic John Hawley17 could take no more. He proposed to his

colleague, Steven Balbus, that a proper analysis of an accretion disc needed to

be done, this time accounting for magnetic field. Their “rediscovery” of the MRI

along with their definitive identification of “anomalous viscosity” as a consequence

of the MRI was the result, and their 1991 paper won them the 2013 Shaw Prize for

astrophysics.

It cannot be overstated how important the MRI is to our understanding of

stellar and planetary formation. As is now widely known, the MRI is triggered by

the presence of a magnetic field in a differentially rotating flow, exactly what you

find in an accretion disc around a compact object such as a protostar or a giant

16Real and artistic images of an accretion disc forming around a protostar are included at the
beginning of Chap. 10, if the reader cares to glance ahead.

171958–2021; www.wikipedia.org/wiki/John F. Hawley.
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Figure 7.14. A schematic of a differentially rotating disc (such as an astrophys-
ical accretion disc) showing the two coordinate systems introduced in the text:
the inertial, non-rotating coordinate system O at the centre of the disc (black),
and O′ at a distance r0 from O (blue) and rotating about O at the local angular
speed of the disc, Ω0.

(108–109 solar mass) black hole at the centre of a large galaxy. In this section, I

take the reader through this road of discovery.

7.3.1 Mathematical model of the MRI

Consider the rotating disc shown in Fig. 7.14.18 It turns out that the MRI is a local

instability, meaning one does not need to consider the entire disc to understand its

development. Rather, perturbations in an isolated region of the disc are enough to

trigger the MRI based entirely on local properties such as the orientation of the

magnetic field and the radial gradient of the angular velocity.

Figure 7.15. A region of the
disc in the rotating reference
frame O′ displaced from disc
centre, O, by �r0 (red). Point P

is displaced from O′ by �ξ′ (blue)
and from O by �r (black).

And so we consider a small region of the

disc displaced by �r0 from the centre (O) with

dimensions (δr, r0δϕ), small compared to r0
(Fig. 7.15), and rotating about O at an angu-

lar speed Ω0. Because the region is in a rotat-

ing and thus non-inertial frame of reference,

we shall take the approach of most sopho-

more mechanics texts, and examine the prob-

lem from the rotating coordinate system19 in-

dicated in Fig. 7.14 and 7.15 as O′ (blue) with
Cartesian unit vectors ı̂ ′, ĵ ′, and k̂′ in the x′-,
y′-, and z′-directions, where ı̂ ′ always points
away from O. Thus, x′ and y′ can be consid-

ered a radial and transverse (azimuthal) co-

ordinate respectively though, to an observer

at O′, x′ and y′ are perfectly Cartesian. Fur-

18With some exceptions, my development of the MRI follows Balbus (2009).
19See App. G for a quick refresher on the Coriolis theorem.
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ther, at some nearby point P displaced from O′ by �ξ′ in the ı̂ ′–ĵ ′ plane (Fig. 7.15),

we must include the inertial force densities – Coriolis, centrifugal, and translational

– as observed by O′ to the momentum equation. Equivalently, we include the cor-

responding inertial accelerations to Euler’s equation (Eq. 4.14) and, for the x′- and
y′-components, we write:

∂tv
′
x + �v ′ · ∇′v′x = −1

ρ
∂ ′
xp

∗ − ∂ ′
xφ+

1

μ0ρ
( �B′ · ∇′)B′

x

(7.32)
+ 2Ω0v

′
y +Ω2

0ξ
′
x +Ω2

0r0;

∂tv
′
y + �v ′ · ∇′v′y = −1

ρ
∂ ′
yp

∗ − ∂ ′
yφ+

1

μ0ρ
( �B′ · ∇′)B′

y − 2Ω0v
′
x, (7.33)

where some explanation is warranted.

1. All components of vectors and spatial derivatives are with respect to the

rotating coordinate system O′ and, accordingly, are labelled with a prime ( ′ ).

2. In Eq. (4.14), the Lorentz force density, �fL, is proportional to (∇× �B) × �B,

which has been modified here using Eq. (A.15) to:

(∇× �B)× �B = ( �B · ∇) �B − 1
2∇B2.

The magnetic pressure, pM = B2/2μ0, is combined with the thermal pressure,

p, to give the MHD pressure, p∗ = p+ pM, as defined by Eq. (4.26), and the

remaining magnetic term is broken into its x′- and y′-components.

3. In a reference frame O′ rotating about an inertial origin, O, at constant angular

velocity, �Ω0 = Ω0k̂
′,20 three distinct inertial accelerations must be included.

a) The Coriolis acceleration is given by,

�aCor = −2�Ω0 × �v ′ = 2Ω0v
′
y ı̂

′ − 2Ω0v
′
xĵ

′, (7.34)

where �v ′ = v′x ı̂
′ + v′y ĵ

′ is the fluid velocity at point P relative to O′.

b) The centrifugal acceleration is given by,

�acen = −�Ω0 × (�Ω0 × �ξ′) = Ω2
0ξ

′
x ı̂

′,

where ξ′x ı̂ ′ is the radial displacement of point P relative to O′.

c) The translational acceleration is minus the acceleration of O′ relative to
O which, in this case, is centripetal21 (since O′ orbits O),

�atr = −�aO′ = −[Ω2
0r0(−ı̂ ′)

]
= Ω2

0r0 ı̂
′.

These are the three inertial terms appearing explicitly in Eq. (7.32) and (7.33).

20Since I’ve been using lower-case ω to represent normal mode frequencies in this chapter, I’ll
continue that practice and use upper-case Ω for the disc rotation speed. Note also that k̂ represents
the unit vector in the z-direction while k (no hat, )̂ will continue to be used for the wavenumber.

21Never to be confused with centrifugal ! The reader for whom this difference is not obvious
really needs to review App. G!
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For a disc whose differential rotation is in response to a central gravitational

field, the real acceleration caused by gravity (−∇φ) at any point, P, in the disc is

centripetal (not centrifugal). Since x′ is a radial coordinate while y′ is azimuthal,

we therefore have,

−∂ ′
xφ = −rΩ2(r) and −∂ ′

yφ = 0,

where Ω(r) is the orbital angular speed of the disc at P whose distance from O is

r = r0 + ξ′x, and where −rΩ2 is the centripetal acceleration of P about O. Thus,

Eq. (7.32) and (7.33) become:

∂tv
′
x + �v ′ · ∇′v′x = −1

ρ
∂ ′
xp

∗ +
1

μ0ρ
( �B′ · ∇′)B′

x + 2Ω0v
′
y + r(Ω2

0 − Ω2); (7.35)

∂tv
′
y + �v ′ · ∇′v′y = −1

ρ
∂ ′
yp

∗ +
1

μ0ρ
( �B′ · ∇′)B′

y − 2Ω0v
′
x. (7.36)

To be clear, Ω0 is the angular speed of the origin O′ about the inertial origin O,

and enters into the equations by virtue of the inertial accelerations arising from

examining the dynamics from the rotating reference frame, O′. On the other hand,

Ω is the angular speed about O of some point P displaced by �ξ′ from O′, and enters

into the equations by virtue of the gravitational field driving circular orbits. In

general, Ω0 �= Ω in a differentially rotating disc which, as we shall see, is key to

triggering the MRI.

Without specifying (for now) the functional dependence of Ω(r), we can do a

Taylor expansion on Ω2(r) from O′ to point P in Fig. 7.15 whose radial displacement

from O′ is ξ′x. Thus, to first order,

Ω2(r) = Ω2
0 + ξ′x

dΩ2

dr

∣∣∣∣
r0

+ · · ·

⇒ r(Ω2
0 − Ω2) ≈ −rξ′x

dΩ2

dr

∣∣∣∣
r0

= −ξ′x
dΩ2

d ln r

∣∣∣∣
r0

≡ −2κξ′x, (7.37)

where, for convenience, 2κ is defined as the ln r-derivative of Ω2 evaluated at r = r0.

Next, evidently �̇ξ ′ = �v ′, and the LHS of Eq. (7.35) and (7.36) can be written

as:

∂tv
′
x + �v ′ · ∇′v′x =

dv′x
dt

= v̇′x = ξ̈′x;

∂tv
′
y + �v ′ · ∇′v′y =

dv′y
dt

= v̇′y = ξ̈′y .

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
(7.38)

Substituting both Eq. (7.37) and (7.38) into Eq. (7.35) and (7.36), we get:

ξ̈′x = −1

ρ
∂ ′
xp

∗ +
1

μ0ρ
( �B′ · ∇′)B′

x + 2Ω0ξ̇
′
y − 2κξ′x; (7.39)

ξ̈′y = −1

ρ
∂ ′
yp

∗ +
1

μ0ρ
( �B′ · ∇′)B′

y − 2Ω0ξ̇
′
x. (7.40)

We have now gone as far as we can without specifying the nature of the magnetic

induction and the dependence of the fluid variables on the coordinates. For utter
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simplicity, let’s suppose before any perturbation that the disc is threaded with a

uniform, vertical magnetic induction, �B′ = Bzk̂
′. Further, let the MHD pressure,

p∗, be constant throughout the disc22 and thus, ∂ ′
xp

∗ = ∂ ′
yp

∗ = 0. Finally, with

every point in the disc in equilibrium, let us displace a fluid element from the origin

O′ to P (Fig. 7.15) according to the real part of,

�ξ′0 = (ξ′x,0ı̂
′ + ξ′y,0ĵ

′)eikz
′
,

(noting that z = z′) with no x′- or y′-dependence and no z′-component, and where

k is the vertical wavenumber of the perturbation (and not to be confused with the

unit vector k̂′).
As we shall be looking for a normal mode response to the perturbation, let us

suppose the perturbation develops in time as the real part of,

�ξ′ = (ξ′x ı̂
′ + ξ′y ĵ

′) = �ξ ′
0e

−iωt = (ξ′x,0ı̂
′ + ξ′y,0ĵ

′) ei(kz−ωt), (7.41)

where ω is the angular frequency of the normal mode. As usual, we shall deter-

mine the stability or instability of the perturbation based on whether ω is real or

imaginary.

Since the magnetic induction is tied to the fluid, any displacement of P from O′

distorts the initially uniform Bz k̂
′ at P to �B′ = Bzk̂

′+δ �B′, where the perturbation,
δ �B′, can be found using the ideal induction equation:

δ �B′ ≈ ∂t �B
′ δt = ∇′ × (�v ′ × �B′) δt = ∇′ × (�v ′δt× �B′) = ∇′ × (�ξ′ × �B′).

As a perturbation (at least initially), �ξ′ is already first-order small. Thus, in retaining

only first-order terms,

�ξ′ × �B′ ≈ (ξ′x ı̂
′ + ξ′y ĵ

′)×Bzk̂ = Bz(−ξ′xĵ ′ + ξ′y ı̂
′)

⇒ δ �B′ ≈ ∇′ × (�ξ′ × �B′) = ikBz(ξ
′
x ı̂

′ + ξ′y ĵ
′) = ikBz

�ξ′, (7.42)

since Bz is constant and �ξ′ depends only upon z and t so that the curl extracts

only a z-derivative: ∂z�ξ
′ = ik�ξ′. Thus, the magnetic terms in Eq. (7.39) and (7.40)

become,

1

μ0ρ
( �B′ · ∇′) �B′ =

1

μ0ρ
(Bz∂z)δ �B

′ = −k
2B2

z

μ0ρ
�ξ′ ≡ −ω2

A
�ξ′, (7.43)

retaining only first-order terms. Here,

ωA =
kBz√
μ0ρ

= kaz,

is defined as the Alfvén frequency, where az is the z-component of the Alfvén ve-

locity. Physically, ωA is the angular frequency of Alfvén waves propagating along

otherwise uniform lines of magnetic induction, Bzk̂
′. Note that the RHS of Eq.

(7.43) has the form of a Hooke’s law acceleration, since it is proportional to minus

the square of a frequency times a displacement. Thus, acting by itself in Eq. (7.39)

22This assumption is consistent with our supposition that the centripetal acceleration at any
point in the disc is exclusively attributable to the central gravitational field.
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and (7.40), the magnetic force is restorative and one might expect an oscillatory

response.

Substituting Eq. (7.43) into Eq. (7.39) and (7.40) with ∇p∗ = 0, the final form

for the equations governing the displacement perturbation in the rotating reference

frame, O′, are:
ξ̈′x = −(ω2

A + 2κ)ξ′x + 2Ω0ξ̇
′
y; (7.44)

ξ̈′y = −ω2
Aξ

′
y − 2Ω0ξ̇

′
x, (7.45)

which have lost all resemblance to Euler’s equation from which we began! Still,

these are the dynamical equations that carry the essence of the MRI, and into

which we substitute the normal mode solutions, Eq. (7.41), to find the all-important

dispersion relation. And so:

−ω2ξ′x,0 = −(ω2
A + 2κ)ξ′x,0 − 2iωΩ0ξ

′
y,0; (7.46)

−ω2ξ′y,0 = −ω2
Aξ

′
y,0 + 2iωΩ0ξ

′
x,0, (7.47)

where the factor ei(kz−ωt) has cancelled out from each term. Solving Eq. (7.47) for

ξ′y,0 and then substituting that into Eq. (7.46) we get,

−ω2
�
�ξ′x,0 = −(ω2

A + 2κ)�
�ξ′x,0 − 2iωΩ0

2iωΩ0

ω2
A − ω2�

�ξ′x,0

⇒ ω4 − 2(ω2
A + 2Ω2

0 + κ)ω2 + ω2
A(ω

2
A + 2κ) = 0, (7.48)

after a little algebra. Like the KHI, the dispersion relation for the MRI is a quadratic

in ω2 which formally has four roots:

ω1,2 = ±
√
ω2
A + 2Ω2

0 + κ+
√
(2ωAΩ0)2 + (2Ω2

0 + κ)2; (7.49)

ω3,4 = ±
√
ω2
A + 2Ω2

0 + κ−
√
(2ωAΩ0)2 + (2Ω2

0 + κ)2. (7.50)

Evidently, ω1,2 ∈ R and these frequencies lead to an oscillatory response in the

temporal dependence of �ξ′, namely e−iω1,2t. Note that since ω2 = −ω1, these are

one and the same normal mode, just out of phase by π rad and thus by a factor of

−1. Similarly, if ω3,4 ∈ R, these too are the same normal mode and so, in total, the

response to the perturbation should be a linear combination of two sinusoids with

frequencies ω1 and ω3.

On the other hand, ω3,4 ∈ I when,
√
(2ωAΩ0)2 + (2Ω2

0 + κ)2 > ω2
A + 2Ω2

0 + κ

⇒ 2κ =
dΩ2

d ln r

∣∣∣∣
r0

< −ω2
A, (7.51)

after a little algebra and replacing 2κ with its definition after Eq. (7.37). Setting

ω3 = iχ and ω4 = −iχ, χ > 0 ∈ R, the temporal responses are e−iω3t = eχt and
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e−iω4t = e−χt. The latter falls off exponentially with time and is thus inconsequen-

tial, but the former increases exponentially and renders the perturbation unstable.

In this case, therefore, we expect the initial response to be sinusoidal (e−iω1t) with

an exponentially increasing term (eχt) dominating soon thereafter. The reader will

recognise this as the same mathematical behaviour exhibited by the KHI.

Equation (7.51) tells us that a differentially rotating disc ismagneto-rotationally

unstable (MR-unstable) when the logarithmic gradient of Ω2 falls off faster than the

square of the Alfvén frequency. In particular, for a Keplerian disc where the gravi-

tational potential is dominated by a central mass, M ,

Ω2 =
GM

r3
⇒ 2κ =

dΩ2

d ln r

∣∣∣∣
r0

= r0
dΩ2

dr

∣∣∣∣
r0

= −3
GM

r30
= −3Ω2

0, (7.52)

and Eq. (7.51) becomes,

−3Ω2
0 < −ω2

A ⇒ ωA

Ω0
=

2πBz

λ
√
μ0ρΩ0

≡ μρ <
√
3, (7.53)

where λ = 2π/k is the vertical wavelength of the perturbation. Here, I define μρ

(Greek letters m r) as the unitless MR-number that determines when a Keplerian

disc threaded with a uniform vertical magnetic induction is MR-unstable to dis-

placement perturbations in the plane of the disc. Since μρ depends only upon fluid

variables B, ρ, and the rotation speed, Ω0, the MRI is inherent to ideal MHD just

as much as the KHI is inherent to ideal hydrodynamics. Both require a shear of

some sort, and the rest is a direct consequence of the ideal fluid equations. For

the MRI, while the quantity GM provides a means by which the fluid can rotate

differentially, it does not figure into the criterion for instability, namely Eq. (7.53).

To emphasise this point, when Velikhov and Chandrasekhar first recognised this

instability in 1959 and 1960, it was in the context of Couette flow in the laboratory

where rotating coaxial cylinders provide the differential rotation and where GM is

completely irrelevant.

One can think of Eq. (7.53) in a number of ways. For a given magnetic induction

strength, disc density, and rotation speed, the critical value μρ,cr =
√
3 determines

the minimum wavelength that can trip the MRI, namely,

λmin =
2πBz√
3μ0ρΩ0

.

A perturbation wavelength less than λmin excites an oscillatory response in the

disc, and is therefore stable. If λ > λmin, the response is exponential rendering the

disc unstable. This also places a limit on the disc thickness, h. For the disc to be

MR-unstable, h ≥ λ ≥ λmin and, for a given λmin, a sufficiently thin disc will be

MR-stable.

Alternately, for a given Ω0, λ, and ρ, Eq. (7.53) gives the maximum vertical

magnetic induction strength that can trigger the MRI, namely,

Bz,max =

√
3μ0ρλΩ0

2π
.

Note that the limit is on the maximum strength of Bz for MR-instability, and not
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the minimum. Thus, a strong Bz can suppress the MRI (the “spring” can be too

“stiff”; an analogy that will make more sense after the next subsection), but there

is no limit to how weak Bz can be for the MRI to eventually dominate the disc.

This isn’t the first example we’ve seen where the difference between a zero and

infinitesimal magnetic induction can have a qualitative difference on the physical

nature of a system (e.g., see discussion at top of pages 162 and 165). For Bz = 0, a

differentially rotating disc – as we’ll soon see – is unconditionally stable. Conversely,

for even the most minute trace of Bz, the MRI shears Bz relentlessly into the plane

of the disc creating a planar component of the magnetic induction whose energy

density becomes comparable to the thermal, gravitational, and/or kinetic energy

densities in surprisingly few rotations.

7.3.2 Physical model of the MRI

So what does all this mathematics really mean? What is the nature of the MRI, and

what causes it? For this, it is helpful first to examine two limiting cases: Ω0 = 0;

and Bz = 0.

On the former, setting Ω0 and thus κ to zero reduces Eq. (7.48) to,

ω4 − 2ω2
Aω

2 + ω4
A = 0 ⇒ ω = ±ωA ∈ R,

and the perturbation is unconditionally stable. In particular, Eq. (7.44) and (7.45)

reduce to,23

�̈ξ′ = −ω2
A
�ξ′, (7.54)

the dynamical equation for a simple harmonic oscillator with oscillation frequency

ωA and what was portended at the top of page 273. These are just Alfvén waves

that propagate harmlessly along the vertical lines of induction and ultimately away

from the disc.

On the latter, setting Bz and thus ωA to zero reduces Eq. (7.48) to,

ω4 − 2(2Ω2
0 + κ)ω2 = 0 ⇒ ω2 = 4Ω2

0 + 2κ = Ω2
0,

for a Keplerian disc (Eq. 7.52). Once again, ω ∈ R and the perturbation is uncon-

ditionally stable. This time, Eq. (7.44) and (7.45) reduce to,

ξ̈′x = −2κξ′x + 2Ω0ξ̇
′
y and ξ̈′y = −2Ω0ξ̇

′
x.

The last is readily integrated to ξ̇′y = −2Ω0ξ
′
x which can be substituted into the

first to get,
ξ̈′x = −(2κ+ 4Ω2

0)ξ
′
x = −Ω2

0ξ
′
x, (7.55)

for a Keplerian disc. Once again, a classic simple harmonic oscillator is revealed

with oscillation frequency – as already determined – Ω0.

The fact that the oscillation frequency, Ω0, is the same as the orbital angular

speed is a well-known result from celestial mechanics. A perturbed circular orbit

in an inverse-square law central force is stable with an oscillation period equal to

23Rappel : The perturbation displacement is �ξ′ = ξ′x ı̂ ′ + ξ′y ĵ ′.
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Figure 7.16. a) From the inertial reference frame, O, P is perturbed radially
from the circular orbit of O′ and oscillates back and forth across the circular
orbit with the same period as the orbital period, 2π/Ω0, resulting in an apsidal
angle, ψ = π rad, between the apicentre (ra) and pericentre (rp) of its orbit. b)
From the rotating reference frame, O′, perturbing P radially causes P to execute
retrograde epicyclic motion about O′ (black circle) with the same period as the
orbital period. See text for clarification.

the orbital period and thus an apsidal angle (angle between successive apsides, or

orbital extrema) of π rad (Fig. 7.16a). From the inertial reference frame, O, nudging

P further away than O′ puts P into a slightly elliptical orbit such that Ω < Ω0 for

about half its new orbit, and Ω > Ω0 for the other half, causing P to successively

lag behind then overtake O′ over the course of a single revolution.

From the rotating reference frame, O′ (Fig. 7.16b), the perturbed point P un-

dergoes retrograde epicyclic motion, with one complete epicycle executed per orbit

of O′ about O. The initial perturbation pushes P further away from O at which

point P “goes into orbit about O′” with the same orbital period as O′ has about

O. The orbit is maintained by the Coriolis force which accelerates P in a direction

always perpendicular to its velocity (Eq. 7.34), much like in an inertial reference

frame where the centripetal acceleration of an object in a circular orbit is always

perpendicular to its orbital velocity.

Evidently, the MRI is not caused by rotation or magnetism alone; it is a con-

sequence of both acting in concert. So once again, let us examine Eq. (7.44) and

(7.45) for physical insight, repeated here for convenience:

ξ̈′x − 2Ω0ξ̇
′
y = −(ω2

A + 2κ)ξ′x; Eq. (7.44)

ξ̈′y + 2Ω0ξ̇
′
x = −ω2

Aξ
′
y. Eq. (7.45)

The LHS of each equation gives the net acceleration of a particle in the x′- and
y′-directions (radial and transverse) including the Coriolis acceleration, and thus

describes a particle orbiting a central mass. The RHS describes the acceleration

caused by a spring with, evidently, differing “spring constants” in the x′- and y′-
directions. Thus a practical model for our system might be two masses, m1 and

m2, in the same orbit about a central object tethered by a non-isotropic spring.

Should m2 be nudged into a higher orbit with lower Ω, it starts to lag behind m1

thereby “stretching the spring” and creating a restoring force between the masses.
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Figure 7.17. a) Two masses, m1 and m2 in orbit about O are tethered by a
“magnetic spring”. All motion is counter-clockwise, and thus �Ω and �L are di-
rected out of the page. The torques each mass exerts on the other by virtue of
the “spring force” result in angular momentum being transferred from the inner
mass, m1 (blue), to the outer mass, m2 (red). b) As a function of orbit radius, L
increases with r while Ω decreases. This sets up the MRI in which the angular
momentum transferred from m1 to m2 drives the masses ever further apart de-
spite the “restorative” nature of the “spring force”. See text for discussion.

As can be seen in Fig. 7.17a, relative to the origin O, the torque m1 exerts on m2,

�τ1 on 2 = �r2 × �F1 on 2, is directed out of the page and points in the same direction

as �L2, the angular momentum of m2. Conversely, the torque m2 exerts on m1

is directed into the page, and thus opposite to �L1. Since �τ = d�L/dt, �L2 increases

while �L1 decreases, and the restoring force of the spring effectively transfers angular

momentum from m1 to m2.

But here’s the thing about Keplerian rotation. While we’ve already seen that

in a Keplerian disc, Ω ∝ r−3/2 (Eq. 7.52) and thus the angular speed decreases for

higher orbits, the angular momentum,

�L = I�Ω = mr2�Ω ∝ √
r,

actually increases for higher orbits. The fact that the angular momentum of m2 is

increased at the expense of m1 means that m2 must seek out a higher orbit just as

m1 is obliged to find a lower one. In this environment, the “restoring force” of the

spring is actually repulsive and the two masses are driven apart! Of course, this just

stretches the “spring” more, increasing the torque each mass exerts on the other,

and driving them ever further apart (Fig. 7.17b).

Voilà, instability!

And so how aggressive is this instability; how quickly can it grow? For that we

return to Eq. (7.50) and the algebra. Since ω3 ∈ I, set ω3 = iχ, χ ∈ R, to get,

χ2 =

√
4ω2

AΩ
2
0 +

Ω4
0

4
− ω2

A − Ω2
0

2
= Ω2

0

(√
4μ2

ρ +
1

4
− μ2

ρ −
1

2

)
, (7.56)

where I have assumed a Keplerian disc and, accordingly, set 2κ = −3Ω2
0. The tem-
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poral dependence of the perturbation is now e−iω3t = eχt, and χ can be interpreted

as the growth rate of the instability with an e-folding time τMR = 1/χ.

As for the condition that maximises χ, here I’m going to bunt and leave it

to Problem 7.3 to show that the maximum growth rate of the MRI per period of

revolution occurs when,

μρ =

√
15

4
, (7.57)

curiously, just slightly under unity. Thus, for a disc to be MR-unstable, μρ <
√
3 in

which case ωA � 1.73Ω0 (Eq. 7.53). Peak efficacy of the MRI is reached when μρ is

given by Eq. (7.57) and ωA ∼ 0.97Ω0. Again, this is not unlike the KHI qualitatively

which requires the relative Mach number, 2M , between the two fluids in the shear

layer to be under 2
√
2 for instability, and is most efficient when 2M is somewhat

lower at
√
3 ( 7.1).

Substituting Eq. (7.57) back into Eq. (7.56), we find the maximum growth rate

to be χmax = 3Ω0/4, in which case the MRI grows a perturbation by a factor,

eχmaxT = exp

(
3Ω0

4

2π

Ω0

)
= e3π/2 ∼ 111,

after a single revolution. This is the mark of a very aggressive instability.

7.3.3 Angular momentum transport

On the local scale, a consequence of the “spring model” for the MRI described in

the previous subsection is the transfer of angular momentum from a mass inside

a given orbit to one outside; m1 to m2 in Fig. 7.17a. It is therefore reasonable

to expect that on a global scale, the MRI could be responsible for the wholesale

transport of angular momentum from the interior to the exterior of a disc. Indeed,

this demonstration was the triumph of Balbus and Hawley and why they won the

2013 Shaw Prize for astrophysics. Paraphrasing the citation of the Shaw selection

committee,

The discovery and elucidation of the magneto-rotational instability pro-

vides what to this day remains the only viable mechanism for the outward

transfer of angular momentum in accretion discs, solving a previously

“elusive” problem in astrophysics.

In this subsection, I take the reader through the calculations that once and for all

identified the nature of “anomalous viscosity” in planetary discs. The mathematics

is both tricky and beautiful, and I hope my presentation enables the reader to

acquire some appreciation for this achievement.

Working now on a global scale, we switch to an inertial (non-rotating) reference

frame with the origin, O, at the centre of the disc using cylindrical coordinates

(Fig. 7.18). We start with the ϕ-component of the MHD momentum equation (Eq.

4.13) as given in Eq. Set (A.52) ( A.4), with r times the ϕ-component of the Lorentz
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force density inserted (Eq. A.55):

∂t(rsϕ) +∇ · (rsϕ�v) = −∂ϕp− 1

2μ0
∂ϕB

2 +
1

μ0
∇ · (rBϕ

�B), (7.58)

where the gravity term (∝ ∂ϕφ) is zero since gravity is a central force. Note that

sϕ = ρvϕ is the linear momentum density while rsϕ ≡ l is the angular momentum

density. Thus. Eq. (7.58) is an evolution equation for the quantity whose radial flux

we wish to evaluate.

Since p∗ = p+B2/2μ0 is the MHD pressure (Eq. 4.26), Eq. (7.58) becomes,24

∂tl +∇ · (l �v) = −∂ϕp∗ + 1

μ0
∇ · (rBϕ

�B), (7.59)

which we rearrange to get our final form for the angular momentum evolution

equation:

∂tl +∇ · �fL = 0, (7.60)

LF

LF
LF

Figure 7.18. Portion of the disc
interior to P at a distance r from
the disc centre, O, an inertial
frame with cylindrical coordinates
indicated at P (blue). The disc
cross section at r is in light grey,
and broad arrows indicate radial
transport of angular momentum.

where,

�fL ≡ rρ(vϕ�v − aϕ�a) + rp∗ϕ̂,

is the angular momentum flux density,25

and �a = �B/
√
μ0ρ is the usual Alfvén ve-

locity with aϕ being its ϕ-component.

Our main interest is the radial com-

ponent of the flux density averaged over

the disc height, h:

〈fL,r〉z = rρ〈vϕ vr − aϕar〉z, (7.61)

where 〈 〉z indicates an average over z, e.g.,

〈g(z)〉z ≡ 1

h

∫ h/2

−h/2

g(z)dz, (7.62)

and where, for convenience, we set λ =

h. When 〈fL,r〉z > 0, angular momentum

transport is outward (broad arrows in Fig.

7.18) and when negative, inward. What we

want is the total angular momentum transported radially, i.e. the radial angular

momentum flux, FL, which we get by multiplying the radial flux density by the disc

cross-sectional area (light grey in Fig. 7.18):

FL = 2πrh〈fL,r〉z . (7.63)

To this end, we first obtain expressions for the velocities, and for that we return

to the perturbations in Eq. (7.41), �ξ, that triggered the MRI in the first place. As

viewed from the inertial frame of reference O (thus no prime) and in cylindrical

coordinates, let the velocity of the particle P located at r0 before the perturbation

24See Problem 7.4 for an alternative derivation of Eq. (7.59) using Theorem 1.1 from Chap. 1.
25Note the use of the identity ∇ · (rp∗ϕ̂) = ∂ϕp∗, where ϕ̂ is the unit vector in the ϕ-direction.
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be �v0(r0). Since the perturbation moves P from r0 to r and changes its velocity, let

the post-perturbation velocity of P be �v(r), in which case,

Δ�v = �v(r) − �v0(r0) =
d�ξ

dt
= ∂t�ξ + (�v · ∇)�ξ. (7.64)

Note that Δ�v is a difference of velocities for the same particle at two different

locations (r and r0); that is, following a particle path. As such, it is a Lagrangian

difference and many authors would write the total derivative as D�ξ/Dt (e.g., 3.1).

This, however, is not the difference we need. For if all Δ�v did were to change

the velocity of P from its natural orbital velocity at r0 (e.g., GMr
−1/2
0 ϕ̂) to its

natural orbital velocity at r, there would be no angular momentum transport, yet

there would still be a change in velocity. What we want is the perturbed velocity of

P relative to a cospatial point in the unperturbed fluid,

δ�v = �v(r) − �v0(r), (7.65)

the so-called Eulerian difference where the difference is now between two different

particles at the same location.26 It is this quantity that ultimately drives angular

momentum transport.

The simplest way to relate δ�v to Δ�v is by linking the unperturbed velocities,

�v0, at r and r0 which we do by a first-order Taylor expansion. In 3-D, this is given

by:

�v0(r) = �v0(r0) + (�ξ · ∇)�v0

∣∣∣
r0
,

where we’ll now specify that �v0(r) = rΩ(r)ϕ̂. Substituting this into Eq. (7.65), we

get,

δ�v = �v(r) − �v0(r0)︸ ︷︷ ︸
Δ�v (Eq. 7.64)

− (�ξ · ∇)�v0

∣∣∣
r0

= ∂t�ξ + (�v · ∇)�ξ − (�ξ · ∇)�v0

∣∣∣
r0
,

from which we extract the r- and ϕ-components (last expression in Eq. Set A.40):

δvr = ∂tξr + (�v · ∇)ξr︸ ︷︷ ︸
ξ̇r

−






vϕξϕ
r

− (�ξ · ∇)


�

0

vr,0

∣∣∣
r0

+
�
�
��ξϕvϕ,0

r0
= ξ̇r;

δvϕ = ∂tξϕ + (�v · ∇)ξϕ︸ ︷︷ ︸
ξ̇ϕ

+
vϕξr
r︸ ︷︷ ︸

Ωξr

− (�ξ · ∇)vϕ,0︸ ︷︷ ︸
ξr∂r(rΩ)

∣∣∣
r0

− ξϕ


�

0

vr,0

r0

= ξ̇ϕ +����Ω(r)ξr −����ξrΩ(r0)− ξrr0
dΩ

dr

∣∣∣∣
r0

= ξ̇ϕ − ξr
dΩ

d ln r

∣∣∣∣
r0

,

since the radial component of �v0 is zero, and where all cancellations are good to

first order. Thus, from Eq. (7.65), we have:

vr = vr,0 + δvr = ξ̇r ;

vϕ = vϕ,0 + δvϕ = rΩ(r) + ξ̇ϕ − ξr
dΩ

d ln r

∣∣∣∣
r0

.

⎫
⎬

⎭ (7.66)

26I thank Steven Balbus (pr. comm.) for this clear articulation!
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So what has all this careful exercise in vector calculus bought us? The first of

Eq. (7.66) just tells us what surely we already knew: the radial velocity of a particle

whose initial velocity is azimuthal, rΩϕ̂, is whatever radial velocity the perturbation

imparts on it, ξ̇r. The second of Eq. (7.66) might also have been intuited, though

here one can easily run into trouble overthinking the problem, and it is here that

a careful treatment with vector calculus is warranted. After perturbation, the az-

imuthal velocity of P is the local unperturbed azimuthal velocity, rΩ(r), plus the

additional azimuthal velocity imparted by the perturbation, ξ̇ϕ, less the difference

between the initial orbital angular speeds in the original (at r0) and final (at r)

orbits (the ln r-derivative). Note that this term is zero for solid-body rotation, that

is when Ω = constant and not when rΩ = constant. In hindsight this may all make

sense but, at least for me, I had to go through the calculus in order to convince

myself that the form is correct.

Associating ξr and ξϕ, the radial and azimuthal components of the perturba-

tion, with the real parts of ξ′x and ξ′y in 7.3.1 (eikz → cos kz), we have from Eq.

(7.41) and (7.44),

ξr = ξr,0 cos(kz)e
χt and (7.67)

ξ̈r = χ2ξr = −
(
ω2
A +

dΩ2

d ln r

∣∣∣∣
r0

)
ξr + 2Ω0ξ̇ϕ = −ω2

Aξr + 2Ω0

(
ξ̇ϕ − ξr

dΩ

d ln r

∣∣∣∣
r0

)
,

where I’ve set ω = iχ for instability and used Eq. (7.37) for 2κ. Thus:

ξ̇r = χξr; ξ̇ϕ − ξr
dΩ

d ln r

∣∣∣∣
r0

=
χ2 + ω2

A

2Ω0
ξr, (7.68)

and Eq. (7.66) become,

vr = χξr; vϕ = rΩ(r) +
χ2 + ω2

A

2Ω0
ξr ⇒ vϕvr = rΩχξr +

χ2 + ω2
A

2Ω0
χξ2r

⇒ 〈vϕvr〉z = rΩχξr,0 〈cos(kz)〉z︸ ︷︷ ︸
0

eχt +
χ2 + ω2

A

2Ω0
χξ2r,0 〈cos2(kz)〉z︸ ︷︷ ︸

1/2

e2χt

=
χ2 + ω2

A

4Ω0
χξ2r,0e

2χt, (7.69)

using Eq. (7.67) and where Eq. (7.62) was used for the averages over z (with k =

2π/h and h = λ). Note that the first-order term ∝ ξr,0 averages to zero, whereas

the second-order term ∝ ξ2r,0 does not. One way to describe this is in terms of

correlations. There is no correlation between vr and vϕ,0; their product is positive

as often as it is negative and therefore integrates to zero. However, there is high

correlation between vr and δvϕ; in this simplistic case where the only coordinate

dependence is cos(kz), they always have the same sign and thus their integral is

positive-definite.

Turning now to the Alfvén velocities, from Eq. (7.42),

δBr = −kBzξr,0 sin(kz) e
χt and δBϕ = −kBzξϕ,0 sin(kz) e

χt,

once again setting ω = iχ. As the r- and ϕ-components of �B did not exist prior
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to the perturbation, the perturbed values alone are responsible for the r- and ϕ-

components of the Alfvén velocity, and we can immediately write:

aϕar =
δBϕδBr

μ0ρ
=

k2B2
z

μ0ρ︸ ︷︷ ︸
ω2
A

ξr,0ξϕ,0 sin
2(kz)e2χt. (7.70)

Now, from Eq. (7.47), we have (again, associating ξϕ,0 with ξy,0 and setting ω = iχ),

χ2ξϕ,0 = −ω2
Aξϕ,0 − 2χΩ0ξr,0 ⇒ ξϕ,0 = − 2χΩ0

χ2 + ω2
A

ξr,0,

where the negative sign is key. Substituting this into Eq. (7.70) and averaging over

the disc height, we get,

〈aϕar〉z = − Ω0ω
2
A

χ2 + ω2
A

χξ2r,0e
2χt, (7.71)

since 〈sin2(kz)〉z = 1
2 for k = 2π/h.

And now, for the home-stretch. Substituting Eq. (7.69) and (7.71) into Eq.

(7.61), the average angular momentum flux density becomes,

〈fL,r〉z = rρ

(
χ2 + ω2

A

4Ω0
+

Ω0ω
2
A

χ2 + ω2
A

)
χξ2r,0e

2χt

=
rρ

4Ω0

(χ2 + ω2
A)

2 + 4Ω2
0ω

2
A

χ2 + ω2
A

χξ2r,0e
2χt,

(7.72)

where we first see that the average radial flux density is positive-definite and thus

angular momentum is transported outward. Further, the exponential factor means

the transport is exceedingly efficient; in fact too efficient, as we’ll see.

Now, from the dispersion relation (Eq. 7.48) with ω = iχ,

χ4 + 2(ω2
A + 2Ω2

0 + κ)χ2 + ω2
A(ω

2
A + 2κ) = 0

⇒ (χ2 + ω2
A)

2 = −4Ω2
0χ

2 − 2κ(χ2 + ω2
A),

and Eq. (7.72) becomes,

〈fL,r〉z =
rρ

4Ω0

(
4Ω2

0(ω
2
A − χ2)

ω2
A + χ2

− 2κ

)
χξ2r,0e

2χt.

Multiplying this by 2πrh, we get from Eq. (7.63) the radial angular momentum flux

and thus the rate at which angular momentum is transported radially:

FL =
m(r)

2Ω0

(
4Ω2

0(ω
2
A − χ2)

ω2
A + χ2

− 2κ

)
χξ2r,0e

2χt, (7.73)

where m(r) = πr2hρ is the mass of the disc interior to r.

Specialising now to a Keplerian disc where 2κ = −3Ω2
0 (Eq. 7.52), I leave it to

Problem 7.5 to show,

FL = m(r)
√

4μ2
ρ +

1
4 Ω0χξ

2
r,0e

2χt. (7.74)
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Specialising further to the maximum growth rate where (end of 7.3.2),

μ2
ρ =

15

16
and χ =

3

4
Ω0,

we get, finally,

FL,max =
3m(r)Ω2

0

2
ξ2r,0e

3Ω0t/2.

However small the initial perturbation, ξr,0, may be – even squared – the fact

that the e-folding time for L̇ is,

τL̇ =
1

2χ
=

2

3Ω0
=

T

3π
,

where T = 2π/Ω0 is the rotation period, means that in a single revolution, the out-

ward angular momentum transport instigated by the perturbation grows by a factor

of e3π > 104! And in the next revolution, another factor of 104, and so it goes. After

decades where astrophysicists could not explain much of any angular momentum

transport in protostellar discs, suddenly the spigot was turned on full-blast and the

problem quickly became how to mitigate the MRI transport which – left unchecked

– would prevent discs as we know them from forming at all! That mitigation comes

in the non-linear development of the instability in 3-D to turbulence (Stone et al.,

1996) where the MRI still effectively transports angular momentum outward, but

allows the disc to exist, albeit in a turbulent state.

7.3.4 Numerical analysis of the MRI (optional)

Figure 7.19. The computational do-
main around point P at r0 = 1.0 with
Ω0 = 1.0 into the page is shown in
grey. The complete domain extends to
r = 0.1 and r = 2.0 to move the r-
boundaries away from the region of
interest. Periodic boundary conditions
are imposed at z = ±0.05.

In an attempt to understand better

the various predictions made in our

linear analysis, I set up a 2-D az-

imuthally symmetric grid in cylindrical

coordinates representing a local por-

tion of a rotating disc, and performed

several numerical experiments using

ZEUS-3D. Figure 7.19 shows the com-

putational domain with radial extent

0.9 ≤ r ≤ 1.1 and disc thickness Δz =

0.1 (grey rectangle) containing a point

P located at r = r0 = 1 (units could be

AU, but consider them arbitrary) from

the central gravitating point mass, M .

In units where GM = 1, the orbital

angular speed at P is Ω0 = 1 and the

rotation period is therefore 2π.

In 7.3.1, we considered displacement perturbations in both the ı̂ ′- and ĵ ′-
directions, corresponding to r̂ and ϕ̂ in Fig. 7.19 (⊗ indicates “into the page”).

As a matter of practicality, in a fluids code one prescribes a velocity perturbation
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Figure 7.20. a) The nearly simple harmonic response to a perturbation of vr in
a disc with either no rotation (solid) or no magnetic induction (dashed). b) The
bi-modal oscillatory response for super-critical (μ2

ρ > 3; see text for definition),
and thus MR-stable discs for μ2

ρ = 7.0 (solid), 5.0 (dashed), and 3.1 (dotted). c)
Exponential growth superposed over the oscillatory mode of vr for sub-critical
(μ2

ρ < 3), and thus MR-unstable discs for μ2
ρ = 1.0 (solid), 2.0 (dashed), and 2.9

(dotted). In all cases, the rotation period is 2π and t = 10 ∼ 1.6 rotations.

which, after a short time, affects the intended displacement perturbation. At t = 0,

I specify a small (< 0.01 r0Ω0) radial velocity, δvr(z, r), displacing fluid from P to a

slightly higher orbit in the +r̂ direction with a smaller orbital speed which pushes

fluid in the −ϕ̂ direction. The z-dependence of δvr is one wavelength of a cosine, and

thus the perturbation wavelength is λ = 0.1. The r-dependence is a Gaussian with

a peak at r0 and a standard deviation of σ = 0.03 r0. Thus, δvr falls to ∼0.4% of its

peak value at r = 0.9 and 1.1 and this radial dependence compresses the “magnetic

spring”, priming the MRI. Boundary conditions are described in the caption of Fig.

7.19.

While the linear analysis presumes a constant MHD pressure, p∗, this can

be difficult to impose numerically. With p∗ initially uniform, perturbations launch

pressure variations and thus sound waves which do, after some time, have an ac-

cumulative effect. To mitigate this, setting a low sound speed (cs ∼ 0.05) extends

the time it takes for pressure perturbations to reach the boundaries and then get

reflected back into the region of interest.

Eight separate experiments were conducted to t = 10 (∼ 1.6 rotations) when

boundary and pressure effects started to be felt. The first two runs tested the

prediction that with either Ω0 or ωA zero, a displacement perturbation results in a

simple harmonic response (Eq. 7.54 and 7.55) with angular frequencies ωA and Ω0

respectively. Figure 7.20 a shows the amplitude of vr at point P in Fig. 7.19 over the

course of both simulations from which the periods can be measured directly. In the

first case where Ω0 = 0 and ωA =
√
7 (solid line), the numerically determined period

is Tnum ∼ 2.40 as compared with Tlin = 2π/ωA ∼ 2.38 from our linear analysis.

Careful measurement shows that the first period (2.86) is somewhat longer than

the second two (2.42 and 2.38), indicative of numerical transients.

In the second case where Ω0 = 1 and ωA = 0 (dashed line in Fig. 7.20a),
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the numerical period is Tnum ∼ 6.57, cf. Tlin = 2π/Ω0 ∼ 6.28. As only ∼ 1.5 full

periods are observed, the fact that Tnum > Tlin may be another instantiation of

the numerical transients supposed above. Regardless, I consider these experiments

as evidence that the numerical methods satisfactorily reproduce these results from

linear theory, even quantitatively.

Figure 7.20 b shows results from the three super-critical (μ2
ρ > 3, MR-stable)

runs, with μ2
ρ = 7, 5, and 3.1 shown respectively as solid, dashed, and dotted lines.

In this scenario, Eq. (7.49) and (7.50) predict a superposition of two normal modes

with frequencies,

ω1,3 = Ω0

√
μ2
ρ +

1
2 ±
√
4μ2

ρ +
1
4 , (7.75)

where I’ve set 2κ = −3Ω2
0 for a Keplerian disc. Examining the solid curve in Fig.

7.20 b where μ2
ρ = 7, one can almost “eyeball” the superposition of two normal

modes with periods ∼ 1.5 and 4.0 corresponding to angular frequencies ∼ 4.2 and

1.6 respectively and tantalisingly close to ω1 = 3.58 and ω3 = 1.48 as evaluated from

Eq. (7.75) using Ω0 = 1. Reducing μ2
ρ to 5 (dashed) then 3.1 (dotted) increases both

periods of the bimodal response seen in Fig. 7.20 b, as borne out by Eq. (7.75).

Finally, Fig. 7.20 c shows results from the three sub-critical (μ2
ρ < 3, MR-

unstable) runs, with μ2
ρ = 1, 2, and 2.9 shown respectively as solid, dashed, and

dotted lines. In this case, linear theory predicts the response to be a superposition of

an oscillatory term with frequency ω1 given by the positive option in Eq. (7.75), and

an exponentially growing term, eχt where χ is given by Eq. (7.56). As can be seen

in panel c, the growth rate for μ2
ρ = 2.9 (dotted) is slow enough for the oscillatory

phase to be measured directly from the plot, where I find a period T1 ∼ 2.5 and

thus ω1 ∼ 2.5, cf. 2.62 from Eq. (7.75). The computational time limit of 10 is too

short to capture convincingly the growth portion of μ2
ρ = 2.9, but is adequate for

μ2
ρ = 2 (dashed) and 1 (solid), each showing the tell-tale straight lines for t > 4

on the log vr vs. t plots in Fig. 7.20 c. For these, I measure directly from the plot

χ = 0.65 and 0.75 respectively, cf. χ = 0.610 and 0.749 from Eq. (7.56). While both

of these cases show evidence for the oscillatory term when t < 4, there isn’t enough

to make a meaningful estimate of the periods.

I take all of this as strong evidence that these simulations have captured the lin-

ear regime of the MRI,27 confirming the critical value μρ,cr =
√
3 that differentiates

MR-stable (μρ > μρ,cr) from MR-unstable (μρ < μρ,cr) Keplerian discs.

As a final comment on the MRI, I note the following. The astute reader may

have noticed the similarity between the expressions for the normal mode frequencies

and growth rate for the MRI (Eq. 7.75 and 7.56 respectively) and those for the KHI

(Eq. 7.14 and 7.15 respectively). Considering the expressions for the growth rate,

χ, both have the form,

χ2 = A2
(√

4B2 + C2 −B2 − C
)
, where

A B C

KHI kcs M 1

MRI Ω0 μρ
1
2

.

27Rappel : This was not the case for the Rayleigh–Taylor instability ( 7.2.2) where non-linear
effects seem to dominate the progress of the instability right from the get-go.
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This plus the fact both instabilities gain their energy from a velocity shear makes

one wonder whether the two instabilities aren’t somehow related. I am not aware

of any literature that explores this possibility, even if to dismiss these similarities

as mere coincidence.

7.4 Parker instability

While the Velikhov–Chandrasekhar instability – later known to astrophysicists as

the Balbus–Hawley instability and more recently as the MRI ( 7.3) – was known

several years before the Parker instability was discovered (Parker, 1966), the latter

was the first MHD instability motivated by and applied to astrophysics. And while

rather easy to describe and explain physically, it poses the most challenging math-

ematical problem of all four instabilities examined in this chapter, and one of the

most challenging in this text. Therefore, the structure of this section differs from

the previous three. In the next subsection, I give a qualitative “derivation” of the

instability along with a description of Parker’s astrophysical motivation and some

of the predictions he made. The mathematical details are then delegated to the

following subsection which, despite its “optional” designation, I highly recommend

the reader go through. The mathematics isn’t new, just intense and it represents

the most extensive example we do in this text of working with linearised equations

where all four MHD equations plus an equation governing cosmic rays must be

accounted for!

7.4.1 A qualitative description

By 1966, it had recently been established that the interstellar medium (ISM) of the

Milky Way was permeated by a magnetic induction whose strength, at the time,

was thought to be Bgal ∼5 × 10−10T (5μG).28 To theorists, this posed important

fundamental questions including what generates Bgal and what ties it to the galaxy?

As we know, the presence of a magnetic induction implies a magnetic pressure which

cannot be confined by a neutral gas. Nor can it be confined by an external fluid

(e.g., an extragalactic medium); ionised or not, in its expansion lines of magnetic

induction would simply move around this material.

It was also known that the ISM was made up of roughly equal portions (in en-

ergy, not mass) of ordinary thermal matter – primarily neutral and ionised hydrogen

and helium – and cosmic rays (CR)29 whose energies are too high for the Milky Way

to confine gravitationally. And yet, confined they are. Observations of synchrotron

28Modern values range from 10−10T in the outer galaxy, to 6× 10−10T in the solar neighbour-
hood, to 4× 10−9T towards the galactic core (e.g., Beck, 2007).

29While “ordinary thermal matter” and “cosmic rays” are made up of the same “stuff” (e.g.,
H and He ions, electrons, etc.), the “ordinary matter” follows a Maxwellian distribution (like our
atmosphere) and can be described by a unique temperature. On the other hand, CR are particles
of ordinary matter accelerated by unusual and energetic events such as supernovæ, galactic shocks,
and black hole mergers. As such, CR do not follow a Maxwellian distribution and therefore cannot
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emission (radiation emitted by charged particles spiralling about a magnetic field)

indicate the vast majority of CR remain within the Milky Way, and the only thing

that can confine them is the magnetic induction, �Bgal, permeating the ISM. Of

course, the high kinetic energies of the CR tugging on �Bgal gives it all the more

reason to expand out of the Milky Way, and still it doesn’t.

The explanation formed in the 1960s and which largely prevails today is the

bulk of the mass of the ISM is thermal (ionised) matter to which the magnetic

induction is also tied and it is the weight of this thermal matter within the gravi-

tational field of the Milky Way that ultimately ties �Bgal and the CR to the galaxy.

By analogy, the moon is incapable of holding on to an atmosphere, since individual

gas molecules move, on average, too fast for the moon’s gravitational field to retain

them. However, CO2 particles bound chemically to the moon’s regolith are retained

since these are effectively held in place by the weight of the regolith.

And so we have a model of the ISM in which neutral gas, ionised gas, and

CR co-exist, all permeated by a magnetic induction generated by the turbulent

accelerations of charged particles, where the CR continuously vie to escape the

confines of the galaxy, and where left to its own devices, �Bgal would expand out of

the galaxy as well. It is then left to the thermal matter to weigh it all down in an

uneasy equilibrium that maintains the ISM as we know it.

Now, a property of the ISM known to astronomers in the 1960s was that it is

“clumpy”. Density contrasts of several between the “in-between” portions of the ISM

and what were termed “interstellar clouds” had been reported30 but these clouds

were too small to be formed and held in place by their self-gravity. Eugene Parker31

was the first to suggest that these clouds were, in fact, an MHD phenomenon and

a direct result of a then-unknown instability that now bears his name.

The instability goes like this. As depicted in Fig. 7.21a, the ISM is modelled

as a disc of initially uniform gas with an embedded azimuthal magnetic induction,
�Bgal = Bgalϕ̂. In the co-rotating frame of the fluid, the residual vertical component

of the acceleration of gravity, �ggal = −ggalk̂, points towards the galactic midplane

(the radial component being balanced by the centrifugal force). Suppose now that

magnetic lines of induction are perturbed sinusoidally, as shown in Fig. 7.21b. Since

ionised fluid is confined to move along �Bgal, gravity forces matter to “slide down”

lines of induction (indicated by δv in Fig. 7.21b), thereby accumulating mass in

the troughs of the perturbation at the expense of the crests. The extra “weight” in

the troughs weigh lines of induction down more, while the loss of mass at the crests

make them more buoyant, dragging lines of induction up. These two actions steepen

the perturbation, driving even more ionised matter “down” lines of induction (and

also neutral matter; see 10.5) until we achieve the configuration shown in Fig.

be described by a unique temperature. Indeed, CR with energies approaching 20 J (i.e., a single
α-particle with the energy of a baseball thrown at 60 km/hr!) have been measured, and even the
great gravitational well of the entire Milky Way cannot contain them.

30Modern values for these density contrasts are well into the hundreds; see Ferriere (2001) and,
more accessibly, www.wikipedia.org/wiki/Interstellar medium.

31Eugene Parker (1927–2022; www.wikipedia.org/wiki/Eugene Parker) was a solar and plasma
physicist and, among many contributions, was the first to propose the existence of a solar wind.
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Figure 7.21. a) A cross-section of a uniform portion of the ISM, where x points
away from the galactic centre, y is the azimuthal coordinate, and z is the altitude
above the galactic midplane. Grey indicates a uniform density (in hydrostatic
equilibrium), and horizontal lines represent lines of magnetic induction, �Bgal,
parallel to the galactic midplane. In a frame of reference co-rotating with the
fluid (where the radial gravitational and centrifugal forces balance), the residual
gravitational acceleration is towards the galactic midplane, indicated by �ggal in
the figure. b) Perturbing �Bgal causes ionised matter – which must follow lines of
magnetic induction – to “slide down” lines of �Bgal under the influence of �ggal. c)
Matter collecting in the troughs weigh lines of induction down while the paucity
of matter at the crests make them buoyant, forcing lines of induction to rise. This
is the essence of the Parker instability.

7.21c. Here, at the troughs of the instability, the denser clumps form the observed

interstellar clouds confined by the magnetic induction of the galaxy rather than by

their own self-gravity.

Now, it’s not entirely obvious that the scenario just painted should, in fact,

lead to an instability. For one thing, bending a line of magnetic induction comes

with additional magnetic tension that tends to straighten out the bend. Further,

matter piling up in the troughs of the perturbations increases the local thermal

pressure which also tends to restore the perturbation. Clearly, there is a balance to

be struck. Is the increase in magnetic energy because of bent lines of induction plus

the increase in internal energy because of the condensation of matter more or less

than the decrease in potential energy afforded by the “falling” gas? The answer to

this question is what determines whether the system is unstable, or restores itself

to the unperturbed state in a damped oscillatory fashion. Finally, even if there

are conditions under which the instability is triggered, does the wavelength of the

instability correspond to the observed spacings of the interstellar clouds and does

the growth time of the instability allow them to form within the galaxy’s lifetime?

In his treatment, Parker assumed that both the magnetic and CR pressures,

pM and pCR, were constant multiples of the thermal pressure, p,32

pM,0

p0
=

B2
0/2μ0

p0
= σM and

pCR,0

p0
= σCR, (7.76)

where equilibrium quantities are designated with a subscript 0. Further, in equilib-

32The astute reader will notice that Parker’s σM is just the reciprocal of the plasma-beta (Eq.
5.29) defined in 5.2 and differs from our MHD-alpha (Eq. 5.30) by a factor of γ/2. Parker’s choice,
however, does tidy up the algebra enough that we shall retain his definitions here.



Clarke 9781009381475 .tex 289 2/04/2025

289 Parker instability

rium the thermal gas is assumed to be adiabatic (p ∝ ργ) and governed by the ideal

gas law (Eq. 1.12),

p0 =
ρ0kBT0
〈m〉 = v2rmsρ0, (7.77)

where kB is the Boltzmann constant, T0 is the uniform temperature of the thermal

gas in equilibrium, 〈m〉 is the average particle mass, and vrms = (kBT0/〈m〉)1/2 is

the rms speed of the thermal gas particles in the z-direction (i.e., with one degree

of freedom; cf. Eq. 1.13 which, for γ = 5/3, is for three degrees of freedom). Note

that if the gas were isothermal, vrms would be the isothermal sound speed.

Still in equilibrium, Parker assumed all quantities varied only in the vertical

(z) direction (except T0 and ggal, which he assumed constant) with �Bgal ∝ ŷ and

�ggal ∝ −ẑ (Fig. 7.21a):

ρ0 = ρ0(z); p0 = p0(z); −∇φ = −ggalk̂; �B0 = By,0(z)ĵ. (7.78)

With this simplified geometry and dependencies, the Lorentz force becomes,

�J0 × �B0 =
1

μ0
(∇× �B0)× �B0 = −By,0

μ0

dBy,0

dz
(̂ı× ĵ) = −dpM,0

dz
k̂, (7.79)

and, in equilibrium where �v = 0 and ∂t = 0, the z-component of the momentum

equation (Eq. 4.13) in which we include the CR pressure, pCR,0, as a contributing

partial pressure, reduces to:

0 = − d

dz

(
p0 + pCR,0 + pM,0

)− ρ0ggal (7.80)

⇒ 1

p0

dp0
dz

= − ggal
v2rms(1 + σM + σCR)

≡ − 1

L
, (7.81)

using Eq. (7.76), (7.77), and (7.79). The quantity L is referred to as the scale height

of the galaxy. It is the vertical distance characterising how rapidly, as in the case of

Eq. (7.81), the thermal pressure falls. Note that because of Eq. (7.76) and (7.77),

we can write,

1

p0

dp0
dz

=
1

pM,0

dpM,0

dz
=

2

By,0

dBy,0

dz
=

1

pCR,0

dpCR,0

dz
=

1

ρ0

dρ0
dz

= − 1

L
, (7.82)

and thus the scale height is also a measure of how rapidly the magnetic pressure,

magnetic induction, cosmic ray pressure, and density fall off with scale height.

With all this, Parker found that sinusoidal perturbations (as illustrated in Fig.

7.21b) are unstable provided,

C(σM, σCR, γ) > 2γσMk
2L2, (7.83)

where k = 2π/λ is the wavenumber of the perturbation, λ is its wavelength, and

where,

C(σM, σCR, γ) =
(
1 + σM + σCR

)2 − γ
(
1 + 3

2σM + σCR

)
. (7.84)

Eq. (7.83) tells us that for the longest perturbation wavelength (and thus k → 0),
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C > 0 putting a constraint on the parameters σM, σCR, and γ. Further, Parker

found the fastest growing perturbation wavelength has an e-folding time,

τP =
L
√
2(γ + 2σM)(γσM + C)

vrmsC
. (7.85)

Use of the intermediate quantities L and C bely the complexity with which the

criterion for instability and τP depend upon the parameters, σM, σCR, γ, ggal, and

vrms. A quick glance back at the analogous expressions for the Kelvin–Helmholtz,

Rayleigh–Taylor, and even the magneto-rotational instabilities and the relative sim-

plicity with which they depend upon their environmental parameters gives one a

glimmer of how complicated algebraically the Parker instability actually is. For

Parker first to have intuited the existence of this instability, then designed the

mathematical strategy, carried out the calculations, and presented his results in

such a transparent fashion to prove his intuition correct leaves me, frankly, in awe!

We turn now to some of Parker’s quantitative conclusions. First, in the absence

of magnetic and CR pressure (σM = σCR = 0), Ineq. (7.83) with Eq. (7.84) require:

1− γ > 0,

which is clearly false for all values of γ ≥ 1, and there is no instability. Thus, without

the effects of magnetism and CR in the ISM, the ISM is unconditionally stable.33

Of course, σM and σCR are not zero in the galaxy, and in 1966 the best values

were 0.3 and 0.15 respectively.34 For an isothermal gas (γ = 1), Eq. (7.84) gives

C ∼ 0.50. Further, the best value for vrms at the time was 5,000m s−1 (for a mean

temperature of 3,000K)35 and for ggal was 1.3 × 10−11ms−2 .36 Thus, L ∼ 2.8 ×
1018m∼ 90 pc37 and, from Eq. (7.83),

λ > 2πL

√
2γσM
C

≡ λmin ∼ 620 pc, (7.86)

a value in reasonable agreement with the observed spacings of interstellar “clumps”.

Finally, substituting these numerical values into Eq. (7.85) gives the e-folding

time for the fastest growing mode:

τP ∼ 5.6× 107 yr,

certainly well within the ten-billion plus year age of the Milky Way.

While many of these numbers have been modified significantly over the years

(e.g., see footnotes), the theory gives enough latitude to withstand the newer ob-

servations. For example, spacings between ISM “clumps” vary from hundreds to

33For the reader familiar with the Jeans instability in which a sufficient density perturbation in
a self-gravitating interstellar gas cloud can cause the cloud to collapse under its own weight, the
Parker instability is insensitive to this since Parker considers background gravitational fields only.

34Modern values for σM and σCR are both of order unity (equipartition; see, e.g., Beck et al.,
1996) though these values vary widely across the galaxy and Parker’s values are not unreasonable.

35Modern values for the ISM temperature range from 10K in the coldest molecular clouds to
106 K in stellar coronæ, with vrms ∼104 ms−1; see Ferriere (2001).

36Modern value for ggal is 7.44× 10−11 ms−2; see Hagen & Helmi (2018).
37This is considerably less than the modern value of 300–400 pc; see Carroll & Ostlie (2017).
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thousands of pc, and the growth time of 6 × 107 yr is well under the age of the

galaxy, even if raised an order of magnitude. While it took some time for Parker’s

1966 paper to become widely known among astrophysicists (remember, MHD as a

valid branch of physics was still in doubt in 1958, and Alfvén’s Nobel Prize was still

four years in the future), it has since become regarded as a turning point in our

understanding of galactic dynamics.

Parker himself modestly described his instability as “related to the familiar

Rayleigh–Taylor instability” ( 7.2), where the less-dense gas supporting the denser

gas is replaced by the magnetic field. And while the research note by Appenzeller

(1971) refers to “Parker’s instability” in its title, it seems to have been Frank Shu

who coined the currently used moniker in his 1974 paper “The Parker instability

in differentially-rotating disks” where he redid Parker’s calculations in this more

realistic galactic geometry. Shu (1974) found that while the differential rotation

could affect, even extend growth times, no amount of shear and rotation could

completely stabilise Parker’s instability. Perhaps more than any, then, Shu’s paper

helped seal the role of the Parker instability in astrophysics.

7.4.2 A quantitative description (optional)

We begin by identifying the dynamical equations needed to describe the physics of

the Parker problem: a thermal + CR fluid embedded in a uniform magnetic field

with a background acceleration of gravity in a slab-symmetric geometry (∂x = 0)

with vx = 0 and Bx = 0 at all times. While the need for gravity to trigger the insta-

bility may remind us of the RTI ( 7.2) or even the KSI ( 7.2.3), Parker’s instability

is much more complicated mathematically because, in part, the condensation of

matter into “clouds” precludes the assumption of incompressibility. Thus, ∇ ·�v �= 0

and, unlike the Rayleigh–Taylor analysis, we can’t use the “stream function”, ψ, to

reduce two components of the momentum equation to one scalar equation.

And so for starters, we know we’ll need continuity (Eq. 4.20) to track density

perturbations, and two components of the momentum equation (Eq. 4.22) to track

the y- and z-velocity perturbations (see Fig. 7.21a for coordinates). Now, for some

simplicity, one might be tempted to assume an isothermal equation of state for the

thermal gas, thereby obviating the need for an energy equation. However, Parker’s

analysis used an adiabatic equation of state so that he could examine the effects of

the adiabatic index, γ, on his instability. Following his lead then, we’ll also need a

dynamical equation for the thermal pressure, p, such as Eq. (1.35).

To this point, we’ve accumulated four dynamical equations to be linearised.

For ∂x, vx, and Bx all zero, Eq. (4.20), the y- and z-components of Eq. (4.22), and

Eq. (1.35) with dp/dρ = γp/ρ (adiabatic EoS) become:

∂tρ+ ∂y(ρvy) + ∂z(ρvz) = 0; (7.87)

∂tsy + ∂y(syvy) + ∂z(syvz) = −∂y(p+ pCR) +
Bz

μ0
(∂zBy − ∂yBz); (7.88)

∂tsz + ∂y(szvy) + ∂z(szvz) = −∂z(p+ pCR)− ρggal +
By

μ0
(∂yBz − ∂zBy); (7.89)
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∂tp+ vy∂yp+ vz∂zp = −γp(∂yvy + ∂zvz). (7.90)

It is the induction equation where we catch our first and only (small) break.

Since ∇ · �B is zero, we have from Eq. (4.32) and (4.33),

�B = ∇× �A ⇒ ∂t �A = �v × �B +∇V , Eq. (4.33)

the ideal induction equation for the vector potential, �A, where, for a suitable choice

of gauge, V can be set to zero (see 4.8). Now, for ∂x = 0 and Bx = 0, we have,

�B = (0, By, Bz) = ∇× �A =
(
∂yAz − ∂zAy, ∂zAx,−∂yAx), (7.91)

where we are free to set Ay = Az = 0. Thus, the vector potential can be completely

described by its x-component, Ax, and Eq. 4.33 reduces to,

∂tAx = vyBz − vzBy, (7.92)

giving a single scalar equation describing both magnetic components, By and Bz.

It is also worth pointing out that in this 2-D geometry where Ax = Ax(y, z),

�B · ∇Ax = (By ĵ+Bzk̂) · (∂yAx︸ ︷︷ ︸
−Bz

ĵ+ ∂zAx︸ ︷︷ ︸
By

k̂) = 0,

using Eq. (7.91), and the gradient of Ax is everywhere perpendicular to �B. Thus,

contours of constant Ax are everywhere tangential to, and therefore are lines of

magnetic induction. This demonstrates graphically how a single scalar function,

Ax, can be used to describe two components of a magnetic induction vector, �B.

As for the CR, Parker argued that their high streaming velocity – making them

immune to gravitational effects – and their extremely high effective sound speed –

being so much higher than any other wave speed in the system – means that the

CR pressure, pCR, is constant along stream lines. Thus, pCR can be described by

an advection equation,

dpCR

dt
= ∂tpCR + �v · ∇pCR = 0

⇒ ∂tpCR + vy∂ypCR + vz∂zpCR = 0, (7.93)

for ∂x = 0.

Our task, then, is to linearise the six equations (7.87)–(7.90), (7.92), (7.93), and

whittle them all down to a single Helmholtz-like equation38 in a single quantity –

which will turn out to be the perturbation to the vector potential, Ax,p – from

which we determine the condition for instability. A tall task indeed!

We start by setting all primitive variables to the sum of their equilibrium values

(with subscript ‘0’) and a perturbation (with subscript ‘p’):

ρ = ρ0 + ρp; vy = vy,p; vz = vz,p; p = p0 + pp;

By = By,0 +By,p; Bz = Bz,p; pCR = pCR,0 + pCR,p,

}
(7.94)

38Rappel : The Helmholtz equation has the form f ′′(ξ) = −q2f(ξ), where q2 > 0 gives oscillatory
and thus stable solutions, while q2 < 0 gives exponential and thus unstable solutions.
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since the equilibrium values of vy, vz , and Bz are zero. Recall that equilibrium

quantities are functions of z only, whereas in general, perturbations are functions

of y, z, and t.

Making substitutions for ρ, vy, and vz in Eq. (7.87), we get the linearised

continuity equation,

∂t(ρ0 + ρp) + ∂y
[
(ρ0 + ρp)vy,p

]
+ ∂z

[
(ρ0 + ρp)vz,p

]
= 0

⇒ ∂tρp = −ρ0∂yvy,p − ρ0∂zvz,p − vz,p
dρ0
dz

, (7.95)

where all “second-order small” terms with more than one perturbation factor have

been dropped [e.g., ∂y(ρp vy,p)],
39 as have terms with ∂tρ0 and ∂yρ0 since these are

zero.

Before linearising the y-component of the momentum equation (Eq. 7.88), we

note that the vector potential can also be written as the sum of its equilibrium value

and a perturbation,
Ax = Ax,0 +Ax,p, (7.96)

and, since Ax,0 describes the equilibrium magnetic induction (By,0 = ∂zAx,0), Ax,p

must describe the perturbations to By and Bz, namely,

By,p = ∂zAx,p; Bz,p = −∂yAx,p.

Evidently, Ax,0 is a function of z only (since Bz,0 = 0, Ax,0 cannot have a y-

dependence) and, like all perturbed quantities, Ax,p is a function of y, z, and t.

With this, we make the appropriate substitutions into Eq. (7.88) to get,

∂t
[
(ρ0 + ρp)vy,p

]
+ ∂y

[
(ρ0 + ρp)vy,pvy,p

]
+ ∂z

[
(ρ0 + ρp)vy,pvz,p

]

= −∂y
(
p0 + pp + pCR,0 + pCR,p

)
+

1

μ0

[
∂z(By,0 +By,p)− ∂yBz,p

]
Bz,p,

which mercifully reduces to,

ρ0 ∂tvy,p = −∂y(pp + pCR,p)− 1

μ0

dBy,0

dz
∂yAx,p, (7.97)

dropping all second-order terms along with t- and y-derivatives of equilibrium quan-

tities.

Before linearising the z-component of the momentum equation (Eq. 7.89), it is

worth examining separately how its Lorentz term is linearised. To wit,

1

μ0
(∂yBz − ∂zBy)By =

1

μ0

[
∂yBz,p − ∂z(By,0 +By,p)

]
(By,0 +By,p)

= − By,0

μ0

dBy,0

dz︸ ︷︷ ︸
dpM,0/dz

+
By,0

μ0

(
∂yBz,p − ∂zBy,p︸ ︷︷ ︸

−∇2Ax,p

)− 1

μ0

dBy,0

dz
By,p

39Rappel : In 2.1.1 and 5.2.2 we used ε as a label to keep track of “order of smallness” (e.g.,
ρ = ρ0 + ερp, where formally, ε = 1). Thus, after the algebra, any term with ε2 or higher got
dropped. Here, I’m omitting this crutch, relying instead on our ability to recognise second-order
small terms on their own merits.
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= −dpM,0

dz
− By,0

μ0
∇2Ax,p − 1

μ0

dBy,0

dz
∂zAx,p,

dropping second-order terms such asBy,p∂yBz,p/μ0, etc., where∇2Ax,p = ∂yyAx,p+

∂zzAx,p, and recalling that the equilibrium magnetic pressure is given by pM,0 =

B2
y,0/2μ0 (e.g., Eq. 7.76). Using this and making the appropriate substitutions into

Eq. (7.89), we drop all second-order terms and t-derivatives of equilibrium quantities

to get,

ρ0 ∂tvz,p = − d

dz
(p0 + pCR,0)− ∂z(pp + pCR,p)− (ρ0 + ρp)ggal

− dpM,0

dz
− By,0

μ0
∇2Ax,p − 1

μ0

dBy,0

dz
∂zAx,p

= − d

dz
(p0 + pCR,0 + pM,0)− ρ0ggal

︸ ︷︷ ︸
= 0 (Eq. 7.80)

− ∂z(pp + pCR,p)− ρp ggal

− By,0

μ0
∇2Ax,p − 1

μ0

dBy,0

dz
∂zAx,p,

(7.98)

the linearised z-component of the momentum equation.

It is left to Problems 7.7 and 7.8 to show that linearising the equations for

thermal pressure (Eq. 7.90), ideal induction (Eq. 7.92), and the CR pressure (Eq.

7.93) lead to:

∂tpp = −vz,p dp0
dz

− γp0
(
∂yvy,p + ∂zvz,p

)
; (7.99)

∂tAx,p = −By,0vz,p; (7.100)

∂tpCR,p = −vz,p dpCR,0

dz
. (7.101)

Equations (7.95) and (7.97)–(7.101) (equivalent to Parker’s Eq. III.5, III.3,

III.4, III.6, III.2, and III.7 respectively40) are the six linearised equations we must

combine to deliver a single evolution equation in Ax,p. And this is where the real

fun begins . . .

The first and most trivial step is to solve Eq. (7.100) for vz,p:

vz,p = − 1

By,0
∂tAx,p, (7.102)

which will be an important key in unlocking the hidden dependence of all the

linearised MHD/CR equations on Ax,p. For starters, substituting Eq. (7.102) into

Eq. (7.101) along with various other machinations (Problem 7.8) yields,

pCR,p =
σCRv

2
rms

By,0

dρ0
dz

Ax,p. (7.103)

Looking to the y-component of the momentum equation next, set ρ0 = p0/v
2
rms

40All equations in this subsection referred to as “Parker’s Eq.” come from Parker (1966).
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(Eq. 7.77) in Eq. (7.97), then differentiate with respect to time to get,

p0
v2rms

∂ttvy,p = −∂ytpp − ∂ytpCR,p − 1

By,0

By,0

μ0

dBy,0

dz︸ ︷︷ ︸
dpM,0/dz

∂ytAx,p

= ∂y

(
vz,p

dp0
dz

+ γp0 ∂yvy,p + γp0 ∂zvz,p

+ vz,p
dpCR,0

dz
− 1

By,0

dpM,0

dz
∂tAx,p

)
,

using Eq. (7.99) for ∂tpp and Eq. (7.101) for ∂tpCR,p.

Next, multiply through by v2rms/p0, use Eq. (7.102) to eliminate vz,p, note that

pCR,0 = σCRp0 and pM,0 = σMp0 (Eq. 7.76), and move the term γv2rms∂yyvy,p from

the RHS to the LHS to get,

∂ttvy,p − γv2rms∂yyvy,p︸ ︷︷ ︸
≡ Lvy,p

= −γv2rms∂z

(
1

By,0
∂ytAx,p

)

− 1

By,0

(
v2rms

p0

dp0
dz

+
v2rmsσCR

p0

dp0
dz

+
v2rmsσM
p0

dp0
dz

)
∂ytAx,p

⇒ Lvy,p = γ
v2rms

B2
y,0

dBy,0

dz
∂ytAx,p − γ

v2rms

By,0
∂z∂ytAx,p

− v2rms

By,0

1

p0

dp0
dz

(
1 + σCR + σM

)
∂ytAx,p,

where the operator L is defined for convenience, and where the product rule is

applied to the first term on the RHS differentiated with respect to z.

I pause to caution the reader that the abbreviated Leibniz notation, adopted in

Chap. 5, can conceal the complexity of the mathematics. For example, never forget

that the construct,

∂z∂ytAx,p =
∂

∂z

∂

∂t

∂Ax,p

∂y
,

is actually a triple derivative which could, in principle, be written as ∂ytzAx,p and –

wait for it – fourth derivatives are on their way! So while things may seem to be

getting complicated, you ain’t seen nothin’ yet!

Carrying on from the last expression for Lvy,p, we write,

Lvy,p =
v2rms

By,0

(
γ

1

By,0

dBy,0

dz
︸ ︷︷ ︸
−1/2L

− 1

p0

dp0
dz︸ ︷︷ ︸

−1/L

(
1 + σCR + σM

)− γ∂z

)
∂ytAx,p,

where the underbraces come from Eq. (7.82) defining the scale height, L, and the

“term” γ∂z is treated as an operator. Thus, the time derivative of Eq. (7.97) whittles

down to,

Lvy,p =
v2rms

By,0

(
D − γ∂z

)
∂ytAx,p, (7.104)
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where,

D ≡ 1 + σM + σCR − γ/2

L
, (7.105)

is defined for convenience. Eq. (7.104) is equivalent to Parker’s Eq. (III.9).

Next, I’ll let the reader verify in Problem 7.9 that the continuity and pressure

equations (Eq. 7.95 and 7.99) can be written as:

Lρp
ρ0

= − v
2
rms

By,0
(D − γ∂z)∂yyAx,p − 1

By,0

(
1

2L
− ∂z

)
LAx,p; and (7.106)

Lpp
p0

= −γv
2
rms

By,0
(D − γ∂z)∂yyAx,p − 1

By,0

(
1− γ/2

L
− γ∂z

)
LAx,p, (7.107)

which are equivalent to Parker’s Eq. (III.10) and (III.11).

We now tackle the big one, the z-momentum equation. Divide Eq. (7.98)

through by ρ0 (p0/v
2
rms where convenient), and use Eq. (7.102) to eliminate vz,p

in favour of Ax,p to get,

1

By,0
∂ttAx,p =

v2rms

p0
∂zpp +

1

ρ0
∂zpCR,p

+ ggal
ρp
ρ0

+
B2

y,0

2μ0︸ ︷︷ ︸
pM,0

2

ρ0By,0
∇2Ax,p +

1

ρ0By,0

By,0

μ0

dBy,0

dz︸ ︷︷ ︸
dpM,0/dz

∂zAx,p.
(7.108)

Now, from the product rule,

∂z

(
pp
p0

)
= − 1

p20

dp0
dz︸ ︷︷ ︸

−1/p0L

pp +
1

p0
∂zpp

⇒ 1

p0
∂zpp = ∂z

(
pp
p0

)
− 1

L

pp
p0

= −
(
1

L
− ∂z

)
pp
p0
.

Substituting this and Eq. (7.103) into Eq. (7.108), and then applying the operator

L to the result, we get,

1

By,0
∂ttLAx,p = −v2rms

(
1

L
− ∂z

)
Lpp
p0︸ ︷︷ ︸

≡ q1

+
1

ρ0
∂z

(
v2rmsσCR

By,0

dρ0
dz

LAx,p

)

︸ ︷︷ ︸
≡ q2

+ ggalLρp
ρ0

+
2pM,0

ρ0By,0
∇2(LAx,p) +

1

ρ0By,0

dpM,0

dz
∂z(LAx,p).

(7.109)

We proceed by examining the terms q1 and q2 in Eq. (7.109) separately. Starting

with q1, substitute in Eq. (7.107) to get,

q1 = v2rms

(
1

L
− ∂z

)[
γv2rms

By,0

(
D − γ∂z

)
∂yyAx,p +

1

By,0

(
1− γ/2

L
− γ∂z

)
LAx,p

]
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=
γv4rms

By,0

(
1

L

(
D − γ∂z

)
+

1

By,0

dBy,0

dz
︸ ︷︷ ︸
−1/2L

(
D − γ∂z

)− ∂z
(
D − γ∂z

))
∂yyAx,p

+
v2rms

By,0

[
1

L

(
1− γ/2

L
− γ∂z

)
+

1

By,0

dBy,0

dz
︸ ︷︷ ︸
−1/2L

(
1− γ/2

L
− γ∂z

)

− ∂z

(
1− γ/2

L
− γ∂z

)]
LAx,p

⇒ q1 =
γv4rms

By,0

(
1

2L
− ∂z

)(
D − γ∂z

)
∂yyAx,p

+
v2rms

By,0

(
1

2L
− ∂z

)(
1− γ/2

L
− γ∂z

)
LAx,p.

(7.110)

Next, for q2 we use the product rule for ∂z to get three terms,

q2 = −v
2
rmsσCR

By,0

1

By,0

dBy,0

dz︸ ︷︷ ︸
−1/2L

1

ρ0

dρ0
dz︸ ︷︷ ︸

−1/L

LAx,p +
v2rmsσCR

By,0

1

ρ0
∂z

(
dρ0
dz

)
LAx,p

+
v2rmsσCR

By,0

1

ρ0

dρ0
dz︸ ︷︷ ︸

−1/L

∂z
(LAx,p

)
.

But,

∂z

(
1

ρ0

dρ0
dz︸ ︷︷ ︸

−1/L

)
= 0 = − 1

ρ20

dρ0
dz

dρ0
dz︸ ︷︷ ︸

1/L2

+
1

ρ0
∂z

(
dρ0
dz

)
⇒ 1

ρ0
∂z

(
dρ0
dz

)
=

1

L2

41

⇒ q2 =
v2rmsσCR

LBy,0

(
− 1

2L
+

1

L
− ∂z

)
LAx,p =

v2rmsσCR

LBy,0

(
1

2L
− ∂z

)
LAx,p. (7.111)

Substituting Eq. (7.110), (7.111), and (7.106) into Eq. (7.109) and noting that

pM,0/ρ0 = v2rmsσM (Eq. 7.76 and 7.77), we get (yikes!),

1

By,0
∂ttLAx,p =

γv4rms

By,0

(
1

2L
− ∂z

)(
D − γ∂z

)
∂yyAx,p

+
v2rms

By,0

(
1

2L
− ∂z

)(
1− γ/2

L
− γ∂z

)
LAx,p

+
v2rmsσCR

LBy,0

(
1

2L
− ∂z

)
LAx,p − ggalv

2
rms

By,0
(D − γ∂z)∂yyAx,p

− ggal
By,0

(
1

2L
− ∂z

)
LAx,p +

2v2rmsσM
By,0

∇2(LAx,p)

+
v2rmsσM
By,0

1

pM,0

dpM,0

dz︸ ︷︷ ︸
−1/L

∂z(LAx,p).

41In hindsight, this result makes sense. If the first derivative of ρ0 divided by ρ0 gives the inverse
scale height, 1/L, it seems reasonable that the second derivative divided by ρ0 should give 1/L2.
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Multiplying through by By,0 and gathering like terms, we get,

∂ttLAx,p = 2v2rmsσM∇2(LAx,p) + v4rms

(
γ

2L
− ggal
v2rms︸ ︷︷ ︸

−D (Eq. 7.81, 7.105)

− γ∂z

)(
D − γ∂z

)
∂yyAx,p

+ v2rms

(
σCR

L
− ggal
v2rms

+
1− γ/2

L︸ ︷︷ ︸
−(σM + γ/2)/L

− γ∂z

)(
1

2L
− ∂z

)
LAx,p

− v2rmsσM
L

∂z(LAx,p)

= 2v2rmsσM∇2(LAx,p)− v4rms

(
D2 − γ2∂zz

)
∂yyAx,p −���������v2rmsσM

L
∂z(LAx,p)

− v2rms

2L2

(
σM +

γ

2
+Lγ∂z

)
LAx,p +

v2rms

L

(
��σM +�

�
γ

2
+ Lγ∂z

)
∂z
(LAx,p

)
,

and all remaining single z-derivatives magically cancel out! Continuing, we substi-

tute L = ∂tt − γv2rms∂yy in the last two terms to get,

∂ttLAx,p = 2v2rmsσM∇2(LAx,p)− v2rms

2L2

(
σM +

γ

2

)
∂ttAx,p + γv2rms∂zz

(
∂ttAx,p

)

− v4rms

(
D2 −���γ2∂zz

)
∂yyAx,p +

γv4rms

2L2

(
σM +

γ

2

)
∂yyAx,p

−���������
γ2v4rms∂zz

(
∂yyAx,p

)

= 2v2rmsσM∇2(LAx,p)− v2rms

(
1

4L2

(
γ + 2σM

)− γ∂zz

)
∂ttAx,p

− v4rms

L2

[(
1 + σM + σCR − γ

2

)2
− γ

2

(
σM +

γ

2

)

︸ ︷︷ ︸
C (Eq. 7.84)

]
∂yyAx,p,

using Eq. (7.105) to replace D2. Thus, we have finally,

∂ttLAx,p = 2v2rmsσM∇2(LAx,p)

− v2rms

(
1

4L2

(
γ + 2σM

)− γ∂zz

)
∂ttAx,p − Cv4rms

L2
∂yyAx,p.

(7.112)

This is the single dynamical equation in Ax,p we’ve been seeking, and is equivalent

to, but in a different arrangement from, Parker’s Eq. (III.12).

Still with me? Good, because we’re still nowhere near finished !!

Given that Eq. (7.112) is in terms of second (and fourth!!) derivatives in time and

space, it is a wave equation (of sorts), and we can try a normal mode solution for

Ax,p, namely,

Ax,p = f(ξ)ei(ky−ωt) = f(ξ)eχteiky. (7.113)
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Here, f(ξ) is the amplitude of the perturbation to the vector potential (lines of in-

duction) as a function of the unitless vertical coordinate, ξ ≡ kz. The y-dependence

of the perturbation is a sinusoid with wavelength λ and wavenumber k = 2π/λ.

Stability of the system is dictated by the nature of the angular frequency, ω. If

ω ∈ R, the temporal response is oscillatory and the system is stable. Conversely,

if ω = iχ with the growth rate χ ∈ R, the temporal response is exponential, and

the system is unstable. This is a somewhat different approach than we took for

the previous three instabilities, where we used the normal mode solution to find

the dispersion relation, ω(k), and from that the criterion for instability. Here, it’s a

little more convenient to “build in” the instability by setting ω = iχ, and then let

the mathematics tell us under what conditions χ ∈ R.

In preparing to substitute Eq. (7.113) into Eq. (7.112), we first evaluate the

derivatives:

∂ttAx,p = χ2Ax,p;

∂yyAx,p = −k2Ax,p;

LAx,p = (∂tt − γv2rms∂yy)Ax,p =

(
χ2 + γv2rmsk

2

)
Ax,p;

∂tt(LAx,p) = χ2

(
χ2 + γv2rmsk

2

)
Ax,p;

∂zz∂ttAx,p = χ2 k
2

f
f ′′(ξ)Ax,p;

∇2(LAx,p) =

(
−k2 + k2

f
f ′′(ξ)

)(
χ2 + γv2rmsk

2

)
Ax,p.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.114)

Then, substituting every one of Eq. (7.114) into Eq. (7.112) and dividing out Ax,p,

we get,

χ2

(
χ2 + γv2rmsk

2

)
= 2v2rmsσM

(
−k2 + k2

f
f ′′(ξ)

)(
χ2 + γv2rmsk

2

)

− v2rms

4L2

(
γ + 2σM

)
χ2 + γv2rmsχ

2 k
2

f
f ′′(ξ) +

Cv4rms

L2
k2,

where C is given by Eq. (7.84). Next, dividing through by v4rmsk
4 and then defining

the unitless quantity ζ = χ/(vrmsk), we get,

ζ2(ζ2 + γ) = 2σM

(
f ′′

f
− 1

)
(ζ2 + γ)− ζ2

4k2L2

(
γ + 2σM

)
+ γζ2

f ′′

f
+

C

k2L2

⇒
(
ζ2
(
γ + 2σM

)
+ 2γσM

)
f ′′ =

(
ζ2
(
γ + 2σM

)
+ 2γσM

+ ζ4 +
ζ2

4k2L2

(
γ + 2σM

)− C

k2L2

)
f,

(7.115)

after a little algebra. Remember, f = f(ξ) is the amplitude of the perturbation

applied to Ax,p at t = 0 as a function of the vertical coordinate, ξ = kz. And so for

illustration, if we let,

P = ζ2
(
γ + 2σM

)
+ 2γσM and Q = ζ4 +

ζ2

4k2L2

(
γ + 2σM

)− C

k2L2
,
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then Eq. (7.115) reduces to the deceivingly simple form,

f ′′(ξ) =
P +Q

P
f(ξ).

Evidently, if (P + Q)/P > 0, then f(ξ) is an exponential function of ξ whereas if

(P + Q)/P < 0, f(ξ) is oscillatory. However, an exponential perturbation would

mean f(ξ) → ∞ as ξ → ∞ (a rather impractical requirement!), and so we choose

to impose a sinusoidal perturbation, thus forcing,

P +Q

P
≡ −K2 < 0 so that f(ξ) = E sin(Kξ) + F cos(Kξ), (7.116)

where K is the vertical wavenumber (in the z-direction), as opposed to k which is

the horizontal wavenumber, and where E and F are constants of integration set by

boundary conditions. To that point, if we require the perturbation to vanish at the

midplane (ξ = kz = 0), then F = 0 and Eq. (7.113) becomes,

Ax,p(y, z, t) = E sin(Kξ) eχt cos(ky),

where E is an arbitrary small amplitude (to keep things linear) and where we’ve

retained only the real part of eiky.

We are finally in a position to uncover Parker’s criterion for instability. For an

unstable solution, the growth rate χ ∈ R ⇒ χ2 > 0. Thus, ζ2 = χ2/(vrmsk)
2 > 0

which means P > 0 and the requirement that f(ξ) be oscillatory (cf. Eq. 7.116) can

be realised only if,

Q < −P ⇒ ζ4 +
ζ2

4k2L2

(
γ + 2σM

)− C

k2L2
< −ζ2(γ + 2σM

)− 2γσM

⇒ ζ4+ζ2
(
γ + 2σM

)(
1 +

1

4k2L2

)
+ 2γσM − C

k2L2
< 0, (7.117)

which is Parker’s Eq. (III.15). Note that in the case where K → 0 [long vertical

wavelength for f(ξ)], Ineq. (7.117) becomes an equality; later, we shall impose this

limit in finding the growth rate for the fastest growing perturbation.

Aside: Interpreting a quadratic inequality

Inequality (7.117) has the form,

y(x) = ax2 + bx+ c < 0,

a quadratic inequality in x = ζ2 where a > 0, b > 0, and where the sign of c is to

be determined.

Such a parabola opens upwards (since a > 0) and has one extremum (minimum)

at,

(xex, yex) =

(
− b

2a
, c− b2

4a

)
,

as shown in the inset. Since b > 0, the minimum is to the left of the y-axis and is



Clarke 9781009381475 .tex 301 2/04/2025

301 Parker instability

below the x-axis provided,

c− b2

4a
< 0 ⇒ b2 > 4ac.

This is nothing more than the requirement that the

discriminant b2 − 4ac from the quadratic formula,

x± =
−b±√

b2 − 4ac

2a
,

be positive for there to be two real roots, x±, also indicated in the inset. Thus, for

y(x) < 0, x must lie between the two roots: x− < x < x+. Further, if x is positive

definite (as is the case for ζ2 in Ineq. 7.117), then,

y(x) < 0 ⇒ 0 < x < x+,

(heavy portion of the x-axis in the inset) and, in particular, x+ > 0. That is,

x+ =
−b+√

b2 − 4ac

2a
> 0 ⇒ b2 − 4ac > b2 (for a > 0 and b > 0)

⇒ c < 0. (7.118)

Therefore, from Ineq. (7.118), Ineq. (7.117) is consistent with ζ2 > 0 (which it must

be for instability) provided,

c = 2γσM − C

k2L2
< 0 ⇒ C > 2γσMk

2L2

⇒ λ =
2π

k
> 2πL

√
2γσM
C

.

This is Parker’s criterion for instability (his Eq. III.16 where his Y is my C) where

the RHS represents the minimum wavelength for an unstable perturbation.

To find the fastest growing wavelength and its e-folding time, we rearrange Ineq.

(7.117) slightly to make explicit its dependence on the horizontal wavenumber, k,

or more conveniently, the unitless wavenumber κ = kL. Defining n = Lχ/vrms as

the unitless growth rate of the instability, we have ζ = χ/(vrmsk) = n/κ and Ineq.

(7.117) becomes,

h(κ2) ≡ 2γσMκ
4 +
(
n2(γ + 2σM)− C

)
κ2 +

γ + 2σM
4

n2 + n4 < 0, (7.119)

after multiplying through by κ4 and doing a little algebra. Since h(κ2) is a quadratic

in κ2, its minimum value (maximum instability) occurs at (see the Aside above),

κ2f = − b

2a
=

C − n2
f

(
γ + 2σM

)

4γσM
> 0, (7.120)

where κf is the fastest growing wavenumber, and where nf is the number of growth

times of the fastest growing perturbation within a scale height, L. Further,

h(κ2f ) ≡ hmin = c− b2

4a
=

γ + 2σM
4

n2
f + n4

f −
(
C − n2

f (γ + 2σM)
)2

8γσM
< 0
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⇒ (
γ − 2σM

)2
n4
f − 2

(
γ + 2σM

)(
C + γσM

)
n2
f + C2 < 0, (7.121)

after multiplying through by 8γσM and a little more algebra. Again, we are left with

a quadratic inequality, this time in n2
f . To find an explicit expression for n2

f , impose

somewhat arbitrarily the limit of long vertical wavelength (K → 0) in which case

Ineq. (7.121) becomes an equality with two real and positive roots,

n2
± =

(
γ + 2σM

)(
C + γσM

)±
√(

γ + 2σM
)2(

C + γσM
)2 − (γ − 2σM

)2
C2

(
γ − 2σM

)2 .

It’s fairly easy to see that the “plus root”, n2
+, is inadmissible. For if n2

f = n2
+, then,

C − n2
f

(
γ + 2σM

)
= C −

(
γ + 2σM

)2
(
γ − 2σM

)2
︸ ︷︷ ︸

> 1

(
C + γσM

)
︸ ︷︷ ︸

> C

+

(
γ + 2σM

)
(
γ − 2σM

)2
√

∼
︸ ︷︷ ︸

> 0

< 0,

contradicting Eq. (7.120). Thus,

n2
f = n2

− =
−b−√

b2 − 4ac

2a
,

where now:

a =
(
γ − 2σM

)2
; b = −2

(
γ + 2σM

)(
C + γσM

)
; c = C2.

Now, in the event b2 � 4ac which, using Parker’s values (b2 ∼ 2.56, 4ac ∼ 0.16) is

a decent approximation to make, we have,

n2
f =

−b− |b|(1− 4ac/b2
)1/2

2a
≈ −b− |b|+ |b|2ac/b2

2a
=

c

|b| ,

since b < 0, and retaining just the first two terms of the binomial expansion. Thus,

Parker’s estimate for the fastest (unitless) growth rate is,

nf ≈
√

c

|b| =
C√

2
(
γ + 2σM

)(
C + γσM

) . (7.122)

Setting τP = L/(vrmsnf) recovers my Eq. (7.85) for Parker’s e-folding time for the

fastest growing instability.

Parker points out that since n2
f is evaluated for K → 0 (what he refers to as

“marginal stability” in the vertical direction), it shouldn’t be taken too seriously.

Still, it seems this is the best estimate one can make for the e-folding time scale

of the Parker instability in the galactic environment and, as pointed out in the

previous subsection ( 7.4.1), it is by orders of magnitude well within the lifetime of

the galaxy.

Last thing to derive is the wavelength of the fastest growing perturbation, λf ,

with e-folding time, τP. Substituting Eq. (7.122) into Eq. (7.120) yields,

κ2f =
1

4γσM

(
C − C2

2(C + γσM)

)
=

C

8γσM

C + 2γσM
C + γσM

.
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Since κf = kfL = 2πL/λf , we find,

λf = 4πL

√
2γσM
C

C + γσM
C + 2γσM

= 2λmin

√
C + γσM
C + 2γσM

, (7.123)

using Eq. (7.86) for λmin, the minimum wavelength for instability. For Parker’s

numbers (C = 0.5, γ = 1, σM = 0.3), the fastest growing wavelength is therefore

about 1.7 times λmin which we found to be ∼ 620 pc in 7.4.1. Thus, λf is a little

over a kpc, corresponding nicely with the then-observed separation of ISM clumps.

In closing out this section, I’ll make two quantitatively based comments. First, how

well do Parker’s equations hold up to “modern-day” observations of the galaxy?

This is complicated by the fact that observations in the 21st century are so good,

that it becomes difficult to specify “typical values”. For instance, magnetic induction

strengths across the galaxy are known to vary considerably, from < 10−10T in the

outer arms of the galaxy to 6×10−10T, in the solar neighbourhood, to > 4×10−9T

closer to the galactic core and much higher still in localised spots. Similarly, values

for σM and σCR vary widely across the galaxy and what values one chooses can

depend very much on what reference you consult.

So I’ll bunt a little. Theorists have good reason to believe the principle of

equipartition among the thermal, magnetic, and CR energy densities should prevail

over much of the galaxy, and so we’ll use rather different values than Parker did:

σM ∼ σCR ∼ 1. Other more modern numbers include (see footnotes and references

therein in 7.4.1):

〈B〉 ∼ 2.0× 10−10T; ggal ∼ 7.44× 10−11ms−2; vrms ∼ 104 ms−1.

The only number we’ll use that Parker did is γ = 1, assuming the thermal com-

ponent of the ISM is isothermal. Thus, from Eq. (7.81), L ∼ 130 pc (cf. Parker’s

90 pc) and from Eq. (7.84), C ∼ 5.5 (cf. Parker’s 0.5). Therefore, from Eq. (7.86),

(7.85), and (7.123), we find:

λmin ∼ 500 pc (620 pc); τP ∼ 1.3× 107 yr (5.6× 107 yr);

λf ∼ 1.9 λmin ∼ 920 pc (1,060 pc),

where Parker’s values are included parenthetically. And so while modern observa-

tions do change the numbers, Parker’s conclusion remains unaffected: The clumpi-

ness of the galactic ISM is driven and maintained by an MHD instability, and not

by the self-gravity of the clumps themselves.

My second comment is whether there could be any terrestrial applications of the

Parker instability. Can we set up an experiment in which the minimum wavelength

to trigger the instability, λmin, can be captured in a plausible laboratory? The short

answer is ‘no’.

Starting with the obvious, take σCR = 0 and suppose σM and γ are both 1.

Keeping things simple, imagine a lab in which large-ish quantities of 50% ionised

hydrogen can be created and contained at atmospheric pressure. The Saha equation
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(e.g., see Eq. 10.80) tells us that hydrogen gas at number density N ∼ 4.98 ×
1023m−3 would be 50% ionised at T ∼ 1.45× 104K, and the ideal gas law tells us

that a gas with those values of N and T would be under ∼ 0.98 atm of pressure;42

close enough to 1 for our purposes. So under these conditions, what is λmin?

For 50% ionised hydrogen, the average particle mass is 2
3mp, and the rms speed

(Eq. 7.77) is,

vrms =

√
kBT
2
3mp

∼ 1.34× 104 ms−1,

at T = 1.45× 104 K. Thus, the scale height is given by Eq. (7.82),

L =
v2rms(1 + σM)

g
∼ 3.66× 107m,

using the earth’s acceleration of gravity, g = 9.81m s−2. Now, from Eq. (7.84),

C =
(
1 + σM

)2 − γ
(
1 + 3

2σM
)
= 1.5,

for σM = 1 and γ = 1,43 and so the minimum unstable wavelength is given by Eq.

(7.86),

λmin = 2πL

√
2γσM
C

∼ 2.66× 108m,

or about 20 Earth diameters, hardly a practical size for a lab!

So what can we do to make such an experiment more practical? Clearly λmin

must come down several orders of magnitude which means decreasing v2rms and/or

increasing the effective g. The rms speed falls as
√
T , and the Saha equation tells

us that T falls with number density. A good vacuum pump in a lab can get to

10−14 atm or lower, thus reducing the number density by 14 orders of magnitude.

Alas, Saha still requires a temperature of about 4,000K to ionise this lower density

at 50%, which only lowers v2rms and thus λmin by a factor of ∼3.6. Now, if we were

to break the bank and buy the most powerful centrifuge available and somehow

overcome the technical challenge of merging it with our pump, this could increase

our effective g by 106 buying us a total factor of 3.6 × 106 and reducing λmin to

“only” ∼ 75m. Of course, this still poses a serious problem since ultra-centrifuges

typically have volumes of a litre or less! Playing with σM doesn’t buy us much

either. Increasing σM from 1 to 10, for example, decreases
√
σM/C from ∼ 0.82 to

∼0.31 giving us another factor of ∼2.6. We’d still need a vacuum chamber ∼30m

in diameter, and perhaps double that to capture the fastest growing mode.

This is not an Earth-based instability, neither in nature nor in the lab. The

Parker instability is uniquely astrophysical and is why the effect of cosmic ray

pressure – appearing nowhere else in this text – was included from the outset. As

Parker showed analytically in 1966, it provides an elegant explanation for the semi-

regular non-uniformity of the galactic ISM. As shown later largely by numerical

means (e.g., Shibata et al., 1989), it also helps explain the origin of sun spots,

42Number density of the earth’s atmosphere at STP is ∼2.69× 1025 m−3.
43Note that C < 0 for σM = 1 and γ = 5

3
, so we’ll somehow need to maintain isothermality!
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prominences, and other phenomena in the solar atmosphere that depend on “mag-

netic buoyancy”, a phrase that has come to describe the physical property at the

heart of the Parker instability.

Problem Set 7

7.1 Use the normal mode method developed in the chapter for the fluid instabilities

to determine a stability criterion for a ball within a dip or atop a mound, as shown

in Fig. 7.1 of the text. Thus, you’ll need to identify a variable that has the “potential

of running away”, an equation of motion governing that variable, and then use a

trial normal mode solution to determine the stability criterion. State clearly any

assumptions you may need to make consistent with the displacement of the ball

from equilibrium being a perturbation.

7.2∗∗ Consider the cross section of a “slab jet” with a “half-thickness” a (symmetry

in the direction orthogonal to the page) shown in the inset below . Perform a stability

analysis on the slab jet, similar to that done in 7.1, but this time equate p and

Y across both boundaries between the jet and external medium. You may assume

pj = px and ρj/ρx = η which is not necessarily 1. Show that two distinct dispersion

relations result, namely:

tan(αja) = η
βx
αj

(
1− kvj

ω

)2
;

cot(αja) = −η βx
αj

(
1− kvj

ω

)2
,

where:

αj =

√
(ω − kvj)2

c2s,j
− k2; βx =

√
k2 − ω2

c2s,xη
.

Here and in the figure, subscripts ‘j’ and ‘x’ refer to quantities in the jet and ex-

ternal medium respectively. Note that these two dispersion relations cannot be true

simultaneously and, much like the quantum mechanical solution to the square well

problem, they yield two families of solutions (one will be symmetric about the

axis, the other antisymmetric), the union of which yield all possible values of the

frequency, ω, for a given wavenumber, k.

Hints:

- Treat the external medium as the “lab frame” and analyse the perturbations

propagating in the jet in the jet frame. Then, transform these results back to

the lab frame before matching p and Y across the interfaces. You can do this

much like the single shear layer problem in 7.1 using a Doppler shift.
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- Similar to the problem of the single shear layer, you will limit your solution

(sum of exponentials) for P (y) for y > a and y < −a on the grounds that the

solution must remain finite as y → ±∞. However, this argument cannot be

made for the solution inside the jet where −a < y < a and where both terms

remain finite. Thus, you must keep both terms in the jet solution, which are

more conveniently expressed as trig functions rather than exponentials.

- Numerous references for this problem exist in the literature. If you are hunting

for old papers on the subject, look for Attilio Ferrari and Phil Hardee in the

1980’s. Be warned, these sorts of calculations can consume reams of paper.

7.3 Show that the peak growth rate for the MRI occurs when,

ωA =

√
15

4
Ω0,

(Eq. 7.57 in the text) where, as defined in the text, ωA = kvA is the angular

frequency of Alfvén waves with wave number k propagating at the Alfvén speed,

vA, and where Ω0 is the local rotation speed of a Keplerian disc.

Hint : If you try to extremise Eq. (7.56) in the text by setting dχ/dΩ0 = 0 directly,

you’ll run into trouble as you’ll soon find the condition to be ωA = 0! You need

to think about what it is that’s being maximised. To get you started, the text

does introduce Eq. (7.57) as “the maximum growth rate of the MRI per period of

rotation”. Hmmm. . .

7.4 In 7.3.3, we “derived” the evolution equation for angular momentum density,

l , (Eq. 7.59) from the ϕ-component of the MHD momentum equation (Eq. 7.58)

already worked out in equation sets (A.52) and (A.55) in A.4 and A.5. Here, you’ll

re-derive Eq. (7.59) using the Theorem of Hydrodynamics (Theorem 1.1).

Consider the flat, circular disc shown in the inset

rotating at angular speed Ω(r). Let the angular

momentum of a small fluid element P (blue) rel-

ative to O be �L = Lẑ and the torque acting on

that same fluid element P be �τext = τextẑ. Then,

Newton’s second law for angular motion can be

written in a scalar form as,

dL

dt
=
∑

τext. (7.124)

By following Example 3 in 1.3, show how Eq. (7.58) in the text can be derived

from Theorem 1.1 accounting for all external torque densities acting on P.
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7.5 For a Keplerian disc, show how Eq. (7.74), namely,

FL = m(r)
√

4μ2
ρ +

1
4 Ω0χξ

2
r,0e

2χt,

follows from Eq. (7.73) in the text.

7.6 In an MR-unstable disc where angular momentum is transported so efficiently,

one might expect a scalar quantity such as dust to be diffused efficiently as well.

This problem explores that consequence of the MRI.

A scalar quantity, q, that is simply transported with the flow follows the so-called

advection equation,
∂tq + (�v · ∇)q = 0. (7.125)

Written in terms of the Lagrangian derivative ( 3.1), Eq. (7.125) becomes,

Dq

Dt
= 0,

which simply means that q is conserved along a particle path ( 2.4); one notices

neither an increase nor a decrease in q as one moves along with the flow. Put

another way, the Lagrangian difference of an advected scalar, q, is zero:

Δq = δq + (�ξ · ∇)q = 0, (7.126)

where �ξ = �vΔt is a displacement along the particle path.

a) Assuming ρ = constant as we’ve been doing, write down Eq. (7.125) in con-

servative form (e.g., like the continuity equation). This should be at most a

two-liner.

b) By following the arguments in 7.3.3 in the text leading to Eq. (7.72), the

average radial flux density for angular momentum, find the analogous expres-

sion for the average radial flux density for a scalar, q, and show that leads to

an effective MRI-induced diffusion coefficient,

Dr =
1

2
χξ2r,0e

2χt,

where χ and ξr,0 are defined in the text. Hint : You might want to consult

App. H.

7.7

a) Show how linearising Eq. (7.90) in the text leads to Eq. (7.99).

b) Show how linearising Eq. (7.92) in the text leads to Eq. (7.100).

7.8 Starting with Eq. (7.93) in the text, namely, ∂tpCR + �v · ∇pCR = 0:
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a) show how Eq. (7.101), namely,

∂tpCR,p = −vz,p dpCR,0

dz
,

is obtained by linearising Eq. (7.93); and

b) show how Eq. (7.103), namely,

pCR,p =
σCRv

2
rms

By,0

dρ0
dz

Ax,p,

follows from Eq. (7.101).

7.9∗

a) Verify Parker’s version of the continuity equation, namely Eq. (7.106) in the

text.

Hint : Start by operating on Eq. (7.95) with L, then integrate once over time.

b) Repeat for the thermal pressure equation, Eq. (7.107) in the text.

c) In the isothermal case when γ = 1, Eq. (7.106) and (7.107) become identical,

save for the name of the principle variable. Why do you suppose this is?
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with thanks to Patrick Rogers, B.Sc. (SMU), 2006. †

Big whirls have little whirls that feed on their velocity,

and little whirls have lesser whirls and so on to viscosity.

Lewis Fry Richardson (1881–1953)
from Weather Prediction by Numerical Process

8.1 Introduction

For the most part, astrophysical fluid dynamics is contemplated as inviscid,

that is in the absence of viscosity. This is not to say, however, that astrophysi-

cists believe the universe to be viscous-free! Indeed, and as discussed in this chapter,

even the slightest viscosity can have qualitative effects on the nature of a fluid. For

example, with identically zero viscosity, Kelvin’s circulation theorem (Problem 1.7,

Chap. 1) demands that an initially vorticity-free fluid remain vorticity free, whereas

even the slightest viscosity can be exploited by a fluid to develop vortex tubes which

play a prominent role in its cascade to turbulence. For a given viscosity, however

small, there exists a length scale, again however small, at which viscous stresses

dominate, and thus viscosity cannot really be ignored in any realistic application if

all scale lengths are important.

However, it has been the tradition not to include viscosity for most astro-

physical applications (and many physical and mathematical applications, for that

matter) largely because of the additional complexity viscosity introduces into the

fluid equations and, to some extent, because not all length scales are necessarily

critical. As a case in point, examples in this chapter include only the simplest cases

in which viscid flow can be described analytically.

On the other hand, the derivation of the celebrated Navier–Stokes equation

(essentially Euler’s equation with viscosity) and the accompanying modifications

required for the energy equation(s) for a so-called Newtonian fluid (applicable to

virtually all gases and many liquids) is given in its most general form (i.e., com-

pressible and non-isothermal), suitable for investigation by numerical methods. This

is, in fact, where the greatest progress in astrophysical viscid (M)HD is being made

today.

†Ph. D. (McMaster), 2012

309
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As for the mathematics required for this chapter, most authors present this

material assuming the reader has a sound background in tensor analysis with which

the viscous stresses are most naturally described. Such a background has not been

assumed in this text to now, and we shan’t start here! Thus, a derivation of the

so-called stress tensor in the next section is rather more long-winded than most

presentations relying, as it does, on ideas in vector analysis (though tensors will

still be constructed). This should, therefore, render the discussion accessible to the

reader with only a sophomore background in mathematics. The reader who would

like a more traditional tensor approach is directed to the classic texts in this field,

of which Batchelor (2000) and Landau & Lifshitz (1987) are two of the most cited

examples.

As a final introductory comment, this chapter returns us to the zero-field limit

of MHD, namely ordinary hydrodynamics. As the mathematical derivation of the

Navier–Stokes equation and some of its most approachable applications are most

transparently illustrated for �B = 0, this is the approach taken here. We’ll return to
�B �= 0 in Chap. 9 and 10.

8.2 The stress tensor

In 1.3 where the fundamental equations of HD are derived, our discussion of the

momentum equation starts by applying the Theorem of hydrodynamics (Theorem

1.1) to Newton’s second law, which yields:

∂t�s+∇ · (�s�v) = �fp + �fφ, (8.1)

where �fp = −∇p is the force density (units Nm−3) arising from pressure gradients,

and �fφ = −ρ∇φ is the force density arising from gradients in the (self-)gravitational

potential. This is essentially Eq. (1.27). Here, we shall retain the gravity term, but

replace the pressure term, �fp, with a term �fT that accounts for both compressive

and shear stresses1 not accounted for before, namely those arising from viscosity.

We proceed by imagining that in addition to compressional stresses such as

pressure, a fluid is also subject to shear stresses. To illustrate this, consider an

infinitesimal fluid “cube” (with dimension δx → 0) shown in Fig. 8.1a, and the

x1–x2 cross-section through that fluid infinitesimal shown in Fig. 8.1b, with the

numerous components of those stresses in the x1–x2 plane labelled. Throughout

this discussion, it is important to bear in mind that ultimately, this “cube” will be

considered as a single point as δx is taken to be identically zero. That is, we are

not interested here in the force balance on a macroscopic fluid element; rather we

wish to consider the nature of all the stresses acting at a single point.

As there are six faces of the fluid cube and three stress components at each

face, there are, in principle, 18 individual stress components to consider. Fortunately,

symmetry arguments and the requirement that all accelerations remain finite will

1Here, a stress is defined generically as a force per unit area, of which pressure is one example.
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Figure 8.1. a) An infinitesimal “cube” of fluid of dimension δx → 0 used to
illustrate the viscous stresses in Cartesian-like coordinates. b) An x1–x2 slice
through the fluid cube, with the stress components acting on the 1- and 2-faces
only. Analogous stresses acting on the 3-faces above and under the page are left
out for clarity.

reduce these to six independent components which shall form what we will call the

stress tensor.

Let Tij be the stress component acting in the +xi-direction on the face whose

normal pointing outside the cube points in the +xj-direction, and let T ∗
ij be the

stress component acting in the +xi-direction on the face whose normal points in

the −xj-direction (Fig. 8.1b). Then Newton’s second law gives in the 1-direction:

(T11 − T ∗
11)δx

2 + (T12 − T ∗
12)δx

2 + (T13 − T ∗
13)δx

2 = ρδx3a1,

where a1 is the acceleration of the fluid cube arising from any imbalance in the

1-forces. Thus,

a1 =
(T11 − T ∗

11) + (T12 − T ∗
12) + (T13 − T ∗

13)

ρδx
.

As δx→ 0, the numerator must go to zero at least as fast as δx if the acceleration is

to remain finite. As we shall see, T11, T12, and T13 arise from independent physical

processes and are thus independent stresses, unaccountable to each other. Therefore,

each term in parentheses ( ) must individually go to zero, and we have:

T ∗
ij = Tij .

This leaves us with only nine stress components acting on the fluid infinitesimal,

which we now arrange conveniently in matrix form as,

T =

⎡

⎣
T11 T12 T13
T21 T22 T23
T31 T32 T33

⎤

⎦ , (8.2)

giving us the first glimpse of the so-called stress tensor. As shown in Fig. 8.1b,

the diagonal elements, Tii, are all pointing parallel to the surface normal of the

fluid cube, while the off-diagonal elements, Ti	=j , are pointing in directions relative
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to Tii consistent with the right-hand rule. Note that these choices are completely

arbitrary. Any incorrectly chosen direction will ultimately be detected if the sign

of the component magnitude, Tij , ends up being negative. In fact, since the only

external fluid stress we know about so far – pressure – is compressive in nature, we

might already anticipate that Tii – the stress component most plausibly associated

with pressure – ought to point inwards rather than outwards as shown in Fig. 8.1b.

This will indeed be the case, as when we finally get to the point of writing down an

expression for Tii, we’ll find it to be negative.

Next, we examine the torques generated by the various stress components.

Thus, about an axis passing through the centre of the cube and parallel to the

x3-axis (point O in Fig. 8.2), the torque is,

τ3 = (T21 − T12 + T21 − T12)δx
2 δx

2
= (T21 − T12)δx

3 = I3α3,

where I3 is the moment of inertia of the cube and α3 its angular acceleration, both

about O. Now,

I3 =

∫

V

ρr2dV ∝ δx5 ⇒ α3 ∝ T21 − T12
δx2

.

Thus, if α3 is to remain finite as δx→ 0, T21−T12 → 0 at least as fast as δx2. This

yields,
Tij = Tji,

and the stress tensor is symmetric. As a result, there remain just six independent

stress components to account for.

8.2.1 The trace of the stress tensor

The trace of a tensor (sum of the diagonal elements of its matrix representation)

often has a significant meaning, and the stress tensor2 is no exception. Physically

significant quantities are, among other things, independent of the coordinate system

so we begin by showing that tr(T) in invariant under a rotation about the x3-axis.
3

To this end, consider the x1–x2 slice through the fluid cube as shown in Fig.

8.2, and in particular the fluid “prism” ABC. Note that although the coordinate

system x′1–x′2 is rotated by 45◦ relative to the original x1–x2 coordinate system, the

following argument can be made for any rotation angle (Problem 8.1). Demanding

force balance on ABC in the limit as δx→ 0, we have in the x′1-direction,

−T ′
11

√
2δx2 + 2T12

δx2√
2
+ T11

δx2√
2
+ T22

δx2√
2

= 0,

where the fact that face AC is
√
2 times larger than face AB, that cos 45◦ = 1/

√
2,

and that T is symmetric have all been taken into account. Thus,

2T ′
11 = T11 + T22 + 2T12. (8.3)

2Arranging nine elements in a 3× 3 matrix as done in Eq. (8.2) does not a tensor make, and
referring to T as a tensor is premature. However, as our analysis is all being done outside the
formalism of tensor analysis, no harm can come from this pre-emptive designation.

3A well-known theorem of tensor analysis shows that tr(T) is invariant under any rotation.
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Figure 8.2. The x1–x2 slice through the fluid cube of side length δx→ 0, showing
the rotated coordinates x′

1 and x′
2 with the compressive stress components in the

rotated coordinates acting on the AC and BD faces.

Similarly for the prism DCB, we have in the x′2-direction,

2T ′
22 = T11 + T22 − 2T12. (8.4)

Subtracting Eq. (8.4) from Eq. (8.3) yields:

2T12 = T ′
11 − T ′

22, (8.5)

which we shall recall later in 8.2.3. Adding Eq. (8.3) and (8.4) yields:

T ′
11 + T ′

22 = T11 + T22. (8.6)

As a rotation about the x3-axis, x̂3 = x̂′3 and the 33-component of T remains

unchanged; that is T33 = T ′
33. Thus, with Eq. (8.6), this gives us,

T ′
11 + T ′

22 + T ′
33 = T11 + T22 + T33 ≡ tr(T).

While this derivation is restricted to rotations about the x3-axis, it is nevertheless

illustrative of a general result from tensor analysis: The trace of any tensor T is

invariant under an arbitrary coordinate rotation. Physically, this means that tr(T)

is an isotropic property of the fluid and can be represented by a scalar, independent

of the coordinates. For now, let us provisionally define that scalar to be:

� ≡ − 1
3 tr(T). (8.7)

Eventually, we shall come to identify � as the thermal pressure. Even still, we will

find that the diagonal elements of T are, in general, different and come to interpret

this result as the non-isotropic nature of the pressure in a viscid fluid. It is only for

an inviscid fluid that the three diagonal elements, Tii, are equal and thus, by Eq.

(8.7), each equal to −�. Note further that at this stage with � not yet known to

be the pressure, the sign in Eq. (8.7) is arbitrary, and we still don’t know Tii to be

negative.
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Figure 8.3. The x1–x2 slice through the fluid cube, showing a positive 2-gradient
in v1 and a positive 1-gradient in v2 which, respectively, result in the shear stresses
T12 and T21 acting on the fluid cube in the directions shown. This justifies the
directions chosen for the tensor components, Tij , i �= j, in Fig. 8.1.

8.2.2 Viscosity and Newtonian fluids

It was Sir Isaac Newton himself who first devised a mathematical model of a viscid

fluid and, rather astonishingly, it is still his description we use today. He postulated

that fluids possess a property (we now call viscosity) that causes one “layer” of fluid

to drag along a neighbouring layer moving at a different velocity. Thus, the shear

stresses experienced by such a fluid would depend upon shear velocity gradients of

the form ∂jvi, i �= j (e.g., Fig. 8.3), since co-moving layers of fluid would not affect

each other’s motion.

At first blush, Occam’s razor might suggest the following connection between

the stresses (Tij) and the strains (∂jvi) in the fluid,

Tij ∝ ∂jvi, i �= j,

but this turns out to be too simple. For example, such a prescription requires T12 ∝
∂2v1 and T21 ∝ ∂1v2, as illustrated in Fig. 8.3. However, the symmetry of the stress

tensor requires T12 = T21, yet there is no reason to expect ∂2v1 = ∂1v2! Thus,

Newton went to the next level of complexity, and postulated that,

Tij = μ(∂ivj + ∂jvi), i �= j, (8.8)

where the proportionality constant, μ, is called the shear viscosity, or often just the

viscosity of the fluid. The units of Tij are Nm−2, and those of the viscosity are

Nm−2 s = kgm−1 s−1.

If the stress–strain relationship of a fluid is well modelled by Eq. (8.8), it is

referred to as a Newtonian fluid ; otherwise it is a non-Newtonian fluid. Experimen-

tally, virtually all gases and most “simple” liquids, such as water, alcohol, and liquid

O2, are excellent examples of Newtonian fluids. Examples of non-Newtonian fluids

include liquids made up of long polymers, suspensions, and complex mixtures such

as, of all things, cake batter. Indeed, one way to distinguish a clearly Newtonian

fluid from a clearly non-Newtonian one is to beat it with an egg beater. Newtonian

fluids will form a depression around the beaters, whereas some non-Newtonian fluids
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(such as cake batter) will climb up the beater shafts. Other common non-Newtonian

fluids include blood, ketchup, paint, and shampoo.

Some non-Newtonian fluids – particularly suspensions – are characterised by

their ability to switch back and forth between a solid-like state and a liquid-like

state. A thick enough suspension of corn starch, for example, will allow a spoon

to be immersed into it if the spoon is pushed in slowly. By contrast, an attempt

to remove the spoon too quickly will cause the fluid to take on its solid-like state,

temporarily “freezing” the spoon in the medium. Quick sand is another example of

such a fluid.

8.2.3 Non-isotropic “pressure”

Consider again Fig. 8.2, this time to examine the elements of the velocity gradient

in the different coordinate systems.

One way to estimate the x′1 component of the velocity at point B is to take a

first-order Taylor expansion from point O:

v′1(B) = v′1(O) +
δx√
2

∂v′1
∂x′1

. (8.9)

Alternatively, v′1(B) can be expressed in terms of the velocity components in the

unprimed coordinates:

v′1(B) =
v1(B)√

2
+
v2(B)√

2
, (8.10)

which in turn can be estimated by taking two-dimensional Taylor expansions again

from point O:

v1(B) = v1(O) +
δx

2
∂1v1 +

δx

2
∂2v1; (8.11)

v2(B) = v2(O) +
δx

2
∂2v2 +

δx

2
∂1v2. (8.12)

Substituting Eq. (8.11) and (8.12) into Eq. (8.10) gives,

v′1(B) = v′1(O) +
δx

2
√
2
(∂1v1 + ∂2v1 + ∂1v2 + ∂2v2),

where v′1(O) = 1√
2
[v1(O) + v2(O)] has been used. Comparing this to Eq. (8.9) and

using Eq. (8.8), we find,

2
∂v′1
∂x′1

= (∂1v1 + ∂2v2) +
T12
μ
. (8.13)

Similarly, by examining the velocities at point C in Fig. 8.2 we get,

2
∂v′2
∂x′2

= (∂1v1 + ∂2v2)− T12
μ
, (8.14)

and subtracting Eq. (8.14) from Eq. (8.13) yields:

2T12 = 2μ

(
∂v′1
∂x′1

− ∂v′2
∂x′2

)
. (8.15)
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Now, from Eq. (8.5), we had,

2T12 = T ′
11 − T ′

22,

and comparing this to Eq. (8.15), we arrive at the main result from this analysis:

T ′
11 − 2μ

∂v′1
∂x′1

= T ′
22 − 2μ

∂v′2
∂x′2

= T ′
33 − 2μ

∂v′3
∂x′3

,

where the last equality was included on grounds of symmetry. As there is nothing

special about the primed coordinate system, the same relationship must hold in the

unprimed coordinate system as well and we have,

T11 − 2μ∂1v1 = T22 − 2μ∂2v2 = T33 − 2μ∂3v3

⇒ T11 − 2μ∂1v1 = 1
3 (T11 − 2μ∂1v1 + T22 − 2μ∂2v2 + T33 − 2μ∂3v3)

= 1
3 (T11 + T22 + T33)− 1

3 (2μ∇ · �v)

⇒ T11 = −� + 2μ
(
∂1v1 − 1

3∇ · �v) ,
using Eq. (8.7). Thus, we have in general,

Tii = −� + 2μ
(
∂ivi − 1

3∇ · �v) , i = 1, 2, 3, (8.16)

and we have succeeded in expressing the diagonal elements of the stress tensor in

terms of the isotropic trace (�) and the velocity compressive derivatives, rather than

the shear derivatives which defined the off-diagonal elements given by Eq. (8.8). Note

that the diagonal elements of the stress tensor are not necessarily equal, depending

as they do on ∂ivi. As these elements are compressive, they are to a viscid fluid

what pressure is to an inviscid fluid, and thus we see that the compressive stresses

in a viscid fluid are not necessarily isotropic, as is the case for an inviscid fluid.

Examining Eq. (8.8) and (8.16), we see they can be combined to give a single

expression for all stress elements, namely,

Tij = −�δij + μ
(
∂ivj + ∂jvi − 2

3∇ · �v δij
)
, (8.17)

where δij = 1, i = j; 0, i �= j is the usual Kronecker-delta. Written as matrices

(tensors), this becomes:

T = −� I+ μ
(∇�v + (∇�v)T − 2

3∇ · �v I) , (8.18)

using Eq. (A.19), where I is the identity matrix (tensor), and where – as intro-

duced on page 84 – the superscript T indicates the matrix transpose (rows become

columns).

Let us now define the viscid portion of the stress tensor, S, as,

S ≡ ∇�v + (∇�v)T − 2
3∇ · �v I ≡ 2E− 2

3∇ · �v I, (8.19)

where E = 1
2

[∇�v+(∇�v)T] is the symmetrised strain tensor, first used without being

named in Eq. (8.8). Evidently, the (i, j)th element of S is given by,

Sij = ∂ivj + ∂jvi − 2
3∇ · �v δij = 2Eij − 2

3∇ · �v δij .



Clarke 9781009381475 .tex 317 2/04/2025

317 The Navier–Stokes equation

Figure 8.4. A “semi-macroscopic” fluid cube showing the location of the six
1-stresses. Here, Δx1 = Δx2 = Δx3 = Δx, with the subscripts introduced only
for convenience.

Thus, Eq. (8.18) becomes:

T = −� I+ μ S, (8.20)

cleanly separating the inviscid and viscid portions of the stress tensor.

8.3 The Navier–Stokes equation

We are now ready to assess the force density arising from the stress tensor, �fT.

Figure 8.4 depicts a “semi-macroscopic” fluid cube with dimensions Δxi, i = 1, 2, 3,

and the 1-stress at each face indicated. Unlike the fluid cubes in Fig. 8.1 and 8.2

where δx was ultimately taken as dead zero, here we are interested in the limit as

Δxi tends to zero but never actually reaches it. This is an important mathematical

distinction since this means opposite faces of the cube are never actually coincident.

Thus, the net 1-force on the cube is,

F1,net = [T11(x1 +Δx1)− T11(x1)]Δx2Δx3 + [T12(x2 +Δx2)− T12(x2)]Δx3Δx1

+ [T13(x3 +Δx3)− T13(x3)]Δx1Δx2

=
T11(x1 +Δx1)− T11(x1)

Δx1
ΔV +

T12(x2 +Δx2)− T12(x2)

Δx2
ΔV

+
T13(x3 +Δx3)− T13(x3)

Δx3
ΔV,

where ΔV = Δx1Δx2Δx3 is the volume of the fluid cube. Then, dividing through

by ΔV and taking the limit as Δxi → 0, we get the force density in the 1-direction,

f1,net ≡ F1,net

ΔV
= ∂1T11 + ∂2T12 + ∂3T13 = ∇ · �T1, (8.21)

where �T1 = (T11, T12, T13) is, formally, the “vector” formed from the first row of T

comprised of the three stress components pointing in the 1-direction. Thus, the full
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force density arising from viscous stresses is:

�fT = ∇ · TT, (8.22)

where the transpose is used to preserve the rules of ordinary matrix multiplication

when performing the dot product.4 However, since T is symmetric (T = TT), this

formality is rather moot and we can write the momentum equation (Eq. 8.1) as,

∂t�s+∇ · (�s�v) = ∇ · T− ρ∇φ
= −∇� +∇ · (μS)− ρ∇φ,

(8.23)

using Eq. (8.20) and applying the identity ∇·(� I) = ∇�. This is the viscid momen-

tum equation, applicable for compressible flow with a variable (in position) shear

viscosity, μ. An alternate and slightly expanded form of this equation is:

∂t�s+∇ · (�s�v + (� + 2
3μ∇ · �v ) I− 2μE

)
= −ρ∇φ,

where as many terms have been brought into the divergence operator as possible.

This form is more useful for numerical methods, where numerical conservation is

maintained by keeping track of flux densities such as the quantity between the large

parentheses in the previous equation.

The terms ∇·(�s�v) and ∇·(μS) in Eq. (8.23) are known as the inertial term and

viscous term respectively. When applying the viscid fluid equations to a particular

problem, one must assess which of these terms dominate the dynamics, and make

the appropriate approximation. If neither term dominates, little analytical headway

can be made with Eq. (8.23), leaving numerical methods the only viable recourse.

Case 1: μ = 0 (inviscid flow)

When μ = 0, Eq. (8.23) becomes,

∂t�s+∇ · (�s�v) = −∇� − ρ∇φ,
recovering the momentum Eq. (1.27), as expected, only if � = p, the thermal

pressure! Only now, do we know that the trace of the stress tensor is − 1
3 times the

thermal pressure, and that Tii < 0. Thus, the reader should now be prepared to

substitute � for p in all equations since and including Eq. (8.7).

Incidentally, this also proves Pascal’s law (or principle, but not to be confused

with Pascal’s theorem5) that states:

The stresses in an inviscid fluid in mechanical equilibrium are completely

described by an isotropic scalar, in this case � = p.

Case 2: μ = constant

In practice, μ can be a sensitive function of position, making its place between the

del operator and S in Eq. (8.23) non-negotiable and mathematical analysis difficult.

4(∇ · TT)i =
∑

j ∂jT
T
ji =

∑
j ∂jTij , as required in Eq. (8.21).

5www.wikipedia.org/wiki/Blaise Pascal
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Figure 8.5. The shear viscosity, μ, of fresh water as a function of temperature,
with values at 0◦C, 20◦C, 50◦C, and 100◦C highlighted.

However, experimentation shows that at least for Newtonian fluids, μ is largely a

function of temperature (e.g., Fig. 8.5) and independent of density and pressure

individually. Thus, for fluids that are at least nearly isothermal, taking μ to be

independent of the coordinates is a reasonable approximation to make, allowing it

to slip through the nabla, ∇.

Following the same procedures used to derive Euler’s equation (Eq. 1.36; Prob-

lem 1.2) from the momentum equation, we develop from Eq. (8.23):

∂t�v + (�v · ∇)�v = −1

ρ
∇p+ ν∇ · S−∇φ, (8.24)

where ν ≡ μ/ρ is the kinematic viscosity of the fluid, so-named because its units

are m2 s−1 and therefore looks like the product of a distance and a velocity. From

Eq. (8.19) and using identities (A.27) and (A.28), we get,

∇ · S = ∇ · (∇�v + (∇�v)T − 2
3∇ · �v I) = ∇2�v + 1

3∇(∇ · �v) = 4
3∇(∇ · �v)−∇× �ω,

where �ω = ∇×�v, the vorticity, was first introduced in Problem 1.6. Thus, Eq. (8.24)

becomes:

∂t�v + (�v · ∇)�v = −1

ρ
∇p−∇φ+ ν

(
1
3∇(∇ · �v) +∇2�v

)

= −1

ρ
∇p−∇φ+ ν

(
4
3∇(∇ · �v)−∇× �ω

)
.

(8.25)

This is the compressible form of the so-called Navier–Stokes equation, named for

Claude-Louis Navier,6 and George Gabriel Stokes.7 Navier was the first to develop

the theory of elasticity, but his most remembered work is his publication of the first

version of what is now known as the Navier–Stokes equation in 1822. Stokes’ work

in physics and mathematics (he’s the same Stokes of Stokes’ theorem) was done

after Navier’s death, and is largely responsible for reformulating the fluid equations

into the form we recognise today.

61785–1836, www.wikipedia.org/wiki/Claude-Louis Navier
71819–1903, www.wikipedia.org/wiki/Sir George Stokes, 1st Baronet
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Case 3: μ = constant, incompressible

For incompressible flow, ρ = constant and all derivatives of ρ are zero. Thus, the

continuity equation becomes ∇ · �v = 0 (�v is solenoidal), and Eq. (8.25) becomes:

∂t�v + (�v · ∇)�v = −1

ρ
∇p−∇φ+ ν∇2�v = −1

ρ
∇p−∇φ− ν∇× �ω. (8.26)

This is the incompressible form of the Navier–Stokes equation, and by far the most

widely used as it is in liquids where viscosity plays the most obvious role. Note

that if an incompressible isothermal fluid is also irrotational (hence �ω = 0 and, in

particular, no shear layers), it will behave as an inviscid fluid regardless of what the

viscosity may be.

8.4 The viscid energy equation

Starting with Eq. (1.21), reproduced here for reference,

∂teT +∇ · (eT�v) = papp,

we wish to evaluate the applied power density, papp, of the viscous stress tensor. To
this end, the increment of work done by the 1-stresses (as labelled in Fig. 8.4) on

the small cube of fluid over a small time step, Δt, is:

ΔW1 = T11(x1 +Δx1)Δx2Δx3v1(x1 +Δx1)Δt− T11(x1)Δx2Δx3v1(x1)Δt

+ T12(x2 +Δx2)Δx3Δx1v1(x2 +Δx2)Δt− T12(x1)Δx3Δx1v1(x2)Δt

+ T13(x3 +Δx3)Δx1Δx2v1(x3 +Δx3)Δt− T13(x1)Δx1Δx2v1(x3)Δt

⇒ papp,1 =
1

ΔV

ΔW1

Δt
= ∂1(T11v1) + ∂2(T12v1) + ∂3(T13v1)

= ∇ · (�T1v1),
(8.27)

as Δxi → 0, where �T1 was first used in Eq. (8.21). Thus, from all three directions

the total applied power from the stress tensor is,

papp = ∇ · (�T1v1) +∇ · (�T2v2) +∇ · (�T3v3) = ∇ · (TT · �v), (8.28)

where it is left to Problem 8.2 to verify that the preservation of the rules of matrix

multiplication require TT rather than T. Note that these same rules require �v to be

treated as a column vector (ket) when it is “dotted” from the right.

Once again, since T is symmetric, T = TT and the viscid energy equation can

be written as,

∂teT +∇ · (eT�v) = ∇ · (T · �v). (8.29)

It is left to Problem 8.3 to show that we can rewrite Eq. (8.29) as:
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∂teT +∇ · [(eT + p)�v] = ∇ · (μ S · �v)
= ∇ · [μ ((�v · ∇)�v + 1

2∇v2 − 2
3�v∇ · �v)]

= ∇ · [μ (∇v2 − �v × �ω − 2
3�v∇ · �v)]. (8.30)

8.4.1 Viscous dissipation

The power density from the stress tensor modifies both the mechanical and internal

energy of the fluid cube. We seek here to distinguish between the two.

From the work-kinetic theorem, the kinetic (mechanical) power density is the

scalar product of the force density with the velocity field:

pK = �fT · �v = (∇ · T) · �v, (8.31)

using Eq. (8.22) and the fact that T is symmetric. Subtracting pK from the total

applied power, papp given by Eq. (8.28), gives us the dissipated power, namely,

pD = ∇ · (T · �v)− (∇ · T) · �v = T : ∇�v, (8.32)

using Eq. (A.25), which amounts to a “product rule” for the inner product of a tensor

with a vector. Note the use of the “colon product” (a.k.a. the “double dot product”;

essentially a double contraction) between two tensors defined by Eq. (A.18).

On substituting Eq. (8.18) into Eq. (8.32), we get,

pD = −
(
p+

2μ

3
∇ · �v

)
I : ∇�v + 2μE : ∇�v. (8.33)

Now, one can show (trivially for Cartesian coordinates) that I : ∇�v = ∇·�v. Further,
since E is symmetric, it’s easy to show E : ∇�v = E : (∇�v)T, and Eq. (8.33) becomes:

pD = −p∇ · �v − 2μ

3
(∇ · �v)2 + 2μE : E. (8.34)

The −p∇ · �v term in Eq. (8.34) is the same term appearing in the inviscid internal

energy equation (Eq. 1.34). It arises from adiabatic expansion where it is negative

and represents a loss in internal energy, or adiabatic compression where it is posi-

tive and represents a gain in internal energy. Adiabatic expansion/compression is a

reversible process. The terms proportional to μ are viscous dissipation, one of which

is negative-definite, the other positive-definite. Viscous dissipation is an irreversible

process, and it is left to Problem 8.4 to show that together, the viscous dissipation

terms are always positive and result in a gain of thermal energy, never a loss.

As it is the dissipation terms that appear on the RHS of the internal energy

equation, we can immediately update Eq. (1.34) for viscous dissipation to get,

∂te+∇ · (e�v) = T : ∇�v = −p∇ · �v + μ S : ∇�v

= −p∇ · �v − 2μ

3
(∇ · �v)2 + 2μE : E,

(8.35)

where the last equality is also the subject of Problem 8.4.
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Figure 8.6. Fluid streamlines pass over a cylindrical obstruction, illustrating
how the fiducial scaling parameters, D, V , and R, might be chosen to scale the
fluid equations.

8.5 The Reynolds number

Consider Euler’s equation (Eq. 1.36) reproduced below without the gravity term:

∂�v

∂t
+ (�v · ∇)�v = −1

ρ
∇p. (8.36)

As given, each term of Euler’s equation has units of acceleration. However, we can

render Euler’s equation “unitless” by imposing the following “scaling laws”:

r = Rr′; ρ = Dρ ′; �v = V �v ′, (8.37)

where R, D, and V are fiducial values of length, density, and speed, and carry the

same units as r, ρ, and v respectively. Thus, the quantities:

r′ =
r

R
; ρ ′ =

ρ

D
; �v ′ =

�v

V
,

are unitless and represent values of the primitive variables in units of the fiducial

quantities.

Figure 8.6 gives an illustrative example. Fluid flowing smoothly and uniformly

along a solid surface comes across an obstacle such as the half-cylinder shown in

cross section. As the streamlines are diverted around the obstacle, the speed, density

and pressure of the fluid will vary, and whether the far downstream state returns

to the far upstream state will depend upon such things as the Mach number and

viscosity of the fluid. In this case, the fiducial length, density, and speed values

could be the radius of the obstacle, and the far upstream values of the density and

velocity. Typically, each problem will present its own fiducial values.

Note that with only three independent “units” (e.g., length, mass, and time),

only three scaling laws may be specified, and Eq. (8.37) fulfil this limit. Thus, all

other variables and differential operators must be scaled in terms of Eq. (8.37),

whence:

t = t′
R

V
; ∇ = ∇′ 1

R
; cs = c′sV ; p = p′DV 2, (8.38)

where the scaling law for pressure is most easily seen from the expression for the

adiabatic sound speed (Eq. 2.11):

p =
ρc2s
γ
.
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Substituting each of Eq. (8.37) and (8.38) into Eq. (8.36) gives us,

V

R

∂�v ′

∂t′
V +

V

R
(�v ′ · ∇′)�v ′V = − 1

D

1

ρ ′
1

R
∇′p′DV 2.

All scaling factors cancel out, and we end up with,

∂�v ′

∂t′
+ (�v ′ · ∇′)�v ′ = − 1

ρ′
∇′p′. (8.39)

Equation (8.39) is the “scale-free” version of Euler’s equation, and the fact that it is

identical in form to the unscaled Eq. (8.36) means that Euler’s equation is inherently

“scale-free”. In fact, the continuity equation (Eq. 1.19) and all flavours of the energy

equation (Eq. 1.23, 1.34, and 1.35), excluding gravity, are also scale-free (Problem

8.5) and thus ideal hydrodynamics is said to be scale-free.

So what does this mean? Consider the solution to the Sod shock tube problem,

illustrated in Fig. 3.9. The independent coordinate used is the self-similar coor-

dinate, x/t.8 This means that regardless of the value of x or t individually, the

distributions of ρ, v, etc., remain identical. Thus, for example, Fig. 3.9 could be

illustrating a shock happening in a five-metre long tube in a laboratory, or it could

represent a trans-galactic shock wave excited by the spiral arms as they pass through

the interstellar medium on length scales of thousands of parsecs. The relative levels

of the primitive variables shown in the figure are the same in both cases.

Let us take this “scale-free” notion to the realm of the engineer. In designing

the hull for a new sailboat, for example, the ability of the boat to “slice” through

the water faster than the rival’s design is paramount. If the hydrodynamics of the

water responding to the hull of the boat were as scale-free as the 1-D ideal shock-

tube problem would suggest, engineers could do their measurements and tests on

a scaled-down toy boat in a bathtub and get identical results to the measurements

taken on an actual boat in the sea. Yet we know this not to be the case! Design

engineers do use scale models, but at quarter and even half scale and do their

measurements in multi-million dollar laboratories with enormous water tanks with

wave generators, measuring devices, and the like, and not bathtubs!

So what have we left out? Why do the conclusions drawn from our scaling

analysis of the ideal fluid equations not apply to the “real world”? The answer is,

in part, viscosity.

Let us try, now, to scale the incompressible, isothermal variation of the Navier–

Stokes equation without gravity. Scaling Eq. (8.26) with the scaling laws (8.37) and

(8.38), we get,

V

R

∂�v ′

∂t′
V +

V

R
(�v ′ · ∇′)�v ′V = − 1

D

1

ρ′
1

R
∇′p′DV 2 + ν

1

R2
∇′2�v ′V.

This time, most but not all of the scaling factors cancel out, and we are left with,

∂�v ′

∂t′
+ (�v ′ · ∇′)�v ′ = − 1

ρ′
∇′p′ +

1

R
∇′2�v ′,

8Rappel : Forgotten what self-similar means? See footnote 11 on page 88.
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where,

R ≡ V R

ν
, (8.40)

is the so-called Reynolds number, named for Osborne Reynolds (1842–1912)9 who

was the first to discuss the importance of this number to fluid dynamics in a seminal

paper (Reynolds, 1883). He was also one of the first scientists in Great Britain

ever appointed as a “Professor of Engineering” which he held at Owen’s college in

Manchester.

Since V and R are measures of fiducial scaling factors at the macroscopic scale

of the fluid, whereas the kinematic viscosity, ν, is a measure of the behaviour of

fluids at microscopic scales, there is no reason to expect R to be the same for all

applications as it would need to be if we were to declare the Navier–Stokes equation

scale-free. Indeed, Reynolds numbers can vary from the very large (1020 for some

astrophysical fluids) to the very small (10−6 for highly viscous, “creeping” flow),

and one must specify the Reynolds number – and thus the scale of the problem –

before one sets out to do a problem or an experiment in viscid hydrodynamics.

While the Reynolds number compares the relative importance of the inertial

and viscous terms, the Euler number,10 E,

E ≡ pu − pd
DV 2

,

compares the relative importance of the pressure gradient and the inertial terms.

Here, pu − pd is the upstream to downstream pressure drop, and D and V are

the fiducial density and velocity already defined. Together, the Reynolds and Euler

numbers describe the relative importance of all the terms in the Navier–Stokes

equation. When two flows have the same values of R and E, they are said to be

similar flows and one can be used to model the other.

This brings us back to the engineer designing the new sailboat. It can be shown

that the toy boat in the bathtub and the 10 m sloop slicing through the sea do not

represent similar flows. In fact, by adding more physical attributes to our fluid

description (e.g., surface tension, cavitation11), the list of numbers that define a

similar flow can get so long that the only truly similar flow ends up being an

identical flow. It is for this reason design engineers are forced to work with scale

models as close in size to the real objects as their facilities and budgets can manage.

The Reynolds number and “turbulence”

Loosely speaking, turbulence can be described as the mechanism by which a high-

Reynolds number fluid dissipates its kinetic energy into thermal energy.12 As for

a solid, fluids dissipate kinetic energy via friction and, for a fluid, friction means

viscosity. Thus, a fluid can dissipate its energy when the viscous stresses are compa-

9www.wikipedia.org/wiki/Osborne Reynolds.
10Not to be confused with Euler’s number, namely e = 2.781828 . . .
11Cavitation is the formation of small bubbles of water vapour, for example, owing to the

agitation of, say, a propeller, that change the local nature of the fluid.
12In MHD turbulence, kinetic energy can also be converted to magnetic energy; see Fig. 7.2.
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rable to the inertial term, and this occurs only at scale lengths where the Reynolds

number is of order unity.

So how does a high-Reynolds number fluid manage to create a low-Reynolds

number environment in which its kinetic energy can be dissipated? Imagine a fluid

being agitated by some external mechanism which sets into motion an eddy of some

scale length determined by the physical dimension of the agitator. The surface of a

large eddy is a shear layer and, as such, subject to the Kelvin–Helmholtz instability

(see 7.1). Thus, a high-Reynolds number eddy will immediately start to form smaller

eddies (“big whirls have little whirls . . . ”), beginning the so-called cascade to smaller

and smaller eddies (“little whirls have lesser whirls . . . ”) each with a smaller length

scale than its parent, and each subject to its own regime of K–H instabilities. As the

length scale of an eddy decreases, its Reynolds number decreases until such time as

the Reynolds number reaches unity where viscous dissipation begins to dominate

the dynamics and where the cascade to smaller and smaller length scales is finally

halted. Thus, the range of turbulent motion is dictated, on the large scale, by factors

external to the fluid (e.g., the dimension of the agitator) and, at the small scale, by

the viscous stresses internal to the fluid.

This then illustrates one qualitative difference viscosity makes to a fluid, how-

ever small that viscosity may be. For any non-zero viscosity, there exists a length

scale at which the turbulent cascade is halted and at which the kinetic energy of

the fluid is dissipated into heat. On the other hand, in a so-called “superfluid” (e.g.,

“quantum fluids” such as liquid He), the cascade to smaller length scales continues

right down to the molecular level where interactions are elastic and the fluid vis-

cosity is demonstrably zero. In such fluids, motions of eddies, etc., are maintained

forever, a qualitatively different behaviour from a fluid with even a trace of viscosity.

The adjective “turbulent” is often used subjectively to refer to a fluid simulta-

neously exhibiting motions at “many” length scales without the word many being

quantified. A highly viscid fluid is quite likely to appear laminar (opposite to “tur-

bulent”) as will a relatively inviscid fluid moving slowly enough (e.g., water flowing

smoothly down a gently inclined sheet of glass). Such flows exhibit a paucity of

length scales and represent flow at one end of a laminar-turbulent spectrum. On

the other hand, highly agitated, rapidly moving low-viscosity fluids (and thus high

Reynolds number) exhibit a plethora of length scales and clearly “look” turbulent.

However, what of the wide range of phenomena in between these extremes? How

does one actually measure the extent to which a fluid is turbulent? When does

turbulence actually begin? How quickly does it end once energy input is ceased?

What of magnetic and gravitational effects? These and many other questions are

the subject of numerous texts13 and numerous research programmes in engineering,

applied mathematics, and certainly astrophysics, and beyond the scope of this text.

“Yardsticks” for Reynolds numbers

For R > 1, the fluid is said to be inertially dominated, for R ∼ 1, the viscous and

inertial terms are comparable, and for R < 1, the fluid is said to be dominated

13For a senior undergraduate text that discusses (M)HD turbulence in depth, see Galtier (2016).
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by viscous stresses. Some practical, “kitchen” examples may be of help here. At

room temperature, the kinematic viscosities of molasses, maple syrup, and water

are about 0.01, 2 × 10−4, and 10−6 (all in units of m2 s−1) respectively. Imagine

each of these fluids pouring out of a measuring cup with a ∼ 1 cm wide “spout”.

For molasses flowing at a speed of 1 cm s−1, R ∼ 0.01 (viscous dominated), for

maple syrup running a little more quickly at 4 cm s−1, R ∼ 2, and for water moving

more rapidly still at 10 cm s−1, R ∼ 1,000. These all correspond to our “intuitive”

notion of viscous fluid flow: molasses is clearly viscous, maple syrup not so much,

and water seemingly not at all.

At still-higher Reynolds numbers, the onset of turbulence in a pipe typically

occurs at R ∼ 4,000, though in some flows confined to a boundary layer, turbulence

can be “staved off” until R > 106.

Finally, back to the example of the 10 m sloop in the engineer’s design lab. As

it slices through the water at a crisp 10 m s−1 (20 knots), the effective Reynolds

number is 108, well above the onset of turbulence as can be verified by looking at the

boat’s wake. One can ask, therefore, at what length scale does the turbulent cascade

end? That is, what is the size of the smallest eddy in the water, at which kinetic

energy is finally being dissipated into thermal energy? This is easily answered by

setting R = V R/ν = 1 ⇒ R ∼ ν/V = 10−7m. Thus, it is desirable to have the

hull of the boat smooth to length scales of a micron or less (e.g., by maintaining the

paint on the hull) so that dynamical friction14 between the boat and the turbulence

it generates is kept to a minimum.

8.6 Applications

The Navier–Stokes equation – in any form – is much more complicated than Euler’s

equation and thus analytical solutions are known for only the simplest of cases.

In large part, this added complexity arises because the viscous term is parabolic

in nature (e.g., App. C) and, as such, does not lend itself to the wave and eigen-

value analysis appropriate for the hyperbolic equations describing ideal (inviscid)

hydrodynamics ( 3.5) and even MHD ( 5.2).

The applications chosen here make the following assumptions. We seek solu-

tions in which the flow is laminar meaning, among other things, there is only one

component of the velocity (e.g., �v = vx̂1). Next, our examples will look for v as

a function of the coordinate perpendicular to the flow direction, v1(x2) say, with

the implicit assumption that these profiles are identical for all values of x1. Thus,

in this case, ∂1v1 = 0 (eliminating the inertial term) and ∇ · �v = 0, rendering the

fluid effectively incompressible (more specifically, that dρ/dt = 0). Finally, we shall

assume slab symmetry, and thus all 3-derivatives are zero.

14Loosely speaking, dynamical friction is the momentum transfer caused by collisions between
macroscopic elements of two systems in contact.
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With all this, Eq. (8.26) becomes:

∂tvx = −1

ρ
∂xp− ∂xφ+ ν∂2yvx; (8.41)

∂tvz = −1

ρ
∂zp− ∂zφ+

ν

r
∂r(r∂rvz), (8.42)

in Cartesian and cylindrical coordinates respectively. Additional assumptions are

made in the various examples as appropriate, including steady state (∂t = 0), uni-

form pressure (∂xp = 0), no gravity (φ = 0), etc.

Next, all the examples in this section will involve fluids coming up against solid

barriers, so we will need to impose boundary conditions at the fluid-solid interface.

It is an experimental fact that if a fluid has even the slightest amount of viscosity

(and here again is another qualitative difference between a fluid with exactly zero

viscosity, and one with only the smallest amount), then the layer immediately ad-

jacent to a solid surface will be in the co-moving frame of that surface. This is the

so-called no-slip boundary condition and is represented mathematically by:

�v = constant across boundary and �v · n̂ = 0, (8.43)

where n̂ is a unit vector normal to the solid surface. The last requirement forces the

fluid to have no velocity component perpendicular to the surface (it can’t move into

the surface, nor can it pull away lest it leave a vacuum behind). The only velocity

component the fluid can have at the boundary is tangential to the boundary and,

by the no-slip condition, this component must be equal to the velocity of the solid

boundary itself.

8.6.1 Plane laminar viscous flow

Consider a viscous fluid between two solid parallel plates separated by a distance

D, where the plates move in opposite directions with the same speed, V , as shown

in Fig. 8.7. We seek the velocity profile of the fluid, vx(y), between the plates.

With no pressure or gravity gradients, Eq. (8.41) becomes:

∂tvx = ν∂2yvx.

This is a diffusion equation (Eq. H.3, App. H), a parabolic PDE that describes how

a quantity (in this case vx) is diffused into a medium from the boundaries at a rate

governed by the “diffusion coefficient”, ν.

We can easily determine the diffusion time scale, τν , by dimensional analysis

(e.g., 2.4), noting that it can depend only on two quantities, namely D, the gap

between the plates, and ν, the kinematic viscosity. The quantity vx is what is being

diffused and, as such, does not affect the diffusion time scale. Thus, τν ∼ D2/ν.

The time it takes for the velocity of the boundary layers to be transmitted to the

centre of the fluid is inversely proportional to the viscosity, but proportional to the

square of the gap. Thus, water (ν ∼ 10−6) between two plates separated by 1 m
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Figure 8.7. Two plates, moving in opposite directions with a viscous fluid in
between them, eventually give rise to the fluid velocity profile as shown.

would take about two weeks to come into steady state, while a gap of 1 cm would

come into steady state in under two minutes.

Seeking the steady-state solution, we set ∂tvx = 0, and are left with a very

simple differential equation to solve,

ν∂2yvx = 0 ⇒ vx(y) = Ay +B.

Applying the no-slip boundary conditions (Eq. 8.43):

v
(
1
2D
)
= V ; v

(− 1
2D
)
= −V,

we solve for A and B and get as our final velocity profile,

vx(y) =
2V

D
y,

which is the profile illustrated in Fig. 8.7. Note that the viscosity itself does not

appear in the velocity profile. In this problem, the time it takes for the steady state

to be established is dependent on ν, but not the steady-state profile itself, which is

the same for all viscid fluids regardless of how small (but not zero!) the viscosity

may be.

8.6.2 Forced flow between parallel plates

Consider now the steady-state flow between two stationary plates driven by a pres-

sure gradient as shown in Fig. 8.8. With ∂xp = −fx = constant and, once again, no

gravity term, Eq. (8.41) becomes:

∂2yvx = −fx
μ
,

where μ = ρν is the shear viscosity. This too is trivial to integrate,

vx(y) = − fx
2μ
y2 +Ay +B. (8.44)

Applying no-slip boundary conditions at each plate gives us v(D2 ) = v(−D
2 ) = 0,

and thus,

vx(y) =
fx
2μ

(
D2

4
− y2

)
, (8.45)
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Figure 8.8. Fluid is driven by a pressure gradient between two stationary plates,
giving rise to the steady-state fluid velocity profile as shown.

which is the parabolic profile shown in Fig. 8.8. Unlike the previous example, this

profile does depend on the fluid viscosity.

An easily measurable and useful experimental quantity is the discharge rate, Q

(m3 s−1), or, as we shall calculate in this case, the discharge rate per unit width, q

(m2 s−1):

q =

∫ D/2

−D/2

vx(y)dy. (8.46)

Substituting Eq. (8.45) into Eq. (8.46) gives us,

q =
fxD

3

12μ
,

from which the viscosity of the fluid can be easily measured.

Finally, we can calculate the average flow speed from the discharge rate (Eq.

8.46), namely,

〈vx〉D = q ⇒ 〈vx〉 =
fxD

2

12μ
.

8.6.3 Open channel flow

Consider a viscous liquid flowing down a smooth plane (e.g., glass) inclined to the

horizontal at an angle θ, as shown in Fig. 8.9a. Suppose that the fluid is not being

replenished at the top and thus the surface gradually drains of liquid. We wish to

find the flow velocity profile, vx(y), the depth of the fluid, D(x, t) as a function both

of position along the plane and time, and the discharge rate, q(x, t). This will be a

case of a system in quasi-steady state, in which we will still make the assumption

of steady state in the mathematical analysis, but check after-the-fact to make sure

that whatever time dependence has to be built into the solution is sufficiently slight

as to warrant the assumption of steady state – at least to a good approximation –

in the first place.

We start by assuming D � L, the length of the plane, so that all points in

the fluid are sufficiently close to the surface that the fluid pressure is essentially the

atmospheric pressure and ∂xp = 0. The assumption of laminar flow means vy = 0,

though this cannot be exactly true since the decreasing depth of the liquid over
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Figure 8.9. a) Fluid drains from the surface of a smooth plane inclined at an
angle θ to the horizontal. The top “open” surface is free from viscous stresses
from above, and thus the strain (∂yvx) is zero there. b) The mass, ΔM , of a fluid
element of length Δx decreases as the depth, D, decreases which depends upon
the difference in discharge rates on the left and right sides.

time means there has to be some y-component of the velocity. In as much as we

can assume vy = 0, incompressibility (∇ ·�v = 0) means that ∂xvx = 0 (the problem

is “slab-symmetric”, and thus all z-derivatives are automatically zero), and vx does

not depend on x. Thus, the inertial term, vx∂xvx, is also (approximately) zero.

Finally, as fluid is flowing downhill, the driving force is gravity where the grav-

itational potential is given by φ = gh = −gx sin θ (Fig. 8.9a). With all these con-

siderations, Eq. (8.41) becomes,

∂tvx = g sin θ + ν∂2yvx(y) = 0,

in the steady state. This equation can be easily integrated twice to get,

vx(y) = −g sin θ
2ν

y2 +Ay +B. (8.47)

Boundary conditions for this problem are a little different from the previous

two examples. While no-slip conditions (Eq. 8.43) require vx(0) = 0 ⇒ B = 0,

the upper boundary is a “free boundary”, which means it experiences no shear.

Specifically, at y = D, Txy = μ∂yvx = 0 ⇒ ∂yvx = 0, and we have:15

−g sin θ
ν

D +A = 0 ⇒ A =
g sin θ

ν
D.

Thus, Eq. (8.47) becomes,

vx(y) =
g sin θ

2ν
(2yD − y2), (8.48)

and the discharge rate is,

q =

∫ D/2

−D/2

vx(y)dy =
g sin θ

3ν
D3. (8.49)

15Boundary conditions in which one is applied to the function, vx(y), and the other to its first
derivative, ∂yvx, are called Cauchy boundary conditions.
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Because the fluid is draining from the plane, we expect there to be some tem-

poral dependence on the variables, and in particular, D. Figure 8.9b shows a small

segment of the flow over which D is very nearly constant. Continuity requires that

the time-rate-of-change of the mass per unit width of the fluid element ΔM (indi-

cated in medium grey) must be accounted for by the difference in discharge rates

at the left and right sides of the element. Thus,

∂tΔM = ρΔx∂tD = ρ[q(x) − q(x+Δx)]

⇒ ∂tD = −∂xq = −g sin θ
ν

D2∂xD. (8.50)

This equation can be solved using separation of variables, where we assume:

D(x, t) = X(x)T (t). (8.51)

Substituting Eq. (8.51) into Eq. (8.50), and separating factors involving x and t on

different sides of the equation, we get,

g sin θ

ν
X
dX

dx
= − 1

T 3

dT

dt
= c,

where c is a constant. Solving each of X and T separately, we get,

X2 =
2νcx

g sin θ
, T 2 =

1

2ct
,

and thus,

D2(x, t) = X2T 2 =
ν

g sin θ

x

t
. (8.52)

D is evidently a self-similar quantity (depending, as it does, on x/t), which we might

have guessed from the outset. Thus, the mean velocity, 〈vx〉, is given by:

〈vx〉D = q ⇒ 〈vx〉 =
g sin θ

3ν
D2 =

x

3t
,

using Eq. (8.49). Substituting Eq. (8.52) into Eq. (8.49), we find the x- and t-

dependence of q to be,

q(x, t) =
1

3

√
ν

g sin θ

(x
t

)3
. (8.53)

We are finally in a position to check our assumption of quasi-steady state,

which is satisfied if,

|∂tvx| � ν|∂2yvx|.
For the LHS, let us set,

|∂tvx| ≈ |∂t〈vx〉| = x

3t2
,

and for the RHS, use Eq. (8.48) to find,

ν|∂2yvx| = g sin θ.
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Thus, we must have:
x

3t2
� g sin θ ⇒ t �

√
x

3g sin θ
. (8.54)

We’ve also assumed vy is zero, and thus D cannot be a strong function of x. This is

easily checked by differentiating Eq. (8.52) with respect to x, and demanding this

be much less than unity. That is,

∂xD =
ν

gt sin θ

1

2D
=

D

2x
� 1 ⇒ D � 2x. (8.55)

Since D � L, Ineq. (8.55) is valid everywhere except near x = 0 at the top of the

incline, and where the uncertain boundary conditions there make that part of the

flow poorly understood anyway.

Thus, so long as conditions (8.54) and (8.55) hold, the velocity profile, liquid

depth, and discharge rate are given by Eq. (8.48), (8.52), and (8.53) respectively.

A little experiment16

Ever rinse out a wine bottle, for example, shake out what you thought was the last of

its contents, only to pick it up carelessly an hour or so later and find water pouring

out onto the floor? Here’s an easy “kitchen experiment” you can do to understand

this phenomenon in terms of “open channel flow” described in this subsection.

Fill a glass wine bottle (straight sides) with water, then empty it. Glass works

better than plastic as glass reduces surface tension effects which aren’t accounted

for in our theory. Once water flow is reduced to a drip, hold the bottle upside down

and vertical for ten seconds more, then right the bottle, cork it, and set it aside.

After half an hour, say, uncork the bottle and carefully pour the accumulated

contents into a graduated cylinder capable of measuring a few ml (or a teaspoon =

5 ml). Typically, you’ll find between 1 and 2 ml of liquid pours out of the bottle.

Let us model the inside surface of the bottle – with angle of inclination 90◦ to

the horizontal – as an open channel. For L = 18 cm (typical height of the vertical

sides of a wine bottle), Ineq. (8.54) requires that,

t �
√
L

3g
∼ 0.08,

which t = 10 s surely satisfies and thus the assumption of steady state is upheld.

Next, from Eq. (8.52), we find (for x = 18 cm, t = 10 s, and ν = 10−6m2 s−1)

D ∼ 4.3× 10−5m which is certainly much less than 2L, as required by Ineq. (8.55).

Thus, the flow may be safely considered laminar and D should be a good estimate

of the thickness of the water layer clung to the inside surface of the bottle after 10 s.

With an inside bottle radius r = 3.5 cm, this leads to a volume:

V = 2πrLD = 1.7× 10−6 m3 = 1.7 ml.

Finally, D ∝ t−1/2 is why no matter how long you drain the bottle, there always

seems to be just a little more water left inside . . .

16I first saw this idea in Tom Faber’s text Fluid Dynamics for Physicists, p. 211 (Faber, 1995).
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Figure 8.10. Laminar flow of a viscid fluid along the axis of a cylindrical pipe
is known as Hagen–Poiseuille flow.

8.6.4 Hagen–Poiseuille flow

In this subsection, we look at the problem of forced flow along a pipe, first stud-

ied experimentally in 1838 and then theoretically in 1840 by Jean Louis Poiseuille

(1799–1869), and independently by Gotthilf Heinrich Ludwig Hagen (1797–1884) in

1839. While Hagen was the first to publish his results, Poiseuille had actually done

his experiments and derived the formula a year earlier.

This problem must be considered in cylindrical coordinates, (z, r, ϕ),17 and

is the cylindrical analogue of the problem of forced flow between parallel plates

considered in 8.6.2. Of course, flow of a viscid fluid through a pipe has all sorts of

applications, from anatomy to machine design, and our look here will only brush

the surface of this subject.

Consider the laminar flow along the axis of an axisymmetric pipe depicted

in Fig. 8.10, where the velocity field is given by �v = vz(r)ẑ. A constant pressure

gradient, ∂zp = −fz, is applied along the pipe, and gravity is ignored for a horizontal

configuration. Thus in the steady state, Eq. (8.42) reduces to,

∂r(r∂rvz) = − r

μ
fz,

which can be easily integrated to yield:

r∂rvz(r) = −fz
μ

r2

2
+A,

where A = 0 is required at r = 0 to satisfy the boundary condition,

∂rvz
∣∣
r=0

= 0,

imposed by axisymmetry. Integrating again yields:

vz(r) = −fz
μ

r2

4
+B,

17While most authors list the cylindrical coordinates as (r, ϕ, z), I find it more useful as a
computational fluid dynamicist to align the cylindrical and spherical polar coordinate ϕ in the third
slot. The only truly Cartesian-like cylindrical coordinate, z, then goes to the first slot which has
additional algorithmic conveniences. I have therefore adopted the somewhat unorthodox ordering
(z, r, ϕ) throughout this text.
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and by applying the boundary condition v(R) = 0,18 we get finally:

vz(r) =
fz
4μ

(R2 − r2).

This is the profile shown in Fig. 8.10.

To find the rate at which fluid flows through the pipe, we integrate the velocity

profile over the cross section of the pipe to get:

Q =

∫ 2π

0

∫ R

0

vz(r)r dr dϕ =
πfzR

4

8μ
, (8.56)

which has units m3 s−1. Equation (8.56) is known as the Hagen–Poiseuille equation

(or law) and describes what is called Hagen–Poiseuille flow, namely viscous flow

through a pipe. The fact that Q depends on R4 and not R2, as one might näıvely

expect, explains why a straw need not be that much wider to ease the task of

drinking a thick milkshake.

8.6.5 Couette flow

Consider now fluid flowing azimuthally between two concentric cylinders, as de-

picted in Fig. 8.11a. The inner cylinder, with radius a, rotates at some steady

angular velocity, ωa, while the outer cylinder of radius b rotates at ωb. Under the

assumptions of steady-state and laminar flow, we wish to find the radial profile of

the angular velocity, ω(r), and, in so doing, the torques transmitted from the inside

to outside cylinders. Herein is one of the most oft-used designs for a viscometer, a

device for measuring the viscosity of a fluid.

To study this problem, we must first revisit our mathematically simplistic inter-

pretation of Newton’s model for stresses on a viscid fluid element (Eq. 8.8) discussed

in 8.2.2:
Tij = μ(∂ivj + ∂jvi); i �= j, Eq. (8.8)

which turns out to be inappropriate for a rotating fluid. For example, for a cylinder

of fluid rotating at a constant angular speed ω about its axis of symmetry as a

“solid body”, the velocity of any point in the fluid at a distance r from the axis is,

�v = vϕϕ̂ = rωϕ̂.

In this case, according to Eq. (8.8) the viscous stress between adjacent annuli of

fluid should be,

Trϕ = μ(∂rvϕ + ∂ϕ���
0

vr) = μω �= 0.

Yet, in solid-body rotation where there is no relative motion between one annulus

and another, the shear stresses should be zero! So what went wrong?

This is where overlooking the tensor nature of T has come to bite us. In par-

ticular, in going from Eq. (8.17) to Eq. (8.18), we took the leap of faith that the

18Again, we have Cauchy boundary conditions.
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Figure 8.11. a) Laminar and azimuthal flow of a viscid fluid between two con-
centric cylinders of radii a and b is shown. A typical annulus of width Δr rotates
at an angular speed of ω(r) which, if the rotation is not solid-body, will exert
viscous stresses on the annuli immediately above and below it. b) A z-cross sec-
tion through a cylindrical fluid element depicting the ϕ-r elements of the stress
tensor as imposed by the differential rotation.

ijth element of ∇�v was simply:

(∇�v)ij = ∂ivj , (8.57)

which, since ∇�v is a tensor, is true only in Cartesian coordinates (e.g., Eq. A.19).

For an orthogonal coordinate system where the length differential is given by,

dl2 = h21dx
2
1 + h22dx

2
2 + h23dx

2
3,

the ijth element of ∇�v is, in fact, given by,19

(∇�v)ij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂i

(
vi
hi

)
+

1

hi
�v · ∇hi, i = j;

1

hi

(
∂ivj − vi

hj
∂jhi

)
, i �= j.

(8.58)

Here, h1, h2, and h3 are the coordinate scale factors related to the so-called metric

which, for cylindrical coordinates, are given by (hz , hr, hϕ) = (1, 1, r).20 Thus, Eq.

(8.58) gives:

(∇�v)rϕ =
1

hr

(
∂rvϕ − vr

hϕ
∂ϕhr

)
= ∂r(rω) = ω + r∂rω; and

(∇�v)ϕr =
1

hϕ

(
∂ϕvr − vϕ

hr
∂rhϕ

)
=

1

r
(∂ϕvr − rω)

⇒ Trϕ = μ
(
(∇�v)rϕ + (∇�v)ϕr

)
= μ

(
r∂rω +

1

r
∂ϕvr

)
.

For the problem depicted in Fig. 8.11, vr = 0, and we have:

Trϕ = μr∂rω, (8.59)

19For an overview of tensor analysis with most of the basic ideas and theorems derived from
first principles, see www.ap.smu.ca/~dclarke/home/documents/byDAC/tprimer.pdf, my Primer on
Tensor Calculus.

20For Cartesian coordinates, h1 = h2 = h3 = 1 in which case, Eq. (8.58) reduces to Eq. (8.57).
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which gives the expected behaviour for solid-body rotation (i.e., Trϕ = 0 for con-

stant ω).

For ω = ω(r), we can use Eq. (8.59) to assess the torque one annulus of fluid

exerts on another. Figure 8.11b shows a cylindrical element of fluid in cross section

with the r–ϕ stresses on the top and bottom surfaces indicated. As we are dealing

with angular motion, we evaluate the net torque per unit length on the fluid element

about the cylinder axis to be:

τnet = (r +Δr)2Tϕr(r +Δr)Δϕ − r2Tϕr(r)Δϕ = ∂r(r
2Tϕr)ΔrΔϕ.

Dividing through by rΔrΔϕ gives us the “torque density”, which we equate to the

time rate of change of the “angular momentum density”, l = ρr2ω, to get,

1

r
∂r(r

2Tϕr) = ρr2∂tω ⇒ ∂tω =
ν

r3
∂r(r

3∂rω),

using Eq. (8.59), giving us a diffusion equation of sorts (App. H) for ω. This is the

azimuthal Navier–Stokes equation for incompressible, isothermal fluid ignoring the

pressure and inertial terms. In the steady state, we set as usual, ∂t = 0, and what

remains of the equation is easily integrated twice to get:

ω(r) = − A

2r2
+B,

where A and B are set by imposing the boundary conditions ω(a) = ωa and ω(b) =

ωb. The ensuing algebra gets surprisingly complicated surprisingly quickly, yielding

the final and somewhat awkward-looking result:

ω(r) =
1

b2 − a2

[
b2ωb − a2ωa +

a2b2

r2
(ωa − ωb)

]
, (8.60)

which simplifies considerably if either ωa or ωb is zero.

It is left to Problem 8.9 to show that the torque per unit length of the cylinder

on a fluid annulus at radius a ≤ r ≤ b is then given by,

τ(r) = 4πμ
b2a2

b2 − a2
(ωb − ωa), (8.61)

which is independent of r, as required by Newton’s third law. As is also shown in

Problem 8.9, this is the basis for an easily constructed and easily used viscometer.

Indeed, it was yet another French physicist, Maurice Alfred Couette (1858–1943),

who invented and used such a design to make the first accurate measurements of

viscosities of various fluids in the late nineteenth century, and it is for this reason

that azimuthal flow of a viscid fluid between two concentric cylinders is known as

Couette flow.
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Problem Set 8

8.1∗ Show that tr(T) is invariant under a coordinate rotation of any angle, θ,

about the x3-axis and not just 45◦ as used to derive Eq. (8.6) in the text.

The invariance of the trace of a tensor is a well-

known result, and if you know anything about

tensor analysis or even matrix theory, the proof

is rather easy. So try instead doing this in the

same spirit as was done in the text for a rotation

of 45◦. Thus, referring to the inset (a modification

of Fig. 8.2 in the text), sum the forces on prisms

ABCD and GCEF and see where this leads you.

Doing it this way emphasises the link between

the invariability of the trace of a tensor, and the

physical reasons for it in a viscid fluid.

8.2 Starting from Eq. (8.27) in the text, verify Eq. (8.28) making sure that your

verification shows how the transpose of T comes about. For this problem, it is

sufficient to expand �Ti into its Cartesian-like components, Tij .

8.3 Show how Eq. (8.30) in the text follows from Eq. (8.29).

8.4∗

a) Starting with Eq. (8.18) in the text, use vector identities and the definition of

the colon product to verify the last equality in Eq. (8.35), namely:

T : ∇�v = −p∇ · �v − 2μ

3
(∇ · �v)2 + 2μE : E. (8.62)

b) Show that together, the last two terms proportional to μ in Eq. (8.62) are

never negative. This means that the viscous source terms always increase the

internal energy of the fluid (or at best, leave it the same), never decrease it.

(You may assume the Cartesian representation of all vector identities.)

8.5 Using the scaling relations in Eq. (8.37) and (8.38) in the text, scale the total

energy equation (Eq. 1.23) in the same manner that Euler’s equation (Eq. 1.36) was

scaled in 8.5 including setting φ = 0. Thus, show that the total energy equation

for ideal hydrodynamics is scale-free.
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8.6∗

a) Scale Euler’s equation (Eq. 1.36) as was done in 8.5 in the text, but this time

include the gravitational potential. Think carefully about how you are going

to scale φ. Just because the units of φ are m2s−2, is it reasonable to scale φ

according to φ = φ′V 2, with V being the fiducial speed of the fluid?

b) You should find that Euler’s equation with φ �= 0 is not scale-free, and has a

“left-over” factor:
GDR2

V 2
≡ 1

F2
,

associated with the ∇′φ′ term. F is the so-called Froude number and, de-

pending on its value, governs how a fluid behaves under the influence of a

gravitational field.

In terms of the Froude number, explain why a portion of the interstellar

medium (ISM) might be gravitationally unstable (and thus prone to collapse

under its own weight to form stars), whereas a representative portion of the

earth’s atmosphere is not. For the atmosphere, take as fiducial values D ∼ 1

and V ∼ cs ∼ 300 (both in mks), whereas for the ISM, take D ∼ 1.7× 10−21

(n ∼ 106 m−3) and V ∼ 5×103 (T ∼ 103K). Think about what fiducial values

for R might be appropriate in both situations.

Discussion: As viscosity leads to the Reynold’s number, R (Eq. 8.40), this problem

shows how gravity leads to the Froude number, named for the English engineer and

hydrodynamicist, William Froude (1810–1879). In general, for any external field

leading to a local acceleration, g, the Froude number is given by:

F =
V√
gR

, (8.63)

where V and R are the characteristic speed and scale length of the flow, just as

they are for R . Note that for gravity, g = GM/R2 = GDR.

High Froude number flow corresponds to ideal hydrodynamics where all exter-

nal fields including gravity are negligible. Conversely, when engineers consider ships

cutting through water or astrophysicists contemplate stars collapsing from the ISM,

the Froude number can be of order unity resulting in fluid behaviour very different

from ideal hydrodynamics.

8.7 A viscous fluid is driven between two plane parallel plates by a uniform pressure

gradient, ∂xp = −fx, as shown in Fig. 8.12. In addition, the top plate moves to the

right with speed V while the lower plate remains at rest.

a) Find the steady-state velocity profile of the fluid. You may make the same

assumptions about the fluid as made in 8.6.2 of the text.

b) Find the discharge rate (per unit width) and thus the average flow velocity

across the profile found in part a.
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Figure 8.12. (Problem 8.7) Viscous fluid is forced between two plane parallel
plates, where the top plate is moving at a velocity V relative and parallel to the
bottom plate.

8.8 Suppose the space between the horizontal co-axial cylinders shown in Fig. 8.13

is filled with a viscous fluid. Suppose further the inner cylinder is dragged along the

common axis at a speed V while the outer cylinder remains at rest.

a) Find the velocity profile, vz(r), of the fluid in the steady state. You may

assume vr = vϕ = 0.

b) Determine the vorticity (�ω = ∇× �v) of the fluid and show that it has exactly

the same form as the azimuthal magnetic field, Bϕ, induced by a steady axial

current, i. Thus, complete the following statement:

Bϕ is to i what ωϕ is to .

Hint : You may want to consult Ampère’s Law.

8.9∗

a) Confirm Eq. (8.61) in the text.

b) In a Couette viscometer of inner radius a and outer radius b (e.g., Fig. 8.11

in the text), the inner cylinder is rotated at angular velocity ωa and the outer

cylinder is held at rest. What is the torque exerted on a unit length of the outer

cylinder by a Newtonian fluid occupying the space between the cylinders?

Figure 8.13. (Problem 8.8) The central cylinder is pulled with a velocity V
along its axis, dragging forward the viscous fluid between the cylinders.
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c) Suppose now that a horizontal spring of spring constant k connects a fixed

anchor with the top of the outer cylinder so that when stretched, the spring

exerts a tangential retaining force on the cylinder at r = b. Suppose further

that when the inner cylinder is rotated at constant angular speed ωa, the

spring is stretched by δx � b from its equilibrium length. What is the shear

viscosity, μ, of the fluid in the viscometer in terms of k, a, b, ωa, δx, and L,

the length of the cylinder?

For illustration purposes, set k = 5.0Nm−1, a = 2.0 cm, b = 6.0 cm, L =

10 cm, ωa = 6.0 rad s−1, and δx = 0.30 cm, and find a numerical value for μ.

What common household substance has this viscosity?
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with thanks to Jonathan Ramsey, Ph.D. (SMU), 2011 and Nicholas Mac-

Donald, M. Sc. (SMU), 2008 †.

The steady-state theory is æsthetically and philosophically pleasing to

many people, to whom it is a matter of regret that observations indicate

that it is not the correct model.

Jamal Nazrul Islam (1939–2013)
from The Ultimate Fate of the Universe

“Consider a spherical cow” is how some of our colleagues in other disci-

plines of science like to gibe physicists in our approach to problem-solving.

And yet, sometimes a spherical cow is all one needs for a suitable answer! While

Islam’s critique is specifically directed towards the prevailing view of the cosmos

prior to the Big Bang Theory, it is equally applicable to the assumption of steady

state – that nothing changes in time – in any branch of physics. The restriction to

steady state can never describe properly any complex physical system writ large,

no matter how appealing the simplification of the mathematics may be.

Still and on a more limited basis, the assumption of steady state can often be

sufficiently realised in the lab, in simulations, and even in nature that useful insight

and measurable results can be achieved. In our case, the equations of MHD are

simply too complex to dismiss the opportunity of some analytic headway even if it

isn’t exactly “the correct model”.

This chapter is a generalisation of our discussion in 2.4 where Bernoulli’s

theorem was introduced for ordinary hydrodynamics. Other than the restriction

to inviscid flow, the only assumption made there was steady-state flow, where all

time derivatives are set to zero (∂t = 0). As we’ll see, MHD requires the additional

assumption of azimuthal symmetry (∂ϕ = 0 in cylindrical or spherical polar coor-

dinates) from which not one, but four constants of motion along streamlines (as

defined in Fig. 2.8 in 2.4 and which we’ll see are the same as lines of induction) can

be found. These include three constants of the flow for which there are no hydro-

dynamical analogues ( 9.1), plus a generalisation to the Bernoulli function ( 9.2).

The rest of the chapter examines how these steady-state constants can be applied

to two examples from astrophysics: stellar winds and astrophysical jets.

†Ph. D. (Boston), 2016

341
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9.1 The Weber–Davis constants

While it seems that Weber & Davis (1967; hereafter WD67) were the first to derive

and apply astrophysically what I’m going to refer to as the three Weber–Davis con-

stants, my treatment actually follows Spruit (1996; hereafter S96) whose derivations

are more general, and who includes a derivation of the MHD Bernoulli function as

well.

Consider an ideal MHD system (i.e., where Alfvén’s theorem 4.2 applies and

magnetic flux is “frozen in” the fluid) in steady state (∂t = 0). Further – and in

addition to what was required for Bernoulli’s theorem in ordinary hydrodynamics

( 2.4) – we’ll need to assume azimuthal symmetry, a.k.a. axisymmetry, which is

most conveniently accomplished in cylindrical coordinates by setting ∂ϕ = 0. As

both our astrophysical applications of steady-state MHD are to rotating systems,

rotation is included in our derivations.

A fundamental quantity in axisymmetric ideal MHD is the so-called flux func-

tion, f . Since �B is solenoidal, we saw in 4.8 that �B can be written in terms of a

vector potential, �A, which, in cylindrical coordinates with axisymmetry, appears as

(third of Eq. Set A.40),

�B = ∇× �A =
1

r
∂r(rAϕ)ẑ − ∂zAϕr̂ +

(
∂zAr − ∂rAz

)
ϕ̂.

In particular, the poloidal component of �B (that part within the z–r plane) is given

by,
�Bp = Bz ẑ +Brr̂ =

1

r

(
∂rf ẑ − ∂zf r̂

)
=

1

r
∇f × ϕ̂, (9.1)

where f ≡ rAϕ is the flux function (units Wb, same as ΦB in Eq. 4.8). Evidently,
�Bp ⊥ ∇f and thus contours of f are everywhere tangential to �Bp. Put another

way, f is constant along poloidal lines of induction and thus f can be used to label

each line of induction uniquely.1 In the discussion that follows, we’ll recognise other

quantities as constant along poloidal lines of induction (and thus functions only of

f ) by their gradients being everywhere perpendicular to �Bp.

At the basis of our discussion are the ideal MHD equations from Chap. 4 (Eq.

4.20, 4.21, 4.14, and 4.23) with the assumption of steady state:

∇ · (ρ�v) = 0; (continuity) (9.2)

∇ · (eT�v) = −∇ ·
(
p�v +

1

μ0

�B × (�v × �B)

)
; (total energy) (9.3)

(�v · ∇)�v = −1

ρ
∇p−∇φ+

1

μ0ρ
(∇× �B)× �B; (Euler) (9.4)

∇× (�v × �B) = 0. (ideal induction) (9.5)

1Readers who followed 7.4.2 describing the Parker instability will recognise the flux function
f as playing the same role in 2-D cylindrical coordinates as Ax did in 2-D Cartesian coordinates
with x-symmetry. That is, contours of each function follow lines of induction in their respective
geometry.
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Beginning with Eq. (9.5), since �v × �B is irrotational, it may be written as the

gradient of a scalar potential, V ,2

�v × �B = ∇V . (9.6)

Now, consider �v and �B broken up into their poloidal (in the z–r plane) and azimuthal

(in the ϕ-direction) components:

�v = �vp + vϕϕ̂; �B = �Bp +Bϕϕ̂. (9.7)

Equation (9.6) then becomes,

�vp × �Bp︸ ︷︷ ︸
∝ ϕ̂

+Bϕ�vp × ϕ̂+ vϕϕ̂× �Bp︸ ︷︷ ︸
in the poloidal plane

+ vϕBϕ����� 0
ϕ̂× ϕ̂ = ∇pV +

1

r�
���

0

∂ϕVϕ̂. (9.8)

The fact that ϕ̂× ϕ̂ = 0 is self-evident, but the other terms may warrant comment.

The first term is a cross product of two vectors within the poloidal plane which

therefore points in the azimuthal direction, as indicted by the underbrace. The

second underbrace recognises that vectors in the poloidal plane crossed with ϕ̂

remain in the poloidal plane; e.g., r̂ × ϕ̂ = ẑ. On the RHS, ∇p = ∂z ẑ + ∂r r̂ is the

poloidal gradient operator, while the azimuthal component of the gradient operator

vanishes because of axisymmetry. It is setting this last term to zero that makes the

rest of this chapter possible, and why axisymmetry was imposed in the first place.

For without it, we could not make this critical observation. On equating the ϕ-

components on the LHS and RHS of Eq. (9.8), we get,

�vp × �Bp = 0 ⇒ �vp ‖ �Bp ⇒ �vp = λ(z, r) �Bp, (9.9)

where λ is some coordinate-dependent scalar function which could be positive or

negative. That is, in steady-state, axisymmetric, ideal MHD, the poloidal veloc-

ity and magnetic induction are everywhere parallel or anti-parallel ! Among other

things, this means that anything found to be constant along a line of induction is

also constant along a streamline. Quite literally, the rest of our discussion in this

chapter depends upon this fact.

Equating the poloidal components on the LHS and RHS of Eq. (9.8) and noting

that with axisymmetry, ∇pV = ∇V , we find,

Bϕ�vp × ϕ̂+ vϕϕ̂× �Bp = (vϕ − λBϕ) ϕ̂× �Bp = ∇V , (9.10)

using Eq. (9.9) to replace �vp. Thus, �Bp · ∇V = 0 and, like the flux function f , the
scalar potential V is constant along poloidal lines of induction. That is, all contours

of V and f line up, and V can be considered as a function exclusively of f :

V = V(f ) ⇒ ∇V =
dV
df

∇f ≡ Ω0(f )∇f , (9.11)

where Ω0 = dV/df is also a function exclusively of f . But, since ∇f lies in the

poloidal plane (remember, ∂ϕ = 0),

∇f = ϕ̂× (∇f × ϕ̂) = ϕ̂× (r �Bp),

2This is the same scalar function, V , introduced in Eq. (4.33).
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where the first equality is illustrated by the inset,

and the second equality is from Eq. (9.1). Substitut-

ing this into Eq. (9.11), and then comparing that to

Eq. (9.10), we get,

(vϕ − λBϕ) ϕ̂× �Bp = rΩ0(f ) ϕ̂× �Bp

⇒ Ω0(f ) =
1

r
(vϕ − λBϕ), (9.12)

the first of the three Weber–Davis (WD) constants (Eq. 5 in WD67; Eq. 12 in S96)

which, evidently, has units of angular frequency whence its label, Ω0.

Before I give a physical interpretation of Eq. (9.12), I offer Fig. 9.1 for some

astrophysical context and a toy model of how an azimuthal component is twisted

out of a purely poloidal line of induction (labelled f in the figure) by a rotating,

axisymmetric disc. The salient points of this model are described in some detail in

the figure caption and so I shan’t repeat them here. Most important to the current

discussion, along the portion of f inside the so-called Alfvén point (labelled A at

r = rA in Fig. 9.1), the poloidal Alfvén number Ap < 13 and the Lorentz force

dominates fluid inertia. Thus, the “stiffness” of �B prevents it from being twisted

too much out of the poloidal plane, and the magnitude of the azimuthal component

of magnetic induction, Bϕ, remains small compared to the poloidal component, Bp.

However, beyond A where Ap > 1, fluid inertia dominates magnetic stresses and

the rate at which f is bent “into the page” increases significantly (Fig. 9.1b–d) as

does the magnitude of Bϕ which quickly exceeds Bp.

OK, so back to Eq. (9.12). Since Ω0 is a function exclusively of f , it must

be constant along the line of induction identified by f and so its value can be

determined at any point along that line. Thus, at its footpoint on the equatorial

plane (F in Fig. 9.1) where r = r0, vϕ = vϕ,0, and Bϕ = 0, Eq. (9.12) gives us,

Ω0(f ) =
vϕ,0

r0
, (9.13)

and we interpret Ω0 as the angular speed of the footpoint of f as it rotates with the

disc. Along f beyond the footpoint, Bϕ �= 0 and, from Eq. (9.12), the local angular

speed is evidently given by,

Ω(f , r) =
vϕ
r

= Ω0(f ) +
λBϕ

r
. (9.14)

Now, as depicted in Fig. 9.1 and explained in its figure caption, Bϕ < 0 for z > 0.

Further, both �Bp and �vp point away from F ( �Bp ‖ �vp) making λ > 0. For z < 0,

Bϕ > 0 while �Bp is antiparallel to �vp (the former points towards F while the latter

still points away), making λ < 0. Thus, λBϕ < 0 everywhere and Eq. (9.14) requires

Ω(f , r) ≤ Ω0(f ). That is to say, fluid flowing along f 4 at r > r0 lags behind the

3Rappel : The Alfvén number is the ratio of the flow and Alfvén speeds. Here, Ap = vp/ap
where vp is the flow speed in the poloidal plane and ap = Bp/

√
μ0ρ is the poloidal Alfvén speed.

4We haven’t established yet that fluid is driven outwards along lines of induction. We’ll assume
it for now, with verification awaiting discussion on the MHD Bernoulli function in 9.2.
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Figure 9.1. a) With no rotation, a single line of induction, f , (e.g., of a dipole
magnetic field in a stellar accretion disc) confined to a given poloidal plane passes
through and is anchored to the equatorial plane (e.g., the accretion disc) at its
footpoint, F (black squares), a distance r0 from the symmetry axis, z. With re-
flection symmetry across the equatorial plane and �B pointing generally upwards
as shown, �B is axial at F (Br = 0), acquires an outwardly pointing radial com-
ponent above F (Br > 0), and an inwardly pointing component below (Br < 0).
Between F and the Alfvén point, A, a distance rA from the z-axis (black circles)

where Ap = vp/ap < 1, the Lorentz force density, �fL, dominates fluid inertia and
f is drawn with a heavy line. Beyond A where Ap > 1, fluid inertia dominates
�fL and f is drawn with a finer line. b) With Ω > 0 and after the disc rotates

through 120◦, the dominant �B in r0 ≤ r ≤ rA resists, but does not prevent being
twisted out of the poloidal plane and a small component of azimuthal induction,
Bϕ, develops. Beyond rA, fluid forces dominate and differential rotation is better
able to bend f out of the poloidal plane creating a significant Bϕ. Note that

counterclockwise rotation with a generally upward �B twists out a clockwise Bϕ

(< 0) above the equatorial plane (z > 0), and a counterclockwise Bϕ (> 0) be-
low. The rotation also launches a torsion Alfvén wave whose progress along f is
marked by black triangles and labelled aϕ, the azimuthal Alfvén speed. Thus, the
twisted portion of f ends at aϕ beyond which f rejoins the original poloidal line
of induction (dashed lines). c) As the disc rotates through 240◦, Bϕ continues
to be twisted out of f while the torsion Alfvén wave moves further out along f .
d) After a full rotation, a complete loop of Bϕ has twisted out of f above and
below the equatorial plane. As the torsion Alfvén wave moves outwards along f
at speed aϕ, it brings more and more of the original poloidal line of induction
into what is becoming a tightly wound magnetic helix.

footpoint, F, by an angular speed,

Ωlag =
λBϕ

r
< 0, (9.15)

twisting the azimuthal component, Bϕ, out of f . Note that Ωlag both creates Bϕ

and is proportional to it, giving rise to an exponential growth of Bϕ in the vicinity

of the Alfvén point. Such growth cannot go on forever and indeed, Bϕ saturates as

vϕ in Eq. (9.14) asymptotes to zero; remember, λBϕ < 0. The four panels in Fig.

9.1 illustrate this progression.

Turning now to the steady-state continuity equation (Eq. 9.2), since ∂ϕ = 0,

we have,

0 = ∇ · (ρ�v) = ∇ · (ρ�vp) = ∇ · (ρλ�Bp),
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using Eq. (9.9) for the third equality. Thus,

∇ · (ρλ�Bp) = �Bp · ∇(ρλ) + ρλ���� 0

∇ · �B = 0, (9.16)

invoking ∂ϕ = 0 once again to complete the divergence of �B. Since �Bp · ∇(ρλ) = 0,

we can immediately conclude that ρλ is also a function of f only and,

η(f ) ≡ ρλ =
ρvp
Bp

, (9.17)

is constant along a line of induction (streamline) in steady-state ϕ-symmetry. This

is the second of three WD constants (equivalent to Eq. 8 in WD67; Eq. 13 in S96).

The quantity η, with units kgm−2 s−1 T−1, is known as the mass load, and Eq.

(9.17) asserts that the poloidal mass flux density, ρvp, per unit poloidal magnetic

flux density, Bp, is constant along a line of induction. This is the steady-state 2-D

manifestation of flux freezing, as required by Alfvén’s theorem 4.2 for ideal MHD.

Note that η inherits the sign of λ. Thus, η > 0 for z > 0 and η < 0 for z < 0.

Unlike Ω0, we cannot evaluate η at the footpoint, F, anchored as it is to the

equatorial (symmetry) plane, for here at z = 0, vp = 0 (but Bp = Bz �= 0) and thus

ρ → ∞ in order for η to remain non-zero. This, of course, is completely unrealistic

and one of the vagaries of assuming a steady-state axisymmetric system. So instead,

we evaluate η at the Alfvén point (A in Fig. 9.1) where vp = ap = Bp/
√
ρAμ0, and,

η =

√
ρA
μ0
, (9.18)

where ρA is the fluid density at the Alfvén point.

Next, consider the ϕ-component of the steady-state Euler equation, Eq. (9.4):

(�v · ∇�v)ϕ =
1

μ0ρ

(
(∇× �B)× �B

)
ϕ

=
1

μ0ρ
( �B · ∇ �B)ϕ, (9.19)

using Identity (A.19) and setting ∂ϕ = 0. Now, from the fifth of Eq. Set (A.40), the

ϕ-component of �A · ∇ �A in cylindrical coordinates for an arbitrary vector, �A, is,

( �A · ∇ �A)ϕ = �A · ∇Aϕ +
AϕAr

r
=

�A

r
· ∇(rAϕ).

Thus, Eq. (9.19) becomes,

�v · ∇(rvϕ) =
1

μ0ρ
�B · ∇(rBϕ)

⇒ 1

λ
�vp · ∇(rvϕ) = �Bp · ∇(rvϕ) =

1

ρλμ0

�Bp · ∇(rBϕ), (9.20)

since, yet again, ∂ϕ = 0 and �Bp = �vp/λ (Eq. 9.9). Now, since,

�Bp · ∇
(
rBϕ

ρλ

)
=

1

ρλ
�Bp · ∇(rBϕ)− rBϕ

(ρλ)2
�Bp · ∇(ρλ)
︸ ︷︷ ︸

= 0 (Eq. 9.16)

,
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Eq. (9.20) becomes,

�Bp · ∇
(
rvϕ − rBϕ

ημ0

)
= 0,

using Eq. (9.17), identifying another scalar whose gradient is perpendicular to �Bp.

That is,

l(f ) ≡ r

(
vϕ − Bϕ

ημ0

)
, (9.21)

is a constant along a line of induction (streamline). Further, since Bϕ/η < 0, both

terms on the RHS of Eq. (9.21) are positive. This is the third and final WD constant

(equivalent to Eq. 9 in WD67; Eq. 19 in S96) which we’ll refer to as the specific

angular momentum.

Writing Eq. (9.21) as,

l(f ) =
r

ηBp

(
ηBpvϕ − BpBϕ

μ0

)
=

1

ηBp

(
vprρvϕ − rBpBϕ

μ0

)
, (9.22)

then the quantity vprρvϕ on the RHS can be interpreted as the angular momentum

flux density, i.e., angular momentum per unit area per unit time whose units are

(kgm2 s−1)m−2 s−1 = kg s−2. Therefore, the full term, vprρvϕ/(ηBp) = rvϕ, is

interpreted as the angular momentum per unit mass transported along a poloidal

line of induction.

The quantity rBpBϕ/μ0 is the magnetic torque density (per unit area) with

units mT2/(TmA−1) = Nm/m2 = kg s−2 that the line of induction exerts on the

pencil of flux-frozen fluid flowing along f (a.k.a., a flux tube) as it bends in the

azimuthal direction. That is, bent lines of induction work to straighten themselves

out. The full term, −rBpBϕ/(μ0ηBp) > 0 with units Nm s kg−1 is the magnetic

torque impulse per unit mass along a poloidal line of induction.

For r � r0 (Fig. 9.1), Bϕ ∼ 0 and the magnetic torque density is negligible.

For r � rA, vϕ ∼ 0 and the angular momentum flux density becomes negligible.

At points in between, an increasing magnetic torque density comes at the expense

of angular momentum flux density so that l(f ) remains constant along a line of

induction. Thus, magnetic torque works against angular momentum as fluid flows

outwards until such time as vϕ asymptotes to zero.

Aside: Magnetic torque and moment

That the second term on the RHS of Eq. (9.22) may be interpreted as a magnetic

torque may not be obvious to the reader, whence this aside.

Figure 9.2 illustrates a section of the flux tube tied to f within the poloidal

plane. As explained in the Fig. 9.1 caption, �Bϕ is in the clockwise (−ϕ̂) direction

above the equatorial plane, and thus shown pointing out of the page in Fig. 9.2.

Meanwhile, �Bp is everywhere tangent to f and thus shown emerging from the end

of the flux tube section.
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Figure 9.2. A flux tube tied
to f with �Bp pointing along its
axis is analogous to a solenoid
(grey coils) with cross-sectional
area, Σ, and N coils carrying a
current, i, generating the same
�Bp along its symmetry axis. Its
magnetic moment, �μ = Ni�Σ,
interacts with �Bϕ generating a
torque that acts to straighten
out �B. See text for details.

This is entirely analogous to a current-

carrying solenoid (a few coils of which are

shown in Fig. 9.2 to reinforce the analogy)

supporting a magnetic induction, �Bp, along

its axis given by Ampère’s law,5

�Bp =
μ0Ni

V
�Σ. (9.23)

Here, N is the number of coils in the

solenoid, i is the current it carries, and

V = LΣ is its volume where Σ is its cross-

sectional area and L is its length.

If the solenoid is embedded in an exter-

nal magnetic induction, �Bext, then by the

law of Biot and Savart a net magnetic torque

is exerted on the solenoid given by,

�τ = �μ× �Bext,

where �μ = Ni�Σ is the magnetic moment of

the solenoid. Evidently, it is the misalign-

ment of �μ and �Bext that generates a torque causing one to twist into the other.

Now, from Eq. (9.23), Ni�Σ = V �Bp/μ0, and we may write,

�τ = �μ× �Bext = Ni�Σ× �Bext =
V

μ0

�Bp × �Bext,

and we see that a magnetic torque can also be interpreted as the misalignment

between two magnetic induction vectors or, equivalently, a severely bent single line

of induction. Anyone who has played with toy magnets or has used a compass will

intuit the phenomenon that misaligned magnetic fields try to align.

For the flux tube in Fig. 9.2, �Bext = �Bϕ and the torque per unit area acting

on the flux-frozen fluid to realign �Bp with �Bϕ and reacting to the bend in �B is,

�τ

Σ
=

L

μ0

�Bp × �Bϕ =
BpBϕ

μ0

�L× ϕ̂,

since �Bp ‖ �L = rr̂ + zẑ. The z-component of this expression is evidently,

τz
Σ

=
rBpBϕ

μ0
, (9.24)

justifying the second term on the RHS of Eq. (9.22).

Like η(f ), l(f ) as given by Eq. (9.21) is not easily evaluated at the footpoint

of f (F in Fig. 9.1). While it is true that Bϕ = 0 at F, so is η = ρλ = ρvp/Bp = 0

5The reader unfamiliar with Ampère’s law and the law of Biot and Savart (coming up soon)
is referred to the chapters on magnetism in any good first year textbook. My personal favourite is
Halliday, Resnick, & Walker (2003).
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since, at the equatorial plane, vp = vz = 0 by symmetry. Instead, we evaluate l(f )
at the poloidal Alfvén point (A in Fig. 9.1).

To this end, first solve Eq. (9.12) for Bϕ and then substitute that into Eq.

(9.21) to get,

l = r

(
vϕ − vϕ − rΩ0

λημ0

)
. (9.25)

But,

λημ0 = λ2ρμ0 =
v2p

B2
p/μ0ρ

=
v2p
a2p

= A2
p, (9.26)

using Eq. (9.9) and (9.17) and where Ap is the poloidal Alfvén number (see footnote

3 on page 344). Substituting this into Eq. (9.25) and subtracting r2Ω0 from both

sides, we get,

l − r2Ω0 = r

(
vϕ − rΩ0 − vϕ − rΩ0

A2
p

)

⇒ vϕ − rΩ0 =
l − r2Ω0

r(1 − 1/A2
p)
, (9.27)

after a little algebra.

Equation (9.27) has a potential pole at the poloidal Alfvén point, A, where

Ap = 1. Since the LHS of Eq. (9.27) must be finite everywhere including A, the

numerator on the RHS must also be zero at Ap = 1. That is, at A where r = rA,

l = r2AΩ0 =
r2A
r0
vϕ,0, (9.28)

using Eq. (9.13), which is equivalent to Eq. 21 in S96. Thus, the constant value of

l may be interpreted as the specific angular momentum at the Alfvén point in a

frame co-rotating with the footpoint of f . Problem 9.1 gives an alternate derivation

of Eq. (9.28) that avoids the Alfvén point altogether.

I leave it to Problem 9.2 to confirm these alternate versions of Eq. (9.12), (9.17),

and (9.21) expressed in terms of Ap:

Ω0(f ) =
1

r
(vϕ −Apaϕ) =

vϕ,0

r0
; (9.29)

η(f ) = Ap

√
ρ

μ0
=

√
ρA
μ0

; (9.30)

l(f ) = r

(
vϕ − aϕ

Ap

)
=

r2A
r0
vϕ,0. (9.31)

9.2 The MHD Bernoulli function

The fourth and final constant along a line of induction/streamline is the MHD

Bernoulli function. For the hydrodynamical case, we approached this in 2.4 by

examining the total energy equation in steady state; a similar approach for the
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MHD problem is relegated to Problem 9.3. Here, we follow S96 and derive the

Bernoulli function from the steady-state Euler equation, Eq. (9.4), in a reference

frame, O′, with origin at (z, r) = (0, 0) co-rotating with the footpoint, F, at angular

speed Ω0. In this frame, the fluid velocity is given by,

�v ′ = �v − rΩ0(f )ϕ̂ = �v − vϕϕ̂︸ ︷︷ ︸
�vp = λ�Bp

+ λBϕϕ̂ = λ�B, (9.32)

using Eq. (9.9) and (9.12). Thus, in frame O′ – and in this frame alone – not only

is �vp ‖ �Bp, but �v
′ ‖ �B. Note that O′ is different for each line of induction, f ,

whose footpoints are at different distances, r0, from the rotation axis and rotate

with different angular speeds, Ω0.

Since O′ is an accelerating frame of reference, the appropriate inertial acceler-

ations, namely Coriolis and centrifugal,6 must be included in Eq. (9.4), whence,

(�v ′ · ∇)�v ′ = −1

ρ
∇p−∇φ+

1

μ0ρ
(∇× �B)× �B + 2�v ′× Ω0ẑ︸ ︷︷ ︸

Coriolis

+ Ω2
0 �r︸︷︷︸

cent.

, (9.33)

where �r = rr̂ is the radial displacement of a point along f from the rotation axis.7

Let s be the arc length from the equatorial plane along a line of induction, f ,
and let ŝ be a unit vector everywhere tangential to f . Thus, we may write �B = Bŝ

and, taking the dot product of ŝ with Eq. (9.33), we get,

ŝ · ((�v ′ · ∇)�v ′) = −1

ρ
ŝ · ∇p− ŝ · ∇φ+Ω2

0ŝ · �r, (9.34)

where both the Lorentz and Coriolis terms drop out (since ŝ ‖ �B ‖ �v ′; Eq. 9.32).
Now, it might strike the reader as rather curious that of all things, the Lorentz

force – that which distinguishes MHD from ordinary HD – drops out in this frame

of reference! Indeed, even the Coriolis force drops out, and it is left solely to the

centrifugal force to distinguish this from the pure hydrodynamical case! As the fol-

lowing discussion shows and exploits, this is a peculiar property of this particular

frame of reference; from all other vantage points, Coriolis and/or magnetic terms

appear explicitly. Of course, in the end all reference frames must agree on whatever

flow is driven by these forces, and that reconciliation comes grace of the WD con-

stants derived in the previous subsection (e.g., Problems 9.4 and 9.5). For now, we

remain in the frame of reference, O′, co-rotating with the footpoint of f because it

is here where the MHD Bernoulli function is most easily derived and interpreted.

For convenience, define the spatial derivative along the line of induction, f ,
including as it bends into the azimuthal direction as,

∂

∂s
= ∂s ≡ ŝ · ∇ =

1

B
�B · ∇ =

1

B
�Bp · ∇ =

Bp

B
ŝp · ∇ ≡ Bp

B
∂sp , (9.35)

↑
∵ ∂ϕ = 0

6The reader unfamiliar with Coriolis’ theorem that derives these terms is directed to App. G.
7See Problem 9.4 for how Eq. (9.33) can be derived from an inertial frame of reference with

no direct mention of inertial accelerations.
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where ŝp is the unit vector everywhere tangential to the poloidal component of the

magnetic induction (exclusive of the azimuthal direction), and where ∂sp = ŝp ·∇ is

the spatial derivative with respect to sp, the arc length along the poloidal component

of �B. Evidently from this string of operator equalities, if ∂spq = 0 (e.g., q = a WD

constant), then ∂sq = 0 as well.

Considering now the LHS of Eq. (9.34), we have from Identity (A.19),

ŝ · ((�v ′ · ∇)�v ′) = ŝ · ∇v′ 2

2
−
���������� 0

ŝ · (�v ′ × (∇× �v ′)
)
= ∂s

v′ 2

2
, (9.36)

since once again, ŝ ‖ �v ′.
Next, here’s an identity I bet most readers aren’t familiar with; certainly I

wasn’t until I prepared this subsection! With I the identity matrix (tensor) and

since ∇�r = I (Eq. A.29),

ŝ · �r = �r · (ŝ · I) = �r · (ŝ · ∇�r) = �r · ∂s�r = 1
2∂sr

2. (9.37)

This is a general result; the dot product between any unit vector and the displace-

ment vector, �r, is the same as half the spatial derivative in the direction of the unit

vector of r2. Who knew? And, as an immediate corollary, we also have,

ŝ · r̂ =
1

r
ŝ · �r =

1

2r
∂sr

2 = ∂sr. (9.38)

Thus, the last term in Eq. (9.34) can be written as,

Ω2
0ŝ · �r =

Ω2
0

2
∂sr

2 =
1

2
∂s(Ω0r)

2, (9.39)

since ∂sΩ0 = 0 (a WD constant).

Finally, for an adiabatic equation of state (first defined on page 28), p = κργ

where κ and γ are constants, and we can write,

1

ρ
ŝ · ∇p = κγργ−2∂sρ =

γ

γ − 1
∂sκρ

γ−1 =
γ

γ − 1
∂s

(
p

ρ

)
= ∂sh , (9.40)

where h is the enthalpy of the gas (Eq. 2.73).

Substituting Eq. (9.36), (9.39), and (9.40) into Eq. (9.34) we get,

∂s

(
v′ 2

2
+ h + φ− (Ω0r)

2

2

)
= 0

⇒ BM(f ) ≡ v′ 2

2
+ h + φ− (Ω0r)

2

2
, (9.41)

is constant along the line of induction (streamline), and thus a function of the flux

function, f , alone. This is the MHD Bernoulli function which, with the first part of

Eq. (9.32),
�v ′ = �v − rΩ0ϕ̂ = �vp + (vϕ − Ω0r)ϕ̂,

becomes,

BM(f ) =
v2p
2

+
1

2
(vϕ − Ω0r)

2 + h + φ− (Ω0r)
2

2
, (9.42)
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or, alternately,

BM(f ) =
v2

2
+ h + φ− vϕΩ0r, (9.43)

(equivalent to Eq. 30 and 31 in S96). Setting any of Eq. (9.41)–(9.43) to a constant

along a line of induction (streamline) is Bernoulli’s theorem for MHD. Note that

the first three terms on the RHS of Eq. (9.43) are identical to those in the hydro-

dynamical Bernoulli function for gas (Bgas; Eq. 2.72), and it is only the fourth term

that distinguishes BM from Bgas. Still and curiously enough, this distinguishing term

doesn’t appear to be magnetic.

From Eq. (9.41), we see that in the rotating frame of reference, BM includes

terms for the specific kinetic energy, the enthalpy, the gravitational potential, and

something loosely referred to as the specific centrifugal energy, 1
2 (Ω0r)

2, whose role

is much more apparent from Eq. (9.42). If something were to provide the fluid with

a certain rigidity, say a strong poloidal magnetic induction (e.g., Fig. 9.1), then at

least out to a certain distance, say the Alfvén point, the fluid may more or less

undergo solid-body rotation (vϕ ∼ Ω0r), in which case, Eq. (9.42) reduces to,

BM(f ) ≈ v2p
2

+ h + φ− (Ω0r)
2

2
.

Ignoring for the moment fluctuations in h and φ, as r increases v2p/2 must rise to

compensate for an increasingly negative centrifugal term if BM is to remain constant

along f . Thus, we arrive at the most important physical conclusion from this anal-

ysis: In a rotating, axisymmetric magnetised fluid in the steady state, the poloidal

velocity of the fluid must accelerate outward along a line of induction/streamline,

f , at least until the Alfvén point.

Of course, flow cannot accelerate forever and Eq. (9.42) comes with its own

built-in limiter. We’ve already seen that once past the Alfvén point (A in Fig. 9.1),

Bϕ briefly grows exponentially from �Bp (discussion after Eq. 9.15) until such time

as vϕ asymptotes to zero (Eq. 9.14) and Bϕ to its final value. In this stead, Eq.

(9.42) reduces to,

BM(f ) ≈ v2p
2

+ h + φ,

recovering Bgas (Eq. 2.72) with no apparent mechanism for flow to continue accel-

erating outwards.

So what is the role of �B?

To be sure, magnetic effects are fundamentally responsible for the poloidal

acceleration. For example, without the presumed rigidity of the fluid afforded by a

dominant magnetic induction inside the Alfvén point and to a lesser extent beyond,

the mechanism described above could not accelerate flow along f . The analogy that

comes to mind is the bead-on-a-rod problem depicted in Fig. 9.3 and presented in

detail in Example G.1 (App. G). Here, we ask: ‘What is the acceleration of a bead

free to slide along a frictionless rod flung out in a horizontal plane?’ Intuitively,

it should be obvious that the bead is accelerated and launched by such an action.

Those familiar with Example G.1 could, in the rotating frame of reference, identify

the accelerant as the centrifugal force and, given the angular speed of the fling,
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Figure 9.3. A time-sequence of drawings depicting a bead being flung out in
the horizontal plane along a frictionless rod. From the inertial frame of reference
(e.g., the owner of the hand), the bead is launched by the normal force exerted
by the rod on the bead. In the rotating frame of reference of the rod, the bead
is flung out by a centrifugal force. While the two frames disagree on the nature
of the force, both agree on the bead’s acceleration and when the bead passes the
tip of the rod.

calculate the speed of the bead along the rod as a function of time, its acceleration,

etc.Of course, as viewed from an inertial frame of reference, the real force responsible

for the acceleration is the normal force exerted by the rod on the bead; those for

whom this claim is counter-intuitive are particularly directed to Example G.1.

In the current discussion of a rotating ideal MHD fluid, the “rod” is the “stiff-

ness” of the magnetic induction and the “bead” is a parcel of “flux-frozen fluid”

flowing along f . Thus, as interpreted by the rotating frame of reference, O′, flow is

accelerated by the centrifugal terms in Eq. (9.41)–(9.43), whereas the non-rotating

inertial frame of reference attributes the poloidal acceleration to, as it turns out,

two distinct magnetic effects, only one of which is analogous to the “bead-on-a-rod”

illustrated in Fig. 9.3.

To expose these magnetic terms explicitly, set v2 = v2p + v2ϕ and take the

derivative of Eq. (9.43) with respect to s to get,

∂sBM = ∂s

(
v2p
2

+
v2ϕ
2

+ h + φ− vϕΩ0r

)
= 0. (9.44)

I then leave it to Problem 9.5 to show that by examining the problem in an inertial

reference frame and invoking all three WD constants, Eq. (9.44) leads to,

∂s

(
v2p
2

+ h + φ

)
=

v2ϕ
r
ŝ · r̂ − 1

2ρμ0r2
∂s(rBϕ)

2. (9.45)

And so terms dependent upon the magnetic induction (direction of �Bp, ŝ, and the

azimuthal component, Bϕ) were there all along, hiding within the terms dependent

upon vϕ. Ignoring for the moment contributions from h and φ, Eq. (9.45) tells us

that ∂s(v
2
p/2) > 0 (i.e., flow accelerates along the line of induction) provided ŝ·r̂ > 0

and/or ∂s(rB
2
ϕ) < 0.
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The first term on the RHS of Eq. (9.45) is associated with the “bead-on-a-rod”

mechanism (BRM) discussed above. This centrifugal-like term accelerates material

along a streamline so long as ŝ has a significant radial component. While the criterion

stated above merely asks that ŝ · r̂ > 0, the discussion below in 9.2.1 shows that

by taking proper account of the gravitational potential, φ, the BRM is triggered

only when ŝ · r̂ > 0.5, that is when �Bp emerges from the equatorial plane at an

angle less than 60◦. Once flow passes the Alfvén point (A in Fig. 9.1), the line of

magnetic induction, f , bends dramatically into the azimuthal direction and develops

a significant ϕ̂-component (i.e., ŝ · r̂ falls below 0.5), stifling the BRM.

The second term on the RHS of Eq. (9.45) is a gradient of a radially weighted

magnetic pressure along f and, so long as this is negative, flow is accelerated out-

wards. As the disc rotates and the torsional Alfvén wave (marked aϕ in Fig. 9.1)

advances, more of the poloidal line of induction is twisted into the magnetic helix,

while lines of induction already in the helix get wrapped up more tightly. Thus,

the magnetic pressure associated with B2
ϕ is greater just beyond A than further out

and, so long as (rBϕ)
2 decreases with r, the so-called “magnetic tower mechanism”

(MTM; Lynden-Bell, 1996) creates an outwardly directed magnetic force. As a re-

sult, material can be gently accelerated outwards well beyond the Alfvén point and

even beyond the fast point where fluid flow exceeds the fast speed (Eq. 5.25). This

is explored a little further in 9.4 while Problem 9.6 explores further the MTM.

9.2.1 Critical launching angle

It seems, then, that in a rotating, strongly magnetised axisymmetric MHD system

in steady state, poloidal acceleration of fluid is inevitable by two magneto-rotational

mechanisms: “bead on a rod” (BRM); and the “magnetic tower” (MTM). Within

the Alfvén point, A, where �Bp dominates the fluid inertia and Bϕ is minimal, the

BRM is the primary accelerant. Beyond A where fluid inertia dominates �Bp and

Bϕ > Bp, the MTM takes over as the primary mechanism which can continue

accelerating fluid even beyond the fast point.

As the dominant mechanism inside A, the BRM must also be responsible for

liberating material from the predominant source of matter, namely the accretion

disc itself. So let’s think about this for a moment. As described above, the BRM is

predicated on the rod being swung in the plane into which the bead is flung. That

is, the rotation vector of the rod, �Ω, is perpendicular to the displacement vector

along the rod, �s. In fact, �Ω and �s need not be fully orthogonal, but they certainly

can’t be parallel! That is, a rod spinning about its long axis would never be able to

launch a bead centrifugally.

And yet, that’s exactly what we have at the footpoint, F, of the line of induction,

f , in Fig. 9.1. At the equatorial plane, �B is pictured with a z-component only and

thus parallel to �Ω. True, further out lines of induction develop a significant radial

component along which – as we’ve demonstrated – material can be accelerated

centrifugally. But how does material get launched from the disc when there, the

“rod” is parallel to the rotation axis?
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Figure 9.4. a) A barely Jeans-stable,8 slowly rotating interstellar cloud with a
weak �B roughly aligned with its rotation axis is perturbed by the passage of a
nearby star or shock wave and begins to collapse under its own weight (grey ar-
rows pointing radially inwards). b) As collapse towards the centre progresses, lines
of induction are dragged inwards along the equatorial plane forming an “hour-
glass” configuration. Collapse also increases the rotation speed giving rise to a
“centrifugal barrier” where centrifugal and gravitational forces balance, redirect-
ing radial flow towards the equatorial plane forming an accretion disc. c) Complex
dynamics allow disc material to make its way to the gravitational centre (large
inward-pointing arrows) where a “protostar” of mass M forms. Concentration of
matter increases both the magnetic induction strength and rotation rate trigger-
ing magneto-rotational outflow from the disc surface (smaller outward-pointing
arrows). Key point : Because of the finite thickness of the disc (2h) and the de-
gree to which lines of induction have been dragged inwards from afar, lines of
induction can emerge from the disc surface at angles substantially less than 90◦.

At this juncture, the reader would benefit from a quick tutorial on how pro-

tostars and their accompanying accretion discs form from an interstellar gas cloud.

The theory and current understanding of this truly fundamental question in astro-

physics is complicated and involved, and the ambitious reader is referred to the

excellent and well-cited 123-page review article by McKee & Ostriker (2007). Of

course, Wikipedia’s page on Star formation (listed with the McKee & Ostriker

reference) gives a more concise review.

The figure caption to Fig. 9.4 gives what I readily acknowledge is a vast over-

simplification of the process which I do without apologies so as not to distract

unduly from the current discussion. The prescient result here is that once formed,

lines of induction actually emerge from the surface of the accretion disc at angles

substantially less than the 90◦ pictured in Fig. 9.1 (e.g., see Fig. 9.4c). In fact, lines

of induction can leave the disc surface at such small angles that they practically lie

along the disc itself.

Let ε be the angle between the line of induction, f , and the surface of the

accretion disc at the footpoint, F, as shown in Fig. 9.5a. We know that at ε = 0◦

the BRM is in full force, while at ε = 90◦, the BRM is completely stifled. Therefore,

8A “Jeans-stable” interstellar cloud is one whose internal pressure gradients (thermal, mag-
netic, cosmic rays) are sufficient to prevent collapse of the cloud under its own self-gravity. This
so-called Jeans condition is named for its discoverer, Sir James Jeans (1877–1946).
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Figure 9.5. a) A line of induction, f , exits the surface of an accretion disc at
its footpoint, F, with angle ε. In axisymmetry, an arbitrary point, P, along f has
cylindrical coordinates (z, r), spherical polar coordinates (�, ϑ), and is located a
distance s from F which is a distance r0 from the rotation axis. b) The scaled
effective potential plotted against the scaled distance along f from the disc surface
for five different values of ε. Only for ε = 90◦ does φeff increase monotonically
and is thus attractive. For ε < 90◦, some or all of φeff decreases monotonically
where it is repulsive.

there must be some critical angle between these two extremes, εcrit, below which

the BRM works and above which it does not.

To find εcrit, consider the effective potential in the co-rotating frame of reference

that includes both gravitational and centrifugal terms (last two terms in Eq. 9.42),

φeff(s) = −GM
�(s)

− 1

2
Ω2

0r
2(s), (9.46)

where � is the distance between the gravitating mass (protostar), M , and an arbi-

trary point, P, along f , and r is the distance between P and the rotation axis (Fig.

9.5a). For reasons that shall become clear, we choose to parameterise Eq. (9.46)

with the distance coordinate along f , s, first defined just before Eq. (9.34). Note

that the functional dependence of � and r on s can be gleaned from Fig. 9.5a.

There are two things of particular note here. First, I remind the reader we are

assuming that this portion of f is co-rotating with its footpoint, F, at angular speed

Ω0. This, of course, presumes �B is strong enough to enforce co-rotation which, as

we’ve discussed, is a fair assumption only inside the Alfvén point (s < sA) and,

in particular, for s not too far from F. Beyond the Alfvén point, of course, this

assumption fails completely. Second, we explicitly ignore the enthalpy, h , and thus

make the assumption that the disc gas is cold.9

Figure 9.5b shows φeff from Eq. (9.46) in units of the gravitational potential

at F, plotted as a function of s in units of r0, at five different values of ε. Only for

ε = 90◦ where r = r0 does φeff increase monotonically with s, whose scaled value

9In this context, “cold” means both the Alfvén and Keplerian speeds are much greater than
the sound speed. It doesn’t necessarily mean that the temperature is too low for any of the gas to
be ionised.
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asymptotes to,
1

GM/r0
lim
s→∞φeff(s) = − Ω2

0r
3
0

2GM
= −1

2
,

since �(∞) → ∞, and for Keplerian rotation, Ω2
0 = GM/r30 . Thus, at ε = 90◦, the

effective force is always attractive and no fluid is accelerated outwards. For ε = 75◦,
say, φeff increases from s = 0 until it reaches a maximum at the equilibrium point,

s = seq, then decreases thereafter as the centrifugal term takes over. Evidently, for

s < seq, φeff is attractive while for s > seq, φeff is repulsive. Thus, if disc gas can

somehow rise above the potential barrier in 0 < s < seq (e.g., thermal agitation if

the gas isn’t “too cold”), then fluid could be accelerated outwards once it passes seq.

Finally, for ε = 30◦, say, φeff decreases monotonically right from the disc surface,

and material can be directly launched from the disc by the BRM.

And so we see that the property of φeff that distinguishes whether disc gas

must first overcome a potential barrier or whether it can be launched immediately

from the disc surface is the sign of its first derivative at s = 0. For ∂sφeff
∣∣
s=0

> 0,

φeff is concave upward and the gas is presented with a potential barrier. Conversely,

for ∂sφeff
∣∣
s=0

< 0, φeff is concave downward and repulsive right from the “git-go”.

The critical angle, εcrit, that separates these two possibilities is then where φeff
is neither concave upward nor downward, that is at the inflection point where its

second derivative at s = 0 is zero:

d2φeff
ds2

∣∣∣∣
s=0

= 0.

I leave it to Problem 9.7 to show that this criterion leads to,

εcrit = 60◦. (9.47)

9.3 Stellar winds

That the sun could drive a spherically symmetric wind into what was thought to be

the complete vacuum of interplanetary space was a hard sell, but Eugene Parker –

the same Parker of the Parker instability in 7.4 – convinced the then editor of the

Astrophysical Journal, Chandrasekhar himself, to overrule the referees and allow

what would become a seminal work to be published (Parker, 1958). Coincidentally,

this paper appeared just as MHD was making its own way into the mainstream of

physics and, nine years later, WD67 would bring these two ideas together to explain

how mass and angular momentum are transported away from the sun by Parker’s

solar wind.

In this section, we’ll use what we’ve learned about steady-state MHD, namely

the Bernoulli MHD function and the three WD constants, to follow how Weber

and Davis were able to derive profiles for the density, poloidal velocity, and other

quantities as functions of the coordinate, s, as material accelerates outwards along

a given line of induction, f 0.
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For boundary conditions, we’ll assume Bp, Ω0, and r0 are known at the foot-

point F of f 0, and that �Bp is strong enough to be force-free ( �J × �B = 0)10 so that

electromagnetic forces that might otherwise alter its initial configuration are zero.

This buys us two important simplifications. First, we can take �Bp to be a given

initial and enduring condition everywhere. Second, f 0 will more or less co-rotate

with the footpoint, F, at least until the Alfvén point.

In this context, consider once again the MHD Bernoulli function, reproduced

here for convenience:

BM(f ) =
v2p
2

+
1

2
(vϕ − Ω0r)

2 + h + φ− (Ω0r)
2

2
. Eq. (9.42)

Now, from Eq. (9.17), we have,

vp =
ηBp

ρ
,

and, by combining Eq. (9.26)–(9.28), we have,

vϕ − Ω0r =
Ω0(r

2
A − r2)

r(1 − ρ/η2μ0)
=

Ω0(r
2
A − r2)

r(1 − ρ/ρA)
, (9.48)

using Eq. (9.18) for the last equality. Substitute these and Eq. (2.73) into Eq. (9.42)

to get,

BM(f ) =
1

2

(
ηBp

ρ

)2
+

1

2

(
Ω0(r

2
A − r2)

r(1 − ρ/ρA)

)2
+

γp

(γ − 1)ρ
− Ω2

0r
3
0

�
− (Ω0r)

2

2
, (9.49)

since φ = −GM/� and, for Keplerian rotation in the disc, GM/r20 = Ω2
0r0 at the

footpoint, F (Fig. 9.5a). Thus, for a barotropic equation of state, p = p(ρ),11 BM

in Eq. (9.49) can be considered as a function of ρ, r, and � (with Bp, Ω0, and r0
set as boundary conditions) assuming the parameters η and rA can be determined;

more on that later.

However, both r and � can be considered as functions of s. How? For that we

go back to the beginning of the chapter and Eq. (9.1), namely,

�Bp = Bz ẑ +Brr̂ =
1

r

(
∂rf ẑ − ∂zf r̂

)
,

which tells us that if we know Bp as a function of (z, r) – which we do as an initial

and enduring condition – we also know the flux function, f , as a function of (z, r).

Thus, selecting a particular f 0 is tantamount to specifying a particular path in (z, r)

space; that is,

f (z, r) = f 0 ⇒ z = z(r, f 0).

Now, an incremental displacement, d�s, along f 0 has

magnitude (see inset),

ds =
√
dr2 + dz2 = dr

√

1 +

(
dz

dr

)2
,

10See Problem 9.8 for an example of how such a �B can be set to within a constant.
11Rappel : Both isothermal (p = c2isoρ) and adiabatic (p = κργ) equations of state are barotropes.
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where dz/dr is also a function of r. Thus,

s =

∫ r

r0

ds =

∫ r

r0

√

1 +

(
dz

dr

)2
dr ≡ s(r),

which, in principle, can be inverted to give r = r(s). Then, since � =
√
r2 + z2, we

also have,

�(s) =
√
r2(s) + z2

(
r(s)
)
,

and both r and � are functions of s as claimed. Therefore, given values for η and

rA, BM in Eq. (9.49) can be thought of as a function of ρ and s only. Thus, given a

value for BM for the chosen f 0 (more on this later too), Eq. (9.49) can, in principle,

be solved for ρ(s) which is our desired end. For once ρ(s) is known, the functions

vp(s) and others soon follow.

And so it remains to determine values for η (or equivalently, ρA), rA, and BM for

a given poloidal line of induction, f 0. For these, we’ll need an additional constraint

independent of Eq. (9.49) which we’ll get by examining its so-called critical points.

9.3.1 Critical points

The critical points of a given function are typically where the first derivative with

respect to the independent variables are zero. Since the MHD Bernoulli function,

BM(ρ, s), is constant along a poloidal line of induction, ∂sBM = 0 automatically and

so to find the critical points of Eq. (9.49) we need only seek points where ∂ρBM = 0.

To this end, we take derivatives with respect to ρ of Eq. (9.49) term by term.

Starting with the first term on the RHS, we have,

1

2
∂ρ

(
ηBp

ρ

)2
=

ηBp

ρ

(
− ηBp

ρ2

)
= −1

ρ

(
ηBp

ρ

)2
= −v

2
p

ρ
, (9.50)

using Eq. (9.17). Next,

1

2
∂ρ

(
Ω0(r

2
A − r2)

r(1 − ρ/ρA)

)2
=

Ω0(r
2
A − r2)

r(1 − ρ/ρA)
∂ρ

(
Ω0(r

2
A − r2)

r(1− ρ/ρA)

)

=
Ω0(r

2
A − r2)

r(1 − ρ/ρA)

(
− Ω0(r

2
A − r2)

r(1 − ρ/ρA)2

)(
− 1

ρA

)

=

(
Ω0(r

2
A − r2)

r(1 − ρ/ρA)2︸ ︷︷ ︸
vϕ − Ω0r = λBϕ

)2
1

ρA − ρ
=

1

ρ

(λBϕ)
2

ρA/ρ− 1
,

where the underbrace is justified by Eq. (9.48) and (9.12). But λ = vp/Bp (Eq. 9.9)

and ρ/ρA = η2μ0/ρ = v2p/a
2
p (Eq. 9.17, 9.18, and 9.26). Thus,

1

2
∂ρ

(
Ω0(r

2
A − r2)

r(1− ρ/ρA)

)2
=

1

ρ

v2p
B2

p

B2
ϕ

v2p/a
2
p − 1

=
1

ρ

v2pa
2
ϕ

v2p − a2p
, (9.51)
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since B2
ϕ/B

2
p = a2ϕ/a

2
p.

12 Next, for an adiabatic gas (p = κργ),

∂ρh = ∂ρ

(
γp

(γ − 1)ρ

)
=

γκ

γ − 1
∂ρρ

γ−1 = γκργ−2 =
1

ρ

γp

ρ
=

c2s
ρ
, (9.52)

where cs is the adiabatic sound speed given by Eq. (2.11) in 2.1.1.13 Finally, the

last two terms in Eq. (9.49) are independent of ρ. Therefore, taking the ρ derivative

of Eq. (9.49), we get using Eq. (9.50)–(9.52),

ρ∂ρBM = −v2p +
v2pa

2
ϕ

v2p − a2p
+ c2s . (9.53)

I then leave it to Problem 9.9 to show that Eq. (9.53) is equivalent to,

ρ∂ρBM = − (v2p − a2s )(v
2
p − a2f )

v2p − a2p
, (9.54)

where as and af are respectively the slow and fast magnetosonic speeds first intro-

duced in 5.2 (Eq. 5.23 and 5.25) and, in this context, are given by:

a2s =
1

2

(
a2 + c2s −

√
(a2 + c2s )

2 − 4a2pc
2
s

)
;

a2f =
1

2

(
a2 + c2s +

√
(a2 + c2s )

2 − 4a2pc
2
s

)
,

⎫
⎪⎬

⎪⎭
(9.55)

with a =
√
a2p + a2ϕ being the Alfvén speed (Eq. 5.26).

Thus, the critical points of the MHD Bernoulli function are where the ρ-

derivative of BM is zero which, by Eq. (9.54), are evidently the slow and fast points

(where vp = as or ap) along the selected poloidal line of induction, f 0. As Problem
9.11 shows, the slow point doesn’t tell us anything we don’t already know about

the solution. However, the fast point does provide a useful new constraint, which

we exploit in the next subsection.

Finally, the astute reader will note that the Alfvén point (where vp = ap) is

a pole of Eq. (9.54) and thus ρ∂ρBM is singular there. However, it is evidently an

integrable singularity14 since, on physical grounds alone, BM must remain finite all

along the poloidal line of induction, including the Alfvén point. Mathematically, we

can trace the singular nature of Eq. (9.54) to the second term on the RHS of Eq.

(9.49) which, by virtue of Eq. (9.48) (where the LHS is evidently finite for all r and

thus s15), remains finite even at the Alfvén point.

12Rappel : aϕ and ap are the azimuthal and poloidal Alfvén speeds respectively.
13Note that for an isothermal fluid, the result is identical. That is, ∂ρh = c2iso/ρ where ciso is

the isothermal sound speed given also by Eq. (2.11).
14Much like the function f(x) = 1/

√
x which is singular at x = 0 but integrable over the domain

x ∈ [0, 1]:
∫ 1
0 f(x)dx = 2

√
x
∣
∣1
0
= 2.

15The reader is encouraged to review the discussion surrounding Eq. 9.27 and 9.28 if this point
is unclear.
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Figure 9.6. The Weber–Davis model for the stellar wind follows the outflow
along the equatorial plane (ϑ = π/2; z = 0) where the spherical and cylindrical
radial components are the same (� = r). A line of magnetic induction, f 0, is
followed from its footpoint, F, a distance r0 from the origin to essentially ∞ and
includes an arbitrary point, P, at a distance � from the origin and s from F.
Both the poloidal velocity and magnetic induction are purely radial (�vp = v�̂,
�Bp = B�̂) along f 0.

9.3.2 The Weber–Davis Model

The stellar wind model considered by WD67 includes a few additional assumptions

and simplifications beyond those already made. First, using spherical polar coordi-

nates they consider wind only in the equatorial plane; that is flow along a poloidal

line of induction, f 0, inclined at an angle ε = 0 to the putative disc (Fig. 9.5a) and

where its footpoint, F, is a distance r0 from the centre of a (proto)star with mass

M . Thus, ϑ = π/2 (the z = 0 plane), �vp = vp(s)�̂, and �Bp = Bp(s)�̂ with the radial

coordinate � = r = s+ r0 (see Fig. 9.6).

In addition to the assumption of co-rotation along f 0 (and thus ap � Ω0r0),

WD67 assume the “disc” at r = r0 to be “cold”, and thus,

Ω0r0 � cs0 ⇒ ap0 ≫ cs0 ⇒ as0 ∼ cs0 → 0,

(e.g., first of Eq. 9.55). Since v0 also vanishes at r = r0 (outflow starts from rest),

v0 ∼ cs0 ∼ as0 → 0 identifying the footpoint, F, of f 0 as its slow/sonic point.

Further, it is assumed that rA � r0 but still finite whereas the fast point, rf → ∞.

Recall that the assumption of co-rotation along f 0 is reasonable so long as r < rA.

Next, whatever the nature of the outflow may be, both magnetic flux16 and

mass flux17 must be conserved which, in spherical polar geometry, requires:

Bpr
2 = constant = B0r

2
0 and ρvpr

2 = constant = ρAapAr
2
A. (9.56)

Here, the constant magnetic flux is evaluated at r0 where Bp = B0, whereas the

constant mass flux is evaluated at the Alfvén point where ρ = ρA and vpA = apA ,

the poloidal Alfvén speed at r = rA. Note that the mass flux was not evaluated at

r = r0 since, as noted just before Eq. (9.18), v0 → 0 and thus ρ0 → ∞.

With these additional assumptions and considerations, we start by evaluating

16The first of Eq. (9.56) is easily verified from the definition of ΦB in Eq. (4.8).
17Rappel : We’ve used conservation of mass flux in the steady state before: see Eq. (2.70).
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the constant value of BM. For if BM is truly constant, it can be evaluated anywhere

along f 0, and so we choose to evaluate it at the slow/sonic point (F) where v0 �
Ω0r0, vϕ = Ω0r0, � = r = r0, and p → 0 by virtue of cs � Ω0r0. Thus, Eq. (9.42)

and equivalently Eq. (9.49) evaluated at F is,

BM = −Ω2
0r

3
0

�
− (Ω0r)

2

2
= −3

2
(Ω0r0)

2, (9.57)

a known quantity since Ω0 and r0 are known boundary conditions. Comparing Eq.

(9.57) with Eq. (9.49) and then dividing through by Ω2
0r

2
0 , we get an expression for

the unitless MHD Bernoulli function,

B̃M =
1

2

η2B2
p

ρ2Ω2
0r

2
0

+
1

2

(r2A − r2)2

r20r
2(1 − ρ/ρA)2

− r0
r

− r2

2r20
= −3

2
, (9.58)

since � = r and where enthalpy has been dropped by the assumption of a cold disc.

For convenience, we express B̃M in terms of unitless quantities by introducing

the scaled variables,
x ≡ r

r0
and ρ̃ ≡ ρ

ρA
. (9.59)

Further, from the first of Eq. (9.56), Bp = B0/x
2 and from Eq. (9.18), η2 = ρA/μ0.

With all this, Eq. (9.58) becomes,

B̃M =
q0
ρA

1

ρ̃2x4
+

(x2A − x2)2

2x2(1− ρ̃)2
− 1

x
− x2

2
= −3

2
, (9.60)

where,

q0 ≡ B2
0/2μ0

Ω2
0r

2
0

, (9.61)

is the ratio of the magnetic pressure to the square of the rotation speed at F whose

units are those of density (and so q0/ρA is unitless).

Eq. (9.60) is still not in a useful form for finding a specific density profile, even

for the scaled variables ρ̃(x). At face value, the ratio q0/ρA is awkward, requir-

ing knowledge of measured quantities such as Ω0, B0, and even ρA. Fortunately,

we haven’t yet exhausted all the applicable constraints. We still haven’t used the

knowledge that whatever the solution may be, it must pass through the critical

points. It turns out that passing through the slow point only tells us something

about the footpoint we already know (and, if you want to find out what that is,

you’ll have to do Problem 9.11!). However, forcing the solution through the fast

point does provide something new, and gives us the last piece of the puzzle needed

to generate a specific stellar wind profile.

For Eq. (9.60), the criterion for critical points used in 9.3.1, namely ∂ρBM = 0,

becomes ∂ρ̃B̃M = 0. Applying this to Eq. (9.60), we get,

∂ρ̃B̃M = − q0
ρA

2

ρ̃3x4
+

(x2A − x2)2

x2(1 − ρ̃)3
= 0. (9.62)

Taking the fast point to be very much further away than r0, we evaluate Eq. (9.62)

as x → ∞ where the density, ρ̃, tapers off to zero. From the second of Eq. (9.56),
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we have,

ρvpr
2 = ρAapAr

2
A = ρA

BAr
2
A√

μ0ρA
= ρA

B0r
2
0√

μ0ρA
, (9.63)

using the first of Eq. (9.56). Dividing through by ρAvpr
2
0 , we find,

ρ̃x2 =
B0

vp
√
μ0ρA

⇒ lim
x→∞(ρ̃x2) =

B0

v∞
√
μ0ρA

≡ c, (9.64)

where v∞ is the flow speed as x→ ∞. Thus, so long as v∞ �= 0, x→ ∞ and ρ̃→ 0

in such a way that ρ̃x2 tends to a finite constant, c.

And so with this insight, we multiply Eq. (9.62) through by ρ̃ and expand out

the second term to get,

− q0
ρA

2

ρ̃2x4
+

ρ̃x4A
x2(1− ρ̃)3

− 2ρ̃x2A
(1 − ρ̃)3

+
ρ̃x2

(1 − ρ̃)3
= 0.

Then, taking the limit as x → ∞, ρ̃ → 0, and ρ̃x2 → c, the middle two terms

disappear leaving us with,

− 2q0
ρAc2

+ c = 0 ⇒ c3 =
2q0
ρA

. (9.65)

Equation (9.65) is half of what requiring the solution to pass through the fast

point buys us. The other half comes from evaluating Eq. (9.60) itself at the fast

point which first we rearrange a little to get,

B̃M =
q0
ρA

1

ρ̃2x4
+

x4A
2x2(1− ρ̃)2

− x2A
(1− ρ̃)2

− 1

x︸ ︷︷ ︸
+

x2

2(1− ρ̃)2
− x2

2

= " +
x2

2

(
1

(1− ρ̃)2
− 1

)

= " +
ρ̃x2

(1− ρ̃)2
− ρ̃2x2

2(1− ρ̃)2
= −3

2
.

Written in this form we see that by taking the limit as x→ ∞, ρ̃→ 0, and ρ̃x2 → c,

the second, fourth, and sixth terms on the RHS (last line) drop out and we’re left

with,
q0
ρAc2

− x2A + c = −3

2
.

But, from Eq. (9.65), q0/ρA = c3/2 and we have,

3

2
c− x2A = −3

2
⇒ c =

2

3
x2A − 1.

This is the other half of what the constraint buys us which, when compared with

Eq. (9.65), gives us the full constraint we’ve been seeking:

2

3
x2A − 1 =

(
2q0
ρA

)1/3
⇒ q0

ρA
=

1

2

(
2

3
x2A − 1

)3
, (9.66)

giving us a convenient expression for q0/ρA with no need for “measured values”.
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Aside: So let’s take a breath and review what we’ve done before trying to gener-

ate plots. We’ve re-examined the MHD Bernoulli equation, Eq. (9.42), in order to

determine profiles for ρ and vp along a “rigid” line of induction, f 0, that lies in

the equatorial plane (ε = 0) of a cold accretion disc. We further assume �Bp to be

force-free which means it can be set as an initial and enduring condition, and that

f 0 is in solid-body rotation with its footpoint, F, at least until the Alfvén point.

Boundary conditions include knowledge of B0, Ω0, and r0 at F.

With all this, we first found the constant value of the MHD Bernoulli function,

BM, by evaluating Eq. (9.42) at the slow/sonic point at r = r0; our result was Eq.

(9.57). This and the scaling laws in Eq. (9.59) allowed us to write down Eq. (9.60)

for the unitless MHD Bernoulli function, B̃M, in terms of unitless variables and

the ratio q0/ρA. An expression for the latter was found (Eq. 9.66) by forcing the

solution to pass through the fast point.

What remains, then, is to use all we’ve learned to find specific profiles for the

scaled variables: ρ̃; ṽp = vp/Ω0r0; and, as we’ll find to be very insightful, the “pitch

angle” of the magnetic induction, tanψ = Bϕ/Bp.

Thus, on substituting Eq. (9.66) into Eq. (9.60), we get our final form for the scaled

MHD Bernoulli equation for flow along a “rigid” radial line of induction along the

equatorial plane of a rotating disc:

F (ρ̃, x, xA) ≡ 1

2

(
2

3
x2A − 1

)3
1

ρ̃2x4
+

(x2A − x2)2

2x2(1− ρ̃)2
− 1

x
− x2

2
+

3

2
= 0, (9.67)

where F = B̃M + 3
2 is defined for convenience. For a given xA and x, Eq. (9.67)

presents a transcendental equation in ρ̃ which can be solved using a suitable root-

finder (e.g., the univariate secant method in D.1 of App. D) to find the value of ρ̃

that makes F (ρ̃, x, xA) zero.
18 The resulting function ρ̃(x) for xA = 100 is shown in

Fig. 9.7a over a domain of x ∈ [2 : 400] (avoiding x = 1 where ρ̃ blows up).

For the poloidal velocity, we return to Eq. (9.63) and write,

ρvpr
2 = ρA

B0r
2
0√

μ0ρA
⇒ vp =

1

ρ̃x2
B0√
μ0ρA

. (9.68)

But, from Eq. (9.61) and (9.66),

q0
ρA

=
1

ρA

B2
0/2μ0

Ω2
0r

2
0

=
1

2

(
2

3
x2A − 1

)3
⇒ B0√

μ0ρA
= Ω0r0

(
2

3
x2A − 1

)3/2
,

and Eq. (9.68) becomes,

ṽp ≡ vp
Ω0r0

=
1

ρ̃x2

(
2

3
x2A − 1

)3/2
, (9.69)

18The ambitious reader who would like to try this themself is directed to Computer Project
P9.1 in the problem set along with all the numerical cautions explained therein!
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Figure 9.7. Weber–Davis solutions for a) density, b) poloidal velocity, and c)
magnetic pitch angle along a radial line of induction, f 0, within the equatorial
plane of an accretion disc as functions of radial distance from the origin. The
footpoint, F, is located at x = x0 = 1 and the Alfvén point, A, is at x = xA = 100.
See Fig. 9.6 for the meaning of some of the quantities and the text for details.

where ṽp, shown in Fig. 9.7b, is scaled in terms of the rotational speed of the

footpoint, F.

I leave it to Problem 9.13 to show that along f 0, the tangent of the pitch angle –

defined as the ratio of the azimuthal to poloidal components of �B – is given by,

tanψ =
Bϕ

Bp
=

√(
1

x
+
x2

2
− 3

2

)
ρA
q0
ρ̃2x4 − 1, (9.70)

shown in Fig. 9.7c. It may come as a bit of a surprise that there should be any

Bϕ at all; that is, were the poloidal induction strong enough to enforce solid-body

rotation, no part of �Bp should get twisted into the azimuthal direction and tanψ

should be zero everywhere.

The fact is, our assumption of a “stiff” line of induction only bought us the

ability to prescribe Bp rather than computing it self-consistently with the other

flow variables. It does not strictly enforce solid-body rotation particularly as the

Alfvén point is approached and passed. As seen in Fig. 9.7c, tanψ starts off very

small (0 at r = r0), and then, as Problem 9.13 shows, reaches almost (but weirdly,

not quite) 1 rad at the Alfvén point (x = xA = 100) when xA � 1. Beyond xA,

tanψ continues to increase and, as x → ∞, tanψ ∝ x → ∞ (Problem 9.13 again)

and ψ → π/2. This harkens back to Fig. 9.1 at the beginning of the chapter where

it was reasoned that the line of induction should bend sharply out of the plane at

the Alfvén point, A, and become almost purely azimuthal at some point thereafter.

The last thing I want to touch on before leaving this section is the asymptotic

behaviour of vp, introduced but not evaluated in Eq. (9.64). Continuing from there,

we see that,

lim
x→∞ vp ≡ v∞ =

B0

c
√
μ0ρA

=
B0

(μ0ρA)1/2

(
ρA
2q0

)1/3
=

(
μ0

ρA

)1/6
B0

μ
2/3
0 (2q0)1/3

,

using Eq. (9.65) for the second equality. Carrying on, multiplying the RHS top and
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bottom by Ω0r0 we get,

v∞ =
1

η1/3
B0

(2μ2
0q0)

1/3

Ω0r0
Ω0r0

=

(
1

η

B0

μ0Ω0r0︸ ︷︷ ︸
η∗

)1/3
Ω0r0,

using Eq. (9.61) and after a little algebra for the second equality. The quantity η∗

has the same units as η and is composed of nothing but values from the bound-

ary conditions. Thus, defining the scaled mass load as η̃ = η/η∗, we find for the

asymptotic poloidal velocity,

v∞ =
1

η̃1/3
Ω0r0, (9.71)

which has a rather simple and profound interpretation. For a mass, m, in Keplerian

orbit of radius r0 about a central mass, M , its escape velocity is vesc = Ω0r0.

Therefore, so long as the scaled mass load, η̃, is less than 1 (i.e., a “light” mass

load), v∞ > Ω0r0 and material launched from the accretion disc will escape the

gravitational confines of M . Conversely, for a “heavy” mass load (η̃ > 1), v∞ < vesc
and launched material eventually falls back into M .

9.4 Astrophysical jets (optional)

We conclude this chapter with an example of steady-state MHD arising sponta-

neously within a complex numerical simulation. This example comes from work I

did with my former graduate student on launching a protostellar jet from an ac-

cretion disc (Ramsey & Clarke, 2011; 2019), and thus ties in very nicely with the

main result of this chapter: magneto-rotational driven outflow. In this section, I give

a minimalist description of what we did, just enough so the connections with the

Weber–Davis constants and the MHD Bernoulli function can be made. For those

who would like to learn more about these simulations, I would like to think our

papers are quite approachable to any reader of this text!

Our simulations were by no means the first to investigate numerically the

magneto-rotational acceleration of jets.19 They were, however, the first done on

a computational domain large enough both to resolve the physics necessary to ac-

celerate fluid near the protostar (zone size ∼ 0.005AU) and to follow the outflow

to distances where direct comparisons with observations could be made (several

thousand AU). To do so directly on a single 2-D grid would require nearly a trillion

zones which, even at the time of this writing, is completely impractical. Therefore,

we used a version of ZEUS-3D called AZEuS capable of integrating numerous grids

of varying resolution in the same simulation, a technique known as adaptive mesh

refinement (see references in Ramsey & Clarke, 2019).

Figure 9.8 shows four of the nested grids from the final epoch (∼100 years20) of

19An extensive bibliography of those preceding us is given in Ramsey & Clarke (2019).
20A hundred years doesn’t seem like a lot, and indeed our jets got no further than about
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Figure 9.8. Nested images from an AZEuS simulation of a protostellar jet
launched from an accretion disc (from Ramsey & Clarke, 2019, © Oxford Uni-
versity Press, reprinted with permission); details in text.

an axisymmetric simulation – remember the axisymmetric part – described in Ram-

sey & Clarke (2019) in which both magneto-rotational drivers (BRM and MTM) are

at work. Flow is from left to right with the location of the accretion disc indicated by

the heavy brown lines along the left edges of each panel. Colour contours represent

temperature with the scale given in Kelvins, black arrows represent velocity vectors

where length of the vector is proportional to magnitude (legend at bottom left in

km s−1), white lines represent lines of magnetic induction, and the fine black lines

in the top two panels map out the slow surface, the locus of slow points where the

slow magnetosonic number, Ms = vjet/as = 1. Dashed black lines indicate nested

grid boundaries and the units along the axes are AU.

In the top panel, the slow surface completely surrounds the super-slow21 (and,

for the most part, super-Alfvénic and even super-fast) outflow, separating it from

sub-slow material still on the grid. The latter includes the still-static “undisturbed

atmosphere” as well as the base of the outflow just “above” the disc (i.e., to the

right of the brown line) where material being accelerated by the BRM (and MTM)

has yet to reach the slow speed. Since much of the outflow is super-slow and, in

fact, super-fast, a “bow shock” is excited in the undisturbed atmosphere (labelled

∼ 4,000AU, tiny on astrophysical scales. Still, this is enough to reach observational lengths –
which was our purpose – and, as it was, this simulation took over two months of collective cpu on
then state-of-the-art parallel computers.

21And of course, by “super-slow” I don’t mean really really slow! I mean speeds faster than the
slow magnetosonic speed, as.
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in the top panel of Fig. 9.8 and nicely demarcated by the black slow surface) whose

narrowness attests to the high magnetosonic numbers (Mf,s) of the jet.

Still focussed on the top panel of Fig. 9.8, the outflow is actually comprised of

two components, separated as indicated by a tangential discontinuity (TD). Inside

the TD (deep blue on left, green and orange on right) is the actual jet ; material

magneto-rotationally accelerated from the disc as we’ve been discussing. The second

component trapped between the TD and bow shock is entrained atmosphere that

has passed through the bow shock and now moves forward with the jet. If you’ve

ever stood too close to the side of a road as a truck speeds by, you’ll know what

“entrained air” feels like. For a supersonic jet triggering a bow shock, not only is

gas entrained, it is condensed and heats up by factors of twenty or more.

Last things to discuss before making the connection with steady-state MHD are

the initial conditions. For this, we set up a non-rotating atmosphere in hydrostatic

equilibrium (∇p + ρ∇φ = 0) around a 0.5M�22 “protostar” located at the origin.

Embedded within this atmosphere is a force-free magnetic induction ( �J × �B = 0) in

an “hour-glass configuration” similar to that pictured in Fig. 9.4c. Looking carefully

at the white lines of induction in the top panel of Fig. 9.8, you’ll see this hour-glass

configuration still embedded within the sky-blue “undisturbed atmosphere”, the

portion of the initial atmosphere yet to be affected of the passage of the jet. To

break the equilibrium, an accretion disc specified as a boundary condition (per-

fectly conducting fluid in Keplerian rotation about the protostar; heavy brown lines

on left edges in Fig. 9.8) is “turned on” at t = 0, twisting the force-free lines of

poloidal induction anchored in the disc into a non-force-free helical configuration.

As all things in fluid dynamics, information about changing conditions never trans-

mits instantly. Rather, it propagates throughout the fluid at one or more of the

characteristic speeds. In this case, information about the rotating disc propagates

along the poloidal lines of induction as a torsional Alfvén wave (e.g., point labelled

aϕ in Fig. 9.1b,c,d) leaving in its wake a rotating atmosphere and the conditions

necessary for magneto-rotational acceleration.

Because this is an axisymmetric simulation, one of the necessary conditions for

steady-state MHD is already in place. However, the simulation very definitely in-

cludes all ∂t terms, and if any region within the computational domain exhibits

steady-state behaviour, it’s only because the physics has determined that ∂t = 0

there, or at least approximately so. Much of the second-from-the-top panel of Fig.

9.8 indicates such a region.

Our first result in 9.1 was an important one. From Eq. (9.9), we learned that

in steady state, the poloidal components of velocity and magnetic induction are

everywhere parallel or anti-parallel; streamlines lie on top of lines of induction. As

seen in the second-from-the-top panel of Fig. 9.8, most poloidal velocity vectors are

tangential to the white lines of induction, indicative of a region in steady state,

or at least nearly so. The biggest exception is near the top of the panel where

poloidal lines of induction bend backwards across the tangential discontinuity while

22M� ∼ 2× 1030 kg is the mass of the sun.
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Figure 9.9. a) Fractional deviations of the three Weber–Davis constants and the
MHD Bernoulli function as a function of distance, s, along the line of induction
anchored at 1 AU (red line in the third panel of Fig. 9.8). Where q is one of
the four constants, fq = (q − q0)/q0 where q0 is the expected constant value. b)
Key speeds along the same line of induction where the Alfvén and fast points
are indicated by the red (AP) and green (FP) dots respectively. Adapted from
panels F of Fig. 12 and 11 respectively from Ramsey & Clarke (2019).

the velocity vectors continue pointing forward. Here, velocity vectors cross lines of

poloidal induction indicating non-steady-state behaviour.

Most of the upper portion of the third-from-the-top panel (deep blue; cold) also

appears to be in steady state, based again on where �vp ‖ �Bp, while the lower portion

hugging the symmetry axis (yellow-orange; hot) does not. The bottom panel shows

in detail the dynamics right at the innermost portion of the jet and immediately

after material is launched. We’ll return to discuss this region – which is clearly not

in steady state – before leaving this section.

First, in the third panel of Fig. 9.8, let’s focus on the single red poloidal line

of induction anchored in the disc at 1AU from the origin (protostar) dividing the

panel more or less in half. Flow along this line certainly looks to be in steady state;

let’s see what the data say.

Figure 9.9 shows profiles of various quantities as a function of position, s, along

the red poloidal line of induction out to 16AU (half way across the third panel of

Fig. 9.8). Plotted on the left (Fig. 9.9a) are fractional deviations of the Weber–Davis

constants and the Bernoulli function from their expected constant values (Ω0 and

BM evaluated at the footpoint, η and l at the Alfvén point). Specifically:

fΩ0 =
Ω0r0
vϕ,0

− 1; fη = η

√
μ0

ρA
− 1; fl =

lr0
vϕ,0r2A

− 1; fBM =
2BM

3v2ϕ,0

− 1,

using Eq. (9.13), (9.18), (9.28), and (9.57), and where all quantities (vϕ,0, rA, etc.)

are as previously defined. As the profiles show, the WD constants and the Bernoulli

function vary by no more than a few percent, indicating the red line of induction is

within an approximately steady-state region.

Figure 9.9b shows profiles of various speeds along the red line of induction.

The profile of the azimuthal speed, vϕ (blue�), shows the behaviour we expect
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from Eq. (9.14) which states that since λBϕ < 0, vϕ should drop off steadily and

monotonically from its highest value at the footpoint of f .
Conversely, the poloidal velocity, vp (black profile�), steadily accelerates from

zero at the footpoint (s = 0) through the Alfvén point (AP, red dot in Fig. 9.9b)

where vp reaches the local poloidal Alfvén speed (ap, red profile ), and then on

through the fast point (FP, green dot) where vp reaches then exceeds the local fast

speed (af , green profile♦). While not evident in Fig. 9.8, a significant azimuthal

component of magnetic induction, Bϕ, has been twisted out of the original poloidal

induction even by the Alfvén point and by the fast point, Bϕ � Bp. Thus, for most

of the 16 AU shown in Fig. 9.9, we conclude that poloidal outflow is accelerated

principally by the magnetic tower mechanism (MTM).

However, within the first AU from the footpoint is the realm of the bead-

on-a-rod mechanism (BRM), as the bottom panel of Fig. 9.8 dramatically shows.

“Towers” of hot fluid are moving outwards at the local poloidal speed (thus, these

are moving “plasmoids” rather than waves) creating an environment near the sym-

metry axis that is anything but steady state. Notice how lines of poloidal magnetic

induction are wrapped around the red-yellow plasmoids whose magnetic tension

contains them. In fact, without this magnetic “packaging”, these plasmoids would

burst open, since the thermal pressure within them is very much greater than in

the cooler blue-green material surrounding them.

So where do these plasmoids come from? This, I have to say, was an entirely

unexpected result and is why one does simulations!

As seen in the bottom panel of Fig. 9.8, the angles at which lines of induction

emerge from the accretion disc (defined as ε in Fig. 9.5a) increases as one gets

closer to the rotation axis. In this particular simulation, ε doesn’t rise above εcrit =

60◦ – the critical launching angle discussed in 9.2.1 – until fairly close to the axis.

Remember, for ε > εcrit, the BRM is stifled; only for ε < εcrit is outflow by the

BRM spontaneous. Thus, over most of the disc where ε < 60◦, material is gently

and continuously launched from the disc and into the outflow, as is evident by the

velocity arrows close to the disc in the bottom panel.

However, close to the rotation axis, ε rises above 60◦ and, in principle, the BRM

should be suppressed. Now, lines of induction are not the ideal rigid rods that our

analytical work at times found convenient to assume. For lines of induction emerging

from the disc at angles just above 60◦, material that would otherwise be launched

accumulates at the footpoint. Owing to the rotation of the disc, this accumulating

mass is pressed outwards centrifugally which, at some point, is sufficient to bend

the line of induction outward just enough for ε to fall below 60◦. The accumulated

material is then launched en masse as a plasmoid, relieving the strain on the line

of induction which then snaps back to its unencumbered inclination (ε > 60◦).
Accumulation of mass resumes, and the cycle repeats. Thus, what we’re seeing in

the bottom panel of Fig. 9.8 is a simple harmonic oscillator at work, launching

material via the BRM as plasmoids rather than the steady wind further from the

axis. These plasmoids eventually blend and fuse together to form the hot jet core

seen in the three panels above.
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In these two examples from astrophysics – stellar winds in 9.3 and jets here –

we’ve seen two good uses for steady-state analysis, not being the “correct model”

notwithstanding. In 9.3 we saw, with a bit of effort, how to coax from the equations

of MHD analytic profiles for the density, poloidal velocity, and magnetic pitch angle

as functions of distance from the star within its equatorial plane (Fig. 9.7). The

profiles look simplistic and do not in any detail represent what an actual stellar wind

would look like. Still, some predictions from these profiles such as mass, energy, and

angular momentum fluxes, and conditions for outflow to reach escape velocity are

all more or less borne out by the observations. As a first cut, then, a steady-state

MHD model gives a good, first glimpse at how a stellar wind works.

In our second example, the simulations do not rely on steady-state theory at

all. MHD codes are designed to work in a time-dependent, fully 3-D environment,

and it is only a question of computing resources (and what physics and chemistry

may have been neglected) that limits the nature of the solution obtained.

Instead, here steady-state MHD provides a useful method for in situ code veri-

fication. When developing software such as ZEUS-3D and AZEuS, one relies heavily

on problems that can be solved (semi-)analytically (e.g., the Riemann problem in

Chap. 6) to check against the code’s solution. Certainly, any MHD code worth us-

ing will satisfy such tests, but these are very limited. It’s one thing to reproduce

a 1-D result from a shock tube. It’s quite another to simulate something such as

full-on 3-D super-Alfvénic turbulence; the state of 99% of all baryonic matter in the

universe with ZEUS-3D’s version represented in Fig. 7.2 and the chapter title bars.

It is the appearance of regions of steady state within a full-blown simulation

that can provide an important calibrator for the numerical algorithms used to solve

the time-dependent equations of MHD. It gives one a great deal of “faith” in the

algorithms when, in the middle of a complex calculation, something that can be

tested analytically arises spontaneously, and then the code passes those tests. In

the simulation depicted in Fig. 9.8, the fact that the WD constants and Bernoulli

function are “behaving” in regions identified as approximate steady state gives one

faith that maybe – just maybe – the rest of the simulation is OK too.

Never let anyone tell you faith and science don’t mix!

Problem Set 9

9.1 One can derive Eq. (9.28) in the text without encountering the Alfvén critical

point. By evaluating each of Eq. (9.12) and (9.21) at the Alfvén point, confirm that,

l = r2AΩ0,

where rA is the radial distance to the Alfvén point (A in Fig. 9.1 in the text), and

where l and Ω0 are two of the Weber–Davis constants defined by Eq. (9.12) and

(9.21).
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9.2 Show how the alternate forms of the Weber–Davis constants expressed in terms

of the poloidal Alfvén number, Ap, namely Eq. (9.29), (9.30), (9.31) in the text can

be derived from Eq. (9.12), (9.17), and (9.21).

9.3

a) Starting with the steady-state total energy equation (Eq. 9.3 in the text),

show that an alternate MHD Bernoulli function,

B′
M =

v2

2
+ h + φ+ a2ϕ − vϕBϕ

μ0ρλ
,

is a constant along a poloidal line of induction. That is,

�Bp · ∇B′
M = 0,

and thus, B′
M is a function of f only. Recall that aϕ = Bϕ/

√
μ0ρ is the toroidal

Alfvén speed.

b) Show that a suitable combination of B′
M and some or all of the Weber–Davis

constants recovers the MHD Bernoulli function, BM, derived in the text (Eq.

9.43).

9.4 In the text, the derivation of the MHD Bernoulli function begins with Eq.

(9.33), the steady-state Euler equation from a frame of reference, O′, co-rotating
with the footpoint of the line of induction (F in Fig. 9.1). As such, Eq. (9.33) is

written down with Coriolis and centrifugal accelerations included on the RHS.

For those for whom the incorporation of such inertial terms does not come naturally,

this problem is designed to take some of the mystery out of this approach. Starting

with the steady-state Euler equation as written for an inertial frame of reference,

namely Eq. (9.4) with no Coriolis or centrifugal terms added to the RHS, perform

the Galilean transformation,

�v = �v ′ + rΩ0ϕ̂,

to the LHS. Then, by using nothing more than vector calculus identities from App.

A, show how Eq. (9.33) can be recovered.

9.5∗ As presented in the text, the MHD Bernoulli function as given by Eq. (9.43)

is derived from the steady-state Euler equation (Eq. 9.4) from a particular rotating

reference frame, and differs from the pure hydrodynamical case (Eq. 2.72) by a

centrifugal-like term, −vϕΩ0r, that has no apparent connection to the magnetic

induction. Yet, �B must surely distinguish the two cases! This problem is designed

to make that connection by redoing the problem from an inertial reference frame.

a) The first part is a generic vector calculus problem in cylindrical coordinates



Clarke 9781009381475 .tex 373 2/04/2025

373 Problem Set 9

with ϕ-symmetry. For an arbitrary vector �A, show that in this geometry,

Âp · [ �A× (∇× �A)
]
=

1

2r2
Âp · ∇(rAϕ)

2, (9.72)

where Âp is a unit vector parallel to �Ap = Az ẑ+Ar r̂, the poloidal component

of �A, and Aϕ is the toroidal component.

Hint : Before taking the dot product with Âp, break �A and ∇× �A up into their

poloidal and toroidal components, and evaluate �A× (∇× �A). Then take the

dot product.

b) To do the physics problem from an inertial frame of reference, examine the

consequences of Euler’s equation along a line of induction, whence the ŝ di-

rection. Start by taking the dot product of the steady-state Euler equation

(Eq. 9.4 in the text) with ŝp and later, with the help of Eq. (9.35), derive Eq.

(9.45), namely,

∂s

(
v2p
2

+ h + φ

)
=

v2ϕ
r
ŝ · r̂ − 1

2ρμ0r2
∂s(rBϕ)

2.

Why couldn’t you have started off by taking the dot product of Eq. 9.4 with

ŝ directly?

Note that since this is being done in an inertial frame of reference, there should

be no mention of Coriolis and centrifugal accelerations.

Hint : Right off the bat, Identity (A.19) should be of help.

c) To “complete the circuit”, we must show that Eq. (9.44) in the text – a direct

consequence of the MHD Bernoulli function in Eq. (9.42) and (9.43) derived

in a rotating reference frame – is equivalent to Eq. (9.45) derived in an inertial

reference frame.

To this end, show that,

∂s

(
− v2ϕ

2
+ vϕΩ0r

)
=

v2ϕ
r
ŝ · r̂ − 1

2ρμ0r2
∂s(rBϕ)

2. (9.73)

With this connection made, we can finally conclude that the terms involving

the toroidal speed, vϕ, in the MHD Bernoulli function given by Eq. (9.42) and

(9.43) are where the magnetic driving forces stemming from the Lorentz force

are “hiding”.

Hint : I found it easier to manipulate the RHS to become the LHS and, as a

start, you might develop the v2ϕ/r term using Eq. (9.37) in the text. Further,

all three Weber–Davis constants are needed to complete the problem.

9.6 Another way of looking at the magnetic tower mechanism (MTM) discussed

briefly in the text is to consider the poloidal component of the Lorentz force density

in an inertial frame of reference.
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a) Starting from the Lorentz force density, �fL = �J × �B, show that the condition

for outward acceleration is,

v̂p ·
(
1

2
∇B2

ϕ +
B2

ϕ

r
r̂

)
< 0, (9.74)

where v̂p ‖ ŝp is a unit vector in the direction of outward flow along a poloidal

line of induction.

Hint : You might begin by considering each of �J and �B as a sum of their

poloidal and toroidal components.

b) Show how Eq. (9.74) relates to the last term in Eq. (9.45) of the text, thus

identifying Eq. (9.74) with the MTM.

Comment : The first term, ∇B2
ϕ/2, is a magnetic pressure gradient which,

like a thermal pressure gradient, exerts an outward force when negative. The

second term, B2
ϕ/r, is a positive-definite magnetic tension which works against

the magnetic pressure gradient. That is, the magnetic pressure gradient must

be negative enough to overcome the magnetic tension in order for flow to be

accelerated outwards by the MTM.

9.7

a) Referring to Fig. 9.5b in the text, show that at s = 0, the effective potential

given by Eq. (9.46) is:
φeff

GM/r0

∣∣∣∣
s=0

= −1.5.

This is a two-liner.

b) Show how setting the second derivative of φeff with respect to s to zero at

s = 0 leads to the critical angle, εcrit = 60◦ (Eq. 9.47 in the text).

Hint : You might first consider how to glean the relations �(s) and r(s) from

Fig. 9.5a in the text, and then continue by differentiating φeff as given by Eq.

(9.46) implicitly with respect to s.

9.8 A “force-free” magnetic induction is one where the Lorentz force, �J × �B = 0.

A general way to achieve this is for �J ‖ �B, but more simply, one can also have
�J = ∇× �B = 0 in which case the magnetic induction can be written as,

�B = ∇ψ, (9.75)

where ψ is a scalar potential and a function of the coordinates. A magnetic induction

whose curl is zero and thus given by Eq. (9.75) is known as a potential field.

a) Show that the scalar potential, ψ, solves Laplace’s equation. That is,

∇2ψ = 0. (9.76)

This is a two-liner.
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b) Solve Eq. (9.76) in cylindrical coordinates (assuming ϕ-symmetry as we’ve

been doing throughout this chapter) and show that the magnetic induction

everywhere is determined by knowing the value of a single free parameter at

a boundary (e.g., the disc).

Rappel : A good approach to solving a partial differential equation such as Eq.

(9.76) is the technique known as separation of variables which most under-

graduate curricula include in a “mathematical methods in physics” course.

For those in need of a refresher, I recommend the excellent text by Arfken,

Weber, & Harris (2013).

9.9 Show how Eq. (9.54) in the text follows from Eq. (9.53).

9.10∗ Besides mass and momentum, an MHD outflow transports energy. Here, we

examine two important energy flux densities,23 namely Poynting (magnetic) and

kinetic:
�SP =

1

μ0

�B × (�v × �B); and �K =
1

2
ρv2p �vp,

where �SP, the Poynting vector (a.k.a., Poynting flux density) is first introduced by

Eq. (4.15) in 4.5, and derived in App. B (Eq. B.17).

a) Show that the poloidal component of the Poynting flux density is given by,

SP,p = �SP · ŝp = −Ω0
τz
A
,

where ŝp is defined by Eq. (9.35) in the text, and τz/A is given by Eq. (9.24).

Give a physical interpretation of SP,p.

Hint : Consider working in the rotating frame of reference, O′, where Eq. (9.32)
applies.

b) In the limit as r → ∞, show that the ratio of Poynting to kinetic flux densities

is given by,

q ≡ |SP,p|
K

= 2
a2ϕ
v2p
,

where aϕ is the Alfvén speed in the toroidal direction.

c) Thus, at the fast point where r → ∞, show that q → 2 and give a physical

interpretation of this result.

9.11 Show that forcing the Weber–Davis solution to pass through the slow critical

point only confirms something we already know. What is that something?

Hint : One can approach this problem in a variety of ways, most of which lead

nowhere! I recommend starting with Eq. (9.42) in the text and apply to it the

23Rappel : See discussion after Eq. (1.18) for definitions of flux and flux density.
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conditions as r → r0 (i.e., cold disc, slow/sonic point). Then set ∂rBM = 0 to solve

the problem.

9.12

a) Show that as x→ ∞, Eq. (9.67) admits two asymptotic values for ρ̃.

b) On what basis can we determine which of these two asymptotic values is

physical and which is not?

9.13

a) Starting with Eq. (9.42) in the text, show that the tangent of the pitch angle,

tanψ, of the magnetic induction along a line of induction in the Weber–Davis

model is given by Eq. (9.70).

b) For xA � 1, show that Eq. (9.70) gives the expected result at x = 1 (the

footpoint), namely that tanψ = 0.

c) Again for xA � 1, find a numerical value for tanψ at the Alfvén point.

d) Finally, show that for x � 1 (but not necessarily xA), tanψ grows linearly

with x and, in particular,

lim
x→∞ tanψ = x

(
2

3
x2A − 1

)−1/2

. (9.77)

Thus, as x → ∞ ψ → π/2 and the poloidal line of induction is completely

twisted into the toroidal direction.

Figure 9.6 in the text illustrates the Weber–Davis model for xA = 100. Does

Eq. (9.77) give the expected result at x = 400 in panel c of the figure?

Computer project

P9.1 Write a computer program to calculate the scaled density profile, ρ̃(x), from

Eq. (9.67) in the text. Since this equation is transcendental, you will need to use

a root finder to solve it. The basic strategy is as follows. Set a fixed value for the

distance to the Alfvén point, xA. For Fig. 9.7, I used xA = 100, and so you might

start with this so that you can aim to reproduce this figure for verification of your

program. Next, choose a domain – again for Fig. 9.7, I chose 1 < x ≤ 400 – and

then for, say, 500 evenly spaced points within your domain, solve Eq. (9.67) for ρ̃.

Then use Eq. (9.69) and Eq. (9.70) to find ṽp and tanψ from ρ̃, x, and xA and plot

them up!
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In principle, one ought to be able to write a simple program using the univariate

secant solver in D.1 as the workhorse. However, two complications arise that may

make this routine a little too simple; at least I was unable to make it work. The

complications I found are:

1. For values of x0 < x6 < x < xA where x6 is some point between x0 and

xA, Eq. (9.67) has six roots. Now half of them are negative, so these can be

eliminated quickly. Still, one must choose among the three positive roots that

exist, as only one can be physical. The dumb secant finder in D.1 will just

report the first root it finds, if it can find one at all; see complication 2.

2. Eq. (9.67) has two poles at ρ̃ = 0 and 1. Should the root get too close to

either, the secant finder in D.1 may not find a root at all.

Hints : For the second issue, I found I needed a hybrid bisection-secant root finder

to handle getting too close to either pole (e.g., Numerical Recipes by Press et al.

1992), and for this I needed a routine that could sensibly “bracket” the root before

engaging the root finder. By “bracketing the root”, what I mean is you need to find

two values, ρ̃left and ρ̃right say, such that the functional value of F (ρ̃) in Eq. (9.67)

changes sign between the two all the while ensuring – and this is critical – neither

pole lies between ρ̃left and ρ̃right.

Addressing the first issue, for x < xA, ρ̃ > 1 and it turns out (at least for xA = 100)

that Eq. (9.67) has only one root greater than 1; that’s obviously the one you want.

On the other hand, for x > xA, ρ̃ < 1 and there can be two roots between 0 and 1;

you want the greater of the two to force a continuous solution at xA.

Bon courage!
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with thanks to Michael Power, B.Sc. (SMU), 2018, † and Christopher Mac-

Mackin, B.Sc. (SMU), 2015. ‡

Where did we come from, and how did we get here?

anybody who ever looked up

10.1 Introducing non-ideal MHD

In search for answers to such grand and existential questions, humanity has

found its way to the study of stellar and planetary formation. In this adven-

ture, the science of protostars and protoplanets has blossomed into its own sub-

discipline within astronomy and astrophysics, as confirmed by the sheer volume

Figure 10.1. Planetary disc of T Tauri
star IM Lup, ∼ 160 pc from the earth.
The disc radius is ∼ 335AU, ∼ 10 times
Pluto’s orbit (credit: ESO, H. Avenhaus
et al., E. Sissa et al., DARTT-S, SHINE).

of literature generated on the sub-

ject over the past four decades.1

Quite literally, thousands of scien-

tists worldwide spend their entire ca-

reers doing little else than delving

into the extremely challenging prob-

lems, both observational and theo-

retical, posed by how stars and their

planets come into being.

Doing what seemed unfath-

omable even twenty-five years ago,

modern observatories are now peer-

ing into the tiniest recesses of our

galaxy to image actual planetary

discs forming about newly minted

protostars (Fig. 10.1). Not to be out-

done, astrophysicists are now tack-

ling head-on the daunting complexi-

ties of science needed to understand

how discs form from the left-overs of

†Ph. D. (Toronto), 2028?
‡D. Phil. (Oxford), 2019
1See, for example, the latest in the series Protostars and Planets (Buether et al., 2014).
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Figure 10.2. An artist’s conception of a planetary disc surrounding a newly
formed star (credit: NASA/JPL-Caltech).

stellar collapse and, just as important, how a given disc condenses to form its

protostar’s future family of planets (e.g., Armitage, 2011).

For a complete understanding of the mechanics and evolution of a planetary

disc like the one illustrated in Fig. 10.2, the list of required physics and chemistry is

overwhelming: molecular chemistry, dust formation, photo-ionisation, aerosol the-

ory, radiative transport and, of course, non-ideal MHD. In fact, the problem of the

planetary disc is among the most illustrative of the complexities of “real-life MHD”

because it is here where the three main departures from ideal MHD are revealed

and apply: resistive dissipation, the Hall effect (separation of charge), and ambipo-

lar diffusion (coupling of neutrals to ions). Since the temperature within much of

a planetary disc is typically below – and even well below – 104K, the fluid is only

weakly ionised with most ions coming not from the principle ingredients of H and

He, but rather the more easily ionised and relatively plentiful contaminants such as

Na and K (5.14 eV and 4.34 eV/atom respectively, cf., 13.6 eV for H). And it is in

a weakly ionised medium where the non-ideal effects of MHD are most apparent.

In this, the ultimate chapter of this text, we have left the most challenging

aspect of MHD for last. The mathematics is not for the faint-at-heart and it will

be quite enough for us to acquire a sense of non-ideal MHD without bringing in

the full suite of physics and chemistry that “real-life” astrophysicists grapple with

for this problem. Still, no physicist can think of beginning their own journey into

answering humanity’s most venerable questions of origin without a firm grasp of

what underpins it all: non-ideal magnetohydrodynamics.



Clarke 9781009381475 .tex 380 2/04/2025

380 Non-ideal MHD

10.2 The three players

We begin our last journey together by following the excellent review article by

Steven Balbus (2009) who outlines, in a most readable form, the basics of non-ideal

MHD motivated by the problem of planetary disc formation.

10.2.1 A weakly ionised, isothermal, one-fluid model

Consider a weakly ionised medium consisting primarily of neutral particles (e.g., H,

H2, and He) with a small component of positively charged ions (e.g., Na+, K+, and –

to quote Balbus directly – other “trace vitamins”) and their liberated, negatively

charged electrons. Each of these three cospatial components of the fluid is governed

by their own set of (magneto)hydrodynamical equations and are coupled together

by easily understood forces that each component exerts on another.

For simplicity and illustration, let the fluid be isothermal. By no means is a

planetary disc properly considered isothermal! However, the facts that this assump-

tion eliminates the distraction of an energy equation, and the physics of non-ideal

MHD – which originate in the momentum equations – end up exclusively in the in-

duction equation, justifies this approach at least for our first look. The more general,

non-isothermal case is considered in 10.5.

The momentum equations (Eq. 1.27) for the three components of the fluid

including electromagnetic force densities and force densities arising from the inter-

action between fluid components are given by:

∂t�sn +∇ · (�sn�vn) = −∇pn − ρn∇φ+ �fa
i,n +

�fa
e,n; (10.1)

∂t�si +∇ · (�si�vi) = −∇pi − ρi∇φ + Zeni

(
�E + �vi × �B

)
+ �fa

e,i +
�fa
n,i; (10.2)

∂t�se +∇ · (�se�ve) = −∇pe − ρe∇φ− ene

(
�E + �ve × �B

)
+ �fa

n,e +
�fa
i,e, (10.3)

where there are numerous variables to declare, even if most are self-evident:

- �sn, �si, �se are, respectively, the momentum densities (�s = ρ�v) of neutrals, ions,

and electrons (‘n’, ‘i’, and ‘e’);

- �vn, �vi, �ve are, respectively, the velocities of neutrals, ions, and electrons;

- ρn, ρi, ρe are, respectively, the mass densities of neutrals, ions, and electrons;

- pn, pi, pe are, respectively, the partial pressures of neutrals, ions, and electrons;

- φ is, as usual, the gravitational potential which, though not central to fluid

dynamics, is included because of the astrophysical context of a planetary disc;

- �fa
1,2 is the ambipolar force density that fluid component ‘1’ exerts on fluid

component ‘2’ (1, 2 represent ‘n’, ‘i’, or ‘e’) and, because of Newton’s third

law, �fa
2,1 = −�fa

1,2;
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- Ze is the average charge per ion (for low ionisation, Z ≈ 1);

- −e is the charge on an electron;

- ni and ne are, respectively, the number densities of ions and electrons and,

because of charge conservation, ne = Zni; and

- �fEM = ρq( �E + �v × �B) is the electromagnetic force density on an ionised

component of the fluid (ions or electrons), where ρq is the charge density, �E

is the background electric field, and �B is the background magnetic induction.

Note that for reasons that will become evident, we are not yet writing this

term in the form �J × �B.

The nature of �fa
1,2 warrants some discussion. Two neutral particles approaching

each other will have a scattering cross section proportional to their cross-sectional

areas (said to be geometrical) and, if these particles are essentially point particles,

their mutual cross section would be exceedingly small and the likelihood of the

particles scattering as a result of their proximity commensurately low.

Conversely, a charged particle, be it a positive ion or a negative electron, will,

in the vicinity of a neutral particle, raise poles on the latter much like the moon

raises tides on the earth. That is, as a charged particle – let us suppose it to be

positive – approaches a neutral particle, electrons within the neutral particle are

drawn towards the approaching ion leaving a paucity of negative charge on the

opposite side. As a consequence, the now polarised neutral atom and approaching

ion feel a residual Coulomb attraction, enhancing their scattering cross section and

thus interaction significantly, even in a weakly ionised, rarified medium.

As subpopulations of the fluid, the ions and neutrals will, in general, have

different bulk flow velocities, �v1 and �v2. However, the enhanced interaction between

them encourages the two components to mix, thus acting like a drag force whose

effect is to reduce whatever relative velocity may be between them. As a drag

force, this ambipolar force density2 is evidently proportional to the density of each

component and their relative velocity,

�fa
1,2 = γ1,2ρ1ρ2(�v1 − �v2) ≡ γ1,2ρ1ρ2�v1,2, (10.4)

where �v1,2 is the velocity of fluid component ‘1’ relative to component ‘2’, and

where γ1,2 is the coupling (drag) coefficient containing all the physics leading to

the enhanced scattering cross section. It is usually expressed as (e.g., Draine et al.

1983; Balbus, 2009),

γ1,2 =
〈σu〉1,2
m1 +m2

, (10.5)

where m1 and m2 are the average masses of particles in components ‘1’ and ‘2’

(e.g., ions and neutrals), and where 〈σu〉1,2 – the rate coefficient, a.k.a. the collision

rate – is the product of the scattering cross section, σ, and the relative velocity,

2The etymology of “ambipolar” is “ambi” = both, as in “ambidexterous”. The Coulomb resid-
uals from both poles contribute to the enhanced scattering cross section between ions and neutrals.
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u, for particles in components ‘1’ and ‘2’ averaged over the ensemble assuming a

Maxwell–Boltzmann distribution (thermodynamical equilibrium; see Problem 10.1).

In the present discussion, the important rate coefficients are those for electron–

neutral and ion–neutral interactions. For a planetary disc that is 84% H2 and 16%

He by number (solar abundances), the average mass per neutral particle is mn =

2.32mp, where mp is the mass of the proton. Assuming the bulk of ions are Na+

and K+, then again from solar abundances, Na : K ∼ 5:4 and the average mass per

ion is mi ∼ 30mp. For such a composition, Draine et al. (1983) find that,

〈σu〉n,e = χn,e

√
T

T0
and 〈σu〉n,i = χn,i, (10.6)

where χn,e ∼ 2.62 × 10−14m3 s−1, χn,i ∼ 1.90 × 10−15m3 s−1, and T0 = 103K,

the nominal temperature in the inner portion of a planetary disc. These expressions

shall be used later when establishing the relative importance of the non-ideal terms.

For our discussions in 10.4 and 10.5, we’ll also need the rate coefficient for

ion–electron interactions. Problem 10.1 takes the reader through the calculation of

this quantity, where you should find,

〈σu〉i,e = χi,e

(
T0
T

)3/2
, (10.7)

where χi,e ∼ 1.84× 10−9m3 s−1.

Then, at the risk of confusing matters further, I define yet another quantity –

what I refer to as the ambipolar coefficient – for convenience and future use:

β1,2 =
1

γ1,2ρ1ρ2
=

1

〈σu〉1,2μ1,2n1n2
, (10.8)

where μ1,2 is the reduced mass of particles in components ‘1’ and ‘2’,

μ1,2 =
m1m2

m1 +m2
. (10.9)

The important point to bear in mind with the three quantities γ1,2, 〈σu〉1,2, and
β1,2 is that each describe the nature of the particle–particle interaction. In a given

context, whether one quantity is used or another will depend on the argument being

made and/or which makes the algebra look tidiest. The SI units for γ1,2 are inverse

density per second (m3 kg−1 s−1), for 〈σu〉1,2 are area times a speed (m3 s−1), for

β1,2 are inverse density times second (m3 kg−1 s), and all three are symmetric with

respect to the interchange of their subscripts. I note in passing that in the literature,

you’ll find yet another related quantity,

ν1,2 = n2〈σu〉1,2,
which is not symmetric in the interchange of ‘1’ and ‘2’ because of the appearance

of the number density, n2. With units s−1, ν1,2 is known to plasma physicists as

the collision frequency with which a single particle of component ‘1’ collides with

any particle of component ‘2’. In an effort to pare down the number of coefficients

at least by one, in my presentation I’ve managed to avoid the specific need for ν1,2,

and so I mention it no further!
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Finally, from Eq. (10.4), the ambipolar force density exerted by component ‘2’

on component ‘1’ is, by Newton’s third law,

�fa
2,1 = −�fa

1,2 = γ1,2ρ1ρ2�v2,1 = 〈σu〉1,2μ1,2n1n2�v2,1 =
�v2,1
β1,2

, (10.10)

since ρ1 = m1n1.

Now, in a weakly ionised medium such as a planetary disc, ρi � ρn and ρe � ρn.

Equivalently, the partial pressures of the ionised components are negligible com-

pared to that of the neutral particles: pi � pn and pe � in. In this limit, the inertial

terms in Eq. (10.2) and (10.3) are negligible compared to the electromagnetic and

ambipolar force densities which evidently must balance each other. Thus:

ene( �E + �vi × �B) + �fa
e,i +

�fa
n,i = 0; (10.11)

−ene( �E + �ve × �B) + �fa
n,e +

�fa
i,e = 0, (10.12)

since ne = Zni. Adding Eq. (10.11) and (10.12) together then yields:

ene(�vi − �ve)︸ ︷︷ ︸
�J

× �B + �fa
n,i +

�fa
n,e = 0, (10.13)

where �J is the current density in the fluid, proportional to the velocity of the ions

relative to the electrons.3 This is a good time to remind the reader that from the

Ampére–Maxwell law (Eq. B.1 in App. B),

�J = ene�vi,e =
1

μ0
∇× �B, (10.14)

when the displacement current can be ignored, as is the case for non-relativistic

MHD. Thus, we can rewrite Eq. (10.13) as,

�fa
i,n +

�fa
e,n = −�fa

n,i − �fa
n,e = �J × �B︸ ︷︷ ︸

�fL

=
1

μ0
(∇× �B)× �B, (10.15)

where we finally recognise the Lorentz force density, �fL, as defined in Eq. (4.10).

Thus, Eq. (10.1) becomes,

∂t�sn +∇ · (�sn�vn) = −∇pn − ρn∇φ+
1

μ0
(∇× �B)× �B, (10.16)

which now looks like the standard, ideal momentum equation for MHD (e.g., Eq.

4.13).

Now, if you’ve been paying attention, something about Eq. (10.16) should strike

you as a bit odd. The list of force densities on the RHS of the momentum equation

for neutral particles includes the Lorentz force to which neutral particles aren’t

supposed to be affected! So what gives?

As Eq. (10.15) tells us, in the limit of a weakly ionised medium, the sum of

the force densities exerted by the charged subpopulations on the neutrals is equal

3Evidently, if the ions and electrons move in lockstep with �vi,e = 0, there can be no net current.



Clarke 9781009381475 .tex 384 2/04/2025

384 Non-ideal MHD

to the Lorentz force density the magnetic induction exerts on the charges. Thus,
�J× �B appears in Eq. (10.16) as a proxy, if you will, for the ambipolar force densities

acting on the neutrals, �fa
i,n+

�fa
e,n. Now, even though �fa

i,n and �fa
e,n are proportional to

ρi and ρe respectively, they are not negligible (evidently not; they sum to �J × �B !)

because of the enhanced ion–neutral coupling coefficients γe,n and γi,n. Thus, to

emphasise what has already been stated, the ions and electrons have a significant

effect on the neutral particles despite their low number densities.

Next, examining the ratio of the ambipolar force densities the electrons and

ions each exert on the neutrals, we have,

fa
e,n

fa
i,n

=
〈σu〉e,nμe,nne��nnve,n
〈σu〉i,nμi,nni��nnvi,n

∼ 3.5× 10−3

√
T

T0
, (10.17)

using Eq. (10.6) and (10.10), where μe,n and μi,n are the reduced masses of the

electron–neutral and ion–neutral particles respectively (Eq. 10.9) using solar abun-

dances (mn = 2.32mp and mi = 30mp), and presuming ne = ni with no systemic

difference between the velocities of the electrons and ions relative to the neutral

particles. This ratio is even smaller for T < T0 and so, for our purposes, �fa
e,n can be

safely ignored compared to �fa
i,n. Thus, Eq. (10.15) becomes,

�fa
i,n = �J × �B = �fL =

�vi,n
βi,n

⇒ �vi,n = −�vn,i = βi,n �fL, (10.18)

using Eq. (10.10). Therefore, in the low-ionisation limit, three prominent velocities

of the flow can be attributed unique physical interpretations, namely:

1. �vn is the bulk flow velocity of the vast majority of the fluid;

2. �vi,e = �J/ene, proportional to the current density (Eq. 10.14); and

3. �vi,n = βi,n �fL, proportional to the Lorentz force density (Eq. 10.18).

Returning now to Eq. (10.12), �fa
i,e ∝ ρeρi can be safely ignored on the grounds

that it is second-order small. Thus, dividing Eq. (10.12) through by −ene, dropping
�fa
i,e, inserting a few gratuitous velocities here and there, and using Eq. (10.4) for
�fa
n,e, we get,

�E +
(
�ve + �vi − �vi + �vn − �vn

)× �B − γn,eρnρe
ene

(
�vn − �ve + �vi − �vi

)
= 0

⇒ �E + �vn × �B − �vi,e × �B + �vi,n × �B +
γn,eρnρe
ene

(�vi,n − �vi,e) = 0.

Then, using Eq. (10.14) and (10.18) to replace �vi,e and �vi,n, we get,

�E = −�vn × �B +
1

ene

�J × �B︸ ︷︷ ︸
�fL

− βi,n �fL × �B − γn,eρnρe
ene

(
βi,n �fL − 1

ene

�J

)
. (10.19)
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The second and fourth terms on the RHS are both proportional to �fL. Exam-

ining the ratio of their scalar coefficients, we find:

term4

term2
=

γn,eρnρe

��ene

1

γi,nρiρn
��ene =

〈σu〉e,nμe,nne��nn

〈σu〉i,nμi,nni��nn
∼ 3.5× 10−3

√
T

T0
,

the same result found in Eq. (10.17). Thus the fourth term can be safely ignored,

and Eq. (10.19) can be written as,

�E = −�vn × �B + η �J +
1

ene

�fL − βi,n �fL × �B, (10.20)

where,

η ≡ γn,eρnρe
(ene)2

=
〈σu〉n,eμn,e

e2
nn

ne
. (10.21)

Since η has SI units,

[η] =
m3 s−1 kg

C2

���m−3

���m−3
=

Vm

A
= Ωm,

and is irrespective of the ionised component, it is interpreted as the resistivity arising

from the frictional interaction between electrons and neutral particles. Thus, η �J is

the portion of the electric field, �E, required to drive a current density, �J , in a

medium with resistivity, η.

In the literature, Eq. (10.20) is often referred to as the generalised Ohm’s law,

which I suppose stems from the commonly held view that �E = η �J is a statement of

the “ungeneralised” Ohm’s law. As any astute first-year physics student will know

but many seasoned physicists seem to have forgotten, the expressions �E = η �J and

its cousin from circuit analysis, V = IR, are not statements of Ohm’s law but merely

operational definitions of the resistivity, η, and resistance, R. A correct statement

of “Ohm’s law” is for some so-called “Ohmic materials”, η (R) is independent of

the applied field, �E (voltage, V ); that is, �E ∝ �J or V ∝ I.4 While it is certainly

true that η, as given by Eq. (10.21), is independent of �E (and so the MHD fluid

under consideration qualifies as “Ohmic”), I’m still not certain what those who

refer to Eq. (10.20) as the “generalised Ohm’s law” actually mean. For my part, I

shall refer to Eq. (10.20) as the “electric field in a non-ideal MHD fluid” and any

effects attributed to the resistivity, η, as “resistive” rather than “Ohmic”. I mention

all this so the reader is cognizant of why many authors will refer to these as the

“generalised Ohm’s law” and “Ohmic effects” respectively.

Finally, from Faraday’s law of induction (Eq. B.1), we can write from Eq.

(10.20),

−∇× �E = ∂t �B = ∇×
(
�vn × �B − η �J − 1

ene

�fL + βi,n �fL × �B

)
, (10.22)

giving us the non-ideal induction equation with “the three players” of non-ideal

MHD fully exposed. Evidently, the leading term behind the curl, �vn × �B, is the

induction term, which we found by conserving magnetic flux in 4.2 (Eq. 4.4). The

4See, for example, Halliday, Resnick, & Walker (2003) who make these specific points.
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three terms following are what render this version of the induction equation “non-

ideal” which, from left to right, are:

1. −η �J : Resistive dissipation, discussed further in 10.3. As stated, this results

from the interaction between the electron and neutral sub-populations via the

resistivity, η.

2. −�fL/ene : the Hall effect, discussed further in 10.4. Since the coefficient

1/ene = 1/Zeni is irrespective of the neutral component, this term stems

from the interaction between the electron and ionised sub-populations.

3. βi,n �fL × �B : ambipolar diffusion, discussed further in 10.5, so named because

of the enhanced diffusion of ions and neutrals afforded by the ambipolar force

density as measured by the ambipolar coefficient, βi,n.

Including the continuity equation, Equation Set 10 below embodies our deriva-

tion from first principles of a non-ideal MHD model for a weakly ionised three-

component isothermal fluid consisting of low number densities each of electrons and

ions, mixed with a much higher number density of neutral particles.

Equation Set 10 :

∂tρn +∇ · (ρn�vn) = 0; Eq. (1.19)

∂t�sn +∇ · (�sn�vn) = −∇pn − ρn∇φ+ �fL; Eq. (10.16)

∂t �B = ∇×
(
�vn × �B − η �J − 1

ene

�fL + βi,n �fL × �B

)
, Eq. (10.22)

where pn = cisoρn, ciso =
√
kBT/mn is the isothermal sound speed (Eq. 2.11) in

keeping with our assumption of isothermality, �J = ∇× �B/μ0 is the current density,
�fL = �J × �B is the Lorentz force density, and where η and βi,n are given by Eq.

(10.21) and (10.8) respectively.

Other than the non-ideal terms in the induction equation, Eq. Set 10 looks

just like Eq. Set 6 on page 109 (less the energy equation, of course), derived for a

single fluid. The flow variables in Eq. Set 10 (ρn, �vn, etc.) all refer to the dominant

neutral component with the only vestiges of the charged components found in the

coefficients η and 1/ene (in which ne appears), and βi,n (in which ni is buried). And

since ne = Zni, one only needs input for ni which, for weakly ionised astrophysical

plasmas, can usually be modelled as some function of nn. For example, Fiedler &

Mouschovias (1993) suggest,

ni = k1

(
nn

n1

)1/2
+ k2

(
n2

nn

)2
, (10.23)

where k1 = 3× 103m−3, k2 = 4.64× 102m−3, n1 = 1011m−3, and n2 = 109m−3.

Equation Set 10 is a one-fluid isothermal model for non-ideal MHD and forms

the basis for theoretical and computational work in planetary discs, as well as any
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other problem in (astro)physics where the fluid is expected to be weakly ionised

and isothermal.

The first to incorporate one-fluid ambipolar diffusion in an isothermal MHD

code was Black & Scott (1982). Since then, many works too numerous to list have

performed one-fluid isothermal simulations including one and even two non-ideal

terms, but precious few have included all three. The first I’m aware of to apply all

three terms to a simulation of a planetary disc is Lesur, Kunz, & Fromang (2014).

Computational challenges introduced by the non-ideal terms – particularly the Hall

term – are discussed by Falle (2003), who also reports on an isothermal algorithm

that overcomes these challenges under certain circumstances.

10.2.2 Relative importance of the non-ideal terms

For viscid flow, we defined in Chap. 8 the unitless Reynolds number, R (Eq. 8.40),

to distinguish flows in which viscous stresses are negligible compared to the inertial

terms (R � 1) from those where they dominate (R < 1). In that same spirit, we

define the unitless magnetic Reynolds number, RM, to compare the relative impor-

tance of the inductive and resistive terms. By taking vn → V as characteristic of

the flow speed and ∇ → 1/L as a characteristic length (e.g., distance over which

variables change appreciably), we can write the ratio of the induction and resistive

terms in Eq. (10.22) as,5

|�vn × �B|
η| �J | =

|�vn × �B|
η|∇ × �B|/μ0

→ V B

ηB/(Lμ0)
=

μ0V L

η
≡ RM. (10.24)

When the characteristic speed is taken as the Alfvén speed, a = B/
√
μ0ρ (Eq. 5.26),

the magnetic Reynolds number is called the Lundquist number,

S ≡ μ0aL

η
. (10.25)

Starting with the Lundquist number, we can find a more practical expression

(i.e., into which numbers can be plugged) for the ratio of the inductive and resistive

terms, which I designate here as RIR. Substituting Eq. (10.21) into Eq. (10.25),

then using the first of Eq. (10.6), we arrive at,

RIR = S = μ0aL
e2

〈σu〉n,eμn,e

ne

nn

=
μ0e

2L0

χn,eμn,e

√
kBT0
mn

a

√
mn

kBT︸ ︷︷ ︸
1/ciso

ne

nn

L

L0
= χIR

√
α

α0

ne

nn

L

L0
,

(10.26)

where χIR = 3.82 × 1013 (unitless), L0 = 1AU (1.50 × 1011 m), α = a2/c2iso is the

“MHD-alpha” defined by Eq. (5.30), α0 = 0.01 which corresponds to a “warm”

5As compared to how we arrived at the Reynolds number, R , in 8.5, this “derivation” of the
magnetic Reynolds number is rather “cheap and cheerful”. For a more “proper” derivation of R M,
see Problem 10.4.
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planetary disc (where, owing to protostellar heating, the thermal energy density is

greater than the magnetic energy density), ciso is the isothermal sound speed, and

mn = 2.32mp as set on page 382.

Evidently, for a “warm” planetary disc where L = 1AU is taken to be the scale

length, RIR ∝ χIR is ridiculously larger than 1 (i.e., the fluid can be considered a

perfect conductor) unless the ionisation fraction, ne/nn, is exceedingly low.

As it happens, in much of a planetary disc where 10 � T � 104K, ne/nn �
10−10 making RIR � 103 which, while still significantly greater than 1, now makes

fluid resistivity arising from electron–neutral coupling a dynamical player.6 Thus,

what seems to be an overwhelmingly large coefficient, χIR, in Eq. (10.26) cannot

rule out the resistive term in some astrophysical applications nor, for that matter,

the Hall and ambipolar diffusion terms.

To compare the resistive and Hall terms, we consider the ratio of the second

and third terms on the RHS of Eq. (10.22),

RRH =
η| �J |

|�fL|/(ene)
=

ηene| �J |
| �J × �B| → ηene

B
=

〈σu〉n,eμn,enn

Be
,

using Eq. (10.21). Once again, we insert the first of Eq. (10.6) and factors of unity

to get,

RRH =
χn,eμn,e

e

1√
kBT0μ0

√
kBT

mn︸ ︷︷ ︸
ciso

√
μ0mnnn

B︸ ︷︷ ︸
1/a

n1/2
n =

√
α0

α

nn

nRH
, (10.27)

where the critical density for RRH, nRH = 7.83× 1021 m−3, corresponds to a mass

density of ∼ 3×10−5 kgm−3. While small on terrestrial scales (nair is ∼3,500 times

greater), nRH is enormous compared to typical ISM densities. For example, in the

densest part of a planetary disc (within 1 AU of the protostar; just about as dense

as the ISM gets) nn ∼ 5×1019m−3 (Balbus & Terquem, 2001) which is still a factor

of ∼150 times smaller than nRH.

Thus, even in the innermost and densest region of a “warm” planetary disc,

RRH ∼ 0.08. As this only decreases with distance from the protostar (as nn falls),

the Hall effect generally dominates the resistive term everywhere in a planetary

disc.7

Finally, to compare the Hall and ambipolar diffusion effects, we consider the

ratio of the third and fourth terms on the RHS of Eq. (10.22),

RHA =
1

ene

|�fL|
βi,n|�fL × �B| → γi,nρiρn

eneB
=

〈σu〉i,nμi,nninn

eneB
,

using Eq. (10.8), (10.5), and (10.9). To continue, we set 〈σu〉i,n = χi,n (second of

6Rappel from Chap. 8: For viscid fluids, a Reynolds number of 103 corresponds to water flowing
out of a measuring cup ( 8.5), an entirely laminar flow (as opposed to turbulent) because of the
viscous stresses in water even at such a high Reynolds number.

7I would be remiss if I did not mention that this fact was impressed upon the astrophysical
community in good part by the efforts of Steven Balbus and his collaborators during the early to
mid aughts in a series of very illuminating papers (e.g., see Balbus, 2009, and references therein).
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Eq. 10.6) and insert numerous factors of unity to get,

RHA =
χi,nμi,n

e
√
kBT0μ0

ni

ne

√
μ0mnnn

B︸ ︷︷ ︸
1/a

√
kBT

mn︸ ︷︷ ︸
ciso

√
T0
T

√
nn =

√
α0

α

T0
T

nn

nHA
, (10.28)

since ne = Zni ∼ ni for low ionisation, and where nHA = 9.51 × 1016m−3 – the

critical density for RHA – is nearly five orders of magnitude smaller than nRH (Eq.

10.27).

Thus, in the inner AU of a “warm” planetary disc where nn ∼ 5 × 1019m−3,

RHA � 20 and once again the Hall effect is the dominant non-ideal term. Since nn

falls off more rapidly than T with distance from the protostar, it is only in the outer

regions of the disc where ambipolar diffusion overtakes the Hall effect.

Evidently, all other ratios can be determined by multiplying the appropriate

ratios from Eq. (10.26), (10.27), and (10.28). Thus, the ratio of the induction to

Hall terms is,

RIH = RIRRRH = χIR

√
α
ne

nn

L

L0

√
1

α

nn

nRH
= χIR

√
nn

nRH

L

L0

ne

nn
, (10.29)

independent of α and thus the relative role of thermal and magnetic energy densities.

As with the resistive term, the leading factor χIR provides a steep hill for the

Hall term to climb to be felt next to the induction term. However, the fact that√
nn/nRH < 1 gives the Hall term a “leg up”, as it were, on the resistive term

particularly as one draws away from the protostar. This is consistent with the

conclusion drawn from Eq. (10.27) that the Hall term dominates the resistive term

in planetary discs.

Similarly, the ratio of the induction to ambipolar diffusion term is,

RIA = RIHRHA = χIR
ne√

nRHnHA

L

L0

√
α0

α

T0
T
, (10.30)

dependent on length scale, energy balance (α), and temperature. This time, χIR

is mitigated by the ratio of ne to the geometric average of nRH and nHA which,

for a planetary disc, is comparable to nn in the inner regions. Unlike nn, however,√
nRHnHA does not fall off with distance, and this leads to the eventual dominance

of ambipolar diffusion in the outer disc.

Finally, the ratio of resistive to ambipolar diffusion terms is given by,

RRA = RRHRHA =

√
α0

α

nn

nRH

√
α0

α

T0
T

nn

nHA
=

α0

α

nn√
nRHnHA

√
T0
T
, (10.31)

which is ∼unity in the inner-most disc where the resistive and ambipolar diffusion

terms are comparable but dominated by the Hall term. However, unlike Eq. (10.28),

nn appears outside the radical and, as such, its fall with distance from the protostar

has a much greater effect on RRA than the other ratios leading to the dominance of

the ambipolar diffusion term over both resistive and Hall terms in the outer disc.

Figure 10.3 illustrates regions of dominance of the “three players” in a portion

of nn-T space consistent with the one-fluid approximation (i.e., ne � nn and thus
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Figure 10.3. Regions in nn–T space where the resistive (R), Hall (H), and
ambipolar diffusion (A) terms are the dominant or second most dominant non-
ideal term in Eq. (10.22). The grey swath represents approximately the portion of
this space occupied by a typical planetary disc, with the inner disc corresponding
to the top, outer disc to the left. See further discussion in the text. (Adapted
from Fig. 2 in Balbus, 2009.)

T < 104K) and inclusive of the region occupied by a typical proto-planetary disc

(shaded swath). Indeed, it is because of the very smallness of ne/nn that the non-

ideal terms in the form they appear in Eq. (10.22) play any dynamical role at all

(Eq. 10.26, 10.29, and 10.30).

The red , green♦, and blue� lines are, respectively, where RHA, RRA, and

RRH equal 1 (using α = 0.01), while the letters R, H, and A indicate the resistive,

Hall, and ambipolar diffusion terms. For example, by setting RRA = 1 and for

α = α0, we have from Eq. (10.31),

T =
T0

nRHnHA
n2
n ∼ (1.34× 10−36)n2

n ⇒ logT ∼ 2 lognn − 35.9,

which is the equation for the green♦ line in Fig. 10.3.

One interprets Fig. 10.3 as follows. To the right (towards higher nn) of the

RIJ = 1 line (where I, J = R,H, or A), term I > term J. Conversely, to the left

(towards lower nn) of the RIJ = 1 line, term J > term I. Thus and for example,

in the outer regions of the planetary disc, the point (nn, T ) = (1013, 30) (filled red

circle) is left of all three lines, and thus the ambipolar term is greater than the Hall

term (red line) which is greater than the resistive term (blue� line): A > H > R.

By contrast, in the inner disc closest to the protostar, the point (nn, T ) = (1019, 104)

(filled green diamond) is right of the red line, and thus the Hall term now exceeds

the ambipolar term, but still left of the green♦ line and thus the ambipolar term

remains greater than the resistive term: H > A > R.

For temperatures greater than a few 104K, ionisation of H and He become

significant and, as ionisation increases, the one-fluid model no longer applies. As



Clarke 9781009381475 .tex 391 2/04/2025

391 Resistive dissipation

indicated in Fig. 10.3, as T → 105K, the so-called two-fluid model – introduced in

10.5 – must be used. Indeed, none of the discussion in this section applies to a

moderately to highly ionised fluid such as that in the inner-most region of a plane-

tary disc or the hottest regions of stellar jets. In these environments, the dominant

non-ideal term is ambipolar diffusion (roughly in the ratio of ion to electron mass)

where the ionised and neutral densities are comparable. Carrying on to even higher

temperatures such as those found in stellar atmospheres and within a typical extra-

galactic jet, the fluid is fully ionised and the system can be treated with ideal MHD.

That is, for the most part all non-ideal terms at T � 106K become negligible.

10.3 Resistive dissipation

10.3.1 The resistive induction equation

In a collisional plasma,8 a charge, q, is subject to both the electromagnetic force

(Eq. B.4 in B.1),
�FEM = q( �E + �v × �B),

arising from background electric and magnetic fields, and a drag force, �Fdr, arising

from collisions and/or Coulomb interactions with other particles in the medium. In

quasi-equilibrium, the drag and electromagnetic forces balance and charges move at

a “terminal velocity”, analogous to a mass falling in the earth’s atmosphere when

its weight is balanced by air drag; this is the approach we’ll take to account for �Fdr.

As a charged particle accelerates through a medium, the frequency of interac-

tions with other particles increases linearly with both the number density of the

medium, n, and its velocity relative to other particles, �u. Since each interaction

contributes to the effective drag, we can write,

�Fdr = −C n�u,

where the − sign indicates �Fdr points opposite to �u, and where C is a constant

of proportionality whose SI units are evidently kgm3 s−1. Multiplying the top and

bottom of the RHS by q2nq where nq is the number density of charged particles,

and noting that nn = (1 − f)n where nn is the number density of neutrals and

f = nq/n is the ionisation fraction, we have,

�Fdr = −qC
n

q2nq
qnq�u︸ ︷︷ ︸
�J

= −q C
1− f

1

q2
nn

nq︸ ︷︷ ︸
η

�J = −qη �J, (10.32)

where the quantity identified as η has units kgm3 s−1 C−2 = Ωm (units of resis-

tivity), and the quantity identified as �J has units Cm−3 ms−1 = Am−2 (units of

8A collisional plasma is one with sufficient density that the mean-free-path for a particle
between collisions is small compared to other length scales of interest. As shown in Fig. 10.3, the
“resistive” regime corresponds to such “high-density” plasmas.
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current density). This “derivation” should be taken more as a “plausibility argu-

ment”, but note that even in its simplicity, the dependencies of η on q, nn, and nq

revealed in Eq. (10.21) have all been recovered by Eq. (10.32).

Summing the electromagnetic and drag forces to zero for quasi-equilibrium, we

get,
�FEM + �Fdr = q( �E + �v × �B − η �J ) = 0

⇒ �E = −�v × �B + η �J = �Eind + �Eη, (10.33)

identifying both the induced and resistive terms of the net electric field, �E.

Finally, by combining Eq. (10.33) with Faraday’s law (App. B), we get,

−∇× �E = ∂t �B = ∇× (�v × �B − η �J ), (10.34)

the resistive induction equation where, in this analysis, η �J is the only non-ideal

term uncovered. Note that Eq. (10.22) reduces to Eq. (10.34) in the limit of high

density and modest temperature where the resistive term dominates over both the

Hall and ambipolar diffusion terms (Fig. 10.3). Note further that the high-density

limit is critical for the presumption of the drag force, since it is predicated on

the predominance of particle–particle interactions which occur only in a collisional

plasma. At sufficiently low densities where the plasma can be considered collisionless

(time between collisions long compared to other time scales of interest), the Hall

and ambipolar diffusion terms dominate the resistive term.

10.3.2 Dissipation of magnetic energy

Implicit to an isothermal system is the assumption that any kinetic or magnetic

energy converted to thermal energy is whisked away at precisely the rate required to

maintain the temperature. Equivalently, any cooling mechanism such as work done

by a region of gas expanding into another is compensated by just the right influx

of thermal energy. The usual mechanisms cited include heat conduction, Poynting

flux, or electromagnetic radiation (bremsstrahlung, synchrotron, etc.) all or any of

which, under favourable circumstances, could remove or supply thermal energy at

the rate required to maintain the temperature.

The opposite extreme to isothermality, of course, is adiabaticity where energy

is neither gained nor lost by the system as a whole, but merely redistributed. In

this case, one must add an internal (or total) energy equation to Eq. Set 10.

As shown in B.4, the resistive power density, pR, delivered to a fluid element

of resistivity, η, by an electric field, �Eη, is given by Eq. (B.15),

pR = �J · �Eη = ηJ2, (10.35)

using Eq. (10.33) in which �Eη = η �J is identified. As a power density, it can be

added directly to the RHS of the ideal internal energy equation, Eq. (1.34), to get,

∂te +∇ · (e�v) = −p∇ · �v + ηJ2, (10.36)

the non-ideal internal energy equation with resistive heating. Since the resistive



Clarke 9781009381475 .tex 393 2/04/2025

393 Resistive dissipation

term is positive-definite, it is always a source of internal energy, never a sink. It

is a one-way conduit that increases internal energy at the expense of magnetic

energy. Note too that because of the J2 dependence, resistive losses can become the

dominant source of heating in regions of strong current density corresponding to

where �B varies most rapidly.

It is left to Problem 10.2 to show that the total energy equation for a resistive

fluid is,

∂te
∗
T +∇ ·

[
(eT + p)�v +

1

μ0

�B × (�v × �B) +
η

μ0

�J × �B

]
= 0, (10.37)

where, as usual, e∗T = eT +
B2

2μ0
= e + 1

2ρv
2 + ρφ +

B2

2μ0
is the total MHD energy

density of the fluid (Eq. 4.18) and where the quantity in large square brackets is

the flux density of the total MHD energy (E∗
T).

10.3.3 Magnetic diffusion and reconnection

Setting �J =
1

μ0
∇× �B, Eq. (10.34) can be written as,

∂t �B = ∇× (�v × �B)− η

μ0
∇× (∇× �B), (10.38)

for constant (in space) η. The quantity η/μ0 is usually defined as the magnetic

diffusivity (DM, with SI units m2 s−1) which is to resistive MHD what the kinematic

viscosity, ν, is to viscid hydrodynamics ( 8.3; Eq. 8.24). Thus, using Identity (A.27)

in App. A, Eq. (10.38) becomes,

∂t �B = ∇× (�v × �B) + DM∇2 �B, (10.39)

since ∇ · �B = 0, and the resistive term (∝ DM) can be seen to be diffusive (Eq.

H.3 in App. H) where DM acts as the diffusion coefficient. This should remind the

reader who went through Chap. 8 of the viscous diffusion term in the incompressible

Navier–Stokes equation (Eq. 8.26 in 8.3), namely ν∇2�v where, in the context of

viscid hydrodynamics, the kinematic viscosity, ν, acts as the diffusion coefficient.

As shown in App. H, the effect of the diffusion term, DM∇2 �B, is to eat away at

local gradients of the quantity being diffused, in this case �B. Diffusion is relentless

and, in the absence of a mechanism to build up the magnetic induction (e.g., a

dynamo; 10.3.4), it doesn’t rest until �B is absolutely uniform everywhere. As worked

out for viscid flow in 8.6.1, the magnetic diffusion time scale for a non-uniform

magnetic field to relax to uniformity is,

τdiff ∼ L2

DM
, (10.40)

where L is a characteristic length (e.g., half the distance between local extrema in
�B).

A consequence of this action is a phenomenon known as magnetic reconnection.

Viewed as a collection of “lines of induction”, the left panels of Fig. 10.4 illustrate
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Figure 10.4. The left panels show how, in the absence of diffusion, fluid flow
(red open arrows) pinch parallel lines of induction together, thereby increasing
magnetic pressure and slowing the flow. In this case, lines of induction can be
pushed together as closely as needed to decelerate the flow to zero while leaving
lines of induction integral. By contrast, the middle panels show when flow in
the y-direction forces lines of induction together beyond their “diffusion limit”,
diffusion in the x-direction (blue open arrows) reduces the gradient in Bx at the
expense of induction line integrity. Thus and for example, lines of induction 1 and
2 in the top middle panel are pushed together in the centre middle panel creating a
so-called “X-point” where the path of each line of induction becomes ambiguous.
In the bottom middle panel, lines 1 and 2 have broken then “reconnected” to
form two loops, one from each of the left and right halves of lines 1 and 2. The
right panels show profiles for Bx – red for left panels, blue for middle panels –
where the blue profiles are diffused (broader) versions of the red profiles.

how �B gets pinched together by fluid flow (open red arrows) when governed by

the ideal induction equation (Eq. 4.4) and when magnetic flux is strictly conserved

(Alfvén’s theorem, 4.3). Unencumbered by diffusion, lines of induction can be

pinched together as closely as needed to attain sufficient density so that the result-

ing magnetic pressure resists further pinching. Throughout, all lines of induction

continue to traverse the region without being broken or somehow redirected.

Conversely, in a fluid where η �= 0, the resistive induction equation (Eq. 10.39)

governs �B and Alfvén’s theorem no longer applies. In this case, should B vary

significantly over a short enough distance, L, so that the diffusion time scale, τdiff
(Eq. 10.40), is comparable to or less than the flow time scale, the magnetic gradient

is said to be diffusion-limited. As illustrated by the middle panels of Fig. 10.4, this

necessarily means that lines of induction, whose density is a measure of magnetic

strength and local gradient, are forbidden from coming any closer than a certain

limit. This results in an X-point from which Bx is diffused left and right (horizontal

open blue arrows) effectively “breaking” and “reconnecting” lines of induction to

achieve a configuration consistent with both the pinching action of the fluid and
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the diffusion-limited density of �B. As shown by Eq. (10.36), magnetic energy is

converted to internal energy and “loops of magnetic flux” are created from what

were once lines of induction passing unbroken across the region (bottom middle

panel in Fig. 10.4).

Finally on Fig. 10.4, the right panels show profiles of Bx as a function of

position, x, across the pinched region, where the red (blue) profiles correspond to

the left (middle) panels (blue profiles generally below and broader than the red

ones). Whereas the flow of fluid works against (but does not defeat) diffusion in the

y-direction, there is no fluid flow in the x-direction, and diffusion of x-gradients is

unchecked as indicated by the broader blue profiles in the right panels.

A primary example of where magnetic reconnection plays an important role

is at the base of solar flares, the most energetic phenomena in the solar system.

During a “reconnection event”, enormous amounts of magnetic energy is released

in a short period of time (typically 10 s), with the ensuing explosion resulting in a

solar flare whose baseline is typically L∼107m, roughly the diameter of the earth. If

we were to make the astoundingly näıve assumption that such reconnection events

occur on the diffusion time scale, then on the solar surface where DM ∼ 1m2 s−1 ,9

Eq. (10.40) would have us believe that,

τdiff =
L2

DM
∼ 1014 s ∼ 3.0× 106 yr, (10.41)

or thirteen orders of magnitude longer than the observed time scale of 10 s!! At the

risk of understatement, something else is going on here.

Sweet–Parker model

Figure 10.5. A current sheet ( �J
marked with ⊗) separates two
regions of opposing magnetic
induction generating a Lorentz
force (open arrows) that tends to
narrow the current sheet.

So let’s examine the physics of the region

in which reconnection occurs a little more

closely. The key aspect of Fig. 10.4 is that

two regions of opposite magnetic polarity

are brought together and, since �J ∝ ∇× �B,

this generates a so-called current sheet be-

tween the regions as illustrated in Fig. 10.5.

The Sweet–Parker model10 examines this re-

gion in detail and, using the various conser-

vation laws that apply, shows that magnetic

reconnection happens within a pinched cur-

rent sheet on a time scale much shorter than

the diffusion time scale given by Eq. (10.41).

As envisioned by Sweet and Parker, the current sheet is contained within a

“reconnection zone” of width 2L and thickness 2l (grey rectangle in Fig. 10.6) inside

9“First-principles” estimates of the solar magnetic diffusivity comes from knowledge of material
properties on the surface of the sun; see, e.g., Solanki et al. (2006).

10Parker (1957), based on a 1956 conference proceeding of Sweet; and Sweet (1958). This is the
same Parker of the Parker instability discussed in 7.4.
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Figure 10.6. A “blow-up” of the current sheet, Jz, in Fig. 10.5 showing the
“reconnection zone” (grey rectangle with dimensions 2L× 2l) in which magnetic
reconnection occurs in the Sweet–Parker model. The Lorentz force density drives
fluid along the y-axis transporting flux-frozen magnetic induction, B1, into the
current sheet at speed v1. Within the current sheet, magnetic diffusivity “un-
freezes” the magnetic flux allowing reconnection to occur. Fluid is then expelled
along the x-axis at speed v2 � v1 and transporting with it “refrozen” magnetic
induction B2  B1.

which the magnetic induction is reconfigured. Outside this zone, Alfvén’s theorem

is assumed to apply and magnetic induction remains frozen in the fluid. Inside the

zone, however, the model assumes �B is suddenly “unfrozen” by magnetic diffusion,

and the fluid and lines of induction can move more independently.

Within the current sheet, the current density, �J = −∂yBxk̂, is evidently di-

rected into the page (⊗ in Fig. 10.6) and thus the Lorentz force, �FL = �J × �B,

pinches fluid towards the x-axis, forcing it into the reconnection zone. Entering the

zone with speed v1 and magnetic induction B1, flux-frozen fluid is suddenly “un-

frozen” allowing lines of induction to break, reconnect, and then get pushed back

out of the zone along the ±x-axis with the fluid. Exiting the zone, fluid with speed

v2 “refreezes” with the magnetic induction, B2, reconfigured as shown in Fig. 10.6.

As we’ll see, the analysis shows that v2 � v1 and B2 � B1 to the same extent as

L� l. This is reflected in the figure by the different sized arrows for B (solid) and

v (open).

So in this “what-goes-in-must-come-out” picture, the time-scale for reconnec-

tion is evidently the distance fluid must travel before ejection, L, divided by the

speed at which fluid is injected into the reconnection zone, v1, and we have,

τSP =
L

v1
. (10.42)

It remains to find an expression for v1 in terms of more accessible properties of the

flow.

We’ll assume the reconnection zone and its vicinity are incompressible (∇·�v =

0), that the dominant non-ideal term is resistive, and that the fluid is in steady state

(∂t = 0). From the latter, we can write ∂t �B = −∇× �E = 0 and, for no static field,

∇· �E = 0. For the configuration depicted in Fig. 10.6, this implies �E = constant. To

wit, since vz = Bz = 0, �v× �B has only a z-component. Further, �J = Jzk̂, and from

Eq. (10.33), �E has only a z-component. Thus, ∇× �E = 0 ⇒ ∂xEz = ∂yEz = 0 and
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further, ∇ · �E = 0 ⇒ ∂zEz = 0. Therefore, within and around the reconnection

zone, Ez is constant.

Now, just outside the reconnection zone in Fig. 10.6 where η = 0, Eq. (10.33)

requires:

�E = −�v × �B =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−(v1(−ĵ)×B1ı̂
)
= −v1B1k̂ above zone;

−(v2(−ı̂)×B2(−ĵ)
)
= −v2B2k̂ left of zone;

−(v1ĵ×B1(−ı̂)
)
= −v1B1k̂ below zone;

−(v2ı̂×B2ĵ
)
= −v2B2k̂ right of zone.

Meanwhile, inside the zone where η �= 0, the electric field is assumed to be dominated

by the resistive term, and we have,

�E = η �J =
η

μ0
∇× �B = −DM∂yBxk̂ = −DMB1

l
k̂.

Since Ez is constant within and around the reconnection zone, all expressions must

be the same and we have,

v1B1 = v2B2 =
DMB1

l
. (10.43)

Next, from incompressibility, integrating ∇ · �v = 0 over the reconnection zone

yields, ∫

V

∇ · �vdV =

∮

S

�v · n̂dσ = 0,

using Gauss’ theorem (Eq. A.30). Now, because of uniformity throughout the zone,

we can evaluate the surface integral just by taking the dot products of the velocities

with the surfaces into which they enter/emerge, and adding the four terms together.

Thus, starting from the top surface of the reconnection zone in Fig. 10.6 and moving

around it counter-clockwise, we have,

−v1(2L)w + v2(2l)w − v1(2L)w + v2(2l)w = 4(v2l − v1L)w = 0,

where w is some arbitrary width of the zone into the page. Thus,

v2l = v1L, (10.44)

and v2 � v1 to the same extent as L � l.11 Finally, from the x-component of the

magnetic Euler equation (Eq. 4.14) in steady state, we have along the x-axis,

ρvx∂xvx + ρvy����
0

∂yvx = −∂xp+ ( �J × �B)x = ∂xp− 1

μ0
By∂xBy, (10.45)

since, along the x-axis at the location of B2, ( �J × �B)x = −JzBy and Jz = ∂xBy/μ0.

Further, By = B2, vx = v2, ρ = constant, and so Eq. (10.45) can be written as,

∂x

(
1

2
ρv22 + p+

1

2μ0
B2

2

)
= 0 ⇒ 1

2
ρv22 + p+

1

2μ0
B2

2 = C,

a constant. Now, at (x, y) = (0, 0) (i.e., the X-point defined in the caption of Fig.

11And, from Eq. (10.43), B1 � B2 to the same extent as v2 � v1 and thus L � l, completing
the observation made on page 396.
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10.4), vx = 0, By = 0, and so C = p(0, 0), the thermal pressure at the origin. Thus,

the x-component of the magnetic Euler equation in steady state yields,

1

2
ρv22 + p+

1

2μ0
B2

2 = p(0, 0).

Similarly, the y-component yields,

1

2
ρv21 + p+

1

2μ0
B2

1 = p(0, 0),

and, combining these two results, we get,

ρv22 +
B2

2

μ0
= ρv21 +

B2
1

μ0
, (10.46)

taking p constant throughout the reconnection zone. But, from Eq. (10.43) we have

B2 = B1v1/v2 and from Eq. (10.44), we have v1 = v2l/L. Thus, Eq. (10.46) becomes,

ρv22 +
B2

1

μ0

l2

L2
= ρv22

l2

L2
+
B2

1

μ0
⇒ v2 =

B1√
μ0ρ

= a1, (10.47)

after a little algebra. Here, a1 is the Alfvén speed at the point where v1 enters the

reconnection zone (top and bottom of the grey rectangle in Fig. 10.6).

OK, so we’re almost there; we just have to pull it all together. From the left

and right sides of Eq. (10.43) we have,

v1 =
DM

l
=

DMv2
v1L

⇒ v1 =

√
DMa1
L

, (10.48)

using Eq. (10.44) and (10.47). Therefore, the reconnection time scale (Eq. 10.42)

becomes,

τSP =
L

v1
=

L3/2

√
DMa1

=
L2

DM︸︷︷︸
τdiff

√
DM

La1︸ ︷︷ ︸
S−1/2

, (10.49)

where the underbraces are from Eq. (10.40) and (10.25), the latter defining the

Lundquist number introduced in 10.2.2. Now, we’ve already established that on the

solar surface at the base of a putative flare, L∼107m and DM∼1 ⇒ τdiff ∼1014 s,

thirteen orders of magnitude greater than the observed time scale for solar flares to

erupt. To find the Sweet–Parker reconnection time scale, we need an estimate of the

Lundquist number, S , and thus the Alfvén speed on the solar surface; fortunately,

this is reasonably well-known. At the base of a solar flare, B ∼ 0.01T (cf. 10−4T

averaged over solar surface) and ρ ∼ 10−12 kgm−3. Thus, a1∼107ms−1, S ∼1014,

and Eq. (10.49) yields,
τSP = τdiffS−1/2 ∼ 107 s, (10.50)

still six orders of magnitude greater than the observed time scale of 10 s for solar

flares, but a seven-orders-of-magnitude improvement over the diffusion time scale

given by Eq. (10.41).

Clearly, we’re still not there. Following Sweet–Parker, arguments were made

that shocks in the reconnection zone were somehow responsible for an “anomalous
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resistivity” at the X-point driving the reconnection time scale even lower (e.g.,

Petschek, 1964). The sceptical reader who read 7.3 may recognise this as another

example of “there be dragons here!”.

A more promising solution may be through the Hall effect, which takes over

when the plasma is more or less collisionless and thus where electron and ion flows

are somewhat independent. We’ll revisit this idea briefly in 10.4.2.

10.3.4 Dynamo theory (optional)

This subsection depends very weakly on familiarity with the incompressible Navier–

Stokes equation, Eq. (8.26).

Figure 10.7. A Bullard dynamo
consists of a rotating disc em-
bedded in a background mag-
netic induction, �B0, driving a
current, i, that induces an addi-
tional magnetic induction, �Bind,
that adds to �B0.

A dynamo is a mechanism by which a mag-

netic field is enhanced or sustained against

dissipation. Dynamos can take on a variety

of configurations, some of which can be cre-

ated in the lab, and others that occur nat-

urally in an astrophysical environment. For

life on Earth, the most profound example of

a dynamo is that which sustains the planet’s

magnetic field without which, the solar wind

would have stripped the earth of its atmo-

sphere æons ago and life as we know it would

never have evolved.

Figure 10.7 depicts the so-called Bullard

dynamo,12 the simplest example of a dynamo

that one can create in a lab. A metal disc of ra-

dius b rotating at a constant angular velocity

�ω = ωẑ (counter-clockwise) is embedded in

a background magnetic induction, �B = B0ẑ

(solid arrows in Fig. 10.7). Since metals have

free charge-carriers, a charge carrier q > 013

at a distance r from the rotation axis and an azimuthal velocity �v = rωϕ̂ (ϕ̂ is a

unit vector pointing in the counterclockwise direction) experiences a Lorentz force,

�FL = q�v × �B = qrωB0ϕ̂× ẑ = qωB0rr̂.

Thus a current, i, is driven radially outwards which, in the configuration shown in

12Bullard (1955). A student of Ernest Rutherford (1871–1937), Sir Edward Crisp Bullard (1907–
1980; www.wikipedia.org/wiki/Edward Bullard) pioneered the development of the theory of the
geodynamo. An interesting piece of Canadiana: both Rutherford and Bullard spent some of their
careers in Canada, Rutherford at McGill University (1898–1907) and Bullard at the University of
Toronto (1948–1950).

13Yes, charge carriers in metals are electrons and thus negative. However, since we still abide
by Franklin’s convention that current is in the direction of positive charge flow (see discussion in
10.4), think of these free charges as “electron holes”. In the end, it makes no difference to the
calculations whether one thinks of electrons moving inwards or electron holes moving outwards.
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Fig. 10.7, is captured by a non-rotating circuit (with “frictionless brushes” at each

end to allow rotation) and directed around the counterclockwise loop below, also of

radius b. By the law of Biot and Savart, such a current induces its own magnetic

induction, �Bind = Bindẑ (open arrows in Fig. 10.7) parallel to and thus reinforcing
�B0. That �B0 is (indirectly) responsible for generating its own reinforcement makes

this configuration a dynamo. Note that all one has to do to change this to an anti-

dynamo (where �B0 is responsible for its own partial annihilation) is reverse the

direction of the current loop below the disc, generating �Bind ∝ −ẑ.

Conditions for an MHD dynamo

Dynamos can exist in an MHD environment as well, though the nature of a fluid

makes it a much more complicated mathematical problem. Analytical headway with

the full MHD equations normally requires a number of assumptions on symmetry,

steady-state, self-similarity, etc., but these are exactly the assumptions that can

prevent a dynamo from forming as the following “anti-dynamo theorem” illustrates:

Theorem 10.1. If both the velocity and magnetic induction in an incompressible,

resistive MHD fluid are axisymmetric (∂ϕ�v = 0, ∂ϕ �B = 0), the magnetic induction

necessarily diffuses away.

Proof : In cylindrical coordinates with ∂ϕ = 0, �B in terms of the vector potential

( 4.8) is,

�B = ∇× �A =
1

r
∂r(rAϕ)ẑ − ∂zAϕr̂ +Bϕϕ̂ =

1

r

(
∂rf ẑ − ∂zf r̂

)
+Bϕϕ̂, (10.51)

revealing two quantities, the flux function, f = rAϕ (first defined in 9.1 by Eq.

9.1), and Bϕ, the azimuthal component of �B, whose evolution need to be examined

to determine whether the magnetic induction increases or diffuses with time.

In terms of the vector potential, the resistive induction equation (Eq. 10.34)

with an appropriate choice of gauge (again, see 4.8) is,

∂t �A = �v × �B − η �J ⇒ ∂tf = r(vzBr − vrBz)− rη

μ0

(
∂zBr − ∂rBz

)
,

extracting the ϕ-component and multiplying through by r. Folding in expressions

for Bz and Br from Eq. (10.51), we get,

∂tf = −vz∂zf − vr∂rf + rDM

[
∂z

(
1

r
∂zf
)
+ ∂r

(
1

r
∂rf
)]

⇒ ∂tf + �v · ∇f
︸ ︷︷ ︸

df /dt

= DM

(
∂zz + ∂rr − 1

r
∂r

︸ ︷︷ ︸
∇̃2

)
f ,

where ∇̃2 is the so-called pseudo-Laplacian operator, differing from the regular
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Laplacian by a sign change in the third term. It arises frequently in cylindrical

coordinates and, in particular, in problems of MHD equilibrium. Thus,

⇒ df
dt

= DM∇̃2f , (10.52)

where, even with the term −∂r/r in the definition of ∇̃2, the RHS of Eq. (10.52) is

completely diffusive, and the quantity f decays in time (asymptoting to 0) taking

with it Bz and Br.

This leaves only Bϕ, and it is left to Problem 10.5 to show that this too must

diffuse away with time, and an axisymmetric resistive MHD system is always an

anti-dynamo.

Note that Theorem 10.1 does not say that magnetic induction plays no role in

an axisymmetric and resistive MHD problem. What it does say is if a problem

in which η �= 0 doesn’t include a continuous injection of new �B, the system will

eventually relax to one in which �B → 0. It and other theorems like it say that a

trivial velocity field won’t cut it; MHD dynamos are intrinsically 3-D phenomena

and mathematically complicated.

An MHD dynamo begins with a seed magnetic induction and a driver within

the fluid that increases or at least maintains �B against dissipative influences such

as viscosity and resistivity; in astrophysics, this driver is usually rotation. Initially,

while �B is still too weak to influence the velocity field driving the dynamo, the

dynamo is said to be kinematic. Later, as �B increases to the point where the Lorentz

forces start acting back on the velocity driver, the dynamo is said to be non-linear.

Kinematic dynamos reveal the mechanism by which the fluid flow is able to augment
�B, but it takes the transition to the non-linear regime to determine how the dynamo

is quenched; that is, �B cannot continue to increase forever! Invariably, non-linear

dynamos contain an aspect of fluid turbulence, which makes them all the more

intractable analytically. By the way, for those who went through Chap. 7 and in

particular, 7.3, the magneto-rotational instability is a good example of a dynamo.

A few kinematic MHD dynamos are known analytically (e.g., Ponomarenko,

1973), but all realistic non-linear dynamos are known either experimentally or nu-

merically. The first MHD dynamo to be sustained in the lab wasn’t until 1999 by

the so-called “Riga experiment” in Latvia (Gailitis et al., 2000), while the first fully

3-D simulations to mimic successfully many of the properties of the earth’s dynamo

were done by Kageyama & Sato (1995) and Glatzmarer & Roberts (1995). We’ll

return to a qualitative description of the earth’s dynamo at the end of this section.

Theorem 10.1 identifies a condition under which an MHD dynamo cannot exist.

Conversely, can we identify criteria under which a dynamo could or even would

exist? For this, we start with the magnetic incompressible Navier–Stokes equation

and, given that rotation is often the driver, we do so in a frame of reference rotating

at an angular velocity �ω:

∂�v

∂t
+ (�v · ∇)�v =

D�v

Dt
= −1

ρ
∇p−∇φ+ ν∇2�v +

1

ρ
�J × �B − 2�ω × �v, (10.53)
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where D�v/Dt is the Lagrangian derivative indicating a time rate of change in the

co-moving frame of the fluid (Eq. 3.2 in 3.1). Eq. (10.53) is essentially the MHD

Euler equation (Eq. 4.14) with two terms added to account for viscous effects (ν∇2�v,

where ν is the kinematic viscosity; Eq. 8.26 in 8.3) and the Coriolis acceleration

(2�ω×�v).14 While these terms have been included for completeness, they won’t make

much of a difference in our discussion.

As can be found in any sophomore mechanics text, the Work-Kinetic theorem

states that the change in kinetic energy of a system is the sum of the work done

by all external forces acting on that system: ΔK =
∑
W . In fluid mechanics, the

instantiation of the W-K theorem comes by taking the inner product of ρ�v with Eq.

(10.53):

ρ�v · D�v
Dt

=
Dk

Dt
= −�v · ∇p− ρ�v · ∇φ+ μ�v · ∇2�v + �v · �FL, (10.54)

where k = 1
2ρv

2 is the kinetic energy density of the fluid, and μ = ρν is the

shear viscosity first introduced by Eq. (8.8). The terms on the RHS of Eq. (10.54)

represent, from left to right, the rate at which work is done per unit volume by the

pressure gradient, gravity, viscous stresses, and the Lorentz force. Note that since

the Coriolis force is proportional to �ω×�v, it can only change the direction of �v and

not its magnitude and thus does no work.

Of particular interest to a dynamo is the last term of Eq. (10.54), �v · �FL,

representing the rate at which magnetic and kinetic energies are exchanged. When

this term is positive, magnetic energy is converted to kinetic energy and we have

an anti-dynamo. A dynamo is therefore realised when �v · �FL < 0.

To complete the picture, let us take the dot product of �B/μ0 with the resistive

induction equation, Eq. (10.34), to get,

1

μ0

�B · ∂t �B =
1

μ0

�B · [∇× (�v × �B)
]− η

μ0

�B · (∇× �J )

⇒ ∂teM = (�v × �B) · 1

μ0
∇× �B +

1

μ0
∇ ·�������� 0[

(�v × �B)× �B
]

− η �J · 1

μ0
∇× �B − η∇ · ( �J × �B),

where eM = B2/2μ0 is the magnetic energy density and where Identity (A.8) was

used on both terms on the RHS. Thus,

∂teM = (�v × �B) · �J − ηJ2 − η∇ · �FL = −�v · �FL − ηJ2 − η∇ · �FL, (10.55)

using Identity (A.1). Of significance, the rate at which work is done per unit volume

by the Lorentz force, �v · �FL, appears in both Eq. (10.55) and (10.54) but with oppo-

site sign. In Eq. (10.55), �v · �FL < 0 means kinetic energy density is converted

to magnetic energy density, the same conclusion drawn from Eq. (10.54). Thus, a

14See App. G. The reader remembering their sophomore mechanics may wonder why the cen-
trifugal acceleration, −�ω× �ω× �r, has been omitted. For systems such as the earth where ω2r  g
for most distances r of interest, this term is usually ignored.
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necessary (but not sufficient) condition for a dynamo is,

�v · �FL < 0.

A sufficient condition for a dynamo can be gleaned directly from Eq. (10.55).

Integrated over the system volume, Eq. (10.55) becomes,
∫

V

∂teMdV = ∂tEM = −
∫

V

(
�v · �FL + ηJ2

)
dV − η

∮

S

�FL · n̂dσ,

where EM is the magnetic energy of the system, and where Gauss’ theorem (Eq.

A.30) was used on the second term on the RHS. Since V contains the entire system,

the surface integral is zero and a sufficient condition for a dynamo (∂tEM > 0) is,

�v · �FL + ηJ2 < 0 ⇒ �v · �FL < −ηJ2. (10.56)

As ηJ2 is positive-definite, the boxed Eq. (10.56) implies |�v · �FL| > ηJ2. But,

|�v · �FL| ≤ vFL ≤ vJB < V JB,

where the ≤ inequalities arise from setting the cosine or sine of the angles involved

to 1, and where V is the “characteristic velocity” of the system which can be thought

of as the maximum speed anywhere. Further,

ηJ2 = ηJ
1

μ0
∇× �B > JDM

B

L
,

where L is the “characteristic length scale” of the system, and can be thought of as

the maximum distance over which B varies significantly. Thus, any spatial derivative

of B will be greater than B/L, whence the > inequality.

Bringing these two threads together, we have,

V��JB > DM
��JB
L

⇒ V L

DM
= RM > 1,

and a necessary condition for a dynamo is the magnetic Reynolds number (Eq.

10.24) must be greater than unity. This turns out to be a rather weak condition,

since for most numerically derived dynamos, RM � 20 (e.g., Nore et al., 1997).

Earth’s dynamo

That the earth acts like a giant magnet with well-defined north and south magnetic

poles was first proposed by William Gilbert in 1600, although it would be more than

two centuries later when a team led by James Clark Ross in 1831 discovered the

“north” magnetic pole on the west coast of the Boothia Peninsula in modern-day

Nunavut.15 Each subsequent exploration found the pole to be in a different location

from the previous and, in the late 19th, early 20th centuries, it came to be known

that the north magnetic pole drifts over the earth’s surface by a few km/yr.

15See www.wikipedia.org/wiki/North magnetic pole.
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Figure 10.8. a) Whatever complicated mechanism may be at the earth’s core
generating its magnetic field, the appearance from afar (photo credit: NASA) is a
dipole field much like an ordinary bar magnet whose magnetic south pole is near
the earth’s geographic north pole. b) A (too) simple model of the earth’s dynamo.
The earth’s core is primarily Ni + Fe where the hotter inner core (6,000K) is solid,
and the cooler outer core (4,000K) is liquid (say what? see footnote 17 on page
405). The outward temperature gradient drives an outward radial flow which,
because of the Coriolis acceleration (2�v × �ω), circulates in a left-handed helix as
it makes its way to the inner surface of the mantle (quadrants 1, 3, and 4) or
from the mantle to the inner core (quadrant 2), also in a left-handed helix. Since
the liquid Ni + Fe is hot enough to be weakly (but sufficiently) ionised, the flow
transports a positive current which, by the law of Biot and Savart, induces a
magnetic field pointing down, as shown. For a number of reasons, this model is
näıve, not least of which because it can’t explain polarity reversals of the earth’s
magnetic field that occur once every ∼half-million years. See text for details.

For reasons poorly understood, the movement of the pole has recently acceler-

ated and, at the time of this writing, seems to be making a bee-line for the Siberian

coast at a speed of 50–60 km/yr. In fact, according to the best computer modelling,

the north magnetic pole left the Canadian Arctic just at the turn of the 21st century

for the first time since at least 1600, when Gilbert first suggested its existence.

Before Ampère, Faraday, and Maxwell brought magnetism into the realm of

physics in the 19th century, the earth’s magnetic field was known by navigators using

“lodestone compasses” where the tip of the needle pointing towards geographical

north was, naturally enough, labelled the “north pole”. We now know, of course,

that opposite poles attract and that the lodestone needle was simply aligning itself

with the local dipole magnetic field of the earth and pointing towards its south

pole. Thus, the magnetic pole currently on its way to Siberia is, in fact, the south

magnetic pole putting the actual north magnetic pole somewhere in the Antarctic;

Fig. 10.8a is so-labelled. Still, you’ll find numerous scholarly references to the “north

magnetic pole” in the Arctic ocean, and this usage is generally accepted to mean

the northern magnetic pole, i.e., the one found within the geographic north.

It is also known that the earth’s dipole field (Fig. 10.8a) is a residual of a
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much more complex multi-polar magnetic field configuration deep within the planet

generated by a dynamo that’s been in place for at least 3.5 billion years (Buffett,

2000). This is remarkable in so many ways, not least of which we wouldn’t be here

talking about it if it weren’t there! Acting like a shield out of Star Wars, the earth’s

magnetic field prevents most solar wind particles from getting close enough to the

planet’s surface to strip its atmosphere away. This is what happened to Mars when

its core solidified some 3.5 to 4 billion years ago, dropping its “magnetic shield” and

sealing its fate as the vast, barren desert it has since become.

The broad strokes of how the earth’s dynamo functions are fairly well under-

stood, but some important “details” are missing. What’s known is the earth’s core

consists of a solid Fe + Ni “inner core” with a radius ri ∼ 1,200 km and a tempera-

ture ∼ 6,000K16 surrounded by a liquid “outer core” also largely Fe + Ni with an

outer radius ro ∼ 3,500 km and a temperature ∼ 4,000K.17 Surrounding the outer

core is the mantle, a semi-solid semi-molten mishmash of silicates, magnesium oxide,

and various “impurities” that reaches within a few tens of km of the earth’s surface.

We therefore have, at the earth’s core, a system in which molten, slightly ionised

metal (an incompressible MHD system) is trapped between two solid surfaces and

forced to circulate in a rotating system. This is what drives the earth’s dynamo.

Figure 10.8 illustrates a rather näıve model of this dynamo. The outward-

pointing temperature and pressure gradients drive a slow but steady outflow of liquid

Fe and Ni from the inner–outer core boundary. Consider first the blue streamline

labelled ‘1’ in Fig. 10.8b. It originates near the equatorial plane where flow is initially

driven mostly outwards (∝ r̂) and slightly upwards (∝ ẑ) so that the Coriolis

acceleration (last term in Eq. 10.53) is −2�ω × �v ∝ −ϕ̂, and thus clockwise. The

z-component of motion then extrudes the clockwise circulation into a left helix,18

forming what is known as a Taylor column. Presuming the flow to transport positive

ions, a current moving upwards along a left helix would, by Biot and Savart, induce

a magnetic induction in the −ẑ direction, as shown in Fig. 10.8b.

Streamlines 2 and 3 also originate from near the equatorial plane and these

too are driven clockwise by the Coriolis force. However, being in the southern hemi-

sphere, the vertical component of their motion is downward (∝ −ẑ) extruding the

clockwise circulations into right helices. Still, positive current flowing downwards

along a right helix also induces a magnetic induction ∝ −ẑ.
Finally, streamline 4 in Fig. 10.8b is chosen to originate from near the rotational

axis. In this case, flow is initially driven upwards with �v ∝ ẑ and thus unaffected by

the Coriolis force. However, as flow approaches and is deflected by the mantle, the

16Although at the time of this writing, even this may be in doubt: see Pham & Tkalčić (2023).
17It may seem strange that the hotter inner core is solid while the cooler outer core is liquid,

especially with their similar compositions. The difference is the tremendous pressure at the earth’s
centre which solidifies the inner core but, 1,200–3,500 km out, is insufficient to solidify the cooler
yet still very hot outer core.

18A “left-helix” is one in which, when held vertically and viewed front-on, the near sides of each
coil rise from bottom right to top left. Further, wrapping your right fingers around a left helix so
they slide upwards along the coils forces your thumb to point down. Conversely, a “right helix” is
one whose front edges go from lower left to upper right, and your right fingers following the coils
upwards forces your thumb to point up.
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acquired outward flow subjects it to – once again – a clockwise Coriolis acceleration,

while its downward motion extrudes the clockwise circulation into a right helix.

Thus, like streamlines 2 and 3, the downward-directed current induces �B ∝ −ẑ.
So it seems no matter where on the inner–outer core a fluid streamline origi-

nates, with a current of positive ions the Coriolis effect always generates a magnetic

induction ∝ −ẑ and anti-parallel to �ω. That is to say, this model predicts that the

earth’s rotation and magnetic axes should point in opposite directions so that the

magnetic south pole is near the geographical north pole, and vice versa.

Which it is, so we’re all done, right?

Alas, life is never that simple for it is well known geologically that the polarity of

the earth’s magnetic field has flipped innumerable times. Once every half million

years give or take a few hundred thousand, the earth’s dynamo undergoes a still-

poorly understood process by which, after many convulsions and machinations,

the magnetic north and south poles switch places. These flips occur over periods

between two and twelve thousand years and it is widely thought that we may be

entering such a period now; the last polarity flip happened more than 750,000 years

ago which means we’re rather overdue. Further, there is no evidence over the æons

of a polarity favouritism; �B is aligned with �ω about as often as it’s anti-aligned.19

Glatzmaier & Roberts (1995) pioneered the first computer simulations (fully 3-

D viscid and resistive MHD with very complicated boundary conditions) to demon-

strate a polarity flip in an environment that models the earth’s core. This and many

simulations since have shown that in an extremely complex physical environment

of a rotating metallic non-ideal MHD fluid, a dynamo is inevitable and further,

polarity flips can happen. What has not been made clear from these studies is the

exact mechanism by which these reversals occur. It’s one thing to set up a numerical

experiment in which certain phenomena can be mimicked. It’s entirely another for

the numerics to provide a clear explanation of why.

10.4 The Hall effect

Around the time Benjamin Franklin (1706–1790)20 was flying his kites into storm

clouds and coaxing sparks out of dangling keys to demonstrate the electrical nature

of lightning, he was also doing laboratory experiments on electrical circuits, trying

to determine if there could be any possible practical use for this “electrical fluid”.

He wasn’t the first to perform such experiments, but it was he who designated this

“fluid” as being “positive” or “negative” to distinguish that which accumulates on

glass rubbed with silk (positive) and on amber rubbed with fur (negative). Now,

19There are numerous references for this but as is often the case, the most approachable is a
Wikipedia page. Try www.wikipedia.org/wiki/Geomagnetic reversal where the interested reader
can follow the numerous references therein.

20www.wikipedia.org/wiki/Benjamin Franklin
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Figure 10.9. In Hall’s original experiment, a brass wire carried a current, I ,
shown here to be directed upwards, to a rectangular sheet of gold-leaf with �B
pointing out of the page. a) If q > 0, q moves upwards and the Lorentz force
�FL = q�v× �B points to the right. Positive charges migrate to the right side of the
gold leaf (curved blue arrow), leaving an excess of negative charge on the left.
Connecting the two sides, a galvanometer, G, is deflected by a current, i, leftward
(direction of positive charge flow). b) If q < 0, q moves downwards but the Lorentz
force �FL = q�v × �B still points to the right. Negative charges now migrate to the
right leaving an excess of positive charge on the left and G deflects rightwards
(opposite to negative charge flow). Thus, q > 0 if G deflects left, q < 0 if G
deflects right; a very simple discriminant!

whether it was the positive or negative “fluid” that “flowed” through Franklin’s cir-

cuits, he could not tell, and so he arbitrarily designated “electrical current” through

a wire as the “flow” of “positive fluid”.21

To most students of physics, the Hall effect is how we know the sign of a charge

carrier in a metal conductor. Named for its discoverer, Edwin Hall (1855–1938),22

the effect exploits a sign asymmetry in the Lorentz force that allowed Hall – at the

tender age of 24 – to determine that charges conducted in a wire are negative (Fig.

10.9). Still, despite the fact Hall’s discovery was in 1879, Franklin’s convention that

assigns current direction in a circuit to the direction positive charges would flow

persists to this day.

In Hall’s experiment (see caption of Fig. 10.9 for a quick review), charge mi-

gration is driven by the Lorentz force which, on a single charge, q, is given by,

�FL = q�vd × �B,

where �vd is the drift velocity of the charge, and �B is the background magnetic

induction. Now, as we know today, charge carriers in a wire are valence electrons

(those most loosely bound to atoms) which, with an electric field (potential differ-

ence) along a wire, drift among the stationary atoms in the crystalline structure of

21I’m putting all these “fluid-analogous” words in quotes a) to emphasise their frequency and
b) even though we no longer think of electricity as a “fluid”, to point out the extent to which
words like “current” and “flow” remain pervasive in our vernacular when describing electricity!

22www.wikipedia.org/wiki/Edwin Hall
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the metal. This is the current I indicated in Fig. 10.9. However, in a metal where

electrons are forever colliding with atoms, the actual drift velocity is puny – per-

haps 0.2 mm/s – and it is for this reason the Hall effect is difficult to demonstrate

experimentally. For example, Hall’s use of gold leaf wasn’t a display of richesse, but

rather the need for a medium that could be extruded thinly enough (a few dozen

atoms thick) so that migrating charges are sufficiently concentrated at the edges to

produce a detectable “Hall-current” (i in Fig. 10.9).

Let ne be the number density (m−3) of valence electrons (q = −e) in a metal

conductor. Then, the current density (units Am−2) is evidently,

�J = −ene�vd, (10.57)

and the Lorentz force driving the Hall effect is,

Figure 10.10. In a plasma el-
ement where electrons and ions
move with different velocities, �ve
and �vi, the current density, �J
(red), is ∝ �vi−�ve. If �B points out
of the page, the Hall field, �EH ∝
�J × �B (green), drives charge mi-
gration so that charges � (ma-
genta) and ⊕ (blue) move in op-
posite directions along �EH.

�FL = −e�vd × �B =
1

ne

�J × �B

⇒ �EH ≡
�FL

e
=

1

ene

�J × �B, (10.58)

the so-called Hall electric field.

Recognising that the drift velocity in a

metal wire is just the velocity of the (drift-

ing) negative charges relative to the (sta-

tionary) positive charges, we can generalise

all of this to a plasma (Fig. 10.10) where

both negative and positive charges (elec-

trons and ions) are mobile, and where the

relative (drift) velocity is,

�vd = �ve − �vi.

Substituting this into Eq. (10.57), we get,

�J = ene(�vi − �ve). Eq. (10.14)

Thus, as demonstrated in Fig. 10.10, charges

also migrate in a plasma because of a Hall

electric field (Eq. 10.58) with a current density given this time by Eq. (10.14). This

is the justification for identifying − �J × �B/ene in Eq. (10.22) as the “Hall effect” in

the one-fluid non-ideal induction equation.

10.4.1 The case of a completely ionised fluid

Consider a fully ionised sample of hydrogen where Z = 1, ni = ne = n, nn = 0,

and all subscripts ‘i’ are replaced with ‘p’ to reflect the fact that in this case, ions

are bare protons. Then, Eq. (10.2) and (10.3) written as Euler equations omitting

gravity and interactions with a neutral component become:

mpn
[
∂t�vp + (�vp · ∇)�vp

]
= −∇pp + en

(
�E + �vp × �B

)
+ �fa

e,p; (10.59)
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men
[
∂t�ve + (�ve · ∇)�ve

]
= −∇pe − en

(
�E + �ve × �B

)
+ �fa

p,e. (10.60)

While the RHS of the two equations are comparable, the LHS are proportional to

mp andme respectively. Thus, in adding Eq. (10.59) and (10.60), we can safely drop

the LHS of the latter to get,

mpn
[
∂t�vp + (�vp · ∇)�vp

]
= −∇(pp + pe︸ ︷︷ ︸

p

) + en(�vp − �ve)︸ ︷︷ ︸
�J

× �B + �fa
e,p +

�fa
p,e︸ ︷︷ ︸

0, Newton’s 3rd

⇒ ρ
[
∂t�v + (�v · ∇)�v

]
= −∇p+ �J × �B, (10.61)

where,

ρ = (mp +me)n ≈ mpn and �v =
mp�vp +me�ve
mp +me

≈ vp, (10.62)

are the average density and bulk velocity of the two-component system with me �
mp, presuming the protons and electrons move with comparable speeds (vp ∼ ve).

Equation (10.61) is the one-fluid approximation of the Euler equation for the two-

component system where the inertia is dominated by one component (protons).

Of greater interest to the present discussion, however, is what we get when

mp × Eq. (10.60) is subtracted from me × Eq. (10.59):

mempn
[
∂t(�vp − �ve) + (�vp · ∇)�vp − (�ve · ∇)�ve

]
= −�����

∼0

me∇pp +mp∇pe

+ e n(me +mp)︸ ︷︷ ︸
ρ

�E + en
(
me�vp +mp�ve

)× �B − (



�

∼0

me +mp)�f
a
p,e,

(10.63)

using the first of Eq. (10.62) for the underbrace. The LHS does not compress well,

and so we’ll dispense with it by assuming small deviations [in which case the non-

linear terms (�v·∇)�v → 0] in an otherwise pseudo-steady state (in which case ∂t → 0).

Thus, we’re going to bunt and take the LHS to be zero.23

As for the RHS, the relevance of the terms can be made more transparent by

a few considerations:

1. Assuming ∇pe ∼ ∇pp in a two-component system, then me∇pp � mp∇pe
and we drop the former term.

2. Next,

me�vp +mp�ve = me�vp +me�ve −me�ve +mp�ve +mp�vp −mp�vp

= mp�vp +me�ve︸ ︷︷ ︸
ρ�v/n

− (mp −


�

∼0

me)(�vp − �ve︸ ︷︷ ︸
�J/en

) =
ρ�v

n
− mp

en
�J,

using Eq. (10.62) and (10.14) for the underbraces.

23See, however, Problem 10.8 for a, perhaps, more-convincing “plausibility argument” that the
LHS can be taken as zero.
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3. Finally, from Eq. (10.4),

�fa
p,e = γpen

2memp(�vp − �ve︸ ︷︷ ︸
�J/en

) =
γpenmemp

e
�J.

Thus, Eq. (10.63) becomes,

0 ≈ mp∇pe + eρ �E + eρ�v × �B −mp
�J × �B − γpenmem

2
p

e
�J,

which we divide through by eρ ≈ enmp and solve for �E to get,

�E = −�v × �B︸ ︷︷ ︸
induction

+
1

en

(
�J × �B −∇pe

)

︸ ︷︷ ︸
Hall effect

+ηp,e �J︸ ︷︷ ︸
resistive

. (10.64)

Here,

ηp,e ≡ γpememp

e2
, (10.65)

is the proton–electron resistivity, analogous to Eq. (10.21) for electron–neutral in-

teractions found when interactions between ions and electrons were ignored because

of their low concentration compared to neutrals. In the present context, the two-

component system is nothing but protons and electrons, and thus any fluid resis-

tivity must come from γpe (which can be assembled from Eq. 10.5–10.7) as given

by Eq. (10.65). For convenience, I’ve included the ∇pe term as a correction to the

Hall effect, since both contribute to charge separation.

Finally, we “solve” Eq. (10.64) for �J , and find for when the Hall term dominates,

�J =
1

η

(
�E + �v × �B

)− 1

enη

(
�J × �B −∇pe

)
, (10.66)

where η = ηp,e is the fluid resistivity, and where each driver of current density is

exposed. Obviously, Eq. (10.66) doesn’t actually “solve” Eq. (10.64) for �J , since �J

still appears on the RHS in a cross product. However, this won’t deter us in the

following example.

Example 10.1. Consider a stagnant (�v = 0) sample of ionised hydrogen in which

∇pe = 0. Find and describe the current density for �E = Eĵ and �B = Bk̂.

Solution: With neither an induction term nor a pressure gradient, Eq. (10.66) be-

comes,

�J =
1

η
�E − 1

enη
�J × �B =

E

η
ĵ− 1

enη

(−JxBĵ+ JyBı̂
)
.

Equating components on the left- and right-hand sides, we get:

Jx = − B

enη
Jy; Jy =

E

η
+

B

enη
Jx; Jz = 0.



Clarke 9781009381475 .tex 411 2/04/2025

411 The Hall effect

Solving (truly, this time!) the first two expressions for Jx and Jy, we get,

Jx = − ζ

η(1 + ζ2)
E ≡ − E

η⊥
and Jy =

1

η(1 + ζ2)
E ≡ E

η‖
, (10.67)

where,

ζ ≡ B

enη
=

Be

me︸︷︷︸
ωc

memp

e2η︸ ︷︷ ︸
1/γpe

1

nmp
=

ωc

γpeρ
,

and where ωc is the cyclotron (gyration) frequency of an electron immersed in a

magnetic field. Note from Eq. (10.67) that with the crossed electric and magnetic

fields, the effective resistivity of the fluid is anisotropic, with the resistivity parallel

to the electric field, η‖, rather different from the resistivity perpendicular to �E, η⊥,
and in the direction of Hall migration. Evidently, η‖ > η, and the current driven

parallel to �E is reduced while a new component perpendicular to �E is created.

However, including both components of �J , its magnitude is,

| �J | =
√
J2
x + J2

y =
E

η
,

the same as the current density driven by �E = Eĵ when �B = 0. Thus, as shown

in the inset, the effect of the magnetic induction and therefore Hall migration is to

rotate the direction of the current density relative to the electric field by an angle,

ψ = tan−1 |Jx|
Jy

= tan−1 ζ,

without changing its magnitude. However, resistive dissipation,

�J · �E = JyE =
E2

η

1

1 + ζ2
,

is reduced by a factor (1 + ζ2)−1.

While the Hall effect modifies resistive power dissipation,

there is no power dissipation (e.g., Eq. B.15) directly from the

Hall electric field itself (Eq. 10.58) since �J ⊥ �EH.

10.4.2 Magnetic reconnection, revisited

What distinguishes “resistive MHD” from “Hall MHD” is the collisional nature of

the fluid. As Fig. 10.3 illustrates, resistive dissipation is the dominant non-ideal

term for high number density (n) where the resistivity, η, comes about precisely

because of particle–particle collisions between electrons and neutrals (Eq. 10.21).

However, as n falls and especially at higher temperatures where the ionisation level

increases, electron–neutral interactions are less important and the fluid enters a

“Hall regime”. Here, the fluid is said to be “collisionless”24 and, as developed in

24By this we mean particle–particle interactions are mostly Coulomb in nature, and not direct
collisions.
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Figure 10.11. A schematic of the Hall MHD model described by Yamada et al.
(2006), showing how, interior to the reconnection zone of the Sweet–Parker model
(Fig. 10.6), ions and electrons decouple because of the Hall term. Ions following
the blue� streamlines demagnetise and diffuse within the ion diffusion zone (grey
rectangle of width 2li) while electrons following the red streamlines remain
coupled to the magnetic induction (black
 solid lines). When electrons enter
the electron diffusion zone (light grey stretched X-shaped region of average width
2le), they make a very sharp turn away from the y-axis at the separatrix (dashed
black lines) and momentarily decouple from the magnetic field, allowing magnetic
reconnection to occur. This electron flow pattern generates a strong magnetic
quadrupole moment (indicated by � and ⊗) which deflects ions away from the
electron diffusion zone.

10.4.1, the plasma must be described in terms of two co-existing and somewhat

independent fluids; one describing the electrons, the other the ions. That these fluids

have some independence means, among other things, their velocity fields differ and

thus both can no longer be coupled to the magnetic field. Typically, the smaller-mass

electrons remain “flux-frozen”, while the more massive positive ions decouple and

become demagnetised. The different velocity field also gives rise to the Hall electric

field (Eq. 10.58).

It is widely believed that such a transition occurs within the reconnection

zone of the Sweet–Parker model (Fig. 10.6); see, for example, Shay et al., (2001),

Breslau & Jardin, (2003), and Yamada et al., (2006). As fluid is forced into the

reconnection zone, its temperature rises, pressure increases, and fluid is rarified.

In this environment, fluid becomes collisionless and crosses into the Hall regime

where electrons and ions decouple. Within the ion diffusion zone (grey rectangle

of width 2li in Fig. 10.11), the ions demagnetise and veer away from the y-axis

(blue� streamlines in Fig. 10.11) independently of the electrons which follow the

red streamlines. Meanwhile, the still flux-frozen electrons continue to drag lines

of induction (black� lines) towards the X-point or, more generally, the separatrix

(dashed black lines in Fig. 10.11) separating regions of incoming lines of induction

before reconnection from outgoing lines of induction after.

Enclosing much of the separatrix is the electron diffusion zone, depicted in Fig.

10.11 as a light-grey stretched X-shaped region with an average width of 2le. Once

electrons are within this zone, at least two important effects are observed. First,
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upon reaching the separatrix, electrons are abruptly turned (diffused) away from

the y-axis. The strong acceleration of negative charge associated with this abrupt-

ness generates, by Biot and Savart, a magnetic induction in the z-direction. Using

the upper right quadrant in Fig. 10.11 as an example, the right-hand rule and the

negative electron charge require the induced magnetic induction to point into the

page (−ẑ-direction), as indicated by the ⊗ symbol in the figure. Repeating this

reasoning in the remaining three quadrants one finds that a magnetic quadrupole

moment (� indicating +ẑ-direction) is generated, entirely driven by the sharp dif-

fusion of electrons at the separatrix. An important consequence of the quadrupole

moment is it generates a Lorentz force that diverts positive ions away from the elec-

tron diffusion zone, helping to maintain separation of the two fluids. The quadrupole

moment is considered to be a signature of Hall MHD in this context, since no such

moment is possible in the Parker–Sweet model which assumes the electron and ion

components of the fluid remain coupled.

Second, once inside their diffusion zone, electrons momentarily decouple from

the magnetic induction allowing lines of induction to break, reconnect, and then

recouple with the electrons as they are collectively ejected from the electron diffusion

zone along the x-axis. As the remagnetised electrons pass through then leave the

ion diffusion zone, they recouple with the ions into a single resistive fluid, no longer

dominated by the Hall term and where the resistivity, η, is once again determined

by electron–neutral collisions.

Notably, where the Hall effect dominates resistance, the magnetic diffusion,

DM, plays no role in determining the reconnection time scale. In our discussion on

the Sweet–Parker model based on resistive MHD ( 10.3.3), flux-frozen fluid enters

the reconnection zone (dimensions 2L× 2l) with speed,

v1 ∼ DM

l
=

DMv2
v1L

=
DM

v1

a1
L
, (Eq. 10.48)

where a1 is the Alfvén speed of the fluid as it enters the zone. In Hall MHD, the

Sweet–Parker length scale DM/v1 is replaced with li (half-width of the ion diffusion

zone; Fig. 10.11) which simulations (e.g., Yamada et al., 2006) suggest is of order

0.1L. Thus, for Hall MHD,

v1 ∼ li
a1
L

∼ 0.1a1 ⇒ τHall =
L

v1
∼ L

0.1a1
∼ 10 s, (10.68)

for L and a1 at the base of a solar flare given in the discussion immediately before

Eq. (10.50). This is much more in keeping with observed time scales for solar flares

than the Sweet–Parker time scale of 107 s (Eq. 10.50).

The reader shouldn’t take this seemingly perfect conclusion as evidence that

solar flares are now completely understood; they are not. Even in understanding

how Eq. (10.68) comes about, the mechanism by which electrons decouple from

the magnetic field in their diffusion zone and why it is li that the Hall model

replaces DM/v1 with are not well understood. Turbulence is probably key, and with

turbulence comes a very complicated, fully 3-D problem on which only numerical

investigations can shed further light.
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10.5 Ambipolar diffusion

10.5.1 Overview and motivation

Through Chap. 9, our discussion was limited to ideal MHD where the plasma is

assumed to be 100% ionised. For the first time in 10.2, we considered the possibility

that the plasma may not be fully ionised and, in so doing, uncovered the “three

players” of non-ideal MHD: resistive dissipation ( 10.3), the Hall effect ( 10.4), and

ambipolar diffusion (AD; this section). For the sake of mathematical expediency, our

approach in 10.2.1 was restricted to a weakly ionised isothermal fluid, still avoiding

the more general case of a non-isothermal plasma with any level of ionisation. Yet

it is here where much of astrophysics lies!

For many astrophysical systems, assuming the ionisation to be either complete

or very low is dodgy at best. The temperature required to ionise hydrogen com-

pletely is in excess of 105K and the first ionisation of Helium is complete at a

temperature double that. In star-forming regions, temperatures in cloud cores are

typically at or under 105K and the plasma is moderately ionised. In stellar out-

flows, temperatures can range from ∼ 108K where the jet is launched, to ∼ 100K

in the entrained ambient medium (what astronomers refer to as the “second wind”).

Therefore, not only is a stellar outflow non-isothermal, its ionisation level can vary

with position from 100% to negligible. Even in a planetary disc, we’ve seen that

the temperature in the innermost region can well exceed 104 K and, at this location

from where matter accretes onto the protostar, the fluid is again moderately ionised.

Evidently, within some astrophysical systems, comparable quantities of ionised

and neutral gases coexist, commingle, interact, and exchange as neutrals ionise or

ions recombine with the rise and fall of temperature. In such a system, the ionised

component – which is coupled to the magnetic induction – collides with and entrains

the neutral component in such a way that the motion of the neutrals is modified,

indirectly but significantly, by magnetism. As such, the neutral component of a fluid

responds to a permeating magnetic induction in a way that a completely neutral

fluid would not. Similarly and again via collisions, the neutral component modifies

the motion of the ions in competition with the Lorentz force coupling it to �B.

As such, a portion of the ionised component can diffuse across lines of magnetic

induction in a way that would not occur in a completely ionised fluid.

This essentially describes the “diffusion” part of AD, whose effect on the plasma

is highly dependent upon temperature and ionisation level. When introduced in

10.2.1, AD first appeared as a term in the electric field (Eq. 10.20):

�EAD = −βi,n �fL × �B, (10.69)

which entered the induction equation via Faraday’s law as a non-ideal term. When

fully spelled out, this term looks like:

∂t �BAD =
1

μ0
∇×

(
βi,n
(
(∇× �B)× �B

)× �B
)
, (10.70)
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a truly awe-inspiring construct made worse by the prospect that βi,n depends upon

the spatially varying density! As impossible as ∂t �BAD may be to fathom, the nicety

of the one-fluid, isothermal model is that at least AD is confined to the induction

equation; no other MHD equation is affected.

Relaxing the assumptions of weak ionisation and isothermality requires us to go

to a so-called two-fluid model, where the ions and neutrals are considered as separate

fluids, but all the while existing co-spatially. This approach introduces a number of

complications that require both care and mathematical fortitude in deriving a self-

consistent and useful set of expressions. To give a heads-up and provide a checklist

for the issues we’ll encounter, consider the following:

1. a separate set of fluid equations is needed for each of the neutrals and ions

including continuity, momentum, and an energy equation (to relax isother-

mality);

2. since ionisation level is a function of temperature, we’ll need (for the first

time!) source terms in the continuity equations to account for transitions

between ions and neutrals;

3. as neutrals ionise or ions recombine, momentum and energy are transferred

between sub-populations;

4. while isothermality is being relaxed, the fluid components must still remain

in thermal equilibrium with each other (otherwise we’re really up the crick!);

and

5. effects of AD will not be confined to the induction equation.

Most of these complications arise from relaxing the assumption of isothermality

and so unsurprisingly, most references you’ll find in the literature to a two-fluid

AD model explicitly assume an isothermal fluid (e.g., Li, McKee, & Klein, 2006;

Chen & Ostriker, 2012; Burkhart et al., 2015; Brandenburg, 2019, to list a few).

Examples in the literature of a two-fluid, non-isothermal approach are much rarer,

owing to concerns of whether ions can even be treated as a fluid in thermodynamical

equilibrium (e.g., Draine, 1986), and computational issues such as time step control

(Falle, 2003). Despite these hurdles, both Falle (2003) and Tilley, Balsara, & Meyer

(2012) have developed computational schemes including bench-mark tests to do

non-isothermal, two-fluid AD calculations.

The approach I take here is purely mathematical and goes further than the

references above by its application of strict thermodynamic equilibrium. Not only

do I assume each component – neutrals and ions – is separately in thermodynamic

equilibrium, I also assume they are in thermodynamical equilibrium with each other

(i.e., at any given location, the temperatures of the ions and neutrals are the same).

This, after all, is implicit in a one-fluid approach and, as conditions where the one-

fluid model is valid (low ionisation) change to where a two-fluid approach is called

for, the assumption of strict thermodynamical equilibrium ought to carry forward,

at least to some extent.
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Finally, the only mechanism I consider to ionise neutrals or recombine ions is

changes in temperature. In the dusty, dirty, irradiated environment of a planetary

disc, cosmic rays, dust grains, shock waves, UV radiation, etc. all contribute to the

ionisation level (e.g., Draine, 1986; Falle, 2003), and simple temperature changes

in a fluid element may not be as significant. Still, and in keeping with the open-

ing paragraphs of this chapter, using only the temperature – and thus the Saha

equation – to determine the ionisation level has the advantage of self-consistency,

requiring no additional physics or chemistry than has already been introduced.

And so with all that, let us proceed . . .

10.5.2 A two-fluid, non-isothermal model for AD

We now begin the most challenging mathematical task of the text.25 Now, I hasten

to add, were it not for the miraculous fact that in this universe, me � mi, we’d be

faced with tracking three sets of fluid equations, not “just” two! As it is, we’ll find

our two-fluid model cumbersome enough and, as we’re wallowing in the quagmire

of two-fluid mathematics, perhaps we can take some solace knowing that at least

we aren’t dealing with three!

Start by writing down the fluid equations for each of the three components:

neutrals; ions; and electrons,26 omitting for the time being the induction equation:

∂tρn +∇ · (ρn�vn) = σi,n + σe,n; (10.71)

∂t�sn +∇ · (�sn�vn) = −∇pn − ρn∇φ + �fi,n + �fe,n; (10.72)

∂ten +∇ · (en�vn) = −pn∇ · �vn +�i,n +�e,n; (10.73)

∂tρi +∇ · (ρi�vi) = σe,i + σn,i; (10.74)

∂t�si +∇ · (�si�vi) = −∇pi − ρi∇φ+ Zeni

(
�E + �vi × �B

)
+ �fe,i + �fn,i; (10.75)

∂tei +∇ · (ei�vi) = −pi∇ · �vi +�e,i +�n,i; (10.76)

∂tρe +∇ · (ρe�ve) = σn,e + σi,e; (10.77)

∂t�se +∇ · (�se�ve) = −∇pe − ρe∇φ− ene

(
�E + �ve × �B

)
+ �fn,e + �fi,e; (10.78)

∂tee +∇ · (ee�ve) = −pe∇ · �ve +�n,e +�i,e, (10.79)

where, in addition to all the variables defined after Eq. (10.1)–(10.3), we have the

following:

- en, ei, ee are, respectively, the internal energy densities of the neutrals, ions,

and electrons, where p1 = (γ1 − 1)e1 (‘1’ represents ‘n’, ‘i’, or ‘e’);

- σ1,2 is the exchange term representing the mass per unit volume per unit time

25Not computational ! That honour goes to the MHD Riemann solver in Chap. 6!
26Not to worry, the electron component will soon go away!
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that fluid component ‘1’ converts to ‘2’ (negative if ‘2’ converts to ‘1’). Thus,

σ2,1 = −σ1,2;

- �f1,2 is the force density fluid component ‘1’ exerts on ‘2’, where there are now

two terms: �f1,2 = �f a
1,2+

�f x
1,2.

�f a
1,2 is the ambipolar term from 10.2.1 (Eq. 10.4)

while �f x
1,2 is the exchange force density, a new term accounting for momentum

transfer when fluid component ‘1’ converts to ‘2’. As before, �f2,1 = −�f1,2;

- �1,2 = �a
1,2 +�x

1,2 is the power density delivered from fluid component ‘1’ to

‘2’. �a
1,2 is the rate at which the ambipolar force density does work, and �x

1,2

is the power density delivered from fluid component ‘1’ to ‘2’ (or the reverse

if negative) during the exchange to preserve thermal equilibrium among the

fluid components.

Our task is now to distil these nine equations into a useful and explicit model

for non-isothermal MHD with AD. Relaxing the assumption of low ionisation means

we can no longer rely upon ni � nn and ne � nn as we did in 10.2.1 to make

short-shrift of some of the equations. However, we can and will use liberally the fact

thatme � mi ∼ mn – and in a three-component environment, pe � pi ∼ pn – which

will convert these equations describing three fluid components into the two-fluid,

non-isothermal model we seek.

Before tackling that, however, let’s first examine the new source terms intro-

duced by our assumption of non-isothermality.

Density source terms

In an isothermal fluid, the fractional ionisation remains constant everywhere and for

all time and there is no need to account for the spatially and temporally dependent

exchange between neutrals and ions. Relaxing this constraint, then, opens a whole

can of worms which starts with accounting for losses and gains in the neutral and

ionised sub-components of the fluid, and continues with the corresponding transfers

of momentum and thermal energy. Even in an isothermal fluid, conversions between

neutrals and ions occur, but equally in both directions. It’s only when the temper-

ature increases or decreases that there will be a net increase or decrease in the ion

number density with a commensurate decrease or increase in the neutral number

density as a result of the exchange.

Consistent with the fluid model is the assumption of thermal equilibrium, which

is very different from the assumption of isothermality. For our three-component sys-

tem, this means that each component can be described with the same temperature,

T , which, because the system is not isothermal, can still vary with location and time.

Thermal equilibrium requires that once perturbed, each fluid component returns to

thermal equilibrium within itself and with the others – perhaps to a new common

temperature – on a time scale short compared to all other physically relevant time

scales for the system.
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H He He+

2gs+/gs 1 4 1

εs (eV) 13.54 24.48 54.17

Table 10.1. Statistical weights and ionisation energies for H, He, and He+.

With thermodynamic equilibrium, it is the Saha equation (e.g., MacDonald,

2015),
nens+

ns
=

2gs+

gs

e−εs/kBT

λ3e(kBT )
≡ νs(kBT ), (10.80)

that governs the fractional ionisation of each species everywhere in the fluid as a

function of kBT , where kB is Boltzmann’s constant. Here, ns is the number density

of species s (which may, itself, be partially ionised), ns+ is the number density of

species s once ionised, ne is the number density of electrons, gs and gs+ are the state

degeneracies of species s and s+, and εs is the ionisation energy of species s (e.g.,

Table 10.1 for H and He). Further,

λe(kBT ) =
h√

2πmekBT
,

is the so-called thermal de Broglie wavelength of an electron where h is Planck’s

constant and me is the mass of an electron. Finally, νs(kBT ) is the critical number

density for species s which evidently has a strong dependence on kBT .

The simplest case is pure hydrogen where only one invocation of Eq. (10.80) is

required. Let ns+ = nH+ = ne, the number density of ionised hydrogen (nH+) and

free electrons (ne), and let ns = nH, the number density of neutral hydrogen. Then,

Eq. (10.80) becomes,

n2
H+ = νHnH. (10.81)

Since the conserved quantity is the total number density, n = nH+ + nH, we set

nH = n− nH+ and Eq. (10.81) becomes,

n2
H+ = νH(n− nH+) ⇒ nH+ =

1

2

(√
ν2H + 4nνH − νH

)
. (10.82)

From this, it is easy to show that the ionised and neutral number densities are

equal (nH+ = nH = n/2) when nH+ = νH, whence the designation of νH as a critical

density.

With this, we can evaluate the exchange term, σn,i, for n = H and i = H+. Since

σn,i is the rate at which neutrals are converted to ions per unit volume and thus

the rate of change of ρi, we can write by the chain rule,

σn,i =
dρi
dt

= mH
dnH+

dt
= mH

dnH+

dνH

dνH
d(kBT )

d(kBT )

dt
, (10.83)

where the first two derivatives can be evaluated by differentiating Eq. (10.82) and

(10.80) directly, and where the third derivative can be determined from Eq. (10.74)
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and (10.76) by grace of the ideal gas law, kBT = mHpi/ρi. The details are left to

Problem 10.9.

However, computationally, it is much more practical to evaluate σn,i as the

difference in ionisation densities after and before the Saha calculation is performed

over a time step δt:

σn,i =
δρi
δt

=
ρi,x − ρi

δt
, (10.84)

where ρi,x = mHnH+ is the ionised mass density after the exchange, nH+ is the

ionised number density evaluated directly from Eq. (10.82) after the change in

temperature, and ρi is the ionised mass density before the exchange. Evidently,

since mass is conserved,

σi,n =
ρn,x − ρn

δt
= −σn,i = −ρi,x − ρi

δt
. (10.85)

Eq. (10.83)–(10.85) illustrate how one might tie nn and ni to the changing

temperature of the fluid assuming pure hydrogen. It is astonishing, actually, how

much more complicated the problem becomes just by adding one more species to

the mix. For the mathematically hardy, Problem 10.10 takes the reader through the

process of finding nn and ni as the temperature changes for a mixture of just two

elements, H and He, with no mention of the numerous other elements, molecules,

and dust one finds in a realistic astrophysical soup!

Momentum source terms

In addition to the ambipolar force density derived in 10.2.1,

�f a
n,i = γn,iρnρi�vn,i, Eq. (10.4)

the relaxation of isothermality means that any neutrals being ionised or ions recom-

bining will transfer from their former component to the new whatever momentum

they may have possessed. I refer to this transfer of momentum density over a specific

period of time, δt, as the exchange force density.

Consider a small volume, δV , of fluid in which a net mass,

δmn,i = (ρi,x − ρi)δV > 0,

of neutrals is converted to ions in a time δt. Such an exchange delivers a net mo-

mentum,
δ�Sn,i = δmn,i (�vn − �vi) = δmn,i�vn,i,

from the neutrals to the ions, which corresponds to a net exchange force,

�F x
n,i =

δ�Sn,i

δt
=

ρi,x − ρi
δt

�vn,iδV = σn,i�vn,iδV,

using Eq. (10.84), and thus an exchange force density,

�f x
n,i =

�F x
n,i

δV
= σn,i�vn,i. (10.86)
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This is an effective force density exerted by the neutrals on the ions as a result of

neutrals converting to ions. In the co-moving frame of the neutrals, �f x
n,i ∝ −�vi, and

it can be thought of as a “drag force”, one that works to reduce the relative speed

between the two fluid components.

By Newton’s third law, the reaction exchange force density exerted by the ions

on the neutrals is evidently,

�f x
i,n = −�f x

n,i = −σn,i�vn,i = −σi,n�vi,n, (10.87)

since σi,n = −σn,i (Eq. 10.85) and �vn,i = −�vi,n. Note that Eq. (10.86) and (10.87)

are derived assuming a net conversion of neutrals to ions (σn,i > 0, σi,n < 0).

If, instead, there were a net conversion of ions to neutrals and,

δmi,n = (ρn,x − ρn)δV > 0,

then by swapping the indices i and n in Eq. (10.86) and (10.87), the force densities

become,
�f x
i,n = σi,n�vi,n ⇒ �f x

n,i = −σi,n�vi,n = −σn,i�vn,i, (10.88)

this time for σi,n > 0 and σn,i < 0. Therefore, we can combine Eq. (10.86)–(10.88)

to get our final expressions for the exchange force densities,

�f x
n,i = |σn,i|�vn,i and �f x

i,n = |σi,n|�vi,n, (10.89)

where their “equal and opposite” nature is self-evident.

Combining Eq. (10.89) with (10.4) gives us expressions for the total force den-

sities neutrals and ions exert on each other:

�fn,i = �f x
n,i +

�f a
n,i = (|σn,i|+ γn,iρnρi)�vn,i ≡ Qn,i�vn,i; (10.90)

�fi,n = �f x
i,n +

�f a
i,n = (|σi,n|+ γi,nρiρn)�vi,n ≡ Qi,n�vi,n = −�fn,i, (10.91)

where I’m defining Qn,i = Qi,n as the combined exchange-ambipolar coefficient.

Energy source terms

The first power density source term we’ll look at is the simplest of the two. The

ambipolar power density is the rate at which the ambipolar force density does work,

and is therefore the dot-product of �f a
n,i and the relative velocity between the two

fluid components:
�a

n,i =
�f a
n,i · �vn,i = γn,iρnρiv

2
n,i, (10.92)

using Eq. (10.4), a positive-definite quantity. Therefore, �a
n,i is dissipative and al-

ways increases the internal energy density of the ions so long as there remains

a non-zero relative velocity between the ionised and neutral components. This is

consistent with our interpretation of �f a
n,i as a drag force in the previous segment.

Further,
�a

i,n = �f a
i,n · �vi,n = γi,nρiρnv

2
i,n = �a

n,i, (10.93)

and the internal energy of both fluid components increases by the same amount
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at the expense of their relative velocity. The analogy I like to use here is that of

rubbing hands together. So long as your hands are in contact and there is a relative

speed between them, one hand doesn’t get warm while the other cools; both hands

warm at the same rate.

The exchange power density, �x
n,i, is a bit trickier to evaluate as it bears the respon-

sibility of maintaining thermodynamic equilibrium between the ions and neutrals.

The principle is simple. Without specifying the mechanism of energy transfer (e.g.,

radiation, adiabatic expansion/compression, mixing, whatever), the assumption of

thermodynamic equilibrium between the two fluid components presupposes that

something, somehow restores their specific energies to equilibrium on a time scale

short compared to all other processes. As the exchange of particles between ions

and neutrals is the only vehicle we have for such an energy exchange, we task �x
n,i

with transferring from one component to the other precisely that amount of energy

required to maintain thermal equilibrium.

Starting with the ideal gas law, we can enforce thermal equilibrium between

the neutrals and ions by setting,

kBT = mn
pn
ρn

= mi
pi
ρi

⇒ pn = m̃
ρn
ρi
pi (10.94)

⇒ ei =
pi

γi − 1
=

1

m̃γ̃

ρi
ρn
en, (10.95)

where,

m̃ =
mi

mn
and γ̃ =

γi − 1

γn − 1
, (10.96)

are defined for convenience. For the present system where ions are created from the

neutral particles, m̃ ∼ 1. By contrast, for the low ionisation system considered in

10.2.1 where ions are generated from “pollutants” such as Na and K in an otherwise

H + He gas, we found m̃ ∼ 13. As for γ̃, for most non-relativistic astrophysical

applications, γ = 5/3 (monatomic gas) whether neutral or ionised, and γ̃ ∼ 1.

However, for generality, we’ll carry it and m̃ through our derivations, at least until

they start getting in the way!

To “inform” the fluid equations that thermal equilibrium is being enforced,

substitute Eq. (10.95) into Eq. (10.76) (ignoring �e,i as inconsequential) to get,

1

m̃γ̃

[
∂t

(
ρi
ρn
en

)
+∇ ·

(
ρi
ρn
en�vi

)]
= −pi∇ · �vi +�a

n,i +�x
n,i, (10.97)

where �a
n,i is given by Eq. (10.92) and �x

n,i is the exchange power density we wish

to evaluate. To this end, substitute:

∂t

(
ρi
ρn
en

)
=

ρi
ρn
∂ten + en∂t

(
ρi
ρn

)
;

∇ ·
(
ρi
ρn
en�vi

)
=

ρi
ρn

∇ · (en�vi) + en�vi · ∇
(
ρi
ρn

)
,
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into Eq. (10.97) and multiply through by m̃γ̃ρn/ρi to get,

∂ten +∇ · (en�vi) + en
ρn
ρi
∂t

(
ρi
ρn

)
+ en�vi ·

[
ρn
ρi

∇
(
ρi
ρn

)]

= m̃γ̃
ρn
ρi

(−pi∇ · �vi +�a
n,i +�x

n,i

)
,

(10.98)

taking note that the second term on the LHS has �vi, not �vn. Next, from Eq. (10.73)

we have,

∂ten = −∇ · (en�vn)− pn∇ · �vn +�a
i,n +�x

i,n. (10.99)

Further,

ρn
ρi
∂t

(
ρi
ρn

)
=

ρn
ρi

(
1

ρn
∂tρi − ρi

ρ2n
∂tρn

)
=

1

ρi
∂tρi − 1

ρn
∂tρn

=
1

ρi

(
−∇ · (ρi�vi) + σn,i

)
− 1

ρn

(
−∇ · (ρn�vn) + σi,n

)

⇒ ρn
ρi
∂t

(
ρi
ρn

)
= −∇·�vi−�vi · ∇ρi

ρi
+∇·�vn+�vn · ∇ρn

ρn
+σn,i

(
1

ρi
+

1

ρn

)
, (10.100)

using Eq. (10.71) and (10.74), and since σi,n = −σn,i. Then, substituting Eq. (10.99),
(10.100), and,

ρn
ρi

∇
(
ρi
ρn

)
=

1

ρi
∇ρi − 1

ρn
∇ρn,

into Eq. (10.98), we get, after a little algebra,

− �vn,i ·
(
∇en − en

∇ρn
ρn

)

︸ ︷︷ ︸
ρn∇ (en/ρn)

−pn∇ · �vn + enσn,i

(
1

ρi
+

1

ρn

)
+�a

i,n +�x
i,n

= −γ̃ m̃ρn
ρi
pi

︸ ︷︷ ︸
pn

∇ · �vi + m̃γ̃
ρn
ρi

(
�a

n,i +�x
n,i

)
,

(10.101)

where the second underbrace follows from Eq. (10.94).

For the non-conservative ambipolar power density, we found that �a
i,n = �a

n,i.

Conversely, the exchange power density is conservative (what one fluid component

gives up, the other receives) and thus �x
i,n = −�x

n,i. With this final piece of insight,

we can solve Eq. (10.101) for �x
n,i to get,

�x
n,i =

ρi
ρi + m̃γ̃ρn

[
enσn,i

(
1

ρi
+

1

ρn

)
+ (ρi − m̃γ̃ρn) γn,iρnv

2
n,i

− pn∇ · (�vn − γ̃�vi)− ρn�vn,i · ∇
(
en
ρn

)]
,

(10.102)

using Eq. (10.92) and after some straight-forward algebra.

At first glance, Eq. (10.102) may not seem antisymmetric in the exchange of

its indices i and n, as it must be for �x
i,n = −�x

n,i. The proof that Eq. (10.102) is,

in fact, antisymmetric is left as an exercise for the reader. [Hint : As can be seen
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from Eq. (10.96), switching i and n forces m̃ → 1/m̃ and γ̃ → 1/γ̃. Liberal use of

Eq. (10.94) and (10.95) then completes the proof.]

Growing a little weary now of m̃ and γ̃, let’s set them both to 1 so that Eq.

(10.102) can be reduced to, again after a little algebra:

�x
n,i = −�x

i,n =
σn,i
ρn

en +
ρi − ρn
ρ

γn,iρnρiv
2
n,i

− ρipn
ρ

∇ · �vn,i − ρiρn
ρ
�vn,i · ∇

(
en
ρn

)
,

(10.103)

where ρ = ρn + ρi is the total density of the fluid. To interpret the four terms on

the RHS of Eq. (10.103), first note that because of strict thermal equilibrium (Eq.

10.94 and 10.95), ρipn = ρnpi and en/ρn = ei/ρi ∝ T . With this, the four terms

considered left to right can be seen to represent:

1. the portion of internal energy density transported with the neutrals as they

become ions (or vice versa);

2. a correction to the heating caused by the ambipolar power density – initially

applied equally to ions and neutrals – so that each subpopulation is heated

the same amount per unit mass ;

3. a correction to the adiabatic heating/cooling in the same spirit as above; and

4. a term proportional to the temperature gradient, and thus the heat conduction

needed to compensate for the differing heat transport of the ions and neutrals.

Combining Eq. (10.92), (10.93), and (10.103), we arrive at our final expres-

sions – again after a little algebra – for the combined exchange-ambipolar power

density each subpopulation delivers to the other:

�n,i = �x
n,i +�a

n,i
(10.104)

=
ei
ρi
σn,i +

ρn
ρ

[
2γn,iρ

2
i v

2
n,i − pi∇ · �vn,i − ρi�vn,i · ∇

(
ei
ρi

)]
;

�i,n = �x
i,n +�a

i,n
(10.105)

=
en
ρn
σi,n +

ρi
ρ

[
2γi,nρ

2
nv

2
i,n − pn∇ · �vi,n − ρn�vi,n · ∇

(
en
ρn

)]
.

Generalised two-fluid MHD

And so now for the final push: extracting from Eq. (10.71)–(10.79) the kernel of

mathematics containing the physics of the two-fluid, non-isothermal model for AD-

MHD.

Let’s start by assessing what we can throw away. First, assuming the iner-

tia and internal energy density of the electron component to be negligible, we can

discard Eq. (10.77) and (10.79). Second, the exchange terms involving electrons

(σn,e = −σe,n and σi,e = −σe,i) are equally negligible and discarded. Third, while
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the internal energy densities of the neutrals and ions are assumed to be comparable,

we still only need to retain one of their energy equations, say that of the ionised

component (Eq. 10.76), and replace the energy equation for neutrals with the re-

quirement that the system remain in thermal equilibrium (Eq. 10.94 and 10.95).

Already, these three considerations have simplified matters enormously.

But we must be careful not to throw out any of the baby with the bathwater!

The electron momentum equation, Eq. (10.78), for example, cannot be so easily

dismissed. In comparing Eq. (10.75) with Eq. (10.78), we see they have at least

one force density – ±ene( �E + �vi/e × �B) – in common (since Zni = ne). Further,

while we’ve already argued that fn,e � fn,i (Eq. 10.17 in 10.2.1), fi,e is not equally

ignorable, since, in this case, the ions and electrons interact with the full Coulomb

force density, and not just the residual ambipolar force density between the neutrals

and electrons as described on page 381.

So, proceeding carefully with Eq. (10.78), let’s add it to Eq. (10.75) to get,

∂t�si +∇ · (�si�vi) +�
���

∼0

∂t�se +������∼0∇ · (�se�ve)

= −∇(pi + �
��
∼0

pe)− (ρi + �
��
∼0

ρe)∇φ+ ene(�vi − �ve)︸ ︷︷ ︸
�J

× �B +


�fe,i + �fn,i +



�
∼0

�fn,e +


�fi,e,

since �fi,e = −�fe,i. Thus,

∂t�si +∇ · (�si�vi) = −∇pi − ρi∇φ+ �fL +Qn,i�vn,i, (10.106)

using Eq. (10.90). This is the two-fluid momentum equation for ions. Note that the

Lorentz force density, �fL = �J× �B, appears in this equation instead of the momentum

equation for neutrals (Eq. 10.72), whereas in the one-fluid model described in 10.2.1,

the Lorentz force appears in the neutral momentum equation (Eq. 10.16).

Let us now subtract mi × Eq. (10.78) from Zme × Eq. (10.75):

Zme

(
∂t�si +∇ · (�si�vi)

)−mi

(
∂t�se +∇ · (�se�ve)

)

= −Zme∇pi +mi∇pe −�����Zmeρi∇φ+����miρe∇φ
+ Zmeene( �E + �vi × �B) +miene( �E + �ve × �B)

− (Zme +mi)�fi,e + Zme
�fn,i −mi

�fn,e,

(10.107)

where the two gravity terms that cancel outright (no approximation) do so because,

Zmeρi = Zmemini = memine = miρe.

Numerous other terms in Eq. (10.107) can be dropped as negligible. All terms on

the LHS, both remaining terms in the second line, and the first term on the third

line are proportional to either me or pe and summarily dismissed. On the fourth

line, the first term proportional to me can be dropped (as it is being added directly

to mi), but not the second term, for in this case,

mifn,e
Zmefn,i

∼ 6.4

Z

√
T

103K
,
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using Eq. (10.17) and setting mi to the mass of a proton; hardly justification to

drop either term! Thus, Eq. (10.107) whittles down to,

�E = −�ve × �B +
Zme

enemi

�fn,i +
1

ene
(�fi,e + �fn,e). (10.108)

Now, in the one-fluid model discussed in 10.2.1 where the inertia of both

the electrons and ions were negligible, three velocities arose that held significant

meaning: �vn, the induction velocity; �vi,e ∝ �J ; and �vi,n ∝ �fL (see page 384). In the

current two-fluid setting, we’ll find that induction is tied to the ion velocity rather

than the neutral velocity, and that �vi,n has no special significance. Only �vi,e plays

the same role here as it did in the one-fluid model, and only because me � mp.

Using Eq. (10.90) and (10.91) to replace the force densities in Eq. (10.108) and

inserting �vi − �vi in two strategic places, we get,

�E = −(�ve − �vi + �vi
)× �B +

1

ene

Zme

mi
Qn,i�vn,i

+
1

ene

(Qi,e�vi,e +Qn,e(�vn − �ve + �vi − �vi)
)

= −�vi × �B + �vi,e × �B +
1

ene

(
Zme

mi
Qn,i +Qn,e

)
�vn,i +

Qi,e +Qn,e

ene
�vi,e

⇒ �E = −�vi × �B︸ ︷︷ ︸
induction

+
1

ene

�fL
︸ ︷︷ ︸
Hall

+B�vn,i + η2 �J︸︷︷︸
resistive

, (10.109)

where the induction, Hall, and resistive terms are immediately recognisable from

Eq. (10.20), where there is no apparent ambipolar diffusion term, and where the

term B�vn,i is new to the two-fluid case. Note that the coefficient,

B ≡ 1

ene

(
Zme

mi
Qn,i +Qn,e

)
, (10.110)

has units of magnetic induction, whence our use of the symbol B.
The resistivity, η2, is a two-fluid generalisation of Eq. (10.21) to include the

dissipative interaction of electrons with both ions and neutrals:

η2 ≡ Qi,e +Qn,e

(ene)2
=

γi,eρiρe + γn,eρnρe
(ene)2

≈ me

e2ne

(〈σu〉i,eni + 〈σu〉n,enn

)
, (10.111)

whereme is set (approximately) to the reduced masses, μi,e and μn,e, 〈σu〉i,e is given
by Eq. (10.7), and where 〈σu〉n,e is given by the first of Eq. (10.6).

The term B�vn,i is new to this analysis. Now, in the one-fluid model, �vn,i ∝ �fL
and there we argued that such a term was negligible compared to what was to

become the Hall term. Here, even though �vn,i is no longer proportional to �fL, we’ll

refer to B�vn,i as “Hall-like” and ask if it too is negligible compared to the Hall term.

First thing is to look at the coefficient, B. Using Eq. (10.90) and (10.91) for
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Qn,i and Qn,e and neglecting the exchange term |σn,e|, Eq. (10.110) becomes,

B =
1

ene

Zme

mi
|σn,i|

︸ ︷︷ ︸
B x

+
1

ene

(
Zme

mi
γn,iρnρi + γn,eρnρe

)

︸ ︷︷ ︸
B a

.

For illustration, let’s set aside the exchange term, B x, and consider only the am-

bipolar term, B a. Since Zmeρi/mi = ρe, we have,

B a =
ρeρn
ene

(γn,i + γn,e) =
memnnn

e

( 〈σu〉n,i
mn +mi

+
〈σu〉n,e
mn +me

)

⇒ B a ≈ menn

e

(
1
2 〈σu〉n,i + 〈σu〉n,e

)
, (10.112)

using Eq. (10.5) for the second equality, and setting mn ≈ mi and mn � me for the

approximation.

Now, from Eq. (10.6), 〈σu〉n,e > 〈σu〉n,i and even more so 1
2 〈σu〉n,i. Thus, let’s

compare the second term in Eq. (10.112) with the actual Hall term, �EH = �vi,e× �B =
�fL/ene by defining the ratio,

RBH =
Bp
n,evn,i

|�vi,e × �B| =
mennvn,iχn,e

evi,eB sinψ

√
T

T0
,

where ψ is the angle between �vi,e (i.e., �J) and �B, and where we’ll assign sinψ = 2/π

as the average value for ψ ∈ [0, π]. As a reminder, T0 = 103K is the fiducial

temperature chosen in 10.2.2 for a planetary disc. Then, following our M.O. in

10.2.2, we have,

RBH =
πmeχn,e

2e
√
kBT0γμ0α0�

�
��

∼1

vn,i
vi,e

√
nn

√
ρnμ0

B︸ ︷︷ ︸
1/a

√
γkBT

mn︸ ︷︷ ︸
cs

√
α0 =

√
nn

nBH

α0

α
,

where I’ve taken the leap that the relative velocities vn,i and vi,e are, on average,

comparable. As usual, α = a2/c2s is the MHD-alpha, α0 = 0.01 is the fiducial

value chosen in 10.2.2 for a planetary disc, γ = 5
3 for a monatomic gas, and nBH ∼

5.28×1021m−3 is the critical number density evaluated from all the constants. Note

that RBH is almost identical to the relative importance of resistive losses to the Hall

effect, RRH, found in Eq. (10.27). I leave it as an exercise to compare the first term

in Eq. (10.112) with the Hall term where one should find a similar expression to

RHA, the relative importance of the one-fluid Hall and ambipolar diffusion effects

(Eq. 10.28). It is therefore not at all apparent that this new term, B�vn,i, can be

neglected, at least not compared to the resistive and Hall terms.

Returning our focus to Eq. (10.109), we use Faraday’s law (App. B) to derive

the two-fluid induction equation,

−∇× �E = ∂t �B = ∇×
(
�vi × �B − η2 �J − 1

ene

�fL − B�vn,i
)
, (10.113)

with all “significant” non-ideal terms included. I place significant in quotes because
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in the two-fluid regime (> 105K say) where ionisation of H and He are the dominant

sources of ions and the electron number density is high, resistive losses and the Hall

effect are quite negligible compared to ambipolar diffusion (Fig. 10.3), and certainly

negligible compared to the induction term. For that reason, I carry forward from

Eq. (10.113) only the induction term into Equation Set 11, our final set of equations

for an adiabatic, two-fluid, MHD system:

Equation Set 11 :

∂tρn +∇ · (ρn�vn) = σi,n; Eq. (10.71)

∂tρi +∇ · (ρi�vi) = σn,i; Eq. (10.74)

∂t�sn +∇ · (�sn�vn) = −∇pn − ρn∇φ+ �fi,n; Eq. (10.72)

∂t�si +∇ · (�si�vi) = −∇pi − ρi∇φ+ �fL + �fn,i; Eq. (10.106)

∂tei +∇ · (ei�vi) = −pi∇ · �vi +�n,i; Eq. (10.76)

∂t �B = ∇× (�vi × �B
)
, Eq. (10.113)

where pi = (γ − 1)ei and pn = m̃ρnpi/ρi (m̃ = 1 for mi = mn) preserve thermody-

namic equilibrium, σi,n (σn,i) is the recombination (ionisation) rate (mass exchange

rates) given by Eq. (10.83) or (10.85), �fi,n = −�fn,i is the combined exchange-

ambipolar force density exerted by the ions on the neutrals (neutrals on the ions)

given by Eq. (10.90) and (10.91), �fL = �J× �B is the Lorentz force density, and where

�n,i is the combined exchange-ambipolar power density given by Eq. (10.104). For

the two-fluid isothermal AD model as used by many in the literature (e.g., Li,

McKee, & Klein, 2006; Chen & Ostriker, 2012; Burkhart et al., 2015; Brandenburg,

2019), one needs only set σi,n = 0, �fi,n = �fa
i,n, and drop Eq. (10.76) in Eq. Set 11.

A few comments before we close shop. First, it is evident that the effect of ambipolar

diffusion, now contained within the exchange-ambipolar coefficients, Q, is in the

momentum equations and not the induction equation as in the one-fluid model, and

one can see almost by inspection the “diffusive nature” of AD. Evidently, only the

ions are directly influenced by the Lorentz force density, �fL. However, the ions and

neutrals push on each other via equal and oppositely directed forces, �fi,n = Qi,n�vi,n
and �fn,i = Qn,i�vn,i, and it is by this mechanism that the neutrals are somewhat

and indirectly coupled to the magnetic induction. It’s the “somewhat” part that

allows material in an imperfectly ionised medium to “slip” or diffuse through lines

of induction, whence the ‘D’ in AD.

Second, in the two-fluid model, it is �vi and not �vn that appears in the induction

term (�vi × �B) and thus induces magnetic induction from the flow of charge. In the

one-fluid model, we found somewhat paradoxically that �vn played that role; indeed,

the Lorentz force appeared directly in the neutral momentum equation, despite the

fact the neutrals have no charge. I invite the reader to review the discussion after

Eq. (10.16) if the significance of this point has been forgotten or overlooked.
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And third, as the temperature increases to the point where ionisation is virtu-

ally complete, ρn → 0, Eq. (10.71) and (10.72) drop out, σn,i, Qn,i, and �n,i all go

to zero, leaving us with a one-fluid, non-isothermal MHD model with no non-ideal

or exchange terms remaining. Once again, we find ourselves in the realm of ideal

MHD, bringing us full circle to our opening discussion in Chap. 4.

And to my dear, late father I give the last word. At such a juncture where a suitable

“wrap-it-up phrase” was called for, Dad could be relied upon to declare: “And Bob’s

your uncle!”

∼
Problem Set 10

10.1∗∗ In this problem, I’ll take you through the steps to find the rate coefficient

between ions and electrons, 〈σu〉i,e, where you will show that,

〈σu〉i,e =
4

3

√
2π

me

(
Ze2

4πε0

)2
ln Λ

(kBT )3/2
, (10.114)

and where the only quantity new to the reader should be lnΛ, the so-called Coulomb

logarithm. This problem falls solidly within the realm of plasma physics and so I’ve

broken it up into parts with explanations that should be digestible to readers of

this text. As a result, the problem presents long but it’s shorter than it looks!

Assuming thermodynamic equilibrium, we seek the force on an electron passing

through a “sea” of positive ions (+Ze) partially shielded by other electrons (Fig.

10.12). In deflecting the electron, this force – the cumulative effect of numerous

Coulomb interactions – decreases its forward velocity component and thus can be

thought of as a “drag force” exerted by the ions on the electrons. Evaluating this

will lead to an expression for 〈σu〉i,e and, as in any complex physics problem, the

key to solution is breaking it up into bite-sized pieces. So here we go . . .

Figure 10.12. (Problem 10.1) An electron (red e−) makes its way through a sea
of positive and negative charges.
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a) Consider a single electron with

mass me and initial velocity

�v0 = v0ẑ approaching a single

ion with impact parameter b

(inset). The Coulomb force of

attraction causes the electron

to follow a hyperbolic trajectory

resulting in an angular deflection, δ, from its original path.

Your second-year mechanics course probably included a unit on central forces

where you would have found that the trajectory of such a particle coming in

from z = −∞ and x = b is given by,27

r(θ) =
a

1 + ε cos(θ − θ0)
, (10.115)

where, for a Coulomb interaction,

a ≡ 4πε0
Ze2

meb
2v20 , (10.116)

is the latus rectum, and ε =

√
1 +

a2

b2
> 1 is the eccentricity of the hyperbolic

orbit.

Assuming small-angle deflections (δ � π/2), show that: 1− cos δ ≈ 2b2

a2
.

Hint : Given expressions for r(θ), a, and ε, this problem is more geometry than

physics. Note that r → ±∞ when the denominator of Eq. (10.115) is zero.

Setting r = −∞ when θ = −π allows you to evaluate cos θ0, where θ = θ0
when the electron is at the pericentre (point of closest approach; rp in the

inset). Then, set r = ∞ at θ = −δ to find cos δ.

b) In solving part a), you should have had to assert that a� b. Give a physical

reason why this is necessary for small-angle deflections.

c) Using your results from part a), show that the change in the component of

velocity in the direction of the initial velocity is,

δvz = − 2Z2e4

(4πε0)2m2
eb

2v30
. (10.117)

d) Equation (10.117) is the effect on an electron by a single ion encounter. To

find the cumulative effect of all ions the electron passes, consider the problem

in the electron’s frame of reference as illustrated in the inset on the next page.

From its frame, the electron sees a stream of ions passing it with velocity −vz ẑ
27The expressions for r(θ), a, and ε are straight-forward applications of Newton’s second law

with a Coulomb central force. I’m deliberately avoiding the distraction of taking you through this
part of the problem, and encourage any reader for whom this may be unfamiliar to consult just
about any sophomore mechanics text (e.g., Fowles & Cassiday or Marion & Thornton, any edition)
with a unit on central forces.
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and, in a time Δt, the number of ions streaming by within a radial distance

bmax is niπb
2
maxvzΔt, where ni is the ion-number density, vz = v0 cosϑ,

28 and

bmax is the furthest an ion can be from the electron before other electrons in

the plasma effectively shield it from the ion – the so-called “Debye-length”

(pronounced “d’by”) – given by,

bmax = λD =

√
ε0kBT

nee2
. (10.118)

Using the inset as a guide, set up the ap-

propriate integral to show that the effective

force exerted on the electron by ions stream-

ing in the z-direction is,

Fz(v0, ϑ) = −Z
2e4 cosϑ

4πε20mev20
ni ln

(
bmax

bmin

)
, (10.119)

where bmin is the minimum impact parameter which you’ll evaluate in part

e). Since we’re considering only small scattering angles, the impact parameter

must be greater than a certain bmin lest the electron be scattered out of the

cylinder in the inset. Such impacts are rare and neglecting them won’t affect

the results by much.

Caution: Don’t overthink this part; it’s actually a two-liner!!

e) The quantity,

lnΛ ≡ ln

(
bmax

bmin

)
= ln

(
λD
bmin

)
,

is known as the Coulomb logarithm, and its value depends upon how we choose

bmin. Fortunately, bmin appears in a logarithm, and how it’s set affects things

rather weakly.

Small deflections mean δ � π/2 and thus a hard upper limit is δmax = π/2. For

the purists, we could set a smaller δmax but again, bmin appears in a logarithm

and its actual value matters little. As you’ll see, δmax = π/2 happens to be a

convenient value.

Show that δmax = π/2 corresponds to,29

bmin =
Ze2

4πε0mev20
.

Then, setting v0 to the electron thermal velocity,30 1
2mev

2
0 = 3

2kBT , show that

the Coulomb logarithm is given by,

28After numerous small deflections, δ, the net deflection angle, ϑ, can become significant and
the z-component of velocity becomes vz = v0 cos ϑ.

29This is the so-called classical limit valid for T < few× 105 K. For higher temperatures, bmin

is set using quantum mechanical criteria; see, e.g., Chap. 2 in Callen (2006).
30This is a result from statistical mechanics for systems in thermal equilibrium that follow a

classical Maxwell–Boltzmann distribution.
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ln Λ = ln

(
9ND

Z

)
,

where ND is the number of electrons within a Debye sphere (sphere of radius

λD).

f) For ne = 2 × 109 m−3, T = 103K, and Z = 1,31 evaluate lnΛ. For most

(astro)physical plasmas, 12 � ln Λ � 17; your result should land within this

range.

g) Equation (10.119) is the net force on a single electron with a speed v0 passing

through partially shielded ions. We want the average force felt by an electron

of any speed.

For an ensemble of N0 particles with differing velocities, the fractional dis-

tribution function, f(�v), is defined such that the fraction of particles with

velocities between �v and �v + d�v is,

dN

N0
= f(�v)d3�v.

Evidently, ∫
f(�v)d3�v =

1

N0

∫
dN = 1,

where integrating to 1 is the hallmark of a fractional distribution function.

Note that d3�v is a 3-D differential, usually written in spherical polar coordi-

nates in velocity-space: d3�v = v2 sinϑdv dϑdϕ. Then, for a given particle prop-

erty, q(�v) (e.g., energy, speed, whatever), the ensemble average of q weighted

by the distribution function f(�v) is:

〈q〉 =

∫
q(�v)f(�v)d3�v.

Undoubtedly, the most famous fractional distribution function in physics is the

Maxwell–Boltzmann distribution first worked out by Maxwell in 1860 based

largely on heuristic arguments, then by Boltzmann in 1877 based on his new

theory of statistical thermodynamics. It describes an ensemble of particles

in thermodynamic equilibrium (i.e., one which can be described by a single

temperature, T ), and is given by,

fMB(�v) =

(
m

2πkBT

)3/2
e−m(�v−�u)2/(2kBT ), (10.120)

where m is the mass of a particle, �u is the centre of the velocity distribution,

and T is the temperature describing the ensemble.

Now in the frame of reference of the ions, �u = ve,iẑ is the “drift velocity” of

the electrons which is small compared to the “thermal velocity”, �v (ve,i � v).

Show that the ensemble average of the effective force acting on a single electron

31Consistent with the ballpark figures for an inner planetary disc given on page 388 of the text.
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(Eq. 10.119) weighted by the Maxwell–Boltzmann distribution (Eq. 10.120) is

given by,

〈Fz〉 = − Z2e4

6πε20kBT

√
m

2πkBT
ln Λnive,i. (10.121)

Hint : The exponential in Eq. (10.120) can be approximated as,

e−m(�v−�u)2/(2kBT ) ≈ e−mv2/2kBT

(
1 +

mvzve,i
kBT

)
,

where vz = v cosϑ, and ϑ is the accumulated deflection of the electron from

the z-axis.

h) And now for the finish. Equation (10.121) is the average force exerted by the

ions per electron. To get the force per unit volume (force density) exerted by

the ions collectively on the electrons, we must multiply 〈Fz〉 by the electron

number density,
fi,e = ne〈Fz〉. (10.122)

With this final piece of insight and the definitions of ambipolar force density

and the coupling coefficient (Eq. 10.4 and 10.5 in the text), show that the rate

coefficient, 〈σu〉i,e, is given by Eq. (10.114) at the beginning of the problem.

For Z = 1 and using your value for lnΛ from part f, confirm the numerical

value for χi,e given just after Eq. (10.7) of the text.32

To those who get through all of this, congratulations! Who knew? With a little

classical mechanics, statistical mechanics, electrodynamics, fluid mechanics, and

even a little quantum mechanics thrown in for good measure, you too can be a

plasma physicist!

10.2∗ Assuming a constant resistivity, η, derive Eq. (10.37) in the text, namely,

∂te
∗
T +∇ ·

[
(eT + p)�v +

1

μ0

�B × (�v × �B) +
η

μ0

�J × �B

]
= 0,

the total energy equation for a resistive fluid.

To get a head-start on this, you might consult 4.6 where the total energy equation

for ideal MHD, Eq. (4.19), is derived, though you should fill in all the details left

out by the text (e.g., flesh out what is meant by “using numerous vector identities

from App. A)”.

32A note on temperature units. Most plasma physicists and many astronomers express T in eV,
an energy unit. As an mks purist, I eschew this practice, though it has the advantage of not having
to carry the Boltzmann constant. If you need to compare a numerical result derived in kelvins (e.g.,
parts f, h) with a corresponding result derived in eV (e.g., Callen, 2006), the rule of thumb is simple:
replace T (K) with T (eV)×1.1604×104; or replace T (eV) with T (K)×8.6175×10−5, the constants
being either e/kB or kB/e.
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10.3

a) Show that in the absence of the resistive and Hall terms, the non-ideal induc-

tion equation for the one-fluid model, Eq. (10.22), can be written as,

∂t �B = ∇× (�vn × �B − ηAD
�J⊥
)
, (10.123)

where,

ηAD =
B2

γi,nρiρn
,

is the ambipolar resistivity and where �J⊥ is the vector component of the

current density, �J , perpendicular to �B.

b) Compare the resistive induction equation, Eq. (10.34) in the text, with Eq.

(10.123) above. If the resistivity, η, in the former works towards dissipating

the current density, �J ,33 what do you suppose the ambipolar resistivity, ηAD,

does in the latter?

One way to interpret the action of η on �J in Eq. (10.34) is by eliminating
�J outright, resistive dissipation renders the magnetic induction “force-free”

(�fL = �J × �B → 0). What is the analogous statement for the ambipolar resis-

tivity, ηAD? Does all of �J have to be dissipated away in order to make �B force

free?

10.4 Section 8.5 of the text started off by scaling Euler’s equation (Eq. 8.36) and

showing it to be scale-free.34 Conversely, once the viscid term, ν∇2�v, was included,

the resulting incompressible Navier–Stokes equation was found not to be scale-free,

and it was here that the Reynolds number, R = V L/ν, emerged (Eq. 8.40 which

uses R instead of L).

We’re going to do the same thing here for the magnetic Reynold’s number, RM.

a) Define the “scaling laws”:

r = Lr′; �v = V �v ′; �B = B0
�B′, (10.124)

where quantities on the LHS are the original variables, the primed quantities

on the RHS are unitless (scale-free) versions, and L, V , and B0 are constant

scaling factors that carry all the units (e.g., m, m s−1, and T respectively)

sometimes referred to as fiducial values.

Using Eq. (10.124), show that the ideal induction equation,

∂t �B = ∇× (�v × �B), Eq. (4.4)

33Rappel : resistive dissipation works to smooth out �B and make it uniform everywhere which,
among other things, means ∇× �B = μ0

�J → 0.
34The reader who has not gone through Chapter 8 yet might read the first two pages of 8.5

(which does not depend unduly on knowledge of viscosity or the Navier–Stokes equation) to ac-
quaint themselves with what it means to “scale an equation” and for an equation to be or not to
be (always wanted to use that quotation in a real setting!) “scale-free”.
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is “scale-free”. That is, after substituting Eq. (10.124) into Eq. (4.4), all scaling

factors should cancel leaving an equation in primed quantities identical to the

original ideal induction equation.

Hint : Think carefully about how you scale the operators, ∂t and ∇ (e.g., see

Eq. 8.38).

b) Next, by scaling the resistive induction equation,

∂t �B = ∇× (�v × �B − η �J ), Eq. (10.34)

show that you get,

∂t′ �B
′ = ∇′ ×

(
�v ′ × �B′ − 1

RM

�J ′
)
, (10.125)

where,

RM =
μ0V L

η
,

is the magnetic Reynolds number (Eq. 10.24 in the text). Note that Eq.

(10.125) is not scale-free since the constant RM depends upon scaling fac-

tors chosen a priori.

Think really carefully about how you scale the current density, �J = (∇ ×
�B)/μ0 = J0 �J

′. In particular, should �J ′ be set to (∇′× �B′)/μ0, or just ∇′× �B′?
Give a reason for your choice, other than ‘one gets the right answer and the

other doesn’t’ !

10.5 Complete the proof of Theorem 10.1 in the text by showing that for an

axisymmetric system and no injection of Bϕ, Bϕ diffuses away in time according

to,
d

dt

(
Bϕ

r

)
= �B · ∇

(
vϕ
r

)
+

DM

r2
∇̃2(rBϕ),

where the poloidal components of the magnetic induction, Bz and Br, diffuse away

because of Eq. (10.52).

Thus, no velocity profile can sustain a dynamo in a resistive, axisymmetric MHD

system.

Hint : Take note that this problem needs to be done in cylindrical coordinates.

10.6∗ In this problem, we’ll use our näıve model based on Taylor columns for the

earth’s dynamo (Fig. 10.8b) to make an even more näıve estimate of the expected

strength of the magnetic induction on the earth’s surface at the equator.

a) In Eq. (10.53) of the text, assume steady state (D/Dt = 0), hydrostatic

equilibrium within the earth’s core, and ignore viscosity. This leaves just the

Coriolis and Lorentz accelerations to balance out. Use this plus whatever else

you can find to eliminate J to derive an expression for Boc (the magnetic
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induction strength somewhere in the middle of the outer core) in terms of ρoc
(density of the molten Fe and Ni mixture), ηoc (resistivity of this mixture),

and ω⊕ (earth’s rotation rate). Note that by “even more näıve”, I’m inviting

you to replace nasty things like �J × �B with JB, etc.

b) Just for fun, find Boc in terms of ρoc, ηoc, and ω⊕ again, but this time using

dimensional analysis. (Rappel : forget what this is? See 2.4, page 51 of the

text.)

c) Using ρoc ∼ 104 kgm−3, ηoc ∼ 10−7Ωm (highly conductive!), and ω⊕ ∼
7.3× 10−5 rad s−1, what is your estimate for Boc?

d) Given that a dipole magnetic induction falls of as r−3 in a direction perpen-

dicular to the dipole axis, what is your estimate of B on the earth surface at

the equator? (Measured values vary, but their average is ∼3.0× 10−5T.)

10.7 Consider the current sheet in Fig. 10.6 in the text. Suppose across this sheet,

the magnetic induction is described by,

�B = Bx ı̂ = B1ı̂

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, y ≥ l;

y

l
, −l < y < l;

−1, y ≤ −l,
(10.126)

where l > 0 is half the thickness of the current sheet. Thus, as shown in the inset,

Bx has equal but oppositely directed constant values outside the current sheet, and

varies linearly within.

a) Find the current density, �J , across the current sheet.

b) Find the Lorentz force density, �fL = �J × �B, across the current sheet. Does

the Lorentz force density tend to drive layers of opposing magnetic induction

apart or pinch them together?

c) Let the pressure outside the current sheet (|y| ≥ l) be p0, a constant. Assuming

a stationary state (∂t = 0, �v = 0), what is the pressure profile across the

current sheet?

d) Using a computer plotting package or doing it by hand, generate a stacked

plot of profiles for p(y) (top), fy(y) (middle), and Jz(y) (bottom). How would

you characterise the relationship of each plot with the one immediately above

or below it?

10.8 The LHS of Eq. (10.63) in the text was rather arbitrarily set to zero in order

to arrive at Eq. (10.64) for the electric field, �E, for a completely ionised fluid.
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Let us suppose we can selectively replace �vp and �ve with the average fluid velocity,

�v =
np�vp + ne�ve
np + ne

,

such that,

(�vp · ∇)�vp − (�ve · ∇)�ve = (�v · ∇)(vp − ve). (10.127)

(We can’t, not really, but let’s just suppose we can). Show that under the assumption

of charge conservation in the form of,

∂t �J +∇ · ( �J�v) = 0, (10.128)

the LHS of Eq. (10.63) is identically zero.

10.9∗ Find an expression for the exchange term, σn,i, using Eq. (10.83) from the

text carrying out all the differentiations. Don’t expect anything too tidy; it’s not

going to be pretty! You should aim for something like:

σn,i =
mH

3

(
2πme

h2

)3/2(
νH + 2n√
ν2H + 4nνH

− 1

)
e−εH/kBT

√
kBT

n

(
εH
kBT

+
3

2

)

× (2γn,iρnρiv2n,i − pi∇ · �vi − pn∇ · �vn
)
,

where the subscripts ‘n’ and ‘i’ refer to the neutral (H) and ionised (H+) components

of the pure hydrogen gas respectively, and where εH is the ionisation energy of H

(Table 10.1).

Hint : The derivatives of nH+ and νH are straight-forward enough, but you may

appreciate a nudge on what to do with the kBT derivative. Start by considering,

∂t(kBT ) = mH(γ − 1)∂t

(
ei
ρi

)
= · · · ,

where γ = 5
3 for a monatomic gas, and use Eq. (10.74) and (10.76) from the text.

Then, take,
d(kBT )

dt
= ∂t(kBT ) + �v · ∇(kBT ),

where,

�v =
nn�vn + ni�vi
nn + ni

,

is the bulk (average) velocity of the fluid and nn, ni are number densities. It was

quite amazing to see how all the terms managed to combine and cancel to get the

temperature derivative!

10.10∗ Consider a more “realistic” astrophysical fluid of total number density, n,

and fractional abundances, f and 1 − f , of H and He respectively (e.g., f ∼ 0.75).

A partially ionised mix of H and He will have six different number densities to
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account for: nH, nH+ , nHe, nHe+ , nHe++ , and ne, the number density of electrons.

In thermodynamic equilibrium, these are constrained by the Saha equation:

nH+ne = νHnH; (10.129)

nHe+ne = νHenHe; (10.130)

nHe++ne = νHe+nHe+ , (10.131)

where νs is the critical number density for species ‘s’, as defined in Eq. (10.80) of

the text. These deceptively simple-looking equations are coupled non-linearly by

the number density of electrons, now given by,

ne = nH+ + nHe+ + 2nHe++, (10.132)

along with two conservation constraints:

nH + nH+ = fn; and nHe + nHe+ + nHe++ = (1− f)n. (10.133)

a) Find an expression for n2
e in terms of nH, nHe, and nHe+ along with their

corresponding critical densities.

b) Find independent expressions for nH, nHe, and nHe+ in terms of n and ne

(along with f and any critical densities that may come for the ride).

c) Combine your results from parts a) and b) to show that ne is given by the

quartic:

n4
e + (νH + νHe)n

3
e +
[
νHe(νH + νHe+)− n(fνH + (1− f)νHe)

]
n2
e

+ νHe

[
νH(νHe+− n)− 2νHe+n(1− f)

]
ne

− νHνHeνHe+n(2− f) = 0,

(10.134)

where all coefficients are made up of known quantities.

d) Given a physical solution to Eq. (10.134), outline how you would go about

finding the exchange term, σn,i, using Eq. (10.84) in the text.

e) Show that in the limit as f → 1 (pure H), one recovers Eq. (10.82) in the text

from Eq. (10.134).

10.11∗ Show that in the limit where ρi � ρn, the two-fluid adiabatic equations in

Eq. Set 11 reduce to the rather more standard “weakly ionised one-fluid adiabatic

AD-MHD equations”:

∂tρ+∇ · (ρ�v) = 0;

∂t�s+∇ · (�s�v) = −∇p− ρ∇φ+ �fL;

∂te+∇ · (e�v) = −p∇ · �v + 2βi,nf
2
L;

∂t �B = ∇× [(�v + βi,n �fL
)× �B

]
,
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where:

ρ = ρn + ρi ≈ ρn; p = pn + pi ≈ pn; �v =
ρn�vn + ρi�vi

ρ
≈ �vn, (10.135)

and where the ionisation number density, ρi (needed for βi,n), can be given by, for

example, Eq. (10.23) in the text. Try to avoid using the approximations in Eq.

(10.135) as much as you can. In my solution, I had to make an approximation four

times; everywhere else my development was exact.

A little commentary on the internal energy and induction equations. On the former,

the factor of two in the last term may be a bit curious, and is addressed in Problem

10.13. On the latter, the term proportional to βi,n is the one that blows up to the

impossible-looking quadruple cross product in Eq. (10.70). Here, I’ve arranged it in

the fashion I have to reveal, once again, the “diffusive nature” of AD. As written,

the magnetic induction is not tied to the flow velocity, �v, but to the flow velocity

adjusted by a “slip velocity”, βi,n �fL, which is perpendicular to both the current

density, �J , and the magnetic induction, �B. It is this “slip” that allows �B to diffuse

away from matter, making AD-MHD qualitatively different from ideal MHD where

the magnetic induction is truly “flux-frozen” into the fluid.

10.12∗∗

a) Show that the adiabatic two-fluid total energy equations are:

∂teTn +∇ · [(eTn + pn)�vn
]
= (eTn − en)

σi,n
ρn

+ �vn · �fi,n +�i,n; (10.136)

∂te
∗
Ti

+∇ · [(eTi + pi)�vi + �SP

]
= (eTi − ei)

σn,i
ρi

+ �vi · �fn,i +�n,i. (10.137)

where �SP is the MHD Poynting vector given by Eq. (4.15) in the text, where

the total energy densities for the neutral and ionised components are:

eTn = en +
1
2ρnv

2
n + ρnφ; eTi = ei +

1
2ρiv

2
i + ρiφ; e∗Ti

= eTi +
B2

2μ0
,

and where all other symbols have their meanings from 10.5.2.

Hint : Start with eTi and follow the derivation of the total energy equation in

4.6 (Eq. 4.19), this time carrying all the ambipolar and exchange terms from

10.5.2. The expression for eTn follows trivially from that.

b) The closest I’ve found to Eq. (10.136) and (10.137) in the literature are Eq. (8)

and (9) in Duffin & Pudritz (2008) who do not include the exchange terms.

Show that in the absence of exchange terms, the RHS of Eq. (10.136) and

(10.137) reduce to �vi · �vi,n/βi,n and �vn · �vn,i/βn,i respectively, where β1,2 is

given by Eq. (10.8) in the text.35

35For anyone inclined to compare this result to D&P, note that an unfortunate typo swapped
�vi and �vn in their Eq. (8) and (9).



Clarke 9781009381475 .tex 439 2/04/2025

439 Problem Set 10

c) Finally, show that in the limit where ρi � ρn, Eq. (10.136) and (10.137) reduce

to the weakly ionised one-fluid adiabatic total energy equation, given by,36

∂te
∗
T +∇ ·

[
(e∗T + p∗)�v − 1

μ0

(
�v · �B) �B +

βi,n
μ0

B2 �fL

]
= βi,nf

2
L, (10.138)

where:

e∗T = eTn+e
∗
Ti

≈ eTn+
B2

2μ0
; p∗ = pn+p

∗
i ≈ pn+

B2

2μ0
; �v =

ρn�vn + ρi�vi
ρn + ρi

≈ �vn,

and where e∗T and p∗ are the MHD total energy and pressure (Eq. 4.18 and

4.26).

d) Physically, how would you interpret the RHS of Eq. (10.138)?

10.13 In determining the resistive power density, pR, our approach in 10.3.2 was

to take the dot product between the current density, �J , and the electric field, �Eη,

driving the current density against the resistivity, η (Eq. 10.35 in the text). The

one-fluid internal energy equation including resistive heating (Eq. 10.36) was then

determined by adding the resistive power density to the RHS of the ideal internal

energy equation, namely Eq. (1.34).

a) For a non-isothermal system, why is there no power density for the Hall effect

to include in the one-fluid internal energy equation? You may assume ∇pe is

negligible.

b) In the same way that the resistive power density was found, find the power

density for ambipolar diffusion, pAD, and add this to the RHS of the ideal

internal energy equation, namely Eq. (1.34). If you proceed as I have imagined

you would, you should arrive at,

∂te+∇ · (e�v) = −p∇ · �v + βi,nf
2
L. (wrong)

c) Yet, in Problem 10.11, the one-fluid correction to the internal energy equation

is 2βi,nf
2
L. Where does that factor of two come from?

36Again for those inclined to check the references, be aware that D&P define their total energy,
E, without the gravitational energy density, and take the unusual step of carrying terms ∝ ∇ · �B.
These account for the apparent differences between their Eq. (23) and my Eq. (10.138).
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A.1 Vector identities

Let �A, �B, �C, and �D be four arbitrary vectors. Then:

�A · ( �B × �C) = �B · (�C × �A) = �C · ( �A× �B); (A.1)

�A× ( �B × �C) = ( �A · �C) �B − ( �A · �B)�C; (A.2)

( �A× �B) · (�C × �D) = ( �A · �C)( �B · �D)− ( �A · �D)( �B · �C). (A.3)

Let f and g be two arbitrary scalar functions of the coordinates, and let �A and �B

be two arbitrary vector functions of the coordinates. Then:

∇(fg) = f∇g + g∇f ; (A.4)

∇(f/g) =
g∇f − f∇g

g2
; (A.5)

∇( �A · �B) = ( �B · ∇) �A+ ( �A · ∇) �B + �B × (∇× �A) + �A× (∇× �B); (A.6)

∇ · (f �A) = f ∇ · �A+ �A · ∇f ; (A.7)

∇ · ( �A× �B) = �B · (∇× �A)− �A · (∇× �B); (A.8)

∇× (f �A) = f ∇× �A+∇f × �A; (A.9)

∇× ( �A × �B)1 = ( �B · ∇) �A− ( �A · ∇) �B − �B(∇ · �A) + �A(∇ · �B); (A.10)

∇× (∇f) = 0; (A.11)

∇ · (∇× �A) = 0. (A.12)

For ∇× (∇× �A), see identity (A.27).

Identities (A.13)–(A.15) below are particularly useful for working with the

MHD equations and can be derived from the more fundamental identities above:

( �A · ∇) �B =
1

2

[
∇( �A · �B) + �A(∇ · �B)− �B(∇ · �A)−∇× ( �A× �B)

− �A× (∇× �B)− �B × (∇× �A)
]
;

(A.13)

1∇× ( �A× �B) may also be expressed in terms of perfect divergences; see identity (A.22).

443
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( �A · ∇)f �B = f( �A · ∇) �B + �B( �A · ∇f); (A.14)

( �A · ∇) �A = 1
2∇A2 − �A× (∇× �A). (A.15)

A.1.1 Identities involving dyadics

Constructs such as �A�B (the dyadic product of the vectors �A and �B) as well as ∇ �A

(the gradient of the vector �A) are examples of dyadics (rank 2 tensors; matrices)

and appear frequently in the MHD equations. In Cartesian coordinates, these look

like:

�A�B = |A〉〈B| =
⎡

⎣
Ax

Ay

Az

⎤

⎦ [Bx By Bz ] =

⎡

⎣
AxBx AxBy AxBz

AyBx AyBy AyBz

AzBx AzBy AzBz

⎤

⎦; (A.16)

∇ �A =

⎡

⎣
∂xAx ∂xAy ∂xAz

∂yAx ∂yAy ∂yAz

∂zAx ∂zAy ∂zAz

⎤

⎦. (A.17)

The colon product (double contraction) of two dyadics M = �A�B and N = �C �D is

defined as:

M : N ≡
∑

ij

MijNij =
∑

ij

AiBjCiDj

=
∑

i

AiCi

∑

j

BjDj = ( �A · �C)( �B · �D).
(A.18)

Thus, the colon product2 is often referred to as the double dot product.

Following are several useful identities involving the tensors ∇ �A, �A�B, and T,

the latter not necessarily a dyadic. The superscript T denotes the transpose of a

rank 2 tensor where, in its matrix representation, the rows of the tensor form the

columns of the transpose. Thus, ( �A�B)T = �B �A. The first equality in identity (A.21)

is analogous to Eq. (A.7) while the next two follow from Eq. (A.13). Identities

(A.22) and (A.23) then follow from Eq. (A.21):

�A · (∇ �A) = ( �A · ∇) �A = 1
2∇A2 − �A× (∇× �A); (A.19)

�A · (∇ �A)T = 1
2∇A2; (A.20)

∇ · ( �A �B) = ( �A · ∇) �B + �B(∇ · �A)
=

1

2

[
∇( �A · �B) + �A(∇ · �B) + �B(∇ · �A)−∇× ( �A× �B)

− �A× (∇× �B)− �B × (∇× �A)
]

= ( �B · ∇) �A+ �A(∇ · �B)−∇× ( �A× �B);

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(A.21)

2Some authors define the colon product as M : N =
∑

i,j MijNji = ( �A · �D)( �B · �C), which is
more in keeping with the usual rules of matrix multiplication. This definition gives the same result
as identity (A.18) if the second tensor is replaced with its transpose.
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∇ · ( �A �B) = ∇ · ( �B �A)−∇× ( �A× �B); (A.22)

∇ · ( �A �A) = ( �A · ∇) �A+ �A(∇ · �A)
= 1

2∇A2 + �A(∇ · �A)− �A× (∇× �A);

}
(A.23)

∇ · (f T) = T · ∇f + f ∇ · T; (A.24)

∇ · (T · �A) = T : ∇ �A+ (∇ · T) · �A; (A.25)

∇ �A : ∇ �A = (∇× �A) · (∇× �A) +∇ �A : (∇ �A)T; (A.26)

∇ · (∇ �A) = ∇2 �A = ∇(∇ · �A)−∇× (∇× �A); (A.27)

∇ · (∇ �A)T = ∇(∇ · �A). (A.28)

A.1.2 Vector derivatives of �r

Occasionally, the displacement vector, �r, appears directly in a vector derivative.

While easiest to prove for Cartesian coordinates, these identities are true for all

coordinate systems:

∇ · �r = 3; ∇× �r = 0; ∇�r = I, (A.29)

where I is the identity matrix (rank 2 tensor; see Eq. A.17).

A.2 Theorems of vector calculus

Let f and g be arbitrary scalar functions and let �A be an arbitrary vector function

of the coordinates. Let V represent an arbitrary volume and let S represent the

closed surface containing V . Let Σ represent an arbitrary open surface and let

C represent the circumference of Σ (a closed path). Finally, let dV , n̂ dσ, and d�l

represent elements of volume, surface, and displacement respectively. Then . . .

Three flavours of Gauss’ theorem:
∫

V

∇ · �AdV =

∮

S

�A · n̂ dσ; (A.30)
∫

V

∇f dV =

∮

S

f n̂dσ; (A.31)
∫

V

∇× �AdV = −
∮

S

�A× n̂ dσ. (A.32)

Two flavours of Green’s theorem:
∫

V

(f∇2g +∇f · ∇g)dV =

∮

S

f∇g · n̂ dσ; (A.33)
∫

V

(f∇2g − g∇2f)dV =

∮

S

(f∇g − g∇f) · n̂ dσ. (A.34)
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Coordinate system (x1, x2, x3) h1 h2 h3

Cartesian (x, y, z) 1 1 1

cylindrical (z, r, ϕ) 1 1 r

spherical polar (�, ϑ, ϕ) 1 � � sinϑ

Table A.1. Scale factors for the most commonly used orthogonal coordinate systems.

Three flavours of Stokes’ theorem:
∫

Σ

∇× �A · n̂ dσ =

∮

C

�A · d�l; (A.35)

∫

Σ

∇f × n̂ dσ = −
∮

C

f d�l; (A.36)

∫

Σ

(n̂ dσ ×∇)× �A = −
∮

C

�A× d�l. (A.37)

A.3 Orthogonal coordinate systems

Consider an orthogonal coordinate system, (x1, x2, x3), in which a differential length

is given by,

ds2 = h21dx
2
1 + h22dx

2
2 + h23dx

2
3,

and whose scale factors h1, h2, and h3 are, in general, functions of the coordinates.

Table A.1 gives the scale factors for the most commonly used orthogonal coordinate

systems, namely Cartesian, cylindrical, and spherical polar coordinates.

Let f and �A be arbitrary scalar and vector functions of the coordinates. Then,

the gradient, divergence, curl, and Laplacian are given by:

∇f = x̂1
1

h1

∂f

∂x1
+ x̂2

1

h2

∂f

∂x2
+ x̂3

1

h3

∂f

∂x3
;

∇ · �A =
1

h1h2h3

(
∂(h2h3A1)

∂x1
+
∂(h3h1A2)

∂x2
+
∂(h1h2A3)

∂x3

)
;

∇× �A = x̂1
1

h2h3

(
∂(h3A3)

∂x2
− ∂(h2A2)

∂x3

)
+ x̂2

1

h3h1

(
∂(h1A1)

∂x3
− ∂(h3A3)

∂x1

)

+ x̂3
1

h1h2

(
∂(h2A2)

∂x1
− ∂(h1A1)

∂x2

)
;

∇ · (∇f) = ∇2f =
1

h1h2h3

[
∂

∂x1

(
h2h3
h1

∂f

∂x1

)
+

∂

∂x2

(
h3h1
h2

∂f

∂x2

)

+
∂

∂x3

(
h1h2
h3

∂f

∂x3

)]
,
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where x̂1, x̂2, x̂3 are unit vectors in the x1-, x2-, and x3-directions, and where

x̂i · x̂j = δij . From these expressions, identity (A.13) may be expanded out as:

( �A · ∇) �B =

x̂1

(
�A · ∇B1 − A2B2

h2h1

∂h2
∂x1

− A3B3

h3h1

∂h3
∂x1

+
A1B2

h1h2

∂h1
∂x2

+
A1B3

h1h3

∂h1
∂x3

)

+ x̂2

(
�A · ∇B2 − A3B3

h3h2

∂h3
∂x2

− A1B1

h1h2

∂h1
∂x2

+
A2B3

h2h3

∂h2
∂x3

+
A2B1

h2h1

∂h2
∂x1

)

+ x̂3

(
�A · ∇B3 − A1B1

h1h3

∂h1
∂x3

− A2B2

h2h3

∂h2
∂x3

+
A3B1

h3h1

∂h3
∂x1

+
A3B2

h3h2

∂h3
∂x2

)
.

(A.38)

For the coordinate systems listed in Table A.1, these expressions become:

Cartesian: (A.39)

∇f = −x̂ ∂f
∂x

+ ŷ
∂f

∂y
+ ẑ

∂f

∂z
;

∇ · �A =
∂Ax

∂x
+
∂Ay

∂y
+
∂Az

∂z
;

∇× �A = x̂

(
∂Az

∂y
− ∂Ay

∂z

)
+ ŷ

(
∂Ax

∂z
− ∂Az

∂x

)
+ ẑ

(
∂Ay

∂x
− ∂Ax

∂y

)
;

∇2f =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
;

( �A · ∇) �B = x̂
(
�A · ∇Bx

)
+ ŷ
(
�A · ∇By

)
+ ẑ
(
�A · ∇Bz

)
,

cylindrical : (A.40)

∇f = ẑ
∂f

∂z
+ r̂

∂f

∂r
+ ϕ̂

1

r

∂f

∂ϕ
;

∇ · �A =
∂Az

∂z
+

1

r

∂(rAr)

∂r
+

1

r

∂Aϕ

∂ϕ
;

∇× �A = ẑ
1

r

(
∂(rAϕ)

∂r
− ∂Ar

∂ϕ

)
+ r̂

(
1

r

∂Az

∂ϕ
− ∂Aϕ

∂z

)
+ ϕ̂

(
∂Ar

∂z
− ∂Az

∂r

)
;

∇2f =
∂2f

∂z2
+

1

r

∂

∂r

(
r
∂f

∂r

)
+

1

r2
∂2f

∂ϕ2
;

( �A · ∇) �B = ẑ
(
�A · ∇Bz

)
+ r̂

(
�A · ∇Br − AϕBϕ

r

)
+ ϕ̂

(
�A · ∇Bϕ +

AϕBr

r

)
,

dclarke
Cross-Out
Sorry, I'm just noticing this now.  This minus sign should not be here!Somehow somebody (not me!) introduced this minus sign to proof 4 (proofs_25-02-04.pdf).  Now, in proof 3 (proofs_25-01-21.pdf), I had asked for a minus sign to be inserted in front of a an "x-hat" to correct the first line of Eq. A.54.  It may have been that the person making this correction did a *global* change from "&=\,\hat{x}" to "&=\,-\hat{x}" rather than the local change that was asked for.So to be clear, the minus sign belongs in the first term of Eq. A.54 but does *not* belong in the first term of the first equation in Eq. A.39.
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spherical polar : (A.41)

∇f = �̂
∂f

∂�
+ ϑ̂

1

�

∂f

∂ϑ
+ ϕ̂

1

� sinϑ

∂f

∂ϕ
;

∇ · �A =
1

�2
∂(�2A�)

∂�
+

1

� sinϑ

∂(sinϑAϑ)

∂ϑ
+

1

� sinϑ

∂Aϕ

∂ϕ
;

∇× �A = �̂
1

� sinϑ

(
∂(sinϑAϕ)

∂ϑ
− ∂Aϑ

∂ϕ

)
+ ϑ̂

1

�

(
1

sinϑ

∂A�

∂ϕ
− ∂(�Aϕ)

∂�

)

+ ϕ̂
1

�

(
∂(�Aϑ)

∂�
− ∂A�

∂ϑ

)
;

∇2f =
1

�2
∂

∂�

(
�2
∂f

∂�

)
+

1

�2 sinϑ

∂

∂ϑ

(
sinϑ

∂f

∂ϑ

)
+

1

�2 sin2 ϑ

∂2f

∂ϕ2
;

( �A · ∇) �B = �̂

(
�A · ∇B� − AϑBϑ

�
− AϕBϕ

�

)
+ ϑ̂

(
�A · ∇Bϑ − AϕBϕ

� tanϑ
+
AϑB�

�

)

+ ϕ̂

(
�A · ∇Bϕ +

AϕB�

�
+
AϕBϑ

� tanϑ

)
.

A.4 Euler’s and the momentum equations

Without the gravitational and magnetic terms, Euler’s equation (e.g., Eq. 1.36) and

the momentum equation (e.g., Eq. 1.27) are, respectively:

∂�v

∂t
+ (�v · ∇)�v = −1

ρ
∇p;

∂�s

∂t
+∇ · (�s�v) = −∇p.

The vector constructs (�v · ∇)�v and ∇ · (�s�v) can be perplexing to the uninitiated

reader. However, with the vector identities worked out in this appendix, it is a

straight-forward task to spell these expressions out in a general orthogonal coordi-

nate system.

In particular, from Eq. (A.38), the three components of Euler’s equation are

given by:

∂v1
∂t

+ �v · ∇v1 = − 1

ρh1

∂p

∂x1
+

v22
h2h1

∂h2
∂x1

+
v23
h3h1

∂h3
∂x1

(A.42)
− v1v2
h1h2

∂h1
∂x2

− v1v3
h1h3

∂h1
∂x3

;

∂v2
∂t

+ �v · ∇v2 = − 1

ρh2

∂p

∂x2
+

v23
h3h2

∂h3
∂x2

+
v21
h1h2

∂h1
∂x2

(A.43)
− v2v3
h2h3

∂h2
∂x3

− v2v1
h2h1

∂h2
∂x1

;
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∂v3
∂t

+ �v · ∇v3 = − 1

ρh3

∂p

∂x3
+

v21
h1h3

∂h1
∂x3

+
v22
h2h3

∂h2
∂x3

(A.44)
− v3v1
h3h1

∂h3
∂x1

− v3v2
h3h2

∂h3
∂x2

.

The terms proportional to v2i are “centrifugal acceleration” terms, while those pro-

portional to vivj , i �= j are “Coriolis acceleration” terms.

Next, with �A = �v and �B = ρ�v = �s, Eq. (A.21) becomes:

∇ · (�s�v) = 1
2

[
∇(�s · �v) + �s (∇ · �v) + �v (∇ · �s)− �s× (∇× �v)− �v × (∇× �s)

]
.

Expanding out the gradients, divergences, and curls in this expression, we find the

three components of the momentum equation to be:

∂s1
∂t

+∇ · (s1�v) = − 1

h1

∂p

∂x1
+
s2v2
h2h1

∂h2
∂x1

+
s3v3
h3h1

∂h3
∂x1

(A.45)
− s1v2
h1h2

∂h1
∂x2

− s1v3
h1h3

∂h1
∂x3

;

∂s2
∂t

+∇ · (s2�v) = − 1

h2

∂p

∂x2
+
s3v3
h3h2

∂h3
∂x2

+
s1v1
h1h2

∂h1
∂x2

(A.46)
− s2v3
h2h3

∂h2
∂x3

− s2v1
h2h1

∂h2
∂x1

;

∂s3
∂t

+∇ · (s3�v) = − 1

h3

∂p

∂x3
+
s1v1
h1h3

∂h1
∂x3

+
s2v2
h2h3

∂h2
∂x3

(A.47)
− s3v1
h3h1

∂h3
∂x1

− s3v2
h3h2

∂h3
∂x2

.

The “inertial” force densities that have been revealed correspond term for term to

the inertial accelerations that appear in Eq. (A.42)–(A.44). A little further manip-

ulation of Eq. (A.45)–(A.47) yields the following:

∂h1s1
∂t

+∇ · (h1s1�v) = − ∂p

∂x1
+
s1v1
h1

∂h1
∂x1

+
s2v2
h2

∂h2
∂x1

+
s3v3
h3

∂h3
∂x1

; (A.48)

∂h2s2
∂t

+∇ · (h2s2�v) = − ∂p

∂x2
+
s1v1
h1

∂h1
∂x2

+
s2v2
h2

∂h2
∂x2

+
s3v3
h3

∂h3
∂x2

; (A.49)

∂h3s3
∂t

+∇ · (h3s3�v) = − ∂p

∂x3
+
s1v1
h1

∂h1
∂x3

+
s2v2
h2

∂h2
∂x3

+
s3v3
h3

∂h3
∂x3

. (A.50)

By introducing hi next to si on the left-hand side, the two “Coriolis” terms on the

right-hand side are eliminated and one additional centrifugal-like term is added.

Note that for Cartesian-like coordinates, hi = 1 and is unitless, whence hisi = si.

For angular coordinates, hi is the moment arm about the axis of rotation, and hisi
can be interpreted as the angular momentum component about that axis. Since

angular momentum is the conserved quantity for angular coordinates, expressing

the momentum equations in terms of hisi makes sense.
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For the coordinate systems listed in Table A.1, Eq. (A.42)–(A.44) and (A.48)–

(A.50) become:

Cartesian: (A.51)

∂vx
∂t

+ �v · ∇vx = −1

ρ

∂p

∂x
;

∂sx
∂t

+∇ · (sx�v) = − ∂p

∂x
;

∂vy
∂t

+ �v · ∇vy = −1

ρ

∂p

∂y
;

∂sy
∂t

+∇ · (sy�v) = −∂p
∂y

;

∂vz
∂t

+ �v · ∇vz = −1

ρ

∂p

∂z
;

∂sz
∂t

+∇ · (sz�v) = −∂p
∂z
,

cylindrical : (A.52)

∂vz
∂t

+ �v · ∇vz = −1

ρ

∂p

∂z
;

∂sz
∂t

+∇ · (sz�v) = −∂p
∂z

;

∂vr
∂t

+ �v · ∇vr = −1

ρ

∂p

∂r
+ rω2;

∂sr
∂t

+∇ · (sr�v) = −∂p
∂r

+ ρrω2;

∂vϕ
∂t

+ �v · ∇vϕ = − 1

ρ r

∂p

∂ϕ
− vrω;

∂(rsϕ)

∂t
+∇ · (rsϕ�v) = − ∂p

∂ϕ
,

where ω = vϕ/r is the angular speed about the z-axis;

spherical polar : (A.53)

∂v�
∂t

+ �v · ∇v� = −1

ρ

∂p

∂�
+ �(Ω2 + ω2 sin2 ϑ);

∂vϑ
∂t

+ �v · ∇vϑ = − 1

ρ �

∂p

∂ϑ
+ �ω2 sinϑ cosϑ− v�Ω;

∂vϕ
∂t

+ �v · ∇vϕ = − 1

ρ � sinϑ

∂p

∂ϕ
− v�ω sinϑ− �Ωω cosϑ;

∂s�
∂t

+∇ · (s��v) = −∂p
∂�

+ ρ�(Ω2 + ω2 sin2 ϑ);

∂(�sϑ)

∂t
+∇ · (�sϑ�v) = − ∂p

∂ϑ
+ ρ�2ω2 sinϑ cosϑ;

∂(� sinϑ sϕ)

∂t
+∇ · (� sinϑ sϕ�v) = − ∂p

∂ϕ
,

where ω = vϕ/(� sinϑ) = vϕ/r is the angular speed about the z-axis, and Ω = vϑ/�

is the meridional speed.
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A.5 The Lorentz force

The Lorentz force term in either the momentum or Euler’s equation (Eq. 4.13 or

4.14) is proportional to (∇× �B) × �B which, for the general orthogonal coordinate

system defined in A.3, is given by:

(∇× �B)× �B =

− x̂1

[
B3

h3h1

∂(h3B3)

∂x1
+

B2

h2h1

∂(h2B2)

∂x1

]
− x̂2

[
B1

h1h2

∂(h1B1)

∂x2
+

B3

h3h2

∂(h3B3)

∂x2

]

− x̂3

[
B2

h2h3

∂(h2B2)

∂x3
+

B1

h1h3

∂(h1B1)

∂x3

]
+ x̂1

[
B3

h1h3

∂(h1B1)

∂x3
+

B2

h1h2

∂(h1B1)

∂x2

]

+ x̂2

[
B1

h2h1

∂(h2B2)

∂x1
+

B3

h2h3

∂(h2B2)

∂x3

]
+ x̂3

[
B2

h3h2

∂(h3B3)

∂x2
+

B1

h3h1

∂(h3B3)

∂x1

]
,

where the first three (−) terms are the “compressional Lorentz forces” (that behave

much like thermal pressure), and the last three (+) terms are the “transverse Lorentz

forces” which govern the transmission of Alfvén waves. I find this expansion to be

particularly useful for computational purposes.

For pen-and-paper calculations, a more useful expansion comes from Eq. (A.15),

(∇× �B)× �B = ( �B · ∇) �B − 1
2∇B2,

where expressions for ( �A · ∇) �B in A.3 and Identity (A.7) (since ∇ · �B = 0) can be

used to complete the expansions.

Thus, for the coordinate systems listed in Table A.1, these two flavours of

(∇× �B)× �B become:

Cartesian: (A.54)

(∇× �B)× �B = −x̂ 1

2

∂(B2
y +B2

z )

∂x
− ŷ

1

2

∂(B2
z +B2

x)

∂y
− ẑ

1

2

∂(B2
x +B2

y)

∂z

+ x̂

[
Bz

∂Bx

∂z
+By

∂Bx

∂y

]
+ ŷ

[
Bx

∂By

∂x
+Bz

∂By

∂z

]

+ ẑ

[
By

∂Bz

∂y
+Bx

∂Bz

∂x

]

= ∇ · (Bx
�B)x̂+∇ · (By

�B) ŷ +∇ · (Bz
�B) ẑ − 1

2
∇B2;

cylindrical : (A.55)

(∇× �B)× �B = −ẑ 1
2

∂(B2
r +B2

ϕ)

∂z
− r̂

1

2

[
1

r2
∂(rBϕ)

2

∂r
+
∂B2

z

∂r

]
− ϕ̂

1

2r

∂(B2
z +B2

r )

∂ϕ
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+ ẑ

[
Bϕ

r

∂Bz

∂ϕ
+Br

∂Bz

∂r

]
+ r̂

[
Bz

∂Br

∂z
+
Bϕ

r

∂Br

∂ϕ

]

+ ϕ̂

[
Br

r

∂(rBϕ)

∂r
+Bz

∂Bϕ

∂z

]

= ∇ · (Bz
�B) ẑ +

(
∇ · (Br

�B)− B2
ϕ

r

)
r̂ +

1

r
∇ · (rBϕ

�B)ϕ̂− 1

2
∇B2;

spherical polar : (A.56)

(∇× �B)× �B = −�̂ 1

2�2
∂[�2(B2

ϑ +B2
ϕ)]

∂�
− ϑ̂

1

2�

[
1

sin2 ϑ

∂(Bϕ sinϑ)2

∂ϑ
+
∂B2

�

∂ϑ

]

− ϕ̂
1

2� sinϑ

∂(B2
� +B2

ϑ)

∂ϕ
+ �̂

1

�

[
Bϕ

sinϑ

∂B�

∂ϕ
+Bϑ

∂B�

∂ϑ

]

+ ϑ̂
1

�

[
B�

∂(�Bϑ)

∂�
+

Bϕ

sinϑ

∂Bϑ

∂ϕ

]

+ ϕ̂
1

�

[
Bϑ

sinϑ

∂(Bϕ sinϑ)

∂ϑ
+B�

∂(�Bϕ)

∂�

]

=

(
∇ · (B�

�B)− B2
ϑ +B2

ϕ

�

)
�̂+

1

�

(
∇ · (�Bϑ

�B)−B2
ϕ cotϑ

)
ϑ̂

+
1

� sinϑ
∇ · (� sinϑBϕ

�B
)
ϕ̂− 1

2
∇B2.

Note that in the second expansions for each of cylindrical and spherical polar coor-

dinates, the “Coriolis-like” terms have been absorbed into the divergences (similar

to what was done for Eq. A.49 and A.50) where the appearance of an extra factor

of the radial coordinate (r or �) is a consequence.
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B.1 Maxwell’s equations

Let �E ( �D) be the electric field (displacement), and let �H ( �B) be the magnetic

field (induction). In free space, �D = ε0 �E, �B = μ0
�H where, in mks units, ε0 =

8.8542 × 10−12A2 s4 kg−1 m−3 (C2 N−1 m−2) is the permittivity of free space, and

μ0 = 4π × 10−7 kgmA−2 s−2 (NA−2) is the permeability of free space. Note that

ε0μ0 = c−2 where c = 2.9979× 108ms−1 is the speed of light.

If �v is the velocity of a fluid element and ρq is the local charge density, then

the current density, �J = ρq�v, is such that the current enclosed, ienc, by an arbitrary

loop surrounding an open surface Σ is given by:

ienc =

∫

Σ

�J · n̂ dσ,

where n̂ is a unit vector normal to the surface element dσ.

With all these definitions stated, we write James Clerk Maxwell’s (1831–1879)1

famous set of equations governing electrodynamics in the following tables.

Maxwell’s equations in differential form:

general free space

Gauss, electric ∇ · �D = ρq ∇ · �E =
ρq
ε0

Gauss, magnetic ∇ · �B = 0 ∇ · �B = 0

Faraday ∇× �E = −∂
�B

∂t
∇× �E = −∂

�B

∂t

Ampère–Maxwell ∇× �H =
∂ �D

∂t
+ �J ∇× �B =

1

c2
∂ �E

∂t
+ μ0

�J

(B.1)

1www.wikipedia.org/wiki/James Clerk Maxwell
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Maxwell’s equations in integral form:

general free space

Gauss, �E

∮

S

�D · n̂ dσ = qenc

∮

S

�E · n̂ dσ =
qenc
ε0

Gauss, �B

∮

S

�B · n̂ dσ = 0

∮

S

�B · n̂ dσ = 0

Faraday

∮

C

�E · d�l = −dΦB

dt

∮

C

�E · d�l = −dΦB

dt

A–M

∮

C

�H · d�l =
dΦD

dt
+ ienc

∮

C

�B · d�l =
1

c2
dΦE

dt
+ μ0ienc

(B.2)

where the enclosed charge, qenc, and fluxes, ΦQ with Q = B,E,D, are given by:

qenc =

∫

τ

ρq dτ ; ΦQ =

∫

Σ

�Q · n̂ dσ, (B.3)

where dτ is a volume differential.2 Complementing Maxwell’s equations is the elec-

tromagnetic force equation,
�FEM = q( �E + �v × �B), (B.4)

where q �E and q�v × �B are, respectively, the electric and Lorentz forces acting on a

charge q moving with a velocity �v in the vicinity of �E and �B.

B.2 Electric energy density

Consider a volume, τ , with a charge density ρq(�r) and a potential function V (�r),

and consider the task of modifying that charge density everywhere by δρq. Then

the work required to add an infinitesimal charge dq = δρqdτ to the volume element

dτ is,
dW = V dq = V δρqdτ.

Thus, over the entire volume, the work required to change the charge density by

δρq is,

δW =

∫

τ

V δρq dτ =

∫

τ

V δ(∇ · �D)dτ =

∫

τ

V ∇ · (δ �D)dτ, (B.5)

where the second equality invokes the first of Maxwell’s equations (Eq. B.1) and

the third equality invokes the linearity of the nabla operator, ∇. From Eq. (A.7) in

App. A, we have:
V∇ · (δ �D) = ∇ · (V δ �D)− δ �D · ∇V.

Substituting this into Eq. (B.5), we get:

δW =

∫

τ

∇ · (V δ �D)dτ −
∫

τ

δ �D · ∇V dτ =

∮

S

V δ �D · n̂dσ +

∫

τ

�E · δ �Ddτ,
2I’m using τ here instead of V to represent volume since I’ll soon need V to represent potential.
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where Gauss’ theorem (Eq. A.30) and the relationship between electric field and

the potential function, �E = −∇V , have been used.

Assuming that the charge distribution, ρq, has a finite extent, the volume inte-

gral will be independent of the volume, τ , chosen so long as τ includes all the charge.

The same is not true of the surface integral. As r → ∞, the “far-field” approxima-

tions to the electric displacement and potential function, namely Coulomb’s law,

applies, and V δ �D → r−3. Since the surface area only increases as r2, the surface

integral itself falls off as r−1 and thus vanishes as r → ∞. Since we are free to choose

any surface that encloses τ , we choose the surface at infinity thereby eliminating

the surface integral and leaving us with,

δW =

∫

τ

�E · δ �D dτ.

Thus, the work density (work per unit volume) is given by δw = �E · δ �D and rep-

resents the increment of work necessary to change the electric displacement by δ �D

in a background electric field �E. By the conservation of energy, this must also rep-

resent the amount of additional energy stored in the electric field. Therefore, the

total energy density stored in the electric field, eE is given by,

eE = w =

∫
�E · d �D =

1

2
ε0E

2, (B.6)

where the last equality assumes the constitutive equation for free space, namely
�D = ε0 �E. Finally, the power density required to modify the electric displacement is

obtained by,

pE =
dw

dt
= �E · d

�D

dt
= �E · �̇D. (B.7)

B.3 Magnetic energy density

For magnetic induction, the analogue of the work done in moving an incremental

charge, δq, through a potential, V , is the work done in incrementing a given current

loop by an amount δi immersed in a magnetic induction, �B (Fig. B.1). To this

end, we begin with the integral form of Faraday’s law (Eq. B.2) and write down an

expression for the induced emf,

E =

∮

C

�E · d�l = −dΦB

dt
, (B.8)

where ΦB is given by Eq. (B.3), and the negative sign acknowledges Lenz’ law. Thus,

the work done in pushing an incremental charge, δq, against this emf (potential)

is,

δW = −E δq = −E i δt = i δΦB. (B.9)
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Figure B.1. According to Faraday’s law, time-varying magnetic flux density
directed along n̂′, induces a change in the current density directed along n̂, and
around a loop enclosing the magnetic flux. Differentials in length (d�l = n̂ dl),

area (n̂ dσ and n̂′dσ′), and volume (dτ = d�l · n̂ dσ = dl dσ) defined in the text are
indicated.

Now,

δΦB =

∫

Σ′
δ �B · n̂′dσ′ =

∫

Σ′
∇× (δ �A) · n̂′dσ′ =

∮

C

δ �A · n̂ dl, (B.10)

where �A is the vector potential ( �B = ∇ × �A, introduced in 4.8), where the first

flavour of Stokes’ theorem (Eq. A.35) is invoked, and where C is the closed contour

(perimeter) of Σ′. The distinction between the two unit vectors is important. As

indicated in Fig. B.1, n̂′ is a unit vector parallel to the axis of the loop (normal

to surface element d�σ′ of open surface Σ′), whereas n̂ is a unit vector tangential to

the loop (normal to surface element d�σ of open surface Σ) and in the direction of

current flow. Thus,

i =

∫

Σ

�J · n̂ dσ =

∫

Σ

J dσ, (B.11)

for �J ‖ n̂, as in Fig. B.1. Substituting Eq. (B.10) and (B.11) into Eq. (B.9) yields:

δW =

∫

Σ

J dσ

∮

C

δ �A · n̂ dl =
∫

Σ

∮

C

δ �A · (Jn̂)dl dσ =

∫

τ

δ �A · �J dτ,

where, as evident from Fig. B.1, dσ dl = dτ , a volume element. In the absence of an

electric field, Ampère–Maxwell’s law (Eq. B.1) requires �J = ∇× �H and thus:

δW =

∫

τ

δ �A · (∇× �H)dτ. (B.12)

From vector identity (A.8), we have,

δ �A · (∇× �H) = �H · (∇× δ �A)−∇ · (δ �A× �H),

and Eq. (B.12) becomes:

δW =

∫

τ

�H · (∇× δ �A)dτ −
∫

τ

∇ · (δ �A× �H)dτ
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=

∫

τ

�H · δ �B dτ −
∫

Σ′′
(δ �A× �H) · n̂′′dσ′′,

where δ �B = ∇×(δ �A) and where Gauss’ theorem (Eq. A.30) was used. Note that Σ′′

is a surface surrounding the entire volume containing the magnetic field (induction)

distribution, and is different again from either Σ′ and Σ used above.

Just as in the discussion in B.2, in the far-field limit the surface integral

disappears,3 leaving us with,

δW =

∫

τ

�H · δ �B dτ.

Thus, the incremental work density is given by δw = �H · δ �B, and the total energy

density stored in the magnetic field becomes:

eM = w =

∫
�H · d �B =

B2

2μ0
, (B.13)

where the last equality assumes the constitutive equation for free space, namely
�B = μ0

�H . Finally, the power density necessary to modify the magnetic inductance

for a given magnetic field is,

pM =
dw

dt
= �H · d

�B

dt
= �H · �̇B. (B.14)

B.4 Resistive energy density

The power delivered by the electromagnetic fields to a charged fluid element moving

at velocity �v is given by,

P = �f · �v = q( �E + �v × �B) · �v = q �E · �v.
Therefore, the power density, pR, is given by,

pR = ρq�v · �E = �J · �E. (B.15)

For �J · �E > 0, electric power is being converted to other forms of energy (dissipation,

kinetic energy), and the energy density of the electromagnetic fields is being drained.

For �J · �E < 0, other forms of energy are being converted to electromagnetic energy,

and the energy density of the electromagnetic is being augmented.

3In this case, H ∼ r−3 and A ∼ r−2, and so the surface integral vanishes as r−3 as r → ∞.
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B.5 The Poynting vector

In 1884, John Henry Poynting (1852–1914) made an important discovery from

Maxwell’s equations which showed how energy is transported by electromagnetic

fields.

The total electromagnetic power into or out of a given volume, τ , is given by:

PEM =

∫

τ

(pE + pM + pR)dτ =

∫

τ

(
�E · ( �̇D + �J) + �H · �̇B

)
dτ. (B.16)

But, from Maxwell’s equations (Eq. B.1), �̇D + �J = ∇× �H and �̇B = −∇× �E, and

Eq. (B.16) becomes:

PEM =

∫

τ

( �E · ∇ × �H − �H · ∇ × �E)dτ =

∫

τ

∇ · ( �H × �E)dτ,

where vector identity (A.8) has been used. The cross product �E× �H is so important

to the theory of electrodynamics that it is given its own symbol and name:

�SP = �E × �H, (B.17)

where �SP is the Poynting vector,4 named for the first person to identify its impor-

tance. With units Jm−2 s−1, it can be interpreted as an energy flux density that

measures the amount of electromagnetic energy passing through a unit area in a

unit time. Thus,

PEM = −
∫

τ

∇ · �SP dτ = −
∮

S

�SP · n̂ dσ = −ΦS , (B.18)

where ΦS is the Poynting flux, the total power (energy per unit time) transported by

the electromagnetic fields across a given closed surface, S. For ΦS > 0, PEM < 0 and

there exists a net drain of electromagnetic energy from the volume τ . Conversely,

for ΦS < 0, PEM > 0 and there exists a net gain of electromagnetic energy by the

volume τ .

The Poynting power density, pS , is another useful quantity that describes the

electromagnetic power gained (> 0) or lost (< 0) per unit volume, and is given by:

pS =
dPEM

dτ
= −∇ · �SP = −∇ · ( �E × �H). (B.19)

4The Poynting vector is normally designated simply as �S. However, since �S is already used for
the total momentum, I’ve added the subscript ‘P’ to aid in their distinction.
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Consider a second-order partial differential equation of the form:

(α∂tt + β∂tx + β∂xt + γ∂xx + δ∂t + ε∂x + ζ)f(x, t) + η = 0, (C.1)

where,

∂tx =
∂

∂x

∂

∂t
=

∂2

∂x∂t
,

etc. The discriminant, D, is given by the determinant of the 2× 2 matrix formed

from the coefficients of the second derivatives:

D =

∣∣∣∣
α β

β γ

∣∣∣∣ = αγ − β2. (C.2)

If D > 0, Eq. (C.1) is said to be elliptical, D = 0, parabolic, and D < 0, hyperbolic.

The designation elliptical/parabolic/hyperbolic is borrowed from its usage in

conics, in which the three types of curves in 2-D (ellipse, parabola, hyperbola) can

be obtained by taking planar slices through a right cone (conic sections), as shown

in Fig. C.1. In general, a conic section can be described by the equation:

ay2 + 2bxy + cx2 + dy + ex+ f = 0,

where one gets a circle/ellipse for ac − b2 > 0, a parabola for ac − b2 = 0, and a

hyperbola for ac− b2 < 0, reminiscent of the discriminant in Eq. (C.2).

As an example, the 1-D wave equation,

∂ttp = c2s∂xxp ⇒ ∂ttp− c2s∂xxp = 0, (C.3)

Figure C.1. Conic sections showing, from left to right, a circle taken from a
horizontal slice through a right cone; an ellipse taken from a slice inclined at an
angle less than the conic angle, θ; a parabola taken from a slice inclined at θ, and
a pair of hyperbolæ taken from a slice inclined at an angle greater than θ.
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is a hyperbolic equation since D = αγ − β2 = (1)(−c2s ) − 0 < 0. Similarly, the 2-D

Poisson equation,
∂xxφ+ ∂yyφ = 4πGρ,

is elliptical, since D = αγ−β2 = (1)(1)−0 > 0. With a suitably modified definition

for the discriminant for equations of three and four variables, the wave equation is

still hyperbolic in 3-D and Poisson’s equation is still elliptical.

A second-order hyperbolic PDE may be transformed into a hyperbolic system

of two first-order PDEs. Thus and for example, we saw in 2.1 that the second-order

wave equation in p (Eq. C.3) can be derived from two first-order PDEs which, in

the Lagrangian (co-moving) frame of reference, are given by:

∂tp = −ρ0 c2s ∂xv;

∂tv = − 1

ρ0
∂xp.

Note that a second-order wave equation in v may also be derived from these two

equations. In the Eulerian (lab) frame, these equations are:

∂tp+ v0 ∂xp+ ρ0 c
2
s ∂xv = 0;

∂tv +
1

ρ0
∂xp+ v0 ∂xv = 0,

which, as shown in 2.1.2, can be written more compactly as:

∂t|q〉+ J∂x|q〉 = 0, (C.4)

where,

|q〉 =

[
p

v

]
and J =

[
v0 ρ0c

2
s

1/ρ0 v0

]
.

One can show that for a hyperbolic system of first-order equations, the eigenvalues

of the Jacobian, J, are real and its eigenvectors are linearly independent of each

other. If all eigenvalues are distinct, the system is said to be strictly hyperbolic.

Conversely, if there is a possibility some or all of the eigenvalues are degenerate

(equal), the system is said to be not strictly hyperbolic.

One is not limited to just two first-order PDEs in a hyperbolic system. The full

1-D hydrodynamics problem consists of three first-order PDEs (when continuity is

brought in; see Eq. 3.20) and the 1-D MHD primitive Eq. (5.1)–(5.7) represent a

hyperbolic system of seven first-order PDEs. Each of these systems may be written

in the form of Eq. (C.4) where, for the 1-D HD problem, |q〉 and J are given by Eq.

(3.22) and, for the 1-D MHD problem, by Eq. (5.9). The fact that all eigenvalues are

real (Eq. 3.33 and 5.27) attests to the hyperbolicity of these systems of equations.

The wave approach to solving a system of differential equations is unique to

hyperbolic systems of first-order PDEs. Because the eigenvalues are real, factors

such as eikut – where u is one of the real eigenvalues (characteristic speeds) and k

the wavenumber – are oscillatory, whence the wave approach. By the same token,

because their eigenvalues are, in general, complex, parabolic and elliptical systems of
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equations do not lend themselves well to a wave decomposition, and other methods

must be employed.

The eigenvalues of the 1-D hydrodynamic equations, namely v ± cs and v, are

clearly distinct since cs > 0. Thus, these equations represent a strictly hyperbolic

system of three first-order PDEs. On the other hand, it is shown in 5.2.3 that de-

generacy among the MHD characteristics is possible, and thus the seven 1-D MHD

equations do not constitute a strictly hyperbolic system. This degeneracy has impli-

cations on how numerical MHD algorithms are designed, since differences between

characteristic speeds frequently appear in denominators of critical quantities. As

shown in 6.2, this problem can be mediated by a suitable normalisation of the

eigenvectors.
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D.1 Univariate root finder

For a single transcendental equation in one unknown,

f(x) = 0,

one is often faced with the task of solving for x; that is, finding the root(s) of f(x).

The most straight-forward numerical method, known as bisection, starts by finding

x1 and x2 such that the product f(x1)f(x2) < 0 guaranteeing that the root, x, lies

somewhere between x1 and x2. One then evaluates:

x3 =
x1 + x2

2
,

(thus bisecting the original interval [x1, x2]), and tests whether the root lies in

[x1, x3], and thus f(x1)f(x3) < 0, or [x3, x2], and thus f(x3)f(x2) < 0. If the

former (latter) is true, set x2 = x3 (x1 = x3), and repeat the process until f(x3)

is, by whatever measure, sufficiently close to zero. Bisection is an example of an

algorithm with first-order convergence, and typically will give a root to several

digits of accuracy after 30 to 40 iterations.

With knowledge of the function’s first derivative, f ′(x), one can easily construct

a method with second-order convergence which is just as simple to code as bisection,

yet converges to the root with several digits of accuracy in several iterations. Such

algorithms are so simple, so fast, and so robust that it is rarely necessary to go

beyond what is discussed in this appendix for finding almost every root of almost

every univariate function, though the interested reader is referred to the excellent

and definitive discussion in Numerical Recipes (Press et al., 1992) for alternatives.

Consider a two-term Taylor expansion of f(x) about the point x0 which, in

this context, would be our first guess at a root:

f(x) ≈ f(x0) + (x− x0)f
′(x0). (D.1)

In practice, it will not matter much what value we choose for x0, so long as it is

“closer” to the root we seek than other roots f(x) may have. For continuous and

monotonic functions which can only have one root, it won’t matter at all what our

initial value for x0 is; second-order root finders will just about always converge on

the unique root in fewer than ten iterations.

If, in Eq. (D.1), x is the putative root, f(x) = 0 and we solve for x to get our
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Figure D.1. Finding the root of a function f(x) using a second-order root finding
method in which one extrapolates from the previous guess, (x0, f(x0)) to (x1, 0)
using a straight line of slope f ′(x0).

refined guess at the root, x1, namely,

x1 = x0 − f(x0)

f ′(x0)
. (D.2)

This is represented graphically in Fig. D.1, where it can be seen that x1 is necessarily

a better estimate of the root than x0 so long as we are restricted to a monotonic

portion of the function near the actual root, and thus where f(x) crosses the x-axis.

One then sets x0 = x1 and repeats the process given by Eq. (D.1) and (D.2).

So what do we do about f ′(x)? If the derivative function is known, we simply

include in the computer program two functions: one each to describe f(x) and f ′(x).
Such a variation is known as the Newton–Raphson method, named for its inventors.

If, on the other hand, f ′(x) is not a known function (or we simply can’t be bothered

programming the derivative function!), an equally good method to Newton–Raphson

is the secant method.

In the secant method, two “first guesses” are made, f(x−1) and f(x0) say,

where x−1 is “close” to x0, and then the derivative, f ′(x0) is approximated by a

secant, namely,

f ′(x0) ≈ f(x0)− f(x−1)

x0 − x−1
. (D.3)

One then uses Eq. (D.2) to find x1, resets x−1 = x0 and x0 = x1, re-evaluates the

derivative using Eq. (D.3), and generates the next guess using Eq. (D.2). This cycle

is repeated until sufficient convergence on the root has been achieved, generally

after no more than several iterations.

A FORTRAN function named secant is given in the following pages that can

be freely copied into any computer program requiring a secant finder. You will need

to provide your own function that returns the value of f(x) for any value of x passed

to it. Then, to find the root of a particular function, you issue the statement:

root = secant ( x0, fofx )

in your program, where root is the variable set to the root of the function, x0 is

your current guess (x0), and fofx is the name of your function describing f(x).
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c=======================================================================
c

function secant ( xinit, f )
c
c written by: David Clarke
c date : February, 2002
c modified 1:
c
c PURPOSE: This routine performs the secant method to find the root of
c the input function, f.
c
c INPUT VARIABLES:
c xinit initial guess; a close initial guess is good, but not
c always necessary.
c f external function for which root is being sought.
c
c OUTPUT VARIABLES:
c secant returned as the root when the improvement over the
c previous iteration is less than maxerr, a parameter
c set by this routine.
c
c-----------------------------------------------------------------------
c

implicit none
c

integer maxiter
real*8 maxerr , small
parameter ( maxiter=30, maxerr=1.0d-8, small=1.0d-99 )

c
integer iter
real*8 xinit , xnm1 , xn , fxn , fxnm1

1 , err , ferr
real*8 f , secant

c
c-----------------------------------------------------------------------
c
c Initialise variables.
c

iter = 0
xn = xinit
xnm1 = 1.1d0 * xn
if (xn .eq. 0.0d0) xnm1 = 0.1d0
fxn = f(xn)
fxnm1 = f(xnm1)

c
c----- Top of secant loop. ---------------------------------------------
c
10 continue

iter = iter + 1
c
c Evaluate the next Secant guess for the root (secant).
c

secant = xn - fxn * ( xn - xnm1 ) / ( ( fxn - fxnm1 ) + small )
c
c Estimate error.
c



Clarke 9781009381475 .tex 465 2/04/2025

465 Multivariate root finder

err = abs ( secant - xn )
ferr = err / ( abs (secant) + small )

c
c If maximum number of iterations has been exceeded, issue warning
c and return to calling routine.
c

if ( iter .gt. maxiter ) then
write (6, 2010) maxiter, xn, 100.0d0*ferr, fxn
go to 20

endif
c
c If the fractional error of "xn" is less than or equal to
c "maxerr", the root has been found and execution is returned to the
c calling routine.
c

if ( ferr .le. maxerr ) go to 20
c
c Otherwise, perform another iteration.
c

xnm1 = xn
fxnm1 = fxn
xn = secant
fxn = f(xn)
go to 10

20 continue
c
c----- Bottom of secant loop. ------------------------------------------
c
2010 format(’SECANT : Maximum number of iterations ’,i3,’ exceeded.’

1 ,/
2 ,’SECANT : xr (best guess) = ’,1pg12.5,’ +/- ’,g9.2
3 ,’ %. f(xr) = ’,g12.5,’.’)

c
return
end

c
c=======================================================================

D.2 Multivariate root finder

Consider now two transcendental equations in two unknowns:

f1(x1, x2) = 0 and f2(x1, x2) = 0. (D.4)

Suppose �r0 = (x1, x2) is our current guess for the roots of Eq. (D.4), but do not

solve Eq. (D.4) to within our stated tolerance. We wish to find a δ�r = (δx1, δx2)

such that �r = �r0 + δ�r comes closer to satisfying Eq. (D.4) than �r0 does.

To this end, consider first-order Taylor expansions of f1 and f2 in the direction

δ�r:

f1(x1+δx1, x2+δx2) ≈ f1(x1, x2) +∇f1 · δ�r = f1(x1, x2) + ∂1f1 δx1 + ∂2f1 δx2;

f2(x1+δx1, x2+δx2) ≈ f2(x1, x2) +∇f2 · δ�r = f2(x1, x2) + ∂1f2 δx1 + ∂2f2 δx2,
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where ∂ifj = ∂fj/∂xi. In matrix form, this becomes:

|f(�r)〉 ≈ |f(�r0)〉+
[
∂1f1 ∂2f1

∂1f2 ∂2f2

]

︸ ︷︷ ︸
J

|δr〉, (D.5)

where J is the Jacobian matrix, first introduced in 2.1.2. Taking |f(�r)〉 ≈ |0〉 (�r is

closer to the root we seek than �r0), we set Eq. (D.5) approximately to zero to find,

J|δr〉 ≈ −|f(�r0)〉, (D.6)

which we solve for |δr〉. Since this is an approximate equation, �r = �r0 + δ�r still

won’t satisfy Eq. (D.4), but |f(�r)〉 should be closer to zero than |f(�r0)〉 was, and

thus we iterate until a set of values, (x1, x2), have been found to satisfy Eq. (D.4)

to within our stated tolerance. Note that while our discussion has been restricted

to two equations in two unknowns, Eq. (D.6) is just as applicable to systems of n

equations (constraints) in n unknowns (parameters).

Formally, the solution to Eq. (D.6) is:

|δr〉 = −J−1|f(�r0)〉,
where J−1 is the inverse of the Jacobian. In practice, however, it is more efficient

to do a so-called LU decomposition on J, and solve for the components of |δr〉
by forward and backward substitution. The interested reader will find guidance in

widely available resources (e.g., Press et al., 1992).

Finally, if the derivatives of the various functions (constraints) are known, using

them directly in the Jacobian would make this a multivariate Newton-Raphson root

finder. Without the derivatives, one can estimate them by taking “secants” such as,

∂jfi ≈ δfi
δxj

=
fi(x1, . . . , xn)− fi(x1, . . . , xj−δxj, . . . , xn)

δxj
, (D.7)

for Jij , the (i, j)th element of the Jacobian. This describes a multivariate secant

root finder, and is the method used in the algorithm for the MHD Riemann solver

( 6.4.3).
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E Roots of a Cubic

With the quadratic formula known since antiquity, Niccolò Tartaglia (1500?–1557)

revealed to a colleague, Gerolamo Cardano, in 1530 his formula for the roots of

a cubic in terms of its coefficients. He did so on condition Cardano not publish

it and – as was not uncommon in those days – it was written entirely in verse!

Some time later, Cardano came upon an independently derived and unpublished

solution by Scipione del Ferro and, as this was dated before Tartaglia’s poem, felt

this released him from his promise not to publish it. He then included it – along

with the solution to the quartic derived in 1540 by his student, Lodovico Ferarri –

in his book Ars Magna published in 1545. Even though he gave ample credit to

both mathematicians in his text, Tartaglia felt betrayed and publicly chastised

Cardano for a decade, maintaining one of the most storied feuds in the history of

mathematics.

Today, the formula for the roots of a cubic is known as the Cardano–Tartaglia

formula, derived in a time when most mathematicians did not acknowledge, never

mind understand, the existence and properties of imaginary numbers! Thus, the

solution presented here is a very modern version of the CT formula, one that neither

man would likely recognise.

The three roots to a general cubic,

f3(x) = a0 + a1x+ a2x
2 + x3 = (x− x1)(x− x2)(x− x3) = 0,

are given by,

xk = −1

3

(
a2 + ωkζ +

δ0
ωkζ

)
; k = 1, 2, 3,

where:

ω =
1

2

(
−1 +

√
3 i
)

=
3
√
1 ; δ0 = a22 − 3a1;

ζ =
3

√
δ1 +

√
δ21 − δ30 ; δ1 = a32 − 9

2a2a1 +
27
2 a0.

In general, one can choose any root or cube root one wants; doing so simply permutes

the subscript index, k, on the roots. The one exception is if δ0 = 0, one chooses√
δ21 = δ1, thus preserving the sign of δ1 so that ζ �= 0.

Finally, the discriminant is given by:

Δ =
4

27
(δ30 − δ21)

⎧
⎪⎪⎨

⎪⎪⎩

> 0 three distinct real roots;

= 0 three real but degenerate roots; or

< 0 one real root and two complex conjugate roots.

(E.1)

467
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Consider a function, y(x), whose values are known only at discrete points separated

by the step size, h (Fig. F.1a), and for which we wish to estimate its derivative,

y′(x). If we take a Taylor expansion from x to x+ h, then,

y(x+ h) = y(x) + hy′(x) +
h2

2
y′′(x) +

h3

3!
y′′′(x) + · · ·

⇒ y′f(x) ≡ y(x+ h)− y(x)

h
= y′(x) +

h

2
y′′(x) +

h2

3!
y′′′(x) + · · ·

︸ ︷︷ ︸
error terms

,

which defines the forward derivative (estimated from the function evaluated at x

and the point forwards, x + h; red line in Fig. F.1a), whose leading error term is

evidently ∝ h [i.e., of order h, written as O(h)]. That is, if one were to halve the

step size, h, one would also halve the leading, and normally most onerous, error

term, hy′′(x)/2.
Similarly, we can take a Taylor expansion from x to x− h:

y(x− h) = y(x)− hy′(x) +
h2

2
y′′(x) − h3

3!
y′′′(x) + · · ·

⇒ y′b(x) ≡ y(x)− y(x− h)

h
= y′(x) − h

2
y′′(x) +

h2

3!
y′′′(x)− · · ·

︸ ︷︷ ︸
error terms

,

to define the backward derivative (estimated from the function evaluated at x and

the point backwards, x− h; blue line in Fig. F.1a), whose leading error term is also

O(h). Note that this time, however, the error terms form an alternating series.

Both forward and backward derivatives are similarly accurate [O(h)], and there

is nothing to choose between them in this regard. However, we can define a central

derivative (green line in Fig. F.1a) by averaging the two, in which case we get:

y′c(x) ≡ y′f(x) + y′b(x)
2

=
y′(x) + y′(x)

2
+
h

2

y′′(x)− y′′(x)
2

+
h2

3!

y′′′(x) + y′′′(x)
2

+ · · ·

= y′(x) +
h2

3!
y′′′(x) +

h4

5!
y(v)(x) + · · ·

︸ ︷︷ ︸
error terms

,

where the leading error term is now O(h2). That is, halving h quarters the error

468
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Figure F.1. a) Forward (y′f , red), backward (y′b, blue), central (y
′
c, green) and

“actual” (black) derivatives at x. Of the three coloured slopes, the central (green)
most closely mimics the black. b) First-order Euler solver illustrated over two
intervals.

committed in making the central derivative estimate of y′(x). Further, all error

terms of odd order cancel, and the next error term is O(h4), followed by O(h6), etc.

Evidently, the central derivative is more accurate than the forward and backward

derivatives, as seen in Fig. F.1a where, of the three derivative estimates pictured,

the actual derivative (black line) is best approximated by the central one.

So, with this mini-tutorial on the accuracy of numerical derivatives under our

belts, let us now consider a general first-order ODE:

y′(x) = f
(
x, y(x)

)
, (F.1)

whose solution, y(x), we seek at discrete points, xj = x0 + jh, j ≥ 0 ∈ Z, with h

once again the step size, for a specified boundary condition, y(x0) = y0. To advance

the solution from the one known point, (x0, y0), we perform a Taylor expansion

from x0 to x1:

y(x1) ≡ y1 = y(x0) + hy′(x0) + · · ·
≈ y0 + hf0,

where, from Eq. (F.1), y′(x0) = f(x0, y0) ≡ f0 is a quantity we can calculate.

Now that we have y1, we calculate the slope of the function at x1, namely

y′(x1) = f(x1, y1) ≡ f1, and Taylor-expand from x1 to the next point, x2:

y(x2) ≡ y2 = y(x1) + hy′(x1) + · · ·
≈ y1 + hf1,

and so it goes.

This describes a so-called first-order Euler solver, with the first two steps il-

lustrated in Fig. F.1b. Evidently, each step is advanced by a backward derivative

and, as such, this method is first-order accurate [O(h)]. First-order methods can

require extremely small step sizes to maintain the solution to within even a modest

tolerance, say 1%, over a useful domain in x. As a case in point, the step size in

Fig. F.1b is clearly too large since, just after two steps, the estimated value for y2
has deviated significantly from the target function represented by the solid curve.
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Figure F.2. a) Second-order predictor-corrector solver illustrated over one in-
terval. b) Fourth-order Runge–Kutta solver illustrated over two half-intervals.

Indeed it can be a losing battle, where the step size needed to maintain accuracy

is so small that the number of steps required to integrate over the specified domain

can make the calculation prohibitive. In a word, first-order methods can be useless.

To devise a second-order method, we need a central derivative, and one way to

achieve this is a method known as Predictor–Corrector (PC; Fig. F.2a). Here, we

predict values for y1 and the slope, f1, at the end of the interval using the first-order

Euler solver:
ỹ1 = y0 + hf0; f̃1 = f(x1, ỹ1),

(tildes ˜ indicate “predicted values”), then correct the value for y1 by starting again

from x0 this time using the average of the slopes f0 and f̃1. Once we get y1, we

compute the “corrected slope” there too:

y1 = y0 + h
f0 + f̃1

2
; f1 = f(x1, y1), (F.2)

to be used in integrating across the next interval. Using a slope from effectively

the middle of the interval renders this algorithm second-order accurate and requires

far fewer intervals than a first-order method to maintain a given accuracy over the

specified domain. As Fig. F.2a shows, the deviation of y1 from the putative y(x)

(solid curve) is far less severe than that of ỹ1.

But wait! We’re just getting started!! An embarrassingly clever technique in

numerical estimation known as Richardson extrapolation exploits our knowledge of

the order of the error terms. Since PC is second-order accurate where halving the

step size quarters the error, integrating y(x) from x0 to x1 in two successive steps

of step size h/2 (to obtain y1,h2
) should commit a quarter of the error as integrating

from x0 to x1 in a single step of step size h (to obtain y1,h). Thus, in the quantity,1

y1 =
4y1,h2

− y1,h

3
, (F.3)

1Think of y1 as being formed from four times the estimate of y(x1) constructed by taking two
successive half steps, y

1,h
2
, and subtracting from that one estimate of y(x1) constructed by taking

one full step, y1,h. Thus, the numerator represents three estimates altogether, and the denominator

(3 = 4− 1) is the required normalisation.
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the error term of O(h2) is eliminated, leaving a leading error term of O(h4) (recall

central differences have no error terms of odd order), and y1 in Eq. (F.3) is fourth-

order accurate.

Using PC, we can work out a closed-form expression for a fourth-order accurate

y1 as follows. Integrating Eq. F.1 with two successive half steps of PC yields:

ỹ 1
2 ,

h
2
= y0 +

h

2
f0; y 1

2 ,
h
2
= y0 +

h

2

f0 + f̃ 1
2

2
, (F.4)

where f0 = f(x0, y0) and f̃ 1
2
= f(x 1

2
, ỹ 1

2 ,
h
2
), and where:

ỹ1,h2
= y 1

2 ,
h
2
+
h

2
f 1

2
; y1,h2

= y 1
2 ,

h
2
+
h

2

f 1
2
+ f̃1

2
, (F.5)

where f 1
2
= f(x 1

2
, y 1

2 ,
h
2
) and f̃1 = f(x1, ỹ1,h2

). Now, substitute the second of Eq.

(F.4) into the second of Eq. (F.5) to get,

y1,h2
= y0 +

h

4
(f0 + f̃ 1

2
+ f 1

2
+ f̃1). (F.6)

Finally, substituting Eq. (F.6) and the first of Eq. (F.2) into Eq. (F.3), we find,

y1 = y0 +
h

6

(
f0 + 2f̃ 1

2
+ 2f 1

2
+ f̃1

)
,

a fourth-order estimate of y1 given that all four slopes are first order.

This is the essence of the fourth-order Runge–Kutta method, named for the

German mathematicians Carl Runge and Martin Kutta who developed the tech-

nique at the turn of the 20th century. Thus, with the various slopes illustrated in

Fig. F.2b, the method requires the following calculations to advance the solution a

single step, h, from (x0, y0) to (x1, y1):

f0 = f(x0, y0); ỹ 1
2
= y0 +

h

2
f0;

f̃ 1
2
= f(x 1

2
, ỹ 1

2
); y 1

2
= y0 +

h

2
f̃ 1

2
;

f 1
2
= f(x 1

2
, y 1

2
); ỹ1 = y0 + hf 1

2
;

f̃1 = f(x1, ỹ1); y1 = y0 +
h

6
(f0 + 2f̃ 1

2
+ 2f 1

2
+ f̃1).

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(F.7)

The eight expressions in Eq. (F.7) comprise what I refer to as “the RK step”, which

can be easily programmed for a known boundary condition, (x0, y0), and a known

derivative function, y′(x) = f(x, y). Further, it should be apparent that nowhere

was it required that y and f be scalars. Indeed, if we were to write Eq. (F.1) as,

|y′(x)〉 =
∣∣f
(
x, y(x)

)〉
, (F.8)

where the kets are n-dimensional, nothing in the previous discussion would change.

Thus, a Runge–Kutta routine can be written for one first-order ODE in one un-

known, or for n coupled first-order ODEs in n unknowns; for a programmer, the

difference amounts to nothing more than putting key expressions inside a do-loop.
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Adaptive step size

Fourth-order accuracy is good, so sixth order must be better, but the reason for

sixth-order Runge–Kutta is much more profound than just upping the accuracy to

the next level. Indeed, the fact that sixth-order Runge–Kutta is sixth-order accurate

is actually a by-product of a much more important property bestowed upon it:

adaptive stepping.

An algorithm’s order of accuracy is just one aspect of error control; it is equally

important to ensure the solution remains within a prescribed tolerance. While an

nth order scheme means that the solution improves by a factor of 2n if the step size

is halved, it cannot, by itself, control what the absolute error is. Indeed, in a region

where the solution, y(x), varies rapidly with small changes in x, one can imagine

that a very much smaller step size is required to achieve the same absolute error

than in an asymptotic region where y(x) barely varies at all even for large changes

in x.

First, a word on the nature of error accumulation in Runge–Kutta methods. It

should give the reader some cause for pause that one starts at a single known point

of the solution, namely the boundary condition (x0, y0), then effectively extrapolates

all the way across the domain from there, knowing only what the first derivative

is at each point. Further, if the derivative depends upon y, then the use of errant

values of y will make even the derivative known only to within some – possibly

unknowable – uncertainty. No matter how good the scheme, errors will accumulate

along the way, and requiring a tolerance of, say, 10−8 only means that Δy across

the next step will be accurate to within that level, not the value of y(x) itself. If it

takes 104 steps to cross the domain, then, in the best case scenario where the errors

combine linearly and statistically, the error at the end of the domain may be as

high as 10−6. If the accumulation of errors is nonlinear (e.g., y′ depends explicitly
on y), error accumulation could be much worse.

With this caveat in mind, we need a measure of the error committed in Δy

across the current interval in order to know whether it is within our intended tol-

erance. With a fourth-order scheme, we know that halving the step size drops the

error by a factor of 24 = 16. Thus, consider integrating across the current interval

twice, first with one RK step using a full step size, h, to get y1,h, then again with

two RK steps each using half a step size, h/2, to get y1,h2
.2 First, this allows us to

take another Richardson extrapolation,

y1 =
16y1,h2

− y1,h

15
, (F.9)

whose leading error term is now O(h6), whence the moniker sixth-order Runge–

Kutta. Second and more importantly, it allows us to estimate the error of y1 by

2I appreciate I am reusing notation from just two pages back where we extended second-order
PC by one extrapolation step to fourth order. However, there are only so many subscripts, super-
scripts, tildes, primes, etc., one can impose upon a label before the notation becomes completely
inscrutable!
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comparing it to the next best guess we have, namely y1,h2
:

εRK =
y1 − |y1,h2 |

max
(|y1|, |y1,h2 |

) . (F.10)

If the error, εRK, is greater than the tolerance, we halve the step size (h→ h/2) and

start the current step again. If εRK is, say, less than a tenth of the stated tolerance,

we keep our current step knowing its accuracy is even better than we require, but

increase h by, say, 50% for the next step. Finally, if εRK is less than the stated

tolerance but greater than a tenth of it, we leave well enough alone and retain h for

the next step. Evidently, an estimate of the error allows us to adapt the step size

to the local nature of the solution, an attribute of the scheme whose importance

cannot be overstated.

Sixth-order RK algorithm

Following is a skeletal algorithm for sixth-order Runge–Kutta, written assuming n

coupled first-order ODEs as represented by Eq. (F.8). Text in typewriter font

represents pseudo-code or pseudo-code variables. Variable names ending in left or

right indicate values at the left/right side of the current interval. Variables x and y

gather discrete values of the independent and dependent variables as RK integrates

across the domain. The right arrow (→) indicates the quantity on the left is replaced

with that on the right. Text in a rectangular box indicates subroutines whose

algorithms follow the main one. Text in
�

�

�

�

boxes with rounded corners indicates

targets, similar to those used by the old FORTRAN “go to” statements.

1. Initialisation.

- set error tolerance, errmax, and domain, (x0, xmax).

- set initial step size: h = 0.1 * errmax * (xmax-x0).

- set boundary conditions:

step = 1;

x(step) = xleft = x0;

y(i,step) = yleft(i) = y0(i), i=1,...,n.

�

�

�

�

A . (top of adaptive RK loop)

2. Integrate solution across current interval with RunKut twice:

- in one step with step size h: yh(i);

- in two successive steps with step size h/2: yh2(i).
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3. Evaluate yright(i) from Eq. (F.9): yright(i) =
16 ∗ yh2(i)− yh(i)

15
.

4. Estimate error from Eq. (F.10): err(i) =
|yright(i)− yh2(i)|

max(|yright(i)|, |yh2(i)|);
- err = max[err(i)];

- if err > errmax, h → h/2,
�

�

�

	

go to A ;

- else, if err < 0.1 * errmax, h → 1.5*h.

5. Integration across current interval is within error tolerance; prepare for next

step:

- step → step + 1;

- xleft → xleft + h; x(step) = xleft;

- ∀ i=1,n, y(i,step) = yright(i);

- if xleft < xmax,
�

�

�

	

go to A for next step; else,
�

�

�

	

go to B .

�

�

�

�

B . (bottom of adaptive RK loop; exit)

Niceties of the algorithm include setting a value hmin below which the step size is

not allowed to fall to avoid spiralling into an infinite loop should the integration,

for whatever reason, fail to converge. Similarly, one can set a maximum number of

integration steps that the loop is allowed to take. It’s rare for sixth-order Runge–

Kutta to require more than 103 steps to integrate across a typical domain for a

typical function, and it could be a sign of trouble if more steps than this are needed.

Subroutine RunKut

To integrate across a single interval, this routine is called thrice. The first call

integrates across the entire interval in one RK step starting at xleft with interval

size h. The second and third calls use a step size h/2 with the second call starting

at xleft and the third at xleft+h/2.

Here we shall refer to the starting point and interval size as xbeg and Δx

respectively. The middle of the interval is xmid = xbeg + Δx/2, while the values

of the n dependent variables at the beginning, middle, and end of the interval are

ybeg(i), ymid(i), and yend(i), i=1,...,n, respectively.

Each time this routine is called, its task is to evaluate Eq. (F.7), which requires

four evaluations of y′(x).

6. Evaluate first and second of Eq. (F.7). All variables beginning with y or f are

n-dimensional vectors; ‘t’ at the end of a variable name means “twiddle”:

fbeg = yprime (xbeg, ybeg); ymidt = ybeg+
Δx

2
∗ fbeg.
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7. Evaluate third and fourth of Eq. (F.7):

fmidt = yprime (xmid, ymidt); ymid = ybeg+
Δx

2
∗ fmidt.

8. Evaluate fifth and sixth of Eq. (F.7):

fmid = yprime (xmid, ymid); yendt = ybeg+ Δx ∗ fmid.

9. Evaluate seventh and eighth of Eq. (F.7):

fendt = yprime (xend, yendt);

yend = ybeg+
Δx

6
∗ (fbeg+ 2 ∗ fmidt+ 2 ∗ fmid+ fendt).

Function yprime

10. Evaluate Eq. (F.8) from input values of x and y.

This is the only place in the routine where the differential equations are spec-

ified; Steps 1–9 are completely generic in that regard.
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G Coriolis’ Theorem

We are all familiar with the experience of being “pushed back” into the seat of an

aggressively accelerated car, or of being “pressed into” the car door if the driver

takes a sharp corner too quickly. In this context, the phrases “pushed back” and

“pressed into” have entered the vernacular since our common experience is these are

somehow forces being exerted upon us as the car accelerates. However, as physicists

we know that these forces are not “real” (however hard we may struggle to counter

them), but rather “inertial” that arise by virtue of being in an accelerating reference

frame. In this appendix, I remind the reader of Coriolis’ theorem which identifies

four distinct types of inertial forces arising in such a frame.

Figure G.1a on the next page shows two Cartesian coordinate systems, O

(black) and O′ (blue) each observing a point P (red) and whose origins are sep-

arated by a displacement �R. O, defined by unit vectors ı̂, ĵ, and k̂ in the x-, y-, and

z-directions respectively, is an inertial (non-accelerating) frame of reference while

O′, with unit vectors ı̂ ′, ĵ ′, and k̂′ is an accelerating frame of reference because of

its rotation about a fixed axis, A,1 and possibly because R̈ �= 0. Without loss of

generality, let k̂ be aligned with A.

The question we wish to address is as follows. If O observes P to be at dis-

placement �r moving with velocity �v and acceleration �a, how are these related to the

corresponding kinematical quantities observed by O′?
The first is easy. Evidently:

�r = �R+ �r ′, (G.1)

where �r = xı̂+ yĵ+ zk̂ and �r ′ = x′ ı̂ ′ + y′ĵ ′ + z′k̂′.
For the velocity, differentiate Eq. (G.1) with respect to time to get,

�v =
d�r

dt
=

d

dt

(
�R+ �r ′) = �V +

d

dt

(
x′ ı̂ ′ + y′ĵ ′ + z′k̂′

)

⇒ �v = �V + ẋ′ ı̂ ′ + ẏ′ĵ ′ + ż′k̂′︸ ︷︷ ︸
�v ′

+ x′ ˙̂ı ′ + y′ ˙̂j ′ + z′ ˙̂k′, (G.2)

where �V = �̇R is the relative velocity between the origins O and O′.
Two things here are worthy of note. First, unlike ı̂, etc., of the inertial frame

O whose orientations remain fixed, the directions of ı̂ ′, etc., in the rotating frame

O′ are always changing, and thus have time derivatives which we evaluate below.

Second, the velocity of P as measured by O′, namely �v ′, is completely specified by

1Rotation is in a “tidally locked” fashion. Should an observer at O′ be facing the rotation axis,
A, that observer remains facing A as O′ rotates.

476
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Figure G.1. a) Two coordinate systems, O (black) and O′ (blue), displaced from
each other by �R both observe point P. O is inertial and O′ is accelerating and/or
rotating about k̂. b) The unit vector ı̂ ′ from rotating frame O′ in panel a rotates
by a small angle about the k̂ axis from inertial frame, O. Since ı̂ ′ �⊥ k̂ in general,
it’s the projection of ı̂ ′ onto the plane perpendicular to k̂ that rotates by angle
δϕ = ωδt.

the underbrace: the vector sum of the time-rate-of-change of the coordinates and

their unit vector (ẋ′ ı̂ ′, etc.). One would no more include the terms proportional to
˙̂ı ′, etc., in �v ′ than one would worry about how the rotation of the earth changes

the absolute direction of a highway. If I’m driving on a straight road at 100 kph

due east, as far as I’m concerned I’m always driving due east regardless of how

that direction may change relative to an inertial observer hovering over the planet.

Accordingly, the last three terms in Eq. (G.2) are not included as part of �v ′.
Of course, in the inertial frame O, terms in Eq. (G.2) proportional to ˙̂ı ′, etc., do

matter, and so we look now to evaluate them. Figure G.1b illustrates how the unit

vector ı̂′ changes relative to the inertial frame, O, after a small rotation, δϕ = ωδt,

about k̂. As ı̂′(t) rotates to ı̂′(t+ δt), the magnitude of δı̂′ is evidently given by,

|δı̂ ′| = |̂ı ′| cos (ϑ− π
2

)
δϕ = ωδt sinϑ,

where ϑ is the angle between ı̂ ′ and �ω = ωk̂. This and the fact that δı̂′ is perpen-
dicular to both ı̂′ and �ω for δϕ� 2π require that,

δı̂ ′ = (�ωδt)× ı̂ ′ ⇒ ˙̂ı ′ = �ω × ı̂ ′.

Similarly, ˙̂j ′ = �ω × ĵ ′, ˙̂k′ = �ω × k̂′, and Eq. (G.2) becomes:

�v = �V + �v ′ + x′�ω × ı̂ ′ + y′�ω × ĵ ′ + z′�ω × k̂ ′

= �V + �v ′ + �ω × �r ′.

For the acceleration, we differentiate once again to find,

�a =
d�v

dt
= �A+

d

dt

(
ẋ′ ı̂ ′ + ẏ′ĵ ′ + ż′k̂′

)

︸ ︷︷ ︸
�a ′ + �ω × �v ′

+
d�ω

dt
× �r ′ + �ω × d

dt

(
x′ ı̂ ′ + y′ĵ ′ + z′k̂ ′)

︸ ︷︷ ︸
�v ′ + �ω × �r ′

,

where �A = �̈R is the acceleration of the origin of O′ relative to O, �a ′ is the accel-

eration of point P relative to O′ (the quantity we’ve been seeking), and where the
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underbraces are evaluated by repeating the steps previous. Thus, we find,

�a = �A+ �a ′ + �̇ω × �r ′ + 2 �ω × �v ′ + �ω × (�ω × �r ′).

Note that �ω = ωk̂, and thus its derivative does not liberate a term proportional to

the time-derivative of a unit vector.

Solving for �a ′, we get,

�a ′ = �a− �A− �̇ω × �r ′ − 2 �ω × �v ′ − �ω × (�ω × �r ′), (G.3)

and then multiplying through by m, the mass of the object at P, we arrive at

Coriolis’ theorem:
∑

�F ′ = m�a ′ =
∑

�F + �Ftr + �F⊥ + �FCor + �Fcent, (G.4)

where, in addition to the “real” forces (
∑ �F ) such as gravity,2 electromagnetic

forces, etc., four separate inertial forces have been revealed.

1. �Ftr = −m�A is the translational force onm caused by the acceleration of origin

O′ relative to O. This is what “pushes you into the car seat” as your driver

accelerates aggressively.

2. �F⊥ = −m�̇ω × �r ′ is the transverse force on m acting perpendicular to its

displacement from O′ should �̇ω �= 0.

3. �FCor = −2m�ω× �v ′ is the Coriolis force on m by virtue of its motion relative

to O′ and, most famously, is responsible for hurricanes. This is the term that

Coriolis discovered by his analysis, and why this subject bears his name.

4. �Fcent = −m�ω× (�ω×�r ′) is the centrifugal force on m and is what “pushes you

into the car door” as your driver takes a turn too quickly.

Taking these four inertial forces into account, one can relate forces and acceleration

in the accelerating frame of reference as Newton would have us do in an inertial

frame of reference, namely
∑ �F ′ = m�a ′.

However, for the discussions in 7.3, 9.2, and 10.3.4, we need only the Coriolis,

centrifugal, and translational accelerations which, as identified in Eq. (G.3), are

evidently:

�aCor = −2�ω × �v ′; �acent = −�ω × (�ω × �r ′); and �atr = − �A.

Anticipating there may be a reader who might appreciate an example of how Cori-

olis’ theorem is used in practice to help complete their “memory refresh”, I finish

this appendix with the classic example of a “bead on a rod”. In addition to being a

good exemplar of this type of problem, it also has astrophysical implications near

2However, students of general relativity know that Einstein regarded gravity as another “in-
ertial force”, on the same par as the Coriolis and centrifugal forces uncovered here.
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and dear to my heart, as it turns out to be a model for an MHD mechanism by which

astrophysical jets are launched! (Blandford & Payne, 1982; Spruit, 1996.) This is

discussed in some detail in 9.2–9.4 where some familiarity with this example would

be beneficial.

Example G.1. A bead of mass m is released from rest at a distance r0 from the

end of a frictionless rod of length l > r0 about which the rod rotates at a constant

angular speed ω in the horizontal plane.

a) Find the displacement of the bead along the rod as a function of time.

b) At what angle, ϕrod, does the bead reach the end of the rod and what is its

speed?

c) Find the normal force exerted by the rod on the bead as a function of position

along the rod.

d) Describe this problem in the inertial (non-rotating) frame of reference. In

particular, how does the frictionless rod – which can only exert a normal

force on the bead (and thus perpendicular to the rod) – manage to impart

an apparent radial acceleration to the bead (thus parallel to the rod) as it

rotates?

Solution: a) Define a rotating coordinate system, O′, such that ı̂ ′ always points

along the rod. Further and as shown in Fig. G.2, let the origins of O′ and the

inertial coordinate system, O, coincide (thus, �R = 0) on the rotation axis fixed at

one end of the rod. Then:

Figure G.2. A bead, m,
slides along a frictionless ro-
tating rod.

acceleration of O′ relative to O, �A = 0;

angular velocity of O′ relative to O, �ω = ωk̂′;

angular acceleration of O′ rel. to O, �̇ω = 0;

position of m relative to O′, �r ′ = x′ ı̂ ′;

velocity of m relative to O′, �v ′ = ẋ′ ı̂ ′;

acceleration of m relative to O′, �a ′ = ẍ′ ı̂ ′.

Next, evaluate the inertial forces:

transverse force, −m�̇ω × �r ′ = 0;

Coriolis force, −2m�ω × �v ′ = −2mωẋ′k̂′ × ı̂ ′ = −2mωẋ′ĵ ′;

centrifugal force, −m�ω × (�ω × �r ′) = −mω2x′ k̂′ × (k̂′ × ı̂ ′) = mω2x′ı̂ ′.

Finally assemble the forces. From Fig. G.2, the only real force acting in the x′–y′
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plane is the normal force: �F = Nĵ ′. Substituting this and the inertial forces into

Coriolis’ theorem (Eq. G.4), we get,

�F ′ = m�a ′ = mẍ′ı̂ ′ = Nĵ ′ − 2mωẋ′ĵ ′ +mω2x′ı̂ ′. (G.5)

Considering for the moment the ı̂ ′ component of Eq. (G.5), we get,

ẍ′ = ω2x′ ⇒ x′(t) = Aeωt +Be−ωt and ẋ′(t) = Aωeωt −Bωe−ωt. (G.6)

Imposing boundary conditions,

x′(0) = r0 ⇒ A+B = r0

ẋ′(0) = 0 ⇒ A−B = 0

}
⇒ A = B =

r0
2
,

we find,

x′(t) =
r0
2

(
eωt + e−ωt

)
= r0 coshωt. (G.7)

b) Let the time when the bead reaches the end of the rod be trod. Then,

x′(trod) = l =
r0
2

(
eωtrod + e−ωtrod

) ⇒ r0e
2ωtrod − 2leωtrod + r0 = 0

⇒ eωtrod =
l +
√
l2 − r20
r0

= λ+
√
λ2 − 1, (G.8)

where λ ≡ l/r0. Here, we’ve chosen the ‘+’ root so that eϕrod > 1 and ϕrod > 0.

Thus,

ωtrod = ϕrod = ln
(
λ+

√
λ2 − 1

)
, (G.9)

is the angle at which the bead leaves the rod. Note that ϕrod depends only on λ,

the ratio of the rod’s length, l, to the bead’s starting position, r0, and not on the

angular speed, ω.

To find the speed of the bead at the end of the rod, differentiate Eq. (G.7) with

respect to time and evaluate it at t = trod to get,

v′(trod) =
ωr0
2

(
eωtrod − e−ωtrod

)
=

ωr0
2

(
λ+

√
λ2 − 1− 1

λ+
√
λ2 − 1

)
,

using Eq. (G.8). Thus,

v′(trod) = ωr0
√
λ2 − 1 = ω

√
l2 − r20 ,

after a little algebra. Note that the final speed does depend on ω.

c) For the normal force exerted by the rod on the bead, start with the y′ component

of Eq. (G.5):
Ny′(t) = 2mωẋ′ = 2mω2r0 sinhωt. (G.10)

Since sinhωt =
√
cosh2ωt− 1 and coshωt = x′/r0 (Eq. G.7),

sinhωt =

√
x′2

r20
− 1 ⇒ Ny′(x′) = 2mω2

√
x′ 2 − r20 .
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To complete the answer, we include the z′-component of the normal force (not

shown in Fig. G.2) which must balance the weight of m:

Nz′ = mg.

Thus, the normal force exerted by the rod on the bead as a function of x′ is,

�N(x′) = 2mω2
√
x′2 − r20 ĵ

′ +mgk̂′.

d) To determine what real forces drive the bead, this problem must be examined in

a Cartesian inertial frame of reference which, as we’ll see, leads to a rather nasty

differential equation. For this reason, most on-line and textbook solutions to this

problem typically “bunt”, and describe it in polar coordinates. While certainly a

valid approach and one where the correct answer is found easily, it fails to identify

convincingly the real force(s) driving the motion.

To wit, in polar coordinates (r, ϕ), the kinematical quantities are given by:

�r = rr̂; �v = ṙr̂ + rϕ̇ϕ̂; �a = (r̈ − rϕ̇2)r̂ + (rϕ̈ + 2ṙϕ̇)ϕ̂,

where the additional terms in �v and �a arise from the time dependence of the unit

vectors r̂ and ϕ̂.3 And so, since the normal force, �N = Nϕ̂, is the only real force

acting in the horizontal plane, we can write,

�F = m�a ⇒ Nϕ̂ = m(r̈ − rϕ̇2)r̂ +m(rϕ̈+ 2ṙϕ̇)ϕ̂,

which, broken up into its r̂ and ϕ̂ components, leads to,

r̈ = rω2 and N = 2mωṙ, (G.11)

for ϕ̇ = ω = constant. These are identical to the first of Eq. (G.6) and last of Eq.

(G.10) derived from the rotating reference frame, O′, and thus their solutions,

r = r0 coshωt and N = 2mω2r0 sinhωt,

also solve Eq. (G.11). However, to my taste this doesn’t come close to explaining

how it can be the normal force that accelerates the bead in the r-direction since N

doesn’t even appear in the first of Eq. (G.11)!

And so we tackle this problem as we should have in the first place: in Cartesian

coordinates. From Fig. G.2, we resolve N into its x- and y-coordinates and write

Newton’s second law as,

−N sinωt = mẍ and N cosωt = mÿ.

Already we see in these coordinates that the normal force accelerates m in both the

x- and y-directions. Dividing the first of these equations by the second, we get,

ẍ = −ÿ tanωt. (G.12)

3For example, with a little reflection the reader should be able to confirm that ˙̂r = ϕ̇ϕ̂ which
leads to the tangential component (∝ ϕ̂) of the velocity, rϕ̇. Similarly, ˙̂ϕ = −ϕ̇r̂.
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Figure G.3. Illustrated are 13 snapshots of a bead sliding along a frictionless rod
rotating in a horizontal plane at a constant angular speed. The curved black line
shows the trajectory of the bead as viewed from an inertial frame of reference,
O. See text for details.

Further, this is a constrained problem: whatever x and y may be, the ratio y/x

must always be the tangent of the angle ϕ = ωt through which the rod has swung.

Thus,
y = x tanωt ⇒ ẏ = ẋ tanωt+ xω sec2ωt

⇒ ÿ = ẍ tanωt+ 2ẋω sec2ωt− 2xω2 tanωt sec2ωt,

after a little algebra. Substituting this into Eq. (G.12), we get,

ẍ = −2ẋω tanωt− 2xω2 tan2ωt, (G.13)

again, after a little algebra. Similarly, the equation of motion for the y-direction is,

ÿ = 2ẏω cotωt− 2yω2 cot2ωt. (G.14)

Now, who would like to try solving these? Certainly not me!

So, to reassure ourselves that these are indeed the correct equations of motion

for the bead on a rod problem in an inertial Cartesian frame of reference, one can

substitute the known solutions from Eq. (G.7) (where we identify x′ = r), namely:

x(t) = r(t) cosωt = r0 coshωt cosωt;

y(t) = r(t) sinωt = r0 coshωt sinωt,

}
(G.15)

in to Eq. (G.13) and (G.14) respectively.

I’ll let the sceptical reader do that. The point is, doing the problem from an

inertial Cartesian reference frame clearly identifies the normal force as the real force

accelerating the bead in each of the x- and y-directions.

Figure G.3 shows the rod (thin brown lines, length l) at thirteen positions in

10◦ increments for 0◦ ≤ ϕ = ωt ≤ 120◦. Choosing for illustration λ = l/r0 = 2.5,

the small circles indicate the bead’s location (using Eq. G.15) along the rod until

it reaches ϕrod = 89.8◦ (Eq. G.9). Once it leaves the rod, the bead carries on in a
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straight line with its final velocity, �v, whose components are given by differentiating

Eq. (G.15) with respect to time. Its overall trajectory is indicted in Fig. G.3 by the

curved black line.

At a typical point along the rod, the blow-up in Fig. G.3 shows how the normal

force on the bead can be broken up into its parallel (N‖; blue) and perpendicular

(N⊥; red) components relative to the bead’s trajectory. Evidently, N‖ accelerates

the bead along its direction of motion, while N⊥ acts as a centripetal force, causing

the curvature in the bead’s path. A more “realistic” depiction of Fig. G.3 is given

in Fig. 9.3 on page 353.

And for those who still haven’t had their fill on Coriolis’ theorem, I refer you to the

two classic texts by Marion & Thornton (1995) and Fowles & Cassiday (2004).
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If a few tablespoons of bleach are poured onto a saucer and placed at one end of a

closed room, it does not take long for the smell of bleach to fill the air. Evidently,

the bleach spontaneously evaporates and distributes itself uniformly throughout

the room with no intervention required. Of course, the reverse process in which

all the bleach vapour spontaneously reassembles itself back into a liquid and onto

the saucer never occurs; not because it would violate any conservation law such as

energy or particle number, but because it is just exceedingly unlikely. This is the

essence of the second law of thermodynamics: the macrostate of a system – how it

is observed – is the one that is most likely to occur. Flip a coin 1,000 times, and

there is just one way for there to be 1,000 heads. However, there are numerous ways

more for there to be ∼ 500 heads, and so that is the macrostate of coin tosses one

observes.

First written down by Adolf Fick in 1855, the diffusion equation describing

how the smell of bleach permeates a room is a direct consequence of the second law.

If the total number of particles of a certain substance in a volume V is conserved,

then the equation governing how its number density, n, is transported within V is

a continuity equation (e.g., Eq. 1.19),

∂tn+∇ · �fn = 0 ⇒ ∂tn = −∇ · �fn, (H.1)

where �fn is the particle flux density entering or leaving a volume differential, δV ,

across its surface. Particles enter or leave a given δV simply by their random (Brow-

nian) motions. The most likely state – where n is uniform everywhere – is one where

as many particles enter a given δV as leave it, rendering the net particle flux zero

and thus the value of n unchanged. This is the state in which the smell of bleach is

the same everywhere in the room.

However, while the bleach is still evaporating from the saucer, n is not uniform

throughout the room. In this case, two neighbouring pockets of air with differing

concentrations of bleach will not experience net zero particle flux across their mu-

tual surface. Rather, if pocket A has more bleach molecules than pocket B, more

molecules are knocked from pocket A to B than from pocket B to A, and there is a

net migration of bleach particles from A to B. Fick reasoned that the net particle

flux should point away from the direction of increasing number density and thus

opposite to ∇n (Fick’s first law of diffusion). That is,

�fn = −D∇n, (H.2)

where the diffusion coefficient D could, in principle, be a function of position, �r,

484
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and of the number density, n, itself. Combining Eq. (H.2) with Eq. (H.1) gives us

the so-called diffusion equation,

∂tn = ∇ · (D∇n) = D∇2n, (H.3)

where the last equality holds only if D is constant. Written in 1-D as ∂tn− D∂xxn
and comparing this to Eq. (C.1) in App. C, we see that the discriminant is zero,

and thus the diffusion equation is parabolic in nature.

The reader may already be familiar with the heat equation,

∂tT = α∇2T,

where T is the temperature and α is the heat diffusivity of the medium. This was

first written down by Joseph Fourier himself in 1822 to describe how heat (what

was then known as a mysterious fluid called caloric) “moves” from a warmer object

to a cooler one. And while the heat equation is mathematically identical to the

diffusion equation, it wasn’t actually linked to the idea of the diffusion of matter

until Fick. The particulate nature of matter – even air – still wasn’t appreciated

widely enough.

Another famous diffusion equation of a sort is Schrödinger’s wave equation for

free particles (potential V = 0),

∂tΨ =
i�

2m
∇2Ψ,

written in a rather non-standard form to emphasise its similarity to Eq. (H.3).

In this case, the “diffusion coefficient” is imaginary, which is why I described this

as a diffusion equation “of a sort”. Still, it is well known to students of quantum

mechanics that a free wave packet whose position is initially known with great

precision (e.g., where the norm of its wavefunction, Ψ∗Ψ, is a narrow Gaussian)

spreads out – diffuses – as it propagates through space and time.1 This is a direct

consequence of the diffusive nature of Schrödinger’s wave equation.

1See, for example, www.wikipedia.org/wiki/Wave packet.
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The following tabulates an incomplete list of variables used throughout the text with

their definition(s). They are listed in alphabetical order, with Roman character ‘A’

following Greek character ‘ω’, upper case before lower case, scalars before vectors.

α “MHD-alpha” = a2/c2s = 2/γβ; constant of convenience ( 3.6);

angular acceleration (Chap. 8)

αf,s, αx, α⊥ “MHD-alpha” variations: relative to fast/slow speeds, a2f,s/c
2
s ;

relative to Bx, a
2
x/c

2
s ; relative to B⊥, a2⊥/c

2
s

β “plasma-beta” = 2μ0p/B
2; occasionally used for other pur-

poses (Eq. 3.56, 7.2)

β1,2 ambipolar coefficient (Chap. 10)

Γ fluid circulation (vorticity flux)

γ ratio of specific heats of a gas

γ1,2 coupling coefficient (Chap. 10)

ΔA = (Δl)2 or (Δx)2, face area of a (small) cubic fluid element

ΔV = (Δl)3, volume of a (small) fluid element

Δl length of a fluid element such that δl � Δl < L
δij Kronecker delta; 1 if i = j, 0 otherwise

δx = αx − 1 (Eq. 6.22)

δl mean free path of a fluid particle between collisions

ε perturbation label whose formal value is 1 ( 2.1, 5.2.2); angle

between �B and disc surface ( 9.2)

ε0 permittivity of free space = 8.8542× 10−12 C2J−1m−1

ε specific internal energy = e/ρ ∝ T , J kg−1

εs ionisation energy for species ‘s’ ( 10.5.2)

ζ downwind to upwind pressure ratio (Eq. 3.40, 5.96);

χ/(vrmsk) ( 7.4)

η ratio of downwind to upwind density ( 5.3.5); mass load,

kgm−2s−1T−1 ( 9.1); resistivity, kgm3 s−1 C−2 (Chap. 10)

θ angle between �B and x̂ (Chap. 5); inclination angle (Chap. 8)

486
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ϑ meridional spherical polar coordinate, (�, ϑ, ϕ)

κ adiabatic gas law constant; p = κργ ; dΩ2/d(ln r) at r = r0
( 7.3); unitless wave number, kL ( 7.4)

λ perturbation wavelength (Chap. 7); ratio vp/Bp (Chap. 9)

λe thermal De Broglie wavelength ( 10.5)

μ normalisation of fast and slow eigenkets (Eq. 6.26); shear vis-

cosity = νρ, Nm−2 s (Chap. 8)

μ0 permeability of free space = 4π × 10−7 kgmC−2

μ1,2 reduced mass of species 1 and 2, m1m2/(m1 +m2) ( 10.2)

μρ “magneto-rotational number” ( 7.3)

ν frequency ( 2.1.1); normalisation of fast and slow eigenkets

(Eq. 6.27); kinematic viscosity = μ/ρ, m2 s−1 (Chap. 8, 10.3.4)

ξi co-moving coordinate of i-family wave, ξi = x− uit, with char-

acteristic speed ui; unitless vertical coordinate, ξ = kz ( 7.4)

�ξ, ξx, ξy displacement perturbation ( 7.3)

�1,2, �
a
1,2, �

x
1,2 �1,2 = �a

1,2 +�x
1,2, ambipolar + exchange power densities

(Chap. 10)

� radial spherical polar coordinate, (�, ϑ, ϕ)

ρ matter density, kgm−3

ρA density at Alfvén point (Chap. 9)

ρ0, p0, v0 unperturbed values of ρ, p, and v ( 2.1.1, 7.4)

ρd, pd, vd downwind values of ρ, p, and v ( 3.5)

ρl, pl values in lower layer of RTI ( 7.2)

ρn, ρi, ρe matter density of neutrals, ions, electrons (Chap. 10)

ρp, pp, vp perturbations to ρ, p, and v ( 2.1.1, 7.4)

ρq charge density

ρu, pu, vu upwind values of ρ, p, and v ( 3.5); values in upper layer of

RTI ( 7.2)

Σ open integration surface; source term ( 1.3)

�Σ, Σ cross-sectional area ( 9.1)

σ differential area element; specific source term ( 1.3); cross-

sectional area ( 4.1, 10.5)

σ1,2 exchange term between species 1 and 2 ( 10.5)

σM, σCR pM/p and pCR/p respectively ( 7.4)

〈σu〉1,2 rate (collisional) coefficient (Chap. 10)

τ volume elements (Chap. 3, App. B); time scales ( 8.6.1, 10.3.3)

τX X = KH, RT, MR, P; fluid instability e-folding time (Chap. 7)
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�τ , τ torque, torque density (Chap. 8, 9.1)

Φ flux of an arbitrary vector field, �φ ( 4.3)

ΦB magnetic flux

ΦS Poynting flux

ϕ cylindrical (z, r, ϕ) and spherical polar (�, ϑ, ϕ) azimuthal coor-

dinate

φ gravitational potential, J kg−1 or m2 s−2

φeff effective grav. potential in rotating reference frame ( 9.2)

�φ arbitrary vector field (Chap. 4)

χ imaginary frequency (−iω) ≡ inverse e-folding time (1/τ)

(Chap. 7)

χ, χL,R orientation angle of �B⊥ ( 6.4.1)

χ1,2 constants for the rate coefficients (Chap. 10)

χf,s tentative normalisations for fast and slow eigenkets ( 6.2.1)

χi Riemann invariants (characteristics of the flow, 3.5)

Ψ(y) amplitude of stream function, �ψ ( 7.2)

ψ magnetic pitch angle, tan−1Bϕ/Bp ( 9.3)

ψf,s tentative normalisations for fast and slow eigenkets ( 6.2.1)

ψi i = 1, 6, parameters for multivariate secant solver ( 6.4)

�ψ, ψ stream function, �v = ∇× �ψ ( 7.2)

Ω, Ω0 angular speed of rotation ( 7.3, Chap. 9)

ω angular frequency, speed; normal mode frequencies (Chap. 7)

ωA Alfvén frequency ( 7.3)

�ω vorticity = ∇× �v; angular velocity (App. G)

A Atwood number ( 7.2)

Ap poloidal Alfvén number, vp/ap ( 9.1)

Ax longitudinal Alfvén number, vx/ax ( 5.3.5)

A⊥ transverse Alfvén number, vx/a⊥ ( 5.3.5)

A± Alfvén Riemann invariants

�A vector potential; �B = ∇× �A

a Alfvén speed = B/
√
μ0ρ; occasionally acceleration (Chap. 1)

aϕ, ap azimuthal and poloidal Alfvén speed: Bϕ/
√
μ0ρ; Bp/

√
μ0ρ

aCor, acent, atr Coriolis, centrifugal, translational accelerations ( 7.3, App. G)

af,s fast and slow magnetosonic speeds (Eq. 5.23, 5.25)

ax, a⊥ longitudinal and perpendicular Alfvén speed: Bx/
√
μ0ρ;

B⊥/
√
μ0ρ
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B, BM Bernoulli function ( 2.4, Chap. 9)

Bϕ azimuthal component of �B ( 7.3, Chap. 9, 10.3.4)

Bp poloidal component of �B (Chap. 9)

Bx longitudinal component of �B ( 5.3)

�B magnetic induction

�B⊥ component perpendicular to longitudinal (x) direction ( 5.3)

b ratio of downwind to upwind B⊥ (Eq. 5.95)

b⊥ ratio of downwind B⊥ to Bx (Eq. 5.109)

C contour of integration ( 4.7, A.2); “Parker’s constant” ( 7.4)

C±,0 characteristic paths for ideal HD

C±
f,s,x fast, slow, Alfvén characteristic paths for ideal MHD

c±,0 characteristic speeds for ideal HD (v ± cs, v)

ciso =
√
p/ρ = isothermal sound speed

cs =
√
γp/ρ = adiabatic sound speed

D fast and slow discriminant (Eq. 6.23); constant for PI ( 7.4)

D diffusion coefficient (App. H)

DM magnetic diffusion coefficient ( 10.3)

Dv/Dt Lagrangian derivative (Eq. 3.2)

D±
t abbreviated Leibniz notation for Lagrangian derivative ( 5.2.1)

�D electric displacement

d = D/c2s (Eq. 6.25)

E internal energy of a fluid volume

E induced emf =
∮
�E · d�l

E symmetrised strain tensor (Chap. 8)

Eij the (i, j)th element of E (Chap. 8)

ET total HD energy (thermal + kinetic + gravitational) of a fluid

�E electric field

�Eind induced electric field = −�v × �B

e internal energy density ∝ p, Jm−3

en, ei, ee internal energy density of neutrals, ions, electrons (Chap. 10)

eT total HD energy density, e+ ρφ+ ρv2/2, Jm−3

e∗T total MHD energy density, eT +B2/2μ0, Jm
−3

F Froude number ( 7.2, Problem 8.6)

�FEM electromagnetic force = q( �E + �v × �B)

f flux function (rAϕ) that labels lines of �B in ϕ-symmetry

(Chap. 9, 10.3.4)
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|f〉 ket formed from flux densities of (M)HD primitive variables

fi(ψj) functions whose value → 0 when MHD Riemann problem

converges ( 6.4)

�f1,2, �f
a
1,2,

�fx
1,2

�f1,2 = �fa
1,2 +

�fx
1,2, ambipolar + exchange force densities

(Chap. 10)

�fext external force densities (Nm−3) acting on a fluid element

�fL Lorentz force density = �J × �B (Nm−3)

�fL angular momentum flux density (Eq. 7.60)

G Newton’s gravitational constant = 6.6743× 10−11 Nm2 kg−2

ggal acceleration of gravity at galactic plane ( 7.4)

�g, g acceleration of gravity at the earth’s surface = 9.81 m s−2

H the “hydrodynamical term” (Eq. 5.104)

�H magnetic field

h enthalpy (of gas), γp/(γ − 1)ρ; m2 s−2

I identity tensor (matrix)

i
√−1; current ( 9.1, 10.4, App. B)

J impulse (Chap. 1)

J Jacobian matrix (subscripts “p” and “c” ⇒ “primitive” and

“conservative”)

J± sonic Riemann invariants for ideal HD

Jij matrix element of J

�J current density

K kinetic energy (per particle); alternate wave number ( 7.4)

k wave number, 2π/λ; kinetic energy density (Eq. 10.54)

kB Boltzmann constant, = 1.3807× 10−23 JK−1

L scale height (Chap. 7)

L smallest scale of interest ( 1.1); differential operator ( 7.4)

L matrix of eigenbras ( 3.5.2)

�L angular momentum ( 7.3)

l specific angular momentum, m2 s−1 (Chap. 9); length element

( 8.6.5, App. B)

l angular momentum density, kgm−1s−1 ( 7.4, 8.6.5)

〈li| the ith left eigenvector (bra)

lij the jth component of the ith left eigenvector

M Mach number, v/cs; occasionally total mass of a fluid volume

M lab frame Mach number ( 2.2.3); mass flux density (ρv; 5.3)
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MA Mach number at Alfvén point (where ax = cs; Problem 5.23)

Mf,s fast and slow magnetosonic numbers; v/af,s ( 5.3, 9.4)

M± Mach number at fast and slow points (where af,s = cs; Problem

5.23)

m mass of a single fluid particle

N number of fluid particles inside a fluid volume

nn, ni, ne number density of neutrals, ions, electrons (Chap. 10)

Papp rate at which work is done on fluid volume by neighbouring

fluid volumes (J s−1)

P (y) y-dependent amplitude of the pressure perturbation ( 7.1)

p thermal pressure, (γ − 1)e

pCR cosmic ray pressure ( 7.4)

pM magnetic pressure, B2/2μ0

pR resistive power density ( 10.3, B.4)

pS Poynting power density ( 4.5, B.5)

papp applied power density (Papp per unit volume; J s−1m−3)

pn, pi, pe thermal pressure of neutrals, ions, electrons (Chap. 10)

p∗ thermal plus magnetic pressure, p+ pM

Q, q an arbitrary quantity; occasionally used for particle charge

Q1,2 combined exchange-ambipolar coefficient (Chap. 10)

|q〉 ket formed from the (M)HD primitive variables

|q̃〉 ket formed from the initial conditions of the (M)HD primitive

variables

R matrix of eigenkets ( 3.5.2)

R Reynolds number, V R/ν

RM magnetic Reynolds number = μ0V L/η ( 10.2)

R1,2 ratio of non-ideal electric fields ( 10.2)

r radial cylindrical coordinate, (z, r, ϕ)

rA radial cylindrical coordinate at Alfvén point (Chap. 9)

rL Larmor radius, mv/qB

|ri〉 ith right eigenvector (ket)

rij jth component of ith right eigenvector

S entropy of a fluid volume (JK−1); closed integration surface

S unitless entropy per particle = ms/k

S Lundquist number = μ0aL/η ( 10.2)

S viscid portion of stress tensor (Chap. 8)
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S0 entropy Riemann invariant for ideal (M)HD

Sij (i, j)th element of S (Chap. 8)

�S total momentum of a fluid volume

�SP MHD Poynting vector

s specific entropy (per unit mass; JK−1kg−1); coordinate along

line of induction (Chap. 9)

si generalised coordinate; dsi = wi(q)dξi ( 3.5.3, 6.2)

�s momentum density (kgm s−1m−3); momentum per particle

ŝ unit vector along line of induction ( 9.2)

�sn, �si, �se momentum density of neutrals, ions, electrons (Chap. 10)

ŝp unit vector along poloidal component of line of induction ( 9.2)
T (as a superscript) indicates tensor (matrix) transpose

T thermal temperature

T stress tensor (Chap. 8)

Tij (i, j)th element of stress tensor (Chap. 8)

t time

U diagonal matrix of eigenvalues ui ( 3.5.2)

ui eigenvalues/eigenspeeds of Jacobian ( 3.5.3, 5.2)

V shock or bore speed, usually in lab frame (Chap. 2, 3.6, 6.4.3);

scalar gauge potential (related to �A) ( 4.8, 7.4.2, 9.1)

vϕ azimuthal component of velocity ( 7.3, 8.6, Chap. 9)

vp poloidal component of velocity (Chap. 9); perturbed velocity

( 2.1)

vrms root-mean-square velocity of an ensemble of particles

�v fluid velocity

�v1,2 velocity of species 1 relative to 2, �v1 − �v2 (Chap. 10)

�vd drift velocity, �ve − �vn ( 10.4)

�vn, �vi, �ve velocity of neutrals, ions, electrons (Chap. 10)

�v⊥ component perpendicular to longitudinal (x) direction ( 5.3)

wi(q) scaling functions for eigenkets ( 3.5.3, 6.2)

x first Cartesian coordinate, (x, y, z)

Y (x, t) function giving shape of a boundary layer ( 7.1, 7.2)

y second Cartesian coordinate, (x, y, z)

Z ionisation number (Chap. 10)

Z0 fluid impedance, csρ ( 2.1.2)

z third Cartesian coordinate, (x, y, z); axial cylindrical coordinate,

(z, r, ϕ)
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1 1
2
-D flow, definition, 34, 123

abbreviated Leibniz notation, 123
accretion discs. See planetary discs
Alfvén, Hannes, ii, xiii, 102, 127–128
Alfvén number, 156, 157, 165, 344
Alfvén point, 165, 166–170, 179, 344, 346,

349, 352, 360, 371
Alfvén speed, a, ax, 127, 133, 145, 147,

148, 156, 186, 344, 360, 387, 413
trans-Alfvénic, 155

Alfvén waves. See wave families, MHD
Alfvén’s theorem, 105–106, 157, 342, 393,

396
ambipolar diffusion, 414–427

ambipolar electric field, �EAD, 414
ambipolar resistivity, ηAD, 433
coefficients

ambipolar, β1,2, 382, 386
coupling, γ1,2, 382
exchange-ambipolar, Qi,n, 420, 425,

427
rate, 〈σu〉1,2, 382, 426, 428–432

density source terms, 417–419
exchange, σ1,2, 417–419, 424, 436, 437

energy source terms, 420–423
ambipolar, �a

1,2, 417, 420–421
exchange, �x

1,2, 417, 421–423
momentum source terms, 419–420

ambipolar, �f a
1,2, 380–385, 417, 419

exchange, �f x
1,2, 417, 419–420

two-fluid, isothermal model, 415
two-fluid, non-isothermal model,

416–427
two-fluid resistivity, η2, 425

Ampère’s law, 106, 454, 456
anti-curl, 112, 118
applied power, Papp, 7, 16

ambipolar power density, pAD, 439
density, papp, 15, 16
electric power density, pE, 455
electromagnetic power, PEM, 458
magnetic power density, pM, 457
Poynting power density, pS , 458
resistive power density, pR, 392, 457

astrophysical jets, 62–68, 100, 366–371
Mach disc (hot spot), 62

restarting jet, 63–65
wide-angle tailed sources (WATs), 65–68

AZEuS, 366–371

barotropic gas, 20, 23, 24, 358
Bay of Fundy, 42

lunar resonance, 59
bead-on-a-rod problem, 352–353, 478–483

inertial reference frame, 481–483
non-inertial reference frame, 479–481

Bernoulli levitation, 52–54
air gap, 53
maximum supportable mass, 62

Bernoulli’s theorem, HD, 49, 47–55
gas, 49
and Kelvin–Helmholtz instability, 252
liquid, 49

Bernoulli’s theorem, MHD, 352
Bernoulli function, BM, 349–372

critical points, 359–360, 362–364, 375
as function of ρ and s, 358–359
inertial frame derivation, 372
unitless, 362, 364
value for stellar winds, 361

as a driver for outflow, 352
effective potential, φeff , 356–357, 374

role of �B, 352–354, 372
Biot and Savart, law of, 400, 405, 412
bores, 42–47

foaming, 43, 45, 46
lab frame, 46–47
sluice gate, 61
standing (hydraulic jump), 43, 61
tidal, 42
undulating, 43, 45, 46
velocity jump, 45

boundary conditions
axisymmetry, 334
Cauchy, 330, 334
fluid–solid (no slip), 327, 327–330, 336
free boundary, 330

bra-ket notation, 〈 | 〉, 30
eigenbras 〈 |, 84–85, 96, 175, 236
eigenkets | 〉, 83–85, 96

Brio & Wu problem, 160, 161, 183
broad-crested weir, 49–52

flowrate, 51
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Cardano–Tartaglia formula, 163, 467
properties of cubic roots, 169

characteristic paths, 74, 76, 78, 80,
128–129, 135, 137–139, 177, 202–203,
210

characteristic speeds, 71, 73–74, 86, 461
1-D MHD, 128, 186
Alfvén waves, 135
magnetosonic waves, 148

characteristics
Alfvén waves, A±, 135, 136, 177
calculating, 85
entropy wave, S0, 73–74, 75, 76, 86
fast/slow waves, F±, S±, 201
sound waves, J±, 73–74, 76, 201
where J±, S0 are constant, 86, 97

circulation, Γ, 24, 117
colon product of matrices, A : B, 321, 444
combined laws of thermodynamics, 18, 38
conics of PDEs, 459–461
conservation laws for MHD, 106

energy, 7
magnetic flux, 106
mass, 7
Newton’s second law, 7

conservative variables, 22
contact discontinuity, HD, 35, 258

isothermal, 57
polytrope, 58

contact discontinuity, MHD, 154, 202
continuity equation, 15

incompressible flow, 43, 258
linearised, 293
steady state, 48, 342

control volume (steady-state HD), 43
cosmic rays, 100, 286–287

pressure equation, 292
linearised, 294

pressure, pCR, 288, 289, 305
Crab nebula, 257

current density, �J , 106, 143, 383, 408,
424, 435, 456

current sheet, 395, 435

de Laval nozzle, 54–55, 62
choke point, 55
de Laval’s equation, 55
in radio source 1919+479, 66

difference theory, 150–151, 178
diffusion equation, 327, 484–485

diffusion coefficient, 327, 485
Fick’s first law, 484

diffusion time scale, 327
magnetic, 393, 395

dimensional analysis, 51–52
discharge rate

flow between plates, 329, 339

Hagen–Poiseuille flow, 334
open channel flow, 331

discontinuous flow, 22, 90
downwind, definition, 34
dyadic product, 22, 111, 444
dynamos, 399, 399–406

anti-dynamos, 400–402, 434
Bullard dynamo, 399–400
Earth’s dynamo, 403–406, 434

magnetic pole drift, 403
polarity flips, 406
Taylor column, 405

kinematic vs. non-linear, 401
necessary and sufficient conditions, 403

Earth’s magnetic field, 3, 403–406, 434
eigenvalues, HD, 85

sound waves, 31
eigenvalues, MHD, 127–128, 172, 174, 186

Alfvén waves, 132
magnetosonic waves, 140–141

eigenvectors, HD
rarefaction wave, 86, 95
sound waves, 31

eigenvectors, MHD
Alfvén waves, 132, 186, 235
entropy wave, 186, 235
magnetosonic waves, 141–145, 186–190

normalisation, ψf , ψs, 188, 236
scaling factors, μ, ν, 190–192, 195,

220, 236, 238
electric energy density, eE, 455

electric field, �E, 453

ambipolar diffusion, �EAD, 414

Hall, �EH, 408
non-ideal MHD fluid, 385

resistive, �Eη, 392
static vs. induced, 102
supported by a conducting medium, 102

electromagnetic force, �FEM, 101, 391, 454

density, �fEM, 381
elliptical equations, 18, 459
energy. See internal, total, or magnetic

energy
enthalpy, h, 49, 351, 356
entropy, S, 18, 38, 73

per particle, S , 19, 23
specific, s, 19

equations of HD, 18, 20, 21, 71
conservative form, 18, 80

1-D steady state, 34
differences between forms, 20–22
Eulerian form, 71
Lagrangian form, 71
primitive form, 21, 80

1-D general solution, 84, 96
in 1-D, 81
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equations of MHD (ideal), 109, 111
conservative form, 111

1-D steady state, 149
in 1-D, 124, 172

in most compact form, 112
for Parker instability, 292
primitive form, 122

1-D linearised, 140, 173
in 1-D, 124, 172

steady-state, 342
equations of MHD (non-ideal)

neutrals, ions, electrons, 416
one-fluid, isothermal model, 386

limitations, 390
one-fluid, non-isothermal model, 438
three non-ideal terms, 379

their comparison, 387–391
two-fluid, isothermal model, 427
two-fluid, non-isothermal model, 427

equilibrium, stable vs. unstable, 243
Euler number, E , 324
Eulerian reference frame, 71, 280

space-time diagrams, 74, 76, 77
Euler’s equation, HD, 20, 22, 26, 322

1-D, 72
linearised, 27, 29, 247, 260
orthogonal coordinate systems, 448–450
scaled version, 322–323, 338

Euler’s equation, MHD, 107, 177
steady state, 342, 398

evolutionary vs. non-evolutionary, 160
extensive vs. intensive var., 12, 103

relationship between, 12

Faraday’s law, 102, 385, 392, 426, 454
fast point, 165, 169, 180, 354, 360,

362–364, 375
fast speed, af . See magnetosonic speeds
flowline, 48
fluid, definition, 2, 7–9

impedance, Z0, 32
inviscid, 12, 25
viscid, 12

fluid dynamics, definition, 2
fluid mechanics, definition, 2
flux, flux density, 103

definitions, 14
HD flux densities, 22

linearised, 30
MHD flux densities, 125

flux-freezing, 105, 157, 342, 396
flux function, f , 342–345, 358, 400

coordinate, s, 350

as lines of induction, �B, 342
twisting lines of induction, 344–345

flux-linking, 115
on solar surface, 116

flux loop, 114
flux theorem, 103–105, 117
flux tube, 105, 347–348

force densities, �fext, 17

ambipolar, �f a
1,2, 380

exchange, �f x
1,2, 420

gravity, �fφ, 17

Lorentz, �fL, 107

pressure gradient, �fp, 17

viscous stresses, �fT, 318
force-free condition, 357, 374
forces

applied vs. external, 7
collisional, 7–10

Froude number, F , 263, 338

gas dynamics, definition, 2
Gauss’ law, 454
Gauss’ theorem, 14, 21, 44, 397, 403, 445,

457
generalised Ohm’s law. See electric field,

�E; non-ideal MHD fluid
Green’s theorem, 445

Hall MHD, 406–414, 435
Hall current, 410
Hall effect (lab), 407–408
Hall effect (plasma), 408

Hall electric field, �EH, 408, 426
magnetic reconnection, 411–414
proton–electron resistivity, ηp,e, 410
quadrupole magnetic moment, 413
two component model, 408–410

helicity. See magnetic helicity

helicity flux, �Fh, 114
hydrodynamics

definition, 2
ideal, 12

hyperbolic equations, 82, 83, 128, 459
strictly vs. not strictly, 82, 128, 202

ideal gas law, 10–12, 289, 421
induction equation

ideal, 102, 109–111, 177
cf. vorticity equation, 118
linearised, 294
steady state, 342

non-ideal, 385
ambipolar diffusion, 386
Hall, 386, 408, 426
resistive, 386, 391–392, 394, 400, 402
two-fluid, 426
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instabilities. See KHI, RTI, Kruskal, MRI,
Parker

intensive var. See extensive vs. intensive
var

intermediate point, 166, 169, 170
internal energy, E, 10–11

density, e, 11
specific, ε, 19, 73

internal energy equation
adiabatic, 20, 23
isothermal, 23
one-fluid, ambipolar, 439
resistive, 393
viscid form, 321, 337

interstellar medium (ISM), 286–288

Jacobian matrix, HD
conservative, 95
primitive, 82
sound waves, 30

Jacobian matrix, MHD
Alfvén waves, 131
conservative, 125–126, 172
magnetosonic waves, 140
primitive, 124, 127, 172, 186
Riemann problem. See Riemann

problem, MHD; Jacobian
Jupiter’s Great Red Spot, 253–254

Kelvin–Helmholtz instability (KHI),
245–255, 325

and Bernoulli’s theorem, 252
cat’s eyes, 252
condition for instability, 249
dispersion relation, 248–249
growth rate, 250
linear vs. non-linear theory, 251–252
normal mode analysis, 246–250
numerical analysis, 251–252, 254–255
slab jet, 305

Kelvin’s circulation theorem, 24, 117, 258
kinetic energy

density, k, 402
flux, �K , 375

Kruskal–Schwarzchild instability, 267
dispersion relation, 267

Lagrangian derivative, 71, 73, 135, 177, 401
Lagrangian reference frame, 71, 280

space-time diagrams, 74, 75
Lagrangian velocity, 71
laminar flow, 325–336
Laplace’s equation, 25, 259, 374

pseudo-Laplacian operator, ˜∇2, 400
Larmor radius, rL, 100
liquid, definition, 2

Lorentz force, �FL, 3, 99, 106, 289, 396,
400, 408

density, �fL, 106, 143, 145, 270, 373, 383,
424

longitudinal terms, 111
orthogonal coordinate systems, 451–452
transverse terms, 111

LU decomposition, 213–214
Lundquist number, S , 387, 398

Mach number, M , 36, 55, 180
downwind of shock, 37
transonic point, 37, 40, 55
upwind of shock, 157

magnetic diffusion, 393
magnetic diffusivity, DM, 393, 403
magnetic energy, EM, 403

density, eM, 111, 402, 457

magnetic field, �H, 3, 453
in astrophysics, 99–100
potential field, 374

magnetic flux, ΦB , 105–106, 110
conservation of, 105–106, 115, 157, 361

magnetic helicity, HA, 113–114
as a conserved quantity, 114
cross helicity, h×, 122
density, hA, 113–114
evolution equations, 113–114
value in flux loop(s), 115

magnetic induction, �B, 3, 453
magnetic reconnection, 393–399, 411–414

Hall regime, 412
quadrupole magnetic moment, 413
reconnection time scale, 413

Sweet–Parker model, 395–399
reconnection time scale, 398

X-point, 395, 398, 399, 412
magnetic topology, 114–116
magnetic torque/moment, 347–348

torque density, 347
magneto-acoustic waves, 145, 149, 201, 202

speed, aM, 145, 195
magnetohydrodynamics (MHD)

definition, 2
ideal, definition, 101

magneto-rotational instability (MRI),
268–286

angular momentum transport, 278–307
�L transported per revolution, 283

Balbus & Hawley, Shaw Prize, 268, 278
comparison to KHI, 274, 285
condition for instability, 274–275
diffusion coefficient, 307
dispersion relation, 273
dynamical equations, 273
growth rate, 277–278, 306
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magneto-rotational instability
(MRI) (cont.)

normal mode analysis, 272–274
numerical analysis, 283–286
physical model, 275–277

magnetosonic numbers, Mf , Ms, 165, 169,
368

magnetosonic speeds, as, af , 127, 141, 148,
186, 360

identities, 173
inequalities, 128, 173
limits, 174

Maxwell’s equations
differential form, 453
integral form, 453–454

mean free path, definition, 2
method of characteristics (MoC), 76–78

applied to Alfvén waves, 135–176
applied to Riemann problem, 78–80
as a numerical scheme, 77, 94

MHD-alpha, α, 106, 130, 157, 179, 236,
237, 388, 426

fast, slow, αf,s, 180, 189, 190, 195
identities, 188

momentum equation, HD, 17, 310
orthogonal coordinate systems, 449–450

momentum equation, MHD
Hall, 408
ideal, 107, 111, 383
ions, two-fluid, 424
linearised, 293, 294
neutrals, ions, electrons, 380

momentum, �S, 7
density, �s, 17

Navier–Stokes equation, 317–320
compressible, 319
incompressible, 320

scaled version, 323
inertial term, ∇ · (�s�v), 318
magnetic, 401

stress force density, �fT, 317–318
viscid momentum equation, 318
viscid term, ∇ · (μS), 318

Newtonian fluids, 314–315, 318
non-inertial reference frame, 269–350, 352,

401, 476–483
Coriolis theorem, 478
inertial accelerations, 270–271, 350,

405–406, 478
normal mode analysis

Alfvén waves, 131–134, 175
ball on a mound, 305
explained, 247
KHI, 246–250
magnetosonic waves, 140–141
MRI, 272–274

Parker instability, 298–301
rarefaction fan, 82
RTI, 257–262
sound waves, 30–33

numerical considerations
convergence, 217, 219, 237, 238, 468–469
preserving precision, 180, 191, 208–209,

212–216, 218, 220–221
scaling, 262–264
suppressing pressure perturbations, 284

numerical MHD, 119, 139, 366–371

Ohmic resistance. See resistive MHD
outflow mechanisms

bead-on-a-rod (BRM), 353–357
critical angle (60◦), 355–357, 374
energy flux, 375
magnetic tower (MTM), 354, 373
and MHD Bernoulli theorem, 352

parabolic equations, 326, 327, 459, 485
Parker instability, 286–305

2-D equations of MHD, 292
comparison to RTI, 291
condition for instability, 289, 301–303
dynamical equation, 298
growth rate, 288, 290, 301–302
interstellar clumps, 287–288, 290, 303
normal mode analysis, 298–301
perturbation analysis, 292–294
qualitative description, 286–291
quantitative description, 291–305

particle path, 47
Pascal’s law, 318
PdV term, 16
planetary discs, 268, 426

anomalous viscosity, 268
artist’s conception, 379
formation, 354–355
number density, 388
T Tauri IM Lup, 378
temperature, 379, 388

plasma physics, definition, 3, 99
plasma-beta, β, 129
Poisson’s equation, 18
polytropic gas, 57
power. See applied power
Poynting

flux, ΦS, 107, 458
power density, pS, 107, 109, 458
vector, �SP, 107, 375, 458

pressure
cosmic ray, pCR, 288, 289, 305
magnetic, pM, 111, 142–145, 270, 288
MHD, p∗, 111, 271, 279
thermal, p, 17

collisional, 8
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isotropic, 8–10
pressure equation, 20, 23

1-D, 72
barotropic, 26
cosmic rays, 292
linearised, 27, 29, 294

pressure head, 44, 259
primitive variables, 22, 34
principle of equipartition, 11, 100, 303

quasi-steady state. See steady state

Rankine–Hugoniot, HD, 35, 80, 90
isothermal, 57
polytrope, 57

Rankine–Hugoniot, MHD, 150, 153, 157
rarefaction fans, HD, 80

generalised coordinate, si, 86
profiles as function of si, 87
profiles as function of ui, 88, 89, 97
strength/width, 87
transition, 87, 89

rarefaction fans, MHD, 185, 192–202, 239
fast fans, 193

fast Euler fans, 193, 196, 200, 201,
204, 207

saturation, 193, 196, 201, 207, 219
switch-off fans, 193, 196, 200, 203, 236

fast/slow differences, 192, 200–202
generalised coordinate, si, 186
profiles as function of si, 186, 218
profiles as function of ui, 196–200
similarity to HD fans, 192, 195, 200
slow fans, 193–195

asymptotic limits, 193, 200
slow Euler fans, 193, 195, 200, 201,

204
switch-on fans, 194–195, 198–201

strength/width, 186, 193, 200, 207
ratio of specific heats, γ, 11
Rayleigh–Taylor instability (RTI), 256–267

Atwood number, 261
condition for instability, 261
dispersion relation, 259–261
growth rate, 261
link with KHI, 262, 265, 266
normal mode analysis, 257–262
numerical analysis, 262–267

resistive MHD, 391–406
energy dissipation, 392–393

resistive electric field, �Eη, 392
resistivity, η, 385

Reynolds number, R , 324, 322–326
inertial vs. viscous dominance, 325
magnetic, RM, 387, 403

Riemann, Bernhard, 69
Riemann invariants. See characteristics

Riemann problem, HD
defined, 69
solution, 90–93, 98

Riemann problem, MHD
defined, 183–185
exact solver, 204–221, 239

algorithm, 210–221
constraints, 206, 210–212
fast shock, 215–216
Jacobian, 209–210, 212–214
parameters, 205–208, 210
rarefaction fans, 218–221
slow shock, 216–218
strategy, 208–209

solutions, 221–235
uniqueness, 160, 204

rms speed, vrms, 10, 12, 29, 289, 304
rotational discontinuity, 155, 165, 167,

178, 181
Runge–Kutta, sixth order, 468–475

algorithm, 473–475
derivation, 468–473
MHD rarefaction fans, 196, 218

Saha equation, 304, 416, 417–418, 437
thermal de Broglie wavelength, λe, 418

scale height, L, 289, 290, 304
secant root finder, 462–466

multivariate, 205, 210–211, 465–466
univariate, 92, 93, 205, 364, 462–465

FORTRAN 77 listing, 463–465
shear layer, 245
shock tube, 33

general MHD, 149
Sod, 93

shock waves, HD, 37–42, 80
entropy condition, 38–40, 87
general frame, 58
hypersonic limit, 37
lab frame, 40–42
shock strength, 58
variable jumps, 37

shock waves, MHD, 155–172, 181, 182
entropy condition, 156, 158, 159, 163,

169–171, 181
Euler branch, 164–166, 167, 170–172,

180
evolutionary condition, 159, 163, 170,

172
fast shocks, 158–161, 164–172, 181

switch-on shocks, 157, 164–165, 166,
167, 170–172, 179, 180, 203

i→ j designation scheme, 159, 167, 168
intermediate shocks, 159–161, 165–172,

181
shock types, 159, 166, 170, 171, 180
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shock waves, MHD (cont.)
slow shocks, 158–161, 165–172, 179, 181

switch-off shocks, 167, 167
strength, 157, 207
variable jumps, 163, 207

slow point, 165, 169, 170, 180, 360, 375
slow speed, as. See magnetosonic speeds
smooth flow, 22, 72, 80, 82, 90
solar flares, 395, 398, 413

anomalous resistivity, 399
sound speed, cs, 27, 127

adiabatic, 28
astrophysical values, 29
isothermal, ciso, 28, 388
value in dry air at STP, 29

sound waves, 26–33
frequency, ω, 28
linear algebra solution, 29–33
perturbation analysis, 26
secular equation, 31
solution to wave equation, 26–29

wave vector, �k, 28
space-time diagrams, 74–76, 77, 128

1-D MHD, 128, 202
Alfvén waves, 135, 137
event, 74
footprints, 76–78, 136
magnetosonic waves, 148
Riemann problem, 78–80, 90
sonic cone, 76
worldline, 74, 75

steady state
definition, 34, 341
quasi, 329, 331

stellar winds (Weber–Davis), 361–366
additional assumptions, 361
asymptotic behaviour, 365–366, 376
boundary conditions, 357
profiles for ρ, vp, ψ, 364–365, 376

Stokes’ theorem, 104, 446, 456
strain tensor, E, 316

strain components, ∂jvi, 314
streakline, 47
stream function, ψ, 258, 259, 291
streaming motion, 9
streamline, 47
streamtube, 48
stress tensor, T, 311–317

components, Tij , 311–317
cylindrical coordinates, 334–336

compressive stresses, 310, 312, 316
shear stresses, 310
trace, tr(T), 312–313, 337

relation to thermal pressure, p, 318
superfluids, 325
surface-conserved quantity, 104, 109, 110
synchrotron emission, 286

tangential discontinuity, HD, 35
tangential discontinuity, MHD, 36, 154

as limit to slow and Alfvén waves, 195
Theorem of hydrodynamics, 13–15, 103,

117
total energy equation, HD

inviscid form, 17
scaled version, 337
viscid form, 320, 337

total energy equation, MHD, 109, 110, 119
differenced 1-D steady state, 152, 178
resistive, 393, 432
steady state, 342, 372
two-fluid, non-ideal, 438

total energy, HD
ET, 7, 15
density, eT, 15

total energy, MHD
density, e∗T, 108, 393

triple umbilic. See wave families, MHD
turbulence, 243–245, 253, 262, 283, 309,

324–326
super-Alfvénic, 244

upwind, definition, 34

vector derivatives, 446–448
Cartesian coordinates, 447
cylindrical coordinates, 447
spherical polar coordinates, 447

vector identities, 443–445
with dyadics, 444–445

vector potential, �A, 112, 112–113, 118,
292, 293, 400–401, 456

contours as lines of �B, 292
evolution equation, 112

viscometer, 334, 336, 340
viscosity

kinematic, ν, 319, 324, 393, 402
shear, μ, 314, 318, 319, 328

viscous dissipation, 321
viscous flow

Couette, 334–336, 340
torque, 336, 340

forced between co-axial cylinders, 339
forced between plates, 328–329, 339
Hagen–Poiseuille, 333–334
open channel, 329–332
plane laminar, 327–328

volume-conserved quantity, 14, 18, 109, 110
vorticity, �ω, 23, 105, 254, 309, 319

comparison with �B, 24, 339
vorticity equation, 23

wave equation
Alfvén waves, 131
sound waves, 27, 246



Clarke 9781009381475 .tex 507 2/04/2025

507 Index

wave families, HD, 86, 130, 202
wave families, MHD, 130, 128–149,

202–204, 206
Alfvén waves, 129, 130–139, 175

compressional, 145, 149
linear algebra solution, 131–134, 175
properties, 131, 134, 146–149, 174
torsion, 177, 354, 368
wave equation, 131

compound wave, 160, 200, 203, 204
degeneracy, 145–149
entropy wave, 129, 202
magnetosonic waves, 129, 139–146

fast vs. slow waves, 142–145
linear algebra solution, 140–141
perturbation analysis, 139–140
properties, 141, 146–149, 174

triple umbilic, 148, 190, 191–195, 198,
200–204, 209

weakly ionised medium, 380, 383
interpretation of velocities, 384

Weber–Davis constants, 342–349, 372
angular speed, Ω0, 343–344, 369
mass load, η, 345–346, 369
specific angular momentum, l, 347–349,

369, 371
steady-state axisymmetry, 342

work-kinetic theorem, 402

Zemplén’s theorem. See entropy condition;
shock waves

ZEUS-3D, 63, 77, 119, 160, 244, 251–252,
254–257, 262–265, 283–285, 366–371
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