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ABSTRACT

This paper introduces a previously unaddressed problem with performing multidimensional numerical
MHD characterized by “explosive” growth (within a single time step) of weak magnetic fields to possibly
dynamic strengths in the vicinity of strong velocity shear. This problem has been observed to occur in numeri-
cal algorithms which rely on the solution of the characteristic equations at the mesh interfaces. The solution
to this problem is the subject of this paper and has led to an algorithm fundamentally different from those
discussed previously. Specifically, at every point on the mesh, the magnetic induction terms are determined
from the characteristic velocities which are evaluated by solving implicitly (in space) the characteristic equa-
tions for incompressible MHD (although the algorithm is perfectly suitable for compressible MHD). The
implicit treatment of the characteristic equations sets this algorithm apart from previous efforts and is shown
to be a necessary condition for multidimensional accuracy. It amounts to replacing the usual directional-split
treatment of the induction and transport operators with a planar-split scheme.

Subject headings: MHD — methods: numerical

1. INTRODUCTION

Over the years, a variety of numerical algorithms for solving the equations of hydrodynamics have been developed and applied to
numerous gas dynamical problems and, in particular, astrophysical systems. By no means is the following discussion an attempt to
review all the efforts made in this area—such a review could itself be the subject of a full-length article. Instead, to set the stage for
the present work, it is necessary to highlight only a handful of the numerical schemes developed for computational fluid and
magnetofluid dynamics.

Arguably the most robust and efficient of the established hydrodynamical schemes is the class of Godunov and higher order
Godunov algorithms developed over the past 35 years (e.g., Godunov 1959; van Leer 1979; Colella & Woodward 1984). A Godunov
scheme is characterized by the exact solution to the Riemann problem at every mesh interface and at every time step. The piecewise
parabolic method (PPM) of Colella & Woodward is an example of such a scheme and excels in its ability to perform ideal
gasdynamics accurately with a minimum of mesh points. Schemes which may be described as “approximate Riemann solvers”
include those reported by Roe (1981), Harten (1983), Harten et al. (1987), and others. These schemes retain many of the advantages
of Godunov-type algorithms, yet are apparently more flexible in their ability to incorporate physics beyond ideal hydrodynamics.
The family of flux-corrected transport (FCT) schemes originated by Boris & Book (1973) continue to be developed (e.g., Patnaik et
al. 1987 and references therein) and are becoming competitive with higher order Godunov schemes such as PPM. Still a third class
of numerical gasdynamics algorithms are the operator-split schemes stemming from the early work of J. R. Wilson and J. M.
LeBlanc at the Lawrence Livermore National Laboratory. Recent applications of, and improvements on, these techniques are
described by Norman & Winkler (1986) and Stone & Norman (1992a, hereafter SNa). Operator-split schemes use a variety of
monotonic, upwinded, time-centered interpolation (MUTCI) algorithms on a staggered mesh. Although they can require several
times the number of mesh points needed for a comparable Godunov scheme to resolve the same structures in three dimensions, they
survive because they are much simpler to program, execute several times faster, and can be extended to include dissipative physics in
arelatively straightforward manner.

Especially for astrophysical applications, it has become increasingly obvious that the consequences of magnetic fields cannot be
ignored (e.g., Beck & Kronberg 1990; Kronberg 1994). Thus, various groups have extended existing hydrodynamical algorithms to
include the effects of magnetic fields. Brio & Wu (1988) have developed an MHD algorithm based on Roe’s scheme (1981); DeVore
(1991) has developed an MHD extension for FCT; Zachary & Colella (1992) base their MHD algorithm on the scheme reported by
Bell, Colella, & Trangenstein (1989); Dai & Woodward (1994) have developed a PPM MHD algorithm; Ryu & Jones (1995,
hereafter RJ) report an MHD scheme based on Harten (1983), and so it goes. Meanwhile, numerous attempts have been made to
incorporate magnetic fields into operator-split schemes, the most notable for the present work are those described by Evans &
Hawley (1988, hereafter EH) and Stone & Norman (1992b, hereafter SNb).

Some notable applications of multidimensional MHD algorithms include, for example, the discovery of a powerful instability in
rotating accretion disks (Balbus & Hawley 1992 and references therein). However, for the most part, multidimensional MHD
applications to astrophysical phenomena have been limited. Indeed, this paper will show that even the best of the existing
operator-split MHD algorithms (SNb) is prone to numerical “instabilities” of an “explosive” nature,! which appear rarely in

! The expression “instability” is used somewhat loosely in this context. Strictly speaking, numericists regard an algorithm as unstable only if it fails some
well-defined test such as the von Neumann stability analysis (e.g., Richtmyer & Morton 1967), and such analyses do not uncover the effects reported in this paper.
Instead, the “instabilities ” discussed herein are perhaps better described as significant errors (i.e., signal-to-noise ratio of order unity or less) generated suddenly
(within a single time step) by the numerical algorithm. For brevity and lack of better language, these will be referred to as “ explosive instabilitiés.”

291

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1996ApJ...457..291C

292 CLARKE Vol. 457

two-dimensional and frequently in three-dimensional applications. As discussed below, the algorithmic solution to these numerical
problems has led to a “planar-split ” approach, rather than the traditional “ directional-split” approach which is used by virtually
all existing algorithms. The planar-split technique sets this scheme apart from other efforts, such as those listed above, and may be
an approach beneficial to Godunov-type, Godunov-like, and FCT schemes as well.

The equations of ideal MHD as discussed in this paper are

% v ()=

LV (o) =0, | ()
Os B?
E+V-(sv)=—Vp+(VxB)xB=—V<p+—2—>+(B-V)B, )

% V. — V. 3

5t+ (ev)= —pV * v, 3)

0B

E=Vx(va), @)

where the system of four equations in six variables (p—matter density, v—flow velocity, s—momentum per unit volume, p—thermal
pressure, B—magnetic induction, and e—thermal energy density per unit volume) are closed by the following relations:

§=pv, )
p = plp, e) (equation of state) . 6)

Alternatively, one may replace equation (3) with a “total energy equation,” which describes the time evolution of the combined
internal, kinetic, and magnetic energy densities. This variation has its advantages and disadvantages over solving equation (3) and is
discussed further in Appendix B.

In this paper, B is expressed in the somewhat nontraditional units in which the magnetic pressure (pg) and the Alfvén velocity (@)
are given by

pB'__Bz/z P (7)
B
a=—- @®)

N

In other words, the permeability of free space (i, in mks) is set to 1.

The left-hand sides of equations (1), (2), and (3) each have the form (3/0t + V - v)q, where q = p, s, or e. This form is sometimes
described as “ volume-conservative ” and is useful numerically because, when differenced, the volume integral over a mesh zone of
the variable g is conserved numerically to within machine round-off errors. For example, the volume integral of p is the total mass in
the mesh zone whose exact conservation is clearly a desired virtue of any acceptable numerical scheme.

In contrast, equation (4) is not and should not be written in volume-conservative form, because the conserved quantity associated
with the magnetic field is the surface integral of B over each mesh element (i.e., the magnetic flux ®5 = [ B - dA4) and not the volume
integral. While it is possible to force equation (4) into volume-conservative form (presumably so the numerical techniques developed
for egs. [1], [2], and [3] may be used), this approach is ill advised since it will necessarily introduce terms on both sides of the
equality which may cancel exactly analytically, but will only cancel to within the numerical truncation error of the differenced
induction equation. These truncation errors could be severe in the vicinity of steep gradients, introducing nonphysical effects (e.g.,
magnetic monopoles) into the solution because the true conserved quantity (namely, ®g) will not be conserved to within machine
round-off errors.

Instead, equation (4) as it is written is the desired form (e.g., “ surface-conservative ” form) since the right-hand side is a perfect
curl. Thus, the divergence of the right-hand side of equation (4) will be zero analytically (by definition) and numerically (by
construct). This ensures strict conservation of magnetic flux or, equivalently, preserves V * B = 0 everywhere to within machine
round-off errors. This is the crux of the argument in EH, which led to the development of the constrained transport (CT) algorithm
for updating magnetic fields (reviewed in § 3.1).

An overview of the rest of the paper is as follows: Section 2 introduces the nomenclature used throughout the paper and details
the groundwork of an operator-split MHD algorithm. Section 3 outlines the consistent m:.2d of characteristics (CMoC), designed
to transpori momenta and perform magnetic induction simultaneously and stably in muii.dimensions. Section 4 describes various
problems to demonstrate the CMoC algorithm. Finally, § 5 discusses other aspects of tl.. algorithm and presents some preliminary
results from a three-dimensional computation in progress. Additional details are relegated to the appendices.

2. GROUNDWORK

To cast the continuous differential equations (1)—(4) into a form tractable to a numerical algorithm, one first integrates equations
(1), (2), and (3) over the zone volume, and equation (4) over the zone surface area, so conserved quantities are considered exclusively.
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Thus,
d
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where integrations are performed over zone volumes (V), surface areas (4), or face perimeters (J), and where v, is a grid velocity
relative to an Eulerian observer introduced in the case of an adaptive mesh. Henceforth, v, will be set to zero. Differentials in
equations (9)—(12) are replaced with finite differences to yield the difference form of the MHD equations.

In an operator-split algorithm, the variables are updated in two distinct steps, namely, the source step and the transport step. In
the source step, the variables s and e are updated with the terms on the right-hand side of equations (10) and (11). Other “source
terms” deemed necessary to broaden the physics (e.g., gravity, dissipation, etc.) can be incorporated into this step. The transport
step, in which the fluxes of the variables are transported across zone boundaries, consists of the closed integrals (§) on the left-hand
sides of equations (9)—(12) and completes the update of the variables for each time step.

In a three-dimensional staggered grid, there are two sets of grid vectors, and, in this paper, they are defined thus. Consider the
(i, j, k)th zone in a three-dimensional mesh (Fig. 1). The “a-grid,” namely, (x,,(i), X,.(j), X3,(k)), are the coordinates of the corner of
the zone closest to zone (1, 1, 1) (point “ A” in Fig. 1). The “b-grid,” namely, (x,(i), X,5(j), X35(k)), are the coordinates of the zone
center (point “ B” in Fig. 1). The names used for the coordinates, namely, (x,, X,., X3.), ¢ = a, b, are intentionally generic and may
be thought of as (x, y, z) in Cartesian coordinates, (z, r, ¢) in cylindrical coordinates, and (r, 6, ¢) in spherical polar coordinates.
Differences among these coordinate systems can be relegated to well-defined metric terms (SNa), which are then retained in the
difference equations. For simplicity of notation, this work shall be restricted to Cartesian geometry, though extension to cylindrical
and spherical polar coordinates is straightforward.

In a staggered grid, the scalar variables (p, €) are “zone-centered,” while the vector variables (v, B) are “face-centered” (Fig. 1).
Indeed, much of the accuracy and robustness of the algorithm described herein can be attributed directly to the staggered nature of
the grid. Within this framework, spatial differences of variables are located halfway between the differenced values. Thus, gradient
components of zone-centered scalars are face-centered quantities, divergences of face-centered vectors are zone-centered, and curl
components of face-centered vectors (e.g., the current density J = V x B) are “edge-centered.” Note, too, that grid variables have
specific locations attributed to them. Thus, x,,(i) is a face-centered quantity while dx,(i) = x,(i + 1) — x4,() is a zone-centered
quantity. Similarly, x, (i) is a zone-centered quantity, while dx, (i) = x,,(i)) — X;,(i — 1) is a face-centered quantity.

dx3a(k)

X2 dx3p(k) X

Bs(ij, k)

F1G. 1.—Depiction of a single three-dimensional Cartesian zone showing the location of the various flow variables. The primary scalars (p, e) are zone-centered
(point “B ™), while the primary vectors (v, B) are face-centered and point toward the zone center. Derived vectors (e.g., the emf’s and the current density J) are
edge-centered, lying along the edges of the zones. The corner labeled “ A " is the (i, j, k)th corner and is the nearest corner to the observer.

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1996ApJ...457..291C

294 CLARKE Vol. 457

Equations (9)-(12) can now be differenced directly. All difference equations appearing in this paper use the following nomencla-
ture. The indices (i, j, k) indicate the variable value at the (i, j, k)th zone located at the zone center, zone face, or zone edge as
discussed above. The superscript n denotes the nth time step, while the superscripts S and T,, indicate the variable has been updated
for source terms and transport in the m-direction, m = 1, 2, and 3, respectively. Note that in this scheme the set of superscripts (n, S,
T;, T;, Ty) is equivalent to the superscript (n + 1). Finally, the continuous variables (p, e, p, v, B) [functions of time and space (¢, #)]
appearing in equations (9)-(12) correspond in the remainder of the paper to the discrete variables (d, e, p, vy, v,, v3, By, B;, and B,),
respectively [now functions of the discrete grid (n, i, j, k)] in the differenced equations.

2.1. Time-Step Determination

The time step for an explicit algorithm such as this is determined by the “ CFL condition” (Courant, Friedrichs, & Lewy 1928;
Richtmyer & Morton 1967) which stems from a von Neumann stability analysis. Physically, one can interpret the CFL condition to
mean no signal shall cross more than one mesh zone in any given time step. This, in turn, may be interpreted in terms of causality:
each zone must “know ” about each wave passing through it if the wave is to have any effect on it. Numerically, violation of the CFL
condition in an explicit scheme may induce numerical instabilities whose nature could grow to dominate the flow (e.g., Richtmyer &
Morton 1967). Conversely, implicit schemes are designed to remain stable for arbitrarily large time steps (e.g., Richtmyer & Morton
1967 for a general overview). While implicit schemes are, in principle, useful for systems which possess unmanageably short
timescales (e.g., radiation hydrodynamics—Stone, Mihalas, & Norman 1992), one may still be forced to choose time steps compara-
ble to the CFL condition limit if all waveforms are to be propagated accurately.

In this work, the nth time step is given by

[C(i7 ja k)]z + [a(i’ j, k)]2 + [Uln(i’ j, k):|2 + ["2"(@ ja k):lz + [Usn(is js k)}z:ﬂ (13)
MIN {[dx,,()]? [dx2.(j)]% [dx3.(k)]%} dx (i) dx,(J) dx3,(k) ’

where € < 1is the “ Courant number ” typically chosen between 0.5 and 0.9, and where c(i, j, k) and a(i, j, k) are the local sound and
Alfvén speeds, respectively given by

d") % = €2 MAX [

Vi, j.k

"G, j, k)

C(i, j’ k)2 = d"(i, j, k) ’ (14)

1
a(i, j, k* = @00 {[B1"G> j, B + By"( + 1,j, k)1* + [B,"(G, j, k) + B,"(i, j + 1, B1* + [B3"G, j, k) + B3"G, j, k + 1)]%}, (15)

where y is the adiabatic index of the ideal gas, p"(i, j, k) and d"(i, j, k) are the numerical values of the (zone-centered) pressure and
density, respectively, and v,"(, j, k) and B,"(i, j, k), a = 1, 2, 3, are the numerical values of the 1-, 2-, and 3-components of the (face-
centered) velocity and magnetic field, respectively, all at time step n and at the (i, j, k)th zone.

Strictly speaking, the square of the fast wave speed might be used in determining the time step in equation (13) instead of ¢ + a2.
The latter, however, is an acceptable upper limit to the former.

In principle, since artificial viscosity is used to stabilize shocks, the dissipative timescale should be incorporated into the time-step
selection. In practice, the viscous time step for supersonic flow with moderately strong shocks can be several times smaller than the
CFL condition as given by equation (13), thus requiring several times the number of time steps an algorithm without artificial
viscosity (such as PPM) would need. This effect can eliminate much of the advantage in computational speed an operator-split
algorithm might have over PPM. Fortunately, this problem can be circumvented by “subcycling” on the dissipative timescales
(discussed in Appendix A) thereby obviating the need to use smaller time steps than that prescribed by equation (13).

Finally, increases in the time step are limited to 25% per cycle to maintain accuracy in the event of radical dynamical changes,
while decreases are unrestricted to ensure numerical stability (e.g., Norman & Winkler 1986).

2.2. Source Step
The difference form for the source terms in the 1-component of equation (10) is

an(i: j’ k) - an(i — 17j’ k)

"'s . . — n(s: . _ d n
5150, J, K) = 1", k) — dt ) : (16)
where the momentum (s, ) is given by:
PR d"i,‘,k"f‘d”i—l,.,k PR
Ly 17
and where
pr'G, j, k) = (v — De"G, j, k) + Z{[B"(, j, K1* + [B,"(, j + 1, k)]* + [B3"(G, j, K)1* + [B3"G, j, k + 1)1?} . (18)

Note that p;" is a “total ” pressure, consisting of the thermal pressure plus a suitable spatial average of the effect of compressing the
magnetic field in the 1-direction (area integral on the right-hand side of eq. [10] without the B, ? term). Source terms arising from the
shear of the magnetic field (volume integral on the right-hand side of eq. [10] with the B;? term from the area integral) are
accounted for during the combined induction and momentum transport step (§ 3.3). Other forces such as gravity and “fictitious
forces” arising from a curvilinear coordinate system would be applied here as well (see SNa). Source terms arising from artificial
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viscous stresses are discussed in Appendix A. The difference form for the source terms for the 2- and 3-components of equation (10)
are obtained by permuting all labels (1 - 2 — 3 — 1) and indices (i — j — k — i) in equations (16), (17), and (18).
After the source terms (forces) have been applied to the momenta, the velocities are updated in the obvious way, namely,
2
dn(i: j9 k) + dn(l - 19 j’ k)
The source terms for the internal energy density are applied after the velocity and viscous (Appendix A) updates. The difference
form for the internal energy source terms (eq. [11]) is

Uln's(i’ j’ k) =

$:"5(, j, k) - (19)

1-¢ &G, j, k), pdV term, (20)

"’s.,.’k=
e">(@, j, k) T3¢

where

{

I

y—1 dtn[vl"’s(i + 1,4, k) —0,"5G, j, k) v,"5G, i+ 1, k) —0v,"5G, 4, k) 03™5G, j, k + 1) — v3™5G, j, k)]
2 dx,(i) dx,,(j) dx;,(k)

Because of the staggered grid, all terms in the velocity divergence are cospatial at the zone center with the internal energy density
variable e". Note that the energy source term has been applied implicitly. Performing this step explicitly requires no less effort and
can result in obvious problems in the vicinity of steep gradients such as shocks. Source terms arising from artificial viscous heating
are discussed in Appendix A.

@1

2.3. Scalar Transport Step

The “transport step” accounts for the fluid motions across grid boundaries and is where operator-split algorithms are most
prone to numerical instabilities and inaccuracies. Accordingly, the majority of development for such schemes has been focused on
how to perform the transport step accurately and stably. To date, operator-split MHD algorithms have been designed with the
transport and induction steps decoupled (e.g., EH and SNb). However, in § 3, the case is made that the momentum transport and
magnetic field induction steps are fundamentally linked and should be accounted for simultaneously. Thus, discussion shall be
limited here to the transport of the zone-centered scalars only. Momentum transport will be deferred to the discussion surrounding
the numerical induction of magnetic field.

Let ¢"(i, j, k) be either the density (d", mks units: kg m ~3) or the internal energy density (e", mks units: J m ~3). Then, transport of g"
across the 1-interface is given by differencing the area integrals in equations (9) and (11):

Fii+1,j,k)— FG,j, k)
dxla(i) ’

a3, j, k) = q"%G, j, k) — 22

where Z,(i, j, k) (located at the i-face center) is an estimate of the flux of g™ crossing the i-face and is given by
'9?1(1.’ ]ak) = *//ll(ia js k)[qn’s(i’ js k)/d"(l, ja k)]L s (23)

where the mass flux across the i-face [# (i, j, k)] is given by

MGy j, K) = &G, B) 0,5, j, Ky den (24)

and where the “ i» construct indicates the variable or quotient of variables is interpolated to the i-face. Various forms of
interpolation are possible so long as they abide by three fundamental requirements for stability and accuracy:

1. Interpolation must be monotonic (introduce no extrema at the interpolation site).

2. Interpolation must be upwinded (determined from the upwinded side of the interface) and preserve “positivity ” (amount
transported from a given zone must always be less than the zone contents).

3. Interpolation must be time-centered (to reduce diffusion and preserve the accuracy of the interpolation scheme).

A number of monotonic, upwinded, time-centered interpolation (MUTCI) schemes have been devised and may be used depending
upon the relative importance of accuracy and computational speed. A first-order “donor cell” prescription (interpolation in the
i-direction) is given by

=5 "i—-1,j, k) (€=0)
",S i, ., k — {q (l ] s Js ) 25
TEIY et €<, 29
where & = v,"5(i, j, k)dt". A second-order MUTCI scheme first suggested by van Leer (1977) is given by
g™ = 1, k) + 0qli — 1, k)[l - ——é——] €=0),
PERTTREEY dx (i — 1)
q ! (19 ]9 k) = é (26)
qn,S(i’ j’ k) - 5q(la j’ k) 1 + o (é < O) 5
dxla(l)
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where

dq(i + 1, j, k)dq(i, j, k)
840, ) = {dq(i + 1, j, k) + dq(i, j, k)
0 (otherwise) ,

dq(l’ j’ k) = (I"'S(i, j: k) - q"‘s(i - 1’j9 k) . (28)

In equation (26), the dependence on the sign of the velocity (i.e., £) provides upwindedness while the dependence on dt" time-centers
the interpolation. Equation (27) ensures monotonicity and positivity. Note that contrary to claims made in SNa, this form of the van
Leer (1977) interpolation scheme is fully general for both uniform and nonuniform grids. The generalization suggested in SNa
actually removes the effect of a nonuniform grid and can violate positivity under certain circumstances.

Finally, a robust third-order MUTCI scheme is given by Colella & Woodward (1984). It is too complicated to reproduce here,
and the interested reader is referred to their lucid description. Comparisons of all three MUTCI schemes may be found in SNa.

The details of the transport step as embodied by equations (22), (23), and (24) encompass the idea of “ consistent advection ” first
introduced by Norman, Wilson, & Barton (1980). Consistent advection was invented to circumvent the problem of angular
momentum diffusion in accretion disks, but has implications even in simple one-dimensional Cartesian advection test problems.
Consistent advection imposes the additional constraint that all the variables will be transported in a way consistent with the
transport of matter. Without this constraint, numerical truncation errors may result in matter and momentum transport occurring
(locally) in opposite directions, contrary to physical reason.

In a consistent advection scheme, one first defines the mass fluxes across every interface (eq. [24]) and then constructs the fluxes of
the variable g™ by multiplying the mass flux with a MUTCI of the ratio ¢™5/d" (eq. [23]). Thus, for the density itself, the mass fluxes
are already the appropriate fluxes to use. Internal energy density fluxes are formed by multiplying the mass fluxes by the MUTCI of
the specific energy density (proportional to temperature). Finally, momentum fluxes could be constructed by multiplying the mass
fluxes by the MUTCI of the velocity (e.g., SNa), although, as seen in § 3.3, it is better to multiply the mass fluxes by the CMoC
estimate of the velocity instead.

The reader should be reminded at this point that the above discussion specifically assumes a Cartesian coordinate system. The
generalization to a curvilinear system such as cylindrical or spherical polar coordinates is cuambersome, though straightforward, and
requires the use of metric terms, zone volumes, and areas of zone faces which depend upon the coordinate values. The interested
reader is referred to SNa for a well-developed example of a fully “ covariant ” treatment of the difference equations.

Finally, difference expressions for the transport of scalars in the 2- and 3-directions are given by

[dq(i + 1, j, k)dq(, j, k) > 0] ,
@7

Foli,j+ 1, k) — F,3, j, k)

n,S,T1,T2(: 3 n,S, Ti(; ;
aS T, j, k) = ¢S TG, j, k) — . , 29
dx30)) @9)
P ke D) B
R Y N N R e T IEAL L) el LI (0)
dx3,(k)
where
Foi, j, k) = Mo, j, g5 TG, j, K/ TG j, BT 31)
'g:S(i’ j’ k) = '/%3(1., j9 k)[qn,S.Tl,Tz(i, j’ k)/d"'Tl,Tz(is ja k)]" s (32)
and where
MG, j, k) = TG, J, k) o35G, j, kyde" (33)
M iy j, k) = TV, ], B) 035G, j, kyde” . (34)

Expressions for the MUTCI of ¢" in the 2- and 3-directions are given by permuting all labels and indices in equations (25)-(28).
Note, in this manner of directional-splitting the transport operator, each direction is not treated symmetrically since the fluxes are
determined from partially updated variables (e.g., eqs. [31] and [32]). Nevertheless, as a matter of practicality, this is the desired
prescription, because it avoids carrying both the old data and the partially updated data simultaneously. It should be noted that
there is no evidence to suggest using exclusively old values for all fluxes gives better or poorer accuracy than using partially updated
values for the fluxes, nor is there any evidence to suggest permuting the order in which the partial updates are performed improves
accuracy in general applications (J. Hawley 1990, private communication). However, for some test problems in which symmetric
behavior is part of what is being tested (spherically symmetric explosions, for example), permuting the order of the partial updates
can improve the symmetric appearance of the numerical solution. Therefore, performing such permutations may be a desirable
attribute of a directional-split scheme.

It is clear there are a variety of ways to directional-split the scalar transport operator. The method presented here has proved to
be robust, stable, accurate, and efficient, with both computational memory and speed.

3. MAGNETIC INDUCTION AND MOMENTUM TRANSPORT

To date, operator-split MHD schemes have treated momentum transport and magnetic induction independently. While simpler
algorithmically, this approach is flawed from the outset, since it decouples the velocity and magnetic vector fields more than
numerical accuracy would seem to permit. In this section, a scheme in which momentum transport and magnetic induction are
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performed simultaneously (the CMoC) is detailed. In part, the CMoC is a logical extension of two other schemes which perform
magnetic induction exclusively, namely, CT and the Method of Characteristics (MoC). Therefore, the role of these schemes as
predecessors to the CMoC is included in the discussion below.

3.1. Constrained Transport

CT (EH) is a numerical scheme designed to solve the induction equation (egs. [4] and [12]) while preserving V * B = 0 to within
machine round-off errors. Unlike methods which use the vector potential to evolve the magnetic field (e.g., Clarke, Norman, &
Burns 1989), CT generalizes trivially to three dimensions, is simpler algorithmically, and produces more accurate results. Consider
the magnetic flux penetrating the (i, j, k)th 1-interface (Fig. 2). Integrating equation (12) over the surface area of this interface (area
S, normal n,) yields

o,

d
— | BndS=——= Vxe) - ndS=0e-d, (35)
dt.[i& ! dt le( ) ! ﬁl

where € = v x Bis the emf driving the evolution of the magnetic field. Differencing equation (35) in a manner consistent with Figure
2, one gets

(B;9S,) |7,Tllc = (B; Sy} + dt™{[(€3013) I j+ 1.0 — (€3013) 7 1] — [(€201) |7 j.hv1 — (€2 SN2 ial} s (36)

where, for Cartesian coordinates, the surface area is given by dS,(i, j, k) = 0x,,(j) 0x3,(k), and the edge lengths are given by
dly(i, j, k) = 0x,,(j) and dl4(i, j, k) = 0x3,(k). For a general coordinate system, dS,, 6l,, and 6l; are all functions of the metric as
well as the coordinate differentials (SNa). The differenced form of the induction equation for the 2- and 3-components of the
magnetic field may be determined from equation (36) by permuting the labels (1 - 2 —» 3 — 1) and indices (i — j — k — i) cyclically. It
is left as an exercise to show the induction equation so differenced will yield :

d
— (VB =0 37)

to within machine round-off errors (EH). Thus, this scheme preserves the initial magnetic field divergence rather than guaranteeing it
to be zero. It is therefore left to the user to ensure the magnetic divergence is initialized to zero.

Note that for face-centered magnetic field components, equation (36) requires the emf components to be “edge-centered ” (as
indicated in Fig. 2). It is also possible, however, to devise a scheme in which the magnetic field components themselves are
edge-centered. In this case, the emf’s (and the current density) are face-centered quantities and thus cospatial with the velocity. With
hindsight, this arrangement is excluded on the grounds that it treats the magnetic field and velocity asymmetrically when determin-
ing the emf’s and, thus, is inconsistent with both the MoC and CMoC algorithms.

Within CT, there exists an important degree of freedom: one may specify any prescription for the emf and maintain zero
divergence in the magnetic field. Of course, the trick is to choose the best prescription for the emf which preserves both stability and
accuracy. In the original CT scheme (EH), the prescription for estimating €; = v; B, — v, B, at the 3-edge, for example, is as follows:

€3 = (v,5,B; — <v:0.B; (38)

where {v,>, is the 2-point average of v, (@ = 1, 2) in the b-direction (b = 3 — a), and, as before, —B—ba is the MUTCI of B, in the
a-direction, upwinded in velocity v,. This scheme works well for advection problems (v = constant, J x B = 0) but not so well for
simple dynamical problems such as the propagation of a one-dimensional shear Alfvén wave. Consider the one-dimensional test

Ba(ij+1k)
e3(ijt+1k) * @83(i+1,j+1,k)
|
Bi(ij k) —» ® —» Bi(i+ljk)
(i,j,k) x2(/)
—® A é x1(i)
e3(ij. k) | £3(i+1,/,k) xa(k)
By(ij. k)

F1G. 2—Two-dimensional slice through a zone (3-direction is normal to the page) showing the fundamentals of the CT algorithm. The magnetic field components
are face-centered, while €, is centered on the 3-edge. In this projection, €, (€,) would be represented by arrows perpendicular to the B,’s (B,’s). Note that a 1-gradient
in €, generates B, and a 2-gradient in €, generates B,.
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F1G. 3.—Two numerical attempts at propagating an Alfvén wave in one-dimension in which two square pulses in velocity (left) and magnetic field (right) are
supposed to travel in opposite directions. Top two panels are the CT solution, while the bottom two are the MoC solution.

problem shown in Figure 3 performed with 150 uniform zones. A uniform density (1.0), internal energy (1.0), 1-velocity (0.0), and
1-magnetic field (1.0) are initialized across the entire grid, while the 2-velocity is set to 0.001 in the middle 50 zones only. In the
remainder of the grid, the 2-velocity is set to 0.0. The excited Alfvén waves are allowed to propagate for 3 of a pulse width with the
results recorded in Figure 3. The top panels show the profiles of the 2-velocity and 2-magnetic field using the CT scheme. The lower
two panels show the results using the MoC described in the next subsection. Since Alfvén waves are fundamental to any MHD
system in which the magnetic field plays a dynamic role, the CT scheme for assigning the emf (eq. [38]) is clearly unsuitable for a
general MHD scheme.

3.2. The Method of Characteristics

Let us continue to restrict the discussion to the evaluation of the 3-component of the emf'(e;). At the end of § 3.3, the discussion
is generalized to include €, and €,. The MoC (SNb) evaluates €5 using the characteristics of incompressible MHD flow. Thus,

= *
€; = v} B} — viBY,

(39)

where the “starred ” values are evaluated from values of v, v,, B;, and B, interpolated (MUTCI) to the bases of the characteristics,
as derived below. For one-dimensional (0/0x, = 0/0x; = 0) incompressible flow (V - v = 0), the 2-components of Euler’s equation
(eq. [2]) and the induction equation (eq. [4]) may be written

v, dv, B, 0B,
ot Yox, p ox;’ (40)
0B, 0B, ov,
240,228, 2 41
o T ax, T Pk, (41)
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Note that the assumption of incompressibility is justified on the grounds that the compressional terms have already been accounted
for in the source step (§ 2.2). Thus, this assumption does not restrict this method to compressible flow. Adding and subtracting
equations (40) and (41) yield the characteristic equations:

D*v, 1 D*B,
+— =0, 42
Dt — \/; Dt (42)
where
Dt 9§ 0
D= + (v, F ay) o, (Eulerian derivative) , (43)

and where a; = B,/p'/%. The quantities cf = v, F a, are the characteristic velocities along the characteristic paths (C§) in incom-
pressible MHD flow. Differencing equations (42) yields

1

v — 03 +—=(Bf — B})=0, (44)
NG
1

v —v; ——=(Bf — B;)=0, (45)

N/

where v} (Bf) are MUTCI of v, (B,) to the bases of C{ [i.e., where the characteristics C{ intersect the current (1, 2)-plane (at time

step n), as depicted by the (2 + 1)-dimensional spacetime diagram in Fig. 4], upwinded in the characteristic velocities (¢ ).

Solving equations (44) and (45) for the unknown quantities v% and B¥ yields

1 1

=3 [ot o+ - m). e
2 Jp

Bf = 4[B} + B; +/pv; —v7)]. @7)

In order to find the bases of Cf, MoC uses 2-point averages to estimate preliminary values of the characteristic velocities, ci,
namely,

1
ef =<v, F % (By)s - (48)

An entirely analogous procedure is used to find v} and B} and the four starred values are used to determine €5 (eq. [39]).

The original design of MoC (SNb) did not perform momentum transport simultaneously with magnetic induction. Nevertheless,
the transverse Lorentz acceleration was performed as a part of the overall Eulerian MoC step. With hindsight, this resulted in the
asymmetric behavior of forward and backward-moving Alfvén waves computed by MoC in a moving medium seen in the lower
panels of Figure 19 in SNb. To correct this problem, the MoC has since been modified so that a separate Lagrangian MoC step is
performed to estimate B¥ and B} to be used exclusively for the transverse Lorentz accelerations (J. Stone 1992, private

va(i-1,j,k)

M 2B 1jk)

Biij-Lk) .7

t* ="+ dt"2 =12

F1G. 4—A (2 + 1) spacetime diagram showing Lagrangian-like characteristics (i.e., characteristics which straddle the interface) projected back in time from some
advanced time t* to the current time step ¢". In the MoC scheme, values for v, and B, are interpolated to the bases of the C{ and C; characteristics as determined
from preliminary estimates (zonal averages) for the characteristic velocities. Similarly, v, and B, are interpolated to the bases of the C; and C; characteristics. These
interpolated values (v¥, Bf, vf, and Bf) are then used to generate values for v¥, B, v}, and B} (see text). The “starred ” values could then be used to generate
secondary estimates for the characteristic velocities which, in general, are different from the preliminary values. Conversely, the CMoC evaluates the four
characteristic velocities implicitly rendering identical preliminary and secondary estimates for the characteristic velocities.
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communication). This restores the expected symmetry between forward- and backward-moving Alfvén waves. A Lagrangian MoC
step is performed by replacing equation (43) with

p* 3
Dt ~ ot

In this case, the characteristics are determined by the Alfvén speed alone, yielding different MUTCI values for v and BZ (a = 1, 2)
than those used to compute the emf’s. Since the MoC step is the most expensive step computationally in the MHD cycle, performing
both an Eulerian and a Lagrangian MoC calculation dramatically decreases the efficiency of the algorithm.

The bottom panels of Figure 3 show the one-dimensional Alfvén wave solution as determined by the MoC described above. One
can readily see the vast improvement over the original CT scheme as outlined in § 3.1 (Fig. 3, top panels).

An alternative modification to the MoC scheme would be to use v} and v} for both the magnetic induction and the momentum
transport steps, thereby performing induction and transport simultaneously. In this construct, the transverse Lorentz acceleration
step may be and, indeed, must be performed in the Eulerian frame of reference. Thus, the same values for B¥ and B must be used for
the induction and the Lorentz acceleration steps, obviating the need for separate Lagrangian and Eulerian MoC calculations. This
approach is used successfully in the CMoC scheme discussed in § 3.3.

While the MoC works extremely well in one-dimension, it has been observed to exhibit an explosive growth of weak magnetic
fields in multidimensions. Consider equation (47) and the case where the bases of both characteristics Ci lie on the same side of a
zone interface (Fig. 5a). In this situation, all terms in B%, including the v; — v; term, are proportional to the Alfvén speed (much less
than the flow velocity by assumption of a weak magnetic field) as desired. Conversely, if C{ straddle the interface (Fig. 5b), the
v; — v; term will include the discontinuity (as required by monotonicity) in the piecewise linear interpolation functions represent-
ing the internal structures of v, within the neighboring zones. Since the discontinuity may be of order v,, B may be of order v,
rather than a,. Now, in order for C{ to straddle the interface in the first place, {v,>, < {a, ,, which always has a finite probability
of occurring at any given zone interface even for weak magnetic fields, especially across shear layers where neighboring zones are
predisposed to having oppositely directed flows. But this need not imply v¥ < B¥/p*/2. In fact, v¥ is not constrained by (v, >, (even
though they are estimates of the same quantity at the same location on the grid), and v¥ could still be of order v,. Thus, in equation
(39), the v, B, term in €5 could be proportional to v, v, rather than v, a,, as required if the magnetic field is to remain weak. In a
system with an otherwise dynamically insignificant magnetic field, such a spurious €, could generate an anomalous and possibly
dynamically important magnetic flux loop in a single time step (thus the designation “explosive,” see Fig. 6), thereby destroying the
integrity of the solution. A practical example of where this problem dominates the magnetic field structure is given in § 4.3.

0 . L
Fa, o (Lagrangian derivative) . (49)
1

3.3. The Consistent Method of Characteristics

The CMoC was designed to cure the explosive “instability ” of the MoC. It does so by ensuring v} is of ordera, if B} is of orderv,
(e.g., because of straddling characteristics). Thus, the product v¥B% in equation (39) will still be of the order of a flow speed times an
Alfven speed. This is accomplished by determining the characteristic speeds implicitly so that the characteristic velocities used to

.:6V2R .Ovar
* Av,
ovyyp *ﬁliﬁ """"
— 3 Tt" ~+— x; » X/
Ox gy >t Ox R > ;

Q1+dtm:/2 c1§*jdt"/2

e dt’ 2 c{dt’fZ

FIG. 5a Fi1G. 5b

FiG. 5—a) Depiction of Eulerian-like characteristics which fall on the same side of the interface. The internal piecewise linear structure for v, on either side of the
interface are shown as well. In this case, all terms in B¥ (eq. [47]) are proportional to the Alfvén velocity, including the difference v; — v, (because the bases of the
characteristics are separated by a distance proportional to the Alfvén speed). (b) Depiction of Lagrangian-like characteristics which straddle the interface. In this case,
the difference v; — v; contains the term Av, (introduced by monotonicity constraints), which, in general, is proportional to the flow velocity, not the Alfvén velocity.
Thus, the estimate for B% will be corrupted for sub-Alfvénic flow.
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ef (-1 j+ ) K e (if+1.k) N e (i+1j+1k)
) n+l' MIT.
By (i-1,j+Lk) By (ij+Lk)
+1 .1,
Bl -1k Bi (i) B+ 1}k

B;*’(Ll,j.k) o B;'*‘(Tj,k)

e (i—1]j.k) l 83"(lj k) | e (i+1li k)
-+ ——
Bf (-1 -1k) B i}-1k) By i+ 1f-1k)
Bz"+I(Jx;—1,j~I,k) By (ij-1.k)
D).
N \
&3'(i-1}j-1k) 3'(i§-1.k) &3'(i+1lj-1,k)

F1G. 6.—An anomalously high €, (large black dot) will generate an anomalously strong magnetic flux loop encircling the zone edge on which the “bad ” emf
resides. This flux loop, if dynamically important, can spread its effect throughout the grid on dynamical timescales.

determine the locations of the bases of Ci are given by

s_pgr Bl 10 (50)

rather than by equation (48).
Combining equations (50) with equations (46) and (47), one gets two pairs of coupled algebraic equations:

e =vy(c3) + Bi(c3)/p (51)

c3 =vaer) — Baler)A/p (52)
and

of =vie5) — Byes)/p » (53)

c3 = vy(ci) + Boe)N/p » (54)

where vE, BE (a = 1, 2) have been written explicitly as v,(c{), B,(ci) (b = 3 — a) to indicate how the interpolations depend upon the
characteristic velocities.

Equations (51) and (52) may be solved implicitly for ¢; and c; given the interpolation functions v,(c; ), etc. Similarly, equations
(53) and (54) may be solved implicitly for ¢ and c; . With estimates of the four characteristic velocities, the “starred ” values may be
determined by inverting equations (50), which are then used to evaluate €5 (eq. [39]).

To proceed further, one must generate explicit expressions for ¢; and ¢; from equations (51) and (52), and likewise c¢{ and c;
from equations (53) and (54). This task is confounded by the fact that the functional forms of v,(c), etc. (interpolation functions
[MUTCI] upwinded in the argument) depend upon the signs of ¢c; and c; , which, of course, are not known until equations (51) and
(52) are solved! In particular, the van Leer MUTCI scheme (1977) as given by equation (26) but recast with variables and
nomenclature used in this subsection is

+
Qa,L + 6Qa,L<1 % 6t> ) (cbi = 0) s

B Oy 1,
 =04cy) = (55)

+
Qar— 5Qa,R(1 + % 5t> > (cf <0),

OXp g

where Q = v, B and the subscripts L and R designate whether the quantities are from the left or the right of the interface,
respectively; 6Q, ; and 0Q,  are the van Leer differences across the left and right zones, respectively (eq. [27]).

Substituting equations (55) in equations (51) and (52) leads to four “candidate” values for each of the characteristics c; and c;,
depending upon the signs that ¢;” and c; end up having. These four candidate values may be written in the compact form

+ - +
_ dis, — 42,5,941.s,
e , 56
15152 1 - 5‘1;—.&5‘12—,52 ( )
- _ + 6 -
C;,Sln‘iz = q2,sz ql,SI ‘12,s2 3 (57)

1— 5(12_,525(1;31
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where S, = L,R;S, = L,R; and

! ats, = Pos, £ Bus/N/P » (58)
Pe) +
8! 8aks, = a5, £ Bas//P (59)
“' and
Ea,Sa = Uq4,S8, + ga 6va.Sg ’ (60)
Ba.sa = Ba,Sa + yn 6Ba,Sa B . (61)
@a,5, = OV,5,0t/0%p 54 5 (62)
Ba,s, = 0B, 5,0t/0% 5, » (63)

where dv, 5, and 6B, g, are the van Leer differences in v, and B,, respectively, on side S, (=L, R) (e.g., eq. [27]), and where a = 1, 2;
b=3-a;2,=+1(—-1)ifS, = L(R).
Equations (56) and (57) generate four possible pairs of values for the characteristic speeds ¢y and ¢; , namely,

Case A: (ciLr>CrrL)s Case B: (c{Lrs CoLR) >

Case C: (cy.r,Ls C;R,L) > Case D: (cipnr c;R,R) .

In order for any of these pairs to be considered further, both speeds in a given pair must be simultaneously upwinded, as defined by
equation (55). This constraint may be visualized on a “(cy, ¢ )-plane” as shown in Figure 7, in which, for illustration purposes, all
estimates of the characteristic speeds are positive (i.e., 1-velocities point to the right, 2-velocities point up). Since velocities estimated
from the left (right) must be positive (negative) to be upwinded (i.e., pointing to the interface from their offset positions), only
quadrant A in Figure 7 contains simultaneously upwinded estimates of (c;, ¢;). Thus, case A would be selected as the only
“upwinded quadrant.”

For the most part, one and only one of the four cases A, B, C, and D above will be upwinded. In this event, the job is done, and
(c1» c3) is set to (c1s,.5,5 C3.5,.5,) in the upwinded quadrant. However, in some cases there may be 2, 3, 4, or even no upwinded
quadrants. For no upwinded quadrants (c; , c5) is set to (0, 0). For multiple upwinded quadrants, a “zone-of-dependence ” average
(as illustrated in Fig. 8) is performed on all the upwinded values, with the proviso that quadrants upwinded in only one of the
(ci, c3)-and (c{, c;)-planes are severely weighted down relative to quadrants upwinded in both planes. Note that this weighting
should not be zero in case there are no common upwinded quadrants in the two planes. Obviously, there is no unique prescription
for a zone-of-dependence average, but a form that works well is as follows:

- 1 -
Fo_ ¥ ¥
¢y =3 ) Y Wisis:Clsis:s (64)
1,T S1=L,R S2=L,R
1
+ __ + +
€2 =% Y X Wisus:Cisis: (65)
2,T S1=L,R S2=L,R
-+
(C] ,C2 )pla‘ne
X2 X2
) c R D
CIRL C1LRR
+ +
C2RL 2RR
. .
x| bt X
,jjk) : &3(ifi.k) '
' '
+
CZ,L,LL""_ o 5 LR
ClLL g CLLR
A B

FiG. 7—An illustration of the concept of “ upwinded quadrants.” From the text,c; and c; are coupled, and ¢§ and ¢ are coupled. In this diagram, the coupling
between ¢; and c¢; is considered, whence the designation “(cy, c;)-plane.” On the left is an edge-centered view of four neighboring zones with the nearest velocities
labeled. The magnetic fields (the Alfvén velocities) are cospatial with the labeled flow velocities. On the right is a blowup of the immediate vicinity of the zone corner.
With respect to the zone corner, interpolations may be performed from either the left (L) or the right (R) in the 1-direction and from the bottom (i.., left, L) or the top
(i.e., right, R) in the 2-direction. This results in four possibilities for the values of c{ and c;, labeled according to whether interpolations were performed from the left
or right in each of the 1- and 2-directions. Offsetting each possibility from the corner in the diagram is done as a visual aid and is not meant to imply the four possible
values are at slightly different locations. “ Upwinded quadrants” are readily identified from such a diagram: those quadrants in which the vector tails meet are
upwinded; all others are not. Thus, in the diagram as shown, only quadrant A is upwinded.
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(¢, ¢2') plane t t
t*=t"+dt"2 p t*=t"+ dt"/2
C e D
CIRL CIRR CiLL
. . CiLr
C2RL 2RR
o .
3 e3(ifj.k) '
! { A A
+ + CoLL n CILR n
AR R CoLR 2 L X bt x5

CiLL i CILR 7 > $\'
A : B

|CT,L,L | dt*/2 |eiLr|dt"/2 |e3 R dt"2 |c§,,_’L | dt"/2

FiG. 8a FiG. 8b Fi1G. 8¢

F1G. 8—a) A (cy, c;)-plane with two upwinded quadrants. In this example, the sign of ¢c; depends on whether the interpolation was carried out from the left or
the right side of the 1-interface. This has led to two upwinded quadrants, A and B. (b) As there are two upwinded quadrants, both have valid “claims ” to being the
direction from which interpolations should be performed. In a “zone-of-dependence ” averaging, the candidate values forc; (namely,c; , , andc; , ) are weighted
with the baselines of the characteristics to which they are interpolated (thus by ¢;,; ; and ¢;; g respectively). (c) Candidate values for ¢, (namely, c; , , and c7 ; z)
are weighted with the baselines of the characteristics to which they are interpolated (thus by c; , , and c; ; g, respectively).

where the weighting factors are given by

Wisis: = Psisil Chsisal s (66)
0, (quadrant is not upwinded) ,
Ws,s, =31, (upwinded quadrant in just one plane) , (67)
1013, (upwinded quadrant in both planes) ,
ai,T = Z Z Wﬂt'sx,SZ . (68)
S1=L,R S2=L,R

The choice of 10'? assumes 8 byte machine “words ” (single precision on Crays, double precision on most other platforms). For 4
byte “words,” this factor should be reduced to 107.

When only one of the quadrants is upwinded, this scheme always selects the correct quadrant. More important, this scheme
maintains smooth, monotonic emf profiles even when one or more of the zones along the profile has characteristics straddling the
interface and/or multiple upwinded quadrants. This is a critical test of the scheme’s generality.

With the characteristic velocities so determined, one solves equation (50) for the starred values. Thus

vf = 3+, (©9)
BY = 4 =), (70

where a = 1, 2. Note that for highly super-Alfvénic flow, c; — ¢ < ¢, . Thus, the quantity B¥* may be dominated by numerical
round-off errors. The simplest way to avoid this circumstance is to avoid setting problems in which

10810 Wpiow) — 10810 Walven) S 4(number of available significant figures) , (71)

which, for 8 byte “ words,” allows for a 10°-107 ratio between the flow velocity and the Alfvén velocity. This should be adequate for
most purposes. If higher dynamic ranges cannot be avoided, then instead of constructing “candidate” characteristic speeds (egs.
[56] and [57]), “ candidate ” values for v* and B* are generated directly, and the weighting factors given by equations (66), (67), and
(68) are applied to these to determine the final values for the B*’s and/or v*’s. This process involves significantly more computations
but can accommodate arbitrary ratios between the flow and Alfvén velocities. Further details are omitted in the interest of brevity
and can be obtained from the author directly if desired.

The starred values (v}, v¥, B¥, and B%) are the final estimates of the associated flow variables at the 3-edge and are used to
estimate €, directly (eq. [39]). Because the starred values are obtained implicitly, the product v* B is always of the order of a flow
velocity times an Alfvén velocity, thus eliminating the explosive instability present in the MoC. Note that v* may be of the order of
the Alfvén velocity, and Bf/p*/> may be of the order of the flow velocity. Such a “ virtual exchange of energies ” can be tolerated since
the CMoC guarantees that the product v} By is properly behaved. In addition, such “virtual exchanges” do not introduce spurious
extrema or discontinuities into the emf profiles, thus leaving the physical solution unaffected.

In addition to determining e, the starred values may be used to determine the transverse Lorentz forces and the transverse
momentum fluxes for s, and s, within the (1, 2)-plane. This is outlined below. Recall that both the MoC and the CMoC are based
upon the characteristics of incompressible flow. Therefore, the terms governing the propagation of transverse waves (i.e., Alfvén
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waves) are performed independently of the compressional terms. Accordingly, compressional momentum transport is performed in
') a separate transport step (discussed below), while the compressional Lorentz forces are accounted for in the source step (§ 2.2, eq.
v [16]).

& Note that CMoC determines the starred values v¥, B, v}, and B¥ self-consistently within a plane defined by a constant 3-index (k)
S before €, is evaluated and before the transverse Lorentz forces and momentum fluxes acting within the (1, 2)-plane are applied. In
this way, CMoC is a “ planar-split ” scheme, making it fundamentally different from the more traditional “ directional-spit ” schemes
such as the MoC, Godunov-type schemes, and others. Directional-split schemes perform interpolations along a line and thus
generate consistent fluxes and emf’s in only one dimension at a time. For the most part (and certainly for one-dimensional
problems), this is a reasonable approximation to make. However, as shown in § 4, there are situations in multidimensional MHD
where this approach leads to disaster. It seems clear that the planar-split nature of the CMoC is central to its ability to treat the curl
operator in equation (4) accurately. After all, each component of the curl operates within a plane [e.g.,(Vx); = 0,i x —0, jx ] and
not along a single direction, as do the components of a gradient [e.g., (V); = 05 k] or the terms of a divergence [e.g.,(V *); = 03k *].

A D 1457

3.3.1. Applying Transverse Lorentz Forces to s, and s,

The transverse Lorentz force on s, in the 1-direction and on s, in the 2-direction are given by (see Fig. 9)

nS(; — nS(: & n
Sz (15 I k) S2 (l, J> k) + dt 2dxla(i) (72)
*(: i *(: i *(: 3  R¥(; i
Sln,S(i’ j, k) — sln,S(i’ j, k) + dl" [Bz(la] + 1’ k) + Bl(l’ ]922)3[5;;)(1’] + 19 k) Bl(la ]a k)] . (73)
2a

The Lorentz force on s, in the 1-direction is compressional and is treated in § 2.2 (eq. [16]).

Ideally, the transverse Lorentz acceleration should be performed simultaneously with the evaluation of the emf’s. However,
introducing the Lorentz terms implicitly into the scheme outlined above would complicate matters beyond reconciliation. Instead,
the Lorentz accelerations are applied to the velocities as the emf’s are estimated. Thus, immediately after the momenta are updated
with the transverse Lorentz forces, the velocities are updated (eq. [19]) and then used to estimate the next emf component. In this
way, the emf estimates are at least partially coupled to the transverse Lorentz acceleration. If all Lorentz accelerations are performed
after the emf’s are computed (as in the original MoC scheme; SNb), multidimensional Alfvén wave propagation is unstable (see § 4.2).

3.3.2. Transverse Transport of s, and s,

Transport of s, in the 1-direction and s, in the 2-direction are given by (see Fig. 10)

Soali+ 1,j, k) =&, 40, j, k)

szn's,Tl(i’ ja k) = szn‘S(i, ja k) - dxl,(i) H (74)
.. .o & ,+1,k_y -’.yk
sln,S,Tz(l’ 7, k) = Sln,S(l, J, k) _ 1,2(’ J ) : 1,2(1 J ) , (75)
dea(])
where the flux of s, in the 1-direction (¥, ;) and the flux of s, in the 2-direction (¥, ,) are given by
Faalis j k) = 5[ MG, — 1, k) + M (s, K)]3G, ), k), (76)
P20, J, k) = 30 M — 1, j, k) + Mo, j, KI0FG, ), k), (77

and where the linear averages of the mass fluxes (eqs. [24] and [33], used for consistent advection in the scalar transport step in

By*({j+1k)
A
By (ij+1k) >

$1(i) k) =t xa(j)

A f A
B1*(i.j. k3 > »-B\*(i+1,k)
| xi(7)

BZ'( Jxk) Sz(i»j»k) BZ.( +1».]’k)

FiG. 9—Transverse Lorentz forces for s, and s, are determined from B} and B (already used to estimate € ) which are located as shown (eqs [72] and [73])
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A 4
A 7 SRS \E
My (et —T———Mbtij+ L k)
dxaa() STILEY >
’ M1k Ml 44%) x2(j)
’ K y | A
vi*(ijik) x1(d)
My(i-1,jk) V2" (fife bl v 1({+1,.k)
M:(344)
P P
Mi(i,j-1k) My (i+1,4-1k)
dxya()

F1G. 10.—In the CMoC scheme, momentum transport is better described as “ planar-split ” rather than “ directional-split.” Thus, transport of s, in the 2-direction
and s, in the 1-direction are performed simultaneously as shown. The horizontally hatched area indicates the region into and from which s, is transported in the
2-direction. The amount of s, transported is determined from v} (already used to estimate €;) as the interpolation of v, at the 2-interface and the 1-average of the
mass fluxes .#, as the agent performing the transport. Similarly, the vertically hatched area indicates the region into and from which s, is transported in the
1-direction. The amount of s, transported is determined from v} (also used to estimate €;) as the interpolation of v, at the 1-interface and the 2-average of the mass
fluxes .#, as the agent performing the transport.

§ 2.3) ensure proper centering. Therefore, CMoC performs magnetic induction and momentum transport simultaneously, since the
starred velocities are also used to construct the momentum fluxes. Unlike the Lorentz acceleration, the velocity should be updated
with momentum transport only after all the emf’s have been evaluated.

3.3.3. Compressional Transport of s,

For convenience, compressional momentum transport (i.e., transporting s, in the a-direction, a = 1, 2, 3) can be performed at the
same time as transverse momentum transport, but it is completely independent of the incompressible CMoC process. In fact,
compressional momentum transport resembles scalar transport (§ 2.3), except that the momenta are face-centered while the scalar
variables are zone-centered.

The transport of s, in the 1-direction is given by (see Fig. 11)

F1aJ, k) = L1430~ 1,), k)

sln,s‘TZVTl(i, j’ k) = sln'S'TZ(L j7 k) - dx (l) B
1b

(78)
where
yl,l(l’ ]’ k) = E (‘/ﬂl(l’ ], k) + ‘/%l(l + 1a]9 k))vln,s(l, ]’ k) B (79)

and where v,™5(i, j, k)l is the MUTCI of v, in the i-direction to the zone centers. Previously, such interpolations have been
performed

explicitly (e.g., Norman & Winkler 1986; and SNa), much like MUTCI of the zone-centered scalars to the face-centers (egs.

N\

M](i—l,j,k)

//

- x1(i)

dxp(d)

FiG. 11.—Depiction of 1-transport of the 1-momentum. The velocity v, is interpolated to the zone centers implicitly independent of the CMoC step (since
compressional terms are not involved in the CMoC step). A 1-average of the mass fluxes .#, is used as the agent performing the transport.
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[25]-[28]). Hence, the van Leer second-order explicit MUTCI scheme (1977) for v, is given by

Ul"'s(i’ j’ k) + 601(i, j’ k)l:l ] (5 = 0) s

dx ()

0,"5,J, k) = : (80)
n,S(: . _ . . s
v+ 1,7, k) —dv (i + 1, j, k)[l + denli 1 1)] ¢<0),
where
d .,.,kd "—19‘,k .
b p OG0 py G kydoyGi— 1, 0> 0,
60 (l . k) _ dvl(’;]’ k) + dvl(l - la Js k) 81)
1B15= 19 (otherwise) , (
dv,(@, j, k) = v,"5G + 1, j, k) — v,"5G, j, k) , (82

and where & = {v,"%(, j, k)>, dt", with {v,™5(, j, k)>, being an estimate of v, at the zone center for determining upwindedness and
time-centering. In an explicit interpolation scheme, {v,™5(, j, k)), is simply set to a two-point spatial average. Note, however, that

v,"5(, j, k)l is also an estimate of v, at the zone center. Thus, in the spirit of the CMoC, one might set {v,"5(, j, k)>; = v,"%(, j, k)'
in equation (80) and solve for v;™5(i, j, k) . This generates a van Leer second-order implicit MUTCI scheme for v,, namely,

_ vyL vy, >0 and v,z>0),
0"5G, j, k) =4v;x (. <0 and vg<O0), (83)
0 (otherwise) ,
where

v _ Uln‘s(iﬂ j’ k) + 5vl(i’ j’ k)
Y1+ Sv4(i, j, k)de"/dx i)

" _ vln’s(i + l,j’ k) - 6U1(i + 1,j5 k)
R4 60,66+ 1, , kydtdx (i + 1)°

and where 0v,(i, j, k) is given by equation (81).

While the implicit MUTCI scheme is perhaps more.aesthetically satisfying, the author has found no evidence to suggest that it
improves or degrades the accuracy or stability of the compressional transport of momenta. It is presented here as an option only
because it follows the spirit of CMoC in which the implicit nature of the interpolation was critical to the solution of the explosive
instability in the MoC for the limit of weak magnetic fields.

@4

85)

3.3.4. Planar-Split on the 3-1 Plane (€,)

Completely analogous procedures are followed to obtain v}, Bf, v}, and B¥ at the 2-edge, and thus €, may be estimated by
equation (39) with an appropriate permutation of the indices and labels. B¥ and Bf at the 2-edge are then used to estimate the
transverse Lorentz forces on s, in the 3-direction and on s; in the 1-direction (eqs. [72] and [73] with indices and labels permuted).

v¥ and v¥ at the 2-edge are used to transport s, in the 3-direction and s; in the 1-direction thus:

yl,?ﬁ(i’ j’ k + 1) - y1,3(i’ j7 k)

1", j, k) = 5,5 T2 TG, j, k) — YN , (86)
3al
. . n .. y (l+177k_*5p i9.,k
5T, ) = 5375, g, Jy) — L2l H LA B - Z56 0 0 )
dxla(l)

Where, with the appropriate permutation of the indices and labels, &, ,(i, j, k) and & ,(i, j, k) are given by equations (76) and (77),
respectively.
Compressional transport of s, in the 3-direction is given by

L3300, J, k) — 3,30, j, k= 1)
dx (k) ’

san,S.leTS(i’ j, k) = s3"'S‘T1(i, j» k) -

(88)

where & ;(i,j, k) is given by equation (79), again with the appropriate permutation of the indices and labels.

3.3.5. Planar-Split on the 2-3 Plane (€,)

Completely analogous procedures are followed to obtain v¥, B, v}, and B} at the 1-edge, and, thus, €, may be estimated by
equation (39) with an appropriate permutation of the indices and labels. B} and B¥ at the 1-edge are then used to estimate the
transverse Lorentz forces on s, in the 2-direction and on s, in the 3-direction (eqgs. [72] and [73] with indices and labels permuted).
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The starred velocities v} and v% at the 1-edge are used to transport s in the 2-direction and s, in the 3-direction thus:

_ yﬁi,l(i’j + 15 k) - yS,Z(i, j’ k)

83" K) = 8" ) FE : (89)
2a
S jo k+ 1) — L5 50,4, k
5,5 TOTS( G k) = s,m5 TG, j, k) — 2,30, J jl'x )(k) 2,30, J, k) , (90)
3a

where, with the appropriate permutation of the indices and labels, &5 ,(i, j, k) and &, (i, j, k) are given by equations (76) and (77),
respectively.
Compressional transport of s, in the 2-direction is given by

S22 J, k) = S5 00, j — 1, k)
dx () ’

where &, ,(i, j, k) is given by equation (79), again with the appropriate permutation of the indices and labels.

Note that the CMoC outlined in this subsection is not symmetric under a permutation of the order in which the scheme is
planar-split. That is to say, in a nonsymmetric system, computing the emf’s in the order €,—€,—€, will yield slightly different results
than if the emf’s were computed in the order €,—€5—€, say. In part, this is because the velocities are Lorentz accelerated while the
emf’s are being estimated, which introduces planar asymmetries in both the emf’s and the momentum fluxes. In addition, the
momentum fluxes are determined from partially updated mass fluxes. As with transport of scalar quantities (§ 2.3), the author has
found no evidence to suggest such asymmetries are at all consequential in a general application. However, in test problems in which
symmetry is being tested, cyclically permuting the order in which the emf’s are computed (and thus the order in which momenta
transport are performed) will improve the apparent symmetry of the numerical solution.

The final step is to use the emf’s to update the 1-component of the magnetic field using equation (36), and similar equations (with
indices and labels permuted) for the 2- and 3-components of the magnetic field.

The flowchart in Figure 12 illustrates how the author has implemented all the ideas in this paper into a working MHD code
(ZEUS-3D), while Figure 13 is a detailed flowchart illustrating the CMoC step discussed specifically in this subsection.

82" G, j, k) = s,m S TeT3( k) — (91)

4. NUMERICAL EXAMPLES

The explosive growth of weak magnetic fields in the MoC is multidimensional in nature and thus not illustrated by any of the
usual one-dimensional MHD test problems (e.g., Stone et al. 1992; RJ). In fact, the CMoC and the MoC reduce to virtually the same
algorithm in one dimension. Nevertheless, it serves as a good introduction to this section to present the CMoC solution of a few
one-dimensional test problems. The CMoC has been tested with virtually all the test problems discussed in Stone et al. (1992) and
many of those in RJ, all with favorable results.

4.1. One-dimensional Shock-Tube Tests

The one-dimensional MHD shock-tube problem of Brio & Wu (1988) has received considerable attention as a standard test for
MHD algorithms. Thus, the CMoC calculation of the “Brio & Wu problem ” is presented here to “calibrate” the CMoC against
other MHD schemes.

The Brio & Wu shock tube is initialized with two distinct left- and right-hand states. A one-dimensional computational grid of
550 uniform Cartesian zones is constructed along the 1-direction with a left-hand state (p =1, p=1, B, = 2, and B, = 1)
initialized along the first 200 zones, and a right-hand state (p = %, p = 4, B, = 3, and B, = — 1) initialized along the remaining 350
zones. The initial values of all remaining flow variables are zero. The adiabatic index is set to 2 (for consistency with Brio & Wu),
and the viscous parameters Q, and Q, (Appendix A) are set to 0.2 and 2.0, respectively. The two states are allowed to interact for a
time ¢ = 80 in units where the grid domain is 0 < x, < 550. The resulting CMoC solution is shown in Figure 14. The solution is
characterized by two fast rarefaction waves, a slow shock, a contact discontinuity, and a « compound wave,” all labeled in Figure 14.
The compound wave appearing in this solution has been somewhat controversial, although the consensus seems to be that this
feature is real. Nevertheless, even the best of the analytic MHD Riemann solvers (RJ) does not include the compound wave as part
of the solution to the Brio & Wu problem.

The MHD algorithm of Brio & Wu (1988) is upwinded in all MHD characteristics, including compressional waves. By compres-
sion, the characteristics used by CMoC are incompressible, with the compressional terms handled in distinct operator-split steps.
Still, there is good agreement between the Brio & Wu solution (Fig. 2 in Brio & Wu 1988) and the CMoC solution (Fig. 14). The
most noticeable defects in the CMoC solution are the slight undershoot in the density and pressure at the base of the rarefaction
wave in the left-hand state, and the ringing in the velocity and magnetic field in the region between the slow shock and the fast
rarefaction in the right-hand state. The former is caused almost entirely by the lack of strict energy conservation, an unfortunate side
effect of solving for the internal energy (eq. [3]) rather than the total energy. If, instead, one solves the total energy equation (eq.
[115], Appendix B), the undershoot virtually disappears (not shown). The ringing is likely a consequence of upwinding in the
incompressible MHD characteristics only and can be suppressed effectively with an appropriate amount of artificial viscosity.

The second one-dimensional shock-tube test problem presented in this section corresponds to Figure 1a in RJ.? In this problem, a
one-dimensional grid of 512 uniform Cartesian zones is constructed along the 1-direction with a left-hand state (p = 1, p = 20,

2 Magnetic field in units defined by eqgs. (7) and (8).
3 Note that there is a typo in the captions of Figs. 1-5 in RJ. The final variable characterizing the two states is gas pressure (p,), not total energy (E).
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]
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NO [equations (74) and (75)]
FINISH { g'l';:lelg?; Similarly for €,(i,j,k) and €(i,j,k). CT (§3.1) then updates all
STOP magnetic field components [e.g., equation (36)] simultaneously
FiG. 12 FiG. 13
FiG. 12.—Flowchart of the main loop of the ZEUS-3D code which incorporates the CMoC algorithm into a working multidimensional MHD computer

program.

FiG. 13.—Detailed flowchart of the CMoC algorithm to evaluate €5 (3-component of v x B) as implemented in the ZEUS-3D computer program (§ 3.3). The
indices i, j, and k in the diamonds are the coordinates of the three-dimensional arrays. The variables evaluated in the inner loop bubbles can all be represented by
scalars, while the variables evaluated in the outer loop bubbles are two- or three-dimensional arrays as indicated by the number of associated indices. Note that
similar flowcharts may be constructed for €, and €,, and the order in which these three flowcharts are executed may be permuted from time step to time step to
improve numerical symmetry among the three directions.

v, = 10, and B, = B, = 1.41047) initialized along the first 256 zones, and a right-hand state (p =1, p = 10, v; = —10, and
B, = B, = 1.41047) initialized along the remaining 256 zones. The adiabatic index is set to 5/3, and the viscous parameters @, and
0, (Appendix A) are set to 0.2 and 2.0, respectively. The total energy equation (Appendix B) is used instead of the internal energy
equation to improve the accuracy of the solution. The two states are allowed to interact for a time ¢ = 0.08 in units where the grid
domain is 0 < x,; < 1. The resulting CMoC solution shown in Figure 15 is characterized by two fast shocks, a slow rarefaction, a
contact discontinuity, and a slow shock. Some differences between the CMoC and RJ solutions exist. The CMoC requires more
zones to track the fast shocks, but fewer zones to track the contact discontinuity than RJ’s total variation diminishing (TVD)
algorithm. As a consequence of the latter, the CMoC produces a spurious undershoot before the contact discontinuity in the
transverse velocity and magnetic field. Otherwise the levels produced by the two schemes are virtually identical.

For the third problem, the same grid, adiabatic index, and viscous parameters are used as for the previous problem. The left-hand
state (p = 1.08, p = 0.95, v, = 1.2, v, = 0.01, v; = 0.5, B; = By = 0.56419, and B, = 1.01554) is initialized along the first 256 zones,
and the right-hand state (p = 1, p =1, B; = B; = 0.56419, and B, = 1.12838) is initialized along the remaining 256 zones. The
internal energy equation is used, since it is adequate for this problem. The two states are allowed to interact for a time ¢t = 0.2 in
units where the grid domain is 0 < x; < 1. The resulting CMoC solution shown in Figure 16 is characterized by two fast shocks,
two rotational discontinuities, two slow shocks, and a contact discontinuity. The differences between the CMoC and RJ solutions
are largely cosmetic. The CMoC requires more zones to track the fast shocks and rotational discontinuities (CMoC possesses no
contact steepener), but fewer zones to track the slow shocks and the contact discontinuity than RJ’s TVD algorithm. Both schemes
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F1G. 16—CMoC solution of an MHD shock-tube problem described in RJ (their Fig. 2a) computed on a one-dimensional grid with 512 zones. Variables
clockwise from top right are total energy density (E), 1-velocity (v,), 3-velocity (v;), 3-magnetic field (B,), 2-magnetic field (B,), 2-velocity (v,), thermal pressure (p,),
and density (p). Features labeled on the total energy plot include two fast shocks (FS), two rotational discontinuities (RD), two slow shocks (SS), and a contact
discontinuity (CD).

show small “ glitches ” in the density and thermal pressure at the location of the rotational discontinuities, and the CMoC exhibits a

small overshoot upstream of the fast shock in the right-hand state. Otherwise, the levels produced by the two schemes are virtually
identical.

4.2. Two-dimensional Propagation of Alfvén W ave

The two-dimensional analog to the one-dimensional Alfvén wave test (Fig. 3) provides a discriminating multidimensional test for
CMoC. A circular pulse of velocity perpendicular to the plane of computation is initialized at the center of a 200 x 200 zone grid
which contains a uniform magnetic field. Specifically, thoughout the (1, 2)-plane, the density, pressure, and adiabatic index are set to
1, 3/5, and 5/3, respectively. The velocity field is set to zero everywhere, except for a circular region in the center of the grid with a
radius of 10 zones in which v; (velocity perpendicular to the computational plane) is set to 1073, As with the one-dimensional
solution, the circular pulse in v; should be carried along the magnetic field lines at the Alfvén speed intact and undistorted.

Figures 17 and 18 (showing contours of v;) compare the transport of two-dimensional Alfvén waves by three characteristic-based
MHD algorithms, namely, the original MoC (SNb), a modified MoC suggested by J. Hawley (1992, private communication), and
the CMoC. The differences among the panels in Figures 17 and 18 are unrelated to the explosive “instability ” of the MoC discussed
previously. Instead they result from the details of how the transverse Lorentz forces are applied. In the original MoC scheme,
transverse Lorentz accelerations (e.g., §§ 3.3.1) are applied to the velocities entirely after the emf’s have been evaluated. Thus, the
velocities used to compute the emf’s have no “knowledge” of the transverse Lorentz forces during the current time step. Hawley’s
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a) b) c)

FiG. 17—Contours of velocity perpendicular to the grid (v,) of an initially circular Alfvén wave after having traveled approximately 4 pulse diameters along the
1-axis using (a) the original MoC (SNb), (b) Hawley’s modified MoC, and (c) the CMoC. Note that the angularity of the contour lines in places is a consequence of
trying to resolve a circular pulse on a limited number of Cartesian zones.

modification to the MoC scheme includes applying the transverse Lorentz accelerations to the velocities before the emf’s are
computed. In this case, no “time-centering” of the transverse Lorentz accelerations relative to the determination of the emf’s is
performed. In the CMoC, the transverse Lorentz accelerations are interleaved with the emf evaluations, and the order in which the
emf’s are estimated is permuted at every time step. This may be regarded as an attempt to “time-center” the transverse Lorentz
accelerations and compensate partially for the fact that the Lorentz forces are not applied implicitly with the emf’s and momenta
transport.

Figure 17 depicts the two-dimensional Alfvén pulse after it has been transported 75 zones along the 1-direction (B = i, vp1pyen = 1)
using the three methods discussed above. Note that the diffusion of the pulse is strictly confined to the direction of propagation and
is exactly the diffusion seen in Figure 3 (bottom panels) when the MoC or the CMoC is used (Figs. 17a and 17¢). Using Hawley’s
modified MoC (Fig. 17b), the diffusion is much greater. In all cases, the pulse is transported stably.

Figure 18 depicts the two-dimensional Alfvén pulse after it has been transported the same distance as Figure 17 but at an angle of
45° with respect to the computational grid (B = i + j, vzir,en = 2'/%). The circular pulse breaks up into linear striations using the
original MoC (Fig. 18a) but maintains its circular shape using Hawley’s modified MoC (Fig. 18b). This gain in stability has come at
a great cost in diffusion of the pulse. Using the CMoC, the circular pulse remains stable and is elongated perpendicular to the
direction of propagation (Fig. 18¢).

4.3. Three-dimensional Supersonic Jet

To date, the author knows of no analytically soluble problem to demonstrate the explosive “instability” of the MoC. The
discovery of a canonical test problem for this effect would help enormously in calibrating and comparing this and future MHD
algorithms. In fact, the explosive “instability ” was uncovered during the execution of three-dimensional computations of astro-
physical jets transporting weak magnetic fields, and these are presented here as the definitive discriminant between the MoC and
CMoC algorithms.

Because the explosive “instability ” is goaded by strong shear layers, the surface of a supersonic jet provides an ideal environment
in which to observe magnetic field “ explosions ” of the MoC type. Figure 19 is a cartoon of a jet computation depicting the anatomy
of the jet once it has had time to evolve and affect its environment. This is discussed further in the next section. The jet is light (jet
density is 2% of the quiescent ambient) and supersonic (Mach 6). It is initially in pressure balance with a uniform atmosphere and
transports an arbitrarily weak magnetic field (originally included to generate synchrotron emissivities and not to affect the
dynamics). The jet is computed on a 125 x 80 x 80 Cartesian grid with 10 zones across the jet diameter and is perturbed at the
orifice with a 2% helical perturbation to break the azimuthal symmetry. As the jet advances across the grid, it excites a series of
shocks both in the ambient medium and within the jet itself. Only the jet material is magnetized.

By tracking (with high temporal resolution) the extrema of all three magnetic field components in the entire grid and the total
magnetic energy density integrated over the entire volume, one can observe the MoC explosive instability directly. Figure 20 shows
the magnetic field extrema for the first 25% of the simulation as computed with the MoC (Fig. 20a) and the CMoC (Fig. 20b). The
explosive events are unmistakable in Figure 20a, with sudden jumps of magnetic field extrema occurring in symmetric pairs (i.e., the

b) c)

©

FiG. 18.—Same as Fig. 17, except the circular Alfvén wave propagates at 45° relative to the two-dimensional grid. As discussed in the text, the original MoC
destroys the pulse (a), Hawley’s modified MoC maintains stability but strongly diffuses the pulse (b), and the CMoC maintains stability while elongating the pulse
primarily in a direction perpendicular to the propagation (c).
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FiG. 19.—Anatomy of the advancing jet in the simulation described in the text. The jet enters from an orifice on the left-hand boundary of the grid. Flow-in
boundary conditions are maintained in a circular region on the boundary which forces a supersonic (Mach 6), light (0;.,/pampient = 0.02) jet to propagate into the
otherwise quiescent and homogeneous ambient medium. Major features are labeled in the figure.

most positive value and the most negative value simultaneously jumping to comparable absolute values). While not apparent from
Figure 20a, explosive extrema are always located in neighboring zones and form part of an anomalous flux loop surrounding a
spurious emf, as discussed in § 2.2 (see Fig. 6). Note, however, that the magnetic field extrema behave much more continuously when
computed with the CMoC (Fig. 20b), which shows no sign whatsoever of the explosive behavior of the MoC.

The toll exacted from the integrity of the MoC calculation by unchecked and numerous explosive events is readily seen in the
total magnetic energy. Figure 21a shows the evolution of the total magnetic field energy in the computational domain of the MoC
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Fi1G. 20.—Extrema for the magnetic field components as a function of problem time for the supersonic jet problem described in the text as computed by (a) the
MoC and (b) the CMoC. The same arbitrary units are used on the axes for both panels. The “explosions ” are clearly visible in the MoC solution (opposing spikes) but

are entirely absent in the CMoC solution.
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FI1G. 21.—Magnetic field energy density integrated over the entire computational domain for the supersonic jet problem described in the text as computed by (a)
the MoC and (b) the CMoC. The same arbitrary units are used on the axes for both panels. The explosion at t = 2.05 in Fig. 20a was sufficiently large that the
magnetic field energy density in this single zone was comparable to the magnetic energy density integrated over the rest of the grid. Note that by t = 3.2 the MoC has
generated more than 4 times as much magnetic energy as has the CMoC.

calculation as a function of time. Despite the fact that this is the total magnetic energy integrated over the entire volume, one can
still pick out individual explosive events which generate magnetic energy within a pair of zones comparable to that contained by the
rest of the grid! Taking the CMoC evolution (Fig. 21b) as more realistic, the MoC calculation has apparently exaggerated the total
magnetic energy density in the computational volume by several times after only 25% of the simulation was performed. This
additional magnetic energy has come at the expense of the kinetic energy in the system. In fact, when the MoC simulation was
~30% complete, an explosive event occurred in which the weak magnetic field (originally, § = 2p/B* ~ 10'°) was promoted to
B = 1 within a single time step, and the subsequent evolution of this dynamically important “seed ” of magnetic field destroyed the
global integrity of the solution. In contrast, the CMoC solution remained well behaved throughout the calculation.

The lesson from Figures 20 and 21 is clear. The MoC has a general tendency to equilibrate the kinetic and magnetic energy
densities (by erroneously increasing the Alfvén velocity at the expense of the flow velocity for weak magnetic fields and presumably
the reverse for dominant magnetic fields) at accelerated rates. The most spectacular manifestations of this tendency are the magnetic
“explosions ” in which kinetic energy density in shear layers is incorrectly converted to magnetic energy density and subsequently
transported into the rest of the solution. However, one does not need the explosions per se to do this. The tendency of the MoC to
exaggerate the growth of magnetic energy density is insidious and has been observed by the author to affect simulations in which no
actual explosions were seen. While the effect may be minor in most cases, it is well to conclude this section with the cautionary note
that growth rates of magnetic field energy densities as computed by the MoC should be carefully scrutinized.

5. DISCUSSION AND A PREVIEW

This paper describes a new algorithmic approach for solving the time-dependent MHD equations numerically in multidimen-
sions using methods of operator-splitting. This technique is characterized by resolving the three-dimensional cross product and curl
(e.g., eq. [4] and the Lorentz force term in eq. [2]) into three independent planes (whence “ planar-split ”) rather than into three
independent directions (whence “ directional-split ), as has been traditional. Thus, for example, within the (1, 2)-plane (normal in the
3-direction), v; and B, are interpolated in the 2-direction, and v, and B, are interpolated in the 1-direction all simultaneously and all
to the same zone edges. Since these interpolations are upwinded in the characteristic velocities, which, in turn, are determined from
the interpolated values, planar-split interpolations are performed implicitly. Continuing with the example, the interpolated values of
v, U,, By, and B, are then used to (1) transport s, in the 1-direction and s, in the 2-direction; (2) Lorentz-accelerate v, in the
1-direction and v, in the 2-direction; and (3) construct €5 (the 3-emf), used to update the magnetic fields. Planar-splitting acknow-
ledges that the fundamental “ building blocks” of the cross product in three dimensions are contained within the three orthogonal
planes and not the three orthogonal directions. For example, the 3-component of v x B is given by €; = v; B, — v, B, and requires
examination of the entire (1, 2)-plane (containing the 1- and 2-components of v and B) rather than any one direction. In addition,
transverse transport of momentum turns out to be performed more effectively in a planar-split scheme than in a directional-split
one. Conversely, the fundamental building blocks of the divergence operator in three-dimensions are the three orthogonal direc-
tions, and, thus, transport of scalars and momenta longitudinal to the transport direction are treated effectively by the more
traditional directional-splitting methods.
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Despite (or perhaps because of) its algorithmic complexity, CMoC does not specifically address the issue of monotonicity in the
magnetic field distribution. Loosely speaking, monotonicity is the requirement that no structures with scale sizes less than a few
zones be allowed to develop or persist on the grid. For volume-conservative equations (eqgs. [1], [2], and [3]), this is accomplished
by exploiting a remarkable property of the differenced divergence operator: if the interpolations themselves are monotonic, the
divergence operator will pass this property on to the updated flow variables.

Obviously, the induction equation (4) behaves very differently than the volume- conservatlve equatlons (1), (2), and (3). In
particular, the original monotonic nature of the interpolations of v and B to the bases of the characteristics is not passed on to the
updated magnetic field variables. Specifically, while the original interpolations of v and B are monotonic, the “starred” values
(8§ 3.2, and 3.3) are not, as exemplified by the occasional “virtual exchange ” of energy between the flow and Alfvén velocity fields
(e.g., discussion following eq. [71]). Indeed, it is not clear what is meant by monotonicity in magnetic field structures, or even if this is
a desired property. Unlike volume-conservative equations, some local extrema (defined by three zones) in the magnetic field are
physically significant. For example, consider a shear layer in the (1, 2)-plane in which v = +vi (x, < 0), v = —vi (x, > 0), and an
initial (dynamically weak) magnetic field given by B = + Bj permeates all space. After a single time step, this system will develop a
1-component of the magnetic field at x, = 0 only, right at the shear boundary. Everywhere else, B, will still be zero. In a strictly
monotonic scheme, such a three-zone structure would be discouraged but clearly this is a critical first step for the shear layer to alter
the direction of the magnetic field.*

Clearly, a mechanism to distinguish between desirable and undesirable deviations from monotonicity in the magnetic field
distribution is required. Currently, no satisfactory discriminant has been developed, although a few possibilities exist. These may be
generalized as follows. Instead of equation (4), consider the resistive induction equation, namely,

g—f—Vx(va E), 92)

where, formally,
E=R-J=R-(VxB), 93)

and where Z is the resistivity tensor of the fluid. In the ideal MHD limit, # = 0. Numerically, one is free to choose whatever E one
likes, so long as it preserves the various CMoC criteria. In particular, one may set E to whatever is required to eliminate
nonmonotonic behavior from the magnetic field profiles. In practice, this still necessitates determining which nonmonotonic
behavior is desired and which is not.

Another approach is to define an artificial resistivity in analogy with the artificial viscosity (Appendix A):

_ QR Ja(axa)2

aa — \/[_)

with off-diagonal elements being zero. Qp is a scaling parameter of order unity used to adjust the level of applied artificial resistivity,
J, is the a-component of the current density, dx, is the length of a zone in the a-direction, and p is the density. Equation (94) is then
used as the resistivity in equation (93) and, indirectly, equation (92), thus modifying the magnetic field.

Unfortunately, this manner of artificial resistivity can generate unacceptable levels of diffusion in the magnetic field distribution,
even for small values of Qx (J. Hawley & J. Stone 1993, private communication). This is not the case for artificial viscous heating
across a shock front, since shocks are self-steepening (Appendix A). Thus, in practice, an equilibrium between the diffusive nature of
artificial viscosity and the steepening nature of the shock is established, resulting in a rather constant shock width of 3 or 4 zones for
operator-split schemes such as CMoC. However, artificial resistivity is applied across current sheets which are not self-steepening,
and thus, current sheets tend to be diffused into oblivion. It may be that the form for £,, in equation (94) is inappropriate. The
problems of magnetic monotonicity in general, and of artificial resistivity in particular, are areas of current research and develop-
ment.

Given the rather complex nature of the CMoC algorithm, an additional potential area for concern is efficiency. In fact, it turns out
that the author’s implementation of the CMoC and the MoC are comparable in speed. This is because the additional time required
by CMoC to evaluate the characteristic speeds implicitly is roughly compensated for by the elimination of the Lagrangian MoC
step for the transverse Lorentz forces and the MUTCI computations for the transverse transport of momentum. In practice, on a
single C-90 processor, the CMoC can update as many as 330,000 one-dimensional mesh points, 210,000 two-dimensional mesh
points, or 140,000 three-dimensional mesh points per second. On a Sparc 10, these numbers are 7500, 4500, and 3000, respectively.
The CMoC is also manifestly parallelizable and can make efficient use of multiprocessor machines.

Finally, an example of a full-scale three-dimensional CMoC simulation is presented. Further details of this and other calculations
will appear in the literature as the manuscripts are prepared. The “test ” calculation in § 4.3 was performed at twice the resolution (7
million zones, 20 zones across the jet diameter) and run until the apex of the leading bow shock approached the outer boundary of
the computational domain. The computer program used to generate these data, which embodies the CMoC algorithm, is called
ZEUS-3D, a code related to, yet distinct from, a code by the same name currently being developed by M. Norman and collaborators
at the University of Illinois.

Figure 22 shows two renderings of the final epoch of this jet. Figure 22a shows a two-dimensional slice of the density on a plane
which includes the jet axis and exhibits the main features of the simulation (cf. Fig. 19). Figure 22b shows a line-of-sight integration

R , a=1273, 94)

4 Example attributed to J. Hawley (1992, private communication).
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of the synchrotron emissivity (Stokes I), determined from the computed magnetic field, pressure, and density distributions. The
interested reader might want to compare the Stokes I image in a generic sense with Figures 1 and 2 in Clarke et al. (1992). Notably
absent in Figure 22b is a well-defined jet which is probably enhanced in nature by Doppler favoritism (not accounted for in the
simulation). There is a “hot spot” at the tip of the jet in Figure 22b, though it is not the brightest feature on the image. Bright hot
spots are probably sustainable only with much higher Mach numbers.

Perhaps the most impressive aspect of Figure 22b is the propensity of total intensity filaments in the “lobe ” (labeled “shocked jet
material” in Fig. 19) which, in the simulation, result from shear amplification of a weak magnetic field on dynamical timescales.
These features are encouraged by the existence of large-scale shear layers (on the surfaces of giant eddies, for example) and
discouraged by the cascade of the flow into turbulence. The balance of these two processes results in a pseudo—steady state situation
in which filaments, whose widths are related to the thicknesses of the shear layers and whose lengths are related to the diameters of
the eddies, are always present in the extended emission of the simulated radio lobe (Clarke 1993).

The spontaneous appearance of filaments in the simulation has immediate astrophysical applications. Total intensity filaments
are a ubiquitous property of well-resolved extragalactic radio sources and, as such, require a simple, universal explanation. Until
simulations such as this were performed, no such explanation was forthcoming (see, for example, Hines, Owen, & Eilek 1989). This
result will be discusseed in more detail in a future paper.

Currently, the CMoC (as embodied by ZEUS-3D) is being used to expand the investigation of magnetized extragalactic radio jets.
Determining whether magnetic fields in extragalactic radio sources are dynamically important is relevant both to observers who
wish to understand the observed morphologies, and to theorists who ponder the origin of the magnetic field pervading the universe.
Specifically, it is clear that the magnetic field plays an important role in the stability and morphology of an extragalactic radio
source, and it may be possible to estimate the relative contribution of the magnetic field to the dynamics of a radio jet by carefully
observing its morphological properties. Even if the magnetic field is of no dynamical consequence, its role in determining the
apparent synchrotron appearance makes it a critical ingredient to any full-scale simulation. Thus, the development of an MHD
algorithm such as the CMoC, capable of evolving the induction equation reliably for all fields strengths, is important to any study in
which the evolution of the magnetic field plays a significant role.
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APPENDIX A
SUB-CYCLED ARTIFICIAL VISCOSITY

Maintaining a sharp discontinuity in the fluid variables (e.g., shocks and contact discontinuities) is perhaps the most severe
challenge to a general fluid solver. The operator-split upwinded scheme described in this paper uses an artificial viscosity based
upon the scheme proposed by von Neumann & Richtmyer (1950) to track shocks accurately and stably. The von Neumann—
Richtmyer scheme guarantees that both the entropy jump across a shock and the shock speed will be correct for a one-dimensional
shock. As outlined below, this scheme has been extended in a rather ad hoc (although in an obvious) fashion to three dimensions.

Al. IMPLEMENTATION

Addition of artificial viscosity requires that equations (2) and (3) be modified as follows:

ngv-(sv):_vp+(VxB)xB—V-£z, 95)
Oe
E+V-(ev)=—pV'v—,@:Vv, (96)

where 2 is the artificial viscous stress tensor. In practice, the viscous terms are treated as ordinary source terms and are accounted
for during the source step (§ 2.2). Specifically, the viscous source terms are applied to the velocities and internal energy after
equation (19) (i.e., after velocities have been accelerated by the pressure gradients) and before equation (20) (i.e., before the pdV
cooling/heating of the internal energy density). In the von Neumann-Richtmyer scheme, one writes 2 as a diagonal tensor. Thus,
the viscous source terms are written as

o 102

La_ T =123 97

at p axa b a ’ b b ( )
e 3 ov
—_—= — E 4 98
ot o IQ““ ox,’ ©8)
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FiG. 22a FiG. 22b

FiG. 22.—Two renderings of a three-dimensional simulation of an extragalactic radio jet computed by the CMoC algorithm and described in the text. (a) Density:
This two-dimensional slice through the data cube along the jet axis shows the density ranging from 103 (black) to 3 (white) times the quiescent ambient density. The
jet is clearly visible, as are the leading bow shock and the contact discontinuity separating the shocked jet and ambient media. Note the well-developed
Kelvin-Helmholtz and Rayleigh-Taylor instabilities along the contact discontinuity. (b) Line-of-sight integration of synchrotron emissivity: The dynamic range of
this image is ~ 1000. A logarithmic scale is used to emphasize the dimmer regions. Note the development of filaments in the extended regions of the lobe produced by
the jet.

where 2,, are the diagonal elements of the viscous stress tensor. Differencing equations (97) and (98), one gets

.. .. 2 2,1 —2,,i—1)
n,S,S9 k — n,S, k _ n 11 11 ,
W R A G T T 0 A6 deld )
. . 2 252()) = 255( — 1)
0,"552(i, j, k) = 0,"5, j, k) — di* —— — =2 : , 100
SRR = S T T O @6 Do) (100
.. . 2 233(k) — 255k — 1)
n,S,89 k) = n,S L, k) — dt" 33 33 1
W e G T #6i D Dl 1on
- . . 4v1(i, j, k) . 4vs(i, j, k) dvs(i, j, k)
n,S3 — o _ Agn 1 2 3 02
52, j, k) = & J, k) — di [.@u(z) a2 G W | (102)
where the superscript S, indicates the variable has been updated with the artificial viscous source term and where
dvy(i, j, k) = 0,"5G + 1, j, k) — 0,5, j, k) , (103)
de(i’ j9 k) = UZn’S(l;j + 1, k) - UZn,s(ia j’ k) H (104)
dU3(i, j’ k) = v3n,S(i, j’ k + 1) - U3nys(i’ j: k) . (105)

Evidently, 2,, are zone-centered quantities. While in principle one is free to choose any form for 2,,, a form which generates the
correct entropy jump across a shock, yields the correct shock propagation velocity, and has negligibly small effects well away from
shocks is the following:

2aai) = d"(Gy j, k) dv (G, j, k{ — Q1 (i, j, k) + @, MAX [0, dv,(i, j, k)1} , (106)

where (i, j, k) is the sound speed given by equation (14). The first term (proportional to the free parameter Q, ) is the linear viscosity
and has been found to be useful in stabilizing the flow after extremely strong shocks or in stagnant regions. When needed, Qs
typically set to 0.1-0.4. For most applications, however, Q, is set to zero. The second term (proportional to the free parameter Q,)is
the quadratic viscosity and corresponds to the original form given by von Neumann & Richtmyer (1950). The parameter 0, may be
interpreted roughly as one or two less than the number of zones over which a shock (which, in principle, should be contained within
a single zone) is “smeared out” by the artificial viscosity. Thus, for a typical setting of Q, = 2, shocks are captured within three or
four zones. It is the act of smearing out the shock over a finite number of zones which renders the algorithm stable to the formation
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of such discontinuities. Since shocks are self-steepening phenomena, a balance is struck between the self-steepening nature of the
shock and the diffusive nature of the artificial viscosity. Thus, shock widths are relatively constant—they do not continue to smear
out indefinitely as a contact discontinuity might under the influence of diffusion, or a current sheet might under the influence of
resistivity. Finally, the “ MAX” function ensures that quadratic viscosity will be applied only to compressional regions (e.g., shocks)
and not expanding regions where artificial viscosity is not required.

Strictly speaking, the three-dimensional extension of the von Neumann—Richtmyer scheme discussed above is valid only for
Cartesian geometry. A tensor treatment of the artificial viscosity which may be more suitable for general curvilinear coordinates is
discussed in SNa.

A2. TIME-STEP CONSIDERATIONS
The Navier-Stokes equation differs from equation (2) by the addition of the term

0
23; =W, (107)
where v is the kinematic viscosity. Consider the 1-component of this equation with symmetry in the 2- and 3-directions:
ov, 0%v,
—=v—F. 108
a ' oxd (108)

Now, for comparison, substitute equation (106) (with a = 1, assuming Q, =0 and dv, < 0) in equation (97) and rearrange
(assuming p = constant for simplicity) to get

ov, 0%,
E= —2Q2dv, dxl a—x%, (109)
Thus, artificial viscosity is formally equivalent to viscous diffusion with an effective kinematic viscosity given by
Vay, = —2Q,dvydx, = 2Q,|dv, |dx, (110)
For stability, explicit diffusion operators are limited to the diffusion time step given by (e.g., Richtmyer & Morton 1967)
d 2
dt < G . (111)
2v
Thus, by analogy, the artificial viscosity also places restrictions on the time step, namely,
2
dts, < BN _ 44 (112)

vy, 4Q,ldv, | '

Therefore, for the three-dimensional extension to the von Neumann—Richtmyer scheme discussed above, the time step must be less
than

dt, = MIN [ (113)

Vi, j.k

dx; (i) dx,(j) dx;(k) ]
4Q2|dU1(i, j’ k)l ’ 4Q2|dvz(i’ j? k)l ’ 4Q21 dU3(i, j: k)l ’

In principle, the final time step used to advance the explicit scheme should be the lesser of dt, (as determined by eq. [113]) and dt”
(as determined by eq. [13]). Unfortunately, equation (113) can place severe restrictions on the rate at which the solution converges.
Indeed, for any system in which strong shocks play a role, the viscous time step will dominate the dynamics. To see this, note that if
strong shocks are likely to occur, this means the flow speed will dominate the CFL limit as given by equation (13). Thus, dt" ~ dx/v.
Now at a strong shock, dv ~ v (velocities strongly decelerated), and, thus, from equation (113), dt, ~ dx/4Q, v, a factor of 8 less than
dt" for the typical value Q, = 2. This can be an intolerable price to pay since it eliminates one of the major advantages of an
operator-split upwinded scheme over Godunov-type schemes such as PPM, namely, computational speed. With the artificial
viscosity dominating the CFL limit, such a scheme could take several times as many time steps as PPM would on the same problem.

To circumvent this problem, one notes that the viscous step is entirely confined to the source step, and thus one may “subcycle ”
on the artificial viscosity. Thus, the MHD cycle as described in the main text (including all nonviscous source terms, transport, and
induction) is performed using the time step given by equation (13). However, the viscous stresses and heating are computed on the
(typically shorter) viscous time step given by equation (113). Thus, dt, should replace dt" in equations (99)—(102). A sufficient number
of viscous steps are taken so the problem time accumulated on the viscous timescale is equal to the dynamical time step used for the
rest of the cycle.

Of course, subcycling on the artificial viscosity does not, in general, give identical results to those obtained by computing the
entire problem on the viscous time step. The truncation errors introduced by subcycling can be reduced, however, if the viscous
stresses and heating are time-centered. This can be accomplished by making two passes through the viscous routine for every
viscous subcycle. The first pass is performed at half the viscous time step and generates partially accelerated velocities retained as
separate quantities. The second pass then updates the original velocities and the internal energy density with the viscous source
terms, using the full viscous time step and the partially accelerated velocities from the first pass to determine the velocity divergences
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From equation (19) [va.$ (a=1,2,3)]

[ o= ]

(viscous timestep [d1o, equation (113)] )

—
[dr = min(dr, dig, 1"+ dm - 1)

Cvelocity divergences [equations (103)—(104)])
[]
Giscous tensor components [equation (106)]) Half-time St ep

L]
half-viscous velocities [equations (99)-(101)]
using dt/2 instead of dm

y
velocity divergences [equations (103)—-(104)]
using half-viscous velocities instead of va7-S

(viscous tensor components [equation (106)] )

Full-time Step

'E
full-viscous velocities [equations (99)—(101)]
using dt instead of dtn

v
full-viscous internal energy [equation (102)]
using dt instead of dr

2
[ tp=tp+at ]

\— TRUE @

FALSE

To equation (20) and rest of MHD cycle
F1G. 23.—Detailed flowchart of the subcycled artificial viscosity algorithm as implemented in the ZEUS-3D computer program

(egs. [103], [104], and [105]). By time-centering the viscous update in this way, detailed agreement between the solutions with and
without subcycling is greatly improved.
Figure 23 is a detailed flowchart showing how the subcycled artificial viscosity has been implemented in ZEUS-3D.

APPENDIX B
TOTAL ENERGY EQUATION

One possible variation on the algorithm presented herein is to replace equation (3) with the total energy equation. Defining the
total energy E as
1 B?
E=e+=pv? +—
e+2pv+2, (114)

where v = |v| and B = | B|, the time derivative of E may be evaluated from equations (1)—(4) to get

aa—l;:+V-v(E+p*)+V-q—V-B(v-B):v-V(BZ)—2B'[(v-V)B], (115)
where p* =p + B%/2;q4 = (v, 2,41, 0, 255, V3 233), 2,0, @ = 1,2, 3, are the von Neumann-Richtmyer artificial viscous stresses defined
in Appendix A (eq. [106]); and where the right-hand side of equation (115) is identically zero for Cartesian, cylindrical, spherical
polar, and other suitably behaved coordinate systems. Note that equations (114) and (115) can be extended trivially to include the
gravitational potential, if desired.

Equation (115) is then cast into integral form to get

%jEdV+§[(E+p*)v+q—(v-B)B]-dA=0. (116)
| 4 A
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As there are no longer any sources (right-hand side = 0), the update of E may be performed by three transport steps, namely, T}, T,
and T;. Thus, considering transport in the 1-direction only, equation (116) becomes

d
— av
dt ,,E

Differencing equation (117) gives

- —§ Ev, dA, —3€ (0% + 2,,)v, dA, +§; (v B)B,dA, . (117)
Ay Ay Ay

1

,971(1 + l’j’ k) — g;l(i’ js k) _ gl(l + I’js k) _ gl(i7 j’ k) ‘#l(l + 17]" k) — '}fl(i, j’ k)
dx 1 a(i) dx 1 a(i) dx 1 a(i) ’

where Z(i, j, k) and (i, j, k) are the fluxes of total energy (E) and total pressure (P = p* + 2,,), respectively, across the i-face and
are given by

E™Ty(i, j, k) = E"G, j, k) —

(118)

Z1(, J, k) = MG, j, )LE"G, j, k)/d"(, J, k)]’i , (119)
GG, ) k) = MG, j, PG J, Kd"G, J, )] - (120)
The mass flux .# (i, j, k) is given by equation (24), and P"(i, j, k) is given by
PG, j, k) = E"G, j, k) + 241 — 5d"G, j, K{[V1G, j, k) + 036 + 1, j, K)]?
+ [5G, j, k) + v5G, j + 1, k)]* + [V3G, j, k) + 053G, j, k + 1D]?} (121)

where 2, is given by equation (106). The separation of the total energy and total pressure fluxes is deliberate. Thus, two separate
interpolations (specific energy and “ specific pressure ) are required. If, instead, the total energy and total pressure are combined and
their sum interpolated, monotonicity of E is no longer ensured and the algorithm becomes unstable.

In the last term of equation (118), 5#, is not a true flux since “ transport ” is performed by B, not v,. There are a variety of ways to
define s, and one that works reasonably well is

Hi(0, J, k) = [016 J, K)BIG Jy k) + <0535,1<B% ;.1 + <v3>3,1<B3)3,11BiG, j, k) dt" (122)

where the angle brackets indicate a four-point average of the enclosed quantity necessary to estimate the quantity at the i-face. Thus,
for example,

(05>2,1 = 2030, j, k) + 030, j + L, k) + 3G — Lj, k) + o3 — Lj + L, K)] . (123)

Notice that no averaging is necessary for the v’ B} term, since it is already located at the i-face.
By permuting the labels and indices, difference expressions for the transport of E in the 2- and 3-directions are given by

'g'—Z(iaj + 15 k) _ yZ(iy j’ k) _ gl(inl + 17 k) — gZ(L ja k) %2(13] + 13 k) — '%2(1', j, k)
dx2.(J) dx24(J) dx4(J)

E"'Tl’Tz(l', j, k) — E”,Tl(i’ j, k) _ , (124)

ENTRTATG, k) = B, K)

— En,Tl,Tz(i J k) _ y3(i’js k + 1) - 'a/—3(i’j’ k) _ g3(i’j’ k + l) _ g3(i’ja k) ”3(1.’ j7 k + 1) —_ '#3(1.,]., k)

dx 3,(k) dx3,(k) dx3,(K) ’
(125)
where

Fli, i K) = M i, j, OTE™TG, ], I TG, j, B (126)
9,00, . k) = MG, j, OTP™TG, J, WG, J, (127)
K0, j, k) = [5G, j, K)B3G, j, k) + <v3>3,2{B3>3,2 + V1)1,2{B1)1,,1B5(0, j, k) dt”, (128)
Fo(i, . K) = MG, j, OTE™TTG, J, Ryd TG, g, BT (129)
G300, . K) = MG, j, OTPTOT, J, Ryd T, g, BT (130)
H3(i, j, k) = [v3G, j, KB3(, J, k) + 01>1,3<B1) 1.3 + 03>2,3$B3>,,31B3(, j, k)dt" . (131)

Note that the artificial viscosity is now an integral part of the transport step. No separate viscous source term should be applied
to the internal energy density, and equation (102) is skipped. Unfortunately, because the artificial viscosity is no longer isolated in a
single module (as is the case when the internal energy equation is solved), subcycling on the viscous time step can no longer be
performed (Appendix A). Thus, the CFL limit now requires the time step be set to the lesser of the time steps evaluated by equations
(13) and (113).

Solving the total energy equation rather than the internal energy equation has the advantage of ensuring total energy -conserva-
tion to within machine round-off error. For some applications (e.g., strong shocks), this may be a critical consideration. However, in
practice, because the thermal pressure is now the difference between two numerically determined quantities (E and pv?/2), numerical
noise can be amplified and generate negative pressures, especially in highly supersonic flow. This can lead to problems much worse
than violation of strict energy conservation. In addition, not subcycling on the viscous time step can decrease computational
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efficiency dramatically (Appendix A). Thus, unless strict total energy conservation is of paramount importance (e.g., the second test
, problem in § 4.1), and where computational speed is an important consideration, calculations should be performed by solving the

3: internal energy equatlon.
&
L
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