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ABSTRACT
We present 2.5D global, ideal magnetohydrodynamic (MHD) simulations of magnetically and
rotationally driven protostellar jets from Keplerian accretion discs, wherein only the initial
magnetic field strength at the inner radius of the disc, Bi, is varied. Using the AMR-MHD code
AZEuS, we self-consistently follow the jet evolution into the observational regime (> 103 au)
with a spatial dynamic range of ∼6.5 × 105. The simulations reveal a three-component outflow:
(1) A hot, dense, super-fast, and highly magnetized ‘jet core’; (2) a cold, rarefied, trans-fast, and
highly magnetized ‘sheath’ surrounding the jet core and extending to a tangential discontinuity;
and (3) a warm, dense, trans-slow, and weakly magnetized shocked ambient medium entrained
by the advancing bow shock. The simulations reveal power-law relationships between Bi and
the jet advance speed, vjet, the average jet rotation speed, ⟨vϕ⟩, as well as fluxes of mass,
momentum, and kinetic energy. Quantities that do not depend on Bi include the plasma-β of
the transported material that, in all cases, seems to asymptote to order unity. Jets are launched
by a combination of the ‘magnetic tower’ and ‘bead-on-a-wire’ mechanisms, with the former
accounting for most of the jet acceleration – even for strong fields – and continuing well
beyond the fast magnetosonic point. At no time does the leading bow shock leave the domain
and, as such, these simulations generate large-scale jets that reproduce many of the observed
properties of protostellar jets including their characteristic speeds and transported fluxes.
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1 IN T RO D U C T I O N

One of the most important epochs in the early evolution of most
stars is the short period during which it throws a small fraction of
the accreted gas back into the interstellar medium (ISM) as a pair
of collimated, bipolar, supersonic jets. This period, lasting typically
104–105 yr, is to the star’s entire lifetime what a few hours is to
a human’s. Yet, in this single ‘afternoon’, the protostellar system
manages to shed itself of sufficient angular momentum to enable
significant accretion from the protoplanetary accretion disc on to the
protostar. Without protostellar jets, stars as we know them would
not exist.

Thought to be stars in their own right when first observed by
Burnham (1890), protostellar jets only started to be appreciated for
what they are by Snell, Loren & Plambeck (1980). In this seminal
work, a detailed bipolar outflow model for L1551 is described that
is still basic to the modern view, and done without ever using the
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word jet.1 It is now known that protostellar jets reach lengths of 0.1–
5 pc (Bally, Reipurth & Davis 2007) and can transport ∼10 per cent
of the accreted mass and ∼70 per cent of the angular momentum
(Woitas et al. 2005) out of the protostellar system and back into the
ISM. They can appear as straight, ballistic, highly supersonic flows
complete with leading bow shocks (e.g. HH 34; Devine et al. 1997),
or more like effluent from a smokestack; wide, twisted and with
no particular evidence of a supersonic nature (e.g. HH 47; Hartigan
et al. 2005).

Reipurth (1999) and Wu et al. (2004) catalogue some 1000
Herbig–Haro (HH) objects and molecular outflows from protostellar
objects, imaged with atomic (e.g. Hα, OIII, SII) and/or molecular
(e.g. CO) line emission and from which important kinematical and
dynamical quantities are measured. While observational properties
of individual outflows vary widely, ranges of values for parameters

1While the term ‘jet’ was first used in an astrophysical context by Baade &
Minkowski (1954) in describing the optical ‘protrusion’ on M87, it did not
enter the protostellar vernacular until Mundt & Fried (1983).
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Table 1. Physical quantities as measured/inferred from observations of
protostellar outflows taken from references listed in the text. The quantities
include from top to bottom: vjet, advance speed of the jet; ⟨vrot⟩, jet rotational
speed; Ṁ , mass flux; ṗ, linear momentum flux; L̇, angular momentum flux;
and ventr, advance speed of entrained outflow.

vjet 100–1000 km s−1

⟨vrot⟩ 5–25 km s−1

Ṁ 10−9 – 10−5 M⊙ yr−1

ṗ 10−6 – 1.4 × 10−4 M⊙ yr−1 km s−1

L̇ 10−6 – 10−5 M⊙ yr−1 au km s−1

ventr 1–30 km s−1

most useful for constraining numerical magnetohydrodynamical
(MHD) simulations can be established. These include the advance
speed of the jet into the ISM (vjet), the speed of entrained material
swept up by the bow shock leading the jet (ventr), the average
rotational speed of jet material about its propagation axis (⟨vrot⟩),
fluxes in mass (Ṁ), linear momentum (ṗ), and angular momentum
(L̇). Table 1 displays a summary of what is currently known of these
parameters as reported by Hartigan, Morse & Raymond (1994),
Reipurth & Bally (2001), Podio et al. (2006), McKee & Ostriker
(2007), Ray et al. (2007), Coffey, Bacciotti & Podio (2008), Coffey
et al. (2011), and Frank et al. (2014). While these observations
provide an extensive and highly detailed picture of protostellar jets,
the quantities listed in Table 1 are largely inferred and indirect, and
should not be taken as hard limits.

For example, direct evidence of jet rotation remains somewhat
controversial since only recently has observational resolution been
sufficient (on the order of 10 au; e.g. Coffey et al. 2008; Bjerkeli
et al. 2016; Lee et al. 2017) to yield reliable radial profiles across
the jet. Woitas et al. (2005) report line-of-sight velocity gradients
that they interpret as rotation, though Soker (2005) suggests that
this might indicate an interaction of the jet with a warped disc,
while Fendt (2011) suggests MHD shocks in a helical field. Still,
it is widely believed that protostellar jets must rotate if they are to
succeed in their presumed task of ridding the protostar of its angular
momentum.

An important physical quantity missing from Table 1 is the
magnetic field strength. Direct measurements of B in a protostellar
jet remain elusive, with just two indirect measures reported to date
(Ray et al. 1997; Carrasco-González et al. 2010) which, almost by
definition, represent extreme cases. Still, the theoretical evidence
for magnetic fields pervading protostellar jets is overwhelming, and
it is nearly universally accepted as being a critical ingredient to jet
dynamics (Hartigan et al. 2007). Certainly, strong fields are known
to exist within the inner regions of protostellar discs (∼1 kG; Donati
et al. 2005), and it is difficult to imagine how this is not transported
outward by the jet.

To a large extent, the base of a jet can be characterized by
the presence of strong gravitational and magnetic fields, and rapid
rotation. In such an environment, Blandford & Payne (1982), based
on the ‘bead-on-a-wire’ model first suggested by Henriksen &
Rayburn (1971), showed that the formation of a super-fast jet is
virtually inevitable. In their model, a Keplerian disc is threaded
with ‘frozen in’ vertical magnetic flux. As the disc rotates, magnetic
field lines are twisted and, once the angle at which they emerge from
the disc falls below the critical value of 60◦, the centrifugal force
overwhelms gravity and drives material outward as ‘beads sliding
along a rotating wire’.

This model, also known as ‘magnetocentrifugal driving’, has
precipitated a plethora of numerical simulations to investigate

Table 2. Estimates made from local simulations of the observational pa-
rameters listed in Table 1, taken from Ouyed & Pudritz (1997a), Ustyugova
et al. (1999), Anderson et al. (2005), Fendt (2009), Staff et al. (2010),
Sheikhnezami et al. (2012), and Stepanovs & Fendt (2014).

vjet 35–1300 km s−1

⟨vrot⟩ <50 km s−1

Ṁ 10−8 – 10−5 M⊙ yr−1

ṗ –
L̇ 3 × 10−8 –

9 × 10−6 M⊙ yr−1 au km s−1

ventr –

its consequences. Since a 2D axisymmetric, ideal Keplerian disc
is unstable to the magnetorotational instability (MRI; Balbus &
Hawley 1992 and references therein; only in 3D is the instability
saturated, Stone et al. 1996), most simulations of magnetocentrifu-
gally launched jets (e.g. Uchida & Shibata 1985; Ustyugova et al.
1995, 1999; Meier et al. 1997; Ouyed & Pudritz 1997a,b, 1999;
Krasnopolsky, Li & Blandford 1999, 2003; Fendt & Čemeljić 2002;
Vitorino, Jatenco-Pereira & Opher 2002; Ouyed, Clarke & Pudritz
2003; von Rekowski et al. 2003; Anderson et al. 2005, 2006; Porth &
Fendt 2010; Stute et al. 2014; Teşileanu et al. 2014; Staff et al. 2010,
2015) treat the accretion disc as a boundary condition, allowing the
jet dynamics to be studied independently of the disc.

There are a number of 2D studies that do include the disc as
part of the simulations, even if in a somewhat idealized fashion
(e.g. Casse & Keppens 2002, 2004; Zanni et al. 2007; Tzeferacos
et al. 2009; Murphy, Ferreira & Zanni 2010; Sheikhnezami et al.
2012; Fendt & Sheikhnezami 2013; Stepanovs & Fendt 2014,
2016; Bai 2017; Suriano et al. 2017; Zhu & Stone 2017; Suriano
et al. 2018). These simulations typically use a magnetic resistivity
to prevent excessive disc turbulence, and are more realistic by
including the disc evolution self-consistently. However, they are
much more expensive computationally because of the significantly
shorter physical time-scales in the disc and it is because of this we
have chosen here to treat the disc as a boundary condition.

Because most of the magnetocentrifugal ‘action’ occurs near
the inner radius of the disc, simulations must be performed at a
resolution of 0.01 au or less in order to resolve the important physics
there. Thus, even the most ambitious of the works listed above have
followed the jet to just 100 au (Anderson et al. 2005), and more
recently to 150 au (Stepanovs & Fendt 2014, 2016), above the disc.
Accordingly, we refer to these simulations collectively as ‘local’
simulations.

There also exists a class of ‘global’ simulations that follow the
gravitational collapse of isolated, magnetized molecular cloud cores
including the formation of the protostar and accretion disc (e.g.
Seifried et al. 2011, 2012; Tomida et al. 2013; Tomida, Okuzumi &
Machida 2015; Masson et al. 2016; Kölligan & Kuiper 2018).
While these simulations include, by design, observational length-
scales, due to the extreme computational costs involved, they cannot
include the sub-0.01 au scales necessary to suitably resolve the
physics of the jet-launching mechanism for any substantial length
of time.

Notably, the large-scale difference between local simulations and
observed jets (103–106 au; e.g. Devine et al. 1997; Aso et al. 2015)
makes direct comparisons impossible, and to make any comparison
at all, one must make severe assumptions on how local variables
relate to global properties of the jet. As an example, most local
simulations continue their calculations long after the leading bow
shock or Alfvén wave has left the grid. To say nothing of the change
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to the (thermo)dynamics of the jet that the sudden loss of a confining
bow shock must cause, a proxy for vjet must be used. Typically,
this is the speed at the Alfvén point (vA) or, if it is still in the
domain, the fast magnetosonic point (vf). In the only simulation
performed to date where the jet-launching conditions are controlled
and the leading bow shock remains within the computational domain
(Ramsey & Clarke 2011), we find that the jet continues to accelerate
well beyond the fast point, and thus vA and vf are poor proxies for
the final vjet.

Table 2 summarizes estimates of the parameters in Table 1 made
from the local simulations cited in the caption. Because of the
assumptions and extrapolations inherent in these estimates, we offer
them only as an ‘order-of-magnitude’ check with the observations.
Notably, we are not aware of any estimates of ṗ that can be gleaned
from local simulations.

This work is a continuation of Ramsey & Clarke (2011). Here, we
present eight 2.5D axisymmetric global simulations in which the jet
is followed from its launching point with 0.00625 au resolution to
a length of up to 4000 au, well into the observational regime. Even
still, this represents only about 1 per cent of the age and length of
the largest jets from class 0/I young stellar objects that, as we will
see, puts some limitations on what can be inferred.

As ‘immature’ as our simulations may be, they are still global
in nature (both resolving the region where the jet is launched, and
following the jet to observational scales), and imply a dynamic
range in length-scale of ∼6.5 × 105 for our most highly resolved
simulation. A single-grid (4096 × 256 au) 2D MHD simulation
with a resolution of 0.006 25 au would require >100 billion zones
over 100 million time-steps to complete. Thus, to perform these
simulations, we have used the adaptive mesh refinement (AMR)
MHD code, AZEuS (Ramsey, Clarke & Men’shchikov 2012). Each
simulation differs from the others only in the strength of the mag-
netic field at the inner radius of the disc, Bi, which is used to scale an
initially force-free, global ‘hour-glass’ magnetic field distribution.
The central gravitating mass (0.5 M⊙) and the parameters governing
the Keplerian disc (initially in gravitocentrifugal balance) and the
coronal atmosphere (initially in hydrostatic balance) are the same
for all simulations. The purpose of this study is to determine
if this is sufficient to produce a jet with the right observational
characteristics, and further, what role if any Bi has on determining
observational and physical properties of the jet. Neither of these
fundamental questions can be answered by local simulations.

Finally, a comment on the choice of axisymmetry is in order.
Even with AMR and distributing the calculations over 16–24 CPU
cores, some of the simulations discussed herein required more
than 6 months to complete, and a fully 3D treatment was simply
impractical. Buoyed by the knowledge that many stellar jets appear
axisymmetric (e.g. HH 34; Devine et al. 1997), a 2D axisymmetric
approach was adopted at the outset of this project.

Still, the cost in realism is undeniable. Even in systems with a
high degree of apparent axisymmetry, the fluid is subject to all
modes of Kelvin–Helmholtz (K–H) instabilities (e.g. Hardee &
Clarke 1995) on both large and small scales, which take their toll as
the jet propagates. On the large scale, Clarke (1993) showed that the
otherwise perfectly stable nose-cone found in a 2D axisymmetric
magnetically confined jet was periodically sloughed off to the side
in 3D, resulting in a blunter, more slowly propagating jet. On
the smaller scale, Clarke (1996a) found that, in simulations of a
propagating jet with a weak magnetic field, the 3D jet once again
propagated more slowly and formed a blunter bow shock. In this
case, the numerous modes of K–H instabilities in 3D – all but
one unavailable in 2D axisymmetry – effectively converts directed

kinetic energy of outflow to turbulent and ultimately thermal energy
in the expanding cocoon. Such considerations should therefore be
borne in mind as discussion of the present simulations unfolds.

In Section 2, we review some of the relevant steady state theory
that applies to portions of our numerical solutions. In Section 3, we
describe briefly the numerical methodology and how the simulations
are initialized. Sections 4 and 5 comprise the bulk of the paper in
which the simulations are described and analysed in detail. Finally,
conclusions are drawn in Section 6.

2 STEADY STATE A NA LY SIS

Analogous to Bernoulli’s constant for hydrodynamics, in a steady
state (∂ t = 0),2 axisymmetric (∂ϕ = 0), and ideal MHD fluid, there
are four conserved quantities along a given magnetic field line,
which themselves are contours of the flux function,3 ψ . In Gaussian
cgs units, these are (Weber & Davis 1967; Mestel 1968; Pudritz &
Norman 1983; Pelletier & Pudritz 1992; Spruit 1996):

η(ψ) = ρvp

Bp
= MA

√
ρ

4π
; (1)

l(ψ) = r

(
vϕ − aϕ

MA

)
; (2)

*(ψ) = 1
r

(
vϕ − MAaϕ

)
; (3)

ε(ψ) =
v2

p

2
−

v2
ϕ

2
+ MAvϕaϕ + c2

s

γ − 1
+ φ, (4)

where η is the mass load, l and * are, respectively, the specific
angular momentum and angular speed of the field line (including
terms describing the magnetic torque),4 and ε is the specific
energy of the fluid. In axisymmetry, ψ describes surfaces of
constant magnetic flux, and equations (1)–(4) are therefore also
constant on these flux surfaces. Henceforth, we refer to these as the
‘Weber–Davis (WD) constants’. Note that equation (4) is essentially
Bernoulli’s constant generalized for MHD. Other variables include
the density, ρ, the poloidal velocity, vp, the toroidal velocity, vϕ ,
the poloidal magnetic field, Bp, the Alfvén Mach number, MA =
vp/ap, the poloidal Alfvén speed, ap = Bp/

√
4πρ, the toroidal

Alfvén speed, aϕ = Bϕ/
√

4πρ, the toroidal magnetic field, Bϕ , the
adiabatic sound speed, cs =

√
γp/ρ, the ratio of specific heats, γ ,

and the gravitational potential of the protostar, φ = −GM∗/R. Here,
R =

√
z2 + r2 is the spherical polar radial coordinate, and z, r, and

ϕ are the cylindrical coordinates.5 Equations (1)–(4) are a straight-
forward extension from equations (12, 13, 19, and 31) in Spruit
(1996), where we set f

′ = *.
As an example, by definition, the mass flux (Fρ = ρvpδA) is

conserved along a stream tube of cross-section δA and the magnetic
flux (FB = BpδA) is conserved along a magnetic flux tube. In the
steady state when vp!Bp, streamlines are everywhere parallel to

2Throughout this paper, we use the ‘abbreviated Leibniz notation’ for
derivatives. Thus, ∂ t ≡ ∂/∂t.
3ψ = rAϕ , where Aϕ is the toroidal component of the vector potential.
4*(ψ) is sometimes referred to as the iso-rotation parameter (e.g. Fendt &
Memola 2001; Porth et al. 2011).
5Note the difference here between φ, the gravitational potential, and ϕ, the
cylindrical coordinate.
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Figure 1. A magnetic field line, ψ , anchored in the accretion disc at distance
r0 from the rotation axis emerging from the disc at an angle θ0. Other
quantities are defined in the text.

magnetic flux lines, and η(ψ) = Fρ/FB is constant along a field
line. Arguments establishing the constancy of l, *, and ε along field
lines in the steady state follow similar lines.

Following Spruit (1996), if r0(ψ) is the radial coordinate of the
disc where a particular field line, ψ , is anchored (Fig. 1), one can
evaluate *(ψ) and ε(ψ) at the anchor point. At (z, r) = (0, r0),
vp ∼ 0 ⇒ MA ∼ 0, vϕ = vK,0 =

√
GM∗/r0 (assuming the disc is

Keplerian), φ(r0) = −v2
K,0, and equations (3) and (4) reduce to

*(ψ) = vK,0

r0
and ε(ψ) = −

3v2
K,0

2
, (5)

assuming a cold fluid (β ≪ 1; cs ∼ 0). Conversely, η and l are most
conveniently evaluated at the Alfvén point (MA = 1) where

η(ψ) =
√

ρA

4π
and l(ψ) = r2

A*(ψ) = vK,0
r2

A

r0
. (6)

Local simulations treat the leading Alfvén torsional wave and bow
shock as transients and, irrespective of the dynamical consequences,
allow them to leave the computational domain. Thereafter, most
local simulations reach some sort of steady state from which various
comparisons with analytical theory are made. For example, being
in a near-steady state, η(ψ) from equation (1) is expected to be
constant, and thus many investigations use η(ψ) as a parameter
to specify the nature of the outflow (e.g. Ouyed & Pudritz 1999;
Anderson et al. 2005); if ρvp and Bp are changed in proportion to
each other in a steady state jet, then the character of the outflow
should remain unaltered.

Local simulations reaching a steady state typically show that the
jet speed saturates at or just beyond the fast point, assuming that
this point remains inside the grid. Those that report on asymptotic
jet speeds find vp,max ∼ ηα , with the majority finding α < 0 (i.e.
flow speed increases as the field strength increases or the poloidal
momentum at the disc decreases; e.g. Anderson et al. 2005; Zanni
et al. 2007; Porth & Fendt 2010), as is expected from steady state
theory (Spruit 1996).6 Indeed, it should come as no surprise that
local simulations confirm various aspects of steady state theory,
since the assumption of no transients is common to both. As soon
as vp!Bp is realized over much of the computational domain, the
conclusions of steady state theory become inescapable.

Since the leading bow shock and Alfvén torsion wave never
leave the grid in our simulations, none reach a global steady state.

6A notable exception is Ouyed & Pudritz (1999), who find the opposite
trend.

However, regions near the disc of some simulations (more so for
stronger Bi) do reach (locally) a quasi-steady state (as confirmed
by the constancy of η, l, *, and ε along field lines), and we exploit
this observation in some of the analysis. Under the assumption that
portions of the jet are in steady state, we can determine how the
flow speed at the fast point, for example, varies with Bi, and then
attempt to relate this to vjet.

To this end, from equations (3), (4), and (5), we can write

2ε − 2φ + r2*2 = v2
K,0

(
−3 + 2

r0

R
+ r2

r2
0

)

= v2
p + M2

Aa2
ϕ =

v2
pa

2

a2
p

, (7)

where a2 = a2
ϕ + a2

p = B2/(4πρ) is the fast speed squared when
c2

s = 0 (cold flow). Thus, at the fast point where (z, r) = (zf, rf),
ap = ap,f = Bp,f/

√
4πρf , and vp = a = vp,f, equation (7) becomes

vp,f =
√

vK,0Bp,f

[
1

4πρf

(
r2

f

r2
0

+ 2r0

Rf
− 3

)]1/4

, (8)

where rf and Rf are, respectively, the cylindrical and spherical
polar radial coordinates to the fast point, as shown in Fig. 1. We
have verified this formula directly from our simulations, and find
agreement to better than 3 per cent along the field line anchored at
r0 = 1 au with measures from other field lines in steady state giving
similar results (e.g. Table 6 on page 18).

If we choose the same field line foot print, r0, for each simulation,
vK,0 becomes a constant and, in as much as the quantity in square
brackets to the 1/4th power in equation (8) depends weakly on Bi,
we might expect

vp,f ∼
√

Bp,f ∼ B1/2
i , (9)

since the magnetic field profile scales with Bi. This can be contrasted
with the asymptotic flow speed predicted for steady state flow and
a purely radial magnetic field (e.g. Spruit 1996; equation 74):

vp,max =
(

*2(ψ)r2
0 Bp(r0)

4πη(ψ)

)1/3

∼ B2/3
i , (10)

since η(ψ) ∼ B−1
p . We return to these predicted dependencies on Bi

in Section 5.3.

3 N U M E R I C A L C O N S I D E R AT I O N S

3.1 AZEuS

The simulations presented herein are performed with the adaptive
mesh refinement (AMR) MHD code, AZEuS (Adaptive Zone
Eulerian Scheme; Ramsey et al. 2012; http://people.virginia.edu/
∼jpr8yu/azeus), based on Version 3.6 of ZEUS-3D (Clarke 1996b,
2010; http://www.ica.smu.ca/zeus3d). The ZEUS family of codes
is among the best tested, documented, and most widely used
astrophysical MHD codes available. Our version allows one to
choose to solve the internal energy or total energy equations, the
latter being conservative in energy to machine round-off error. As
the simulations presented here are only mildly super-magnetosonic
(Mf < 8; Table 5), the internal energy equation does an adequate
job of conserving energy, while guaranteeing a positive-definite
pressure, which is of greater importance here than strict energy
conservation.

Like ZEUS-3D, AZEuS solves the ideal equations of MHD on
a fully staggered mesh (zone-centred scalars, face-centred vector
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Table 3. Initial static grids used in all simulations (refinement ratio ν =
2). All zones are square, and thus 1z = 1r = 1. The near powers-of-2 for
the grid dimensions is a consequence of requiring the number of zones –
including boundary zones – in each dimension of grids 1–8 to be a multiple
of the number of OpenMP threads used (typically 16).

Level zmax (au) rmax (au) 1 (au)

1 4070.4 249.6 1.6
2 508.8 124.8 0.8
3 254.4 62.4 0.4
4 127.2 31.2 0.2
5 63.6 15.6 0.1
6 31.8 7.8 0.05
7 15.9 3.9 0.025
8 7.95 1.95 0.0125
9 3.975 0.975 0.00625

components) in an operator split fashion (source terms computed
separately from fluxes), using directional splitting for compressive
terms (scalar transport, pressure gradient, transport of the ith

component of momentum in the i-direction), and planar splitting
for transverse terms (magnetic induction, transverse Lorentz forces,
transport of the ith component of momentum in the j-direction, i ̸= j).
AZEuS is upwinded in the entropy and Alfvén waves and relies on a
modest amount of Von Neumann & Richtmyer (1950) artificial vis-
cosity to stabilize compressive (fast and slow magnetosonic) waves.
Interpolations are performed using the second order, monotonized
scheme of van Leer (1977) and, for transverse terms, interpolations
are performed implicitly in each plane using the Consistent Method
of Characteristics (CMoC; Clarke 1996b).

As for the AMR module, we have adapted the block-based
method of Berger & Colella (1989) and Bell et al. (1994) for the
staggered mesh of AZEuS. Significant effort was spent minimizing
errors caused by waves passing across grid boundaries, which is of
particular importance to this work. This includes the development
and implementation of third-order interpolation schemes in which
mass, momentum, and energy are conserved to machine round-off
error. Prolongation of magnetic field is done using a method based
on Li & Li (2004), ensuring the validity of the solenoidal condition
to machine round-off error regardless of how various 2D meshes
abut, overlap, and overlay each other. Indeed, we find it critical for
the solenoidal condition to be valid to machine round-off error even
within the boundaries. The interested reader is referred to Ramsey
et al. (2012) for details.

All simulations are initialized with nine static, nested grids
(including the base grid) with a refinement ratio ν = 2. Table 3
gives the extent (in astronomical units) of each of the 2D grids
(zmax and rmax) excluding the boundary regions, along with their
resolution, 1, in each of the z- and r-directions. Thus, level 1 – the
coarsest ‘base’ grid – is resolved with 2548 × 160 zones (including
2 boundary zones at each edge), while each of levels 2–9 is resolved
with 640 × 160 zones.

In addition, smaller grids are added and removed dynamically
based on how well the radial gradient of Bϕ is resolved near the
symmetry axis. By definition, in axisymmetry both vϕ and Bϕ should
be zero on axis. In our simulations, we find that while vϕ obliges, Bϕ

does not always. Specifically, as a jet propagates, a hot, low-velocity
‘spine’ of strong helical field develops along the symmetry axis.
With insufficient resolution, the decline of Bϕ from its maximum
value off-axis to zero on-axis is buried within a single zone, creating
an ‘inverted profile’ for Bϕ , one whose magnitude declines away
from the symmetry axis. This generates an axial current density,

Jz ∝ ∂ r(rBϕ) of opposite sign to Bϕ (physically, in this situation,
Jz and Bϕ should have the same sign) which, in turn, exerts a
Lorentz force, Fr ∝ − JzBϕ , directed radially outward (instead
of inward). Left unchecked, these unphysical forces occasionally
trigger rather dramatic ‘numerical explosions’, sending vast bubbles
of hot, rarefied gas expanding into the solution. As interesting as
these events are to watch, they are completely numerical in origin
and destroy the integrity of the simulation.

We have therefore imposed a ‘Lorentz criterion’ in which a level
of refinement is added in any region near the axis where the gradient
in Bϕ is insufficiently resolved. Specifically, we require the unitless
gradient:

∂rBϕ

1

B
>

1
N

,

where 1 is the zone size, B =
√

B2
p + B2

ϕ is the local magnetic field
strength, and N = 6 is the minimum number of zones we require to
resolve the radial profile of Bϕ . To avoid ‘mesh trashing’ (Khokhlov
1998), the threshold for removing a grid is 2N. In practice, we must
also guard against ‘frivolous’ inverted Bϕ profiles. Frequently, noisy
and dynamically inactive values of Bϕ can create inverted profiles
near the symmetry axis and such occurrences should not trigger the
insertion of a new grid. In these simulations, we do not go beyond
refinement level 9.

3.2 Initial conditions

Young protostellar discs can extend for hundreds of astronomical
units, but have inner radii, ri, of 3–5 stellar radii, R∗ (Calvet,
Hartmann & Strom 2000). For a typical T Tauri star (M∗ = 0.5 M⊙),
R∗ = 2.5R⊙. Thus, we adopt ri = 0.05 au and use this as our length-
scale. Our finest static grid (level 9; Table 3) resolves ri with eight
zones that, based on test simulations of different resolutions, is
sufficient for numerical convergence with respect to the physics of
the jet launching mechanism.

3.2.1 The atmosphere

The atmosphere is initialized in hydrostatic equilibrium (HSE),

∇p + ρ∇φ = 0, (11)

where φ is the gravitational potential of M∗. Since the second term
is not a perfect gradient, differencing it directly on a staggered-
mesh commits sufficient truncation error to render the atmosphere
numerically unstable. Ouyed & Pudritz (1997a, 1999), and con-
tinuing with Staff et al. (2010, 2015), address this problem by
assuming a strict polytropic equation of state, p = κργ , where
κ is constant throughout the grid even across shocks. While this
has the advantage of allowing the ρ∇φ term to be written as a
perfect gradient that eliminates the numerical truncation error and
stabilizes the atmosphere, it also replaces energy with entropy as the
primary conserved variable. This has the unintended consequences
of forbidding the formation of contact/tangential discontinuities and
generating isentropic shocks, which we find adversely affects the
global solution. Thus, in all of our work, we have retained the
adiabatic equation of state (p ∝ ργ , but where the proportionality
constant remains a function of entropy) to allow the correct entropy
jump across shocks and the spontaneous formation of contact
discontinuities with their required discontinuities in entropy.

This leaves, however, the numerical instability of the HSE
atmosphere unsettled. We address this problem by replacing ∇φ
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in equation (11) with the corresponding poloidal gravitational
acceleration vector,

g = − 1
ρh

∇ph, (12)

where ρh and ph are the hydrostatic density and pressure:

ρh = ρi

(
ri√

r2 + z2

) 1
γ−1

and ph = pi

(
ρh

ρi

)γ

. (13)

Here, ρ i and pi are the initial density and pressure7 at r = ri,
respectively, and p ∝ ργ (γ = 5/3) is assumed throughout the
atmosphere at t = 0. In this way, differencing equation (11)
maintains HSE to machine round-off error indefinitely. While it
is true that g determined from equation (12) is not numerically
irrotational (no scalar function φ exists such that g = −∇φ to
machine round-off error), this turns out to be an unnecessary
requirement on g.

Still, equation (12) alone is insufficient to guarantee the numerical
integrity of the atmosphere. Regardless of resolution, the singular
nature of equations (13) generates sufficient truncation errors at the
origin to produce a steady, outwardly directed pressure gradient
that drives a supersonic, narrow jet along the symmetry axis,
destroying the integrity of the solution. This numerical effect is
fixed by replacing the point mass at the origin with a uniform
sphere of the same mass and a radius Rsph, thus modifying the first
of equations (13) to

ρh = ρi

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
ri√

r2 + z2

) 1
γ−1

, r2 + z2 ≥ Rsph
2;

(
ri

Rsph

3Rsph
2 − r2 − z2

2Rsph
2

) 1
γ−1

, r2 + z2 < Rsph
2.

(14)

If Rsph is sufficiently resolved (e.g. four zones), the numerical jet
is eliminated. The resulting ‘rounded potential’ is superior to a
‘softened potential’ since the former has no measurable effects
beyond Rsph. Here, we use Rsph = ri.

As a final comment on the initialization of pressure, unlike, e.g.
Ouyed & Pudritz (1997a,b, 1999), we find no need to attribute
a portion of the thermal pressure to Alfvénic turbulent pressure.
This was used as a mechanism to reduce what Ouyed & Pudritz
felt was an unrealistically high temperature in their outflow. In
local simulations, as soon as the confining bow shock leaves
the grid, expansion of jet material is free and thus isothermal
and the temperature of the fluid does not fall. In our case, the
jet expansion is always confined and the gas continuously does
P dV work to expand thereby reducing the temperature in the
inner portions of the jet. Indeed, without additional physics such
as radiative heating, the temperature within the inner portions
of our jets may be unrealistically low, and certainly we have
no need to assign a portion of the thermal pressure to ‘Alfvénic
turbulence’.

Similar to Ouyed & Pudritz (1997a), the atmosphere is initialized
with a force-free ‘hour-glass’ magnetic field distribution. The
toroidal component of the magnetic field, Bϕ , is initially zero
whereas the poloidal components are set by specifying the toroidal
component of the vector potential:

Aϕ = A0

√
r2 + (z + zd)2 − (z + zd)

r
, (15)

7The factor of 1/γ appearing in equation (3) of Ramsey & Clarke (2011) is
in error.

where zd is the ‘disc thickness’ (which we set to ri for convenience)
and where, on AZEuS’ staggered mesh, Aϕ is edge-centred. The r-
and z-components of the magnetic field are then given by

Bz = 1
r
∂r (rAϕ) and Br = −∂zAϕ, (16)

which, when differenced, locates the poloidal magnetic field compo-
nents at the face-centres and ensures ∇ · B = 0 to machine round-off
error. Thus, at (z, r) = (0, ri), where Bp = Bi,

A0 = Biri√
2 −

√
2
,

where, in terms of the initial plasma beta at (0, ri), β i, used to
characterize the simulations (e.g. Table 4),

Bi =

√
8πpi

βi
. (17)

We have adopted an ‘hour-glass’ initial magnetic field distribu-
tion, in part, because of its simplicity and the availability of a closed
analytical form, but we do acknowledge that the true magnetic
field distribution in protostellar systems is generally unknown,
and indeed will vary from system to system due to environmental
differences. Other authors have studied the effect of different field
distributions on outflow launching, and find that it significantly
affects the collimation of the outflow (e.g. Fendt 2006; Pudritz,
Rogers & Ouyed 2006). While this aspect is worth exploring, for
the current effort, we choose instead to focus only on varying the
initial magnetic field strength.

Finally, to ensure the declining density and magnetic field
profiles do not fall below observational limits, we add floor values
ρfloor ∼ 10−6ρ i and Bz, floor ∼ 10−5Bi (cf. Vallée 2003; Bergin &
Tafalla 2007) to equations (14) and (16). Thus, the atmosphere
attains its asymptotic values by z ∼ 500 au. By imposing HSE and
the adiabatic gas law at t = 0, a floor value on ρ also imposes
effective floor values on g, p, T, etc.

A schematic of the base (coarsest) grid is shown in Fig. 2, where
contours of ρh, the ‘hour-glass’ Bp, and every tenth grid line are
plotted.

3.2.2 The accretion disc and other boundary conditions

The accretion disc, maintained in z ≤ 0 as a boundary condition, is
initially assumed to be in gravitocentrifugal balance (i.e. Keplerian),
and to have a force-free magnetic field. Thus, for z ≤ 0 and r ≥ ri,
vϕ = vK =

√
GM∗/r . We also assume a gentle ‘evaporation speed’,

vz = ζvK with ζ = 10−3 to transfer mass from the disc surface to
the atmosphere, preventing any outflow from being ‘starved’ of
material. The disc and atmosphere are initially in pressure balance
with a density contrast η = ρdisc/ρatm = 100, while B is initialized
from equations (16).

Following Krasnopolsky et al. (1999), ρ, p, and vz are held to
their initial conditions, while vr and vϕ are allowed to ‘evolve’ in
time according to

vr = vzBr/Bz; vϕ = vK + vzBϕ/Bz.

Magnetic boundary conditions are maintained by imposing condi-
tions on the edge-centred induced electric field, E = −v × B:

Ez(−z) = Ez(z);

Er (0) = −vKBz(0); Er (−z) = 2Er (0) − Er (z);

Eϕ(0) =; Eϕ(−z) = −Eϕ(z),

⎫
⎪⎬

⎪⎭
(18)
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2370 J. P. Ramsey and D. A. Clarke

Table 4. Summary of simulations. tend and zend are the time and jet length at simulation end, respectively.

Simulation A B C D E F G H

β i 0.1 0.4 1.0 2.5 10 40 160 640
Bi (G) 200 100 63.2 40 20 10 5 2.5
tend (yr) 47 64 77 88 121 153 153 153
zend (au) 4070 4070 4070 4070 4070 3800 2770 2380

Figure 2. A schematic representation of the base (coarsest) grid (level 1),
showing representative contours of the initial density, ρh, field lines of the
initial force-free ‘hour-glass’ poloidal magnetic field, Bp, and the grid. As
indicated by the inset, the actual grid is 10 times finer than shown.

where Ez(0) is allowed to ‘float’. Since vz is sub-slow, these
conditions are formally overdetermined and, in principle, p should
be allowed to evolve as well. Testing this conjecture, we find
that, since ∇p is !1 per cent of the net Lorentz force at the disc
surface, a floating p has only the slightest quantitative effects in
the computational domain, yet rather severe consequences within
the boundary. Owing to the incomplete dynamics, unphysically
high temperatures develop inside the ‘disc’, forcing unnecessarily
small time-steps on the rest of the simulation. Thus, we fix p to its
initial value (matching the initial atmospheric profile) as a numerical
convenience throughout the simulations.

Ideally, one would perform a full characteristic analysis at the
boundary, setting amplitudes of the outwardly directed waves to
zero and using the inwardly directed waves to determine properly
upwinded boundary values (e.g. App. A in Del Zanna, Velli &
Londrillo 2001). Such a capacity has not yet been implemented in
AZEuS.

Within the inner radius of the accretion disc (z ≤ 0 and r
< ri), we apply reflecting and conducting boundary conditions
(J = 1

4π
∇ × B ̸= 0). Thus, ρ, p, and v are reflected across z =

0, and magnetic boundary conditions are set according to Ez(−z) =
−Ez(z), Er(−z) = Er(z), and Eϕ(−z) = Eϕ(z). At z = 0, Er and Eϕ

are evolved using the full MHD equations.
Finally, we use reflecting boundary conditions along the r = 0

symmetry axis with inversion of vϕ and Bϕ , and outflow conditions
along the outermost z- and r-boundaries, neither of which is ever
crossed by anything significant to the simulations.

3.3 Scaling relations

All simulations are performed in units where ρ i = ri = cs,i = 1, and
where cs,i is the sound speed at r = ri. Physical units can be restored
as follows. First, from equation (11) and the adiabatic gas law, one

can show that

c2
s = γ

p

ρ
= (γ − 1)

GM∗√
r2 + z2

= (γ − 1) v2
K. (19)

Then, from equations (17), (19), and the ideal gas law (p = ρkT/⟨m⟩,
where ⟨m⟩ is ∼half a proton mass), the following scaling relations
to convert from unitless to physical quantities may be derived:

pi =
(
160 dyne cm−2) ( βi

40

) (
Bi

10 G

)2
; (20)

ρi

⟨m⟩
=

(
5.4 × 1012 cm−3)

(
βi

40

)(
Bi

10 G

)2

×
( ri

0.05 au

)(
0.5 M⊙

M∗

)
; (21)

Ti =
(
2.2 × 105 K

) (
0.05 au

ri

)(
M∗

0.5 M⊙

)
; (22)

cs,i =
(
77 km s−1)

(
0.05 au

ri

)1/2 (
M∗

0.5 M⊙

)1/2

; (23)

τi = ri

cs,i
=

(
9.7 × 104 s

) ( ri

0.05 au

)3/2
(

0.5 M⊙

M∗

)1/2

, (24)

where γ = 5/3 and a nominal magnetic field strength of 10 G at (z,
r) = (0, ri) have been used. Evidently, Ti is the temperature at (z,
r) = (0, ri) and τ i is the time-scale which, for the chosen parameters,
is slightly more than a day. As a representative example, simulation
E required ∼4.2 × 107 time-steps on the finest grid (∼164 000
on the coarsest grid) over a span of 121 yr to reach the end of the
computational domain (4070 au). The time-step in these simulations
is typically controlled by the Alfvén speed within several ri of the
disc, close to the symmetry axis.

4 D E S C R I P T I O N O F TH E S I M U L AT I O N S

Table 4 lists the values of β i and Bi for the eight simulations, A–
H, as well as the problem time and jet length at simulation end,
assuming the scaling parameters in Section 3.3. The simulations
were stopped when the tip of the leading bow shock reached the
end of the coarsest grid (4070 au), or after t = 50 000 ti ≃ 153 yr,
whichever came first. For reference, after 153 yr, the inner and
outer edges of the disc (at ri and 4992 ri) have undergone ∼9750
and ∼0.03 Keplerian orbits, respectively. Time-lapse animations of
the simulations described below can be found at http://people.virgi
nia.edu/∼jpr8yu/azeus/proto jets.html.

4.1 Overview

The simulations listed in Table 4 can be divided into three categories
based on the strength of the initial magnetic field: strong (A–
D), moderate (E and F), and weak (G and H). Discussion in this
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Formation and propagation of protostellar jets 2371

subsection on the origins of the jet and its principle morphological
features applies mostly to the strong and moderate-field cases, and
less so to the weak-field cases. While simulations G and H do
generate sustained outflow, they are much more turbulent with far
fewer distinctive features than in the stronger field runs.

With this in mind, when any of the simulations begin, a torsion
Alfvén wave is launched into the initially stationary atmosphere at
r ≥ ri by the rotating disc. The wave propagates outward at the local
Alfvén speed, ap, leaving in its wake atmospheric material rotating
in the same sense as the disc, and a toroidal magnetic field, Bϕ , is
twisted out of the initial Bp in a direction opposite to the rotation.
Note that vϕ and Bϕ remain nearly zero within the inner disc radius
(r < ri) for most of the simulations (with the notable exceptions
of the weak-field cases). The torsion wave is a transient feature,
borne from the unrealistic initial conditions in which the stationary
atmospheric magnetic field threads the rotating disc. That said, it
is quickly overcome and absorbed by the leading bow shock of a
super-fast jet launched almost immediately from the disc surface,
and the torsion wave thus plays a negligible role in the overall
appearance of the simulations.

With the passage of the torsion wave, the magnetic field distribu-
tion is no longer force-free, and the radial Lorentz force8 becomes

Fr = JϕBz − JzBϕ ∼ −Bϕ

r
∂r (rBϕ), (25)

where Jϕ (as determined from equations 16) remains approximately
zero, at least early in the simulations and for the stronger field cases.

The radial profile of rBϕ is necessarily zero on axis, remains
(essentially) zero inside 0 < r < ri, where the torsion wave does not
pass, deviates strongly from zero beyond r = ri reaching a global
minimum at r = rm (∼1 au = 20ri), then for the most part returns
monotonically and asymptotically to zero as r → ∞ (e.g. bottom
middle panel of Fig. 4). This profile is directly related to the three
distinct regions of the jet that develop in the simulations, as depicted
in the top panel of Fig. 3 and described below.

First, inside 0 < r < ri, where no material is driven on to the
grid from the z = 0 boundary and where the axial field remains
nearly force-free, a narrow, cold, and relatively quiescent magnetic
‘spine’ develops along the symmetry axis. Its integrity is maintained
throughout the simulations in all but the weakest-field cases. In 3D,
however, it is unlikely this feature could survive given the higher
mode instabilities that tend to disrupt the axisymmetry of the jet
(e.g. Hardee & Clarke 1995).

Second, within ri < r < rm, Bϕ and ∂ r(rBϕ) have the same sign
and Fr in equation (25) is directed inward, compressing material
toward the axis. This sets up what becomes a dense, hot, strongly
magnetized, super-fast ‘jet core’ threaded by the spine.

Third, for r > rm, Bϕ and ∂ r(rBϕ) have opposite sign, and Fr in
equation (25) is directed outward. This drives material away from
the axis and opens up a wide cavity terminating radially at the
tangential discontinuity (TD), located at r = rTD, which, in Fig. 4),
is located at r ∼ 100 au. This cavity is cold, highly magnetized, and,
at least initially, relatively evacuated, thus allowing material driven
from the disc easy passage. This outflow forms an exceedingly cold,
strongly magnetized, trans-fast, and dense (but less dense than the
core), ‘sheath’ that surrounds the jet core.

The torsion wave sets material spinning, and material near the disc
surface with its frozen-in Bp experiences a centrifugal acceleration

8J × B is actually a force density that needs to be integrated over a volume
to get an actual force.

outward. If the angle between the disc and a magnetic field line, θ0

(Fig. 1), falls below a critical angle θ c = 60◦, the magnetocentrifugal
‘bead-on-a-wire’ mechanism (BWM; Henriksen & Rayburn 1971;
Blandford & Payne 1982) is triggered and accelerates material away
from the disc. From equations (15) and (16), one can show that
initially at the disc surface, θ0 = tan −1Bz/Br < θ c for r ≥

√
3ri,

and it is only in the region ri < r <
√

3ri where θ0 must be reduced
before outflow can begin. As discussed in Section 5.6, this turns
out to be key in the persistent generation of ‘knots’ (plasmoids)
observed in one of our simulations.

The BWM requires a ‘rigid’ Bp, which can occur only if
βp = 8πp/B2

p ! 1. If βp ≫ 1, Bp cannot provide the magnetic
tension necessary to act as the ‘wire’ to guide the ‘beads’ of plasma,
and a different mechanism to drive the jet must be invoked. As
discussed further in Section 5.5, even a weak Bp in a persistently
rotating environment will generate a dynamically important Bϕ

(βϕ = 8πp/B2
ϕ ∼ 1), and this can provide sufficient magnetic

pressure to accelerate an outflow. This is sometimes referred to
as the ‘magnetic tower mechanism’ (MTM; Lynden-Bell 1996).

Whether driven magnetocentrifugally and/or via a sustained
magnetic pressure, outflow is strongest near ri, where the rotation is
the most rapid and the magnetic field strongest. While the driving
force gets progressively weaker with increasing r, the density in the
disc and sheath also fall, and material can still be accelerated to
super-fast speeds. Beyond rTD (outer limit of the sheath), the weak
Lorentz force cannot accelerate the much denser ambient material
effectively. In this way, a fairly distinct boundary is visible between
fast, outwardly moving material – the actual ‘jet’ consisting of a
core and sheath – and the more slowly moving, shocked and much
denser atmosphere behind the jet bow shock.

Thus, as annotated in the top panel of Fig. 3, the general outflow
established in our simulations consists of three outwardly moving
components. First, the super-fast, dense, hot, strongly, and helically
magnetized narrow jet core – what we suggest corresponds to
the main portion of the observable jet – is threaded by a narrow,
quiescent spine of strong axial magnetic field. Second, the jet core is
surrounded by a somewhat slower-moving trans-fast, underdense,
cold, highly magnetized wide sheath, which may, in part, be
observable as a ‘cavity’ of emission surrounding the jet. As noted
below, this region is subject to strong reflection shocks triggered by
the K–H unstable TD, that can heat sheath material significantly. As
a result, some of the sheath may contribute to the observable outflow.
We note in passing that the development of an underdense sheath
could account for the great distances to which jets can propagate
stably in 3D (Hardee, Clarke & Rosen 1997). Third, between rTD and
the bow shock, the sheath is surrounded by a trans-slow, hot, weakly
magnetized, shocked ambient medium, whose density is less than
that of the jet core, but greater than that of the undisturbed ambient
medium. This may correspond to the ‘second wind’, first described
by Stocke et al. (1988) and currently interpreted as ‘molecular
winds’ (e.g. Frank et al. 2014), whose forward motion is a result of
entrainment by the leading bow shock driven by the advancing jet
rather than magnetic stresses near the disc.

4.2 Strong-field simulations: A–D

Differences among the four simulations in the strong-field category
are relatively minor, and we use as an exemplar the final epoch of
simulation A (β i = 0.1, Bi = 200 G) shown in Fig. 3, in which
colour contours of temperature are superposed with magnetic field
lines (white contours) and the slow surface (where vp = ap,s, the
poloidal slow speed; black contours). Here, the magnetic field is
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2372 J. P. Ramsey and D. A. Clarke

Figure 3. Nested images from levels (from top to bottom) 1, 2, 6, and 9 (Table 3) of simulation A (β i = 0.1) at t ∼ 47 yr. Colours indicate temperature, white
contours magnetic field lines, black contours the slow magnetosonic surface, and arrows the poloidal velocity. The annotations in the top panel denote the
components of the outflow: the super-fast dense jet core, the super-fast under-dense sheath, the tangential discontinuity (TD), the super-slow shocked ambient
medium and the undisturbed ambient medium. Dashed lines indicate AMR grid boundaries.

strong enough to enforce vp ∥ Bp virtually everywhere inside the
TD, resulting in what appears to be a largely self-similar, steady
state solution. Indeed, the bottom panel in Fig. 3 could be taken from
any time within the final ∼60 per cent of the run and the relative
simplicity of this run makes it prototypical of the description given
in Section 4.1.

The bottom panel of Fig. 3 bears a resemblance to the early, local
simulations of Uchida & Shibata (1985). Near the disc, outflow is
driven almost exclusively by the BWM, with the MTM gradually
contributing additional thrust as the poloidal field becomes wound
up even before the Alfvén point (Section 5.5). Outflow is robust,
long-lived, and steady, and there is no reason to believe that it
would ever cease so long as the disc continues to provide mass.
Magnetocentrifugal wind launching theory (e.g.Blandford & Payne
1982) predicts that acceleration of the flow ceases beyond the Alfvén
point, while some local simulations (e.g. Pudritz et al. 2006) show
acceleration of the outflow continues until the fast point, with steady
flow thereafter. However, we find that because of the MTM, a gentle
acceleration persists well beyond the fast point, accelerating the
advance speed of the jet to ∼420 km s−1 for simulation A (vjet in
Table 5), rendering the jet essentially ballistic (since vp,max ∼ vjet).
Further, the sound speed in the asymptotic ambient medium
is

cs,∞ = cs,i

√
T∞

Ti
= cs,i

(
ρ∞

ρi

) γ−1
2

= cs,i(10−6)1/3 ∼ 0.77 km s−1,

using the asymptotic density in Section 3.2.1. Thus, the external
sonic Mach number of the jet in simulation A is Mext ∼ 540.

Of course, the jet core is much hotter than the ambient medium
(by a factor of ∼104 and as high as 106 K), and the internal
sonic Mach number is therefore considerably less; Mint ∼ 22.
The internal fast magnetosonic Mach number, which actually
governs the ‘supersonic character’ of the jet, is a rather mod-
est 2.1. See Table 5 for comparative values for the other
simulations.

Hugging the axis, but not particularly apparent in even the lower
panel of Fig. 3, is the relatively quiescent, cold spine with negligible
Bϕ , strong Bp and a radius that remains nearly constant (∼2ri) (but
not resolved by levels < 6). This spine threads the dense, hot, highly
magnetized, super-fast jet core that, as seen in the bottom panel of
Fig. 3, reaches a radius of ∼0.3 au (outer extent of the hot region)
at z = 4 au from the origin. Fig. 4 shows a radial slice of numerous
variables across the computational domain at z = 1200 au. In these
slices, the jet core is demarcated by the drop in density from 108 to
106 cm−3 in the top left panel, and the global minimum of Bϕ in the
bottom middle panel, and thus has reached a radius of about 1 au.
At z ∼ 3500 au, the jet core reaches its maximum radius of a few
astronomical units.

Surrounding the jet core is the magnetic sheath, and the boundary
between the sheath and the hotter, denser shocked ambient medium
is the tangential discontinuity, best visualized in the top panel
of Fig. 3. The distinguishing feature of a TD (as opposed to an
ordinary contact discontinuity) is the lack of a normal component
of the magnetic field; B is everywhere parallel to the feature we
have identified in Fig. 3 as the TD. The TD is also apparent
in Fig. 4 at r ∼ 100 au as a sudden drop in vp (left centre
panel), a jump in temperature (middle top panel), the end of

MNRAS 484, 2364–2387 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/484/2/2364/5289911 by guest on 18 M
ay 2021



Formation and propagation of protostellar jets 2373

Figure 4. A radial slice from simulation A at z = 1200 au and t = 47 yr. Plotted on the left from top to bottom are: density; poloidal velocity; and poloidal
magnetic field. Plotted in the middle from top to bottom are: temperature; toroidal velocity; and toroidal magnetic field. Plotted on the right from top to bottom
are: total (thermal + magnetic) pressure; plasma-β; and fast magnetosonic Mach number. Shading from medium grey to white indicate grid levels 6–1,
respectively.

a gradual drop in vϕ (middle centre panel), a sharp rise in the
plasma-β (right centre panel), and a drop from super to sub-fast-
magnetosonic speed (right bottom panel) all while the total pressure
(thermal + magnetic) remains more or less continuous (top right
panel).

Dynamically, the most important of these characteristics is the
drop in vp, which means the TD is a shear layer and subject to the K–
H instability, manifest in the top panel of Fig. 3 as gentle undulations
along its length. Between 500 au ! z ! 900 au, these undulations
have a wavelength of about 100 au and gradually grow in amplitude.
By z ∼ 900 au, the severity of the undulation triggers a fairly strong
reflection (criss-cross) shock in the sheath that thermalizes enough
of the kinetic energy to warm the sheath significantly (from several
to a few hundred kelvins), and redirect flow parallel to the jet axis.
This ceases the expansion of the jet sheath, whose outer radius at
this epoch of simulation A is about 100 au. After z ∼ 900 au, the
K–H undulations continue with lesser amplitude and a wavelength
of 250–300 au, and trigger a series of gentler reflection shocks and
rarefaction fans similar to those described for a hydrodynamical jet
by Norman et al. (1982). These are all visible as discontinuities
and gradations in temperature in Fig. 3. At z ∼ 2400 au, one final,
relatively strong reflection shock is triggered, after which the flow
remains rather laminar and featureless, bearing a strong resemblance
to the ‘nose-cone’ described by Clarke, Norman & Burns (1986)
for a propagating jet dominated by a toroidal magnetic field. We
note in passing that the strong poloidal magnetic field, which
provides some stability against the m = 0 ‘pinch mode’ apparent in
these axisymmetric simulations, would also provide some stability
against higher mode instabilities in 3D (e.g. Hardee et al. 1997), and
possibly enough to preserve the nearly axisymmetric appearance of
jets such as HH 34 (e.g. Devine et al. 1997).

The shocked ambient medium (sometimes referred to as the
‘second wind’) lies between the TD and the bow shock (top panel of
Fig. 3) and is characterized as a warm, trans-slow, dense, relatively

weakly magnetized medium. It owes its forward motion entirely
to entrainment by the leading bow shock, and has virtually zero
rotation and toroidal field. The sub-slow ‘islands’ (closed black
contours in the top panel of Fig. 3) indicate the forward motion is
trans-slow (∼10 km s−1). Where the flow is sub-slow, streamlines
diverge (slightly) from the jet axis, and where the flow is super-
slow, streamlines converge. These transitions are precisely coupled
to the K–H undulations described above. The temperature ranges
from ∼30 000 K just above the TD, to a few hundred kelvins
just inside the bow shock (top centre panel of Fig. 4), and thus
permits the survival of molecules such as CO, which are frequently
used to observe entrained outflow material (e.g. Zhang et al. 2016).
Finally, the plasma-β jumps 4.5 orders of magnitude across the TD
(thermal pressure suffers a sudden increase while magnetic pressure
undergoes a commensurate decrease to maintain a near-continuous
total pressure), and the shocked ambient medium is dominated by
thermal pressure (β ∼ 10) just above the TD. The plasma-β then
drops continuously between rTD and the bow shock where β < 0.1,
and the flow is once again magnetically dominated, but not to the
extent (by a factor of a few) observed in the jet core and sheath
(right centre panel of Fig. 4).

Last, what remains of the undisturbed ambient medium is visible
above the bow shock in the top panel of Fig. 3, where the asymptotic
levels for ρ and Bz (Section 3.2.1) are reached (to within 10 per cent)
by z ∼ 2300 au.

While for convenience, the simulations are identified by the single
value β i, this does not represent the average magnetic field strength
in the resulting outflow. Fig. 5 shows the evolution of the average
plasma beta, defined as

⟨βtot⟩ = 8π⟨p⟩
⟨B2

ϕ + B2
p ⟩

,

where quantities in angle brackets on the right-hand side are volume
averages over the outflow identified as regions where M > 5 and
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2374 J. P. Ramsey and D. A. Clarke

Table 5. Summary of measured quantities from the simulations. Mass-weighted average quantities include ⟨vϕ⟩, the jet rotation speed (all speeds in km s−1);
⟨vz⟩, the mass-weighted axial speed along the last 250 au of the jet; vjet, the advance speed of the jet tip into the ambient medium; ventr, the mass-weighted
average poloidal velocity of the ambient medium entrained by the bow shock; Mext = vjet/cs,ext, the sonic Mach number of the advance speed relative to
asymptotic external ambient medium (where cs = 0.77 km s−1 for Tasym = 22 K); Mint = ⟨vz⟩/⟨cs,int⟩, the internal sonic Mach number, where ⟨cs,int⟩ is the
mass-weighted average sound speed over the last 500 au of the jet, and Mf,int = ⟨vz⟩/⟨af,int⟩, the internal fast magnetosonic Mach number, where ⟨af,int⟩ is the
mass-weighted average fast speed over the last 500 au of the jet. Data from along the magnetic field line anchored at r0 = 1 au in the disc include vp,A, vp,f,
vp,max, the poloidal speeds at, respectively, the Alfvén, fast, and asymptotic points; (zA, rA), (zf, rf), the coordinates (all distances are in astronomical units) of
the Alfvén and fast points, respectively; and s×, the location along the field line where 2vϕ = rω0 (Section 5.5). Fluxes measured inside the TD at z = 1000 au
include Ṁ , mass flux (M⊙ yr−1); Ṗ , linear momentum flux (M⊙ yr−1km s−1); L̇, angular momentum flux (M⊙ yr−1au km s−1); and K̇ , kinetic energy flux
(erg s−1). Quantities that follow a power law in Bi include an estimate of the power-law index, α, in the last column. Uncertainties for all quantities are given
by the standard deviation of the data time averaged over a period of ∼1 yr (or >400 time-steps on the coarsest level), or 1 in the last of three significant digits,
whichever is the greater.

A B C D E F G H α

β i 0.1 0.4 1.0 2.5 10 40 160 640
Bi (G) 200 100 63.2 40 20 10 5 2.5

mass-weighted averages
⟨vϕ⟩ 21.0 ± 0.3 12.6 ± 0.4 9.1 ± 0.5 6.6 ± 0.6 4.3 ± 0.5 2.8 ± 0.6 2.2 ± 0.5 1.8 ± 0.4 0.67 ± 0.03
⟨vz⟩ 419. ± 1. 316. ± 1. 267. ± 1. 234. ± 1. 143. ± 1. 113. ± 1. 82.0 ± 0.4 64.0 ± 0.1 0.43 ± 0.01
vjet 417. ± 1. 309. ± 1. 252. ± 1. 230. ± 1. 166. ± 1. 116. ± 1. 85.6 ± 0.1 74.2 ± 0.1 0.42 ± 0.01
ventr 11.5 ± 0.1 7.84 ± 0.1 5.93 ± 0.02 3.9 ± 0.2 2.5 ± 0.4 2.01 ± 0.03 1.46 ± 0.01 1.10 ± 0.06 0.56 ± 0.01
Mext 536. ± 1. 397. ± 1. 324. ± 1. 296. ± 1. 214. ± 1. 149. ± 1. 110. ± 1. 99. ± 1. 0.40 ± 0.02
Mint 22.2 ± 0.2 26.4 ± 0.4 27.7 ± 0.4 20.9 ± 0.3 23. ± 4. 9.5 ± 0.1 11.9 ± 0.2 9.2 ± 0.2 –
Mf,int 2.00 ± 0.01 2.52 ± 0.01 2.93 ± 0.01 3.99 ± 0.02 4.3 ± 0.1 6.02 ± 0.01 7.46 ± 0.01 6.29 ± 0.02 –

r0 = 1 au field line
vp,A 161. ± 1. 101. ± 1. 73.0 ± 0.1 51.2 ± 0.2 29.6 ± 0.1 14.9 ± 0.1 7.5 ± 0.2 † n/a‡ 0.76 ± 0.02
vp,f 204. ± 1. 129. ± 1. 94.6 ± 0.1 69.5 ± 0.5 43.9 ± 0.1 27.9 ± 0.2 18.5 ± 0.2 n/a 0.667 ± 0.001
vp,max 297. ± 1. 219. ± 1. 166. ± 1. 129. ± 1. 87.1 ± 0.1 60.2 ± 0.1 33.2 ± 0.4 n/a 0.55 ± 0.01
rA 11.6 ± 0.1 7.24 ± 0.01 5.46 ± 0.01 4.15 ± 0.01 2.84 ± 0.01 2.04 ± 0.01 1.66 ± 0.04 n/a 0.62 ± 0.02
rf 18.9 ± 0.1 12.0 ± 0.1 9.16 ± 0.09 7.0 ± 0.1 5.06 ± 0.01 4.18 ± 0.01 4.4 ± 0.3 n/a 0.54 ± 0.02
zA 106. ± 1. 33.1 ± 0.1 17.0 ± 0.1 8.78 ± 0.01 3.26 ± 0.01 1.22 ± 0.01 0.51 ± 0.04 n/a 1.47 ± 0.02
zf 315. ± 2. 141. ± 1. 68. ± 2. 34. ± 2. 13.3 ± 0.1 6.79 ± 0.04 4.9 ± 0.5 n/a 1.41 ± 0.04
s× 19.3 ± 0.1 8.56 ± 0.02 5.10 ± 0.01 3.12 ± 0.01 1.68 ± 0.01 0.982 ± 0.009 0.64 ± 0.01 n/a 1.10 ± 0.04

jet fluxes at z = 1000 au
Ṁ (× 10−6) 2.0 ± 0.1 1.5 ± 0.1 1.36 ± 0.07 1.16 ± 0.04 1.01 ± 0.06 0.82 ± 0.05 0.51 ± 0.04 0.039 ± 0.006 0.32 ± 0.03
ṗ (× 10−4) 4.9 ± 0.6 2.8 ± 0.3 2.0 ± 0.1 1.37 ± 0.06 0.83 ± 0.06 0.46 ± 0.03 0.22 ± 0.02 0.017 ± 0.003 0.82 ± 0.03
L̇ (× 10−4) 14. ± 2. 5. ± 1. 3.6 ± 0.4 1.8 ± 0.1 0.97 ± 0.04 0.36 ± 0.03 0.14 ± 0.01 0.0024 ± 0.00051.24 ± 0.05
K̇ (× 1033) 96. ± 18. 37. ± 7. 20. ± 2. 11.2 ± 0.7 4.6 ± 0.4 1.7 ± 0.1 0.60 ± 0.06 0.053 ± 0.009 1.37 ± 0.02

Notes. † It is debatable whether the 1 au field line can be considered in steady state in simulation G.
‡ The 1 au field line in simulation H shows no evidence of being in steady state.

Figure 5. The volume-averaged plasma-β (defined in the text) as a function
of time for simulations A (black) through H (dark blue). Despite three orders
of magnitude difference in β i for simulations A–G, all loci seem to converge
to ⟨β tot⟩ → 0.2–0.4, characteristic of a magnetically dominated outflow.
Even simulation H seems to converge toward equipartition (⟨β tot⟩ → 1).

vϕ > 10−3. The M = 5 contour was chosen as it was found to
hug tightly inside the TD for all jets thus eliminating the shocked
ambient medium and less organized outflow near the accretion disc
from the average. The limit on rotational speed eliminated material
from the jet spine. Mass-weighted averages were also computed
(not shown), giving qualitatively similar loci as in the figure, with
values for ⟨β tot⟩ consistently about 0.2 lower.

What is striking about Fig. 5 is that all loci (with the exception
of simulation H) seem to be converging on ⟨β tot⟩ → 0.2–0.4,
characteristic of a magnetically dominated outflow. Even simulation
H, which of all the simulations had the most difficult time organising
itself into an outflow, seems to be converging toward magnetic
equipartition (⟨β tot⟩ → 1). From these observations, we speculate
that however weak or strong the initial magnetic field in the corona
may be that launches the outflow, the outflow itself ends up being
magnetically dominated, with an average plasma beta asymptoting
to !1. If true, an immediate consequence is that the magnetic
properties of an observed jet may not be useful in determining
what the magnetic environment may be near the protostar.

The nature of the magnetic field within the jet also evolves
with time. At first, most magnetic field in the outflow is poloidal,
reflecting the initial conditions. As the jet advances and rotates, Bp
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Formation and propagation of protostellar jets 2375

is twisted to produce a significant Bϕ , which, by the end of the
simulation, accounts for > 90 per cent of the transported magnetic
energy density even for simulation A with the strongest initial
poloidal field. This is why we find in our simulations that the
MTM is the dominant acceleration mechanism even in simulation
A (Section 5.5), and why our jets continue to accelerate well beyond
the fast point.

The higher-β i runs (B–D) are qualitatively identical to simulation
A, but with significant quantitative differences. As β i increases,
jet speeds decrease as do the sonic Mach numbers, although the
fast magnetosonic Mach number actually increases monotonically
from ∼2.1 for simulation A to ∼4.0 for simulation D. These trends
continue into the moderate and weak field runs (Table 5). The
temperature, density, and strength of reflection shocks within the
outflow also decrease with increasing β i, while the time taken for a
strong outflow to be organized increases. This trend is apparent by
simulation F (where outflow doesn’t really begin until t ∼ 0.2 yr),
and continues on through simulation H which, in many respects,
shows signs of being a ‘frustrated jet’ (Section 4.4). As part of this
trend, the inner-most regions of the jet become less steady for higher
β i to the point where periodic knots start to form. These are sporadic
for simulation E but, by simulation F, the knots are steady, long-
lived, and dominate the inner-jet structure (Sections 4.3 and 5.6).

Finally, near the bottom of the third panel in Fig. 3 is a prominent
‘streak’ originating from the level 8 grid boundary at (z, r) ∼ (8.0,
1.3), and stretching to (z, r) ∼ (23, 2) in the middle of the level 6
grid. These transient features, more prominent in the stronger field
simulations than the weaker ones, are entirely numerical in origin,
and triggered where the Alfvén surface intersects a grid-boundary.
At such points, and then only rarely, a truncation error occurs in
the momentum interpolation, which results in a sudden pinch and
subsequent local spike in internal energy that is advected downwind
with the flow, resulting in the streak seen. We are not entirely certain
why these streaks occur when they do, though they are reminiscent
of the ‘magnetic field explosions’ suffered in earlier versions of
ZEUS (Clarke 1996b). We also know that if one interpolates on
velocity in the grid boundaries rather than momentum density (and
violate conservation of momentum between grids), these features
disappear.

Despite their ominous appearance (in the streak in Fig 3, T ∼ a
couple thousand kelvins within a cold sheath of a few kelvins),
the streaks are not apparent in the other MHD variables, and this
region is so magnetically dominated that such a thermal pressure
anomaly has negligible dynamical consequences. We also note that
the streaks are entirely absent in the weaker field runs (F–H) and,
at this stage, we regard them as cosmetic. Still, understanding their
origin remains an area of current investigation.

4.3 Medium-field simulations (E, F)

As the initial magnetic field strength (Bi) is weakened, all measures
of outflow speed decrease (Table 5) and the outflow itself becomes
less steady. While jets on the observational scale look largely the
same (e.g. compare top panels of Figs 3 and 6), the smaller scale
structures in the bottom panels are strikingly different.

Fig. 6 shows simulation F at t = 153 yr, having reached a length of
∼3800 au.9 At the jet tip, vjet ∼ 116 km s−1, Mext ∼ 150, Mint ∼ 10,
and Mf,int ∼ 6 (Table 5). Roughly 99 per cent of the magnetic energy

9A similar simulation taken to 100 yr was described in Ramsey & Clarke
(2011).

density within the magnetic sheath is in Bϕ from which we conclude
the MTM is the dominant driver along most of the jet. Indeed, for
simulation F (and even more so for weaker Bi), the Alfvén surface
lies close to the disc surface (!30 au) for material interior to the
TD, and the BWM is ineffective at any significant height above the
disc.

We have chosen simulation F as the exemplar for the medium-
field runs because of the propensity and regularity of knots, seen
in the lower panel of Fig. 6. Knots, which are virtually absent in
simulations A–D, are present in simulation E, but not to the degree
seen in simulation F. While the production of knots in simulation
F is often ‘steady’, they do not represent a steady state; none of
the ‘constants’ in equations (1)–(4) are constant along field lines
passing through them. In this simulation and where they are present
in simulation E, only the portion of the sheath devoid of knots and
away from the TD is in a quasi-steady state, at least as measured by
the constancy of the WD constants (equations 1–4; Fig. 12).

The knots are launched from (0, ri) < (z, r) < (ri, 2ri) where gas is
both dense and hot. Knots are generated nearly from the beginning
and, after a few short periods of intermittency and variability,
become steady after t ∼ 9 yr with a period Tknot ∼ 0.026 yr and
a wavelength λknot ∼ 0.25 au.

Once launched, the knots follow a nearly axial trajectory through
the sheath, never venturing further from the axis than a few
astronomical units. As can be seen in the lower panels of Fig. 6, they
are best described as hot ‘towers’ (tori in 3D) of plasma following
the local magnetic field lines; truly ‘beads (tori) on a wire’. As they
move downstream, they lengthen, merge and, at z ∼ 10 au above the
disc, coalesce into the continuous hot jet core of radius ∼2 au, which
continues to expand gradually to several astronomical units towards
the head of the jet. Never drifting more than a few astronomical
units from the axis and losing their identity long before reaching
observational scales, we rule these features out as precursors of HH
objects.

Along their length, the knots exhibit one, two, and sometimes
three extrema in T, likely a result of uneven magnetic confinement.
The reader is encouraged to examine animations of this simulation
(available on-line10), where the propagation of the knots is seen to
be extremely dynamic.

Fig. 7 is an axial slice of several variables at r = 0.4 au (8ri) at
the final epoch of simulation F. This plot, however, could have been
taken at any time t > 10 yr, so regular are the knots. Relative to
the cold sheath material, the knots are 10–20 times denser, ∼103

times hotter, and thus have 104 times the thermal pressure of their
immediate surroundings! Were it not for the fact that β is still <1
within these ‘plasmoids’, they would explode into the ambient gas
upon creation. As it is, the knots are magnetically confined (the total
pressure in Fig. 7 is nearly continuous) by strong poloidal flux loops
that effectively contain them as they propagate intact ∼50 knot radii
along the jet axis. Other differences in the knot material compared to
their immediate surroundings include vp is 10–20 per cent higher,
vϕ is ∼50 per cent lower, Bp is ∼50 per cent lower, and |Bϕ | is
∼20 per cent lower.

The fact that the knots move slightly faster than the surrounding
sheath material is interesting. In this simulation, the difference of a
few km s−1 is still super-slow, and thus the knots excite leading slow
shocks – much like the jet itself excites a bow shock in the ambient
medium – explaining their discontinuous leading edge (Fig. 7) and
minimal diffusion.

10http://people.virginia.edu/∼jpr8yu/azeus/proto jets.html
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2376 J. P. Ramsey and D. A. Clarke

Figure 6. Similar to Fig. 3, but for simulation F (β i = 40) at t = 153 yr.

Figure 7. An axial slice of level 9 from simulation F at r = 0.4 au and t = 153 yr. Plotted on the left from top to bottom are density, poloidal velocity, and
poloidal magnetic field. Plotted in the middle from top to bottom are temperature, toroidal velocity, and toroidal magnetic field. Plotted on the right from top
to bottom are thermal pressure, total (thermal + magnetic) pressure, and plasma-β.
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We resume discussion on the knots in Section 5.6, where the
physics of knot generation is addressed.

4.4 Weak-field simulations (G, H)

Fig. 8 shows simulation G at t = 153 yr having reached a length
of ∼2800 au. Evidently, β i has passed a critical value as the
qualitative appearance of the inner jet is dramatically different
even from simulation F with β i just a factor of 4 higher. The jet
speeds continue to diminish with Bi (vjet ∼ 86 km s−1, Mext ∼ 110,
Mint ∼ 12) while the fast magnetosonic Mach number increases
(Mf,int ∼ 7.5; Table 5). However, the most striking difference is the
nearly complete replacement of organized knots with ‘turbulent’
outflow and displacement of the initial poloidal field lines within
the jet core and sheath (vestiges of the knots – the ‘bases’ identified
in Section 4.3 – are, however, still apparent near the jet axis). This
trend is even more evident in simulation H (not shown), where
the turbulent nature of the outflow extends right to the TD, all but
eliminating it as a discernible feature. The spine – with its nearly
straight axial field – remains prominent and hot next to the axis,
and while much of the outflow is still launched from within ri < r
< 2ri, the organization and steadiness observed in the strong and
medium-field simulations is not apparent in the weak-field cases.

Still, on the observational scale (top panel of Fig. 8), the jet looks
much the same as the stronger-field simulations. Regardless of how
weak the magnetic field is at the base of the jet, the gravitational and
rotational effects organize to amplify the magnetic field enough to
generate a large-scale, supersonic outflow transporting significant
magnetic field energy. This is true even for simulation H with β i =
640, what ought to be considered an essentially hydrodynamical
environment.

As will be shown in Section 5.5, the weak Bp is continuously
wound up into Bϕ until such time as aϕ ∼ cs. At this point, the
outwardly-directed gradient in toroidal magnetic energy density is
comparable to thermal pressure gradients and gravitational forces,
and material can be launched and accelerated outward. This is true
even for the weakest initial magnetic field (simulation H) that, with
very little poloidal field to contribute to jet confinement, gives rise
to a turbulent jet that entirely fills the magnetic sheath.

As seen in Fig. 5, once the outflow becomes organized in
simulation G (t ∼ 1 yr), ⟨β tot⟩ quickly falls below β i to a surprisingly
low value of ∼0.02, then rises steadily to ∼0.6 after which it declines
asymptotically to ∼0.4. Even in the weaker-field simulation H, when
outflow first begins, its value of ⟨β tot⟩ is well under unity, and then
rises – rather sporadically – toward unity as the run progresses.

The spikes in ⟨β tot⟩ seen for simulation H attest to the marginality
with which steady outflow is established in this very weak magnetic
environment. Speculating that β i ∼ several hundred may represent
an ‘end-of-the-line’ for a successful jet launch, we ran another
simulation with β i = 2560 to see if the MTM would prevail in such
a weak magnetic environment. Sure enough, even in this extreme
limit, a jet is launched, albeit even more turbulent than simulation
H and requiring even more time to organize itself into an outflow.

Of course, 2D axisymmetry provides an artificially favourable
geometry for the MTM in which a weak poloidal field can do nothing
but wind up under the relentless rotation of the fluid. Furthermore,
axisymmetry is immune to all but the m = 0 mode of the K–
H instability, which not only allows the toroidal field to develop
unimpeded, but provides a perfectly rigid axis along which flow
can be directed.

In 3D, the physics is not so accommodating. With virtually no
poloidal field to stabilize the flow, mixing of the shocked ambient

medium with the sheath occurs along the K–H unstable TD while
the turbulent flow encourages mixing of the jet core with the
sheath. With less contrast in density and temperature between
the core and sheath, the core is at risk of higher order MHD
instabilities that may cause it to break up into tangled filaments
after propagating only several jet radii (Hardee et al. 1997). Further,
an advancing, toroidally confined, magnetic column is unstable to
the kink instability (e.g. Jackson 1975), exacerbating its ability
to propagate to observable length-scales. We speculate, then, that
in 3D and in cases where β i " a few hundred, a ‘frustrated jet’
could result in which outflow never manages to organize itself
to advance very far from the disc. Other than indicating when
2D turbulence fills the jet sheath (160 < β i < 640), our present
simulations are unable to determine what this critical value for β i

may be.

5 A NA LY SIS

5.1 Morphology

To the best of our knowledge, these are the first jet simulations to
link the physics of magnetically driven outflows from Keplerian
discs, as first reported by Uchida & Shibata (1985), and the physics
of magnetically collimated supersonic outflows, as first reported by
Clarke et al. (1986) (hereafter, CNB).

Regardless of β i, all simulations form a magnetically dominated
outflow (⟨β tot⟩ → 0.2–0.4, with the exception of simulation H),
which come to resemble CNB jets (who, coincidentally, used βϕ =
0.2) at observational scales. Thus, they all possess a hot, supersonic
core with an advance speed of 80–420 km s−1 and a number of
oblique shocks triggered along their length. The core terminates
with a ‘jet shock’ (occasionally a Mach stem), with most of the
post shock jet material collected in front of the jet shock forming a
‘nose-cone’.

As discussed in CNB, the nose-cone consists of trans-fast material
– hotter than in the jet core – which, without the confining magnetic
field, would form the ‘back-flowing cocoon’ reported by Norman
et al. (1982). Since the nose-cone is more pointed and denser than the
hydrodynamical cocoon created in the absence of Bϕ , a magnetically
confined jet pushes into the ambient medium more ballistically than
a hydrodynamical jet, consistent with the present simulations at the
largest scale.

Surrounding the jet core and as reported by CNB, a largely
evacuated ‘cocoon’ filled with cold, highly magnetized rarefied
material with a strong toroidal magnetic field confines and stabilizes
the jet core. In the present simulations, we refer to this feature as the
‘sheath’, prominent in all simulations except H, the most weakly
magnetized jet in our sample.

Surrounding the cocoon (sheath) and the leading nose-cone is
a bow shock excited in the quiescent ambient medium by the
passage of the supersonic jet. The shocked ambient material is
accelerated forward (!10 km s−1) forming what we identify as the
‘second wind’, consisting of material not launched from the disc but
entrained in situ by the bow shock from the ambient atmosphere.
As such, it is warm (300–30 000 K), weakly magnetized, has
virtually zero toroidal velocity and field, with a magnetic field
strength directly related to the magnetic conditions in the primordial
atmosphere and thus proportional to Bi.

Because the ambient atmosphere is so cold, the Mach num-
ber of the jet relative to the external atmosphere is very high,
even for simulation H, where Mext ∼ 100. Thus, the bow shock
is very narrow and the radius of the jet depends very weakly
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2378 J. P. Ramsey and D. A. Clarke

Figure 8. Similar to Fig. 3, but for simulation G (β i = 160) at t = 153 yr.

on Bi making the jet radius a poor indicator of the magnetic
conditions near the disc surface. Indeed, the morphology of the
observable jet as a whole – being so similar for all values of Bi

– cannot be used as an indicator of this most elusive of physical
quantities.

It is worthwhile noting that our choice of magnetic field dis-
tribution (Section 3.2.1) plays a role in determining the outflow
morphology. A steeper radial field distribution (B(z = 0, r) ∝ r−1

in our case) is known to result in less collimated jets (Fendt
2006; Pudritz et al. 2006), and could lead to jets with larger
opening angles and larger radii. We also recognize that, in 3D,
with the availability of additional K–H modes, some of the jet
kinetic energy would be converted to turbulent or thermal energy,
and we subsequently expect the jet bow shock to not only be
blunter and wider, but also propagate more slowly. Finally, on
very large scales (∼0.1 pc; Frank et al. 1999), jets are expected
to be weakly ionized and ambipolar diffusion will be important,
resulting in less efficient magnetic confinement and an additional
source of heating (e.g. Pinto, Galli & Bacciotti 2008; Panoglou
et al. 2012). Like the magnetic field distribution, any of these
effects could produce a jet that is less ‘knife’-like than in the current
simulations.

5.2 Qualitative trends

Certain quantities, such as the advance speed of the jet (vjet), reach
an asymptotic limit early in the simulation (e.g. after ∼10 yr),
making comparisons among the simulations easy and straight-
forward. Other quantities such as the jet radius (rjet) continue to

grow with time, and thus one must decide how such quantities are
to be compared. In particular, one could make comparisons at the
same chronological time or at the same dynamical time, the latter
defined as when a jet has reached a specified length.

Fig. 9 shows the poloidal velocity, vp, and the fast magnetosonic
surface (white contours) for all eight simulations at the same
chronological time, t ∼ 47 yr, when simulation A reaches the end
of the domain. This figure illustrates how the jet length and radius
at a fixed time depend rather strongly upon Bi.

However, observationally, one can be more certain of comparing
jets of the same length than of the same age, and thus Fig. 10,
where the jets are shown at the same dynamical time l = 2400 au,
is more practical. In this case, there is little to distinguish the eight
simulations geometrically. At a given length, the radii of the sheath
(indicated, for the most part, by the TD) and jet core increase slightly
with decreasing Bi, but the dependence is so weak as to make these
impractical observational comparators for inferring the magnetic
field properties at the base of a jet.

5.3 Weber–Davis constants revisited

We now return to the WD constants defined in Section 2 (equa-
tions 1–4), as well as equation (8) for the fast speed along a steady
state field line. Since most of our global simulations do not reach a
true steady state, these expressions will not be valid along all field
lines. However, as seen in Figs 3, 6, and, to a much lesser extent,
Fig. 8, the first few hundred astronomical units along field lines
anchored in the disc at 0.5 ! r0 ! 10 au are smooth and appear
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Formation and propagation of protostellar jets 2379

Figure 9. Colour contours of the poloidal velocity, vp, from simulations A–H (top to bottom) at t ∼ 47 yr with the fast magnetosonic surface (Mf = 1) shown
in white contours. The lower left corner of each panel is at the origin, (z, r) = (0, 0), and the upper right corner at ∼(4070, 250) au.

Figure 10. Similar to Fig. 9, but at the same ‘dynamical’ time, l = 2400
au, with the chronological ages indicated. The radial extent of each panel is
∼250 au.

to reach a quasi-steady state. Within these regions the steady state
constants can be examined, both to provide an in situ check on our
numerical methods, and for what they can tell us about the flow.

For convenience, we have chosen the field line anchored in the
disc at r0 = 1 au to perform this analysis as it exemplifies steady
state behaviour for all but the weak-field simulations. However,
we emphasize that these results apply equally for portions of any
field line anchored between 0.5 and 10 au, with some simulations
showing better steady state behaviour than others. For the 1 au
field line, Fig. 11 shows plots of various speeds as a function

of distance along the field line, s, including vp, vϕ , ap, aϕ , and
af, all defined in Section 2. The dashed blue line shows rω0/2
(where ω0 = vK,0/r0 is the angular speed at the anchor point of
the field line), an important quantity in understanding the BWM
(Section 5.5).

The Alfvén point (vp,A, where vp and ap intersect in Fig. 11) and
fast point (vp,f, where vp and af intersect) are indicated in the figure
with triangles and squares, respectively. The quantities vp,A, vp,f, as
well as the asymptotic poloidal speed attained along the 1 au field
line, vp,max, are included in Table 5. For the 1 au field line and most
any other steady state field lines we examine, acceleration of jet
material continues well beyond the fast point (via the MTM), less
so for weaker Bi.

Fig. 12 shows profiles of the fractional differences of each WD
constant (equations 1–4) relative to their expected values (equa-
tions 5 and 6) in each of simulations A–F. As can be seen, the WD
constants remain – for the most part – constant to within 3 per cent
along the 1 au field line. Notable exceptions include simulation
F (± 5 per cent), which is really a transitional simulation between
those that exhibit strong steady state regions (A–E) and those that do
not (G and H), and the specific energy constant, ε, for simulations
A and B, which is dominated by the difference between two large
and nearly equal numbers (v2

ϕ/2 and rvϕ* in equation 4). This
dominance decreases with Bi and, as such, ε is constant to within
3 per cent for simulations D–F. Simulation D also exhibits a transient
feature in ε at ∼9 au from when the field line passes through one
of the streaks mentioned in Section 4.2; this feature is not visible in
the other steady state constants and is only barely visible in Fig. 11.
We note that the field lines embedded in quasi-steady state regions
pass through several nested grids, and take this as evidence that our
adaptive mesh and MHD algorithms maintain conserved quantities
satisfactorily.

Table 6 shows the expected values of vp,f along the 1 au field line
(equation 8) for simulations A–G compared to the values shown in
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2380 J. P. Ramsey and D. A. Clarke

Figure 11. Various speeds as a function of position, s, along the field line anchored at r0 = 1 au and at dynamical time l = 2400 au for simulations A–H.
The Alfvén and fast points are indicated by open triangles and squares, respectively. The smooth profiles for simulations A–F are indicative of a steady state,
whereas the ragged profiles for simulation H indicates no steady state has been reached.

Fig. 11. Notwithstanding simulation G, all values agree to within
1.2 per cent, once again indicating portions of the jets do attain
a quasi-steady state, and that the code is able to recognize and
maintain these regions. In as much as there is a ‘numerical test’ for
these simulations, this would be it.

As can be seen from Fig. 13, the poloidal speed at the fast
point, vp,f, along the 1 au field line follows a rather tight ‘2/3
power law’ with Bi, contrary to the prediction made by equa-
tion (9) and more in line with equation (10). Indeed, the fast point
along all field lines passing through a quasi-steady state region
show equally tight power laws vp,f ∼ Bα

i , with α = 0.67 ± 0.03
(Table 5). This is one of the most robust power-law relation-
ships gleaned from the simulations, and we regard this result as
firm.

The discrepancy between the numerically determined power-law
index and that predicted by equation (9) can only be caused by the
factor,

f (zf, rf ) ≡
[

1
4πρf

(
r2

f

r2
0

+ 2r0

Rf
− 3

)]1/4

,

in equation (8), since it was assuming it to be independent of Bi

that led to the ‘1/2 power law’ prediction in equation (9). Evidently,
f ∼ B1/6

i , a weak but significant dependence that accounts for the
difference between the measured and predicted power-law indices
for vp,f. What was not anticipated in Section 2 was the degree to
which the fast point is pushed away from the disc for higher Bi (zf

in Table 5). Along the 1 au field line, zf ∼ 300 au for simulation
A, whereas zf ∼ 7 au for simulation F. Since density is highly
dependent upon z, this is where the dependence of f upon Bi arises.
We continue this discussion in the next subsection.

5.4 Dependence of velocity on Bi

While both vp,f and vp,A follow a power law in Bi along field lines
in quasi-steady state, they do so with different indices, and the
tightness of fit is somewhat stronger for vp,f (Fig. 13; Table 5). This
is true for other field lines in quasi-steady state as well, with similar
power-law indices measured.

In addition to speeds specific to the 1 au field line, Table 5 includes
various observationally accessible speeds for each jet, including
the mass-weighted averages (exclusive of the second wind) of the
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Formation and propagation of protostellar jets 2381

Figure 12. Fractional variation of the ‘WD constants’ (equations 1–4) with
respect to expected values (equations 5 and 6) for simulations A–F along the
field line anchored at 1 au. Most variations remain within 3 per cent, with
notable exceptions identified in the text.

Table 6. Comparison of the speed at the fast point as predicted by
equation (8) and as measured directly along the 1 au field line.

vp,f A B C D E F G

Equation (8)
205.8 127.3 94.10 69.43 43.94 27.6 19.4

1 au
field
line

203.5 128.8 94.64 69.45 43.86 27.9 18.5

% dif-
ference

1.1 1.2 0.57 0.03 0.2 1.1 4.5

Figure 13. Left: Values of vp,f (circles) and vp,A (squares) on the 1 au
field line for simulations A–G (H is excluded since its 1 au field line is
not in steady state) with best-fitting power laws: vp,f ∝ B0.67

i ; vp,A ∝ B0.76
i

(uncertainties given in Table 5). Right: Similar plot for vjet (diamonds) and
⟨vϕ⟩ (triangles) with best-fitting power laws: vjet ∝ B0.42

i ; vφ ∝ B0.67
i .

rotational velocity, ⟨vφ⟩, the axial speed along the last 500 au of the
jet core, ⟨vz⟩, and the advance speed of the jet tip into the quiescent
atmosphere, vjet. Each velocity varies with Bi reasonably well as a
power law (with power-law index α given in Table 5), indicating that
the observable kinematics of the jet is highly and simply dependent
upon the initial magnetic field strength.

For the toroidal velocity, we performed the mass-weighted
average,

⟨vϕ⟩ =
∫

V
ρvϕdV∫

V
ρdV

,

where V is the volume bounded by the TD. As defined, this quantity
should correspond to observationally determinable rotation speeds
of well-resolved jets such as that reported in Woitas et al. (2005). All
integrations are performed from data taken at the same dynamical
time, l = 2400 au, which is comfortably beyond l ∼ 1000 au where
⟨vϕ⟩ seems to reach its asymptotic and steady state value for all
simulations. As defined, the data in Table 5 and plotted in Fig. 13
show that ⟨vϕ⟩ ∼ B0.67± 0.01

i .
Similarly, the quantity ⟨vz⟩ is a mass-weighted average of the

axial outflow speed given by

⟨vz⟩ =
∫

V
ρvzdV∫

V
ρdV

,

where V is the volume contained by the last 500 au of the TD and
within the jet core in which the outflow speed reaches its asymptotic
and steady state value for all simulations. Note that ⟨vz⟩ should
correspond to observed outflow speeds within jets.

Next, the advance speed of the jet tip into the ambient medium,
vjet, is measured by fitting the asymptotic slope of the position of
the tip of the jet as a function of time, and is plotted in Fig. 13.
Such a velocity would be measured using multi-epoch observations
of jet bow shocks. In our simulations, we find that vjet ∼ ⟨vz⟩
(Table 5), and thus the jets are largely ballistic. Given the greater
mass density of the nose-cone relative to the ambient medium, and
the confinement of the flow by strong toroidal fields, this is not a
surprising result. Both ⟨vz⟩ and vjet follow power laws in Bi with
index α ∼ 0.43 ± 0.01 that, when combined with the 0.67 power
law for ⟨vϕ⟩, is consistent with the result,

vjet ∝ ⟨vϕ⟩2/3. (26)

Finally, ventr is a mass-weighted average of the forward speed of the
entrained material (i.e. shocked, ambient material in the simulations
identified as having a non-negligible forward velocity but very low
Bϕ) behind the forward 500 au of the bow shock (the ‘second
wind’). Such a velocity could be measured from CO molecular
line observations, for example. It is worth noting, however, that
the rotational velocity of the entrained material is negligible. In
our simulations, ventr ranges from 11 km s−1 for simulation A to
1.1 km s−1 for simulation H, with a power-law index of ∼0.56
(Table 5). This, combined with the 0.43 power law index for vjet, is
consistent with

ventr ∝ v
4/3
jet . (27)

Should either or both the ‘2/3 law’ in equation (26) or the ‘4/3
law’ in equation (27) be observed, this could be interpreted as
indirect confirmation of the role played by Bi in forming and driving
protostellar jets. Unfortunately, the proportionality constants in
these power-law relationships may be and probably are different
from jet to jet, which may make such measures challenging.
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2382 J. P. Ramsey and D. A. Clarke

Figure 14. Schematic of a single poloidal magnetic field line, ψ , that is
anchored in the disc at a distance r0 from the gravitational point mass, M∗,
and rotating at the Keplerian angular speed ω0. The components of the
Lorentz force, F⊥ , Fs, and Fϕ as described in the text are indicated for an
arbitrary point along the field line.

5.5 The driving mechanism

The jets are driven by the Lorentz force both directly, as a poloidal
gradient in the toroidal magnetic pressure (the ‘magnetic tower
mechanism’; MTM), and indirectly whereby the ability of B to
exert a substantial ‘normal force’ when rotated allows it to be
the ‘rigid wire’ for the ‘bead-on-a-wire mechanism’ (BWM). Both
mechanisms can be identified mathematically by a suitable analysis
of the relevant forces.

In axisymmetric cylindrical coordinates, the Lorentz force is
given by

FL = J × B = − 1
r2

∇pϖϕ + JϕB⊥ + 1
r

Bp · ∇pbϕϕ̂, (28)

where ∇p = r̂∂r + ẑ∂z is the poloidal gradient, ϖϕ = 1
8π

(rBϕ)2 is
a radially weighted toroidal magnetic pressure, Jϕ = 1

4π
(∂zBr −

∂rBz) is the ϕ-component of the current density, B⊥ = −Br ẑ + Bz r̂
is a vector perpendicular to and with the same magnitude as the
poloidal magnetic field, Bp = Bz ẑ + Br r̂, and bϕ = 1

4π
rBϕ . The

last two terms in equation (28) are both ‘normal forces’ exerted
perpendicular to Bp (F⊥ and Fϕ in Fig. 14), whereas the first term,
being the gradient of a function of Bϕ twisted out from the poloidal
field, will lie along the general direction of Bp (Fs in Fig. 14).
Note further that at t = 0, FL is identically zero since the initial
‘hour-glass’ magnetic field configuration is force-free (equations 15
and 16). It is only after the disc begins to rotate and the magnetic
field is distorted from its initial conditions that FL ̸= 0.

For convenience, consider the problem in the co-rotating refer-
ence frame of a point on the disc at distance r0 from the origin (where
the gravitating point mass M∗ is located; see Fig. 14), whose angular
speed is given by ω2

0 = GM∗/r
3
0 . Next, consider the poloidal field

line ψ anchored at this point, emerging from the disc at an angle θ0.
If we think of the poloidal field line as the ‘rigid wire’ for a ‘bead’
of plasma on the surface of the disc then, as is widely known (e.g.
fig. 1 in Blandford & Payne 1982), the ‘bead’, when nudged, will
accelerate out along the ‘wire’ if θ0 < θ c = 60◦.

Now, unlike the classic ‘bead-on-a-wire’ problem found in most
sophomore mechanics texts, the poloidal field line is not truly
‘rigid’, regardless of its strength. When the disc starts to rotate, an
Alfvén wave with speed Bp/

√
4πρ is launched, twisting Bp in its

wake. The stronger Bp is, the faster the Alfvén wave propagates and
the fewer number of turns per unit length suffered by the poloidal
field. Still, and regardless of its strength, Bp will be twisted by
numerous full turns over a long enough distance, resulting in a

restructuring of the field (rather than a perturbation) that ultimately
shuts down and even reverses the effect of the BWM.

To see this, we must include the inertial (centrifugal and Coriolis)
forces as observed in the co-rotating frame where the rotational
speed of jet material is

v′
ϕ = vϕ − ω0r,

and the inertial forces are given by

FI = −ρω × (ω × r) − 2ρω × v

= ρω0(2vϕ − ω0r)r̂ − 2ρω0vr ϕ̂, (29)

where ω = ω0ẑ and v = vz ẑ + vr r̂ + v′
ϕϕ̂.

Combining equations (28) and (29), and resolving the radial
inertial force into the two poloidal components, ŝ and ⊥̂ as depicted
in Fig. 14, we get

F = FL + FI = − 1
r2

∇pϖϕ

︸ ︷︷ ︸
MTM

+ ρω0(2vϕ − ω0r) cos θ ŝ
︸ ︷︷ ︸

BWM

+
(
JϕBp + ρω0(2vϕ − ω0r) sin θ

)
⊥̂

+
(

1
r

Bp · ∇pbϕ − 2ρω0vr

)
ϕ̂, (30)

where θ > θ0 is the angle between the local field line and r̂.
Other than −∇p − ρ∇φ, which, in hydrostatic equilibrium, is zero,
equation (30) represents all the forces acting on a ‘bead’ of matter
transported along a poloidal field line ‘wire’, as observed in the
co-rotating frame. The omission of the pressure and gravitational
gradients from equation (30) means that any insight gained will
be qualitative in nature; to do the full problem with all the forces
properly accounted for is why we do the simulations.

The first two terms in equation (30) represent the MTM and
BWM, respectively, and are what drive the jet. The third term is
perpendicular to the poloidal magnetic field line within the poloidal
plane and, in the steady state, should be zero. If not, the poloidal
field line would move, contrary to the assumption (for this analysis)
of steady state. The fourth term is a normal force in the symmetry
direction, and is responsible for the field line acquiring a toroidal
component.

From this it is evident that both the MTM and BWM contribute
to the acceleration of the jet, regardless of poloidal field strength; it
is simply a matter of which term dominates where. In fact, while the
MTM only requires the presence of an outwardly-pointing gradient
in the toroidal magnetic pressure – a condition we find true for much
of the jet length regardless of the strength of Bi – the conditions for
the BWM are much more limiting.

Most importantly, equation (30) shows that the BWM term falls
to zero once vϕ = ω0r/2, where ω0 is the Keplerian angular speed
at the anchor point. As seen in Fig. 11, this ‘cross-over’ point –
where the dashed blue and solid red lines cross – is located before
the Alfvén point in all simulations, indicating that the BWM is only
effective close to the disc. Table 5 includes the cross-over distance,
s×, along the 1 au field line where the BWM mechanism is shut
down. These range from ∼20 au for simulation A to < 1 au for
simulation G, with similar values for other field lines in quasi-
steady state anchored in the disc between 0.5 and 10 au. Thus,
while the BWM may be the dominant acceleration mechanism on
and within short distances from the surface of the disc, the MTM is
the dominant acceleration mechanism for most of the jet length in
all our simulations.
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Formation and propagation of protostellar jets 2383

Indeed, beyond s×, 2vϕ − ω0r < 0 and the BWM actually
retards outflow, pulling matter back toward the disc! As we see
in the simulations, however, there are two reasons why this doesn’t
happen. First, poloidal field lines asymptote towards the ẑ-direction
and cos θ → 0 in equation (30), minimizing the BMW term.
Second, the MTM term is relentless, counteracting the negative
but increasingly feeble BWM as one pulls away from s×. Thus,
along just about the entire length of the jet and regardless of Bi,
the gradual, negative gradient in Bϕ gives rise to a net outward
acceleration – however modest – well beyond the fast point.

As for the MTM, regardless of the strength of the poloidal field,
the rotating disc twists the poloidal field into a dynamically active
toroidal field with the passage of the Alfvén wave launched from
the disc. To see this, in a time 1t, the Alfvén wave travels a distance
l = Bp1t/

√
4πρ, during which time the disc has wound up the

field into n = vK(r)1t/(2πr) coils of radius r. Thus,

Bϕ

Bp
∼ 2πrn

l
= vK

√
4πρ

Bp
⇒ Bϕ ∼ vK

√
4πρ ∼

√
4πγp

γ − 1
,

since, for quasi-hydrostatic equilibrium, vK ∼ cs/
√

γ − 1 (equa-
tion 19). Thus,

βϕ = 8πp

B2
ϕ

∼ 2(γ − 1)
γ

∼ 1,

and −∇pϖϕ /r2 is a dynamically important outward-pointing force,
regardless of the initial poloidal field. This means that in principle,
even a trace poloidal magnetic field at the disc surface is sufficient
to launch an outflow into the ambient medium, however slow that
outflow may be, an observation borne out by our simulation H.

We remind the reader, however, that this analysis is strictly for
2D axisymmetry that, as has been pointed out, provides the ideal
environment for the MTM. In 3D, the rotation of the fluid that
encourages Bϕ is accompanied by numerous modes of instability
that discourages its development. We therefore anticipate a much
more complicated picture in 3D, particularly for weaker values of
Bi.

5.6 The knot generator

One of the most striking features of simulation F is the regularity
with which ‘knots’ or ‘towers’ (rings or discs in 3D) are launched
from the inner disc, roughly in the region ri < r < 2ri (lowermost
panel of Fig. 6). As observed in Section 4.3, the knots take a little
while to establish themselves as various early transients occur in the
simulation but, after ∼9 yr, knot production in simulation F remains
steady for the remainder of the run.

The only other simulation in which knots of any significance
are observed is simulation E, and then only sporadically. Thus, we
consider the production of knots in simulation F as ‘transitionary’
between runs with stronger Bi characterized by more steady, even
laminar flow (e.g. Fig. 3), and runs with weaker Bi characterized by
much more chaotic flow within the sheath and jet core (e.g. Fig. 8).
We note that in the region 0.1 < r < 0.2 au in the lower panel of
Fig. 8, several distinct ‘knot bases’ are present where knots might
have formed were the confinement by a poloidal magnetic field
more effective.

When produced, the temperature and density within the knots
are commensurate with ρ and T near the centre of the gravitational
potential well, and these values are maintained as they venture
away from the disc. Thus, by the time they reach a distance of ∼50
au from the disc, their temperature and density can be 103 and 10

Figure 15. A close-up of the poloidal field line depicted in Fig. 14
illustrating the simple harmonic oscillator established in simulation F to
generate the knots. The shaded wedge of length l is the cross-section through
a ‘truncated cone’ of mass loaded on the field line.

times higher, respectively, than that of the surrounding medium (e.g.
Fig. 7). Such knots, therefore, have a thermal pressure excess of four
orders of magnitude compared to their immediate surroundings, and
it is only the enshrouding poloidal magnetic flux loops that maintain
equilibrium. These knots, therefore, may be considered plasmoids
(Bostick 1956) confined by naturally occurring magnetic bottles
reminiscent of hydrogen pellet confinement in a thermonuclear
reactor.

The mechanism by which knots are launched is very simple
and quite unlike that described by Ouyed & Pudritz (1997b). In
our simulations, knots are generated directly from the disc, and
from poloidal field lines emerging from the disc at or very near
the critical angle for the BWM (θ c = 60◦; Sections 4.1 and 5.5).
Although the knots form from warm material, they occur at a
transition to a cold medium (bottom panel of Fig. 6), and we
indeed observe that the magnetic field angle at this location is much
closer to the dynamically cold critical value of 60◦ (Blandford &
Payne 1982) than a dynamically warm value of 70◦ (Pelletier &
Pudritz 1992). For strong Bi, field lines are rigid at the disc
surface, and plasma is guided subserviently by the BWM. For weak
Bi, field lines are completely at the mercy of the inertia of the
plasma, and it is up to the MTM to organize a sufficiently strong
toroidal field to launch the jet. However, for simulation F where
neither the rigidity of the field lines nor the inertia of the plasma
dominate the dynamics, there is much ‘give and take’ at the critical
angle.

For field lines of marginal strength, perturbations in the outflow
cause the critical field lines to wiggle back and forth across
θ c. When θ0 is slightly greater than θ c, hot, dense material
near the depth of the gravitational potential accumulates at the
base of the field line without moving outward. As the field line
is ‘loaded up’, the centrifugal inertia of the growing plasmoid
bends the field line outward so that θ0 falls below θ c, and the
plasmoid is launched. With the field line now relieved of its
mass load, it bends back to something greater than θ c, outflow
is quashed, and the cycle repeats. As in any oscillator, the sys-
tem ‘overshoots’ equilibrium, establishing the regular periodicity
observed.

The regularity of knot spacing is indicative of a simple harmonic
oscillator whose dependence on Bi can be understood as follows.
If a force-free magnetic field, (Bz0 , Br0 ), is perturbed by changing
the angle at which it emerges from the disc, θ0, by a small angle
ε ≪ θ0 (Fig. 15), then the components of the perturbed field
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2384 J. P. Ramsey and D. A. Clarke

become

Bz = Bz0 + Br0ε; Br = Br0 − Bz0ε,

giving rise to a non-zero toroidal current density,

Jϕ = − 1
4π

(∂zBz0 + ∂rBr0 )ε = Br0

4πr
ε,

using ∇ · B = 0. Thus, the restoring force, F⊥ (equation 28), is
given by

F⊥ = JϕB⊥ = Br0

4πr
ε Bp(−θ̂0) = −

B2
p

8πr
ε θ̂0, (31)

since θ̂0, a unit vector in the direction of increasing θ0, is antiparallel
to F⊥ , and Br0 = Bp cos θ0 = Bp/2 for θ0 = θ c = 60◦.

To find the equation of motion for this simple harmonic oscillator,
consider the torque density, τ , generated by F⊥ about point O on
the mass within the shaded wedge subtended by angle 2ε in Fig. 15,
which, in axisymmetry, is a hollow truncated cone of length l (a
portion of this mass is what gets launched to form a knot). For l ≪
r0, the moment of inertia per unit volume of this wedge is I ∼ ρl2/2,
and we have using equation (31):

τ = I ε̈ ∼ ρl2

2 ε̈

∝ F⊥ l = − B2
p l

8πr0
ε,

⎫
⎬

⎭ ⇒ ε̈ ∝ − 1
lr0

B2
p

4πρ
ε,

which has the classic form of a simple harmonic oscillator in ε, with
a frequency of oscillation given by ω ∝ ap/

√
lr0 ∼ Bi.

Since no simulation other than F generated a steady stream
of knots, we are unable to test the predicted dependency of ω.
Thus, the analysis is included here only as an attempt to identify
the physics responsible for the simple harmonic behaviour of
the knots in simulation F. We also remark that the generation
of knots, although occurring well inside the simulation domain,
is a physical result of our prescribed boundary conditions; were
the disc self-consistently included in these simulations, it is far
from guaranteed that the knots would persist in their observed
form.

5.7 Fluxes of mass, momentum, and energy

We now turn to the transport of mass, linear, and angular momentum,
and kinetic energy within the jet and consider these separately
from that transported by material entrained by the bow shock (i.e.
the ‘second wind’). In addition to the velocities discussed above,
fluxes are among the few concrete physical values that can be
determined from observations of jets. All fluxes reported here are
axial fluxes measured at a height of z = 1000 au above the disc
using

Ṁ = 2πṀ i

∫
ρvzr dr;

ṗ = 2π ṗi

∫
ρv2

z r dr;

L̇ = 2πL̇i

∫
ρvzvϕr2 dr;

K̇ = 2πK̇ i

∫
ρv3

z r dr,

where the integral is performed as a sum over grid points in the
r-direction. For fluxes transported by the jet core and sheath, we
mask the data by requiring M > 5 (similar to the masking used to

Figure 16. Fluxes of mass, linear momentum, angular momentum (AM),
and kinetic energy (KE) at a height of z = 1000 au above the disc as a
function of time for simulations A (black) through H (dark blue). The data
are masked to include only regions where M ≥ 5, which selects all outflow
between the jet axis and the TD.

generate Fig. 5), which effectively identifies all material between
the jet axis and the TD. For fluxes transported between the TD and
bow shock (the second wind), the data are masked by requiring M
< 5. While this includes all points beyond the bow shock as well,
there the velocities are zero and thus do not contribute to the fluxes.

Applying the scaling relations in Section 3.3, one can convert the
fluxes from code to physical units via

Ṁ i =
(
3.1 × 10−7M⊙ yr−1)

(
βi

40

)(
Bi

10 G

)2

×
( ri

0.05 au

)5/2
(

0.5M⊙

M∗

)1/2

;

ṗi =
(
2.4 × 10−5M⊙ yr−1 km s−1)

(
βi

40

)(
Bi

10 G

)2

×
( ri

0.05 au

)2
;

L̇i =
(
1.2 × 10−6M⊙ yr−1au km s−1)

(
βi

40

)(
Bi

10 G

)2

×
( ri

0.05 au

)3
;

K̇ i =
(
1.1 × 1033 erg s−1)

(
βi

40

)(
Bi

10 G

)2

×
( ri

0.05 au

)3/2
(

M∗

0.5M⊙

)1/2

.

Fig. 16 shows the fluxes calculated from each simulation as a
function of time. Notably, each flux reaches (or nearly reaches)
an asymptotic value by the end of each simulation, including, to
some extent, simulation H. This is confirmed by calculating the
fluxes at heights z = 750 and 1500 au, which give the same results,
short of an appropriate offset in time. We also note that similar
loci for fluxes within the second wind (not shown) also converge to
asymptotic values, although these data are rather noisier. Typically,
second wind fluxes are ∼1 per cent of the corresponding jet fluxes.
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Table 7. Estimates made from our global simulations for the observational
parameters listed in Table 1. Ranges for Ṁ , ṗ, L̇, and K̇ measured from the
last 10 yr of data for each simulation at a height of z = 1000 au above the
disc. ‘Jet’ values are defined as regions interior to the TD (masked using
M ≥ 5), while ‘entrained’ material is defined as the shocked ambient just
beyond the TD (masked using M < 5).

Jet
vjet 74–420 km s−1

⟨vϕ⟩ 1.8–21 km s−1

Ṁ 2.9 × 10−8 – 2.3 × 10−6 M⊙ yr−1

ṗ 1.3 × 10−6 – 6.8 × 10−4

M⊙ yr−1 km s−1

L̇ 1.5 × 10−7 – 1.7 × 10−3

M⊙ yr−1 au km s−1

K̇ 3.9 × 1031 – 1.6 × 1035 erg s−1

Entrained
ventr 1.1–11.5 km s−1

⟨vϕ⟩ –
Ṁ 4.8 × 10−9 – 2.3 × 10−7 M⊙ yr−1

ṗ 1.6 × 10−8 – 1.9 × 10−5

M⊙ yr−1 km s−1

L̇ 7.7 × 10−10 – 1.4 × 10−4

M⊙ yr−1 au km s−1

K̇ 4.2 × 1028 – 1.0 × 1033 erg s−1

The asymptotic jet fluxes (averaged over the last 10 yr of each
simulation) are included in Table 5. Because the fluxes depend upon
the velocities, they inherit the dependence the velocities have on Bi

(Section 5.4), and thus the power-law relationships are indicated in
the table.

In Table 7, we summarize ranges of velocities (vjet, ⟨vϕ⟩ ∼ ⟨vrot⟩,
and ventr) from Table 5 along with ranges for the fluxes measured
from the last 10 yr of each simulation. The upper (lower) half of
the table includes jet (second wind) fluxes where M ≥ 5 (M < 5).
On comparing Tables 1 and 7, it is evident that these aspects of
our simulations agree comfortably with the observations, including
both ‘jet’ and ‘entrained’ fluxes. The overlap is not perfect, of
course. Our mass fluxes fall within the observational range while
the observed angular momentum fluxes fall within the range of
our simulations. As extensive as these simulations are, they are
still limited by initial conditions, geometry, evolution time, and
even some physics. With the relaxation of any of these constraints,
specific comparisons may well improve. Furthermore, the results
presented in Table 7 depend somewhat on the values adopted in the
scaling relations (equations 20–24) for the stellar mass (M∗), inner
disc radius (ri), plus initial magnetic field and plasma-β values
at ri (Bi, β i), and should be adjusted appropriately for specific
comparisons. Nevertheless, we take the agreement between Tables 1
and 7 as encouragement that these global simulations have captured
the essence of both the production and propagation of protostellar
outflows, and are among the first to do so.

We note that observational measurements of the linear momen-
tum flux in jets are rare. Still, that the few values of which we
are aware (see Hartigan et al. 1994; Podio et al. 2006; 10−6 –
1.4 × 10−4 M⊙ yr−1 km s−1) fall within the range of our calculated
fluxes is encouraging. Meanwhile, to the best of our knowledge,
there are no observational estimates of kinetic energy fluxes in
protostellar outflows, so our values in Table 7 serve as a prediction
should such measurements ever be made.

6 SU M M A RY A N D C O N C L U S I O N S

We present the first simulations to resolve the inner launching region
of a protostellar (non-relativistic) jet, and then follow the jet to
observational length-scales. The simulations were performed with
our adaptive grid MHD code, AZEuS (Ramsey et al. 2012), with an
effective dynamic range in resolution of ∼6.5 × 105.

With a putative protostellar mass of 0.5 M⊙, results from eight
axisymmetric simulations are discussed, each identical except for
the value of the plasma-beta at the inner radius of the accretion
disc, β i, ranging from 0.1 (simulation A) to 640 (simulation H).
In each simulation, a jet is launched from the inner portion of
a Keplerian accretion disc maintained as boundary conditions by
magnetorotational dynamics on the grid, and outflow is followed
until the leading tip of the bow shock excited in the primordial
atmosphere reaches the end of the coarsest grid. One of the primary
features of these simulations that sets them apart from others is at no
time does any part of the outflow leave the computational domain.

While our jets are still extremely ‘young’ (lengths range from
∼2300 to ∼4100 au; ages range from ∼50 to ∼150 yr), each has
developed sufficiently to be directly comparable to observed jets,
and to have established certain key observational properties such as
asymptotic speeds, mass, momentum, and energy fluxes, rotation
rates, etc.

Based on their characteristics, we have divided our eight simula-
tions (Table 4) into three sub-groups: ‘strong-field’ (simulations A–
D), ‘medium-field’ (simulations E, F), and ‘weak-field’ (simulations
G, H). With this distinction in mind, we draw the following
conclusions:

(1) All eight simulations generate an organized, supersonic,
magnetically confined outflow.

(2) In regions of quasi-steady state, the ‘Weber-Davis constants’
(equations 1–4) remain constant for the most part to within
3 per cent, attesting to the numerical integrity of our AMR-MHD
scheme.

(3) On the observational scale (> 1000 au), each jet resembles
the MHD simulations of Clarke et al. (1986). Thus, they are confined
by an internal toroidal magnetic field twisted out of the poloidal
magnetic field in the atmosphere, and develop: (i) a hot, dense,
super-fast ‘jet core’ we identify with the observed jet; (ii) a rarefied,
cold, magnetized, trans-fast ‘sheath’ that we suggest may show up as
an ‘emission cavity’ surrounding the jet; and (iii) a narrow, laminar,
magnetically confined ‘nose-cone’ leading the jet. Surrounding the
jet is a tangential discontinuity (TD) that separates jet material
from the warm, trans-slow, shocked ambient medium entrained by
the bow shock excited by the passage of the jet (‘second wind’; top
panel of Fig. 3). Due to the very large dynamic range and adaptive
resolution, to the best of our knowledge, this is the first study of
its kind that self-consistently includes and clearly differentiates
between these different outflow components.

(4) In agreement with local studies of outflow launching, strong-
field jets (e.g. Fig. 3) are initially launched by the ‘bead-on-a-wire
mechanism’ (BWM; Blandford & Payne 1982) but is shut down
even before the Alfvén point. Beyond that, the ‘magnetic tower
mechanism’ (MTM; Lynden-Bell 1996) takes over, accelerating
outflow well beyond the fast point. They are characterized by quasi-
steady state flow even near the jet launching region.

(5) Also in agreement with local studies, weak-field jets (e.g.
Fig. 8) are launched and accelerated by the MTM, in which relent-
less twisting of the weak poloidal field builds up sufficient toroidal
magnetic pressure to drive the outflow. These are characterized by
highly turbulent flow near the launching region, with turbulence
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encroaching the TD as β i increases. For very high β i, we speculate
that the encroachment of turbulence on the TD will cause enough
mixing between the shocked jet and ambient media to disrupt the
jet in 3D (Hardee et al. 1997).

(6) Medium-field jets (e.g. Fig. 6) are transitional between the
strong and weak field cases. They are launched by the BWM
but accelerated soon thereafter by the MTM. Neither laminar nor
turbulent in the jet launching region, medium-field jets can exhibit
‘knot-like’ structures that are generated periodically from the inner
disc and propagate with the flow.

(7) With the exception of simulation H (our weakest-field sim-
ulation), this study confirms that the interior dynamics of jets are
dominated by a strong toroidal magnetic field. Indeed, we find
that plasma-β averaged over rotating regions where M > 5, ⟨β tot⟩,
asymptotes to 0.2–0.4 regardless of β i. Simulation H struggles to
maintain outflow, but even still ⟨β tot⟩ → 1. Thus, this study implies
that measures of magnetic field strength within the jet may not
reveal much about the magnetic environment near the protostar.

(8) The global nature of these simulations reveals that jets at
similar ‘dynamical times’ (e.g. of equal length) have similar radii
and bow shock shape. Thus, these cannot be used as a measure of
magnetic field strength near the protostar.

(9) Since no part of the outflow leaves the domain, we are able to
determine that the advance speed of the jet (as would be measured
by time-lapse images), vjet, and the average flow speed within the
leading portion of the jet (as could be measured from line emission
observations), ⟨vz⟩, both vary as B∼4/9

i , where Bi is the initial
magnetic field strength at the inner radius of the disc. The fact
that vjet ∼ ⟨vz⟩ indicates that the jets are essentially ballistic.

(10) The average rotation speed along the latter portion of the
jet varies as ⟨vϕ⟩ ∼ B2/3

i . This, along with our other results, leads
to possible observable evidence for the magnetic character of
protostellar jets: vjet ∼ ⟨vϕ⟩2/3 (equation 26).

(11) The jet advance speed, vjet, and the advance speed of
material entrained by the bow shock, ventr, all fall nicely within the
realm of observational constraints (Table 1). Together, they indicate
ventr ∼ v

4/3
jet (equation 27).

(12) Because no jet leaves the computational domain, we have
been able to make estimates of fluxes for mass, momentum
(linear and angular), and kinetic energy in our jets. Based in
part on the consistency of these fluxes and velocities with those
measured from observational data (Tables 1 and 7), we conclude
that our global simulations are able to make the link to obser-
vations where local simulations cannot. In particular, we have
shown that numerical models based solely on gravitomagnetoro-
tational fluid dynamics are capable of launching and driving jets
that are consistent morphologically and quantitatively with the
observations.
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Podio L., Bacciotti F., Nisini B., Eislöffel J., Massi F., Giannini T., Ray T.

P., 2006, A&A, 456, 189
Porth O., Fendt C., 2010, ApJ, 709, 1100
Porth O., Fendt C., Meliani Z., Vaidya B., 2011, ApJ, 737, 42
Pudritz R. E., Norman C. A., 1983, ApJ, 274, 677
Pudritz R. E., Rogers C. S., Ouyed R., 2006, MNRAS, 365, 1131
Ramsey J. P., Clarke D. A., 2011, ApJ, 728, L11
Ramsey J. P., Clarke D. A., Men’shchikov A. B., 2012, ApJS, 199, 13
Ray T., Dougados C., Bacciotti F., Eislöffel J., Chrysostomou A., 2007,
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