TUTORIAL 1, PHYS 2335

1. Test the following series for convergence.
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2. Which of the following series is different, and what is the most minor change necessary
to make it the same, but still appear different than the other four?
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3. Let by =0, V k£ > N. Which of the following series is different, and what is the most
minor change necessary to make it the same, but still appear different than the other four?
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where in sum e), [N/2] = N/2 for N even, (N — 1)/2 for N odd.

4. Let ¢, =0V g even. What must j be to make each sum the same as sum 5:7
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5. Collect all like powers of z; i.e., manipulate the sum indices so that you end up with
something of the form: }°,, 2™ >, Gmn-
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¢) Z Z A (z® +2°), assuming A is symmetric; i.e., Agy = Apq.
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6. Perform a Taylor (or MacLaurin) expansion of the following functions:
a) f(x) = cos(x) about xzy = 0.

b) f(z) = cos(x) about zy = /2.

c) f(x)=sin(z) about zq = 7/2.



