# PHYSICS 2335: Introductory Mathematical Methods for Physicists

Instructor: David Clarke MM 301E, 420-5830, dclarke@ap.smu.ca

Grader: TBA

Lectures: MM 310  $T \Theta$ , 2:30 pm-3:45 pm Tutorials: MM 310 F, 1:00 pm-2:15 pm Office Hours: MM 301E MW, 1:00-4:00 pm

Textbook: Arfken: "Mathematical Methods for Physicists", Fifth Edition Assignments: Assigned more or less weekly; late assignments assessed a 10%

penalty per day late.

Assessment: Assignments 40%

1 hour midterm 15% 3 hour Final 45%

Course web site: http://www.ap.smu.ca/~dclarke/PHYS2335

#### Outline

#### PART 1. INTRODUCTION (7 lectures)

- I. Summations (2)
- II. Taylor and Binomial Expansions (2)
- III. Simple Differential Equations
- IV. Vectors (1.5)
- V. Introduction to UNIX and GNUplot graphics (0.5)

### PART 2. VECTOR CALCULUS (7 lectures)

- I. Partial Derivatives, Vectors, and Dual Vectors
- II. Coordinate Transformations
- III. Gradient, Divergence, and Curl
- IV. Vector Integration (2)
- V. Theorems of Gauss, Green, and Stokes (2)

MIDTERM (Thursday, November 2, 1:00pm-2:15pm, MM310)

### PART 3. LINEAR ALGEBRA (9 lectures)

- I. Overview of Vector Spaces
- II. Matrices (2)
- III. Determinants, Matrix Inversion
- IV. Systems of Equations (Gauss-Jordan Elimination) (2)
- V. Eigenalgebra (3)

## Approximate course schedule

| Calendar                       |                        |                                         |                             |                                |                       | Assignment  |                            |                            |
|--------------------------------|------------------------|-----------------------------------------|-----------------------------|--------------------------------|-----------------------|-------------|----------------------------|----------------------------|
| Tuesday (T)                    |                        | Thursday $(\Theta)$                     |                             | Friday (F)                     |                       | #           | assigned                   | ${ m due}$                 |
| Sept 5 Sept 12 Sept 19 Sept 26 | no class 1.I 1.II 1.IV | Sept 7<br>Sept 14<br>Sept 21<br>Sept 28 | 1.I<br>1.II<br>1.III<br>1.V | Sept 8 Sept 15 Sept 22 Sept 29 | Tut 1 Tut 2 Tut 3     |             | Sept 19 Sept 26            | Sept 26<br>Oct 3           |
| Oct 3<br>Oct 10<br>Oct 17      | 2.I<br>2.III<br>2.IV   | Oct 5<br>Oct 12<br>Oct 19               | 2.II<br>2.IV<br>2.V         | Oct 6 Oct 13 Oct 20            | Tut 4 Tut 5 Tut 6     | 3<br>4<br>5 | Oct 3<br>Oct 10<br>Oct 17  | Oct 10<br>Oct 17<br>Oct 31 |
| Oct 24<br>Oct 31<br>Nov 7      | 2.V<br>3.II<br>3.II    | Oct 26<br>Nov 2<br>Nov 9                | 3.I<br>midterm<br>3.III     | Oct 27<br>Nov 3<br>Nov 10      | Tut 7 Tut 8 Tut 9     | 6           | Oct 31                     | Nov 14                     |
| Nov 14<br>Nov 21<br>Nov 28     | 3.IV<br>3.V<br>3.V     | Nov 16<br>Nov 23<br>Nov 30              | 3.IV<br>3.V<br>review       | Nov 17<br>Nov 24<br>Dec 1      | Tut 10<br>Tut 11<br>— | 7<br>8<br>9 | Nov 14<br>Nov 21<br>Nov 28 | Nov 21<br>Nov 28<br>Dec 1* |

<sup>\*</sup>No late penalty assessed for Assignment 9 if it is received by Tuesday, December 5, 2006.

The midterm is taken in-class, and requires a student to do three of four problems. Problems are of similar calibre as homework problems. Please bring sharp pencils, erasers, and a simple scientific calculator. Paper is provided.

Date, time, and location of final exam TBA. Roughly, 40% of the final exam will be based on Parts 1 and 2, 60% on Part 3. The student will be required to do 8 of 10 problems, each being of a similar calibre to homework problems. Some problems will be straight from homework and tutorial sets, other will be brand new. Please bring sharp pencils, erasers, and a simple scientific calculator. Paper is provided.

Note: last day for withdrawal from a fall semester course without academic penalty is Friday, November 10, 2006.