PHYS 2335 REVIEW
PART 1. INTRODUCTION
I. INFINITE SERIES

1. Convergence tests

oo
An infinite series has the form: Sy = Z an = a9 + a1 + az + ... which may be tested for

n=0
convergence as follows:
a) Cauchy ratio test:
a < 1, convergent;
li_>m ntl ) 1, divergent;
n—oo
n =1, indeterminant.
b) Gauss test: If
a h B(n
On+1 n n

where B(n) is a finite function of n for all n, then A > 1 = convergent; h < 1 = divergent.

Alternatively, if
an n? + ain + ag

Qn 41 N n?2 +b1’nj+b0’

then a1 > by + 1 = convergent; a1 < by + 1 = divergent.

¢) Cauchy integral test: If S = >°°>° . ap, and a, = f(n) where f(z) is a continuous, monotonically
decreasing function in z over the range z =4 to £ = oo, then S converges so long as

/Zoof(z) dz

is finite. Otherwise, S diverges.

2. Algebra of Sums

Let 0o 00
¢ S:ZZai,j.

i=05=0

Ifi=m—mnand j = n, then we have 1 > 0 = n < m, and thus 0 < m < oo and 0 < n < m.

Therefore,
o0 m
S = Z Z Am—nyn-

m=0n=0



II. SERIES EXPANSIONS

1. Taylor Series

Series expansion of a function about z = xy:

X (z — )" d"f(x
fa) =y T i), where ) (a0) = df "
= n! AL P
2. Maclaurin Series
Taylor series with zg = 0:
o xn
fl@) =3 =™ (0)
n=0
3. Binomial Expansion
is the Maclaurin series for f(z) = (1 + z)™:
—1 -1 —2
1+m:v-|—m(n; )$2+m(m 32(m ):v3+... m € IR,
+o" =3 m -
27':5” m € Zand m >0
— nl(m — n)!
n=0

For m € Z and m > 0, the binomial series is a finite series, and converges for all . Otherwise,
series converges only for |z| < 1.

ITII. SIMPLE ORDINARY DIFFERENTIAL EQUATIONS

1. First Order ODEs
General form of a first order ODE is:

Y (2)Q(x,y) + P(z,y) =0,

If P(z,y) = P(z) and Q(z,y) = Q(y), the differential equation is separable, in which case the
solution y(z) can be found by direct integration:

/ny(y) dy = —/w:P(fv) dz.

0

2. Linear, Second Order ODEs with Constant Coefficients

y"(z) +py'(z) +qy(z) = (1)



Trial solution for the homogeneous equation (r =0): yi(z) = e*+* =

_ —pEVP®—4q
2 7

at
where a1 can be real (exponential solutions), complex (combined exponential and sinusoidal so-

lutions), or degenerate (a+ = a— = a). In the latter case, y2(z) = ze* is a second, linearly
independent solution from e®®. Thus, the general solution to the homogeneous ODE is

(z) = Ae**+® 4+ Be~%  ay #a_;
YHAT) = Ae® + Bze®™, ay=a_ =a,

where A and B are constants set by the boundary conditions. The solution to the inhomogeneous
equation (1) is then y(z) = yu(z) +r/q.

IV. VECTORS

1. Definition of a Vector
See Part 2, §1.3.
2. Linear Independence

Let 91, o, ..., U, be n different vectors. Then, ¥, is linearly independent of ¥y, ¥5, ..., U,—1 if and
only if there are no values of a; such that

n—1
’l_fn = z aﬁ)}
=1
Alternatively and equivalently, i, is linearly independent of ¥, ¥a, ..., ¥,_1 if and only if

n
dbit; =0 = b=0,Vi=1n.

=1

3. Products of Vectors

aA = (aAy, ady, aA,) multiplication by a scalar
A-B= ABcosf = AyBy + AyBy + A, B, scalar product
Ax B= (AyB, — A,By, A,B, — A,B,, A,B, — AyBy) vector product
A-BxC)=B-(CxA)=C-(AxB)=

—-A- (CxB)=-B-(AxC)=-C-(BxA) triple product
Ax(BxC)=(A-C)B—-(4-B)C double vector product



PART 2. VECTOR CALCULUS
I. PARTIAL DERIVATIVES

1. Definition

Let f(z,y,z) be a continuous function of three independent variables. Then

g = lim f(xayaz) _f(wmyaz)

oxr z—o T — Zp

, etc.

2. Chain Rule

Let g(z,y) = f('(x,y),y'(z,y)). Then,
dg ofod ofdy By 8f od'  of oy

oy oz’ oy Oy oy’

dr 0z’ 9z = Oy dx’

3. Coordinate Transformations, and the Definition of a Vector

Consider a linear coordinate transformation which changes the coordinates from (z1, z9, z3) to
(2}, z4, z4). Then
3 /
ox;
/ 1
x; = x;.
i Z Oz, J
J=1

If A= (Agz, Ay, A,) transforms like the coordinates, that is

then A is a vector (e.g., 7, ¥, F, etc.) If B = (B,, By, B,) transforms like

then B is a dual-vector (e.g., V).

II. THE NABLA OPERATOR

1. Gradient

Let ¢(x,y, z) be a scalar function of the coordinates. Then the gradient of the function is given by:

_0¢. . 0¢. 09,
V¢ = Barm-l_ 8yy+8zz'



We write V = (0, 0y, 0,), where 0 = 0/0¢.

Identity: V¢ - di = d¢ (chain rule). Thus, along a surface of constant ¢, V¢ - d7 = 0 (the gradient
is perpendicular to any vector lying on the surface and therefore to the surface itself).

2. Divergence

Let 7 = (vg(x,y,2), vy(z,9y,2), v.(z,y,2)) be a vector function of the coordinates. Then, the
divergence is defined as
V -7 = 0pv; + Oyvy + 0,v;.

fV.-9=0, v is solenoidal.
3. Curl
The curl of a vector function ¥ is defined as
V x ¥ = (Oyv, — 0,0y, 0,0y — Oz, Ozvy — Oyvy).
If V x4 =0, ¥is irrotational.
4. Identities

Let ¢ and 0 be scalar functions of the coordinates, and let A and B be vector functions of the
coordinates. Then,

i) V(¢0) = ¢VO + 6V ¢

i) V(¢/0):9v¢0—2¢v9
iii)  V(¢p+0)=Veé+ Vo

w)  V(A-B)=(B-V)A+(A-V)B+B x (VxA) +Ax(VxDB)
v) V- (pA)=¢V-A+A-V

vi) V-(A+B)=V-A+V-B

vii))  V.(AxB)=B.(VxA)—A4-(VxB)

viti))  Vx(AxB)=(B-V)A—(A-V)B-B(V-A) + A(V-B)
ir)  Vx(pA)=¢VxA+Vpx A

z) Vx(A+B)=VxA+VxB

5. Second Derivatives

i) V - V¢ = V2¢. V2 is called the Laplacian operator.

i) Vx(Vg)=0 = ifVx F= 0, F = V. F is a conservative force, and ¢ is the scalar
potential.

1) V- (V x /T) =0 = ifV-B=0, B=V x A. Ais called the vector potential.



w) V- (VA)=V(V-A4) =V x (V x A), where

OpAy OpA, 0,A,
8,A, 8,4, O A,
8,4, 0,4, 8,4,

VA=

III. VECTOR INTEGRATION

1. Integration of a gradient
If V¢ = (00, Oy, 0,¢) is given, then

/amqsdx = 1+ f(y,2),
6=3 [sdy= s+ glz),
/ .pdz = b3 + h(z, y).

Equate the first integral to the second, then the second integral to the third to determine g.
Alternatively, equating the second to the third, then the third to the first will allow you to solve
for h. Finally, equating the third to the first, then the first to the second will allow you to solve for
f. Regardless of how you do it, you should get the same result for ¢.

2. Line Integrals

Open integrals: / ¢ dr, / fl'-df', / A x dF.
c c c

Closed integrals: ]{ ¢ dr, ?{ff-dﬁ Y{Ex dr.
c c c

i) / ngdF:aE/ ¢d:v+g)/ ¢dy+2/ bdz.
C C C C
The path is specified by two functions, f(z,y,z) = 0 and g(z,y,2) = 0.

For the z-integral, use f = 0 and g = 0 to solve both y and z in terms of z, substitute into the
integral, and evaluate at the limits.

For the y-integral, use f = 0 and g = 0 to solve both z and z in terms of y, substitute into the
integral, and evaluate at the limits.

For the z-integral, use f = 0 and g = 0 to solve both z and ¥y in terms of z, substitute into the
integral, and evaluate at the limits.

Remember, [ ¢di is a vector!

ii) /fr-dr":/Awd:v+/Aydy+/Azdz which is a scalar.
C C C C

Use the path f = 0 and g = 0 to evaluate each term, as above. If A is irrotational (conservative),



then A = V¢, and thus

2 2 2
[ Adi= ["Vg-di= [ =4l = 42 - 40
For a closed path, points 1 and 2 are the same, and thus ¢(2) = ¢(1), and

f{ A-di=0 for an irrotational vector A only.
C

i) / A x df':fc/ (A dz — A, dy) +g/ (A, do — A, d2) +2/ (Aody — A, d2).
C C C C
3. Surface Integrals
Open integrals: / $d3, / i ds, / A x dé.
S S S

Closed integrals: 7{ ¢ dd, ]{ A- da, % A x dé.
S 5 S

4. Volume Integrals

/V¢dV,

/ Adv :55/ Ade+ﬂ/ Ade+2/ A, dV,
v 1% % %
where in Cartesian coordinates, dV = dx dy dz, in cylindrical coordinates, dV = rdr d¢ dz, and in

spherical polar coordinates, dV = r? sin f dr df dé.

IV. THEOREMS OF VECTOR INTEGRATION

fﬁ-d&:/V-ﬁTdV,
quclo—_/wsdv
7{9 « d /VxAdV

1. Gauss’ Theorem

2. Green’s Theorem

f{qu-dé':/ uv2udv+/ V- VodV,
S 1% 1%

f(qu —oVu) - dd = / (uV?0 — vV2u) dV.
S 1%



3. Stokes Theorem
fﬁ-di:/ij-d&,
C S
]{qsdz”:—/wxda,
C S

fodl:—/(d&xV)xﬁ.
C S



PART 3. LINEAR ALGEBRA

I. VECTOR SPACES

1. Definition

A Vector Space V is a set of elements for which two operations @& and ® are defined as follows:

Let A, B, C € V, and let o, 8 € IR. Then:

1.

A® B €V (closure);

2. A® B = B @ A (commutative);

3. Ae (B®C) = (A B) @ C (associative);

4. YA€V, 31 ZecV|ADZ = A (zero element);

5. VA€ V,3!'Be€V|A® B = Z (negative element);
6.
7
8
9

a® A €V (multiplication by a real);

. a®@(A®B)=(a®A)® (oo B) (distributive);
(a+B)0A=(a®A)® (B A) (distributive);
. (af) ©A=a o (8O A) (associative);

10. 1® A = A (identity).

2. Examples of Vector Spaces

i) = € IR, the set of all real numbers with ordinary addition (@) and multiplication (®).

ii) U € IR™, the set of all n-dimensional vectors with vector addition () and multiplication of a

vector by a real number (®).

i11) The set of all functions, f(z), with ordinary addition (&) and multiplication by a real number

(®). This vector space is formally infinite dimensional, and is known as a Hilbert Space.

iv) A € R™, the set of all m by n matrices, with matrix addition (&) and multiplication of a

matrix by a real number (©®).

II. MATRICES

1. Definition as a Vector Space

An m X n matrix is a 2-D array of numbers with m rows and n columns:

ail ai2 e ain

az1 a22 T a2n
A= .

aGml am2 " Omnp

9



Matriz addition (®): Let A, B, C € R™. A+ B = C if and only if ¢;; = a;;+b;; where 1 <i <m
and 1 < j <mn.

Multiplication by a scalar (©): Let A, B € R™, a € R. B = oA if and only if b;; = aa;.
2. Matrix Multiplication

In addition to & and ©®, we define matriz multiplication as follows. Let A € R™", B € IR™, and
C € R™. Then C = AB if and only if

n
Cik — Z aijbjk.
j=1

Thus, c¢;; is the “dot-product” of the ith row of A and the kth column of B.

Note that A € R™" and B € IRPY can only be multiplied together if they are compatible, namely
if n = p, in which case the result is an m by ¢ matrix.

Note that matrix multiplication does not necessarily commute. That is, AB # BA in general.
Indeed, BA may not be compatible even if AB is.

3. Dirac (bra-ket) notation
Write 1 X n matrices (i.e., row vectors) as a “bra”: (¥|. Thus, the ith row of matrix A is (a@,]|.

Write n x 1 matrices (i.e., column vectors) as a “ket”: |#). Thus, the kth column of matrix B is
|bx)-

If C = AB, we write in bra-ket notation:

n
cik = (ilbe) = Y aijbjk.
i=1

Note that |b)(d@;| is the multiplication of an n by 1 matrix with a 1 by n matrix and thus is a
well-defined operation resulting in an n by n matrix:

b1 bikair  bigaix -+ bikain
- box, borai1  bopain -+ bopaip
)@l = | . [lan a2 -+ ain]= : . _ _

bnk bprail  bpraiz -+ bprain

4. Other Items
For all points following, let A, B, and C' € IR"", and let a;; be the i-jth element of matrix A, etc.

i) The Commutator: Define
[A,B] = AB — BA

as the commutator of A and B. The commutator is zero if and only if A and B commute.

10



ii) Diagonal Matrices: If a;; = 0Vi # j, A is diagonal.

i11) Trace: The trace of a matrix is defined as the sum of all the diagonal elements:
n
TI'(A) = Z Q.
=1

i) Identity Matriz and the Kroneker Delta: I is a diagonal matrix with 1’s down the diagonal;
thus TA = AI = A. The matrix elements of the identity matrix is the Kroneker Delta, d;;, where
by definition, d§;; = 1 if ¢ = 7, or 0 if ¢ # j.

v) Matriz Inverse: If AB = BA = I, B is the inverse of A and we write B = A~ !. Not all matrices
have inverses. Those that have inverses are called invertible or non-singular while those that don’t
have inverses are called non-invertible or singular. If C = AB and A and B are both invertible, so
is C, and

Ct=AB)"t=B"14"1.
vi) Matriz Transpose: A is the transpose of A if a;; = aj;. If C = AB,

C = (AB) = BA.
vii) Symmetric Matrices: A is symmetric if A = A, and antisymmetric if A = —A.
viii) Orthogonal Matrices: A is orthogonal if A~1 = A. If C = AB and A, B are orthogonal, then
CC = (AB)(AB) = BAAB = BIB=BB =1.
Thus C = C~! and C is orthogonal too.
iz) Similar Matrices: A and B are similar if 3C| B = C"1AC.

z) Normal Matrices: A is normal if [A, A] = 0 (i.e., A commutes with its transpose).

III. DETERMINANTS

1. Definition

The determinant of A € IR?? is defined by

a1 a12

det(4) = 4] =| 1 2

= a11a92 — a12091 € IR.

For A € IR™, we perform a cofactor erpansion, namely

n n
|A] = Z a;jCij (forany 1 <i<n) = Zaijcij (for any 1 < j < m),

11



where the cofactor C;; is the determinant of the (n —1) X (n — 1) matrix obtained by “striking out”
the ith row and jth column and multiplying by (—1)**7.

2. Properties of Determinants

For all that follows, A, B € IR™, a;; is the i-jth element of A, etc., and (d;| is the ith row of A4,
etc.

i) If any two rows or columns of A are swapped, the sign of |A| changes (but the magnitude stays
the same).

ii) If any two rows or columns of A are the same, |A| = 0.
iii) If (bs| = (d@;|, Vi # k, and (bs| = a(d@x|, o € R, then |B| = a|A].

iv) Suppose (G| = (I;Z| = (d@;|, Vi # k, and suppose further that (¢x| = (a@x| + (5k| Then
IC = |Al+BI.

v) If any row (column) of matrix A is a linear combination of any other rows (columns) of A,
|A| = 0.

vi) The value of a determinant is unchanged if a multiple of one row (column) is added to another.
vii) The Product Theorem for Determinants: |AB| = |A||B].

viii) A is non-invertible if and only if |A| = 0.

IV. SYSTEMS OF LINEAR EQUATIONS (GAUSS-JORDAN ELIMINATION)

1. Matrix Representation of a System of Linear Equations
Consider a system of three equations in three unknowns (z1, z2, z3):

a1171 + a1222 + a13x3 = by;
a2171 + Q22T + @233 = by;
a31z1 + azaT2 + aszzr3 = b,

which can be written in a fashion consistent with matrix multiplication:

a1 a2 @13 [Z1 b
as1 azp a | [T2| = |b2 |,
a31 azx a3zl Lx3 b3

which in turn can be wrtitten in compact matrix notation:

-

AlZ) = |b) 2).

-

If |b) = 0, equations (2) are said to be homogeneous. Otherwise, equations (2) are inhomogeneous.

12



2. Types of Systems of Linear Equations
i) homogeneous, A invertible: the trivial solution, |Z) = 0, is the unique solution.

it) inhomogeneous, A invertible: |Z) = A_1|g) is the unique solution. Formally, if z; and b; are the

-,

ith components of |Z) and |b) respectively,

where Cj; is the j-ith cofactor of A. Further, the i-jth element of A=l is given formally by:

_ C.:
a,,l — l

v JAr

iii) homogeneous, A non-invertible: the trivial solution, |Z) = 0, is a solution, but an infinity of
non-trivial (|Z) # 0), may also exist (see §V EIGEN-ALGEBRA).

iv) inhomogeneous, A non-invertible: There are no solutions to equations (2) because in this case,
the equations are inconsistent. For example, if two of the equations are

T1+ro+z3=1 and 1 +z9+T3=2,

these can’t be true simultaneously. The resulting matrix A has two identical lines, thus |A| = 0
and A is non-invertible.

3. Gauss-Jordan Elimination for Inhomogeneous, Invertible Systems of Equations
Consider the system of inhomogeneous equations:

3x1 — x4+ 2x3 = -2
z1— 23+ 3= 05

—2.’[)1 + 9 — 2]73 = 3,

3 -1 2 Il -2
-2 1 —2] | 3

Gauss-Jordan elimination of this system of equations proceeds as follows:

written as

1 13 -1 2 | 27

(2) [ 1 -2 1 | o0 step 1 (2) — %(1) - (2)
3 L-2 1 -2 | 3] step 2 (3) +5(1) — (3)
(1) 3 -1 2 | -2 step 3 (1) — 2(2) — (1)
@ o041

(3) 0 3+ -2 | 2| step 4 (3) + £(2) = (3)

13



1) 713 0 % \—;5—2 step 5 (1) +3(3) — (1)
(2) 0 -2 3 | gl step 6 (2) +2(3) — (2)
@ Lo o -3 ¢
(1) 13 0o 0 | 3 Normalise : %(1)—)(1)
(2) 0 -2 0 | %] —g(Z)_*(Q)
® Lo o % | 3 —3(3) > (3)

100 | 1

010 | -1

[0 0 1 | —3]

The solution to the system of equations is thus (Z| = (z1,z2,23) = (1, —1,—3), which should be
verified by substituting back into the original equations.

4. Gauss-Jordan Matrix Inversion

Find the inverse of the matrix

2 1 -2
A= 3 0 —4].
-1 -2 2
First, verify that | A| # 0 to make sure A~ exists. In this case, |A] = —6. Gauss-Jordan elimination
to find A~! then proceeds as follows:
1) 12 1 -2 | 100
(2) 3 0 -4 010 step 1 (2)—%(1)—>(2)
@) L-1 -2 2 | 00 1 step 2 (3) + (1) — (3)
1H [2 1 2] 100 step 3 (1) + 2(2) = (1)
(2) 0 —% -1 |—lg 10
(3) 0 -5 1 | 5 01 step4d  (3)— (2) > (3)
M 12 0 -8 | 0 2 0] stepb (1)+§(3)—>(1)
(2) 0 -3 -1 |-3 1 o0 step 6 (2) + 5(3) = (2)
@ Lo o 2 | 2 -11
(1) 2 03 0 | gl —1% % Normalise : %(1)—)(1)
(2) 0 =5 0 [ -3 3 3 —§(2)—>(2)
(3) 0o 0 2| 2 -1 1 5(3) = (3)
4 12

1 0 0 | 3 77 3 1 [8 -2 4

010 | 3 3 -1l = A—l—g 2 —2 -2

001 | 1 —5 3 6 —3

One must always check after that AA~! = I.

V. EIGEN-ALGEBRA

1. Eigenkets and eigenvalues

Suppose A € R™. If

A|Z) = A7),

14



then A are the eigenvalues of A while |Z) are the eigenkets or eigenvectors of A.

For A € IR™, there are as many as n different eigenvalues associated with A, and for each eigen-
value, there is a non-trivial eigenket. To find the eigenkets, rearrange (3) to get:

(4 - AD)|Z) = 0, (4)
and force (A — AI) to be singular (so the eigenkets are non-trivial) by setting:
|A— M| = 0. (5)

Equation (5) (the secular equation) is an nth order polynomial whose roots are the n eigenvalues.
For each eigenvalue, solve the system of equations (4) for the eigenket, |Z).
For a non-degenerate eigenvalue, one of the n equations will be redundant, and the eigenket can

be found to within a constant.

For an i-fold degenerate eigenvalue (i roots of the secular equation (5) are the same eigenvalue), i
equations will be redundant, leaving the eigenket known to within ¢ free parameters, which can be
broken up into ¢ linearly independent eigenkets, each associated with the same eigenvalue.

2. Theorems

i) fAe IR™ is a normal matrix, A and A have the same eigenkets and eigenvalues. That is to
say, if [A, A] = 0 and A|Z) = A\|Z), then A|Z) = \|Z).

i) If A € R™ is a normal matrix, the eigenkets of non-degenerate eigenvalues are orthogonal.
That is to say, if [A, A] = 0 and |Z;) and |Z;) are the eigenkets associated with eigenvalues \; # A;
respectively, then (Z;|Z;) = 0.

3. Normal Modes of Oscillation

Three masses are connected in a straight line with two springs of spring constant k. Let the centre
mass be M and the two outside masses be m. Find the normal modes of oscillation.

Let z;, 7 = 1,2,3, be the displacements in the z-direction of the three masses at any given time.
Application of Newton’s Second Law to the three masses yield the following equations:

d2

—kz1 + kxo = m%; (6)
d2

kz1 — 2kzo + kzg = MT?; (7)
2

kxo — kxg = m% (8)

Seeking the normal modes means seeking harmonic (single frequency, w) solutions of the type
zj(t) = oz, (9)

Substituting (9) into (6), (7), and (8) and writing the equations in matrix notation yields:

15



o

k k
"% i k|- 2=
¥ 2% | 1D =D,
0 kk

m m

mol e Ok
A
whose roots are
W — 0 k 2k n k
7 m’ M om’
i) w? = 0. Solve equation (4):
k k
Ek _kE Ok .
—u 2w —m||%2|=0
o -k E ]l
to get three equations in three unknowns, namely
1 — x0 = 0; T1 — 229 + x3 = 0] —xz9+x3=0.

Note that the second equation is the sum of the other two, and thus is not independent. Together,

the first and third equations imply z1 = x9 = x3 = a1, where a1 is some parameter. Thus, the
eigenket associated with the eigenvalue w? = 0 is

S 1
<‘T| = a’l(l, 1, 1) = %(1, 1, 1)1
where a; = 1/4/3 normalises the eigenbra.
i) w? = £ Solve equation (4):
Olc k_% k Ok .
— 2M;E —u | |%2]| =0
0 ~m 0 zs3
to get
- 1
<$| = GIQ(].,O, —1) = 5(1,0, —1),

where a9 =1/ v/2 normalises the eigenbra.

iii) w? =2+ + £ Solve equation (4):
k

257 w0 J[a;
R
0 —% —2k | L3
to get
(@ = os(0, 255 1) = e (L2, 1),
where a3 is chosen to normalise the eigenbra. For m = M /2, (Z| = %(1, -1,1).
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