ASSIGNMENT 7, PHYS 2335

Assigned: Tuesday, November 14, 2006

Due: Tuesday, November 21, 2006

1. Let $A \in \mathcal{R}^{nn}$ and let A^{-1} exist. Using the product rule for determinants (namely, $A, B \in \mathcal{R}^{nn} \Rightarrow |AB| = |A||B|$.), prove that

$$|A^{-1}| = \frac{1}{|A|}.$$

- 2. Let A, B, $C \in \mathbb{R}^{nn}$ and let $B = C A C^{-1}$. That is, matrices A and B are similar.
- a) Show that tr(A) = tr(B). [Hint: Problem 1a of Tutorial 8 shows that for two matrices, $P, Q \in \mathbb{R}^{nn}$, tr(PQ) = tr(QP). You may use this result here.]
- b) Show that |A| = |B|. (Hint: Use the "product rule" for determinants.)

Thus, the determinant and trace of a matrix are invariant under similarity transformations (which we showed in class could be thought of as coordinate transformations).

- 3. Let $A, B \in \mathbb{R}^{nn}$. If [A, B] = 0 and A is diagonal with all diagonal elements different, show that B is also diagonal.
- 4. Show that the product of two orthogonal matrices is orthogonal. Hint: You should first show that $(\tilde{AB}) = \tilde{B}\tilde{A}$.
- 5. Using the formula for the inverse matrix elements derived in class, namely

$$a_{ij}^{-1} = \frac{\mathcal{C}_{ji}}{|A|},$$

where C_{ji} (note the order of indices) is the co-factor for matrix element a_{ji} , evaluate the inverse of the following matrix:

$$\begin{bmatrix} 0 & 3 & -1 & 0 \\ 0 & 0 & 5 & 13 \\ 2 & 0 & 0 & 1 \\ 7 & -4 & 0 & 0 \end{bmatrix}$$

NB: You are not to use Gauss-Jordan elimination here—you'll get plenty of practise with that technique in the next assignment.

1