ASSIGNMENT 3, PHYS 2335

Assigned: Tuesday, October 3, 2006
Due: Tuesday, October 10, 2006

1. Using GNUPLOT on the departmental UNIX system, plot and attach a hard copy of the
following:

a) f(x) =sinz in the domain [—m, 7]. Specify the range to be [—1.1, 1.1].
b) f(z,y) = sin(xy) with z € [-2,2] and y € [-2,2].

) f
d) f(z,y) = 2® + y?, with the same domain as part b).

o

(
(z) = 2% in the domain [—2, 2]. Use whatever range you think looks best.
(

2. In class, we determined that the equation of motion for a damped harmonic oscillator
moving vertically near the surface of the Earth is given by:

mcp—gﬁ-l-bd—x-l-kx—m
a " dt - Mg

where z(t) is the position of the mass m at time ¢, b is the damping constant (damping force
= bv), k is the usual spring constant, and g is the acceleration of gravity.

a) Assuming z(0) = 0 and v(0) = 0, show that z(t) is given by:

() = L (1 _eut L/ﬁ sinh (Mt) + cosh (Mtﬂ) Y

Wo
where w = b/2m, wy = 1/k/m, and where
) e — g~ €Y+ =@
sinh a = —g coshaET

(pronounced sinch and caush) are the hyperbolic sine and cosine functions.

b) Let Q = 4/|w? — wy?| and thus:
/w2—w2—{Q’ W 2> Wo;
O T, w < w,

where i = y/—1. Show that equation (1) can be written as follows:

(0, w — 00, stiff;
g —wt w .
— [1 —e <§ sinh Q¢ + cosh Qt)] , W > wy, overdamped;
Wo
g _ .-
2(t) = o2 [1— e “o"(1+ wpt)], w = wy, critically damped; 2)
g —wt w .
— [1 —e (— sin 2t + cos Qt)] , w < wy, underdamped;
Wy Q
%(1 — cos wot), w — 0, undamped.
\ Wo
over. . .



where a Maclaurin series expansion will verify the following identities:
sina = —isinh(i a); cosa = cosh(i ).

c) Let wo = 1 and g = 9.8. Use GNUPLOT on the departmental UNIX system to plot
equation (2) for four different values of w, namely w = 2, 1, 0.5, and 0, using a domain of
[0,12.6] and a range of [—0.5,20] all on the same plot. Attach a hard copy of your plot,
and label each graph (by hand, if you like) with its value of w and whether it represents the
overdamped, critically damped, underdamped, or undamped case.

d) Explain the designations overdamped, critically damped, and underdamped.

3. a) Find a unit vector perpendicular to the surface z? + y? + 22 = 3 at the point (1,1,1).
b) Derive the equation of the plane tangent to the surface at (1,1,1).
HUGE HINT: If A = (Az, Ay, A,) is a vector perpendicular to a plane, the equation of that

plane is given by
Az +Ayy+A,z=D

where D is a constant and evaluated by requiring that a given point lie on the plane.

4. Consider the rotation of coordinates studied in class, where the (2',y') system was ob-
tained by rotating the (z,y) system through an angle +¢ (i.e., counterclockwise). Thus:

I —_—

7' = xcos @+ ysin ¢, y' = —xsin ¢ + y cos ¢,

! ! !/ !
g—a;:cosqb, %—z:sinqﬁ, g—i:—sinqﬁ, (Z—‘Z:cosqﬁ.

a) Now suppose we start with the (z',y') system and rotate the axes through an angle —¢
(clockwise). In this case, we arrive back at the (z,y) system. Find expressions for this
reverse transformation; namely, determine x and y in terms of =’ and 7/'.

b) From these relations, evaluate

oz oz 9y 9y
oz’ oy’ oz’ oy’
These should be the same as their “inverses” (where the “inverse” of dy/0x is 0z' /0y, etc.),

thus supporting the claim made in class that for rotations, there is no distinction between
“vectors” and “dual-vectors”.

5. a) For the following functions
flz,y) = ze¥; g(z,y,2) = sin[a(2® + y* + 2?)]; a = constant
evaluate the two partial derivatives of f(x,y) (namely 0f/0r and 0f/0y) and the three

partial derivatives of g(z,y, 2).

b) Now consider h(u,v) = f(z(u,v),y(u,v)) where f(z,y) is the same function as in part
a), z(u,v) = uv, and y(u,v) = In(uv). Using the chain rule, evaluate 0h/0u and 0h/dv in
terms of v and v.



