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Chapter 7: Motion in a Circle

A particle undergoes uniform circular motion when it 
moves in a circle with a constant speed.

v = |v| = constant

Because the path is a circle, v is 
always tangential to the path.

Period: the time it takes to go 
around the circle once:

v =        ;  T =  
2πr

T

2πr

v
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Angular position

answers the question: Where is the object on the circle?

Define the angular position, θθθθ, to be the arc length from the +x-axis to the 
current position, s, divided by the radius of the circle, r:

θθθθ =  s/r

SI units of θθθθ are radians (rad) which is 
a “unitless unit” (distance/distance)

θθθθ > 0 counterclockwise from +x-axis

θθθθ < 0 clockwise from +x-axis

e.g., How many radians in a circle?

θθθθcirc =  circumference /r =  2ππππr/r =  2ππππ

Thus, 2ππππ rad =  360
o
.
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Angular displacement

answers the question: How far has the object rotated?

If a particle moves around a circle from angular position θθθθi to 
angular position θθθθf, its angular displacement, ∆∆∆∆θθθθ, is:

∆∆∆∆θθθθ = θθθθf – θθθθi

∆∆∆∆θθθθ > 0  ⇒ angular 
displacement is 
counterclockwise.

∆∆∆∆θθθθ < 0  ⇒ angular 
displacement is 
clockwise.
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Chapter 7: Motion in a Circle

Clicker question 7.1

If you walk around a circle of diameter of 10 m for π rad, how 
far have you walked?

a)  5 m

b)  5π m

c)  10 m

d)  10π m
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Chapter 7: Motion in a Circle

Clicker question 7.1

If you walk around a circle of diameter of 10 m for π rad, how 
far have you walked?

a)  5 m

b)  5π m

c)  10 m

d)  10π m 10 m

π rad is half way 
around the circle 
of radius 5 m.

s =  rθθθθ =  5π m

s

r
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Angular velocity

answers the question: How fast is the object rotating?

Then the average angular velocity is the angular displacement 
divided by the time interval:

ω ω ω ω =  lim
∆∆∆∆t 0

∆∆∆∆θθθθ

∆∆∆∆t
=

dθθθθ

dt

ωωωωavg =
∆∆∆∆θθθθ

∆∆∆∆t

The instantaneous angular velocity
is:

SI units for  ω ω ω ω are rad s-1
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F

Clicker question 7.2

An bug crawls along the edge of a pizza of radius 20 cm from 
a starting point (S) to a final point (F) exactly half around the 
pizza.  If it takes the bug 10 s to complete the journey, what 
was its average angular velocity? 

a) ππππ rad/s

b)  20 ππππ cm/s

c)  ππππ /10 rad/s

d)  40 cm/s

e)  pizza ππππ

S
20 cm
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F

Clicker question 7.2

An bug crawls along the edge of a pizza of radius 20 cm from 
a starting point (S) to a final point (F) exactly half around the 
pizza.  If it takes the bug 10 s to complete the journey, what 
was its average angular velocity? 

a) ππππ rad/s

b)  20 ππππ cm/s

c)  ππππ /10 rad/s

d)  40 cm/s

e)  pizza ππππ

S
20 cm

ended here, 9/10/08
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Uniform circular motion

- means angular velocity is constant

- θθθθf =  θθθθi + ω ω ω ω ∆∆∆∆t

- ωωωω =  2π/T;  T =  2π/ωωωω (period and angular velocity for 
constant angular velocity)

Uniform circular motion is completely analogous to 1-D 
motion with zero acceleration, with s (x or y) replaced by θθθθ, 
and v replaced by ωωωω.  Nothing new!

Similarly, graphical representation same as 1-D motion with 
zero acceleration.
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Chapter 7: Motion in a Circle

Example:  For the given θθθθ vs. t
graph, construct an ωωωω vs. t
graph.

0 < t < 3, ∆∆∆∆θθθθ = 6π

⇒ ωωωω = 6π/3 = 2π rad s–1

3 < t < 5, ∆∆∆∆θθθθ = –2π

⇒ ωωωω = –2π/2 = –π rad s–1

5 < t < 6, ∆∆∆∆θθθθ = 0 
⇒ ωωωω = 0 rad s-1
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Chapter 7: Motion in a Circle

Clicker question 7.3

A particle moves around a circle clockwise at a constant 
speed for 2.0 s. It then reverses direction and moves counter-
clockwise at half the original speed until it has traveled 
through the same angle.  Which is the particle’s angle-versus-
time graph?
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Clicker question 7.3

A particle moves around a circle clockwise at a constant 
speed for 2.0 s. It then reverses direction and moves counter-
clockwise at half the original speed until it has traveled 
through the same angle.  Which is the particle’s angle-versus-
time graph?
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Chapter 7: Motion in a Circle

7.2  Velocity and acceleration in uniform circular motion

The r-t-z coordinate system

To a particle moving around a circle, 
affix a coordinate system with:

1.  the radial axis (r) always pointing 
toward the centre of the circle;

2.  the tangential axis (t) always 
pointing tangent to the circle; and

3.  the z-axis always pointing ⊥⊥⊥⊥ to the plane defined by the r-t axes.

All coordinates will be perpendicular to each other.

z will be fixed in direction, r and t will change as particle moves around 
circle.
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Any vector A with magnitude A
can be decomposed into its radial 
and tangential components.  In 
the figure to the right, 

Ar = A cosφφφφ ;    At = A sinφφφφ

A2 =  Ar + At
22

In circular motion, velocity only 
has a tangential component.

vt =         =            =  r =  ω ω ω ω r

where ωωωω has units rad s–1

vt has units m s–1

dθθθθ

dt

ds

dt

d(rθθθθ)

dt
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Centripetal (centre-seeking) acceleration

For uniform circular motion, (a) shows 
that acceleration points to the centre, 
whence centripetal acceleration.  Since 
instantaneous velocity is tangential to 
the circle, v ⊥⊥⊥⊥ a, as shown in (b)
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Chapter 7: Motion in a Circle

To find the magnitude of acent:

CB  =  ∆∆∆∆r2 – ∆∆∆∆r1 =  v2∆∆∆∆t – v2∆∆∆∆t

=  (v2 – v1) ∆∆∆∆t =  ∆∆∆∆v ∆∆∆∆t

OAB and    ABC are isosceles 
and similar (θθθθ + 2αααα =  φφφφ + 2αααα =  
180o

⇒ θθθθ =  φφφφ ).  Thus:

Centripetal acceleration (cont’d)

=            ⇒ =            ⇒ =   acent =        =  ωωωω2r
CB
AB

AB
AO

∆∆∆∆v ∆∆∆∆t
v ∆∆∆∆t

v ∆∆∆∆t

r
∆∆∆∆v
∆∆∆∆t

v2

r
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Chapter 7: Motion in a Circle

Summary:

for a particle in circular motion:  vr = 0;  vt = ω ω ω ω r;  vz = 0.

acceleration of uniform circular motion: ar = ωωωω2r;  at = 0;  az = 0

Centripetal acceleration is not a new acceleration.  We are 
simply choosing to label an acceleration caused by real forces
(never centrifugal force!) that always points to the centre of a 
circular path as centripetal (centre-seeking).

e.g., In the Bohr model of the atom, an electron orbits the 
nucleus much like a planet orbits the sun.  If r = 5.3 x 10–11 m 
and T = 1.5 x 10–16 s, what is acent?

acent = ω2r =  (2π/T)2r =  9.3 x 1022 ms–2!!!
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Chapter 7: Motion in a Circle

Clicker question 7.4

In which diagram is the centripetal acceleration the greatest?
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Chapter 7: Motion in a Circle

Clicker question 7.4

In which diagram is the centripetal acceleration the greatest?

v2/r 4v2/r v2/r v2/2r 2v2/r
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Chapter 7: Motion in a Circle

7.3 Dynamics of uniform circular motion

When a particle is undergoing uniform circular motion, the 
net force acting on the particle must point towards the centre.

Fnet =  macent =          , toward centre of circle
mv2

r( )
A force that always points to the centre of a circular path is 
called the centripetal (centre-seeking) force.

A centripetal force is not a new force.  It will always be one or 
the sum of the forces found in the force catalogue (Chapter 4).

The adjective centripetal is a label we apply to the force(s) 
that point toward the centre of a circular path.
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Chapter 7: Motion in a Circle

Example 1. A man spins a child in her cart (total mass 25 kg) in 
circles using a 2-m-long rope always holding the rope parallel 
to the ground.  If the tension in the rope is 100 N, what is the 
angular speed of the cart?  (Neglect friction.)
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r/        Fr =  T =  mar =          =  mωωωω2r
mv2

rΣ

z/        Fz =  n – w =  0Σ

The z-equation is irrelevant for this problem.  The r-equation 
gives us:

ωωωω 2 =           ⇒⇒⇒⇒ ωωωω =            =  1.41 rad s–1T
mr

T
mr

solution…
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Chapter 7: Motion in a Circle

Clicker question 7.5

A ball is swung around 
by a string in a horizontal 
circle on the surface of a 
table.  

If the string breaks, 
which way does the ball 
continue?
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Chapter 7: Motion in a Circle

Clicker question 7.5

A ball is swung around 
by a string in a horizontal 
circle on the surface of a 
table.  

If the string breaks, 
which way does the ball 
continue?

Without the tension 
force, the ball continues 
moving in direction of v.

v
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Chapter 7: Motion in a Circle

Example 2. A car approaches a highway curve with a radius 70 m and

banked at 15°°°° relative to the horizontal.  If the coefficient of static friction 
between the tires and the highway is 1.0, what is the maximum constant 
speed the car can take this curve without sliding?

fs

acent

acent

r
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Chapter 7: Motion in a Circle

fs

z/      Fz = n cosθθθθ – fs sinθθθθ – w = 0Σ

r/      Fr = n sinθθθθ + fs cosθθθθ =Σ
mv2

r

Speed is limited because of friction.  Thus, take fs

to be its maximum: µµµµsn

Example 2. A car approaches a highway curve with a radius 70 m and

banked at 15°°°° relative to the horizontal.  If the coefficient of static friction 
between the tires and the highway is 1.0, what is the maximum constant 
speed the car can take this curve without sliding?
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fs

z/      Fz = n cosθθθθ – fs sinθθθθ – w = 0Σ

r/      Fr = n sinθθθθ + fs cosθθθθ =Σ
mv2

r

Speed is limited because of friction.  Thus, take fs

to be its maximum: µµµµsn.  From the z-equation:

n cosθθθθ – µµµµsn sinθθθθ = mg   ⇒⇒⇒⇒ n  =
mg

cosθθθθ – µµµµs sinθθθθ

Example 2. A car approaches a highway curve with a radius 70 m and

banked at 15°°°° relative to the horizontal.  If the coefficient of static friction 
between the tires and the highway is 1.0, what is the maximum constant 
speed the car can take this curve without sliding?
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fs

z/      Fz = n cosθθθθ – fs sinθθθθ – w = 0Σ

r/      Fr = n sinθθθθ + fs cosθθθθ =Σ
mv2

r

Speed is limited because of friction.  Thus, take fs

to be its maximum: µµµµsn.  From the z-equation:

n cosθθθθ – µµµµsn sinθθθθ = mg   ⇒⇒⇒⇒ n  =
mg

cosθθθθ – µµµµs sinθθθθ

and from the r-equation:    n =  
mv2

r (sinθθθθ + µµµµs cosθθθθ )

⇒⇒⇒⇒ v =      rg = 34.5 ms-1 (124 kph)
cosθθθθ – µµµµs sinθθθθ
sinθθθθ + µµµµs cosθθθθ

Example 2. A car approaches a highway curve with a radius 70 m and

banked at 15°°°° relative to the horizontal.  If the coefficient of static friction 
between the tires and the highway is 1.0, what is the maximum constant 
speed the car can take this curve without sliding?
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Example 3. Same situation as example 2, but now it’s January 
and black ice is everywhere (thus, µµµµs = 0).  What is the maximum 
speed the car can take the bank without slipping now?

There is no need to do this problem again 
from Newton’s 2nd law, except for practice!  
So this is left as an exercise.

Here, we just use the result from example 2 
and set µµµµs = 0:

v =     rg =     rg tanθθθθ

= 13.6 ms-1 (48.8 kph)
cosθθθθ
sinθθθθ

Note that in neither case was the mass needed.
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a = ωωωω 2 r

Example 4. A marble spinning inside a funnel (right cone) of 
half-opening angle θθθθ has a period of revolution T.... Find its 
height, h, above the apex of the funnel.

h

m

θθθθ

r

θθθθ

m

n

mg

θθθθ
r

z

z/      Fz = n sinθθθθ – mg = 0   ⇒⇒⇒⇒ n =Σ

r/      Fr = n cosθθθθ =  mωωωω 2 rΣ

mg

sinθθθθ

ωωωω = ;   tanθθθθ =       ⇒⇒⇒⇒ r =  h tanθθθθ
2ππππ
T

r
h

Thus, the r-equation ⇒⇒⇒⇒ mg =  m h tanθθθθ
cosθθθθ

sinθθθθ

4ππππ2222

T 2

⇒⇒⇒⇒ =  h          ⇒⇒⇒⇒ h  = g
g

tan2θθθθ
4ππππ2222

T 2 2π π π π tanθθθθ

T( )
2

e.g., for T = 0.25 s, θθθθ = 20o,   h = 0.12 m
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If the brakes are suddenly applied, 
the passenger feels as though he is 
being thrown forward by some force.  
This perceived force is a fictitious 
force.  There is no actual force 
pushing the passenger forward!

Viewed from an inertial frame of 
reference, the car is accelerating 
backward.  Since the passenger is not 
part of the car, he continues to move 
forward with the velocity the car had 
before the brakes were applied.

X
7.5  Fictitious forces
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“Centrifugal force”:  no such thing!!!!

The sensation of a “centrifugal force”
is also felt only in an accelerating 
frame of reference.  Turning a sharp 
corner, one feels pushed against the 
car door by this fictitious force.

Viewed from an inertial frame, the 
passenger is not part of the car and 
tries to continue moving in a straight 
line.  The car door provides the 
normal force necessary to cause the 
passenger to turn the circle too.

ended here, 14/10/08
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Example 5. A roller coaster goes around a vertical “loop-the-
loop” of radius r.

a)  Why is one’s apparent weight greater at the bottom than the 
top?
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The apparent weight is the 
normal force.  Thus, at the top…

Fnet,top = ntop + w  = m

ntop = m        – mg

vtop
2

r
vtop

2

r

and at the bottom…

Fnet,bot = nbot – w  = m

nbot = m        + mg

vbot
2

r
vbot

2

r

nbot > ntop because vbot > vtop and 
mg is added at the bottom but subtracted at the top.
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b) What is the minimum velocity (vc) necessary for the car to 
stay on the track?

Fnet,top = ntop + w  = m
vtop

2

r

For the velocity to be just enough 
to keep the car on the track, ntop = 0

⇒⇒⇒⇒ mg  = m        ⇒⇒⇒⇒ vc =    rg
vc

2

r

We often use the designation 
“critical” for quantities that are 
“just enough”.  Thus, the subscript 
“c” in vc stands for “critical”.
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7.4  Circular orbits

A)  Suppose you stand on a high 
tower, and jump with a horizontal 
velocity, v0.  This is projectile motion, 
as we have studied.

B)  Now suppose v0 is so high and 
your horizontal range so far that by 
the time you hit the ground, the 
curvature of the earth has noticeably 
lowered the ground from under you!

C) An even higher v0 and you almost make it all the way around the earth 
before touching ground.

D) Now let v0 be so high that the curvature of your path exactly matches 
the curvature of the earth!  This is the definition of “being in orbit” and 
you are in “free-fall” around the earth!
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What is the orbital speed of the projectile?

w =  mg  = m         ⇒⇒⇒⇒ vorb =    rg
vorb

2

r

This is exactly the same as the “critical 
velocity” for the roller coaster car to stay on 
the track at the top of the loop-the-loop! 
(slide 35)

In fact, in both cases the object is in “free-
fall” and feels “weightless”.

The expression for vorb is valid for “low orbits”, i.e., r ~ radius of the 
earth.  For higher orbits, we must take into account that gravity falls 
off as the “inverse square” of the distance from the centre of the earth 
(Chapter 12).  For r = 6.37 x 106 m, vorb = 7,900 ms-1 = 28,400 kph (one 
orbit every 90 minutes).
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A car is rolling over the top of a circular hill at speed v.

At this instant:

a)  n < w;

b)  n = w;

c)  n > w;

d)  We can’t tell unless we know v.

Clicker question 7.6
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A car is rolling over the top of a circular hill at speed v.

At this instant:

a)  n < w;

b)  n = w;

c)  n > w;

d)  We can’t tell unless we know v.

Clicker question 7.6

v2

a = r

w – n = m
v2

r

⇒⇒⇒⇒ n  =  w – m      < w
v2

r
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Clicker question 7.7

While in orbit around the Earth, an astronaut 
feels weightless because…

a) there is no gravity in space;

b)  the astronaut is in free-fall;

c)  a human’s mass decreases the further he/she 
gets from the centre of the earth;

d)  the lack of oxygen in space does funny things to 
an astronaut’s perceptions.
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Clicker question 7.7

While in orbit around the Earth, an astronaut 
feels weightless because…

a)  there is no gravity in space;

b)  the astronaut is in free-fall;

c)  a human’s mass decreases the further he/she 
gets from the centre of the earth;

d)  the lack of oxygen in space does funny things to 
an astronaut’s perceptions.
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Clicker question 7.8

A car maintains a constant speed as 
it makes a left circular turn around a 
corner.  The passenger feels the door 
pressing against him because…

a)  of the centrifugal force of the turn;

b)  the car door is providing the 
centripetal force necessary to force 
him to follow the circular path; or

c)  he is accelerating outward and 
thus being thrown against the door.
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Clicker question 7.8

A car maintains a constant speed as 
it makes a left circular turn around a 
corner.  The passenger feels the door 
pressing against him because…

a)  of the centrifugal force of the turn;

b)  the car door is providing the 
centripetal force necessary to force 
him to follow the circular path; or

c)  he is accelerating outward and 
thus being thrown against the door.

In this case, the 
centripetal force is 
the normal force.
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7.6  Non-uniform circular motion

Consider an object moving in a 
circular path with a non-uniform 
speed.  In this case, the 
acceleration has

- a radial (r)-component (⊥⊥⊥⊥ to the 
velocity) that changes the 
particle’s direction

- a tangential (t)-component (   to 
the velocity) that changes the 
particle’s speed.
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7.6  Non-uniform circular motion

Introduce a tangential acceleration component, at.  Then the 
angular acceleration, αααα, is given by:

αααα =         =            =            =  
dωωωω
dt

dv
dt

d(v/r)
dt

at

r
1
r

ωωωωf =  ωωωωi + α α α α ∆∆∆∆t

θθθθf = θθθθi + ωωωωi ∆∆∆∆t + ½ α α α α ∆∆∆∆t 2

ωωωωf = ωωωωi + 2α α α α (θθθθf – θθθθi)
22

The kinematical equations are:

Note that the text does not 
use αααα, but keeps it as at/r.
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Example 6.  A toy rocket is attached to the end of a 2-m-long massless

rod.  The other end is fixed to a frictionless pivot causing the rocket to 
move in a horizontal circle.  The rocket accelerates at 1 ms–2 for 10 s, then 
runs out of fuel.

a) Find the angular speed, ωωωω, after 10 s.

αααα =       =                 = 0.5 rad s–2at

r

1.0 ms–2

2.0 m

ωωωωf = ωωωωi + α α α α ∆∆∆∆t =  0.0 + (0.5)(10.0)  =  5.0 rad s–1

b) How many revolutions has the rocket made 
at 10 s?

∆∆∆∆θθθθ = ωωωωi ∆∆∆∆t + ½ α α α α ∆∆∆∆t 2 =  ½ (0.5)(10.0)2 =  25 rad

⇒⇒⇒⇒ # revolutions  = ∆∆∆∆θθθθ / 2ππππ =  4.0

c)  Find a at t = 2 s. notes 7.1
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Dynamical equations:

r/    (Fnet)r =      Fr =  mar =          =  mωωωω2r
mv2

rΣ

z/    (Fnet)z =      Fz =  0Σ

t/  (Fnet)t = Ft =  mat =  mα α α α rΣ

Example 6.  A motor spins a 2.0 kg block 

around on a 20-cm-long massless rod at 30 
rad s–1 on a table with µµµµk = 0.4.  

a)  If the pivot is 
frictionless, how 
long does it take for 
the block to come to 
rest?
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This is a rare example where all three 
directions are in play (although the r-
equation ends up not mattering).

r/      Fr =  T =  mar =  mωωωω2rΣ

z/      Fz =  n – w =  0Σ
t/  Ft =  –fk =  mat =  mα α α α rΣ

n = w = mg;    fk = µµµµkn = µµµµkmg;    α  α  α  α  =  – =  –
fk

mr
µµµµkmg
mr

ωωωωf =  ωωωωi + α α α α ∆∆∆∆t =  0

⇒⇒⇒⇒ ∆∆∆∆t =  – =          =                     =  1.53 s
(0.2)(30.0)
(0.4)(9.8)

rωωωωi

µµµµkg
ωωωωi

αααα


