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ABSTRACT

The inconsistency between the mean parallax of the Pleidaes open cluster from the Hipparcos catalog and
that obtained from the stellar evolution theory and photometric measurements is probed by recomputing the
Hipparcos data in a different way that reduces the propagation of the along-scan attitude errors. This is
achieved by coupling observations of stars made nearly simultaneously in the two separate fields of view of
the telescope. A direct calculation of astrometric quantities of 54 Pleiades members by the newmethod, based
on the Intermediate Astrometry Data, provides a correction of �0.71 � 0.14 mas to the weighted mean
parallax of the cluster. The mean corrected parallax of the Pleiades is 7.75 � 0.20 mas.
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1. INTRODUCTION

The absolute calibration of the main sequence became a
controversial subject in 1997, when the Hipparcos astro-
metric catalog was made publicly available (ESA 1997). The
location of some main sequences of nearby open clusters on
the HR diagram, drawn from the Hipparcos parallaxes,
does not check well with the currently accepted theory of
stellar evolution, backed by numerical modeling and pre-
Hipparcos observational data. This theory predicts a rela-
tively simple behavior of the main sequence depending
mainly on two parameters, age and metallicity. Open clus-
ters are believed to comprise stars of the same age and
chemical composition, thus providing a test field for the stel-
lar physics models and the basis for the cosmic distance
scale. Pinsonneault et al. (1998) investigated the main-
sequence fitting method in detail and found a distance
modulus of the Pleiades of 5.60 � 0.05 mag, corresponding
to a parallax of 7.59 mas, consistent with many previous
estimations. The Hipparcos-based distance modulus of the
Pleiades is considerably smaller (between 5.33 and 5.37,
with a formal error of 0.06), implying a smaller distance and
hence intrinsically fainter stars. Pinsonneault et al. (1998)
suggested that the Hipparcos parallaxes of the Pleiades are
corrupted by a systematic error, correlated on small angular
scales (about 2� radius). The hypothesis of a star-to-star
correlated error within the small areas occupied by rich clus-
ters was further discussed by Narayanan & Gould (1999).
Using a variation of the moving cluster method, they
reiterated the pre-Hipparcos distance of the Pleiades and
suggested a certain distribution of the error across the sky
area occupied by the cluster.

Attempts were made to account for the discordant
Hipparcos Pleiades main sequence by adopting a lower
metallicity than previous determinations. Stello & Nissen
(2001) conducted a careful reexamination of the main
sequence of field F stars with the same metallicity as the
Pleiades stars, based on Strömgren photometry. A dis-
tance modulus of 5.61 � 0.03 was obtained again, in
stark disagreement with the Hipparcos determination (see
Table 1 summarizing selected determinations of the
Pleiades distance modulus and parallax). Another line of

argument that the error is hidden in the Hipparcos paral-
laxes is that, assuming the Hipparcos distance, sublumi-
nous stars like the Pleiades (0.3 mag below the zero-age
main sequence) are not found elsewhere, including the
young nearby solar-type stars (Soderblom et al. 1998).
Van Leeuwen (1999b), however, argued that five other
young open clusters seem to share the Pleiades main
sequence, as determined by the Hipparcos parallaxes,
while three older clusters appear to be brighter. A new
physical age-luminosity relation was suggested, calling for
a change of the existing stellar evolution theory.

Mermilliod et al. (1997) also noticed a significant differ-
ence between the Hipparcos and photometric parallaxes for
a few clusters beside the Pleiades. They also concluded that
the Hipparcos results contradicted the commonly accepted
interpretation of the metallicity effects equally for the UBV,
uvby, and Geneva photometric systems.

On the other hand, van Leeuwen (1999a) bolstered the
Hipparcos astrometry giving more arguments of the astro-
metric kind. He investigated the correlations in Hipparcos
star abscissae coming from the geometry of the Hipparcos
scanning method and showed them to be present only on
the scale length below 1=2 and of negligible amplitude (0.1
mas). It is noted that the correlations in question were
assumed to be generated only by errors of the great circle
zero points thus leaving out possible nonrigidity of the great
circles. Possible disturbances in the instrument’s basic angle
at the Pleiades were also considered and ruled out. V.
Makarov (1998, unpublished) studied possible large-scale
distortions in theHipparcos parallax system all over the sky
by simulating periodic intrarevolution errors in the basic
angle estimates or in star abscissae, using the spherical har-
monic technique (Makarov 1998). Such periodic variations
could result from thermal changes in the instrument or from
the general instability of the one-dimensional abscissae so-
lution (Makarov 1992; Makarov, Høg, & Lindegren 1995).
It was shown that, in order to reproduce a 1 mas error at the
Pleiades, the amplitude of the intrarevolution variations
must be at least 4 mas, which seems quite unlikely. Besides,
any large-scale distortion in the parallaxes would add to the
overall scatter ofHipparcos parallaxes, which is not the case
(Lindegren 1995; Arenou et al. 1995).
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Irrespective of astrophysical methods and models, there
are observational clues pointing at Hipparcos as the origin
of the disparity. Recent determination of trigonometric par-
allaxes of the Pleiades yields a parallax of 7.64 � 0.43 mas
(Gatewood, de Jonge, & Han 2000), in general agreement
with values based on main-sequence fitting but 1 mas
smaller than the Hipparcos value (Robichon et al. 1999). Li
& Junliang (1999) applied the same method as Narayanan
&Gould (1999) and arrived at a close to traditional parallax
of 7.37 � 0.05 mas. In the extreme case of the open cluster
NGC 6231, the Hipparcos parallaxes for all six member
stars (HIP 82543, 82669, 82671, 82691, 82706, and 82783)
are negative with a mean of �0.62 � 0.48 mas (Arenou &
Luri 1999), while the expected parallax is 0.8 mas.1 The
gathered evidence of a position-correlated astrometric error
is compelling to look for clues in the techniques and algo-
rithms ofHipparcos data reductions.

2. DIRECT AND ITERATIVE METHODS OF
ASTROMETRIC SOLUTION

Contrary to the traditional techniques of absolute
ground-based astrometry, where celestial positions of stars
are measured with respect to definite directions on the sur-
face of Earth, a space-borne astrometric satellite measures
only small differences between the instantaneous directions
of its optical axes and the lines of sight of observed stars.
The presence of a beam combiner device in aHipparcos-like
instrument is essential, because it combines the images of
stars separated by a wide basic angle in the single focal plane
of the telescope, allowing angular distances to be deter-
mined between widely separated stars, thus avoiding the
shortcoming of narrow-field differential astrometry. Still,
any measured direction can be expressed only in relation to
the instantaneous orientation of the instrument, which is
called the attitude.

Generally, the relation between the measured focal plane
position gik = (ui, vi) at time tk of star i and its astrometric
parameters si can be realized as a succession of coordinate
transformationsH(si, ak, cjjtk):

gik ¼ Hðsi; ak; cjjtkÞ ; ð1Þ

where ak is the vector of attitude parameters at time tk, and
cj is the vector of instrument parameters, which are assumed
to vary slowly with time. The time tk to the right of the verti-

cal bar is given (i.e., known); there are other given param-
eters involved in the transformations that are omitted in the
formula for simplicity.

Although the transformation is nonlinear, one may seek
small corrections to a predetermined model of parameters
(si, ak, cj), which by direct, nonlinear computation produces
a predicted (calculated) position gik. The inverse problem,
dealing with unknown small corrections only, can be linear-
ized in a first-order approximation.

Thus linearized, the formalism results in a huge design
matrix, to be solved by a weighted least-squares method.
For Hipparcos, the size of the matrix is 2370K (number
of unknowns) by approximately 44,400K (number of
individual observations) for reference stars. Solving this
least-squares problem by a direct method (i.e., construct-
ing the normal matrix of 2370K by 2370K and the
inverse of it) is the most straightforward and correct way
to handle the problem. Although the normal matrix will
be sparse, a significant number of nonzero off-diagonal
elements will create a certain pattern of covariances
between various free parameters. Through these covari-
ances, the astrometric parameters of any star will be
correlated with a large number of other astrometric
parameters and nuisance (nonastronomical) parameters.
The propagation of positionally correlated errors is gov-
erned by the covariances of the astrometric and nuisance
parameters, while the number of the latter is greater by a
factor of 8. Exact knowledge of star-to-star correlations
may be achieved only if the whole covariance matrix is
computed.

Handling such a large matrix was deemed impossible
at the time of the Hipparcos data reduction (ESA 1997,
Vol. 3, p. 488); it may still be a challenge for the present-
day computers. As an alternative to the global direct so-
lution, a three-step iterative procedure was implemented.
Essentially, this is an approximation to the direct solu-
tion, which neglects the off-diagonal blocks of the normal
matrix between the astrometric and nuisance parameters
of different kinds. Solving the truncated normal matrix is
a converging process, as was demonstrated by numerical
simulations and by the Hipparcos data reductions. How-
ever, there is no guarantee that it converges to the same
solution vector that would have been obtained with the
full-size normal matrix. In particular, the astrometric
parameters may be affected in the three-step iterative pro-
cedure by the neglect of their inherent covariances with
the attitude parameters.

3. ELIMINATING ATTITUDE ERRORS IN
HIPPARCOS EQUATIONS

The Hipparcos Intermediate Astrometry Data, HIAD
(ESA 1997, CD-ROMNo. 5), is one of the annexes comple-
menting the main catalog. It contains one-dimensional
coordinates (abscissae) of 118,204 objects on reference great
circles obtained by FAST andNDAC over the whole period
of the satellite’s operation. The abscissae are given in the
form of residuals ‘‘ observed minus calculated,’’ D�, strictly
related to the reference astrometric parameters given in the
header record for each star. Besides the abscissae, their stan-
dard errors and partial derivatives, @�=@ui, with respect to
the five astrometric parameters ui = �*(=� cos �), �, �, l�*,
l�, are given in the file. This set of data is meant to be ‘‘ ready

TABLE 1

Determinations of the Pleiades Parallax and Distance Modulus

Source

(1)

(m�M )0
(2)

�

(3)

Method

(4)

Pinsonneault et al. 1998....... 5.60 � 0.05 7.59 � 0.18 P

Stello andNissen 2001......... 5.61 � 0.03 7.55 � 0.11 P

Robichon et al. 1999............ 5.36 � 0.06 8.46 � 0.22 H

This paper........................... 5.57 � 0.06 7.75 � 0.20 H

Notes.—The source of data is given in col. (1). The distance modulus
and its formal standard error in mag are in col. (2). The parallax and its
formal standard error in milliarcseconds are presented in col. (3). The
method of determination is in col. (4) (‘‘ P ’’ for photometric, and ‘‘H ’’ for
Hipparcos trigonometric parallaxes).

1 See http://obswww.unige.ch/webda/navigation.html.
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to use ’’ linearized equations:

X5
i¼1

@�

@ui
Dui ¼ D� ; ð2Þ

where Dui are the unknown corrections to the astrometric
parameters. The system of equations for each star sepa-
rately can be solved by the weighted least-squares method,
taking into account the correlations between the FAST and
NDAC abscissae determinations.

Where does the along-scan attitude angle come in this
equation? Implicitly, it is included in the abscissa residual in
the right-hand part of the equation. Indeed, what the instru-
ment measures at a given time tk is only a small angle �(tk)
between the instantaneous coordinate a(tk) of the optical
axis and the actual position of the star �, projected on the
reference circle,

�ðtkÞ ¼ � � aðtkÞ : ð3Þ

The abscissa residual is

D� ¼ �obs � �calc ¼ �obs � �calc þ aðtkÞ : ð4Þ

Errors propagate into the right-hand parts of the equations
both through the directly observable quantity �obs and a(tk),
since the latter is determined at a separate stage of the data
reduction (attitude reconstruction) from the same observa-
tions. It is important, in the context of this paper, that for
bright stars, such as many of the Pleiades are, the attitude
error dominates the photon noise error (cf. ESA 1997,
Vol. 3, Table 9.9).

The attitude angle a(tk) was modeled with a continuous
smooth function of time (ESA 1997, Vol. 3, x 9). Using
smooth functions to fit a(t) was proven to significantly
improve the precision of astrometry. In fact, the along-scan
angle was estimated for each consecutive frame of 0=1 and
smoothed as a function of time with cubic B-splines. A
transit of an open cluster corresponds to an interval of a
spline function including typically 10–20 individual attitude
(also called spin phase) points. A normal partition of the
spin phase function also includes 15–20 frames, although
sometimes smaller partitions were used after a visual analy-
sis in order to fit in more rapid variations (C. Skovmand
Petersen 2000, private communication). Since a cubic spline
is a polynomial of third degree, the fit as a whole can be con-
sidered in the Fourier domain as a smoothing filter with a
cutoff wavelength somewhat shorter than �1=5. Thus, the
typical scale of an open cluster matches the reproducible
wavelength of the spline fit. The smoothness of the fitting
function implies that any error in a(t), whatever origin it
may have, will propagate almost by the same amount into
abscissae � of stars observed within a short interval of time.
Such stars may be close (members of the Pleiades, for
example) but may also be separated by an angle close to the
basic angle. Indeed, consider star m observed simulta-
neously (or nearly so) with star n in the other viewport. Sub-
tracting the corresponding equations (eq. [2]) obtains

X5
i¼1

�
@�m
@ui

DuiðmÞ �
@�n
@ui

DuiðnÞ

�

¼ �obsðmÞ � �obsðnÞ � ð�calcðmÞ � �calcðnÞÞ : ð5Þ

The attitude unknown is eliminated, but the equation

includes now two observable values and 10 astrometric
parameters for two stars. This transformation of the equa-
tions does not reduce the rank of the problem nearly by half,
as it may first appear, due to the annihilation of numerous
attitude unknowns. A full-rank design matrix can be con-
structed by coupling all simultaneous observations made in
different fields of view.2 The possibility of putting the equa-
tions in this differential form, and of ensuing attitude
parameter elimination was mentioned in (ESA 1997, Vol. 3,
p. 486), but deemed inferior, since it assumes an attitude
model of a large number of unrelated discrete instantaneous
orientations, precluding a dynamical smoothing. However,
the compelling advantage of the design matrix in this incar-
nation is that the attitude errors, which we suspect of being
the major source of correlated astrometric errors, do not
propagate into the solution. Setting up equations in the
form of equation (5) and solving them consistently should
ultimately prove or rule out this hypothesis.

4. PARALLAXES OF THE PLEIADES REVISITED

A full-scale computation ofHipparcos astrometry, as out-
lined in the previous section, is impossible with the available
data. Individual observations with timing data were never
published for all the Hipparcos stars. The published HIAD
contains observational equations in a much reduced and
preprocessed form. Each equation represents a combination
of a few observations made at various instances within one
orbit. Thus, coupling individual observations in the way
described earlier is not feasible. To bypass the difficulty, the
problem can be restated in the following way. For each star
m that belongs to the Pleiades, N stars may be found at
angular distance about 58� that could be observed quasi-
simultaneously on the same great circle. These stars will be
called reference stars henceforth. The observational equa-
tion corresponding to a given great circle is restated as

X5
i¼1

@�m
@ui

DuiðmÞ ¼ �obsðmÞ � �calcðmÞ �
R

N

XN
n¼1

ð�obsðnÞ � �calcðnÞÞ :

ð6Þ

We have now as many observational equations as there are
great circles crossing the Pleiades star m. The above equa-
tion is derived from equation (5) assuming

XN
n¼1

X5
i¼1

@�n
@ui

DuiðnÞ ¼ 0 : ð7Þ

This assumption is justified by the fact that the bulk of refer-
ence stars, located in a narrow ring of 58� radius around the
Pleiades star, are supposed to be free of significant system-
atic errors in the Hipparcos realization; the mean correc-
tions to the astrometric parameters over a large sample is
expected to be negligibly small. Each of the reference stars n
is observed on many different great circles; only a small frac-
tion of observations link it to the Pleiades. Propagation of
the supposed systematic error in the Pleiades parameters

2 In fact, Hipparcos observations are never strictly simultaneous,
because only one star could be observed at a time. Practically, this difficulty
can be resolved by associating the nearest in time observation to any given
one, without much loss of precision.
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can therefore affect only this small fraction of simulta-
neously conducted observations.

The observational equations in the new setup (eq. [6]) dif-
fer from the canonical ones only by the correction
�ðR=NÞ

PN
n¼1ð�obsðnÞ � �calcðnÞÞ to the right-hand part. The

logic of the modification is clear enough. We believe that the
observations of the Pleiades stars are affected by an error in
the attitude parameter a(t) that evokes, for example, a corre-
lated error of the parallaxes. The error is also present in the
measured residuals of the reference stars and therefore can
be annihilated by subtracting the weighted mean of the
reference star residuals. This correction would not, statisti-
cally, change the solution if the attitude error in question
does not exist, nor if it is uncorrelated. The multiplier R is a
correcting factor that takes into account which observations
are used in computing the residual correction term. Ideally,
one should use only those observations that were made
simultaneously with the passage of the corresponding
Pleiades member, in which case R = 1. This is impossible to
achieve, because the residuals in HIAD are already an aver-
age of a few observations made on a given orbit. A reference
star is typically observed twice during one full revolution of
the satellite, once in the preceding and once in the following
field of view. Therefore, only half of the measurements
involved in the computation of each orbit-average residual
refer to the Pleiades, while the other half are made with the
telescope pointing away from the cluster. These latter do
not bear the same attitude error; thus, they reduce the atti-
tude-related correction by roughly a factor of 2. To compen-
sate for this reduction of weight, we have to use R = 2.
Unfortunately, the compressed character of the HIAD does
not provide for a more quantitative analysis than that. On a
given orbit, some reference stars may have more observa-
tions in one of the fields of view than in the other; besides,
their weights could be different in the reductions. This intro-
duces some additional uncertainty in R and the subsequent
solution, and the standard errors quoted in this paper
should be taken as a lower bound.

The actual algorithm of computation adopted in this
paper consists of four steps:

1. For each of the 54 Pleiades members with Hipparcos
solutions, listed in Table 2 (from Robichon et al. 1999), all
other single Hipparcos stars are found with goodness of fit
(field H30) F2 = 0.21 � 2.0, separated by 58� � 0=5.
2. For each of the 54 Pleiades members, the orbit num-

bers are recorded from the HIAD files.
3. For each of these orbits, all observation of the refer-

ence stars made on this orbit are selected, and the weighted
mean corrections are computed from the final astrometric
parameter solutions.
4. The corrections are subtracted from the right-hand

parts of the observational equations for each of the Pleiades
stars, and a new solution is computed by weighted least
squares.

The number of reference stars in the ring of 58� � 0=5
radius turns out to be between 700 and 900 per Pleiades star.
The number of orbits in HIAD for each Pleiades member is
about 40, but a considerable number of orbits are shared by
the Pleiades stars. In computing the right-hand part correc-
tions, the correlations between the FAST and NDAC resid-
uals must be taken into account (van Leeuwen & Evans
1998), lest the formal standard errors be unrealistically
small. I simply down-weighted the pairs of FAST/NDAC

observations assuming a constant correlation of 0.56. The
procedure was verified by computing the astrometric
parameters with the original right-hand parts, which pro-
duced a statistically consistent result, both in the parameters
and formal errors, with the official Hipparcos data for most
of the 54 stars.

The results for the parallaxes are summarized in Table 2.
The majority of the Pleiades stars obtained a smaller paral-
lax than the Hipparcos value. The average parallax, com-
puted as a simple weighted mean of the 54 new parallaxes, is
7.75 � 0.20 mas in the new solution, which is smaller by
0.71 mas than the mean catalog parallax. This correction
goes a good way toward the photometric parallax (see
Table 1).

5. DISCUSSION

The technique of correcting the measured residuals by the
average residual of the reference stars (situated in the refer-
ence ring) brings theHipparcos parallax of the Pleiades close
to the photometric values. The origin of the suspected atti-
tude error still remains a matter of speculation. When up to
a hundred nearby clusters are considered, the dispersion of
the differences between the Hipparcos mean parallaxes and
photometric determinations appears to be larger by only
15% than the expected combined unit weight (Arenou &
Luri 1998). This implies, that the parallax error is, on the
average, much smaller than the estimated �1 mas for the
Pleiades. Therefore, the error at the Pleiades may be an acci-
dental fluctuation of noise, or the error propagation could
be confined only to the densest and brightest clusters. A pos-
sible, qualitative explanation to the latter option is a possi-
ble imbalance of the statistical weight of stars in the two
fields of view that enhances the attitude error propagation.
When one of the Hipparcos fields of view is centered on a
rich cluster, up to a few tens of member stars are observed
quasi-simultaneously in that field and typically two to three
stars in the other pointing direction, 58� apart. The along-
scan attitude angle is computed from the average observed
abscissae residuals of all the stars transiting at this moment,
but the numerous cluster members may by far outweigh the
stars in the other field of view. All the member stars have
essentially the same parallax and proper motion. Regarding
the attitude determination, this is equivalent to having only
one star with a great weight in calculations. The magnitude
of the correlated (i.e., common to all cluster members) error
cannot be larger than the typical astrometric error for an
average bright star, since the latter includes the attitude
error and other sources of noise. A standard deviation of
1 mas could be expected. For a given cluster, the error is a
realization of a random process; hence, for some clusters, it
may be close to zero, as is apparently the case with the
Hyades.

Currently, it is impossible to provide a direct and impec-
cable proof that the Hipparcos parallaxes are in error. The
ground-based observing techniques still lag too much in
accuracy, and the planned astrometric missions of the sec-
ond generation like GAIA (Perryman et al. 2001) and
FAME (Johnston et al. 2001) will not deliver any data
sooner than a decade from now. We need to exploit other
methods for secondary, indirect evidence. The classical con-
vergent point method, for example, can yield quite precise
(but not necessarily accurate) kinematic parallaxes, taking
advantage of the relatively more precise proper motions and
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low internal velocity dispersions in open clusters. Table 2
lists, in column (4), kinematic parallaxes for 52 stars with
Tycho-2 proper motions, derived with the convergent point
and other parameters defined in Makarov & Robichon
(2001). Unfortunately, the mean kinematic parallax is
determined with a huge error due to the uncertainty of the
convergent point position on the line connecting it with the
cluster; it is therefore meaningless to compare the mean kin-
ematic and Hipparcos parallaxes. The width of �ref � �kin
and �HIP � �kin distributions, however, is directly related to
the precision of the two solutions. The distribution of the
corrected parallaxes seems to be somewhat narrower than
the original one, but the difference is hardly significant.

Analysis of proper motions, theoretically, may provide a
test for the Hipparcos data. Our corrected solution, apart
from the decrease of the mean parallax by 0.71 � 0.14 mas,
changes the mean proper motion by +0.45 � 0.14 and
�0.66 � 0.11 mas yr�1 in l�* and l�, respectively. The best
ground-based catalogs of proper motions are, in principle,
good enough to detect such differences. The Tycho-2 proper
motions, for example, compare favorably with Hipparcos,
but, based on a number of catalogs brought to the Hippar-

cos reference system, they are not independent (Urban,
Wycoff, & Makarov 2000). Positions of reference stars in
the past epochs are derived from the Hipparcos astrometry;
thus, possible position-correlated errors are effectively
transferred from Hipparcos to the new system. Since the
Hipparcos catalog is unique at its level of astrometric accu-
racy, there is no way out of this vicious circle.

The technique presented in this paper can be extended for
other Hipparcos samples of interest and, eventually, for the
entire catalog. Since each star with a revised solution serves
as a reference star to a number of other stars, it will possibly
take a few iterations to obtain a converging, self-consistent,
all-sky solution.

The author is grateful to C. Fabricius for very useful dis-
cussions of the subject, comments, and corrections to the
previous and present versions of the paper. N. Kaltcheva
inspired this work by disputing the Hipparcos-based
distances of some OB associations. C. Skovmand Petersen
is thanked for sharing his insight in the Hipparcos data
reduction algorithms.

TABLE 2

Parallaxes of the Pleiades Members

HIP

(1)

�HIP(��)

(mas)

(2)

�ref(��)

(mas)

(3)

�kin
(mas)

(4)

HIP

(1)

�HIP(��)

(mas)

(2)

�ref(��)

(mas)

(3)

�kin
(mas)

(4)

16217 ...... 8.20 (1.31) 8.08 (1.42) 8.66 16407 ..... 7.62 (1.15) 7.16 (1.24) 8.06

16423 ...... 8.44 (1.45) 9.33 (1.52) 8.77 16635 ..... 9.62 (2.18) 7.60 (2.14) 7.52

16639 ...... 8.11 (1.47) 6.66 (1.52) 7.73 16753 ..... 9.98 (1.58) 9.71 (1.60) 7.92

16979 ...... 5.86 (1.77) 5.50 (1.78) 7.77 17000 ..... 7.88 (1.00) 8.69 (1.14) 8.00

17020 ...... 3.20 (2.21) 3.65 (2.28) 7.61 17034 ..... 6.87 (1.08) 7.91 (1.21) 8.22

17043 ...... 7.78 (0.98) 6.81 (1.06) 7.63 17044 ..... 8.85 (2.11) 10.26 (2.18) 7.77

17091 ...... 9.97 (1.82) 10.66 (1.9 0) 7.90 17125 ..... 7.69 (1.51) 7.69 (1.51) 7.90

17225 ...... 9.21 (1.45) 8.10 (1.52) 8.01 17245 ..... 5.91 (1.67) 5.53 (1.71) 7.92

17289 ...... 7.29 (1.50) 6.26 (1.55) 7.80 17316 ..... 6.28 (1.66) 6.13 (1.65) 8.71

17317 ...... 6.66 (1.98) 5.70 (2.03) 8.25 17325 ..... 8.53 (1.20) 6.63 (1.29) 8.26

17401 ...... 9.48 (1.11) 6.98 (1.21) 7.79 17481 ..... 10.10 (1.27) 7.40 (1.32) 7.77

17489 ...... 9.75 (1.05) 7.53 (1.23) 7.84 17497 ..... 9.76 (1.29) 7.66 (1.37) 7.56

17499 ...... 8.80 (0.89) 5.72 (1.05) . . . 17511 ..... 10.00 (1.64) 9.00 (1.71) 7.54

17527 ...... 8.87 (0.89) 9.06 (1.00) 7.96 17531 ..... 8.75 (1.08) 7.38 (1.24) 7.89

17547 ...... 8.27 (1.14) 7.89 (1.27) 8.82 17552 ..... 11.21 (1.09) 10.14 (1.16) 8.41

17573 ...... 9.06 (1.03) 8.68 (1.20) 7.86 17579 ..... 8.43 (0.89) 8.28 (1.00) 7.98

17583 ...... 8.50 (1.17) 8.71 (1.28) 8.03 17588 ..... 9.21 (0.92) 9.25 (1.02) 7.61

17608 ...... 9.08 (1.04) 6.84 (1.27) 8.11 17625 ..... 4.73 (1.48) 3.38 (1.52) 8.09

17664 ...... 6.66 (0.99) 6.99 (1.08) 8.18 17692 ..... 8.35 (1.00) 7.05 (1.11) 7.92

17702 ...... 8.87 (0.99) 7.87 (1.17) . . . 17704 ..... 9.05 (0.97) 8.85 (1.07) 7.92

17729 ...... 7.61 (1.17) 9.59 (1.24) 8.11 17776 ..... 9.64 (0.91) 6.67 (1.07) 8.19

17791 ...... 6.90 (0.99) 6.85 (1.07) 7.64 17851 ..... 8.42 (0.86) 8.13 (1.00) 8.34

17862 ...... 8.02 (0.91) 7.78 (0.98) 7.78 17892 ..... 10.12 (1.04) 8.41 (1.14) 7.83

17900 ...... 8.58 (0.93) 7.81 (1.04) 7.64 17999 ..... 9.83 (1.00) 8.98 (1.08) 8.01

18050 ...... 7.56 (1.47) 8.13 (1.49) 8.06 18091 ..... 7.71 (1.89) 6.63 (1.87) 7.92

18154 ...... 8.57 (1.57) 9.06 (1.54) 7.68 18431 ..... 8.66 (1.53) 5.53 (1.51) 8.13

18544 ...... 9.68 (1.50) 8.75 (1.50) 8.61 18955 ..... 6.13 (1.42) 6.87 (1.42) 7.90

Notes.—The Hipparcos identification number is given in col. (1). The parallax and its formal standard error as
given in theHipparcos catalog are presented in col. (2). The recomputed parallax and its formal standard error are in
col. (3). Kinematic parallax from the convergent point method is given in col. (4).
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