Computational Methods
in Astrophysics

Dr Rob Thacker (AT319E)
thacker(@ap.smu.ca

ANNSs: Motivating factors

m Many problems have no obvious algorithmic solutions
m c.g. face recognition, handwriting

m Even if there were an algorithm it could still be exceptionally
difficult to code

m The solutions dertved in neural networks are often vastly
different to hand-written serial approaches
= Especially so for highly complicated nets
® Indeed we frequently simply don’t know what the algorithm 1s
m We anticipate neural networks will be able to become good
at processes brains are good at

= But that also means they will be poor at direct computations like
arithmetic, but that doesn’t matter. ..

History: Artificial Neural Networks

Artificial models of of biological neurons conceived in
1940s — McCulloch & Pitts propose their model

1949 Hebb’s proposes theory of learning in terms of
synapse plasticity

1957 Perceptron algorithm is developed by Rosenblatt at
Cornell

70s — becomes clear that there are fundamental limitations
to “single layer” perceptrons

80s — New “back propagation” learning methods for multi-
layer perceptrons discovered, field takes off again

2000s — SVM etc reduce populatity of ANN, but advent of

deep learning again renews interest

Biological neurons

m 3 key parts —
body, dendrites

and axon

m Dendrites branch
and thin, axon
usually remains

thick

Dendrites = Tnput N Dendrites. or cell
Soma/cell body = processor b.Odylrece.lve
e\ o Aron = outpr S
/" \;Dendritic branches B Axon transmits to
- other neutrons (via
synapses)

Synaptic terminals

Biological neurons & brains

Human brains have 80-90 billion

neurons
m 19-23 billion in cerebral cortex
Hach neuron may be connected to | Na* channels Carlson 1992
up to 10,000 others ol f!“j,,..
Typical frequency of firing is oo™ [\t eaves
izgound 10 Hz, can go as high as 100 oo ||\
Z

Neurons maintain a —ve bias
voltage (-70 mV) in their resting
state giving them a membrane
potential

m Depolarization (to +ve bias) occurs
via influx of Na+ ions

Na*t
channels
open, Na* |
enters cell /

—_
=
E
=
T
r=1
[=
4
[1+]
=
o
=
o
E
7
<

N
=
2§
-
L=
¥, g
T
£
= o |
L

\"\u.

1N

|
|
|
|

m K+ ions then flow out to repolarize R
m This change in potential is propagated _ Eroess K oulside
down the axon via the same .
depolarization/repolatization

m Takes 0.002 seconds...

What is an ANN?

Definition due to Hecht-Nielsen:

= ...a computing system made up of a
number of simple, highly connected
processing elements, which process
information by their dynamic state
response to external inputs...

Needs to be input layer and output
layer

= Can also be hidden layers

Weights can be trained by
MINIMIZING errot
Can be hardware, or algorithmic

m [argest simulation yet performed

160 billion parameters

Why are ANNSs so popular? Drawbacks?

As long as a problem can be broken down into an
appropriate set of numetical inputs and outputs it should be
possible to do some kind of training

= But to do this optimally requires carefully processing the data set
first (avoiding redundancies, statistical outliers etc)

ANN are good for problems with a large number of
degrees of freedom
m Images, speech etc.

Drawback: if sufficiently complex, they are a black box

= Getting a logical understanding of the classification method is
frequently very difficult although “rule extraction” algorithms do
exist

Also difficult to “fine tune”

Brains vs computers

m Brains and computers process in remarkably different ways

10” transistors in single CPU — but 10 in biggest
supercomputers
Compare that to 10'-10" synapses, 10! neurons in brain

= Neurons are more directly connected (1 to 10,000) than CPUs but this
distinction is moot IMHO

Brain is remarkably fault tolerant — computers fail quite easily
(try spilling cotfee!)

Brains process in a strongly parallel way — computers tend to be
serial (with exceptions for parallel algorithms)

Adaptivity: Brains can learn — not even clear what it means for a
serial computer to do that

Evolution: Brains took millions of years to reach this point of
evolution, computers a few decades

Deep Learning

ANN’s have consistently increased in complexity

m Deep learning 1s a logical extension of this trend, and

corresponds to networks with five or more layers
m [ayers are trained in response to one another

2012 paper by Hinton et al (U. Toronto CS) gave
breakthrough performance on a number of data sets

The key promise of the method 1s in unsupervised learning

m The notable ability of these system is to uncover difficult to detect
structure and commonality

= Humans learn in a similar way, although we do need some
elements of supervised learning

Notice that it 1s quite distinct from SVMs which try to
factor out complexity with a single transformation

McCulloch-Pitts

m First mathematical model of
neuron

= Output Y, is fire (1) or not fire
©)

m Inputs can be weighted
excitatory (>0) in inhibitory
(<0)

s Traditionally exciting weights are
labelled a, inhibitory weights

labelled b (but watch for
different notations)

m Neuron fires if sum of
weights*inputs exceeds threshold
O - the activation threshold

= Output Yj goes to another n

system Y] — H(z Vl/jili . 9) v
=1

McCulloch-Pitts — logic models

m The MP model can implement AND, OR and NOT
gates

m Traditional to add extra input at +1 with specific weight

B | .et’s look at this in a little more detail

MP models to the Perceptron — things to
consider

m What kind of data can they discriminate?

m Consider the pattern space of inputs for an AND gate

o 3=

0O 0 O B B

0 1 0 . ®

1 0 o 1

1 1 1 10*W0+11*W1+12*W2:Aj
O O—

L

MP models to the Perceptron — things to
consider

m Transition pointat htlpb =15= L =15-1

m Decision boundary -1 slope, intercept 1.5

I, I, Y ¢ O Y=0
0 0 0 B @ Y=1
0 1 0 ¢ ®
1 0 0 2
1 1 1

Linearly separable problems

will work

9

More inputs generalizes to O
higher dimensions 1 1

A simple non-linearly-separable data set: XOR

m Consider the exclusive OR

S $a
0 0 O d
0 1 1 S
1 0 1 o
1 1 0
No single line can split the

data — XOR can’t be O S
formed by single layer MP T "

neuron

Perceptrons

m Perceptrons (1958, Rosenblatt) generalized MP model

m Weights can have different values

m Generalized output to go from [-1,1] but this 1sn’t a big
difference

= We will work with [-1,1] from now on

m Note there are also different transfer functions that can be
chosen — more later

m But the key difference was adding in the concept of
learning via a learning rule

Perceptron — Learning algorithm

m This will be a supervised learning situation

m For the dth case we have a true value of t, while the system
output o9 (we called it Y before)

n

m Define error = t4-o¢

m In response to an error what do we want? Aj — l/Vjil L
m Suppose t4=1 09=-1, so error is +ve i=1

= The output is too low => increase sum to increase output
m [f input I, is +ve increase Wy
m Ifinput [is —ve decrease W,

m Suppose t4=-1 09=1, so error is —ve

m The output is to high => decrease sum to dectrease output
m [finput [is +ve decrease W;
m If input I; is —ve increase W

m [f there is no error, then no need to do anything]

Perceptron — How much to adjust by?

There is no obvious value to change the weights by

But only makes sense to change non-zero inputs, so
include L. value in the adjustment formula

Also the t-0d determines direction of correction

So then we need one last factor that determines the size
of the correction — the so-called “learning rate” &

d
Wji « W +alf (t* — o)
Learning rate usually small, say 0.1

But we have to do this *repeatedly* for different inputs
until they classity correctly

Perceptron — How much to adjust by?

Need to consider what initial W; values should be

= No obvious answet, so it is best to put the system in a ‘random’ state by
assigning tandom values to W; initially

Repeat as previously suggested but consider d examples together
Wj; < M/ji'l'azlid(td —0%)
d

If training cases are linearly separable and the learning rate 1s
sutficiently small, this will converge

m [tis a gradient descent along the error surface

Multiple examples on web show this training in progress (e.g. to
an AND gate)

But what about non-linearly separable? Need a different
approach

Gradient descent/Adaline/Delta Rule

m What about a “best fit” methodology?

= No surprise that we can do that via a squares minimization approach

1
E;==) (t% — 0%)?
e
F = 5Z(td - f(; Wiilf)?

= Notice if f is not differentiable (step function!) so we can’t differentiate
this formula to find minimum (threshold dropped for ease of notation)

= Can think about changing f, or substituting A, rathet than output
value

s ADALINE=ADAptive LINear Element (Widrow & Hotf 1960)

Differentiate

= Using A, rather than the full output then gives

= —Z(td Z Wil{)?

= We want to differentiate w.r.t. to the weights so for
ease of notation we’ll drop the | from now on

n

2 d Z Id d_z 7d

- Z (¢ = Y W) -), Wil
1=

OF
W 2a(t? — Xy W) (- 1)

Steepest descent

m Gradient defines direction of most rapid change in a

field

m Take negative of that value to get descent toward
minimum & multiply by scaling factor &

AW, =a Y IE@? =) Wit
®m Thus update as:

Wy « Wi ta Z lie (£ = z W)
d =1

Convergence properties compared

Suppose problem is linearly separable
m Perceptron learning will converge to unique linear separator

m Steepest descent 1s not guaranteed to do so

Suppose system 1s not linearly separable, will the minimum be
found?

m Perceptron learning cannot guarantee the minimum

m Steepest descent will converge to the global minimum
How do outliers influence results?

m Perceptron — same weight for all

m Steepest descent — have progressively larger influence
How do correctly classified points influence training?

m Perceptron — no influence
m Steepest descent — strongly positive values have even larger impact

Minski & Papert 1969

Perceptrons became popular despite their obvious limitations in
single layer implementations

M&P concluded that perceptrons are insutficient to construct
generally intelligent machines

= [n essence general intelligence relies upon non-linearly separable
hypotheses

m What features of an object are used? Locality? Or global properties?

m c.g. connectedness cannot be captured by local features alone — need global
features

Global features corresponds to potentially huge space

But at time not clear how to make high level features sutficiently
adaptive

Evolution of backpropagation methods helped to do this

Multi-layer networks

m Organize into inputs, hidden units, and outputs

m Links (edges) go from one layer to the next

OQOwO
o @‘e

Single hidden layer — two inputs,
two outputs

m Fach input has an edge to the each hidden layer unit
m Fach hidden layer unit has an edge to the output units

O
'
a‘e‘e

m DBvery edge has a weight, so need to label appropriately

Describing weights

m As in single layer, weights are parameters to be trained

B Use two index notation “from-to’’ for each w

What to do about transfer
functions?

m Fach element in hidden and output layers has inputs
and an associated transfer function f

= Assume output of each unit is o, =f(Zwyl;)

m We could again use the step-activated function, but
non-differentiability is limiting

m Simple linear function is differentiable but doesn’t have
rapid transition properties

m Are there differentiable alternatives? Of course! ©

Sigmoid

m Simple, continous differentiable function than
transitions between 0 and 1 in well behaved way

d
9 _ 4Gt - 9

Can include a bias too

Error & gradient descent

m For a two output model the error for input d will be the
sum of the squares, E4=0.5%(t4-09.)?+0.5%(td.-09/)?
m This can be differentiated and chain rule used twice

J0E 0E do; dnet;
aWij _ 60] anetj aWU

B Where
n
aneq

n
d
net; = Z W0, So that T D (z Wi j0) = 0;
k=1 Y Uok=1

More analysis

B Derivative of O; Wtt net 1S

an _ 6
6netj _ anetj

g(netj) = g(netj)(l — g(netj))

m That 1s why differentiability of transfer function is
required

m For E differentiated wrt O — straightforward if O, 1s a
direct output

0F

__0._t
]
an

More analysis

= [f o, 1s not an output unit then need to consider H as a

function of all units, L=u, v,..., w receiving input from

i

0E(0;j) OE(nety, net, .., nety) 0E oOJnet;
an 00] = Onetl 60]
aE(OJ) O0E 601

00 _Zld‘(ao donet; l)

m Can combine to get...

Back propagation

B Get 0E
aWij

— 5j0i
B Where

_ aE 60] _<

J aoj anetj B

((oj — tj)oj(l — oj)ifj is output
(Z Owj)oj(1 — o;) if jis inner

= Updates to w; ate gi\kfelr? by

0E
6 Wi j
m Where — sign takes in direction of minimum

AWij = —

See http://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/
for a great step-by-step example on the network we’ve used

http://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

Summary

m Neural network theory begins from simple building
blocks of the MP model
= Generalize to perceptrons
® Then onward to multi-layer systems
® Train by minimizing an error function — no surprise
m Training of linear separable systems 1s optimized using

perceptron, but if not linearly separable steepest
descent is better

m For multi-layer networks steepest descent methods can
be applied, but analysis becomes recursive over layers

