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ANNs: Motivating factors

◼ Many problems have no obvious algorithmic solutions

◼ e.g. face recognition, handwriting

◼ Even if there were an algorithm it could still be exceptionally 
difficult to code

◼ The solutions derived in neural networks are often vastly 
different to hand-written serial approaches

◼ Especially so for highly complicated nets

◼ Indeed we frequently simply don’t know what the algorithm is

◼ We anticipate neural networks will be able to become good 
at processes brains are good at

◼ But that also means they will be poor at direct computations like 
arithmetic, but that doesn’t matter…



History: Artificial Neural Networks

◼ Artificial models of of biological neurons conceived in 
1940s – McCulloch & Pitts propose their model

◼ 1949 Hebb’s proposes theory of learning in terms of 
synapse plasticity

◼ 1957 Perceptron algorithm is developed by Rosenblatt at 
Cornell

◼ 70s – becomes clear that there are fundamental limitations 
to “single layer” perceptrons

◼ 80s – New “back propagation” learning methods for multi-
layer perceptrons discovered, field takes off again

◼ 2000s – SVM etc reduce popularity of ANN, but advent of 
deep learning again renews interest 



Biological neurons

◼ 3 key parts –
body, dendrites 
and axon

◼ Dendrites branch 
and thin, axon 
usually remains 
thick

◼ Dendrites or cell 
body receive 
signals (via 
synapses)

◼ Axon transmits to 
other neurons (via 
synapses)

Credit: Bruce Blaus

Dendrites = Input

Soma/cell body = processor

Axon = output 

Synapse = link



Biological neurons & brains

◼ Human brains have 80-90 billion 
neurons
◼ 19-23 billion in cerebral cortex

◼ Each neuron may be connected to 
up to 10,000 others

◼ Typical frequency of firing is 
around 10 Hz, can go as high as 100 
Hz

◼ Neurons maintain a –ve bias 
voltage (-70 mV) in their resting 
state giving them a membrane 
potential
◼ Depolarization (to +ve bias) occurs 

via influx of Na+ ions

◼ K+ ions then flow out to repolarize
◼ This change in potential is propagated 

down the axon via the same 
depolarization/repolarization 

◼ Takes 0.002 seconds…

Carlson 1992



What is an ANN?

◼ Definition due to Hecht-Nielsen:
◼ …a computing system made up of a 

number of simple, highly connected 
processing elements, which process 
information by their dynamic state 
response to external inputs…

◼ Needs to be input layer and output 
layer
◼ Can also be hidden layers

◼ Weights can be trained by 
minimizing error 

◼ Can be hardware, or algorithmic

◼ Largest simulation yet performed 
160 billion parameters 
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Why are ANNs so popular? Drawbacks?

◼ As long as a problem can be broken down into an 
appropriate set of numerical inputs and outputs it should be 
possible to do some kind of training
◼ But to do this optimally requires carefully processing the data set 

first (avoiding redundancies, statistical outliers etc)

◼ ANN are good for problems with a large number of 
degrees of freedom
◼ Images, speech etc. 

◼ Drawback: if sufficiently complex, they are a black box
◼ Getting a logical understanding of the classification method is 

frequently very difficult although “rule extraction” algorithms do 
exist

◼ Also difficult to “fine tune” 



Brains vs computers

◼ Brains and computers process in remarkably different ways

◼ 109 transistors in single CPU – but 1014 in biggest 
supercomputers

◼ Compare that to 1014-1015 synapses, 1011 neurons in brain
◼ Neurons are more directly connected (1 to 10,000) than CPUs but this 

distinction is moot IMHO

◼ Brain is remarkably fault tolerant – computers fail quite easily 
(try spilling coffee!)

◼ Brains process in a strongly parallel way – computers tend to be 
serial (with exceptions for parallel algorithms)

◼ Adaptivity: Brains can learn – not even clear what it means for a 
serial computer to do that

◼ Evolution: Brains took millions of years to reach this point of 
evolution, computers a few decades



Deep Learning

◼ ANNs have consistently increased in complexity

◼ Deep learning is a logical extension of this trend, and 
corresponds to networks with five or more layers
◼ Layers are trained in response to one another

◼ 2012 paper by Hinton et al (U. Toronto CS) gave 
breakthrough performance on a number of data sets

◼ The key promise of the method is in unsupervised learning
◼ The notable ability of these system is to uncover difficult to detect 

structure and commonality

◼ Humans learn in a similar way, although we do need some 
elements of supervised learning 

◼ Notice that it is quite distinct from SVMs which try to 
factor out complexity with a single transformation



McCulloch-Pitts

𝞢

I1 I2 I3 I4 I5

Wji

Aj

Yj

◼ First mathematical model of 
neuron

◼ Output Yj is fire (1) or not fire 
(0)

◼ Inputs can be weighted 
excitatory (>0) in inhibitory 
(<0)
◼ Traditionally exciting weights are 

labelled a, inhibitory weights 
labelled b (but watch for 
different notations)

◼ Neuron fires if sum of 
weights*inputs exceeds threshold 
𝞱 - the activation threshold

◼ Output Yj goes to another 
system

𝑌𝑗 = 𝐻(෍

𝑖=1

𝑛

𝑊𝑗𝑖𝐼𝑖 − 𝜃)



McCulloch-Pitts – logic models

◼ The MP model can implement AND, OR and NOT 

gates

◼ Traditional to add extra input at +1 with specific weight

◼ Let’s look at this in a little more detail
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MP models to the Perceptron – things to 

consider

◼ What kind of data can they discriminate?

◼ Consider the pattern space of inputs for an AND gate

I1

I2

I1 I2 Y

0  0  0

0  1  0

1  0  0

1  1  1

Y=0

Y=1

𝐼0 ∗ 𝑤0 + 𝐼1 ∗ 𝑤1+𝐼2 ∗ 𝑤2 = 𝐴𝑗



MP models to the Perceptron – things to 

consider

◼ Transition point at 

◼ Decision boundary -1 slope, intercept 1.5

I2

I1

I1 I2 Y

0  0  0

0  1  0

1  0  0

1  1  1

Y=0

Y=1

𝐼1+𝐼2 = 1.5 ⇒ 𝐼2 = 1.5 − 𝐼1

Linearly separable problems 

will work

More inputs generalizes to 

higher dimensions



A simple non-linearly-separable data set: XOR

◼ Consider the exclusive OR 

I2

I1

I1 I2 Y

0  0  0

0  1  1

1  0  1

1  1  0

Y=0

Y=1

No single line can split the 

data – XOR can’t be 

formed by single layer MP 

neuron



Perceptrons

◼ Perceptrons (1958, Rosenblatt) generalized MP model

◼ Weights can have different values

◼ Generalized output to go from [-1,1] but this isn’t a big 

difference

◼ We will work with [-1,1] from now on

◼ Note there are also different transfer functions that can be 

chosen – more later

◼ But the key difference was adding in the concept of 

learning via a learning rule



Perceptron – Learning algorithm

◼ This will be a supervised learning situation

◼ For the dth case we have a true value of td, while the system 
output od (we called it Y before)
◼ Define error = td-od

◼ In response to an error what do we want?
◼ Suppose td=1 od=-1, so error is +ve

◼ The output is too low => increase sum to increase output
◼ If input Ii is +ve increase Wji

◼ If input Ii is –ve decrease Wji

◼ Suppose td=-1 od=1, so error is –ve

◼ The output is to high => decrease sum to decrease output
◼ If input Ii is +ve decrease Wji

◼ If input Ii is –ve increase Wji

◼ If there is no error, then no need to do anything!

𝐴𝑗 =෍

𝑖=1

𝑛

𝑊𝑗𝑖𝐼𝑖



Perceptron – How much to adjust by?

◼ There is no obvious value to change the weights by

◼ But only makes sense to change non-zero inputs, so 
include Ii value in the adjustment formula

◼ Also the td-od determines direction of correction

◼ So then we need one last factor that determines the size 
of the correction – the so-called “learning rate” 𝞪

◼ Learning rate usually small, say 0.1

◼ But we have to do this *repeatedly* for different inputs 
until they classify correctly

𝑊𝑗𝑖 ← 𝑊𝑗𝑖+𝛼𝐼𝑖
𝑑(𝑡𝑑 − 𝑜𝑑)



Perceptron – How much to adjust by?

◼ Need to consider what initial Wji values should be
◼ No obvious answer, so it is best to put the system in a ‘random’ state by 

assigning random values to Wji initially

◼ Repeat as previously suggested but consider d examples together

◼ If training cases are linearly separable and the learning rate is 
sufficiently small, this will converge
◼ It is a gradient descent along the error surface

◼ Multiple examples on web show this training in progress (e.g. to 
an AND gate)

◼ But what about non-linearly separable? Need a different 
approach

𝑊𝑗𝑖 ← 𝑊𝑗𝑖+𝛼෍

𝑑

𝐼𝑖
𝑑(𝑡𝑑 − 𝑜𝑑)



Gradient descent/Adaline/Delta Rule

◼ What about a “best fit” methodology?
◼ No surprise that we can do that via a squares minimization approach

◼ Notice if f is not differentiable (step function!) so we can’t differentiate 
this formula to find minimum (threshold dropped for ease of notation)

◼ Can think about changing f, or substituting Aj rather than output 
value

◼ ADALINE=ADAptive LINear Element (Widrow & Hoff 1960)

𝐸𝑗 ≡
1

2
෍

𝑑

(𝑡𝑑 − 𝑜𝑑)2

𝐸𝑗 ≡
1

2
෍

𝑑

(𝑡𝑑 − 𝑓(෍

𝑖=1

𝑛

𝑊𝑗𝑖𝐼𝑖
𝑑))2



Differentiate

◼ Using Aj rather than the full output then gives

◼ We want to differentiate w.r.t. to the weights so for 

ease of notation we’ll drop the j from now on

𝐸𝑗 ≡
1

2
෍

𝑑

(𝑡𝑑 −෍

𝑖=1

𝑛

𝑊𝑗𝑖𝐼𝑖
𝑑)2

𝜕𝐸

𝜕𝑊𝑘
=
1

2
෍

𝑑

2(𝑡𝑑 −෍

𝑖=1

𝑛

𝑊𝑖𝐼𝑖
𝑑)

𝜕

𝜕𝑊𝑘
(𝑡𝑑 −෍

𝑖=1

𝑛

𝑊𝑖𝐼𝑖
𝑑)

𝜕𝐸

𝜕𝑊𝑘
= σ𝑑(𝑡

𝑑 − σ𝑖=1
𝑛 𝑊𝑖𝐼𝑖

𝑑) (−𝐼𝑘
𝑑
)



Steepest descent

◼ Gradient defines direction of most rapid change in a 

field

◼ Take negative of that value to get descent toward 

minimum & multiply by scaling factor 𝞪

◼ Thus update as:

∆𝑊𝑘 = 𝛼෍

𝑑

𝐼𝑘
𝑑(𝑡𝑑 −෍

𝑖=1

𝑛

𝑊𝑖𝐼𝑖
𝑑)

𝑊𝑘 ← 𝑊𝑘+𝛼෍

𝑑

𝐼𝑘
𝑑(𝑡𝑑 −෍

𝑖=1

𝑛

𝑊𝑖𝐼𝑖
𝑑)



Convergence properties compared

◼ Suppose problem is linearly separable
◼ Perceptron learning will converge to unique linear separator

◼ Steepest descent is not guaranteed to do so

◼ Suppose system is not linearly separable, will the minimum be 
found?
◼ Perceptron learning cannot guarantee the minimum

◼ Steepest descent will converge to the global minimum

◼ How do outliers influence results?
◼ Perceptron – same weight for all

◼ Steepest descent – have progressively larger influence

◼ How do correctly classified points influence training?
◼ Perceptron – no influence

◼ Steepest descent – strongly positive values have even larger impact



Minski & Papert 1969

◼ Perceptrons became popular despite their obvious limitations in 
single layer implementations

◼ M&P concluded that perceptrons are insufficient to construct 
generally intelligent machines
◼ In essence general intelligence relies upon non-linearly separable 

hypotheses 

◼ What features of an object are used? Locality? Or global properties?

◼ e.g. connectedness cannot be captured by local features alone – need global 
features

◼ Global features corresponds to potentially huge space

◼ But at time not clear how to make high level features sufficiently 
adaptive

◼ Evolution of backpropagation methods helped to do this



Multi-layer networks

◼ Organize into inputs, hidden units, and outputs

◼ Links (edges) go from one layer to the next

I1

I2

h3

h4

h5

h6

O7

O8



Single hidden layer – two inputs, 

two outputs
◼ Each input has an edge to the each hidden layer unit

◼ Each hidden layer unit has an edge to the output units

◼ Every edge has a weight, so need to label appropriately

I1

I2

h3

h4

O5

O6



Describing weights

◼ As in single layer, weights are parameters to be trained

◼ Use two index notation “from-to” for each w

I1

I2

h3

h4

O5

O6

w13

w24

w23w14

w35

w36

w46

w45



What to do about transfer 

functions?
◼ Each element in hidden and output layers has inputs 

and an associated transfer function f

◼ Assume output of each unit is oj=f(𝞢wjiIi)

◼ We could again use the step-activated function, but 

non-differentiability is limiting

◼ Simple linear function is differentiable but doesn’t have 

rapid transition properties

◼ Are there differentiable alternatives? Of course! ☺



Sigmoid

◼ Simple, continous differentiable function than 

transitions between 0 and 1 in well behaved way

𝑑𝑔(𝑥)

𝑑𝑥
= 𝑔(𝑥)(1 − 𝑔(𝑥))

Can include a bias too



Error & gradient descent

◼ For a two output model the error for input d will be the 

sum of the squares, Ed=0.5*(td
5-o

d
5)

2+0.5*(td
6-o

d
6)

2

◼ This can be differentiated and chain rule used twice

◼ Where

𝜕𝐸

𝜕𝑤𝑖𝑗
=
𝜕𝐸

𝜕𝑜𝑗

𝜕𝑜𝑗
𝜕𝑛𝑒𝑡𝑗

𝜕𝑛𝑒𝑡𝑗
𝜕𝑤𝑖𝑗

𝑛𝑒𝑡𝑗 = ෍

𝑘=1

𝑛

𝑤𝑘𝑗𝑜𝑘 𝑠𝑜 𝑡ℎ𝑎𝑡
𝜕𝑛𝑒𝑡𝑗
𝜕𝑤𝑖𝑗

=
𝜕

𝜕𝑤𝑖𝑗
(෍

𝑘=1

𝑛

𝑤𝑘𝑗𝑜𝑘) = 𝑜𝑖



More analysis

◼ Derivative of oj wrt netj is

◼ That is why differentiability of transfer function is 

required

◼ For E differentiated wrt oj – straightforward if oj is a 

direct output

𝜕𝑜𝑗
𝜕𝑛𝑒𝑡𝑗

=
𝜕

𝜕𝑛𝑒𝑡𝑗
𝑔 𝑛𝑒𝑡𝑗 = 𝑔 𝑛𝑒𝑡𝑗 (1 − 𝑔 𝑛𝑒𝑡𝑗 )

𝜕𝐸

𝜕𝑜𝑗
= 𝑜𝑗 − 𝑡



More analysis

◼ If oj is not an output unit then need to consider E as a 

function of all units, L=u, v,…, w receiving input from 

j

◼ Can combine to get…

𝜕𝐸(𝑜𝑗)

𝜕𝑜𝑗
=
𝜕𝐸(𝑛𝑒𝑡𝑢, 𝑛𝑒𝑡𝑣,… , 𝑛𝑒𝑡𝑤)

𝜕𝑜𝑗
=෍

𝑙𝜖𝐿

(
𝜕𝐸

𝜕𝑛𝑒𝑡𝑙

𝜕𝑛𝑒𝑡𝑙
𝜕𝑜𝑗

)

𝜕𝐸(𝑜𝑗)

𝜕𝑜𝑗
=σ𝑙𝜖𝐿(

𝜕𝐸

𝜕𝑜𝑙

𝜕𝑜𝑙

𝜕𝑛𝑒𝑡𝑙
𝑤𝑗𝑙)



Back propagation

◼ Get

◼ Where

◼ Updates to wij are given  by

◼ Where – sign takes in direction of minimum

𝜕𝐸

𝜕𝑤𝑖𝑗
= 𝛿𝑗𝑜𝑖

𝛿𝑗 =
𝜕𝐸

𝜕𝑜𝑗

𝜕𝑜𝑗
𝜕𝑛𝑒𝑡𝑗

=

𝑜𝑗 − 𝑡𝑗 𝑜𝑗 1 − 𝑜𝑗 𝑖𝑓 𝑗 𝑖𝑠 𝑜𝑢𝑡𝑝𝑢𝑡

(෍

𝑙𝜖𝐿

𝛿𝑙𝑤𝑗𝑙)𝑜𝑗(1 − 𝑜𝑗) 𝑖𝑓 𝑗 𝑖𝑠 𝑖𝑛𝑛𝑒𝑟

∆𝑤𝑖𝑗 = −𝛼
𝜕𝐸

𝜕𝑤𝑖𝑗

See http://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

for a great step-by-step example on the network we’ve used

http://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/


Summary

◼ Neural network theory begins from simple building 
blocks of the MP model

◼ Generalize to perceptrons

◼ Then onward to multi-layer systems

◼ Train by minimizing an error function – no surprise

◼ Training of linear separable systems is optimized using 
perceptron, but if not linearly separable steepest 
descent is better

◼ For multi-layer networks steepest descent methods can 
be applied, but analysis becomes recursive over layers


