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Support Vector Machines: Why so popular?

1998 it was used in character recognition and proved to be
extremely accurate compared to tuned neural nets

Although traditionally first taught in classification setting
they can also be used for regression
m Performance 1s widely viewed as “almost unbeatable”

Can handle non-linear classification reasonably well

SVM are designed as convex problems so that the solution
1S unique
®m No concerns about whether a local minima has been found

Drawbacks:
m they don’t work well with discrete data
m Slightly black box approach — no model is built
= Issues with multiple classes



Very useful for highly

multidimensional data
Suppose you have 20,000 genes and 100 patients

Number of parameters vastly exceeds number of
samples

Computations that scale as the number of genes will be
2 orders of magnitude worse (at least) than those which
scale as the number of patients

SVMs are written in such a way to be dependent on the
number of samples

m Caveat: even 1n this formalism there is still a hidden
dependence on the lengths of vectors.



Classification in a plane

m Anyone of these
lines separates the
data

m Which is best?

m Notice how a
plane is a binary
classifier




Support vectors
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Between the two sets
there is a decision
surface

The elements closest
to that are known as
the support vectors

Clearly they have the

largest impact on the

. position of the

decision surface

In practice you don’t
know which are SVs
until you have the
margin



Trivial math recap: equation of
hyperplane

Eqn of line 1n 2d 1s

trivial ax +by+c=0
m Alternative form a

. — y = ——X—C

m Taking w=(x,y) b
® [n n-dimensions just w.x+c=0

increase vector size

® Describes n-1 c 1s an offset, can think of

dimensional plane
Form remains the
— - —
SRS w.(Xx —x,) =0
W is the normal
vector to the plane

formula as



Distance between 2 parallel
hyperplanes

:
D= Hf"ﬂ —Ifl\l‘*ﬂ

w-X,+b, =0

w-(x, +tw)+b, =0
WX, +t”w” +b, =0

(W-%,+b)—b, +1|#] +b,=0

— b, +1] +b,=0

t=(b,~b,) /||’
= D =|t||¥]| =|b, —b,|/|W]

From “A Gentle Introduction to SVM” Statnikov et al



Optimizing the “gap”

\4

We want a plane that
creates the largest
“oap” around it

This gap should be
measured directly
perpendicular to the
plane, not along y or
X

This 1s called the
“margin’
In practice only a

small number of
points will contribute



Extending beyond linearly
separable

Cancer | —g-. Decision surface

kernel
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Using an appropriately defined kernel we can project
into a higher dimensional space

®m A new plane defined in that space can separate the data

From “A Gentle Introduction to SVM” Statnikov et al



Which plane?

B Support vectors are those elements in the training set
that would change the position of the dividing plane if
they were removed

m Think of them as being the “critical elements”

m Given a separating plane then the support vectors are
defined as those elements for which

w.Xx+b=1 or wx+b=-1
m Points further away from these planes have successively
mote positive RHS or more negative



Maximizing the Margin

7 m Points on the
dotted planes are

e the SVs
O 0 w.X+b=-1

w.x+b=0

® The margin is 2d
2d = 2/|w|

This 1s clearly a robust procedure relative to outliers!



Separation of classes

y.=-1 “negatives”

O
O 0 w.Xx+b=-1
w.x+b=0
d
o
T wix+b=1

O — O m [et the response
o © S values y. be given

by

y.=+1 “positives”

'm y=11f wx+b=>1,
y.=-1 if w.x.+b=-1



In a nutshell

m Since the distance is dependent on 1/ |w| if we minimize
| W | we maximize the margin

m It’s best to minimize |w|?/2 — well behaved
m Other key points:
= only the support vectors determine the slope

m There are no points between w.x+b=1 & w.x+b=-1

= Since we set =1 if w.x+b=>1, y.=-1 if w.x.+b=-1 these two
conditions can be combined into one formula:

yl(W.fl-Fb) >1 VvV 1= 1,...,N

B So we have a constraint on the minimization we want to do



What is the classifier?

m Recall f(x)) must produce y.=1 or y.=-1

m How can we get that form?

= HINT: think about the form of the two boundary planes

m The answer is very simple:

f(x) =sign(w.x + b)



Lagrange multiplier approach to
optimization

®m Quick recap of ..M. approaches —

m Suppose you have two funcs: maximize f(x,y) & subject to g(x,y)=0

Images from wikipedia



Lagrange Multipliers 11

If £(x,y,) 1s 2 max then there is no other point along
o(x,y)=0 that we can move to that is higher

So finding the max amounts to walking along the
constraint g(x,y)=0 on the surface f(x,y) until we find
the maximum

At the maximum f(x,y) is stationary (if it 1s increasing
we could carry on along g(x,y)=0 to a higher value)

That means you are on a contour of constant £(x,y)
= [f so, the contours of f(x,y) & g(x,y) match here

Or f(x,y) 1s completely tlat



Lagrange Multipliers 111

m [f contours match, normals must be parallel too
® ie. constraint line is tangent to f(x,y)=constant
®m Normals are equal up to a constant, the Lagrange

multiplier, A

Vilx,y) = AVg(x,y)
B So define a new function

L(.’JC, Y, A) — f(x’y) — Ag(x; y)
®m And solve gradient is zero FOR ALL variables
Veyal(x,y,4) =0
g(x,y) = 0 is required by the A derivative



Lagrange Multipliers IV

B To solve you rely on

OL(x,y,A) 0 OL(x,y,A) _
ax dy

OL(x,y,A) _

0, 0A

0

m First and second equtions usually give a relationship
between x, y and A

m Can usually be rewritten to give A=func,(x,y) A=func,(x,y)

= From func,(Xx,y) = func,(x,y) a relationship between x and y
can be derived to substitute for x ory

m The g(x,y)=0 relationship gives another between x & y

= Substitute into this using previous relation to solve for x &y



Lagrange Multipliers V

m Fxample: find extrema of f(x,y)=xy+14 subject to
o(x,y)=x*+y*-18=0
m Form Lagrange function:
L(x,y,A) =xy+ 14 — A(x* + y* — 18)

dL(x,y, A
(ay ):y—2xﬂ=0=>A:3}/2x
X
aL(;C;/;A)Zx_ZyAZO > A=x/2y

m Thus x*=y and we can sub into the constraint:

x%+y?-18=2x%-18=0 => x=+-3



Applying to maximizing the
marginal

¢ 2>

m Constraint(S) (“¢”) are given by y;(w.%; +b) —1 =0

= Note there are as many constraints as

samples - we can add more Lag. Multipliers for each

n
m Function (“f”) to maximize is 1 )
22,"
=1

m Traditional to use & rather than A for Lag. multipliers

= So the “Lagrange function” is written
N

n
1
AW, b, @) = Ez w? — Z o[y, (7% + b) — 1]

=1 =1



Expand a bit

m While formally appearing complex, this 1s actually a
fairly straightforward formula

m If we consider derviatives wrt to W and & then we get
some simplifying assumptions



Derivation continued

If we set the derivatives with respect to w,b to 0, we obtain:

oA ,(w,b,

-~ -

W

We substitute the above into the equation for A ,(w,b,a) and obtain “dual

formulation of linear SVMs":

We seek to maximize the above Lagrangian with respect to &, subject to the
.\'

constraints that «, >0 and Za,.y, =0

i=l

From “A Gentle Introduction to SVM” Statnikov et al



Why is that helpful?

Solving for the & is
C Why 1s the a “quadratic
N 1 N programming” problem
l\(a') = 20’1 2 aiajyiiji.xj
=1 [,j=1
form interesting? It’s because there are only dot

products in the function + reduced problem to that
containing N unknowns

®m Dot products can be replaced by alternative “kernel”
functions — this is used for data that is not linearly

separable
m Constraints are =0 andz “ly i =0

| ClaSSiﬁer f(x) wtl Slgn(z a;yl xl x, _I_ b)



Karush Kuhn Tucker Condition

®m Once a; are solved for, using the “KK'T” condition
given above we can get b (W formula below)

®m Amazingly, only the support vectors will have non-zero
a;

m So pick one, then

-

yi(WffEi+b)—1 = W — alylfl
1 —
b=——-W.% =1
Yi

m [n practice better to average



How can we handle ovetlap?

Anything on correct side of margin

Is OKI

®m Distances now
less than margin
— concept 1s
CClOSt77

B Need to
account for
these “noisy”
results

B Add some kind
of variable to
allow for

O

O : o T )
Anything on correct side of margin 1€gative

Is OK! . distances



Soft margin

Introduce a “slack variables” (which are = 0)

w.xi+b=>-1+F§ fory; =—-1
w.x;+b>1-§; fory, = +1

Intrepretation — points outside margin are fine and can have
§;=0 while the misclassified points need non-zero §;

Can no longer just minimize |w|*/2 subject to above
constraints, also need to account for slack variable, so we make it
proportional, times some scaling factor, C

n N
1 2
PARIPR
=1

With the constraint (=1

y(w.x;+b)—1+8 >0fori=1,.. N



What is C?

C is not specified a priori — finding the right value is a key
issue in SVM

C is essentially a trade off between the margin and the
misclassification penalty

Small C takes us back to looking for a large margin which
suggests more training samples will be in bad positions =>
poorer classification and potentially poorer fit

Large C means fewer training samples will be in bad
positions but the margin will be smaller. Too large a C and
you may wind-up with overfitting in non-linear problems



Parameter C in soft-margin SVM

N
NP B B BB P - : I . - . :
Minimize 7”“'" + S subjectto v (w-x, + b) = l—.;;r. fori=1,....N

i=l

* When Cis very large, the soft-
margin SVM is equivalent to
hard-margin SVM;

* When Cis very small, we

admit misclassifications in the
training data at the expense of
having w-vector with small
norm;

* C has to be selected for the
distribution at hand as it will
be discussed later in this
tutorial.

From “A Gentle Introduction to SVM” Statnikov et al



Going non-linear: Kernels

m The beauty of SVM is the idea of mapping into a

higher-dimensional space to allow linear separations

In one dimension the data does not separate, but projected into 2d it is possible — there

are of course many possible projection choices this one is parabolic y=x2.

o—=o o—0— o0—0—0—0 o—“Input space”

x->@(x)=(x,x%) l

\k

“Feature space”

Credit: Moataz Al-Haj




High dimensions = more costly?

m Consider the dual formalism from earlier
N N

—> 1 - o
l\(a') = 2“5 —E a,;ajy,;ij,;.xj
i=1 (=1
m Dot product X;. X; is used — so we don’t need to define the
map explicitly — we can just define a new kernel, K
m This 1s known as the “kernel trick™ as it avoids having to
calculate complicated higher-d dot products
m Although you obviously still have to do a little more computation

= But it’s insignificant compared to potential expense of higher-d



Kernels

This is really a very detailed analysis subject

Not all functions can be kernels, must obey “Mercer
Conditions”

Common choices:

Binomial K (X, %) = (X;.X; + 1)P

. - - 1 - -
Gaussian K (X, Xj) = exp(—ﬁ(x,;—xj)z)

- o 1 - -
Exponential K (X3, %) = exp(— 55 [%i — %j|)



Understanding the Gaussian kernel

5

—_

Consider Gaussian kernel: K(Sé,.?c'/.) — exp(_;/Hf _55/_ )

Geometrically, this is a “bump” or “cavity” centered at the
training data point f/.:

. _) nbumpn
* = “cavity”

The resulting
mapping functio
is a combination
of bumps and
cavities.

From “A Gentle Introduction to SVM” Statnikov et al



Understanding the Gaussian kernel

Linear hyperplane
that separates two
classes

From “A Gentle Introduction to SVM” Statnikov et al



How do you know which kernel
to choose?

You don’t!
= Many view this as a weakness of SVM

Here’s an 1ssue — when you choose a kernel function you
don’t always know what dimensionality you are projecting
1n to

= No guarantee you will actually be able to separate the data just

because you choose a higher dimension

Technically, because the Gaussian projection 1s an infinite
series the true map is into an infinite dimensional spacel
(Think about how you would do a cross product to get all
the terms)

In practice, soft margins are also needed



Usual procedure

B Pick a kernel and C value

= Common advice is to start with gaussian or low degree
polynomial

m Check values of C via cross-validation (essentially you
sub-sample)
= Divide training data into K subsets
® Train on union of K-1 subsets
m Use unused subset to see how well classification works

= Do this for all possible choices of the test subset

m Vary C, vary kernel until you get the smallest error



Summary

SVMs are highly flexible ways to categorize data
Key ideas:
m Hyperplane formula and the sign of result creates a binary classifier

m [ag. Multiplier approach gives dual formalism that depends on the
# of samples

® Only the support vectors contribute to placement of the decision
surface

Non-linear problems are handled via the "kernel trick’
avoids higher dimensional problems

Main issue: how to handle soft margins and which kernel



