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Support Vector Machines: Why so popular?

◼ 1998 it was used in character recognition and proved to be 
extremely accurate compared to tuned neural nets

◼ Although traditionally first taught in classification setting
they can also be used for regression
◼ Performance is widely viewed as “almost unbeatable”

◼ Can handle non-linear classification reasonably well

◼ SVM are designed as convex problems so that the solution 
is unique
◼ No concerns about whether a local minima has been found

◼ Drawbacks:
◼ they don’t work well with discrete data

◼ Slightly black box approach – no model is built

◼ Issues with multiple classes



Very useful for highly 

multidimensional data
◼ Suppose you have 20,000 genes and 100 patients

◼ Number of parameters vastly exceeds number of 

samples

◼ Computations that scale as the number of genes will be 

2 orders of magnitude worse (at least) than those which 

scale as the number of patients

◼ SVMs are written in such a way to be dependent on the 

number of samples

◼ Caveat: even in this formalism there is still a hidden 

dependence on the lengths of vectors.



Classification in a plane

◼ Anyone of these 

lines separates the 

data

◼ Which is best?

◼ Notice how a 

plane is a binary 

classifier



Support vectors

◼ Between the two sets 
there is a decision 
surface

◼ The elements closest 
to that are known as 
the support vectors

◼ Clearly they have the 
largest impact on the 
position of the 
decision surface

◼ In practice you don’t 
know which are SVs 
until you have the 
margin



Trivial math recap: equation of 

hyperplane

◼

c is an offset, can think of 
formula as

𝑤. Ԧ𝑥 − 𝑥0 = 0



Distance between 2 parallel 

hyperplanes

From “A Gentle Introduction to SVM” Statnikov et al



Optimizing the “gap”

◼ We want a plane that 
creates the largest 
“gap” around it

◼ This gap should be 
measured directly 
perpendicular to the 
plane, not along y or 
x

◼ This is called the 
“margin”

◼ In practice only a 
small number of 
points will contribute 



Extending beyond linearly 

separable

◼ Using an appropriately defined kernel we can project 

into a higher dimensional space

◼ A new plane defined in that space can separate the data
From “A Gentle Introduction to SVM” Statnikov et al



Which plane?

◼ Support vectors are those elements in the training set 

that would change the position of the dividing plane if 

they were removed

◼ Think of them as being the “critical elements”

◼ Given a separating plane then the support vectors are 

defined as those elements for which

◼ Points further away from these planes have successively 

more positive RHS or more negative



Maximizing the Margin

◼ Points on the 

dotted planes are 

the SVs

◼ The margin is 2d 

d

d

This is clearly a robust procedure relative to outliers!



Separation of classes

◼ Let the response 

values yi be given 

by

◼ yi=1 if w.xi+b≥1, 

yi=-1 if w.xi+b≤-1

d

d

yi=-1 “negatives” 

yi=+1 “positives”



In a nutshell

◼ Since the distance is dependent on 1/|w| if we minimize 
|w| we maximize the margin

◼ It’s best to minimize |w|2/2 – well behaved

◼ Other key points: 

◼ only the support vectors determine the slope

◼ There are no points between w.x+b=1 & w.x+b=-1

◼ Since we set yi=1 if w.xi+b≥1, yi=-1 if w.xi+b≤-1 these two 
conditions can be combined into one formula:

◼ So we have a constraint on the minimization we want to do 



What is the classifier?

◼ Recall f(xi) must produce yi=1 or yi=-1

◼ How can we get that form? 

◼ HINT: think about the form of the two boundary planes

◼ The answer is very simple:



Lagrange multiplier approach to 

optimization
◼ Quick recap of L.M. approaches –

◼ Suppose you have two funcs: maximize f(x,y) & subject to g(x,y)=0

0

Images from wikipedia



Lagrange Multipliers II

◼ If f(x0,y0) is a max then there is no other point along 
g(x,y)=0 that we can move to that is higher

◼ So finding the max amounts to walking along the 
constraint g(x,y)=0 on the surface f(x,y) until we find 
the maximum

◼ At the maximum f(x,y) is stationary (if it is increasing
we could carry on along g(x,y)=0 to a higher value)

◼ That means you are on a contour of constant f(x,y)

◼ If so, the contours of f(x,y) & g(x,y) match here

◼ Or f(x,y) is completely flat 



Lagrange Multipliers III

◼ If contours match, normals must be parallel too

◼ i.e. constraint line is tangent to f(x,y)=constant

◼ Normals are equal up to a constant, the Lagrange 

multiplier, 𝞴

◼ So define a new function

◼ And solve gradient is zero FOR ALL variables



Lagrange Multipliers IV

◼



Lagrange Multipliers V

◼ Example: find extrema of f(x,y)=xy+14 subject to 

g(x,y)=x2+y2-18=0 

◼ Form Lagrange function:

◼ Thus x2=y2 and we can sub into the constraint:

𝑥2+𝑦2-18=2𝑥2-18=0 => x=+-3



Applying to maximizing the 

marginal
◼ Constraint(S) (“g”) are given by

◼ Note there are as many constraints as 

samples - we can add more Lag. Multipliers for each

◼ Function (“f”) to maximize is 

◼ Traditional to use 𝞪 rather than 𝞴 for Lag. multipliers

◼ So the “Lagrange function” is written 



Expand a bit



Derivation continued

From “A Gentle Introduction to SVM” Statnikov et al



Why is that helpful?

◼ Why is the 

form interesting? It’s because there are only dot 
products in the function + reduced problem to that 
containing N unknowns

◼ Dot products can be replaced by alternative “kernel” 
functions – this is used for data that is not linearly 
separable

◼ Constraints are

◼ Classifier



Karush Kuhn Tucker Condition



How can we handle overlap?

◼ Distances now 
less than margin 
– concept is 
“lost”

◼ Need to 
account for 
these “noisy” 
results 

◼ Add some kind 
of variable to 
allow for 
“negative” 
distances

Anything on correct side of  margin

Is OK!

Anything on correct side of  margin

Is OK!

Misclassified point



Soft margin

◼



What is C?

◼ C is not specified a priori – finding the right value is a key 

issue in SVM

◼ C is essentially a trade off between the margin and the 

misclassification penalty

◼ Small C takes us back to looking for a large margin which 

suggests more training samples will be in bad positions => 

poorer classification and potentially poorer fit

◼ Large C means fewer training samples will be in bad 

positions but the margin will be smaller. Too large a C and 

you may wind-up with overfitting in non-linear problems 



From “A Gentle Introduction to SVM” Statnikov et al



Going non-linear: Kernels

◼ The beauty of SVM is the idea of mapping into a 

higher-dimensional space to allow linear separations

In one dimension the data does not separate, but projected into 2d it is possible – there 

are of  course many possible projection choices this one is parabolic y=x2.

0
x

x2

“Feature space”

“Input space”

x->𝞍(x)=(x,x2)

Credit: Moataz Al-Haj



High dimensions = more costly?

◼



Kernels

◼ This is really a very detailed analysis subject

◼ Not all functions can be kernels, must obey “Mercer 
Conditions”

◼ Common choices:

◼ Binomial

◼ Gaussian

◼ Exponential



From “A Gentle Introduction to SVM” Statnikov et al



From “A Gentle Introduction to SVM” Statnikov et al



How do you know which kernel 

to choose?
◼ You don’t!

◼ Many view this as a weakness of SVM

◼ Here’s an issue – when you choose a kernel function you 
don’t always know what dimensionality you are projecting 
in to
◼ No guarantee you will actually be able to separate the data just 

because you choose a higher dimension

◼ Technically, because the Gaussian projection is an infinite 
series the true map is into an infinite dimensional space! 
(Think about how you would do a cross product to get all 
the terms) 

◼ In practice, soft margins are also needed



Usual procedure

◼ Pick a kernel and C value

◼ Common advice is to start with gaussian or low degree 
polynomial

◼ Check values of C via cross-validation (essentially you
sub-sample)

◼ Divide training data into K subsets

◼ Train on union of K-1 subsets

◼ Use unused subset to see how well classification works

◼ Do this for all possible choices of the test subset

◼ Vary C, vary kernel until you get the smallest error



Summary

◼ SVMs are highly flexible ways to categorize data

◼ Key ideas:

◼ Hyperplane formula and the sign of result creates a binary classifier

◼ Lag. Multiplier approach gives dual formalism that depends on the 

# of samples

◼ Only the support vectors contribute to placement of the decision 

surface

◼ Non-linear problems are handled via the `kernel trick’ 

avoids higher dimensional problems

◼ Main issue: how to handle soft margins and which kernel 


