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Intro to machine learning

m Excellent & useful text: Introduction to Statistical Learning by
James et al (6™ edition, 2015)
= Many examples in R (book built around it)
= Highly recommend purchasing a copy
= Most of these notes are taken from it

m Key point — machine learning and statistical learning are very
similar, but the latter is often motre formal

= Being good at either (lot of overlap!) requires both a detailed knowledge
of stats and algorithms

m Machine learning community generally more interested in new techniques
rather than validation, tends to come from more CS angle

= Also suggestion that MLL more interested in prediction, S more
interested 1n inference
m With “Big Data” such a hot topic both communities are
extensively interested 1n it



Statistical learning

Formally began in 1960s

= But one can legitimately argue least squares going all the way back
to Gauss/ILegendre is where things started (~1805)

= Note: neural networks predate — 1940s, 50s
Original focus on function estimation based on data
Blossomed in 1990s

® ie. Support vector machine algorithms spurred interest in
multidimensional fitting and algorithm development

Papers are formal, lots of concerns about proof and model
validity

= Byvolution from math community 1s clear



Data & notation

m Helpful to formalize things just a little bit

= Denote all data by X, p variables, n samples so x;; are

components of the matrix X:

= Remember: row vector is ith sample (left example)

= Column vector: subsample of a given variable (right)




Data I1

m The bolding of the subsample leads to the following
notation with bold x (i.e. column vector of
variables):

X = (xl xn)

m Or equivalently (T=transpose) and x are not bolded, so
representing a single sample vector but transposed into
rOwW

X1

X = :
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Nomenclature warnings

Note it’s more important that you understand the data
representations than the precise definitions

Different sub-fields may have different representations
So don’t get wedded to one particular formalism

In particular — capitals are often used to denote the set
of all values of a given variable

= [f you’re not sure what’s being represented don’t carry on
reading - figure it out first!



Example

m Consider a situation where sales volume is to be
predicted on the basis of marketing budgets (I'V, radio,
newspaper)

= Sales 1s the output variable denoted Y
= Marketing budgets are the input variables denoted X, X,,X;




Example 11

m Nomenclature (used interchangeably):

— CC

® output variable = “response” = “dependent variable”

— CC

m Input variables = “indep. Variables” = “predictors’” =
p p p
“features’

® Y values obviously pair with values of X, X, X;and we assume
there is some relationship X=(combination of X values)

Y =f(X)+e
m Epsilon represents a random error term (indep of X) of mean
ZEro

m fencompasses the systematic information X provides about Y

m  The previous plots are not considering £’s that depend on more than one
predictor



Inference vs prediction

m There 1s a subtle difference

= In essence inference wants to know about “process” while
prediction 1s more focused on “outcomes”

m Consider predicting (adverse) patient reactions (Y) to a
oiven drug based on blood variables (X)
m The precise Y={(X) really can’t be studied in detail
® So since error term averages to zero, we assume a prediction
V=700
m Y is the prediction of Y, fis an estimate of f

m What would we expect if we do this?



Prediction: Reducible errors

m Fxpectation of squares of differences is then
E[(Y = ¥)?] = E[(f(X) + € — f())?]
E[(Y = V)] = E[(f(X) — f(X))?] + Var(e)

B First term on RHS is reducible error
m Better and better estimates of f reduce that error

m That’s the goal of prediction
B Second term i1s the irreducible error

® No matter how good f is you can’t remove it



Inference

m Suppose rather than knowing Y we want to know how it
changes or is impacted by the various X

m Which predictors are associated with the response?
m Hopefully only a small number are
m What is the precise relationship between predictors and response?

m Could we consider linear? Do we need more complex?

m Consider the advertising example. Inference allows you to
ask:
= Which variables are most important?

m Which sales medium produces biggest boost in sales?

m Caution: there is a somewhat blurry line once you start
using inference to make predictions.



Supervised learning

Thus far we’ve considered situations with (Y,X) pairs
m EBvery predictor has an associated response
m Frequently called the training data
This is known as supervised learning
m Whether or not you are doing inference or prediction
Linear regression is a good example of supervised learning

= More complicated algorithms like support vector machines are also
examples of supervised learning

But what if we don’t know what the response function is —
can we learn anything?

Can also have semi-supervised learning where only some Y
are known



Unsupervised learning

m Without response variable you can’t fit to anything —
regression is not possible, for example

m But we can learn about
m Relationships between variables

m Relationships between observations (samples)

Clustering is a good
example.

Do variables fall into
distinct ranges, and how do
these relate to the
underlying data?

Quite what the separate
clusters may mean is not
clear.

This is a discovery process.




Stats recap: Para vs non-para

B [wo approaches to calculating response function

= Physics/astro relies on parametric approach a lot of the time

m Parametric methods are essentially a two-step process
m 1) Assume a functional for f
e.g. linear model over p variables:
f(X) = Bo + B1 X4 +---+18po
= 2) Given training data need a way to constrain the [ values

m [ east squares is one simple way of doing this
m This approach usually makes things straightforward (in principle)
® Drawback is that rarely is £(X) truly a linear function
m More complex functions are possible but can suffer problems

m “overfitting” — where function follows features that are really noise

® More parameters need to be fit as well

m But the number of parameters is fixed



Non-Parametric

m What if we fit models that can change their functional
form as we add more samples?

® Sounds great — except remember the “over-fitting” concern

m Simple example: Fit an n-point moving average

= Drawbacks: need ordered data, wiggly, pootly defined at end
points (need equally spaced data too)

= Function is defined by all the samples, gets progressively
larger with increase in sample space

= Can make more complicated using different weights

m Weight more distant points less ("kernel smoothers’)

= Splines can be used as well lots of choices



How can we not have Dilbert?

m A little “bit” of humour

I THINK WE
THE INTER—  ca(L IT

NET IS
TRYING TO LQ\?\%HIL%E

KILL ME. (
2]
[

4
£
3
3
$
S
-
D
5
1)
£
"]
£
o
T
<L
e
o
Q
1))
e
o
N
9
L
o
m




Non-parametric — a note

Many people associate “non parametric” with ranked tests

® c.g. Spearman’s rank correlation
Or with ordinal data, that while having a distinct order, doesn’t
have an obvious measure between categories

m c.g. stress scale in patients

Parametric models require data to be specified on an interval, or
at least have defined intervals between data

Non parametric methods also have advantages in smaller
samples
= Not a concern here

My take away is that “non parametric” in the machine/statistical
learning sense, often means a non parametric model



Regression vs classification

m Data can be quantitative or categorical (qualitative)
= Quantitative: height, mass

m Categorical: gender, eye colour (often called “classes”)

m [f data is quantitative we usually talk about regression

m [ east squares is a simple example

m For categorical data, the task is classification

m Frustratingly, some approaches are still called regressions
(consider yourselves warned)
m c.g. “logistic regression” uses categorical data

m The subtlety arises from estimating class probabilities — that allows
you to define continuous functions that sample to discrete outcomes



Accuracy

“No free lunch”

No single statistical test or method is “best”

m Inevitably we tend to use what we know!

Of course we need measures of quality of fit: e.g. Mean square

. MSE=- Z(yl fox))’

This is easily evaluated for the training data — but who cares?

= We want to know about non-training data denoted y,,x, (need sample)

The test MSE rather than training MSE is what matters!

= You may have test data available to use

= [f you don’t just minimizing the MSE on training data may not be a good

idea? Why?



Beautiful example from ISL

True data =
black+rando
m

Squared Error

Orange =
Blue spline
Appears best . least squares

Visual fit too Training MSE declines
linear

Mean

monotonically

10

Flexibility Bhle, greﬁﬂ
FIGURE 2.9. Left: Data stmulated from f, shown in black. Three estimates of pro gressively
f are shouwn: the linear regression line {orange curve), and two smoothing spline
fits (blue and green curves). Right: Training MSE [grey curve), test MSE (red 1
curve), and mimimum possible test MSE over all methods (dashed line). Squares hlgher Order
smoothing

splines

represent the training and test MSEs for the three fits shown in the left-hand
panel.

To much flexibility is not good — too much movement, too little is not either...



Huh!? Don’t try too hard!

Lesson #1: The training MSE will be (except for freak
situations) lower than the test MSE

Lesson #2: The U-shape is a general feature of the
MSE on test vs training data

Lesson #3: Overfitting 1s a problem — noise 1s
interpreted as signal

How can we estimate the test MSE from the training
MSE?

m Tough question — so-called “cross validation” is one
approach

m Idea is to sub-divide training set into training and test set



Linear model example

Mean Squared Error

10 20
X Flexibility
FIGURE 2.10. Details are as in Figure 2.9, using a different true f that is

much closer to linear. In this setting, linear regression provides a very good fit to
the data.




Strongly non-linear example
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FIGURE 2.11. Details are as in Figure 2.9, using a different f that is far from

linear. In this setting, linear regression provdes a very poor fit to the data.

m This example also has smaller random component



Bias/variance tradeoffs

“Beyond the scope of the book™ to show that the MSE on
repeated test data, x,, can be decomposed as follows:

E[()’o - f(xo))z]
= Var (f(xo)) + [Bias(f(x0))]? + Var(e)

Where Bias (f(xo)) =F (f(xo)) — Yo

Variance determines how much things would change if we
choose a different training set

Bias reflects the accuracy of the underlying model
assumptions

= c.g. A highly non-linear problem isn’t well fit by a linear model



Bias vs variance

High Bias Low Bias

High variance High variance

<4

High Bias Low Bias

Low variance Low variance




Bias/variance tradeoffs 11

m As a general rule:
® The more flexibility in the method the more the variance will

increase
® The bias will decrease
m From a low amount of flexibility, bias decreases faster
than variance increases
m [nitially, as flexibility is increased, MSE usually declines

= Beyond a certain point bias improvements “stop’’ and
variance takes over

m Produces a U-shaped distribution



Bias/variance tradeoffs I11

m Here are graphs of bias & variance for the “sine-like”,

linear and non-linear examples considered earlier

Highlights the
challenges of fitting
well:

Easy to find low bias
— just choose very
flexible solution.
Finding lowest

variance is harder.
10

Flaxibility Flauibility Flauibility

Excellent way to think

FIGURE 2.12. Squared bias (blue curve), variance (orange curve), Var(e)

{dashed line), and test MSE (red curve) for the three data sets in Figures 2.9-2.11. about the geﬁerﬁl
The vertical dotted line indicates the flexibility level corresponding to the smallest problem of ﬁtting!
test MSE.

Here’s the kicker — in general we don’t have f so we can’t do this explicitly anyway!



Categorical variables

m Por categorically variables we can test the number of
times a class 1s predicted correctly — training error rate

m Define the indicator I to be 0 if training data watches
predicted, 1 if it fails

TER = Zl(yl * Vi)

® Once we use the test data, test error rate 1S

Ave(I(yo # ¥o))
m (Clearly a good classifier 1s one for which the test error
rate 1s close to minimal



Bayes Classifier

The test error rate 1s minimized by a simple idea:
= Assign each observation to the most likely class given its predictor values
m le. we put a test observation in the class j for which

is largest P(Y — ]lX — xO)

= ie. the conditional probability that Y=} given X=x|,

m This is the “Bayes Classifier”

For 2 classes P=0.5 into one class, P=0.5 into another defines
the Bayes Decision Boundary

For simulated data we know how they were generated, and thus
can evaluate conditional probabilities

For real data we cannot know the distributions, and so we must
approximate



Fully

computed Bayes Classi

FIGURE 2.13. A simulated data set consisting of 100 observations in each of
two groups, indicated in blue and i orange. The purple dashed line represents

the Bayes decision boundary. The orange background grid indicates the region
in which a test observation will be assigned to the c e class, and the blue

back

sund grid indicates the region in which a test observation will be assigned

fo a‘.h-:- blue «

fier



K-nearest neighbour

m Goal: estimate the conditional distribution of Y given
X, then classity observation to class with highest
estimated probability

m Consider an estimator that uses K nearest samples to a
point .
P(Y =j|X =x0) = e Z I(y; =))
lEnearest

m Consider example



K-nearest neighbour 11

m Point X has 2 blue and 1

orangc nearest

m 2/3 prob for blue, 1/3 for

orange
m Assign X to bluel

m Can vary number of points
as well




Comparison KNN vs BC

KNN: K=10

FIGURE 2.15. The black curve indicates the KNN deciston boundary on the
data from Figure 2.153, using K = 10. The Bayes decision boundary is shoun as
a purple dashed line. The KNN and Bayes decision boundaries are very similar.




KNN 1s sensitive to K choice

KMM: K=100

FIGURE 2.16. A comparison of the KNN decision boundaries (solid black
curves) obtained using K = 1 and K = 100 on the data from Figure 2.153. With

- = 1, the decision boundary is overly flexible, while unth K = 100 it 15 not
sufficiently flerible. The Bayes decision boundary is shown as a purple dashed
line.




KNN sensitive to K choice

m K=1 is “too flexible” finds structure that 1s not present
in the true BDB

= High variance, low bias
m Increasing to K=10 showed good agreement
m K=100 1s the opposite to K=1, low variance, high bias

m The error rates follow a similar pattern to what we saw
for MSE
s K=1is 0.1695, K=100 is 0.1925
m BUT! K=10 1s 0.1363 — lower than both



Test and training etrots

Training Ermors
Test Errors

1 |
0.04 0.02




Summary

SI./MI. have a lot in common — one more formal than the
other

SI. methods focusing on improving the reducible error —
the irreducible error is beyond our means to change

Most problems we consider are supervised learning — we
have a training set of values to learn from

= Unsupervised learning is about discovering relationships
Model titting breaks down into bias and variance

= Increasing flexibility increases variance, but reduces bias producing

U shaped curve

For categorical variables, where the form of £ is unknown,
we can use KNN methods to explore parameter space



