Computational Methods
in Astrophysics

Dr Rob Thacker (AT319E)
thacker(@ap.smu.ca

Parallel Libraries / Toolkits

BILACS
Scal APACK

Higher level approaches like PETSc
CACTUS

Netlib

m The Netlib repository contains

m freely available software, documents, databases of interest to
the numerical & scientific computing communities

m The repository is maintained by
m AT&T Bell Laboratoties

m University of Tennessee

m Oak Ridge National Laboratory

B The collection is mirrored at several sites around the
world

= Kept synchronized

m Pftfective search engine to help locate software of
potential use

High Performance LINPACK

Portable and freely available implementation of the LINPACK
Benchmark — used for Top500 ranking

Developed at UTK Innovative Computing Laboratory
m A. Petitet, R. C. Whaley, J. Dongarra, A. Cleary

HPL solves a (random) dense linear system in double precision
(64 bits) arithmetic on distributed-memory computers

= Requires MPI 1.1 be installed

= Also requires an implementation of either the BLLAS or the Vector Signal
Image Processing Library VSIPL

Provides a testing and timing program

= Quantifies the accuracy of the obtained solution as well as the time it
took to compute it

http://www.cs.utk.edu/%7Epetitet
http://www.cs.utk.edu/%7Erwhaley
http://www.netlib.org/utk/people/JackDongarra
mailto:cleary1@llnl.gov

BLACS

m Basic Linear Algebra Communication
Subprograms

m Conceptual aid in design and coding (design
tool)

® Think of it as 2 communications library for linear

algebra
m Assoclate widely known mnemonic names with
communication

® Improved readability and provides standard interface

m “Self documentation”

BLACS data decomposition

Communication Modes:
All processes 1n row
All processes in column

All grid processes

|_\
N W O o
D I - S
(o o IUNIN ©) INEEN \ S N

2d processor grid

Types of BLACS routines: point-to-point communication,
broadcast, combine operations and support routines.

Communication Routines

m Send/Receive

= Send (sub)matrix from one process to anothet:

s _xxSD2D(ICTXT, [UPLO,DIAG], M, N, A, LDA,
RDEST,CDEST)

s _xxRV2D(ICTXT, [UPLO,DIAG], M, N, A, LDA, RSRC,
CSRC)

m _ denotes datatype:
= | (integer), S (single), D (double), C (complex), Z (double
complex)
m xx denotes matrix type

m GE = general, TR=trapezoidal

Point-to-Point example

CALL BLACS GRIDINFO(ICTXT, NPROW, NPCOL,
Y MYROW, MYCOL)

ITF(MYROW.EQ.O .AND. MYCOL.EQ.O) THEN
CALL DGESD2D(ICTXT, 5, 1, X, 5, 1, 0)
ELSE IF(MYROW.EQ.1 .AND. MYCOL.EQ.O) THEN
CALL DGERV2D(ICTXT, 5, 1, Y, 5, 0, 0)
END IF

Contexts

m The concept of a communicator is imbedded within
BILACS as a “context”

m Contexts are thus the mechanism by which you:

m Create arbitrary groups of processes upon which to execute

= Create an indeterminate number of overlapping or disjoint
orids

= [solate each grid so that grids do not interfere with each other

m Initialization routines return a context (integer) which is
then passed to the communication routines

= Equivalent to specitying COMM in MPI calls

ID less communication

m Messages with BLACS are tagless
m Generated internally within the library
m Why 1s this an issue?

m [f tags are not unique it is possible to create not
deterministic behaviour (have race conditions on
message arrival)

m BLLACS allows the user to specity what range of
IDs can use

= This ensures it can be used with other packages

ScalLAPACK

m Scalable LAPACK

m Development team
= University of Tennessee

m University of California at Berkeley
= ORNL, Rice U.,UCLA, UIUC etc.

m Support in Commercial Packages
m Intel MKI. and AMD ACML
= [BM PESSL
m CRAY Scientific Library

m +others

Important details

m Web page
http:/ /www.netlib.org/s

Calé,pack ScaLAPACK

m [ncludes Sca. APACK

User’s Guide LAPACK PBLAS

® [anguage : Fortran

B Dense Matrix Problem BLACS

Solvers

: : MPIL, PVM,...
® Linear Equations

m [east Squares

Package dependencies

= Higenvalue

http://www.netlib.org/scalapack

Components of the API

B Drivers

® Solves a Complete Problem
m Computational Components

m Performs Tasks: LU factotization, etc.
m Auxiliary Routines

® Scaling, Matrix Norm, etc.

m Matrix Redistribution/Copy Routine
m Matrix on PE grid1 -> Matrix on PE grid?2

m LAPACK names with P prefix

API (cont..)

YY

Data Types

Computation Performed

Matrix Type

Data Type

real

double

cmplx

dble cmplx

TAU

® Tuning and Analysis Utilities

m University of Oregon development

m http:/ /www.cs.uoregon.edu/research/tau
m Program and performance analysis tool

framework for high-performance parallel and
distributed computing
= TAU provides a suite of tools analysis of C, C++,

FORTRAN 77/90, Python, High Performance
FORTRAN, and Java programs

Useage

Instrument the program by inserting TAU
macros into the program (this can be done
automatically).

Run the program. Files containing information
about the program performance are
automatically generated.

View the results with TAU's pprof, the TAU
visualizer racy (or paraprof), or a third-party
visualizer (such as VAMPIR)

[~

File Options Help

@ Applications
@ [standard Applications
@ [Default App
@ [Default Exp
@ [Default Trial
@ Time
@ [Runtime Applications
@ [DB Applications

ParaProf Manager | tau_pg = | Function Data Window: tau_psgesv/work/osni/u0/
File windows H File Optiohs wWindows Help
i Field
Namg : Slider Mulitiple 1.00 | / Bar Mulitiple _TL'""II'"'I""I""I""I""I""I""I
ApjelizEn 1 PSGESVDRIVER 0 5 10 15 20 25 30 35 40
xperiment D
rial 1D SL_INIT Metric Mame: Time
ime MPI_Init() Mame: PSGESVDRIVER

Node Count
Contexts Per Node
hreads Per Context
User Data

roblem Definition

")

File Options Windows Help

ParaProf: tau_psgesy/work/osnifud/

Metric Name: Time
Value Type: exclusive

Mean [

n,ct 0,0,0]

nct 1,0,01

n,ct

2,0,

(D0 0RO O OO O N EEE N

MPI_Comm_siz
MPI_Comm_ral
MFI_Type_cont
MFI_Type_cam
MFI_Comm_ar
MFRI_Group_ing
MPI_Comm_crd
MPI_Group_fre
MPI_Cormirm_du
MPI_Comm_sp
MPI_Attr_get()
MATINIT
MPI_Type_ved]
MPI_B cast)

Value Type: exclusive
Units: microseconds

112932 8233 [o an
109230 NG o 2,0,0
110130 [N .ot 50,0

116290 [N ot 20,0

1z 116.0 [N o 4,0,0
1zz0L.0 NG o 1,0,0
1323 1.0 NN .t 0,00

Function Data Window: tau_psgesv/workfosnifud/

[«

File Options wWindows Help

Metric Mame: Time
Mame: SL_INIT

443577 6667 (NN rmean
15570170 N . c.t 20,0

326151.0 N ..t 2,0,0
2775200 I n,ct 4,0,0
2326300 M n.c.t 0,0,0

net 3,000] MPI_Type_size Value Type: per call walue
ner 40,0 I | | MP-Tive-fres
nct 5,0,0]) | MPI_Op_creatd
MPI_Allreduce
rﬂ Function Data Window: tau_psgesv,’r‘ﬂ Function Data Window: tau_psgesv/work/osnifud/
File Options Windows Help File Options Windows Help

Metric Name: Time
Mame: MPI_Recw(]
Value Twpe: exclusive

Metric Name: Time
MName: MPI_Comm_create(]
Value Twpe: exclusive

163247 0 M nct 1,00
1048010 Ml n,ct5.0,0

=

| mean

| n,ct5,0,0

I n,ct 1,00

| n,ct0,0,0

| n,ct 4,00

| nct3,00

0.6622%] | mea) 70.0334%

0.7136%| | n,c.1 91 3495%]

0.706 1% [| n,c.1 57 6308%]
0.693%] | n,c.1 B2.2000%|
0.6752%| | n,c.1 BO.4692% |

0.6291%] | n,cx 77.4302%|
0.5558%] | n,c.y

0.0175% | nct 2,00

Additional facilities

m TAU collects much more information than what 1s available
through prof or gprof, the standard Unix utilities. Also available
through TAU are:

m Per-process, per-thread and per-host information (supports pthreads)

Inclusive and exclusive function times

Profiling groups that allow you to organize data collection

Access to hardware counters on some systems

Per-class and per-instance information

Separate data for each template instantiation

Start/stop timers for profiling arbitrary sections of code

Support for collection of statistics on user-defined events

m TAU is designed so that when you turn off profiling (by
disabling TAU macros) there is no overhead

PETSc

m Portable, Extensible Toolkit for Scientific Computation
® https://www.mcs.anl.gov/petsc/
= Argonne lab development — used in 763 papers to date
= 20 years old! Approach must have good points! ©

m Suite of data structures and routines for the scalable
(parallel) solution of PDEs

m Intended for use in large-scale application projects
= Not a black box solution though

m Hasily interfaces with solvers written in C; FORTRAN
and C++

m All components are designed to be interoperable
m Works in distributed memory environment using MPI

Levels of Abstraction
in Mathematical Software

m Application-specific interface
m Programmer manipulates objects associated with the application

m High-level mathematics interface

m Programmer manipulates mathematical objects
m Weak forms, boundary conditions, meshes

m Algorithmic and discrete mathematics interface

m Programmer manipulates mathematical objects

PETSc m Sparse matrices, nonlineat equations
emphasis m Programmer manipulates algorithmic objects
m Solvers

m [ow-level computational kernels
= BLAS-type operations

m FET

Features

Parallel vectors

« scatters

« gathers
Parallel matrices

» several sparse storage formats

« eagsy, efficient assembly.
Scalable parallel preconditioners
Krylov subspace methods
Parallel Newton-based nonlinear
solvers
Parallel timestepping (ODE)
solvers

Complete documentation
Automatic profiling of floating point
and memory usage

Consistent interface

Intensive error checking

Portable to UNIX and Windows
Over one hundred examples
PETSc is supported and will be
actively enhanced for the next
several years.

Structure of PETSc — Layered
Approach

Grid
Management

Profiling Interface

Functionality example: selected
vector operations

Function Name Operation
VecAXPY(Scalar *a, Vec x, Vec y) y =y + a*x
VecAYPX(Scalar *a, Vec x, Vecy) y =X+ a*y
VecWAXPY(Scalar *a, Vec x, Vecy, Vecw) w=a*x+y
VecScale(Scalar *a, Vec x) X = a*Xx
VecCopy(Vec x, Vecy) y =X
VecPointwiseMult(Vec x, Vec y, Vec w) W i=X1%* i
VecMax(Vec x, int *idx, double *r) r=max x_lI
VecShift(Scalar *s, Vec x) X_1=S+X_|
VecAbs(Vec X) X 1= |x_I]|

VecNorm(Vec x, NormType type , double *r) r = ||x||

A Complete PETSc Program

#include petscvec.h

{

Vec X;

int n = 20,ierr;

PetscTruth flg;

PetscScalar one = 1.0, dot;

Petsclnitialize(&argc,&argv,0,0);
PetscOptionsGetInt(PETSC_NULL, -n",&n,PETSC_NULL);
VecCreate(PETSC_COMM_WORLD,&Xx);
VecSetSizes(x,PETSC_ DECIDE,n);
VecSetFromOptions(x);
VecSet(&one,x);
VecDot(x,X,&dot);
PetscPrintf(PETSC_COMM_WORLD, ,(int)dot);
VecDestroy(x);
PetscFinalize();

0;

http://www-unix.mcs.anl.gov/petsc/petsc-current/include/petscvec.h.html
http://www-unix.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Vec/Vec.html#Vec
http://www-unix.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscTruth.html#PetscTruth
http://www-unix.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscScalar.html#PetscScalar
http://www-unix.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscInitialize.html#PetscInitialize
http://www-unix.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscOptionsGetInt.html#PetscOptionsGetInt
http://www-unix.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Vec/VecCreate.html#VecCreate
http://www-unix.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Vec/VecSetSizes.html#VecSetSizes
http://www-unix.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Vec/VecSetFromOptions.html#VecSetFromOptions
http://www-unix.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Vec/VecSet.html#VecSet
http://www-unix.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Vec/VecDot.html#VecDot
http://www-unix.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscPrintf.html#PetscPrintf
http://www-unix.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Vec/VecDestroy.html#VecDestroy
http://www-unix.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscFinalize.html#PetscFinalize

TAO

m Toolkit for Advanced Optimization
® Now included in PETSc distribution
= Another Argonne project
m Aimed at the solution of large-scale optimization
problems on high-performance architectures

m Suitable for both single-processor and massively-parallel
architecture

m Object oriented approach

CACTUS

http:/ /www.cactuscode.org/

Developed as response to needs of large scale projects (initially developed for
General Relativity calculations which have a large computation to
communication ratio)

Numerical/computational infrastructure to solve PDE’s

Freely available, Open Sonrce community framework

m Cactus Divided in “Flesh” (core) and “Thorns” (modules or collections of
subroutines)

m Multilingual: User apps Fortran, C; C*"; automated interface between them
Abstraction: Cactus Flesh provides API for virtually all CS type operations

m Storage, parallelization, communication between processors, etc

= Interpolation, Reduction

m [O (traditional, socket based, remote viz and steering...)

m Checkpointing, coordinates

“Grid Computing”: Cactus team and many collaborators worldwide,
especially NCSA, Argonne/Chicago, LBL

http://www.cactuscode.org/

Modularity of Cactus...

Symbolic
Sub-app Manip App

Application 2

Abstractions..

User selects
desired functionalf
Code created...

-iV

Globus Metacomputing Services

Cactus Flesh

Cactus & the Grid

Cactus Application Thorns

Distribution information hidden from programmer
Initial data, Evolution, Analysis, etc

Grid Aware Application Thorns
Drivers for parallelism, 10, communication, data mapping
PUGH: parallelism via MPI
(MPICH-G2, grid enabled message passing library)

Grid Enabled
Single || Standard Communication Library
Proc MPI MPICH-G2 implementation of MPI, can run

MPI programs across heterogenous computing
resources

The Flesh

Abstract API

m cvolve the same PDE with unigrid, AMR (MPI or shared memory, etc) without
having to change any of the application code.

Interfaces
m sct of data structures that a thorn exports to the world (), to its friends
() and to nobody () and how these are
Implementations

m Different thorns may implement e.g. the evolution of the same PDE and we
select the one we want at runtime.

Scheduling

m call in a certain order the routines of every thorn and how to handle their
interdependencies.

Parameters

m many types of parameters and all of their essential consistency checked before
running

VTK

m The Visualization Toolkit
® http://public.kitware.com/VTK /what-is-vtk.php
m Portable open-source software system for 3D computer
graphics, image processing, and visualization
= Object-oriented approach
m VTK is at a higher level of abstraction than rendering
libraries like OpenGL

m VTK applications can be written directly in C++, Tcl,
Java, or Python

m [arge user community
= Many source code contributions

http://public.kitware.com/VTK/what-is-vtk.php

Summary

One interesting note — portability continues to be a real
issue with the design of APIs at a higher level of
abstraction

If you want to do big linear algebra there are numerous
well optimized libraries

= [ots of knowledge out there too
PDEs are also reasonably well supported within

existing library frameworks — but variety of available
solvers 1s always an issue

Packages with strong utility seem to survive

