
Computational Methods

in Astrophysics

Dr Rob Thacker (AT319E)

thacker@ap.smu.ca

Parallel Libraries/Toolkits

◼ BLACS

◼ ScaLAPACK

◼ Higher level approaches like PETSc

◼ CACTUS

Netlib

◼ The Netlib repository contains
◼ freely available software, documents, databases of interest to

the numerical & scientific computing communities

◼ The repository is maintained by
◼ AT&T Bell Laboratories

◼ University of Tennessee

◼ Oak Ridge National Laboratory

◼ The collection is mirrored at several sites around the
world
◼ Kept synchronized

◼ Effective search engine to help locate software of
potential use

High Performance LINPACK

◼ Portable and freely available implementation of the LINPACK
Benchmark – used for Top500 ranking

◼ Developed at UTK Innovative Computing Laboratory
◼ A. Petitet, R. C. Whaley, J. Dongarra, A. Cleary

◼ HPL solves a (random) dense linear system in double precision
(64 bits) arithmetic on distributed-memory computers
◼ Requires MPI 1.1 be installed

◼ Also requires an implementation of either the BLAS or the Vector Signal
Image Processing Library VSIPL

◼ Provides a testing and timing program
◼ Quantifies the accuracy of the obtained solution as well as the time it

took to compute it

http://www.cs.utk.edu/%7Epetitet
http://www.cs.utk.edu/%7Erwhaley
http://www.netlib.org/utk/people/JackDongarra
mailto:cleary1@llnl.gov

BLACS

◼ Basic Linear Algebra Communication

Subprograms

◼ Conceptual aid in design and coding (design

tool)

◼ Think of it as a communications library for linear

algebra

◼ Associate widely known mnemonic names with

communication

◼ Improved readability and provides standard interface

◼ “Self documentation”

BLACS data decomposition

1 2 0

4 5 3

7 8 6

0 1 2

0

1

2

2d processor grid

Types of BLACS routines: point-to-point communication,

broadcast, combine operations and support routines.

Communication Modes:

All processes in row

All processes in column

All grid processes

Communication Routines

◼ Send/Receive

◼ Send (sub)matrix from one process to another:

◼ _xxSD2D(ICTXT, [UPLO,DIAG], M, N, A, LDA,

RDEST,CDEST)

◼ _xxRV2D(ICTXT, [UPLO,DIAG], M, N, A, LDA, RSRC,

CSRC)

◼ _ denotes datatype:

◼ I (integer), S (single), D (double), C (complex), Z (double

complex)

◼ xx denotes matrix type

◼ GE = general, TR=trapezoidal

Point-to-Point example

CALL BLACS_GRIDINFO(ICTXT, NPROW, NPCOL,

& MYROW, MYCOL)

IF(MYROW.EQ.0 .AND. MYCOL.EQ.0) THEN

CALL DGESD2D(ICTXT, 5, 1, X, 5, 1, 0)

ELSE IF(MYROW.EQ.1 .AND. MYCOL.EQ.0) THEN

CALL DGERV2D(ICTXT, 5, 1, Y, 5, 0, 0)

END IF

Contexts

◼ The concept of a communicator is imbedded within

BLACS as a “context”

◼ Contexts are thus the mechanism by which you:

◼ Create arbitrary groups of processes upon which to execute

◼ Create an indeterminate number of overlapping or disjoint

grids

◼ Isolate each grid so that grids do not interfere with each other

◼ Initialization routines return a context (integer) which is

then passed to the communication routines

◼ Equivalent to specifying COMM in MPI calls

ID less communication

◼ Messages with BLACS are tagless

◼ Generated internally within the library

◼ Why is this an issue?

◼ If tags are not unique it is possible to create not
deterministic behaviour (have race conditions on
message arrival)

◼ BLACS allows the user to specify what range of
IDs can use

◼ This ensures it can be used with other packages

ScaLAPACK
◼ Scalable LAPACK

◼ Development team

◼ University of Tennessee

◼ University of California at Berkeley

◼ ORNL, Rice U.,UCLA, UIUC etc.

◼ Support in Commercial Packages

◼ Intel MKL and AMD ACML

◼ IBM PESSL

◼ CRAY Scientific Library

◼ +others

Important details

◼ Web page

http://www.netlib.org/s

calapack

◼ Includes ScaLAPACK

User’s Guide

◼ Language : Fortran

◼ Dense Matrix Problem

Solvers

◼ Linear Equations

◼ Least Squares

◼ Eigenvalue

BLAS

LAPACK

MPI, PVM,...

BLACS

PBLAS

ScaLAPACK

Package dependencies

http://www.netlib.org/scalapack

Components of the API

◼ Drivers

◼ Solves a Complete Problem

◼ Computational Components

◼ Performs Tasks: LU factorization, etc.

◼ Auxiliary Routines

◼ Scaling, Matrix Norm, etc.

◼ Matrix Redistribution/Copy Routine

◼ Matrix on PE grid1 -> Matrix on PE grid2

API (cont..)

◼ LAPACK names with P prefix

PXYYZZZ

Computation Performed

Matrix Type

Data Types

Data Type real double cmplx dble cmplx

X S D C Z

TAU

◼ Tuning and Analysis Utilities

◼ University of Oregon development

◼ http://www.cs.uoregon.edu/research/tau

◼ Program and performance analysis tool
framework for high-performance parallel and
distributed computing

◼ TAU provides a suite of tools analysis of C, C++,
FORTRAN 77/90, Python, High Performance
FORTRAN, and Java programs

Useage

◼ Instrument the program by inserting TAU
macros into the program (this can be done
automatically).

◼ Run the program. Files containing information
about the program performance are
automatically generated.

◼ View the results with TAU's pprof, the TAU
visualizer racy (or paraprof), or a third-party
visualizer (such as VAMPIR)

pprof

Additional facilities

◼ TAU collects much more information than what is available
through prof or gprof, the standard Unix utilities. Also available
through TAU are:
◼ Per-process, per-thread and per-host information (supports pthreads)

◼ Inclusive and exclusive function times

◼ Profiling groups that allow you to organize data collection

◼ Access to hardware counters on some systems

◼ Per-class and per-instance information

◼ Separate data for each template instantiation

◼ Start/stop timers for profiling arbitrary sections of code

◼ Support for collection of statistics on user-defined events

◼ TAU is designed so that when you turn off profiling (by
disabling TAU macros) there is no overhead

PETSc

◼ Portable, Extensible Toolkit for Scientific Computation
◼ https://www.mcs.anl.gov/petsc/

◼ Argonne lab development – used in 763 papers to date

◼ 20 years old! Approach must have good points! ☺

◼ Suite of data structures and routines for the scalable
(parallel) solution of PDEs
◼ Intended for use in large-scale application projects

◼ Not a black box solution though

◼ Easily interfaces with solvers written in C, FORTRAN
and C++

◼ All components are designed to be interoperable

◼ Works in distributed memory environment using MPI

Levels of Abstraction

in Mathematical Software

◼ Application-specific interface
◼ Programmer manipulates objects associated with the application

◼ High-level mathematics interface
◼ Programmer manipulates mathematical objects

◼ Weak forms, boundary conditions, meshes

◼ Algorithmic and discrete mathematics interface
◼ Programmer manipulates mathematical objects

◼ Sparse matrices, nonlinear equations

◼ Programmer manipulates algorithmic objects
◼ Solvers

◼ Low-level computational kernels
◼ BLAS-type operations

◼ FFT

PETSc

emphasis

Features

• Parallel vectors

• scatters

• gathers

• Parallel matrices

• several sparse storage formats

• easy, efficient assembly.

• Scalable parallel preconditioners

• Krylov subspace methods

• Parallel Newton-based nonlinear

solvers

• Parallel timestepping (ODE)

solvers

• Complete documentation

• Automatic profiling of floating point

and memory usage

• Consistent interface

• Intensive error checking

• Portable to UNIX and Windows

• Over one hundred examples

• PETSc is supported and will be

actively enhanced for the next

several years.

Computation and Communication Kernels

MPI, MPI-IO, BLAS, LAPACK

Profiling Interface

PETSc PDE Application Codes

Object-Oriented

Matrices, Vectors, Indices

Grid

Management

Linear Solvers

Preconditioners + Krylov Methods

Nonlinear Solvers

ODE Integrators Visualization

Interface

Structure of PETSc – Layered

Approach

Functionality example: selected

vector operations

Function Name Operation

VecAXPY(Scalar *a, Vec x, Vec y)

y = y + a*x
VecAYPX(Scalar *a, Vec x, Vec y) y = x + a*y
VecWAXPY(Scalar *a, Vec x, Vec y, Vec w) w = a*x + y
VecScale(Scalar *a, Vec x) x = a*x
VecCopy(Vec x, Vec y) y = x
VecPointwiseMult(Vec x, Vec y, Vec w) w_i = x_i *y_i
VecMax(Vec x, int *idx, double *r) r = max x_i
VecShift(Scalar *s, Vec x) x_i = s+x_i
VecAbs(Vec x) x_i = |x_i |
VecNorm(Vec x, NormType type , double *r) r = ||x||

A Complete PETSc Program
#include petscvec.h
int main(int argc,char **argv)
{
Vec x;
int n = 20,ierr;
PetscTruth flg;
PetscScalar one = 1.0, dot;

PetscInitialize(&argc,&argv,0,0);
PetscOptionsGetInt(PETSC_NULL,"-n",&n,PETSC_NULL);
VecCreate(PETSC_COMM_WORLD,&x);
VecSetSizes(x,PETSC_DECIDE,n);
VecSetFromOptions(x);
VecSet(&one,x);
VecDot(x,x,&dot);
PetscPrintf(PETSC_COMM_WORLD,"Vector length %dn",(int)dot);
VecDestroy(x);
PetscFinalize();
return 0;

}

http://www-unix.mcs.anl.gov/petsc/petsc-current/include/petscvec.h.html
http://www-unix.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Vec/Vec.html#Vec
http://www-unix.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscTruth.html#PetscTruth
http://www-unix.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscScalar.html#PetscScalar
http://www-unix.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscInitialize.html#PetscInitialize
http://www-unix.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscOptionsGetInt.html#PetscOptionsGetInt
http://www-unix.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Vec/VecCreate.html#VecCreate
http://www-unix.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Vec/VecSetSizes.html#VecSetSizes
http://www-unix.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Vec/VecSetFromOptions.html#VecSetFromOptions
http://www-unix.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Vec/VecSet.html#VecSet
http://www-unix.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Vec/VecDot.html#VecDot
http://www-unix.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscPrintf.html#PetscPrintf
http://www-unix.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Vec/VecDestroy.html#VecDestroy
http://www-unix.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscFinalize.html#PetscFinalize

TAO

◼ Toolkit for Advanced Optimization

◼ Now included in PETSc distribution

◼ Another Argonne project

◼ Aimed at the solution of large-scale optimization

problems on high-performance architectures

◼ Suitable for both single-processor and massively-parallel

architecture

◼ Object oriented approach

CACTUS

◼ http://www.cactuscode.org/

◼ Developed as response to needs of large scale projects (initially developed for
General Relativity calculations which have a large computation to
communication ratio)

◼ Numerical/computational infrastructure to solve PDE’s

◼ Freely available, Open Source community framework
◼ Cactus Divided in “Flesh” (core) and “Thorns” (modules or collections of

subroutines)

◼ Multilingual: User apps Fortran, C, C++; automated interface between them

◼ Abstraction: Cactus Flesh provides API for virtually all CS type operations
◼ Storage, parallelization, communication between processors, etc

◼ Interpolation, Reduction

◼ IO (traditional, socket based, remote viz and steering…)

◼ Checkpointing, coordinates

◼ “Grid Computing”: Cactus team and many collaborators worldwide,
especially NCSA, Argonne/Chicago, LBL

http://www.cactuscode.org/

Modularity of Cactus...

Application 1

Cactus Flesh

Application 2 ...

Sub-app

AMR

(GrACE, etc)

MPI layer 3 I/O layer 2

Unstructured...

Globus Metacomputing Services

User selects

desired functionality…

Code created...

Abstractions...

Remote Steer 2MDS/Remote

Spawn

Legacy App 2

Symbolic

Manip App

Cactus & the Grid

Cactus Application Thorns
Distribution information hidden from programmer

Initial data, Evolution, Analysis, etc

Grid Aware Application Thorns
Drivers for parallelism, IO, communication, data mapping

PUGH: parallelism via MPI

(MPICH-G2, grid enabled message passing library)

Grid Enabled

Communication Library
MPICH-G2 implementation of MPI, can run

MPI programs across heterogenous computing

resources

Standard

MPI

Single

Proc

The Flesh
◼ Abstract API

◼ evolve the same PDE with unigrid, AMR (MPI or shared memory, etc) without

having to change any of the application code.

◼ Interfaces

◼ set of data structures that a thorn exports to the world (global), to its friends

(protected) and to nobody (private) and how these are inherited.

◼ Implementations

◼ Different thorns may implement e.g. the evolution of the same PDE and we

select the one we want at runtime.

◼ Scheduling

◼ call in a certain order the routines of every thorn and how to handle their

interdependencies.

◼ Parameters

◼ many types of parameters and all of their essential consistency checked before

running

VTK

◼ The Visualization Toolkit
◼ http://public.kitware.com/VTK/what-is-vtk.php

◼ Portable open-source software system for 3D computer
graphics, image processing, and visualization
◼ Object-oriented approach

◼ VTK is at a higher level of abstraction than rendering
libraries like OpenGL

◼ VTK applications can be written directly in C++, Tcl,
Java, or Python

◼ Large user community
◼ Many source code contributions

http://public.kitware.com/VTK/what-is-vtk.php

Summary

◼ One interesting note – portability continues to be a real

issue with the design of APIs at a higher level of

abstraction

◼ If you want to do big linear algebra there are numerous

well optimized libraries

◼ Lots of knowledge out there too

◼ PDEs are also reasonably well supported within

existing library frameworks – but variety of available

solvers is always an issue

◼ Packages with strong utility seem to survive

