
Computational Methods

in Astrophysics

Dr Rob Thacker (AT319E)

thacker@ap.smu.ca

Yet more on R

◼ More useful things for scripting:

◼ Functions

◼ Matrices and eigenvectors

◼ User input

◼ Intermediate graphics

Functions

◼ R is in essence a functional language

◼ So describing functions is a key part of programming

◼ The format is simple, but hides potential complexity

myfunc <- function (arguments) {

code using arguments

perhaps other things

return(var)

}

◼ You don’t have to have the return statement

Functions II

◼ A simple example – mysquare
mysquare <- function(n) {

n*n

}

◼ Try mysquare(3)

◼ You can also have a temporary variable
mysquare <- function(n) {

a = n*n

return(a)

}

Functions - Exercises

◼

Functions - Exercises

◼ One possible solution

myfunc <- function(x,n) {

1+sum(x^(1:n)/factorial(1:n))

}

◼ Can check with myfunc(1,8) should be close to e

(2.718…)

Functions - Exercises

◼ Let’s do something involving if () in the function

◼ Define a function myfunc2 (10 mins)

◼ It should return a vector of values

◼ Use this to plot the function on -4 to 4

Functions - Exercises
◼ You might be tempted to try:

myfunc2 <- function(x) {

len = length(x)

for (i in 1:len) {

y=x[i]

if (y<0) {

y = y^2 + y + 3

} else if (0<=y & y<2) {

y = 2*y + 3

} else {

y = y^2 + 2*y - 1

}

x[i]=y

}

return(x)

}

◼ Will work – but more compact form is possible

Vector ifelse

◼ ifelse(test,x,y) returns elements from

x[i] if test[i] is TRUE, and y[i] if

test[i] is FALSE

Example, try:

a=c(1,2,3,4)

ifelse(a %% 2 == 0,”even”,”odd”)

◼ Can use this to produce an f(x) function that is more compact

Vector ifelse

◼ Since we have three parts of the function, we

can nest ifelse statements
myfunc3 <- function(x) {

ifelse(x < 0, x^2 + x + 3, ifelse(x < 2, 2*x+3, x^2+

2*x - 1))

}

◼ This also shows how functions can be treated as vectors too

◼ A very neat and compact solution

◼ For functions with two parts only the second part need appear in

the ifelse

Matrices

◼ To set up a matrix, use the matrix command:

m = matrix(1:9, ncol=3)

◼ Check the format, and then try

m = matrix(1:9, ncol=3, byrow=TRUE)

◼ That will fill up by rows rather than cols

◼ To transpose, use the t() function

trans.m = t(m)

◼ Element-wise operations +,-,*/

Matrices

◼ True matrix multiplication is defined by

◼ m %*% trans.m (for example)

◼ Identity matrix short-hand: I <- diag(3)

◼ Determinant: det(m)

◼ Inverse: inverse.m <- solve(m)

◼ Check inverse.m %*% m = identity

(to machine prec)

◼ solve(m,b) would solve mx=b

Eigenvalues & eigenvectors

◼ Define a matrix m = matrix(1:9 %% 4,

ncol=3, byrow=TRUE)

y <- eigen(m)

y$val are the eigenvalues

y$vec are the eigenvectors

◼ Check these work – i.e. check eigenvector

equation

◼ You’ll need to get the vector indexing right ☺

User input

◼ scan() is a simple way of entering vector data

◼ x1 <- scan() will create a vector of numerics

◼ Double return to finish

◼ Try entering strings – what happens?

◼ x2 <- scan(what=“ “) allows you to enter

strings

◼ You can also use it to read from files – will

return a vector rather than data frame like

read.table

Readline

◼ Alternative to using scan – here’s a wonderful example of it’s use:

fun <- function() {

ANSWER <- readline("Are you a satisfied R user? ")

if (substr(ANSWER, 1, 1) == "n")

cat("This is impossible. YOU LIED!\n")

else

cat("I knew it.\n")

}

if(interactive()) fun()

◼ The substr function just extracts from ANSWER between

start(=1) and stop(=1)

Text processing

◼ Yes – you can grep!

◼ Try my.str <- “Hi there”

grep(“th”,my.str,value=TRUE)

◼ If you don’t include value then grep returns the

index of the matching vector

◼ There are a number of other functions too,

check out
http://www.regular-expressions.info/rlanguage.html

Data frames

◼ Start the console, create a script and enter
height <- c(1.7,1.65,1.34,1.5,1.8)

name <- c(“Izzy”,”Chris”,”Mel”,”Viv”,”Alex”)

mass <- c(70,55,50,62,80)

eyes <- c(“brown”,”green”,”brown”,”blue”,”brown”)

hair <- c(“brown”,”blonde”,”blonde”,”blonde”,”brown”)

ourpop <-data.frame(name,eyes,hair,height,mass)

More on plots

◼ The plot command takes one data-set input –

but usually need more than 1 data set

◼ So define height2 = c(1.54,1.72,1.55,1.6,1.8)

◼ Replot the ourpop$height,ourpop$mass dat

◼ You can add height2 (using same mass values)

as follows:

points(height2,ourpop$mass,col=“2”)

legend(“topleft”,c(”Heights”,”New Height”),

col=c(“1”,”2”),pch=c(21,21))

Error Bars

◼ Use the arrows() command

◼ Define upper and lower values in y, and the

corresponding x value

◼ Call with (example)
arrows(xupper,yupper,xlower,ylower,col=1,angle=90,lengt

h=0.1)

Summary

◼ Learn how to use function definitions, they can

really make things easier

◼ The inbuilt linear algebra is really quite effective

and simple to use

◼ User input can be done in a number of ways,

scan and readline offer different alternatives

