
Computational Methods

in Astrophysics

Dr Rob Thacker (AT319E)

thacker@ap.smu.ca

More on R

◼ Useful things for scripting:

◼ Data frames

◼ I/O

◼ Looping

◼ Graphics

◼ Models

◼ Note: R is fussy about having the right quotes,

copy and paste often fails because of this

Data frames

◼ Commonly used in R for multi-variable data

◼ Consider people data: heights, masses, hair colour

etc

◼ Non-numeric values are called factors e.g. “blue”

“brown” for eye colour

◼ Logically it’s a matrix of columns/vectors of

equal length but potentially different types

◼ Once set-up you can address variables using $ sign

◼ Could use built-in data, but let’s see how to

construct one first

Data frames

◼ Start the console, create a script and enter
height <- c(1.7,1.65,1.34,1.5,1.8)

name <- c(“Izzy”,”Chris”,”Mel”,”Viv”,”Alex”)

mass <- c(70,55,50,62,80)

eyes <- c(“brown”,”green”,”brown”,”blue”,”brown”)

hair <- c(“brown”,”blonde”,”blonde”,”blonde”,”brown”)

ourpop <-data.frame(name,eyes,hair,height,mass)

Interacting with data frames

◼ The full table can be printed using ourpop

◼ Try ourpop$height

◼ Can also use ourpop[,1] to get column

◼ ourpop[1,] to get first row

◼ Note if you define something in R using a

variable with a value e.g. mylist <- list(a=2,b=1)

◼ [2] will report the variable name & value

◼ [[2]] will report just the value (try them!)

Subsetting & sampling data frames

◼ The subset() function allows you to quickly

select data that matches criteria, e.g. try
mypop <- subset(ourpop,height>1.5)

mypop2 <- subset(ourpop,height>1.5 & height < 1.79)

◼ mypop,mypop2 will be a data frames as well

◼ You can randomly sample any data using

sample(), e.g. try
mysamp <-

ourpop$height[sample(1:nrow(ourpop),10,replace=TRUE)]

◼ In this case you’ll produce a vector of samples

Simple Output

◼ print() – this is generic output function that

is specified for different datatypes

◼ Depending on what you pass, you’ll get different

results

◼ Try print(ourpop); print(“Hello World”)
◼ Try removing quotes – it fails why?

◼ Essentially same as ourpop in console

◼ methods(print) will tell you what it is defined

for (in this case a lot!)

Concatenated Output

◼ cat() is much simpler than print() – can’t

handle a data frame for example

◼ But it does handle newline

◼ Allows you to write to a file as well

◼ Separate lines of output still need a loop

◼ Try cat(“Hi “,ourpop$height,”\n”)

◼ You can restrict the number of pieces too:
cat(“Hi “,ourpop$height[1:3],”\n”)

◼ Plus add a file argument and separator
cat(“Hi “,ourpop$height[1:3],”\n”,file=“myfile”,sep=“ , ”)

Redirecting

◼ sink(“myfile.txt”) will redirect the console (strictly the

R output) to myfile.txt

◼ sink() restores output

◼ Can also check how many are being used with sink.number()

◼ Try, sink(“list.txt”); 1:10 ; sink()

◼ For graphics there are specific devices, e.g.

◼ pdf(“myplot.pdf”)

◼ jpeg(“myplot.jpeg”)

◼ More on this later when we look at graphics

Reading from files

◼ R understands directory handling & paths:

◼ To get the current working directory getwd()

◼ To set the current working directory setwd e.g.

◼ setwd(“C:/Users/Rob/Documents”)

◼ dir() lists current directory contents

◼ Already noted: source(“myfile.R”) will execute

script

◼ Simplest way to read a table of separate vals:
◼ mytab <- read.table(“list.txt”)

◼ Check help – can specify separator

Reading from files: specialist

◼ R can read other stats-related formats too

◼ Excel – read.xls()

◼ SPSS – read.spss()

◼ Minitab – read.mtp()

◼ Comma separated variable files too:

◼ read.csv()

◼ Normally expects variables names in first line, e.g

Height, mass, name

1.7, 60, John

Reading from files: the web!

◼ Instead of a directory name, you can give an

http address! Try this:
◼ mytab <-

read.table(“http://ap.smu.ca/~thacker/list.txt”)

◼ Note if you need passwords then there are

options, including using the Rcurl package

◼ Obvious point – passwords in scripts are a bad idea!

◼ You can easily forget and send someone a script with your

passwords!

http://ap.smu.ca/~thacker/list.txt

Quick thoughts on “data manipulation”

◼ Selecting, inserting, deleting are all supported in

R, but not always in a simple way

◼ Strictly speaking a data manipulation language like

SQL is needed – see the RSQLite package

◼ So never a bad idea to preprocess data first

◼ If your data is small enough you could always

use a spreadsheet

◼ Excel is surprisingly powerful in terms of the

manipulations it can do

◼ Even with a few tens of thousands of data elements

Looping & timing

◼ R is “vector language”, and you should try and

think that way

◼ Of course it isn’t always possible to vectorize

◼ To time how long operation takes use

Sys.time()

start.time <- Sys.time()

end.time <- Sys.time()

time.taken = start.time – end.time

print(time.taken)

Looping – what can you do?

◼ R supports three types of loops

◼ for

◼ while

◼ repeat

For loops

◼ Think about a vector of loop values controlling loop

for (i in 1:10000) {

An operation

}

◼ For strides: steps <- seq(1,10000,by=2) then

for (i in steps) {

An operation

}

◼ Like a loop with a loop index array

for loop: Exercise

◼ Create a vector mylist with values 1:100000

◼ Create a vector mylist.sq = NULL

◼ Now write a loop from 1:100000 that sets each

element of mylist.sq to the square of mylist

◼ Time this using Sys.time()

◼ Nxt instead declare mylist.sq = rep(0,100000)

◼ rm(mylist,mylist.sq) rerun

◼ What time difference do you get?

while loop

◼ While loops are the next step up in complexity

◼ Consider the condition at the beginning of each iteration

◼ General format:

while (condition){

An operation

}

◼ Example, for loop as while loop (try it):

j = 1

while (j<=10) {

cat(“j=“,j,” \n”)

j=j+1

}

if constructs

◼ R supports if (condition) control structures

x = 1

if (x>0) {

cat(“x is positive”)

} else if (x < 0) {

cat(“x is negative”)

} else {

cat(“x is zero”)

}

◼ Can use if’s to break out of loops

Using breaks

◼ Flow control like “break out goto”

◼ Can use in any kind of loop structure – even for
x <- 1:10

for (j in x) {

if (j == 7) {

break

}

cat(“j=“,j,”\n”)

}

◼ Remember – position of break condition will determine whether following code is

executed

◼ Easy to trip yourself up on this…

repeat loop

◼ Repeat loops differ from while loops two ways

◼ 1) There’s no explicit condition following repeat

◼ 2) you must break using a condition to leave the loop

◼ Example for loop in repeat format:
j = 1

repeat {

if (j == 7) {

break

}

cat(“j=“,j,”\n”)

j=j+1

}

Important to watch where

you put the break point –

easy to get your loop logic

wrong. When in doubt,

print out…

Tips for better performance of “for

loops”

◼ Ensure the list/vector you are writing to is the

right length before you start

◼ Growing the list/vector on each iteration is

expensive

◼ Even if you don’t know exact length, you probably

have an upper bound

◼ Get as many operations outside the loop as you

can

Why is vectorization so much better?

◼ It goes beyond just compiled vs interpreted

◼ Each call to a function requires R to determine

what type data is being passed and then send the

correct data type to a compiled function

◼ For vectors this is straightforward – all same

datatype

◼ Doing this *once* rather than repeated calls is

obviously better!

◼ These issues are sorted out at compile time in

compiled languages

When do you have to use loops?

◼ If one iteration depends on the previous one

(recall data dependence issues)

◼ If a function doesn’t take a vector input

◼ Sometimes recursive situations require it too

Plots!

◼ As for most packages, simple plots are easy, more detailed ones

need more qualifiers

◼ Try this: plot(ourpop$height,ourpop$mass)

◼ To create a line-point plot try

plot(ourpop$height,ourpop$mass,type=“o”)

◼ Highlights that R plots in data order when creating line graphs

◼ So need to create an ordering array – that’s not difficult

op.sort = order(ourpop$height)

◼ Now try

plot(ourpop$height[op.sort],ourpop$mass[op.sort],ty

pe=“o”)

Labels and ranges

◼ Axis labels:
plot(ourpop$height[op.sort],ourpop$mass[op.sort],type="o",

ylab="Mass/kg",xlab="Height/m")

◼ Setting ranges

plot(ourpop$height[op.sort],ourpop$mass[op.sort],typ

e="o",ylab="Mass/kg",xlab="Height/m",ylim=c(40,90),x

lim=c(1,2))

◼ Tip: make sure you don’t use a colon e.g. ylim=c(1:2) – that will fail

◼ Colour: try

plot(ourpop$height[op.sort],ourpop$mass[op.sort],typ

e="o",ylab="Mass/kg",xlab="Height/m",ylim=c(40,90),x

lim=c(1,2),col=“blue”)

◼ To add a title, use the title function: title(main="Mass vs weight")

Creating hardcopy

◼ Need to pipe to file and appropriate device

◼ pdf example:
pdf(“myfile.pdf”)

plot(ourpop$height[op.sort],ourpop$mass[op.sort],typ

e="o",ylab="Mass/kg",xlab="Height/m",ylim=c(40,90),x

lim=c(1,2),col=“blue”)

dev.off() #flush to file

◼ **Always remember to close with dev.off()**

◼ help(“device”) will tell which graphical devices

are available (typically, pdf, ps, xfig, bitmap+…)

Annotation & legends

◼ You can add text using the text command e.g.
text(1.2,80,“Hi there")

x,y position are the first two values

Note you can also use text to label points:
text(ourpop$height[op.sort],ourpop$mass[op.sort],our

pop$name[op.sort],cex=0.6,pos=4, col="red")

◼ Legends:
legend("topleft",lty=1,col="blue",pch=21,"H

eights")

◼ A bit messy, but it works! Try help(“legend”) for more

info

Simple fitting

◼ Linear fitting can be done with lm(y~x)

Try: lm(ourpop$mass~ourpop$height)

◼ Should get

Call:

lm(formula = ourpop$mass ~ ourpop$height)

Coefficients:

(Intercept) ourpop$height

-24.85 55.23

◼ Better to put into a “fit” object, e.g.

fit = lm(ourpop$height~ourpop$mass)

summary(fit)

◼ You can plot the residuals etc using plot(fit), & plot the fit with

abline(fit)

Summary

◼ Data frames are a powerful way of storing data

that can be easily subsetted

◼ Avoid loops when you can – vectorization is

much faster

◼ Basic I/O is much like a terminal, but be aware

there are more sophisticated packages out there

◼ Plotting is tricky, but amazingly powerful, we’ve

only just touched on things today

