
Computational Methods

in Astrophysics

Dr Rob Thacker (AT319E)

thacker@ap.smu.ca

Languages for data analysis

◼ Caveat: I am not a data scientist!

◼ I am computational scientist

◼ Purpose of these next few lectures is to give

you *exposure*

◼ Get you to a place of familiarity but not expertise

◼ Build specialty from there, if you need it

◼ Think of it as a little like a series of intro workshops

Only half joking

◼ Also, check out

Dunning-Kruger

effect

From

smbc-comics.com

Common Languages 2021/20
From

codingdojo.com

Drivers for (big) data analysis in

astro
◼ Optical astronomy: LSST

◼ 3.2 gigapixel camera, i.e. 1500 HDTV screens

◼ Survey of the sky every three days

◼ Each day = 2 Sloan surveys!!!

◼ 0.4 Exabytes of data in final catalogue

◼ Radio: Square Kilometer Array (SKA)

◼ Storing all spectral line cubes would require 27 exabytes a

year

◼ Technology and cost problem!

But there are problems in small

data analysis too
◼ Claims of detections of extrasolar planets have been

shown to be inaccurate

◼ Bayesian/Frequentist discussions

◼ Recognition that we need to move beyond simple

statistical approaches

◼ But this requires new analysis paradigms

◼ Pressure to publish means that senior researchers often don’t

spend time learning new tools

◼ People naturally want to continue doing what they know

◼ Common issue in other fields/businesses

Python vs R

◼ Not a remotely fair comparison

◼ Python is general purpose, R specialist

◼ They are very similar in age (20+ yrs), R slightly younger

◼ Let’s restrict to the data science discussion

◼ Python has more flexibility, R has more built-in

packages

◼ Many feel R’s visualization tools are more powerful

◼ R has a steeper learning curve if you don’t have a

computing background

Parallel execution in R

◼ Doesn’t interface nicely with OpenMP

◼ Rcpp = interface between C++ and R

◼ In theory you could then use OpenMP

◼ But need to check that R code is thread safe!

◼ Packages multicore (unix forks), snow (mpi) and now

‘parallel’ offer some parallel support

◼ See https://ljdursi.github.io/beyond-single-core-R/#/

◼ Still a bit specialist right now, but more packages

coming out all the time

R – Some History & Facts

◼ R is ironically an implementation of the “S”

programming language + extra semantics

◼ “S” Developed at Bell Labs in 1976

◼ Original implementation by Ross Ihaka & Robert

Gentleman in 1993 (New Zealand)

◼ GNU GPL licence

◼ 50% of R is written in C, 30% FORTRAN (yes! I’m

not kidding) and 20% in R itself

◼ Estimated user base is now several million and growing

◼ Very popular in biology, ecology, political sci…

anywhere doing lots of stats

The R “ecosystem”

◼ There are also almost 8000 additional packages!

◼ https://cran.r-project.org/web/packages/

◼ It has it’s own journal!

◼ https://journal.r-project.org/

◼ User mailing lists (including R-help)

◼ https://www.r-project.org/mail.html

◼ Plenty of blogs and books

◼ And commercial companies providing support that you

can purchase

https://cran.r-project.org/web/packages/
https://journal.r-project.org/
https://www.r-project.org/mail.html

Downloading R
◼ http://cran.r-project.org

◼ CRAN = Comprehensive R Archive Network

◼ Just a distribution network

◼ Binaries for windows, mac, linux

◼ Note I’ve found the linux versions sometimes have path

issues on NFS systems

◼ Install the “base” system

◼ Can also download Rstudio (https://www.rstudio.com/)

◼ Complete integrated development environment (IDE)

◼ Editor for scripts etc

◼ Need R installed first

http://cran.r-project.org/

R environment

◼ R provides a suite of tools for data manipulation,

analysis and graphical display

◼ Operators for arrays (and matrices)

◼ Large collection of tools & functions for data analysis

◼ On-screen or hardcopy graphical facilities

◼ A simple and effective programming language

◼ The overall environment has been planned, not

cobbled together

◼ “Think of it as an environment for implementing

statistical techniques”

Getting started

◼ Once installed, start with R on unix, or click icon for windows

◼ In unix you’ll go straight to the “console”

◼ In windows you’ll see Rgui and drop into the console

◼ Pretty much like an interactive calculator

◼ Try 1+1

◼ Up arrow gives last instruction like unix terminal

◼ To exit type q()

◼ To see last value type .Last.value

◼ Note!! R is case-sensitive!

◼ Can stop evaluation with escape key

Getting help

◼ Of course there is always google… but!

◼ help.start() will start your browser and take you to R

help page

◼ help(function) will take you to the on-line manual page

◼ Try help(mean) or ?mean (short hand)

◼ You can search for functions containing a keyword

◼ Try apropos(“mean”)

◼ Really helpful: you can also get examples of usage

◼ Try example(mean)

◼ If you learn by example “example” is ++helpful

Basic steps: R as a calculator

◼ The console behaves just like a calculator

◼ R stores variables in double precision!

◼ Try cos(1)

◼ For powers use ^ symbol, usual ops +,-,/,* etc

◼ pi is a defined constant

◼ Modulo arithmetic can be done with %%

◼ Try 7%%5

◼ Use log10 for base 10 logs, log2, log also available

◼ arcsine is abbreviated asin

◼ When in doubt, try apropos(“name”) to find the

function name

“Entering” variables

◼ Technically, forming objects rather than variables

◼ I may be looser in terminology

◼ R uses vectors/arrays extensively so try (c=combine)

◼ x = c(1,2,3,4,5)

◼ x = c(1:4,5) or x = seq(1,5,by=1)

◼ x = (“hello”,”world”)

◼ x alone prints value of object, x[2] the second element

◼ typeof(varname) will tell you the kind of data

◼ rm(varname) will remove variable, ls() lists

defined

Why two options?

◼ You can give variables values using either = or <-

◼ This is a hangover from the A Programming Language

(APL)

◼ Keyboards for it originally had a <- key

◼ Different from the operation “is a=b?”

◼ Note == is a logical question giving true/false answer in R

◼ Try 1==2

◼ R also requires = to be used to set values in functions

◼ “Traditionalists” prefer <- be used for assignment

◼ There are some drawbacks to either method

End Intro

◼ Please download and set-up the environment for

Thursday

◼ Will help to follow along

Simple yet useful functions

◼ x = c(3,2,1:5)

◼ sort(x) or decreasing sort(x,decreasing=TRUE)

◼ Lots of simple functions, try

mean(x),median(x)

sd(x),var(x),max(x)

min(x),sum(x)

range(x),length(x)

◼ Also try outputting into a variable e.g.

z=var(x)

z

Data types in R

◼ Numbers are stored in double precision

◼ Matrices also supported. Address using a[2,3] first

number=row, second number=col

◼ Enter values using rows first in combine function

◼ Multiple arrays can be linked in to a “data frame”

◼ Strings can be stored as well (we already gave an

example)

◼ Logical datatypes are also allowed (TRUE/FALSE)

◼ Also, dates, missing data and factor types

◼ # symbol allows you to add comments

◼ Note need one on each line – no blocks of comments

Logical operations

Operation Function

x > y Greater than (num+logic)

x < y Less than (num+logic)

x >= y Greater than or equal

x <= y Less than or equal

x == y Equal to

!x NOT x (x logical)

x != y Not equal to

x & y x_i AND y_i elements

x | y x_i OR y_i elements

There are more, including single output AND, OR – check manual

Manipulating 1-d arrays/vectors

◼ Already mentioned can use x[2] for third element

◼ To delete the third element use x[-2]

◼ max(x) will give max value, but which.max(x) specifies the index

◼ Can also use which(x<3) to find matching indices

◼ Match will find positions of elements e.g.

x=c(2,3,3,4,5)

match(3,x)

◼ V. important – math ops work on individual elements!

◼ Try a simple operation: b=2*x+3

◼ Same is true for b*x

Lists

◼ Lists go beyond arrays by allow elements to have

arbitrary data types e.g.
f = list(c(1,2,3),"whoop", FALSE)

f

[[1]]

[1] 1 2 3

[[2]]

[1] "whoop"

[[3]]

[1] FALSE

Scripting

◼ Assuming you are on windows/mac File>New Script

◼ On unix you can use any text editor

◼ Advice: use one with R syntax extensions e.g. Rgedit

◼ Rstudio may well be best

◼ In editor window type a quick script e.g.

x = c(2,3,4,5)

mean(x)

◼ Highlight with cursor and hit Ctrl+R

◼ Avoid using c,q,s,t,C,D,F,I,T for variables – not

reserved, but you can break expected meanings

Script Syntax

◼ No need for semicolons at end of each line

◼ But two statements on one line must be separated by a

semicolon

◼ You can overflow onto another line but must ensure it

is not a complete expression e.g. compare

y = c(2,3,4)

+ 2

y = c(2,3,4) +

2

◼ Both will execute – but only one gives expected behaviour!!!!

Which one ☺? And why?

Summary

◼ R provides and entire ecosystem that has been

carefully planned

◼ Addressing of arrays similar to FORTRAN

◼ It is not, in any sense, new

◼ It’s primary strength is much like python’s –

huge amounts of user contributed packages and

online help via mailing lists

