
PHYS 5210: Computational Methods in Astrophysics, Assignment 1

Set Sept 27th due Oct 12th

Notes: Questions that begin with “Research” may require you to look up auxiliary information
outside of the lectures notes in class. To make this process easier, I have ensured that all the
information you need can be found rapidly by Internet searches.

Q1. (Research) (a) The Cray supercomputers of the 1970s and 80s were vector-pipeline computers.
These machines had sophisticated, and expensive, memory subsystems that allow very high band-
widths (for the technically interested, they are built using SRAM rather than DRAM). Each CPU
has vector registers which perform the same function as general registers on scalar CPU. The vector
CPU then operates on a pair of registers by pipelining the operations through the floating point
calculation unit. For example, suppose you want to add two vectors A and B. The elements of the
vectors (ai and bi) will be added together with all the addition operations being pipelined through
the floating point unit. Classify the nature of these computers (there are many websites detailing
their operation if you wish to know more) under Flynn’s taxonomy and explain your answer in
detail (HINT: pipelining is the key here and wikipedia is misleading). (3 marks)
(b) Modern Intel and AMD CPUs are equipped with “streaming SIMD extensions” known by the
acronym SSE. Are these true SIMD operations under the Flynn’s taxonomy definition? Explain
your answer in the context of how the SSE instructions work. (2 marks)

Q2. (a) If b = b0b1...bn−1 is the n-bit representation of the integer x then we can write x as a sum
over the digits of b as follows:

x =
∑
k

bk2n−1−k.

I have deliberately left off the limits on k - you need to figure them out. The exponent on the 2
involves minus signs because the left most bk corresponds to b0 which must multiply 2n−1. Two’s
complement representations are derived from the notion of arithmetic on a repeating number line.
As was discussed in the lecture, the value of 2n is mapped back to zero (although the system has
effectively overflowed in this case), i.e. 1111....11112+1=10000....00002. For n-bits of precision, so
that the length of the number line is 2n, we call the resulting arithmetic system 2n cyclic arithmetic.

Show using proof by induction (i.e. show that the result is true for n = 1, and if it assumed true
for n = k then it can be shown to be true for n = k + 1) that

2n = 1 +
n−1∑
i=0

2i

(2 marks).
(b) The above result is the first step in showing why addition of numbers defined using two’s com-
plement leads to 2n cyclic arithmetic. The next step is to give a mathematical function equivalent
to the NOT operator, i.e. define an f(b) (for any bit b) such that f(1) = 0 and f(0) = 1. This can
be achieved by a very simple operator - what is it? (1 mark).
(c) Using the above results show that for any input number x, by applying the operations involved
in defining two’s complement (the NOT and then add 1) we derive a number that is equivalent to
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−x under 2n cyclic arithmetic. (4 marks)

Q3. (a) As we discussed in the lecture, floating point arithmetic is not associative, so that
(A+B)+C 6= A+(B +C). Demonstrate this using A=1234.565, B=45.68044, C=0.0003 (you may
assume, for simplicity, a decimal floating-point system that carries 7 significant figures, and ensure
you use appropriate rounding at each step of the calculations). Also test whether these particular
values are distributive or not, i.e. if (A + B)× C = A× C + B × C and again show all the steps.
(2 marks)

(b) What is the largest integer that can be represented exactly in the IEEE 754 floating-point stan-
dard at single precision? By “exactly” I mean a number that if you subtract 1 from it, you will still
get the correct answer (i.e. there will be no rounding). What about at double precision? (HINT:
Think about the spacing of floating point numbers on a number line, also how much precision do
you have in the mantissa? Note, the answer isn’t simply the largest number that you can write in
single precision floating point format.) (2 marks)

The IEEE 754 normalization step is usually discussed slightly differently from the method we
examined in class. The fraction part f = 0.d1d2...dt is defined by

m× 2e+1/2t = ±2e(1 + f)

where we require f < 1 as our normalization. The number of bits set aside for storage in single
precision will be 1 bit for the sign, 8 bits for the exponent and 23 bits for the fractional part (32
bits total). The logical layout of the bits is

[sign bit][bits of exponent][bits of fraction]

Given this normalization assumption, we can apply the following steps to determine the
floating point representation of a decimal number x, in IEEE 754:

• The sign bit is given by 1 if x is negative, zero otherwise

• You can find the exponent, e, by successively testing values of e until x/2e = (1 + f) =
1.d1d2...dt

• Once the value of e is found the binary representation will be biased with 127 (i.e. the stored
value will be the binary representation of e-127)

• Finding the fractional part is a matter of summing different powers of 2−n, until you match
the decimal value. The logical storage order is left to right with the leftmost digit correspond
to 2−1.

(c) Work out the IEEE 754 single precision representation of −0.132812510. What is this in hex-
adecimal? Give both the big endian and little endian representations. (4 marks)

Q4. (Research) William Kahan is seen by many as the “grandfather” of floating point analysis.
In the 1980s he helped develop a simple program named paranoia that tests how well the floating
point rounding works on a given computer.
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(a) Download the single precision floating point version of paranoia from netlib
(http://www.netlib.org/paranoia/). Compile this code using gfortran (with no optimization)
on the server castor.smu.ca (Stephen is setting-up accounts for you, you may also need to login via
ssh from crux). Report whether the compiled program completed without failures (copy and paste
the summary ouput statement).
(b) Now turn up the optimization by compiling with gfortran by adding the -O3 compilation flag.
Again report whether the test works or fails.
(c) Now add the -ffast-math compilation flag - what happens?
(d) Next instead of using gfortran, use the intel compiler ifort without any optimizations. Report
your result.
(e) Turn on optmization on the intel compiler, but you should decide which flag to use yourself by
looking at the manual. Report which compiler you used and what happened.
(f) Write a short (one paragraph) discussion of what you think these results imply. (6 marks
total)
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