
A FORTRAN PRIMER

David A. Clarke

Department of Astronomy and Physics

Saint Mary’s University

Halifax, NS, Canada

January, 2002

Revised December, 2005

i

ii

TABLE OF CONTENTS

I Introduction . 1

II Steps to Computer Programming . 3

III Sample Algorithm and FORTRAN Program 5

3.1 Designing an Algorithm . 5

3.2 Converting the Algorithm to FORTRAN with Good Programming Style . . . 6
3.2.1 Delineating Program Modules 10
3.2.2 The Program Statement and Selecting a Name for your Program . . . 11
3.2.3 Program History . 11
3.2.4 Declaration Statements . 11
3.2.5 The Body of the Main Program 12
3.2.6 The Subroutine . 17

3.3 Poor Programming Style . 19

IV Data Types and Structures . 21

4.1 Variables . 21

4.2 Variable Types . 22
4.2.1 Integer Type . 22
4.2.2 Character Type . 23
4.2.3 Logical Type . 23
4.2.4 Real Type (Single and Double Precision) 23

4.3 Arrays and Parameters . 25

4.4 Variable Assignments . 26

V Common FORTRAN Statements . 28

5.1 do . 28

5.2 if . 30

5.3 if-then-else-endif . 30

5.4 go to; goto . 30

5.5 open . 31

5.6 close . 32

5.7 write/format . 33

5.8 read/format . 36

iii

5.9 Intrinsic Functions . 38
5.9.1 ** . 38
5.9.2 sqrt . 39
5.9.3 exp . 40
5.9.4 log . 40
5.9.5 log10 . 40
5.9.6 sin . 40
5.9.7 cos . 40
5.9.8 min . 41
5.9.9 max . 41
5.9.10 abs . 41
5.9.11 sign . 41
5.9.12 int . 41
5.9.13 real . 42
5.9.14 dble . 42

iv

A FORTRAN PRIMER

I INTRODUCTION

FORTRAN is a FORmula TRANslator which translates formulæ written in the human
language of mathematics to the machine language of binary code. FORTRAN allows the
programmer to type in expressions at the keyboard reminiscent to how they appear on paper,
and through the steps of pre-compiling, compiling, and linking, a binary code executable by
the machine is generated.

FORTRAN was designed for scientific computing. Other languages like C, C++, Basic,
Cobol, PL1, etc. all have their proponents, the most militant of which will waste no time in
telling you that as a computer language, FORTRAN is on its way out. Yet, at the time of
this writing, 90% of all flops1 “flopped” by scientific applications worldwide are “flopped”
by code generated by a FORTRAN compiler2. Evidently, as Mark Twain might have put it:
The report of FORTRAN’s demise has been greatly exaggerated! 3.

In all likelihood, FORTRAN is the only scientific computer language you will ever need
to learn. You may want to pick up C++ at some time, but it won’t be necessary if you
know FORTRAN thoroughly. The biggest complaint about FORTRAN by its detractors
is that it leads to unstructured, undecipherable “spaghetti code” (e.g., the all-dreaded and
overly maligned GOTO statements). Untrue. FORTRAN allows the programmer to write
“spaghetti code”, but also allows highly structured coding and whether a program is written
as “spaghetti code” or not is a function of the programmer’s laziness, not of any inherent
shortfalls in the language.

The first release of FORTRAN was FORTRAN66 in, perhaps you can guess, 1966. This
language was limited, and was used by a relatively small circle of programmers. But de-
mand for the new language grew, and in 1977, FORTRAN77 was released. This was the
first comprehensive version of the language, allowing for virtually all functions a scientific
programmer could need.

As “structured programming” became the buzz and demand for more abstract programming
grew, FORTRAN90 was released, but not until 1994. This long-awaited version underwent
many unexpected revisions as the international committee charged with its content haggled
over the details. In the 17 years between FORTRAN77 and FORTRAN90, many “non-
standard” features were built into various versions of the language by various vendors. Thus,

1Flops is “computerese” for FLoating point OPerationS, one of which is required for each add or subtract,
four for each multiply, 10 or so for each divide, etc.

2To those C users who may doubt this statistic, look carefully at your C compiler. Many C compilers,
especially in supercomputing environments, will actually translate some or all of your C to FORTRAN, then
use a FORTRAN compiler which is better suited for optimisation!

3Actually, what Mark Twain wrote was The report of my death was an exaggeration, but the words demise
and greatly are commonly added, as though Mark Twain’s writings weren’t colourful enough!

1

IBM, DEC, Cray, Sun, etc., all offered F77 compilers that contained standard FORTRAN77
plus their own special features, upon which many programmers came to rely. This made
FORTRAN much less portable, and some abandoned the language for this reason.

FORTRAN90 was designed to include most of the specialised features invented by some of
the largest vendors of FORTRAN77 as well as all the features of FORTRAN77 itself. Thus,
programmers who used an extended version of FORTRAN77 suddenly found that their code
was again portable, at least with very minor changes to conform to the new standards, and
the use of the language began to grow again.

A year after FORTRAN90 was released, FORTRAN95 came out, in large part to respond
to the rapidly rising use of massively parallel architecture. FORTRAN95 was also the first
version of the language to drop features of FORTRAN66 (e.g., “hollerith strings”), and so is
not completely “downwardly compatible”. On the other hand, FORTRAN90 is completely
compatible with FORTRAN66 and FORTRAN77.

In this primer, a subset of standard FORTRAN77 is described. Any F90 compiler can
compile any program written in standard FORTRAN77 (e.g., without any of the vendor-
specific extensions used), and if your code is written with only the statements found in this
primer, it can be compiled by an F95 compiler as well. This primer assumes the reader has
a rudimentary knowledge of UNIX, and in a UNIX environment knows how to create files,
directories, move files around, edit text files, and submit commands. No detailed knowledge
of UNIX script language is assumed, though the more the reader is familiar with UNIX, the
better.

The next section lists the typical steps required to design, develop, and execute a computer
program (written in FORTRAN or otherwise), without reference to details of the computer
language. Section III is the most important section in this primer, and should be read and
understood thoroughly. It gives a sample FORTRAN program that the reader can use as
a template for their first programs, and includes a careful description of the code line by
line. Attention is paid to what the FORTRAN statements do, and to programming style.
Finally, the last two sections, meant as a reference, give more details on the syntax of the
language. Section IV discusses variables, variable types, arrays, etc., while Section V gives
descriptions of the most commonly used FORTRAN statements. These discussions are by
no means exhaustive, and the more experienced programmer will want to consult one of the
many comprehensive FORTRAN texts, vendor manuals, and websites available.

2

II STEPS TO COMPUTER PROGRAMMING

In order to execute a computer program (code), one must:

1. Develop the algorithm (e.g., with pen and paper);

2. Write the code (using your favourite text editor in your favourite computer language—
FORTRAN!);

3. Precompile the code (optional);

4. Compile the code (f77 -c myprob.f);

5. Link the code (f77 myprob.o mylib.a);

6. Execute the code (a.out).

f77 refers to the FORTRAN77 compiler which, with the -c option, generates what is called
“object code”, unreadable by humans and unexecutable by computers. It is an intermediate
stage to which other object files can be linked (e.g., mathematical or graphical libraries).
The “link” step also uses f77. If there are no libraries to be linked, steps 4 and 5 can be
combined into one step, namely f77 myprob.f, in which case no object code is generated,
only the executable.

FORTRAN files should end with the suffix ‘.f’. The corresponding object code, if any, will
have the same name, but with suffix .o. Thus, the object code for myprob.f will be in a file
called myprob.o. As given above, the link steps generate an “executable” file called a.out,
which is the default name (i.e., that given if none is specified). By typing a.out at your
cursor, your program will execute. If you wish to call your executable something other than
a.out, you can either rename the file once created (e.g., mv a.out myprob.x), or use the
-o option in the f77 command (e.g., f77 -o myfile.x myfile.f). If the compile and link
steps are split as in the list above, specify the -o option in the link step.

At each step, minor or extensive debugging may be necessary. There are also issues of
optimisation, readability, and generality.

• Debugging: the “art” of eliminating errors in syntax (misuse of the FORTRAN lan-
guage), logic (unintentional “zero-divides” or square roots of negative numbers), imple-
mentation (code does not match algorithm), and design (problems with the algorithm
itself);

• Optimisation: The “art” of modifying the code without changing the algorithm to take
advantage of compiler and hardware features to make best use of your machine (speed
and memory);

• Readability: The “art” of designing your code so that others may read, understand,
and use what you have created;

• Generality: The “art” of designing your code to be as flexible and general as possible.

3

Indeed, developing good software is as much of an art as anything else, and your programming
skills will be honed more by doing, rather than by pouring over programming texts. This
primer is therefore designed to get you started with the least amount of details possible.
As such, debugging and optimisation techniques are left beyond the scope of this primer.
Instead, emphasis is placed on developing general-use FORTRAN code, a consistent, readable
programming style, and ways of avoiding some of the more common traps often encountered
by beginning programmers.

4

III SAMPLE ALGORITHM AND FORTRAN PROGRAM

The mathematical problem of determining the number of prime numbers less than a given
integer was known to the Greeks, and to this day, there is no solution, other than by brute
force. This section illustrates a computer “solution” to this problem. It is not general
because one cannot ask for an arbitrarily high integer; the machine can only handle integers
less than roughly 2 billion; anything bigger requires more than 31 bits (the 32nd bit in a
four-byte integer is reserved for the sign).

However, this primer is not here to make history, but to illustrate algorithm design and its
FORTRAN implementation for a “simple” (easy to pose, if not solve) problem.

3.1 Designing an Algorithm

Algorithm design can take on many forms. In a Computer Science class, your instructor
may take great pains to convey to you what key words you should use, or whether a certain
step should be encircled by a diamond, oval, rectangle, rounded rectangle, etc. We do none
of that here. An algorithm starts off as an idea or a problem you wish to solve, and then
consists of various stages in which the method of solution is fleshed out. At some point,
there is enough meat on the bones that you can use the algorithm you have developed to
generate code.

It is probably a good idea not to write your algorithm in the language of computer code (e.g.,
FORTRAN), but instead in plain English. Invariably, though, as the algorithm develops,
most people will start to pepper the English with FORTRAN- or C-type statements, mostly
because the computer language is usually so much briefer than grammatically correct English!

In this section, I show you how I went about designing my algorithm to find out how many
prime numbers there are below a certain integer, and after this, I give you two versions of
the associated FORTRAN code, both fully debugged (i.e., they execute properly), but only
one I would be happy to share with a colleague!

Step 1: Statement of the problem

Find all prime numbers less than a given integer.

Report each prime found.

Report the total number of prime numbers found.

Step 2: First refinement

For a given integer, n, one need only examine divisors greater than 1 and less than the
square root of n (think about it!).

Check to see if each divisor divides evenly into n.

As soon as one divisor is found, n is not prime. Continue on to the next candidate.

If no divisors are found, n is prime. Report each prime found to both the screen and

5

a disc file.

Step 3: Second refinement

Open disc file.

Ask user for maximum integer, nmax.

Echo input integer to both screen and discfile.

For each integer n less than nmax, do:

Find greatest integer less than
√

nmax; call this imax.

For each i, 2 ≤ i ≤ imax, do:

If i goes evenly into n, n is not a prime. Exit loop, and go onto n + 1.

i goes evenly into n if n/i truncated times i equals n.

If there are no even divisors of n, n is prime. List n as a prime integer, add one to
the counter, and go onto n + 1.

Close disc file.

At this point, the algorithm is sufficiently refined to generate code, which starts on the next
page.

You might wonder how you would go about solving this problem for numbers of truly arbi-
trary size; that is, how the algorithm presented above might be modified so that it is not
limited by the internal representation of integers. This is not a trivial problem!

3.2 Converting the Algorithm to FORTRAN with good Programming Style

My FORTRAN77 implementation of this algorithm is written in my own personal style
that I have developed over the past fifteen years, and is full of comments, headers, vertical
alignment, indentation of do-loops and if-then-else-endif structures, sensibly chosen
variable names, etc., all to make the code as readable as possible by a human. One of
the nice things about FORTRAN is it largely reads like English; no crazy punctuation
conventions or made-up words to throw you. After the code, I give some description of what
each segment does, and after that I give another version of the code written without any
regard to readability so that you can compare two extremes of coding style.

You do not need to adopt my programming style, although you may if you wish. However,
for the purposes of assignments, no-style coding (e.g., similar to the second version of the
program below) will be given very low grades, regardless of whether it works or not! Note
that strict adherence of the rules of FORTRAN requires none of these styles to be adopted;
style is entirely self-imposed.

So why this emphasis on coding style? Two reasons. First, it makes finding errors (bugs)
much easier. Second, the code is much more readable. By whom, you might ask? Primarily
by you! Much of the coding I generated as a scientist in the last 15 years, I still use today, or

6

at least some modified version of it. Try digging up some old coding you generated several
years ago without comments, structure, or algorithm description, and see how long it takes
you to get it going again! In my case, there are probably about 100,000 lines of my coding
that are used by other scientists worldwide. These would have been of very little use to
anyone had I not adopted a strict set of programming guidelines for myself when I started
out. This is true of anybody who has made any impact on the scientific public domain. In
this game, it is not at all a bad thing to be a little anally retentive!

As for the program listing which starts below, the first four columns are not part of the
FORTRAN statement. I have added these columns to allow for line numbers so I can refer
to various lines in my description following the code. Thus, the first character in each
FORTRAN statement below actually starts in column 5, so if you are typing the program
in at your terminal (problem 1 at the end of the section), the first column you should type
for each line is column 5.

FORTRAN statements are never more than 72 columns wide. Any and all characters beyond
the 72nd column are ignored. The first six columns are reserved for special “instruction”
characters. For example, if the line is to be a comment, the first character must be a ‘c’,
‘C’, or a ‘*’. If the statement is a continuation of the previous line (because 72 characters
wasn’t enough), then the sixth character should be a non-zero digit (1-9), or the ampersand
(&), or the period (.). Finally, if the statement is referred to by another statement (e.g., by
a goto statement), then the reference number (target) for that statement goes in the first
five columns. There are numerous examples of this in the code below.

The actual FORTRAN statement must start in column 7. However, I always start in column
8, so that any continuation character in column 6 is not butt up against the leading character
in my FORTRAN statement. Again, this rule is not imposed by FORTRAN, but is allowed ,
and improves readability of the code by human eyes.

1 c===
2 c
3 c \\\\\\\\\\ B E G I N P R O G R A M //////////
4 c ////////// P R I M E \\\\\\\\\\
5 c
6 c===
7 c
8 program prime
9 c
10 c abcd:prime <--------------------- lists all prime numbers .le. nmax
11 c september, 2001
12 c
13 c written by: A Busy Code Developer
14 c modified 1: by ADCD, October 2001; modularised program by placing
15 c the coding that searches for divisors into a separate
16 c subroutine.
17 c
18 c PURPOSE: This routine generates all prime numbers less than or equal
19 c to the input integer, and reports these in a list printed both to the
20 c screen and a datafile.
21 c
22 c EXTERNALS:

7

23 c DIVISOR
24 c
25 c---
26 c
27 implicit none
28 c
29 character*9 filename
30 logical lflag
31 integer nmax , icount , n
32 real cputot , etime
33 c
34 real tdummy (2)
35 c
36 external divisor , etime
37 c
38 c---
39 c
40 c Start up CPU time counter.
41 c
42 cputot = etime (tdummy)
43 c
44 c Open disc file.
45 c
46 filename = ’prime.txt’
47 open (10, file=filename, status=’unknown’)
48 c
49 c Input parameter ‘nmax’, and write opening line to standard output
50 c and ‘filename’.
51 c
52 write(6,2010)
53 read (5, *) nmax
54 write(6,2011) nmax, filename
55 write(10,2020) nmax
56 c
57 c Loop over all integers .le. nmax, and report all the prime
58 c numbers.
59 c
60 icount = 0
61 do 10 n=2,nmax
62 call divisor (n, lflag)
63 if (lflag .eq. .true.) then
64 icount = icount + 1
65 write(10,2030) n
66 endif
67 10 continue
68 write(6,2040) icount, nmax
69 write(10,2040) icount, nmax
70 c
71 close (10)
72 c
73 c End CPU time counter, and report time used.
74 c
75 cputot = etime (tdummy) - cputot
76 write(6,2050) cputot
77 c
78 c---
79 c----------------------- Write format statements -----------------------
80 c---
81 c

8

82 2010 format(’PRIME : Enter the maximum integer to be checked for ’
83 1 ,’prime.’)
84 2011 format(’PRIME : All prime numbers less than or equal to ’,i4
85 1 ,’ are listed in file ’,/
86 2 ,’PRIME : ’’’,a9,’’’.’)
87 2020 format(’PRIME : The following is a list of all prime numbers ’
88 1 ,’.le. ’,i8,’.’,/)
89 2030 format(’PRIME : ’,i9)
90 2040 format(’PRIME :’,/
91 1 ,’PRIME : There are ’,i8,’ prime numbers less than or ’
92 2 ,’equal to ’,i8,’.’)
93 2050 format(’PRIME :’,/
94 1 ,’PRIME : Total cpu usage for this run is ’,1pg12.5
95 2 ,’ seconds.’)
96 c
97 stop
98 end
99 c
100 c===
101 c
102 c \\\\\\\\\\ E N D P R O G R A M //////////
103 c ////////// P R I M E \\\\\\\\\\
104 c
105 c===
106 c
107 c
108 c===
109 c
110 c \\\\\\\\\\ B E G I N S U B R O U T I N E //////////
111 c ////////// D I V I S O R \\\\\\\\\\
112 c
113 c===
114 c
115 subroutine divisor (number, lflag)
116 c
117 c abcd:prime.divisor <---------- determines if input has any divisors
118 c october, 2001
119 c
120 c written by: A Busy Code Developer
121 c modified 1:
122 c
123 c PURPOSE: This routine searches the input number for any divisors
124 c other than 1 and itself.
125 c
126 c INPUT VARIABLES:
127 c number integer for which divisors are sought
128 c
129 c OUTPUT VARIABLES:
130 c lflag = .false. if a divisor is found
131 c = .true. if no divisors are found
132 c
133 c EXTERNALS: [none]
134 c
135 c---
136 c
137 implicit none
138 c
139 logical lflag
140 integer number , imax , i , num

9

141 real rnum , sqrtnum , small , qty
142 c
143 data small / 0.0001 /
144 c
145 c---
146 c
147 lflag = .true.
148 if (number .le. 3) return
149 c
150 c The maximum divisor that needs to be checked is the greatest
151 c integer less than or equal to the square root of the number (‘imax’).
152 c The lowest divisor is 2. Thus, check all divisors between 2 and
153 c ‘imax’. As soon as one divisor is found, set ‘lflag’ to .false.,
154 c (i.e., "number" is not prime) and return to the calling program.
155 c
156 rnum = real (number)
157 sqrtnum = sqrt (rnum)
158 imax = int (sqrtnum + small)
159 do 10 i=2,imax
160 qty = rnum / real (i)
161 num = i * int (qty + small)
162 if (num .eq. number) then
163 lflag = .false.
164 return
165 endif
166 10 continue
167 c
168 return
169 end
170 c
171 c===
172 c
110 c \\\\\\\\\\ E N D S U B R O U T I N E //////////
174 c ////////// D I V I S O R \\\\\\\\\\
175 c
176 c===

3.2.1 Delineating Program Modules

Lines 1–7 and 99–105 are how I delineate the beginning and end of the main program, while
lines 108–114 and 171–176 delineate the subroutine. These are all “comment” statements,
which can be placed anywhere in the code, and must have the character ‘c’, ‘C’, or ‘*’ in the
first column. There is nothing that makes reading a program more difficult than when you
can’t tell when you’ve passed from one module to another.

FORTRAN programs are divided up into the “main” program, and various “subroutines”
or “functions” that help modularise the program. Subroutines and functions are useful if
a particular programming unit appears more than once in a program, if a program module
needs to be used by more than one program, or if you wish to encapsulate logical units in
separate modules. The latter use makes a program read more like the algorithm, and thus
makes it more readable in general by a human. In this example, I have relegated the search

10

for divisors to a separate subroutine for this very reason.

3.2.2 The Program Statement and Selecting a Name for your Program

The program statement (line 8) is always the first non-comment statement in a program.
The name of the program is entirely up to you, but keep it, and names of all subroutines and
functions, to eight characters or less. FORTRAN is case insensitive, and I tend to use lower
case for everything. You can mix lower and upper case as you like, the FORTRAN compiler
makes no distinction. Thus, program modules PRIME and prime are the same, variables NMAX
and nmax are the same.

Usually, I name the file containing the program (main routine plus its subroutines and
functions) the same as the main routine with a .f appended to it, though this is not necessary.
Thus, the above program exists on my disc as a file named prime.f. If the compiler should
find syntax errors (illegal FORTRAN usage) anywhere in your program, it will refer to
the name of the program module (e.g., prime or divisor), not the name of the file (e.g.,
prime.f), when it tells you where the syntax errors are.

3.2.3 Program History

The comments in lines 9–24 provide a history of the module prime. This is not ‘fluff’. If
you ever use any of your software again after several months of non-usage, you will breathe
a sigh of relief when you find some history information in the header. This will reassure you
that you have found the right version of the code, that the module does what you think it
does, etc.

3.2.4 Declaration Statements

I start and end my declaration sections (lines 25–38 and 135–145) with a single line clearly
demarcating it from the header above and the body of the FORTRAN code below. The
declarations are a critical part of the code, and must be easy to spot. There are several
items of note here, all in the realm of coding style.

1. The implicit none statement (lines 27 and 137) forces you to declare all your variables
as type character, integer, real, or logical. FORTRAN treats variables of these types
differently, and so you cannot mix these types in the same statement without due care.
Thus, if the variable filename is to contain the name of the file, it is a character string,
and cannot be set, for example, to an arithmetical expression involving numbers. While
this may seem obvious, what may not be so obvious is that integers and real numbers
are treated differently too, and cannot be mixed either. Thus, if nmax is an integer,
and sqrtnmax is real, you cannot set

sqrtnmax = sqrt(nmax)

because the intrinsic function4 sqrt is expecting a real number, not an integer. For-
tunately, there are intrinsic functions that will allow conversions between reals and

4Intrinsic functions are operations that come with the compiler; that is you can use these without having
to write a separate function or subroutine to do the operation. The most frequently-used intrinsic functions
(such as square roots, trig functions, type conversion, etc.) are described in §V.

11

integers, and so their arithmetic can be mixed when needed. There are examples of
this in this program.

Without implicit none, all variables beginning with the letter ‘i’, ‘j’, ‘k’, ‘l’, ‘m’, and
‘n’ are assumed to be integers, and all the rest are assumed to be real. Or, for example,
you can use the implicit feature to tell the compiler that all variables starting with
the letter ‘c’ are character*8, and all variables starting with the letter ‘l’ are logical.
While this may be convenient, it is widely recognised as sloppy coding. Declaring
implicit none forces you to declare each variable deliberately in the declarations list,
and any variable found in the program not declared in the declaration list will generate
a compiler error. Thus, you are safeguarded from misspelling a variable somewhere in
your program which, had you used implicit declarations, would have been assumed to
be a brand new variable, initialised accordingly (usually to zero or the null string), and
computation would resume, usually incorrectly and without warning.

2. Enforcing vertical alignment means that I allow eight spaces for each variable name
in the declaration lists, regardless of whether the variable has eight characters or not
(hence the four spaces between nmax and the following comma in line 31). Frequently,
you will have a program in which there are many similarly named variables, and having
them all vertically aligned means that a quick scan can tell whether or not a variable
has been forgotten, misspelled, etc.

3. Line 34 shows how an array (albeit a very small one) is declared.

4. External statements (line 36) list all subroutines and functions called by the module,
and is used in the spirit that all variables be declared; it is simply good programming
practise.

5. There is some restriction to the order in which statements must occur. The program

statement is always first. Next, is the implicit statement, followed by the declarations
of variables and parameters in any order (character, integer, logical, real, real*8,
parameter). Next, equivalence, common, data, and external statements, in any
order, are given, followed finally by the text of the program.

3.2.5 The Body of the Main Program

Lines 39–98 comprise the “body” of the “main” program. There are a number of things of
note here as well:

1. Line 42 initialises the cpu5 time counter so that lines 75 and 76 can report the cpu
required to execute the program. Note that the function invoked to “glance at the cpu
clock” (etime) is not an intrinsic function to FORTRAN, but a special extension of
the SOLARIS FORTRAN compiler. Each operating system will have their own such
extensions, and you will need to consult the relevant manuals to determine what these
are.

5Computer Processing Unit; the “smarts” of the computer.

12

2. Line 46 shows how a character variable is set. It is also possible to set a specific portion
of the variable, leaving the rest as is. Thus, if later on I wished to change filename

to ’prime.num’, I could either set:

filename = ’prime.num’

which overwrites the entire value of the variable, including that portion which did not
change, or I could reset only that portion I wish to change:

filename(7:9) = ’num’

leaving the first 6 characters (prime.) as they were. Note that the variable filename

was declared as a character*9 variable (line 29), and thus filename can contain no
more than nine characters.

3. Again in line 46, note the single space on each side of the equals sign. This is not
required in FORTRAN, but adds enormously to the readability of the program, par-
ticularly when there are a lot of equations. In addition, I typically surround + - * /

operators (plus, minus, multiply, divide) with single spaces to improve readability.

4. Line 47 shows how to open a file on disc. It makes a specific link between a disc file
filename (set to ’prime.txt’ on line 46) and unit 10, which is how the FORTRAN
program will refer to this file until it is “closed” in line 71. So later, when I want
to write something to the file prime.txt, the write statements in lines 55, 65, and
69 refer to the unit number rather than the file name. The status variable in the
open statement indicates whether the file is new, (thus, a new file named prime.txt

is created unless such a file already exists, in which case an error message is generated
and execution aborted to protect you from unwittingly overwriting a file you may
wish to keep), old, (thus an existing file named prime.txt is opened so the file may
be modified, unless the file doesn’t already exist, in which case an error message is
generated and execution aborted), or unknown (in which case a file is created if none
exists, or opened if one already exists, as in this example).

5. Lines 52–55 are read/write statements. For both, the first argument in parentheses
refers to the unit. Since unit 10 is attached to the disc file prime.txt, the write

statement to unit 10 (line 55) adds data to this file. For the write statement, unit 6
refers to “standard output” by default (normally the computer screen in front of you),
and for the read statement in line 53, unit 5 refers to “standard input” by default
(again, the computer screen in front of you, and in particular, the data you type at
the cursor).

What is read/written by a read/write statement are the values of the variables, if
any, following the parentheses (e.g., nmax in lines 53–55). How these data are written
is determined by the “format statement” referenced by the second argument in the
parentheses. In line 52, the second argument, 2010, refers to line 82 in which the
first four columns contain the target number 2010. Since no variables are listed after
the parentheses in line 52, format statement 2010 just provides the text (contained in

13

single quotes) to be written to the specified unit, which in this case is 6, your computer
screen. This particular write statement prompts you to enter the datum required by
the program to do what it is designed to do, namely list off all the primes less than
this input value.

Line 53 is the read statement, and execution is paused until you enter the data required
(i.e., enough numbers of the right type to assign values to all variables listed after the
parentheses, which in this case, is just nmax). With unit 5 (terminal screen) specified,
you enter data right at the cursor, and hit return or enter when you are done. If the
read statement refers to a unit number attached to a disc file, that disc file would have
had to be opened by a previous open statement, and would have to exist on disc with
the data in the expected format.

When entering the value for nmax at the screen (unit 5), take care to enter an integer,
since nmax is declared as an integer by line 31. Thus, if you want to enter one thousand,
enter 1000, not 1000.0 which by virtue of the ‘.0’ is real. Commas are also not allowed.
Don’t enter 1,000 for example.

The second argument in the parentheses of the read statement on line 53 is an asterisk
(*), which means you are using an “unformatted read statement”. This instructs the
computer to read in whatever you enter and deal with it in a “sensible” way. This
means, of course, that the person who designed this portion of the compiler had to do
a lot of programming (the compiler is a computer program too!) to allow for whatever
you or I might have had a whim to do, and to generate sensible error messages if we
make one of the many possible errors, each of which have to be specifically anticipated.
So, for example, the compiler needs to be able to detect if you’ve entered in a character
string when what is required is a real number, and it then has to generate an error
message to tell you what you did wrong. What if you use a comma instead of a period
for the decimal point? What if you enter too much data, or not enough? And so it
goes.

Instead of the asterisk, you may specify the target for a format statement as you
did for the write statement. However, if you do use what is called a “formatted
read statement”, the data you enter must appear exactly as specified by the format

statement (see §5.8 for details).

Lines 54 and 55 are formatted write statements that write the contents of nmax ac-
cording to the rules of format statements 2011 and 2020 (discussed below in point 6,
and further in §5.7). The first writes to your screen (unit 6) and the second to the file
prime.txt (unit 10). The latter will remain as the permanent copy of the results of
executing the program long after the results flashed to your screen have scrolled out of
sight.

Note the use of vertical alignment; extra spaces are inserted before the * in the read

statement so that the close-parentheses will all align in the read and write statements.
Obviously, this is hardly needed here. I do it as a matter of habit, without thinking

14

so that when vertical alignment is needed (to make reading many lines of complicated
formulæ a lot easier), it is always there.

6. Lines 60–67 comprise the main loop of the program. The variable icount will be the
total number of prime numbers found. Line 60 initialises this counter to zero, then
line 64 adds one to icount whenever another prime number is found. Note that line
64 makes no sense algebraically, if one thinks of = as a true ‘equals sign’. If 63 were a
true algebraic statement, one could then subtract icount from each side, and arrive at
the astounding result that 0 = 1! Rather, in FORTRAN, = is an assignment symbol,
and in a statement such as icount = icount + 1, we read “Replace the contents of
the variable icount with icount + 1”.

The do-loop structure is one of the most commonly used and powerful structures in
FORTRAN (§5.1). Statement 60 states, in English, “Repeat all instructions from here
to target 10 (line 67) as many times as required for the counter n to go from 2 to nmax

when n is incremented by 1. If n is to be incremented by a number other than 1, the
increment must be specified after nmax. Thus, do 10 n=3,nmax,2 would mean “do for
every n between 3 and nmax counting by twos”. Thus, n=3,5,7,...,nmax or nmax-1,
whichever is odd.

While it is not necessary to indent do-loops and if-then-else-endif structures, it
vastly improves readability, so we do it. Again, I indent by habit. That way, all my
software has the same readability. You may argue, “Well, for this one eensy-weensy
program, I don’t need to bother with indenting.” But what if this program then makes
the core of a larger one, that is then expanded again to make a still-larger one? When
do you start to indent? And then do you have to go back to all the old coding, and
retro-indent all that once you have decided the code has grown long enough? What a
pain! Like most things in life, it usually takes no more time to do a job well than to do
it poorly, so you may as well get into the “indenting, vertical alignment, extra spaces
around arithmetical operators habit” right away!

Line 62 is a call to the subroutine divisor which appears after the main program
(lines 108–176). Logically, you can think of line 62 as being replaced by the “guts” of
the subroutine divisor. The use of subroutines (and functions) is strictly for making
your program more useful and readable to the human, not for the computer. We use
a subroutine (or a function) for the following reasons:

• If a module appears more than once in a program, the subroutine allows you to
write the logic out only once and then call it as often as needed.

• If the module is used by several programs, it makes sense to put it into a separate
subroutine in a separate file (library) so that you don’t have to have several copies
of the same module. This is particularly critical if you ever have to update the
algorithm in the affected subroutine. Wouldn’t it be a pain if you had to update
the same subroutine in twelve different programs, then check and debug each to
make sure you updated each right, only to realise months later that there were

15

four more copies of the same subroutine in four other programs that you don’t
use very often and forgot about?

• To segregate logically separate modules or ideas of the program from each other.
Often, a subroutine call represents a single statement or paragraph of a well-
designed algorithm, and thus relegating each logical unit to a subroutine makes
the main program read like the algorithm itself; a laudable goal for any good
programmer.

Line 62 is typical of a call to a subroutine. The arguments listed parenthetically beside
the subroutine name are variables passed between the calling routine (prime) and the
subroutine (divisor). These variables could be data needed by the subroutine to do
its task or data generated by the subroutine needed by the calling routine to continue
its task. In this case, the variable n is passed to divisor (the quantity to be checked
for divisors), and the logical variable lflag is returned to the calling routine to indicate
whether n has a divisor nor not.

There must be a one-to-one correspondence between the variable types (integer, real,
etc.) in the calling statement (line 62) and the subroutine declaration statement (line
115). However, the actual variable names need not be the same. In this case, I have
elected to call the input integer number in the subroutine divisor but n in the calling
routine prime. Conversely, the logical variable lflag has the same name in both prime

and divisor.

A logical variable (e.g., lflag) is different from a real or integer variable. It occupies
much less memory (usually only one byte rather than four or eight bytes for a real or
integer) and can take on only one of two values, either .true. or .false. (e.g., as set
in line 147). Note the periods before and after the variable value; these are as much
a part of the value as the digit 1 is part of the real value 1.25. Line 63 then tests the
value of lflag as set by the subroutine divisor. In English, we would read “If lflag
is true, then perform the statements up to and including the next endif statement.
Otherwise, skip on past the next endif statement, and carry on from there.” Note the
use of .eq. instead of =, again with the periods. This is interpreted by the compiler
as a “logical equal” rather than an “assignment” as specified by ‘=’. Other logical
comparisons are possible, including .ne., .gt., .lt., .ge., and .le.. For “if-tests”
(i.e., the phrases enclosed by parentheses after the word if in the if-statement; see
§5.2 and §5.3) involving logical variables, inequalities (.gt., etc.) make no sense, and
only .eq. and .ne. are legal. Thus, the following three statements are synonymous:

if (lflag .eq. .true.) then
if (lflag .ne. .false.) then
if (lflag) then

While the following three equivalent statements are opposite to those above:

if (lflag .eq. .false.) then
if (lflag .ne. .true.) then
if (.not. lflag) then

16

In each set of three statements above, the last statement [if (lflag) then and if

(.not. lflag) then] are carry-overs from FORTRAN66. In general, it is better prac-
tise to avoid these.

7. Lines 82–95 are the format statements. These may be placed anywhere in the program,
including before the write statement that calls them. I prefer to place them all at
the end of the program module rather than cluttering up the program logic by placing
them directly after the write or read statement that first references them.

Format statements contain explicit instructions on how the output is to be written, or
how the input is to be read. The few statements here provide some examples. Each
instruction, or “format code” within a format statement is separated by commas. For
example, lines 87–88 comprise one statement that is too long for one line. Thus, column
6 in line 88 contains the digit 1, indicating this is a continuation from line 87. In this
format statement, there are five separate format instructions. The first instruction,
which fills most of line 87, is to write the text “PRIME : The following is a list

of all prime numbers ”. The second instruction, which starts off continuation line
88, is to write the text “.le. ” immediately following the text written by the
instruction on line 87. The third instruction is to write the integer variable nmax

(line 55), as an eight-digit integer (i8). The fourth instruction is to write a period,
and finally the fifth instruction is to add a blank line afterwards (/). The first four
instructions together form a complete sentence, while the last instruction is effectively
a “carriage return”, generating an extra blank line to make the output more readable.

More complete syntax rules for format statements are given in §5.7 and §5.8.

8. Line 97 is the stop statement, which flushes the program out of computer memory and
releases the computer chip for the next task. Generally, if there is no stop statement
in the program (in either the main routine or any of the subroutines), the compiler will
issue an error message. However, it is possible to outsmart the compiler by making it
impossible logically for execution to reach a stop statement. In this case, the computer
will be left hanging after execution is complete, until some abort signal is sent to the
cpu (e.g., control-c).

While the stop statement need not be the second last line of the main routine, it often
is. The last line of a module, lines 98 and 169, is always an end statement which tells
the compiler to cease reading statements as part of the current module.

3.2.6 The Subroutine

Line 108–176 comprise the subroutine divisor. Many of these statements have been de-
scribed or addressed already, but a few additional points of interest remain:

1. The data statement (line 143) is a useful way to set constants that are to remain the
same throughout execution (though they could be changed by subsequent assignment
statements if desired). In this case, the value for small is set to 0.0001. If there were

17

other variables to set by the same data statement, one would add them after small

separated by commas, and their corresponding values would be listed between the
slashes, also separated by commas. For more than one value in the data statement, I
often list them “stacked” (with the variable name appearing directly above its value),
and/or leave enough blanks between each variable name so that each variable name
takes up eight characters. Again, this is strictly for ease of reading by a human. Thus,
suppose there were four variables instead of one, namely tiny, small, big, and huge.
My data statement would then look like this:

real tiny , small , big , huge
data tiny , small , big , huge

1 / 1.0e-32 , 0.0001 , 1000.0 , 1.0e32 /

The vertical alignment allows for no mistaking what value is assigned to each vari-
able. Note also how scientific notation is expressed for single-precision real variables
(1.0e-32 = 1.0×10−32). For double-precision (real*8) variables, one uses a d instead
of the e. Thus, 1.0× 1099 = 1.0d99.

2. Line 148 acknowledges the fact that 2 and 3 are already prime, and so there is no need
to go through the motions to see if these have any divisors. Thus, execution is returned
straight away with the logical variable lflag set to .true. (i.e., number is prime).

3. Note the vertical alignment in lines 156–158. I want the square root of number, but
number is an integer, and I cannot take the square root of an integer because the
square root intrinsic function sqrt expects a real number (single or double precision)
as an argument (§5.9.2). Thus, by using the intrinsic function real (§5.9.13), line 156
converts the value of the integer number to real, and assigns the real variable rnum

that value. Thus, if number=1000, line 156 would assign rnum=1000.000, seven digits
of accuracy for a four byte (“single precision”) real number.

Now, one thing one has to realise about a computer is it is not always as accurate
as you might expect. On some compilers, 1000 might get converted to 999.9999

or 1000.001, rather than 1000.000. These inaccuracies are usually infrequent and
innocuous, though on some rare occasions, they can lead to very wrong answers. If high
accuracy is required, one can use so-called “double-precision” real numbers (declared
as real*8 instead of real), or one can make some minor alterations to the algorithm
to account for such potential problems, as done in line 158.

Line 158 converts the square root of rnum back to an integer, using the intrinsic func-
tion int (opposite operation of real). This conversion is done by truncation, not by
rounding. Thus, 6.928 (the square root of 48) gets truncated back to 6 when converted
to an integer, not rounded up to 7.

Here is where the addition of small comes in in line 158. Because integer-real (in
computerese, “fixed-float”) conversions are not 100% accurate, it is quite possible that
number=100 gets converted to rnum=100.0000, and then sqrtnum=9.999999 because
of floating truncation errors peculiar to the compiler. Thus, because int truncates

18

always, int(sqrtnum)=9, and not 10 as it should be. Since these truncation errors
are always small (1 in the last digit of accuracy at the very most), adding just a very
small number (e.g., small=0.0001) to sqrtnum before converting it back to an integer
means that the number 10.000099 gets truncated by int to 10 rather than 9.999999

getting truncated to 9. Note that in all other situations, adding small to sqrtnum

would not be enough to change the value of imax.

4. In lines 159–166, the main loop of the subroutine checks the input integer number for all
possible divisors, with the counter of the do-loop being used as the candidate divisor.
Lines 160 and 161 are the guts of the algorithm, which use the real and int intrinsic
functions to determine if i divides evenly into number. Note the use of small again to
avoid unfortunate truncation errors in the conversions.

Line 162 performs the salient test. Should the test be true, then an exact divisor of
number has been found, the logical variable lflag is set to .false. (i.e., number is
not a prime), and execution is returned to the main program even before do-loop 10
is finished, since there is no need to look further for divisors.

On the other hand, should execution get to line 168, then number was found to have
no divisors. Execution is returned to the calling routine with lflag left as .true.

(yes, number is a prime) by virtue of line 147 and because line 163 was never reached
to reset it to .false..

3.3 Poor Programming Style

I will now give you the same program but without any indentation, comments, etc. It is
logically identical to the program given at the top of this section, and almost a factor of five
shorter! But which would you rather have to face for the first time, and be asked to tell your
boss what it does in ten minutes?

1 program main
2 open(10,file=’main.txt’,status=’unknown’)
3 write(6,8)
4 8 format(’Enter nmax’)
5 read(5,*)nmax
6 m=0
7 do 9 n=1,nmax
8 ii=1
9 if(n.le.3)goto 9

10 r=real(n)
11 s=sqrt(r)
12 imax=int(s+.0001)
13 do 1 i=2,imax
14 q=r/real(i)
15 num=i*int(q+.0001)
16 if(num.eq.n)then
17 ii=0
18 goto 1
19 endif

19

20 1 continue
21 if(ii.eq.1)then
22 m=m+1
23 write(6,17)n
24 write(10,17)n
25 17 format(i9)
26 endif
27 9 continue
28 write(6,3)m
29 write(10,3)m
30 3 format(/,’m=’,i4)
31 close(10)
32 stop
33 end

20

IV DATA TYPES AND STRUCTURES

4.1 Variables

Variables play the same role in FORTRAN as they do in algebraic equations; they represent
quantities whose values are to be determined by the calculation. In general, most variables
you use will be temporary, and represent intermediate steps in what may be a rather complex
calculation. A few of the variables will contain the actual data needed, and you as the
programmer will have to arrange to have them printed to the screen, disc, or presented in a
graphical format.

Unlike variables in algebraic equations, the computer does not actually manipulate the sym-
bols themselves6, but instead stores their numerical values. The name of the variable you
assign is actually mapped by the compiler to a specific area of memory which will be used
to contain the current value of that variable as the calculation proceeds.

Also, unlike algebraic equations, variable names are restricted to letters (a–z, A–Z), digits
(0–9), and the underscore (), with the proviso that all variables shall start with a letter. No
other punctuation (!, @, #, etc.) may be used. Thus, variable names can contain no Greek
letters, no subscripts, no parentheses, etc. You may use up to eight characters for each
variable name. You may use UPPER CASE or lower case or both, knowing that FORTRAN
compilers make no distinction; they are case-insensitive. Thus NMAX, Nmax, and nmax would
all be treated as the same variable.

When selecting names for your variables, make sure each name describes what the variable
is. Thus, if you have a program which deals with the ideal equation of state;

PV = NRT ; T =
P

R

V

N
=

P

Rρm

(1)

where ρm = N/V is the molar density (moles per unit volume), you might represent this in
a FORTRAN code as:

temp = pressure / (gasconst * mol_den)

which is preferable to:

T = p / (R * rho)

since it is considered better programming style to avoid single-character variable names.
Ideally, you would like your variable name to be a (nearly) unique combination of characters
so that an electronic search in your program file for a particular variable picks up only the
variable you are looking for, and not all occurrences of the letter p, for example, for which
there may be hundreds of occurrences in a long, well-commented program. Still, this is much
better than:

a=b/c/d

6There are so-called symbolic manipulating programs, such as Mathematica and Maple, but we’re not
talking about these here.

21

which is perfectly legal in FORTRAN and would still give you the right answer so long as a
were temperature, b were pressure, c were the gas constant, and d were the molar density,
but where nothing about the variable name is a mnemonic for what the variable is.

4.2 Variable types

Variables come in many types, the most common of which are integer, character, logical,
real, and real*8. Other types include complex, real*16, integer*2, etc.

Variable type is declared using declaration type statements:

integer ivar
character*n cvar
logical lvar
real rvar
real*8 dvar

where ivar are the integer variables (separated by commas), cvar are the character variables,
n is an integer greater than zero to indicate the number of characters in each of the variables
listed in the character declaration statement, lvar are the logical variables, rvar are the real
variables, and dvar are the double-precision real variables. Double precision variables may
also be declared as:

double precision dvar

but I shall stick with the real*8 syntax in this primer.

4.2.1 Integer Type

Integer variables consist of a sign (+ or −) and digits, nothing else. -245 and 4609 are valid
integers, -245.0 and 4,609 are not (no decimal points and no commas allowed). Computer
manuals refer to integers as fixed values, and integer arithmetic as fixed arithmetic. Fixed
arithmetic is exact; no truncation errors are committed during fixed operations, which include
addition, subtraction and multiplication. Division is, strictly speaking, real arithmetic, as
there is the potential for the result not to be an integer. However, one can still divide integers,
with the result being truncated to the largest integer less than or equal to the actual ratio.
Thus, 3/2 = 1 in fixed arithmetic.

An integer is stored with four bytes, or 32 bits. The bit is the fundamental unit of computer
memory, and is how all computers store data. A bit is either “on” (1) or “off” (0). The
first bit of an integer stores the sign of the number (+ or −), leaving 31 bits for the number
itself. Since a bit can only have one of two values, the computer stores numbers in “binary
code”, and with 31 bits, the highest number the computer can store is 231 = 2,147,483,648.

Finally on integers, if you really had to store an integer much bigger than two billion,
you could declare a variable to be integer*8, reserving eight bytes for that integer, thus
allowing you to access integers to almost ten pentillion (1019), but even this is finite! Note
that integer*8 and integer*4 variables are different types, as different as character and
logical.

22

4.2.2 Character Type

Character variables contain characters only, no numerical values. They may contain the text
of the title you wish to put on a plot, or text to be printed to the computer screen or a line
from a text file.

Each character in a character variable takes one byte, or eight bits thus allowing for as many
as 28 = 256 characters. Indeed, the standard “ASCII character set” contains 256 characters,
including all lower and upper case Roman letters (52), all digits (10), all punctuation on
your keyboard (32), and the blank (1). The remaining 161 characters consist of characters
that are not on the standard QWERTY keyboard, including many accented characters used
world-wide, other characters used in other alphabets, as well as some characters not found
in any alphabet. Consult any comprehensive FORTRAN manual if you need to access the
full ASCII set of characters.

Because each character takes one byte of storage, storing the number 2000000000 (two billion)
as a character variable would require ten bytes (one for each character). Clearly, the integer
type, requiring just four bytes, is a more efficient way of storing numbers than character
type.

4.2.3 Logical Type

Logical variables are one byte long, and can have only one of two values: .true. and .false..
Note that the periods are a necessary part of the value, as necessary as the 1 is in the real
value 1.25. These values are equivalent to “on” (1) and “off” (0), and in principle should
only need one bit, not one byte. However, most computer architecture is such that memory
access has one byte resolution, and some hardwares such as some Cray supercomputers can
only access its memory with eight-byte resolution. Thus, logical variables consist largely of
“unused memory”. Still, if the sole purpose of a variable is to act as a toggle, logical type is
the most efficient way to go.

4.2.4 Real Type (Single and Double Precision)

Real variables are also referred to as floating variables, and real arithmetic as floating arith-
metic. Like an integer, a real variable uses four bytes of memory, but unlike an integer, a
real number is not exact. 1.000000 is the value of one to seven significant digits. What the
eighth digit is is completely unknown (there is only a one in ten chance of it being a zero),
and thus, the real value 1.000000 is not exactly one, while the integer 1 is.

The proper syntax of the real number 1.538702×10−17 is 1.538702e-17, where the exponent
portion may be omitted if it is zero. In general, the first bit of a 32-bit real number is reserved
for the sign, the next 25 bits for the mantissa (allowing for seven or eight significant figures),
the next bit for the sign of the exponent, and the last 5 bits for the exponent itself 7 (giving
a maximum exponent of 25 = 32). Thus, the greatest number that can be stored as a
real number is 3.3554432 × 1032, or 3.3554432e32 (225 = 33554432). Anything larger may
generate “overflow” error messages and cause the program to stop, or even worse, generate

7Some compilers reserve 6 and even 7 bits for the exponent at the expense of the mantissa

23

no messages and continue erroneously!

So, if 3.3554432×1032 is not big enough for your application (the mass of the sun in grams is
already too large!), you will have to declare “double precision” (real*8) variables which use
eight bytes, or 64 bits per number. In a double precision real value, the first bit is reserved
for the sign, the next 52 bits for the mantissa (giving 15 digits of accuracy), the next bit
for the exponent sign, and the last 10 bits for the exponent. The largest double precision
number you can assign is 4.503599627370496× 101024 before overflow problems start. If this
is still not large enough, redesign your computer program!

These days, most processors use 64-bit technology, making it easier for these machines to
process 64-bit numbers than 32-bit numbers. Thus, you may find that double-precision
calculations actually run faster on 64-bit machines than single-precision calculations. There
will come a time when 64-bit numbers are considered “single precision”8, and 32-bit numbers
“half-precision”, just as once upon a time, 2-byte integers were considered “full integers”
instead of “half-integers” as they are today. But for now, 32-bit real numbers are still
considered single-precision (and therefore the default) and 64-bit real numbers as “double-
precision”.

When truly accurate (32 digits of accuracy) or truly colossal (up to 10106
) numbers are

required, there is “quad-precision” (real*16). However, I have never come across anyone
who has had a legitimate need for these in practise.

Floating arithmetic includes all operations such as square roots (sqrt), trigonometry func-
tions (sin and cos), exponentiation (exp), logarithms (log), etc. (§5.9). Floating point
arithmetic is approximate, and round-off errors will frequently occur in the last significant
digit. This can have annoying consequences when doing logical comparisons. For example,
in the following snippet of coding:

1 x = 1.0
2 xby4 = x / 4.0
3 if (xby4 .eq. 0.25) then
4 instruction set 1
5 else
6 instruction set 2
7 endif

It is quite possible that on some compilers, xby4 might actually be stored as 0.2499999,
and the logical test of line 3 would test negative, invoking the second set of instructions (line
6) rather than the intended first (line 4). As it turns out, it is unusual for an algorithm to
rely on the exact equality of a real expression; normally one uses inequalities (.lt., etc.).
However, should an equality such as this be needed, the only fool-proof way of doing it would
be to replace line 3 with something like:

3 if ((xby4 .lt. 0.2500003) .and. (xby4 .gt. 0.2499997)) then

where ± 3 in the seventh digit is just from my own personal experience. ± 2 is probably

8Cray has treated 64-bit (8-byte) numbers as single precision since the 1980s, but at the time of this
writing, they remain the only vendor to do so.

24

fine, while ± 1 may be pushing your luck. Note the introduction of the logical connector
.and.. As you might expect, .or. is also available to create more complex logical tests.

4.3 Arrays and Parameters

It is often useful to declare variables analogous to vectors (1-D arrays), matrices (2-D arrays),
and beyond (3-D, 4-D, etc.)

For example, suppose in a computer program that predicts the weather, you wished to store
the temperature at many uniformly spaced points over the surface of the Earth. If your
resolution was to be 1 (angular) degree of latitude by 1 degree of longitude, then there would
be 180 different latitudes and 360 different longitudes. You could declare 180×360 = 64,800
different temperature variables, one for each point on the Earth (but don’t!), or you could
declare a single 2-D temperature array:

real temp (180, 360)

This tells the compiler to reserve enough memory to store 64,800 different real numbers, and
that in the program, the variable temp will be treated as an array of 180 columns by 360
rows. Each element of the array, corresponding to a temperature at some point on the Earth,
can be addressed individually by specifying temp(i,j), where i is an integer between 1 and
180, and j is an integer between 1 and 360.

Any variable type (integer, logical, etc.) can be declared as an array. Arrays are particularly
useful when used inside a do-loop (§5.1). Thus, in programming equation (1), you might
have:

1 implicit none
2 c
3 integer idim , jdim
4 parameter (idim=180, jdim=360)
5 c
6 integer i , j
7 real gasconst
8 c
9 real pressure(idim,jdim), mol_den (idim,jdim)
10 1 , temp (idim,jdim)
11 c
12 external calcp , calcd
13 c
14 data gasconst / 8.3147 /
15 c
16 c---
17 c
18 call calcp (pressure, idim, jdim)
19 call calcd (mol_den , idim, jdim)
20 do 20 j=1,jdim
21 do 10 i=1,idim
22 temp(i,j) = pressure(i,j) / (gasconst * mol_den(i,j))
23 10 continue
24 20 continue

25

Given that variable arrays pressure and mol den are computed by subroutines calcp and
calcd respectively (lines 18 and 19), line 22 calculates the temperature for each (i,j). Note
that arrays can be passed as subroutine arguments as well; the only stipulation is that in
calcp, the variable pressure, or whatever it is called there, must be of the same type (real)
and have the same dimensions (idim,jdim) as in the calling routine. As in lines 18 and 19,
the array dimensions may be passed to the subroutine in the calling list.

This example also illustrates the use of the parameter statement (line 4). Like variables,
parameters may have any type (integer, logical, real, character which must be declared in an
implicit none environment) and may be passed as subroutine arguments and used in the
right hand side of assignment statements just as constants are used. However, parameters
differ from variables in that they may not be arrays, and once assigned by a parameter
statement, they may not be re-assigned a value by a regular assignment statement in the
program (i.e., they may not appear on the left-hand side of an assignment statement). The
nice thing about parameters is that integer parameters may be used to dimension arrays.
Thus, should I want to redo this problem but at twice the resolution, I need only change the
value of idim and jdim once in the parameter statement (line 4), and not everywhere they
may appear in the declarations (lines 9 and 10).

4.4 Variable Assignments

In the body of the program, variables are assigned values using the “equals sign”, and the
syntax of the constants depends on the variable type. Examples of such assignments are
included in the program “snippet” below.

1 integer ivar , i , iarray (5)
2 character*12 filename
3 logical lvar
4 real rvar , r_one , rarray (5)
5 real*8 dvar , d_one , darray (5)
6 c
7 c---
8 c
9 ivar = 12
10 filename = ’output.data ’
11 filename(8:11) = ’text’
12 lvar = .true.
13 rvar = 1.3807e-23
14 r_one = 1.0
15 dvar = 6.6261d-34
16 d_one = 1.0d0
17 do 10 i=1,5
18 iarray(i) = 2 * i
19 rarray(i) = 2.0 * real (i) - 1.0
20 darray(i) = 2.0d0 * dble (i) - 1.0d0
21 10 continue

Lines 1 through 5 declare the variables and lines 9–16 assign values to each of the variables.
Note that double precision variables use the letter d (e.g., line 15) rather than e (e.g., line 13)
to designate the exponent. Line 14 shows that when the exponent is zero, it is not necessary

26

to include it as part of the expression for a single precision (real) value. However, as
shown in line 16, the exponent must be included when assigning double precision (real*8)
variables, even if it is zero, so that they are distinguishable from single precision (real)
values. Note that 1.0 is a single precision value, while 1.0d0 is a double precision value.
Thus, the statement d one = 1.0 when d one is real*8 is technically mismatched, and on
some compilers may cause error messages or worse, unpredictable results elsewhere in the
program.

Lines 18, 19, and 20 show simple integer, real, and real*8 arithmetic to assign the five
elements in the integer array iarray to the even integers up to 10, and the five elements of
the real array rarray and real*8 array darray to the real equivalents of the odd integers
up to 9. Note the use of the intrinsic functions real and dble to convert the integer i to
real and real*8 respectively, to prevent mixed variable type arithmetic in the assignment
statements. The intrinsic function real will also accept a real*8 argument and convert it to
real, while the intrinsic function dble will accept a real argument and convert it to real*8.
Finally, note that both constants in line 19 end in .0 (so that they are real and thus avoid
mixed variable type arithmetic, while the constants in line 20 end in .0d0 for the same
reason.

Many novice programmers will forget to include the conversions (e.g., real) explicitly, or
even to put the .0 at the end of real numbers. For example, one might be tempted to write
line 19 as:

19 rarray(i) = 2 * i - 1

Indeed, you may be able to get away with this, as many compilers will perform the conver-
sions automatically, but this is both careless and dangerous. The conversion rules may not
be exactly as you expect, or the compiler may do something entirely stupid like interpret
rarray as an integer from this point on, yielding unpredictable consequences later on in the
computation. If you’re doing floating arithmetic, then do floating arithmetic; anything else
is sloppy. In line 19, this means using 2.0, not 2; real(i), not i; and 1.0, not 1.

27

V COMMON FORTRAN STATEMENTS

In this glossary, only the most commonly used FORTRAN statements are described. For each
statement listed, a generic example of its usage in a FORTRAN context is given, followed
by a description of the program element, as appropriate. In the generic example, key words
that are to be used as shown are written in typewriter font. Items appearing in italics
are intended to be substituted for whatever is needed at that place in the program. Items
appearing between square brackets, [], are optional items which, if left out, will invoke
sensible defaults.

5.1 do

1 do n i=ibeg,iend,[iint]
2 FORTRAN statement(s)
3 n continue

where n (the target) is an integer between 1 and 99999 which must appear immediately
after the key word do (separated by at least one blank), as well as in the first five columns
of the last line of the do-loop, normally a continue statement. The continue statement is
a “no-op” (performs no operation), and is used in FORTRAN primarily as targets.

i is an integer variable set by the internal counter of the do-loop, and may not be assigned
a value by any statement or operation inside the do-loop itself. It may be used inside the
do-loop (i.e., it may appear on the right hand side of an assignment statement), but not on
the left hand side where variables are assigned. Outside the do-loop, you may treat i as any
other variable.

During the first pass of the do-loop, the value of i is ibeg and during the last pass, iend . At
each pass, i is incremented by iint which, if left out, is assumed to be 1. For iint > 0, iend
must be > ibeg and for iint < 0, iend must be < ibeg . Otherwise the compiler will generate
an error message.

The target need not be a continue statement; instead, one could place n somewhere in the
first five columns of the last FORTRAN statement in the loop. This line would then perform
its intended function plus act as the target for the do-loop.

One may dispense with the need of a target statement altogether by replacing the do-
continue structure with the do-enddo structure (non-standard FORTRAN77, but standard
FORTRAN90). Thus, the following example is identical to the preceding example should
your F77 compiler support do-enddo:

1 do i=ibeg,iend,[iint]
2 FORTRAN statement(s)
3 enddo

Sticking with standard FORTRAN77, I shall use the “targeted do statements” from now on,

28

and use continue statements for all targets.

Do-loops may be nested as needed, so long as the “target paths” don’t cross. Thus,

1 do 20 j=jbeg,jend
2 do 10 i=ibeg,iend
3 FORTRAN statement(s)
4 10 continue
5 20 continue

is correct syntax, as is

1 do 10 j=jbeg,jend
2 do 10 i=ibeg,iend
3 FORTRAN statement(s)
4 10 continue

where both loops end at the same statement. However

1 do 20 j=jbeg,jend
2 do 10 i=ibeg,iend
3 FORTRAN statement(s)
4 20 continue
5 10 continue

is illegal, since the paths of the loops cross. Loop 10 begins inside loop 20, but ends outside,
which makes no sense logically. Finally, both following

1 do 20 j=jbeg,jend
2 do 10 j=j1,j2
3 FORTRAN statement(s)
4 10 continue
5 20 continue

and

1 do 20 j=jbeg,jend
2 do 10 i=ibeg,iend
3 j = i + 1
4 FORTRAN statement(s)
5 10 continue
6 20 continue

are illegal, since the value of j is reset inside loop 20 which uses j as its counter. However,

1 do 20 j=jbeg,jend
2 i = j + 1
3 do 10 i=ibeg,iend
4 FORTRAN statement(s)
5 10 continue
6 20 continue

is perfectly OK, since line 2 assigns a value to i outside loop 10.

29

5.2 if

1 if (logical expression) single executable statement

where the single executable statement is executed only if the logical expression is true. The
single executable statement can be any legal FORTRAN statement that only requires one
line (possibly with one or more continuations) to execute. This includes an assignment
statement, a read statement, a call to a subroutine, etc. It could not be a do-statement,
since the do will require a target line (or an enddo), and other statements in between. Thus,
do-loops require the use of the if-then-else-endif structures described next.

The logical expression consists of a left hand side, a right hand side, and a comparator (.eq.,
.ne., .lt., .le., .gt., or .ge.). More complicated logical expressions can be built up from
smaller ones by use of the logical connectors .or. and .and.. Parentheses should be used
to group simpler logical expressions where there may be ambiguity. Thus, examples of legal
logical expressions include:

1 if (niib(j,k) .eq. 4) dv(ism1) = dv(ie)
2 if (wctot .le. 0.0) wctot = amax1 (cputot, tiny)
3 if (dt .gt. 4.99*dtmin) return
4 if (filename(10:12) .eq. ’new’) write (10, 2010) newline(i)
5 if ((iord .lt. 1) .or. (iord .gt. 3)) iord = 2
6 if (((x1fac .ne. 0.0d0) .and. (nx1z .gt. 1)) .or.
7 1 (lflag .eq. .true.)) call newx1

5.3 if-then-else-endif

1 if (logical expression) then
2 instruction set 1
3[else
4 instruction set 2]
5 endif

The syntax for the logical expression is identical to that described in the if section.

Line 2 represents as many FORTRAN statements (executables, comments, no-ops, etc.) as
needed, and represent logic that is to be executed provided the logical expression in line 1 is
true.

Lines 3 and 4 are optional, and are omitted if there is nothing to do in the event the logical
expression is false. Otherwise, line 4 represents as many FORTRAN statements as may be
needed in the event that the logical expression in line 1 is false.

Line 5 is a no-op that closes off the if-then-else-endif structure.

5.4 go to; goto

1 go to n
2 FORTRAN statement(s)
3 n continue

30

where n (the target) is an integer between 1 and 99999 which must appear immediately
after the key word to (separated by at least one blank), as well as somewhere in the first
five columns of the intended target line (e.g., a continue statement). The go to (goto is
equivalent) statement then redirects execution to the indicated target. A go to statement
can redirect execution to a line after it (as in the example above), or before it (as in the
example below). However, go to statements cannot redirect execution outside the program
module (i.e., to another subroutine).

If a go to statement is performed unconditionally , then if execution is redirected after the
go to statement, the coding in between the go to and its target will never be executed
(as in the example above). On the other hand, if execution is redirected before the go

to statement, the coding in between the go to and its target will be repeated over and
over again without break, forming what is called an infinite loop. To avoid either of these
scenarios, go to statements are normally used in conjunction with if statements, as in the
following example.

1 i = 0
2 10 continue
3 FORTRAN statement(s)
4 i = i + 1
5 if (i .le. imax) go to 10
6 20 continue

Line 5 will cause the execution to return to line 2 (target 10) so long as i remains less than
or equal to imax. Once i exceeds imax (as it will eventually by virtue of line 4), execution
skips on to line 6 and then on to whatever follows. Notice that without the if-test in line
5, this would be an infinite loop, with nothing in the logic to break the cycle.

Note also that the above example is logically equivalent to the following do-loop:

1 do 10 i=1,imax
2 FORTRAN statement(s)
3 10 continue

Indeed, most uses of the go to statement can be replaced with other, better structured
FORTRAN such as do-loops and if-then-else-endif structures. Because go to state-
ments can make the code difficult to read and the logic difficult to follow, they should be
avoided where ever possible. Still, there are times when a go to statement is unavoidable.

For the more advanced programmer, there is a computed go to statement, which allows
execution to be directed to one of many places depending on which of many values a variable
may have. Computed if statements also exist, and the interested reader should consult a
comprehensive FORTRAN manual for their descriptions. These structures can truly lead to
“spaghetti code”, and should be avoided in all but the most extenuating of circumstances.

5.5 open

1 open (lunit, file=’filename’, status=’filestat’[, err=target])

The open statement opens a disc file and connects it to the logical unit lunit (an integer)

31

which is specified as the first argument in the open parameter list. The name of the file
filename is known only to the open statement; from this point on, the program will know
this file only by its unit number lunit , and all reads, writes, rewinds, etc., will be done to
unit lunit . filename should be the complete name typed exactly as you would if you were to
access the file from the directory in which the program was launched. Thus, if the name of
the file is output, and it exists or is to be created in the same directory in which the program
is started, filename should be set to output. However, if the file output actually exists or is
to be created in one directory up from where the program is launched, then filename should
be set to ../output. Thus, directory paths, as complicated as they need to be, may be
included as part of filename.

The status of the file, filestat , can be one of new, old, or unknown, and one of these three
words must be enclosed in quotes as indicated. Status new means no file of name filename
should already exist. If one does, an error message is generated and if no target is specified
for err, execution is aborted. Status old means the file filename should already exist on
disc, and you wish to open it for modification. If no such file is found, an error code is
generated, and again, if no target is specified for err, execution is aborted. Finally, status
unknown means the file filename may not already exist, in which case a new one is created,
or it may exist, in which case the old one is opened.

Finally, the parameter err allows you to redirect execution elsewhere in case an error message
is generated. You may want to allow for the possibility that a file does not already exist
without having to create a new one (as unknown would do). In this case, if you specify the
target to some other line in the code (just as a go to or a do-loop would), then you could
carry on execution without having to open up a new file should the one you tried to open
not already exist. Note that the err parameter is optional; you can omit it altogether as
many examples in this primer have done.

There are numerous other, less-used parameters associated with the open statement, and
the interested reader is referred to any comprehensive FORTRAN manual for details.

5.6 close

1 close (lunit)

The close statement closes the file attached to the logical unit lunit (an integer) by an earlier
open statement. If you forget to close a file, the compiler closes it for you upon completion of
the program. close statements are really only needed if you should want to try to re-open
an existing file later on. Should it be still open, it can’t be re-opened, and attempting to do
so would generate an error message.

Like open, there are a variety of parameters you could set besides lunit , but these are rarely
used.

32

5.7 write/format

1 write (lunit, wformat) [varlist]

The write statement writes text and/or the values of the variables listed in varlist to the
device specified by the “logical unit” lunit (which could be the terminal screen, a disc file,
a printer, even a character variable). How the text is written is specified by wformat , which
can be an asterisk (*) meaning “unformatted” text, or an integer between 1 and 99999 which
targets a format statement elsewhere in the program module. It is important to realise that
the write statement converts everything to character strings before writing it to the output
device. By writing the value of a real number, for example, you never actually see the real
variable itself, but instead a character representation of that real number. To examine the
actual real number would mean you would be looking at bits (0’s and 1’s).

If lunit is 6, output is directed to the computer terminal (often referred to as “standard
output”). The statement:

1 write (6, *) ’Hello!’

will write the exclamation Hello! (which must be enclosed by quotes in the write statement)
so that the compiler knows that Hello! is a character string and not a variable name) to the
computer screen by virtue of the integer 6 appearing in the slot where the logical unit goes.
The asterisk implies the write statement is “unformatted”, which really means that some
default formatting that depends on what is being output (in this case, the word Hello!) is
invoked.

If lunit is an integer other than 5 or 6, the write statement will direct its output to the disc
file to which the logical unit has been attached by a previous open statement.

1 open (10, file=’output’, status=’unknown’)
2 FORTRAN statements
3 write (10, *) ’Hello!’

In this example, the exclamation Hello! is written to the next line of the opened disc file
output, which was attached to logical unit 10 by virtue of the open statement (§5.5) in line
1.

Finally for lunit , if lunit is a declared character variable instead of an integer, the write
statement will direct its output to the variable named. In this way, a real variable can be
converted to a character variable, should such a conversion be required. The short program
testwr below illustrates this feature.

1 program testwr
2 c
3 character*10 cvar
4 real rvar
5 c
6 c Boltzmann’s constant...
7 c
8 rvar = 1.3807e-23
9 write (cvar, 2010) rvar
10 write (6, 2020) rvar, cvar

33

11 c
12 2010 format (1pg10.4)
13 2020 format (’rvar=’, 1pg10.4, ’, cvar=’, a10)
14 c
15 stop
16 end

Line 9 writes the character representation of the real variable rvar to the character variable
cvar according to the format specified in format statement 2010 (line 12). The format code
1pg10.4 means the number will be written with ten characters (including the sign, mantissa,
decimal point, the character e to herald the exponent, the sign for the exponent, and two
digits for the exponent) with four digits appearing to the right of the decimal point (i.e.,
four decimal places). The 1p portion of the format code indicates that one non-zero digit
will appear to the left of the decimal place.

Line 10 then writes both variables to the screen so the reader can see that the conversion has
been performed correctly. Since cvar is a character variable, it requires a different format
code to write than the real variable rvar. Thus, in format statement 2020 (line 13), the
real variable is written with the same format code (1pg10.4) as in format statement 2010,
whereas the character variable cvar is written with the format code a10. The a means
ASCII text, the 10 means ten characters. As given, the screen output as determined by line
13 looks like:

rvar=1.3807E-23, cvar=1.3807E-23

If we dropped the 1p from the format code in line 13 (but kept it in line 12), the output
would change to:

rvar=0.1381E-22, cvar=1.3807E-23

Finally, if the format code 1pg9.4 were used in line 13 rather than 1pg10.4, the output
would look like:

rvar=*********, cvar=1.3807E-23

since 9 characters in total is not enough to display 1.3807E-23. In fact, ten characters
would not be enough if rvar were negative, since the negative sign would require an eleventh
character. Thus, as a rule of thumb, I always specify 7 more characters in total than
the number of decimal places you want. Thus, 1pg11.4 will always have enough
characters to display the full real number with four decimal places. If you want five decimal
places, specify 1pg12.5, etc.

As we’ve seen, the format statement dictates how the output appears by use of various format
codes enclosed by parenthesis after the keyword format. Format codes may be snippits of
text to be written between the variables, or special codes which dictate how the variables
listed in the varlist of the targeting write statement are to appear. All format codes listed in
a format statement must be separated by commas. Extra spaces are optional. The following
is a more comprehensive example of a write and format statement combination.

34

1 write (6, 2010) i, j, k, density(i,j,k), ’measured at (x,y,z) = ’
2 1 , eks(i), why(j), zed(k)
3 2010 format (’d(’, i2, ’,’, i2, ’,’, i2, ’) = ’, 1pg12.5, /
4 1 , 10x, a22, 1p3g12.5)

If i=5, j=12, k=110, den(i,j,k)=0.1025, eks(5)=0.5, why(12)=1.2, and zed(k)=11.0,
these lines of FORTRAN would write to your screen the output:

5 d(5,12,**) = 1.02500e-01
6 measured at (x,y,z) = 0.50000 1.20000 11.0000
7 c===+====1====+====2====+====3====+====4====+====5====+====6====+====7==

Line 7 (a number line) has been added so you can count columns better. It is not part of
the output.

Lines 1 and 3 illustrate that text can be specified in the varlist of the write statement
(e.g., ’measured at (x,y,z) = ’), or directly in the format statement (e.g., ’d(’). If
given in the varlist , there must be a corresponding character format code in the format
statement (in this case, a22) which indicates 22 characters (the number of characters in
’measured at (x,y,z) = ’, including all blanks) will be written.

In this example, the varlist consists of three integers, followed by one real, one character
string, and three reals in the continuation line. Thus, the format codes in the format state-
ment must be given in the same order, namely three integers codes (i2 appearing three
times), one real code (1pg12.5), one character code (a22), and finally three real codes
(1p3g12.5, where the 3 appearing between the p and g indicates that this code is to be
applied three times). In between each format code, you are free to insert whatever text and
spacing codes you like. Thus, the format statement in line 3 will lead the first three integers
with d(, then place commas between each integer, closing the three integers with) =, giving
the very readable output d(5,12,**) = 1.02500e-01 in line 5.

Note that the format code i2 was given for each of the three integers. Now, the first integer
is 5, requiring only one character. Since i2 allows for two characters, a blank is inserted
before the digit 5 in the output (line 5). If you wanted to have two bone fide digits rather
than a blank and one digit, you could use the code i2.2, which forces two digits to be
printed (the integer after the dot is the number of forced digits). This would then generate
the output d(05,12,**) rather than d(5,12,**). The second integer is 12, which uses
up all two characters assigned to this field by the code i2. The third integer is 110, which
cannot be accommodated by two digits, thus generating ** in the output. To correct this
you would have to replace the third i2 with i3.

The 1pg12.5 code has been explained above, as has the a22. The forward slash (/) forces a
line break in the output. The code 10x forces ten blank spaces.

Formatted I/O (Input/Output) is one of the trickier things to get used to in FORTRAN,
and is one of the perennial complaints about the language. Often error messages resulting
from incorrect formatting are cryptic at best and finding the cause of the error message can
be frustrating. Taking some defensive measures such as adding a blank after each format
code in the format statement (as has been done in lines 3 and 4) will help you to scan the
format statement by eye for syntax errors. Correct whatever errors you find regardless of

35

what you think the error message may be telling you, and the error message may well go
away.

For example, which line is easier to read: lines 3 and 4 above, or the following:

8 2010 format (’d(’,i2,’,’,i2,’,’,i2,’) = ’,1pg12.5,/,10x,a22,1p3g12.5)

Both give identical output, but line 8, with all blanks between format codes and character
strings removed, is now a sea of commas and quotes, and it is hard to tell which commas
separate format codes and which are meant to be part of the text in the output.

5.8 read/format

1 read (lunit, rformat) [varlist]

The read statement is similar to the write statement, and reads the values of the variables
listed in varlist from the device linked to logical unit lunit in the format specified by rformat .

Read statements can be formatted or unformatted. If a read is used to initialise a variable
from the terminal screen, lunit should be 5 (often referred to as “standard input”), and
rformat should be *, i.e., an “unformatted read”. When execution encounters a read from
the screen, execution is paused until the user has typed the desired value, and hit the Enter

or Return key. Thus, before any read from the screen, it is wise to use a write to the screen
to prompt the user for the desired value, as in the following example:

1 write (6, 2010)
2 2010 format(’Enter a real value for the radius.’)
3 read (5, *) radius

Without the prompt, execution may remain paused for a very long time as the user wonders
what is taking the program so long to execute, possibly unaware that the program is waiting
for the user!

Reads may be formatted, in the same fashion write statements are formatted (§5.7), but
this is usually reserved for reads from disc files, in which the exact format of the file is
known. If the format rules in the format statement don’t match exactly the format in the
disc file from which the data are read, your data entry can go terribly wrong. For example,
the following program reads the values of three variables: ivar, an integer; rvar, a real; and
date, a character string (ten characters) from the discfile indata.

1 program testread
2 c
3 character*10 date
4 integer ivar
5 real rvar
6 c
7 open (10, file=’indata’, status=’unknown’)
8 read (10, 1010) i, rvar, date
9 write (6, 2040) i, rvar, date
10 close (10)
11 c

36

12 1010 format(i4, 1pg12.5, a10)
13 2040 format(’i=’, i4, ’, rvar=’, 1pg12.5, ’, date=’, a10)
14
15 stop
16 end

The read statement in line 8 refers to format statement 1010 (line 12) which specifies that
the first 4 characters (character 1 through 4) on the input line shall contain the integer
variable, the next 12 characters (characters 5 through 16) shall contain the real variable,
and the last 10 characters (characters 17 through 26) shall contain the character string.
Thus, if indata were a disc file with the single line:

100 1.25000e-03November 1

then the output from the program testread would look like:

i= 100, rvar= 1.25000E-03, date=November 1

and everything is fine. However, just one slightest glitch in indata such as putting two
spaces between the 100 and the 1.25 instead of one space:

100 1.25000e-03November 1

can corrupt the output from the program testread completely:

i= 100, rvar= 1.2500 , date=3November

This is because the formatted read was expecting characters 5 through 16 to contain the
real number. With the real shifted over by one character, the last digit of the exponent (3)
is now the 17th character, and is not read as the last character of the real number (which
is therefore reported as 1.2500), but instead as the first character of the character string,
which now loses its last intended character, the digit 1.

But things could be much worse. Look what happens if the blank in front of the 100 is
omitted, causing the field for the real number (characters 5 through 16) to include was was
intended as the first letter of the character string (N). Thus, if indata is this:

100 1.25000e-03November 1

the program aborts, giving the most cryptic output:

dofio: [1015] read unexpected character
logical unit 10, named ’indata’
lately: reading sequential formatted external IO
part of last data: .25000e-03No|vembe
Abort

All that is obvious to me is the last line: Abort. The rest is gobbledigook, except maybe to
more “seasoned” programmers.

You may have already come to the conclusion that formatted read statements are completely
impractical for large quantities of data entry, particularly if those data are to be typed in

37

by a human. Should another computer program generate the data, fine, but if a human
has to type in hundreds of exact numbers in precise fields, forget formatted reads. For most
beginning programmers, unformatted reads from the computer screen are likely the best way
to input data to start off a program run. But even this can get unwieldy if the program
evolves to one which requires dozens of input parameters for each run. In this case, the more
advanced programmer may want to look into the namelist feature, which is supported by
many FORTRAN77 compilers, and is standard to FORTRAN90, but beyond the scope of
this primer.

Finally, as write statements can be used to convert a real variable to a character string, a
read statement can be used to convert a character string to real. Thus, line 4 in the following
example

1 character*10 cvar
2 real rvar
3 cvar = ’1.3807e-23’
4 read (cvar, *) rvar

assigns to rvar the real value equivalent to the character string assigned to cvar in line 3.

5.9 Intrinsic Functions

Intrinsic functions are keywords recognised by the FORTRAN compiler when included as
part of the right hand side of an assignment statement that invoke mathematical operations.
With the exception of the double asterisk (§5.9.1), intrinsic functions have the format

function (parameter list)

where, for the most part, the parameter list consists of just one variable, constant, or arith-
metic expression.

5.9.1 **

y = x**n

raises x to the nth power, and assigns that value to y. Both x and y must be declared to
have the same data type (integer, real, or double precision), otherwise a type mismatch error
will occur. If x and y are integer, n must be integer too. To raise an integer to a real power,
you must first convert all integers to real. If x and y are real (double precision), n may be
integer or real (double precision).

If n is a positive integer, the compiler interprets the above expression as

y = x× x× . . .× x (where x appears n times)

If n is a negative integer, the compiler computes

y =
1

x× x× . . .× x
(where x appears n times)

38

Finally, if n is real, the compiler computes

y = en ln x

Thus, numerically, x**2 (x × x) and x**2.0 (e2 ln x) may give slightly different results be-
cause of “round-off errors”. Since raising a real number by a real power invokes the log
and exponentiation functions, it is considerably more costly in computer time than simply
multiplying a number by itself n times. Thus, it is always more desirable to do x**n than
x**n.0 when n is an integer. However, when n is real, there is no way of avoiding the
invocation of the log-exponentiation algorithm.

5.9.2 sqrt

y = sqrt (x)

assigns to y the square root of x, and may be used for both single and double precision
variables. x and y must be declared with the same data type, otherwise a type mismatch
error will result.

Square roots are expensive computationally, and should be avoided where possible. The
following is an example of where you might think a square root is necessary, but in fact can
be avoided. Suppose you want to perform one set of calculations inside a sphere of radius
r0, and another set outside that radius. If you are doing the calculation in 3-D Cartesian
coordinates, the distance r between the origin (centre of the sphere) and a point (x, y, z) is
given by r =

√
x2 + y2 + z2, and thus the relevant snippet of coding might look like:

1 do 30 k=1,kmax
2 zsq = zed(k)**2
3 do 20 j=1,jmax
4 ysq = why(j)**2
5 do 10 i=1,imax
6 radius = sqrt (eks(i)**2 + ysq + zsq)
7 if (radius .gt. r0) then
8 instruction set 1
9 else
10 instruction set 2
11 endif
12 10 continue
13 20 continue
14 30 continue

First, note that we can avoid doing many of the squares by computing z2 once per loop on
k (line 2), and y2 once per loop on j (line 4). Note that the square root on line 6 can be
omitted altogether if we just do the if-test on radius**2 rather than on radius. Thus, by
replacing lines 6 and 7 with:

6 radsq = eks(i)**2 + ysq + zsq
7 if (radsq .gt. r0sq) then

39

(where the line r0sq = r0**2 needs to be inserted somewhere before do-loop 30 starts)
causes a logically-equivalent if-test to be performed, but without the sqrt function.

5.9.3 exp

y = exp (x)

performs an exponentiation (y = ex), and may be used for both single and double precision
variables. x and y must be declared with the same data type, otherwise a type mismatch
error will result.

5.9.4 log

y = log (x)

performs a natural logarithm (y = ln x), and may be used for both single and double precision
variables. x and y must be declared with the same data type, otherwise a type mismatch
error will result.

5.9.5 log10

y = log10 (x)

performs a logarithm to the base 10 (y = log10 x), and may be used for both single and
double precision variables. x and y must be declared with the same data type, otherwise a
type mismatch error will result.

5.9.6 sin

y = sin (x)

performs the function y = sin x, where x is assumed to be in radians. This function may be
used for both single and double precision variables. x and y must be declared with the same
data type, otherwise a type mismatch error will result.

5.9.7 cos

y = cos (x)

performs the function y = cos x, where x is assumed to be in radians. This function may be
used for both single and double precision variables. x and y must be declared with the same
data type, otherwise a type mismatch error will result.

The tangent function tan, and all hyperbolic trigonometric functions (sinh, cosh, tanh)
exist as well and are used the same way as sin and cos. Inverse trig functions (asin, acos,

40

atan) and inverse hypertrig functions (asinh, acosh, atanh) may exist as extensions of your
compiler, but are not part of ANSI standard FORTRAN77.

5.9.8 min

y = min (x1, x2[, x3, ..., xn])

sets y to the minimum value among those listed in the argument list. The argument list
must have at least two elements in it, and each element must have the same type (i.e., all
integer, all real, or all double precision). y must be the same type (integer, real, or double
precision) as the elements in the argument list (x1, x2, etc.). If any one of y, x1, etc. have
a different type from any of the others, a type mismatch error will occur.

5.9.9 max

y = max (x1, x2[, x3, ..., xn])

sets y to the maximum value among those listed in the argument list. The argument list
must have at least two elements in it, and each element must have the same type (i.e., all
integer, all real, or all double precision). y must be the same type (integer, real, or double
precision) as the elements in the argument list (x1, x2, etc.). If any one of y, x1, etc. have
a different type from any of the others, a type mismatch error will occur.

5.9.10 abs

y = abs (x)

sets y to the absolute value of x (by setting the first bit of the number to 1, i.e., positive).
This function may be used for integer, real, and double precision variables. x and y must be
declared with the same data type, otherwise a type mismatch error will result.

5.9.11 sign

y = sign (x1, x2)

(transfer of sign) sets y to x1 if x2 is greater than or equal to zero, and to -x1 if x2 is less
than zero. This function may be used for integer, real, and double precision variables, but
all variables must have the same type, otherwise a type mismatch error will occur. Thus, if
x1 and x2 are real, y must be declared real, etc.

5.9.12 int

i = int (x)

41

converts a real or double precision value (x) to an integer by truncation, and assigns that
integer to i. If i is not declared to be an integer, a type mismatch error will occur.

Truncation means that the decimal portion of the real number is simply cut off. Thus, 1.2
is truncated to 1; 3.993 is truncated to 3, −5.27 is truncated to −5, and −12.75 is truncated
to −12.

5.9.13 real

y = real (x)

converts an integer or double precision variable (x) to real, and assigns that value to y. If y
is not declared real, a type mismatch error will occur.

5.9.14 dble

y = dble (x)

converts an integer or real variable (x) to double precision, and assigns that value to y. If y
is not declared double precision, a type mismatch error will occur.

42

