SCIENCE INTEGRITY KNOWLEDGE

HUMAN HEALTH RISK ASSESSMENT OF SEDIMENT, SURFACE WATER, AND FISH FROM BARRY'S RUN, HALIFAX REGIONAL MUNICIPALITY

Completed as part of the Nova Scotia Lands Montague Mines Tailings Areas Conceptual Closure Plan currently being conducted by Intrinsik, Wood, EcoMetrix and Klohn Crippen Berger

FINAL REPORT

February 14, 2020

Prepared For:

Donnie Burke Executive Director Nova Scotia Lands Inc. Harbourside Place 45 Wabana Court Sydney, NS

Summary

In spring of 2019, Halifax Regional Municipality (HRM) commissioned an Environmental Site Assessment (ESA) of municipally owned property known as Barry's Run, located in at Port Wallace in Dartmouth as part of the assessment of a proposed residential housing development application. This area includes a watercourse, which starts upstream of Barry's Run as Mitchell's Brook, and a marshy area, known as a fen, along the sides of the watercourse. Upstream of Barry's Run, on provincially owned lands, is the former Montague Mines site which ceased operations in 1940, and which is currently undergoing assessment for the purposes of developing a final closure plan. Mitchell's Brook runs alongside the former mine site, travels through Barry's Run, and exits into Lake Charles.

The purpose of the ESA was to confirm whether contaminants were present on the HRM property, to understand if sediments and surface waters had been impacted by historic mining activities upstream from the site, or other sources/activities in the area. The ESA included sediment and surface water sampling and determined that elevated concentrations of metals, most notably arsenic, were present in sediments within the main channel of the brook and the run. As a result of this study, and the use of the lands for recreational activities such as swimming and fishing, HRM issued a Risk Advisory for Barry's Run (https://www.halifax.ca/about-halifax/energy-environment/lakes-rivers/barrys-run-risk-advisory). The advisory notifies site users that high levels of arsenic have been found in the sediments, and that further studies were underway to better understand this issue and determine next steps. Residents were warned to avoid disturbing the sediments or eating fish from Barry's Run until further notice.

In response to the results of the 2019 study and risk advisory, an additional study was commissioned by Nova Scotia Lands Inc (NS Lands), which is the provincial Crown Corporation that manages remediation projects and provides asset management for some provincial lands. NS Lands is leading a mine closure project for the historical mine site at Montague Mines. This report provides the results of additional data collection and assessment for Barry's Run, which included sediment, surface water and fish tissue sampling and analysis, as well as a human health risk assessment study (HHRA) to assess the potential risks related to people using Barry's Run for recreational activities such as swimming, hiking or fishing.

The focus of this study was on sediments, surface waters, fish tissues, and soils from the fen area, and whether the measured concentrations of contaminants could pose a risk to people using the area. Arsenic and mercury were identified as the chemicals of concern. Both occur naturally in the environment; however, are present in higher concentrations in some materials at historic mining areas, due to ore processing and mineral concentration (in the case of arsenic), or imported and released to the environment during historical gold recovery techniques (in the case of mercury). Arsenic is markedly elevated in Barry's Run relative to naturally occurring concentrations in the area, whereas mercury was only found to be elevated in a limited number of sediment samples (not in surface water); however, mercury can accumulate in fish tissues and hence was included in the study for completeness.

The methods used to conduct the study followed widely accepted sampling and analysis methods, as well as Human Health Risk Assessment (HHRA) methods developed by Health Canada. Some speciality analysis of sediments and fish tissues were conducted, following Health Canada guidance, to determine the availability of arsenic within these media, as arsenic

can bind tightly to sediment particles or tissues, which can reduce exposure potential when ingested. In addition, fish tissues were analyzed to determine what species or form of arsenic is present, as the toxicity of arsenic varies depending on the form present.

The HHRA used a series of assumptions related to how frequently people might use the area for various activities, including hiking along the fen, paddle boarding, kayaking, or swimming and wading. These activities could result in people coming into contact with sediments with elevated concentrations of arsenic or mercury, or arsenic in surface waters. In addition, people were assumed to fish in Barry's Run and consume fish frequently.

The results of the assessment were as follows:

- Infrequent swimming in Barry's Run and Mitchell's Brook within the Study area boundary (< 20 times/year) is estimated to have negligible risk levels for both arsenic and mercury, as long as sediment exposure is minimized. Negligible risk means that the exposures are so low they are considered to have an insignificant impact on human health.
- Sediment contact related to wading or swimming activities within Barry's Run and Mitchell's Brook was predicted to have negligible risk related to mercury. While sediment exposures for arsenic are associated with marginally increased risk levels relative to acceptable levels, it is uncertain whether the exposure assumptions used in the assessment reflect current or possible future land use patterns. Therefore, it is recommended that sediment contact be minimized until exposure assumptions can be further adjusted based on improved knowledge of public usage and as future land use in and around Barry's Run is more defined. Ultimately, clear statements related to site usage and risk management should be provided for area residents, and the assessment should reflect input from local land users related to exposure assumptions.
- Contact with soils along the fen was predicted to be associated with negligible risk levels, with the exception of the high hiking frequency scenario (which assumed 26 hikes or walking events per year, over a 56 year timeframe), wherein risks related to arsenic were marginally elevated.
- Fish consumption risks due to mercury levels in Brook trout and Smallmouth bass are negligible, as long as consumption rates are in keeping with the current Provincial fish consumption advisory. Risks related to arsenic in Brook trout and Smallmouth bass tissues marginally exceed acceptable risk levels for both species of fish, based on the assumption that all the fish people consume comes from Barry's Run, and that fish consumption rates equal those cited in the Provincial consumption advisory. These assumptions likely overestimate the amount and frequency of fish consumption from Barry's Run. Hence, a fish consumption advisory is unlikely to be needed, but input from the local fishing population, Nova Scotia Department of Health and Nova Scotia Department of Fisheries and Aquaculture should be sought prior to finalizing decisions related to the need for a consumption advisory.

Given the current levels of arsenic in sediments within Barry's Run and based on the assumptions related to current usage and exposure, risks are considered low, as the predicted exceedances are marginal using relatively high exposure scenarios which are likely conservative assumptions. Risk management is currently being implemented through public health warning signage, which instructs people to avoid disturbing the sediments, swimming, or

consuming fish, until further notice. It is recommended that input be obtained on the exposure assumptions, so that the assessment can be refined to reflect intended use, for the purposes of finalizing risk management needs. Based on the results of this assessment, there is no need for additional risk management at this time, and the existing risk management approach (signage) should remain in place, in order to reduce the potential for sediment disturbance and mobilization downstream while a final closure plan for Montague Mines is being completed. In addition, the final closure project currently underway for the Montague Mines site is expected to further reduce concentrations of arsenic (and mercury) in surface waters, and suspended sediment deposition in the study area. Additional study and design are currently underway on this closure plan.

The fen is likely acting as a sink for arsenic impacted sediments from upstream areas. Future land development involving release of storm waters to this area, or disturbance of sediments by public land users (through ATV usage in upgradient stream areas or dirt biking on exposed tailings at the Montague Mines site), has the potential to mobilize sediments in these areas and transport them further downstream into Lake Charles, if not properly managed.

HUMAN HEALTH RISK ASSESSMENT OF SEDIMENT, SURFACE WATER AND FISH FROM BARRY'S RUN, HALIFAX REGIONAL MUNICIPALITY

Table of Contents

Page

1.0	INTRODUCTION	
2.0	SITE CHARACTERIZATION AND FIELD INVESTIGATIONS	3
2.1	Phase I/II Environmental Site Assessment (Dillon, 2019)	3
2.2	Summary of Fall 2019 Field Program (Appendix A)	
3.0	HUMAN HEALTH RISK ASSESSMENT METHODOLOGY	12
4.0	PROBLEM FORMULATION	
4.1	Identification of Contaminants of Potential Concern (COPCs) for the HHRA	16
4.2	Identification of Potential Human Receptors	
4.3	Identification of Exposure Scenarios and Operable Exposure Pathways	19
4.4	Conceptual Model	
5.0	EXPOSURE ASSESSMENT	
5.1	Derivation of Exposure Point Concentrations	
5.	1.1 Sediment/Fen Exposure Point Concentrations	
-	1.2 Surface Water Exposure Point Concentrations	
5.	1.3 Fish Tissue Concentrations	
5.2	=/p ••••• = =•••••••••	
-	2.1 Exposure to COPCs in Sediment/Fen	
	2.2 Exposure to COPCs in Surface Water	32
-	2.3 Exposure to COPCs in Local Fish	
5.3	Exposure Assessment Results	
6.0	TOXICITY ASSESSMENT	
6.1	Bioaccessibility and Speciation	
6.2	Selection of Toxicity Reference Values (TRVs)	
7.0	RISK CHARACTERIZATION	
7.1	Results of Sediment and Surface Water Exposure Assessment	
7.2	Results of Fen Exposure Assessment	
7.3	Fish Consumption Assessment.	
7.4	Risks Related to Combined Exposures	
7.5	Risks Related to Sediment Mobilization	
8.0		
9.0	SUMMARY OF CONCLUSIONS AND RISK MANAGEMENT NEEDS	
10.0	DOCUMENT SIGN-OFF	-
11.0	REFERENCES	

List of Tables

Page

Table 5-1	Descriptive Statistics for Arsenic and Mercury in Sediment	24
Table 5-2	Descriptive Statistics for Arsenic and Mercury in Fen Samples (mg/kg DW)	24
Table 5-3	Descriptive Statistics for Arsenic and Mercury in Surface Water	25
Table 5-4	Summary of Fish Statistics	26
Table 5-5	Exposure Point Concentrations for Fish	27
Table 5-6	Summary of Exposure Assumptions and Receptor-Specific Parameters	29
Table 5-7	Fish Consumption Rates (from Province of Nova Scotia, 2019)	30
Table 6-1	Bioaccessible Arsenic Concentrations in Sediment	35
Table 6-2	Bioaccessibility Arsenic Concentrations in Fish Tissue (wet weight)	37
Table 6-3	Arsenic Speciation in Fish Tissue (wet weight)	38
Table 6-4	Human Health Oral Toxicity Reference Values Used in the HHRA	40
Table 7-1	Risks Related to Surface Water Exposure from Swimming	42
Table 7-2	Risks Related to Sediment Exposure	43
Table 7-3	Risks Related to Exposure to Fen Soils	44
Table 7-4	Risks Related to Fish Consumption	

List of Figures

	Page
Location of Barry's Run and Mitchell's Brook	
Concentration of Arsenic and Mercury in Sediment	6
Concentration of Dissolved Arsenic and Mercury in Surface Water and Por	е
Water	7
Concentration of Arsenic and Mercury in Sediment and Soil/Organics	10
Concentration of Arsenic and Mercury in Surface Water	11
Standard Risk Assessment Framework	12
Components of the Conceptual Model	16
Mercury Concentrations in Brook Trout and Smallmouth Bass	26
Metabolic Biotransformation Pathways for Arsenic (from ATSDR, 2007)	39
Factors Required for a Risk of Health Effects	41
	Location of Barry's Run and Mitchell's Brook Barry's Run and Mitchells Brook, with Fen Area Visible Concentration of Arsenic and Mercury in Sediment Concentration of Dissolved Arsenic and Mercury in Surface Water and Por Water Concentration of Arsenic and Mercury in Sediment and Soil/Organics Concentration of Arsenic and Mercury in Surface Water Concentration of Arsenic and Mercury in Surface Water Standard Risk Assessment Framework Components of the Conceptual Model Mercury Concentrations in Brook Trout and Smallmouth Bass Metabolic Biotransformation Pathways for Arsenic (from ATSDR, 2007) Factors Required for a Risk of Health Effects

List of Appendices

Appendix A Field Component in Support of Human Health Risk Assessment (Dillon, 2020)

Appendix B Chemicals of Potential Concern – Human Health and Ecological Screening

Appendix C Modelling Outputs

1.0 INTRODUCTION

In spring of 2019, Dillon Consulting Limited (Dillon) was retained by the Halifax Regional Municipality (HRM) to conduct a Phase I/II Environmental Site Assessment (ESA) along Mitchell's Brook and Barry's Run, for property which is owned by HRM. This watercourse is located at Port Wallace in Dartmouth, and the site and adjacent lands are being considered for future residential development. According to Nova Scotia Property Online (accessed May 2019), the subject property is comprised of one land parcel zoned as resource (PID No. 41376898) and one land parcel without zoning (PID No. 41301789). The purpose of the ESA was to confirm whether contaminants were present in these two land parcels, and if sediments and surface waters have been impacted as a result of historic mining activities upgradient from the site, or other sources/activities.

The ESA included sediment and surface water sampling within the boundaries of the HRM property and determined that elevated concentrations of metals were present in sediments within the main channel of the brook and the run. Most notably, arsenic, which is associated with the historic Montague Gold Mine site, was found to be elevated in all sediment samples. relative to the Nova Scotia Tier 1 environmental guality standards (NS EQS) for protection of ecological health. Since no sediment guidelines exist for the protection of human health, the sediment data was compared to soil quality guidelines established for protection of human health. This comparison identified exceedances in all samples for arsenic (Dillon, 2019). Mercury, which is also associated with historic mine activities, was found to be elevated relative to ecological sediment quality guidelines in all samples but was only elevated in a single sample when compared to soil quality guidelines (Dillon, 2019). This suggests that human health risks related to mercury in sediments are low; however, mercury has the potential to biomagnify in fish tissues, even if sediment levels are low. Hence, mercury could pose a concern for human health due to exposure pathways such as fish consumption, even if sediment concentrations are low. No comparisons of surface water quality data to human health standards was conducted. as the waters within Mitchell's Brook and Barry's Run are not a potable water source. With respect to ecological health, comparison of surface water data to guidelines protective of freshwater aquatic life indicated that several samples exceeded the guideline for aluminium (total and dissolved) and arsenic (total). All other parameters met NS EQS for protection of aquatic life. Several metals exceeded sediment quality guidelines protective of aquatic life, most notably, arsenic and mercury.

Dillon (2019) indicated that current and/or future site users could be involved in the following activities:

- Children playing in the bog/fen in Barry's Run;
- Children playing in the shallow portion of Mitchell's Brook/Barry's Run; and,
- Fishing in both Barry's Run and Mitchell's Brook.

The assessment indicated that until further information was available related to potential risks to human and ecological receptors, the degree of uncontrolled recreational use and fishing should be carefully evaluated. No data were available with respect to fish tissue concentrations. HRM made an announcement in August, 2019 for a Barry's Run Risk Advisory

(<u>https://www.halifax.ca/about-halifax/energy-environment/lakes-rivers/barrys-run-risk-advisory</u>) to notify site users that high levels of arsenic had been found in the sediments, and that further studies were underway to better understand this issue and determine next steps. Residents

were warned to avoid disturbing the sediments or eating fish until further notice. The HRM website provides the ESA report, advisory signage wording, and frequently asked questions, as well as a contact number. On the day of the announcement, signs were posted along the Barry's Run area to ensure site users were aware of the advisory.

Nova Scotia Lands Inc. (NS Lands) is in the process of developing a mine closure plan related to the historic Montague Mines. The Study Team awarded the conceptual mine closure contract includes Intrinsik Corp., Wood, EcoMetrix Limited, and Klohn Crippen Berger. A conceptual closure plan for Crown land areas associated with the Montague Mines site was developed in 2019 (Intrinsik et al, 2019), and is currently being refined through additional assessment and study. As part of the conceptual closure project, the Study team was directed by NS Lands to conduct a Human Health Risk Assessment (HHRA) of the HRM lands within Barry's Run and Mitchell's Brook areas potentially affected by historic releases from the Montague Mines site, or other lands or sources upgradient of the HRM property. The objective of this HHRA is to provide further assessment of the issues, focusing on the questions related to potential human health risks associated with current and future use of the Barry's Run and Mitchell's Brook areas, As part of this study, additional sampling was conducted by Dillon Consultants, under contract to NS Lands, to provide supplementary information for the HHRA. This field work was conducted in September through to December 2019, and provided additional information on the following:

- Fish tissue concentrations of arsenic and mercury from fish captured in Barry's Run;
- Additional sediment chemistry assessment of the fen, and sediments in Mitchell's Brook and Barry's Run, focusing mostly on arsenic and mercury;
- Bioaccessibility testing of arsenic in sediments and fish tissues to determine how available arsenic is in these media;
- Speciation analysis of arsenic in fish tissue to determine what forms of arsenic are present in fish tissues; and,
- Surface water sampling at the top of Mitchell's Brook (eastern edge of site) as well as at the bottom of Barry's Run (western most end of Barry's Run) at three (3) separate sampling intervals to gather additional data on arsenic concentrations in surface water, Total Suspended particulate matter in water, and to enable a calculation of sediment flux through this area.

This report provides a summary of the two field programs (spring 2019 as presented in Dillon 2019, and fall 2019, which can be found in Appendix A of this report), as well as the methodology used to conduct the HHRA and the results of the HHRA for the lands owned by HRM in the Barry's Run and Mitchell's Brook areas (the Site).

2.0 SITE CHARACTERIZATION AND FIELD INVESTIGATIONS

The location of Barry's Run, relative to the historic Montague Mines, is provided in Figure 2-1. The area is within the City of Dartmouth, Nova Scotia. Considerable environmental research on this site has been conducted, largely focused on arsenic (e.g., Parsons et al, 2012a and b; DeSisto (2014); DeSisto et al, 2017). The main tailings area of the Historic Montague mines is partially located in Mitchell's Brook, which flows downstream into Barry's Run. Barry's Run subsequently exits into Lake Charles, the shoreline of which contains residential homes, with recreational water usage.

Figure 2-1 Location of Barry's Run and Mitchell's Brook

2.1 Phase I/II Environmental Site Assessment (Dillon, 2019)

A detailed description of the Barry's Run site is provided in Dillon (2019), with the Phase I ESA outcomes being presented in Section 3, and the Phase II ESA methodology and outcomes being presented in Section 4 of that report. The site is vacant, and includes undeveloped forested land, with Mitchell's Brook and Barry's Run flowing through the centre of the property. There is a former flow control structure at the downstream end of Barry's Run, near the discharge point to Lake Charles. The channel may have been dammed historically by this structure. There are a number of paths through the forested part of the site, as well as the wetland, and there is evidence of all-terrain vehicle usage in the area, as well as hiking. The area surrounding Barry's Run and the Mitchell's Brook area is a bog/fen complex. Figure 2-2 provides a closer view of the Study Area, which includes Barry's Run, with the fen clearly visible, and Mitchell's Brook, upgradient of Barry's Run.

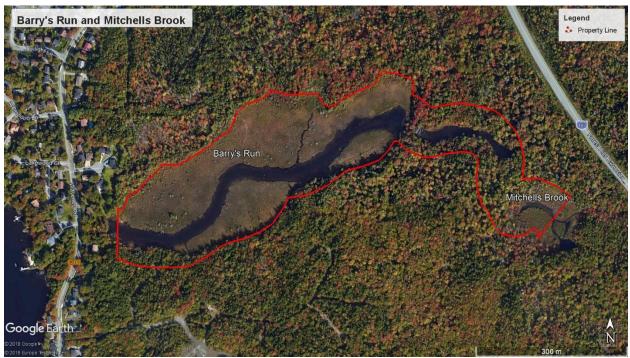


Figure 2-2 Study Area of Barry's Run and Mitchell's Brook, with Fen Area Visible

Since the Intrinsik study team was already working on the conceptual closure plan for the Montague Mines site prior to the commencement of the ESA, Dillon sought input from the Intrinsik team prior to commencing sampling of the Barry's Run study area. Sampling of the Barry's Run area was conducted in April 2019, and included the following:

- Thirteen sediment cores along Barry's Run were collected to gather data on sediment and pore water chemistry (5 samples only) in the aquatic part of the study area;
- Fourteen manual boreholes were taken from the fen surrounding the channel of Barry's Run; and,
- Nine surface water samples were taken along Barry's Run and Mitchell's Brook.

Samples were analyzed for metals, sulphide and sulphur species, benzene, toluene, ethylbenzene, and xylene (BTEX), cyanide, and petroleum hydrocarbons, and general water chemistry. Particle size analysis was also conducted on sediment samples.

The main results of the sampling indicated the following:

- Sediments:
 - Comparisons of metals concentrations to NS Tier 1 EQS for residential soil (nonpotable groundwater usage and coarse-grained soil) indicated that arsenic, aluminum, antimony, cobalt, iron, mercury, vanadium exceeded Tier 1 standards in either all (arsenic) or some samples. Aluminium, iron and vanadium were concluded to be within background ranges and were not considered further. Antimony exceedances were limited to 2 samples, whereas cobalt exceedances occurred in 8 samples. Arsenic concentrations had the most pronounced exceedances over NS Tier 1 EQS;

- Comparisons of metals concentrations to NS Tier 1 EQS for sediment quality protective of aquatic life indicated that arsenic, iron, lead mercury, manganese, nickel, zinc and selenium were present at concentrations exceeding the standards;
- BTEX and petroleum hydrocarbon concentrations were below NS Tier 1 EQS for soil and sediment in the samples submitted for analysis;
- Cyanide was either not detected or detected at concentrations below NS Tier 1 EQS in sediments; and,
- Pore water analysis indicated a number of metals exceeded either NS Tier 1 EQS for freshwater aquatic life or US EPA dissolved water quality guidelines set for protection of aquatic life (arsenic, aluminum, manganese, cobalt, copper, iron, lead and mercury). Pore water specific guidelines are not available. The amount of metals in pore water were considered to be low, relative to the sediment concentrations, and suggest a stable phase of leaching.
- Surface waters:
 - Comparisons of metal concentrations to NS Tier 1 EQS for freshwater aquatic life indicated that aluminium and arsenic exceeded these standards;
 - Comparisons of dissolved data were also made to US EPA dissolved freshwater aquatic life criteria, since dissolved criteria are generally not available in Canada. Arsenic and mercury in surface water were less than the dissolved criteria;
 - Cyanide was non-detect in 2 surface water samples; and,
 - BTEX and petroleum hydrocarbons were below the relevant NS Tier 1 EQS protection of aquatic life.

The sediment arsenic and mercury data are presented in Figure 2-3, with surface water and pore water data for arsenic and mercury provided in Figure 2-4 (Dillon, 2019).

As part of the Dillon (2019) study, Dr. Ian Spooner of Acadia University conducted a study to investigate the historic deposition of arsenic in sediments within Barry's Run, and in Lake Charles. This study indicated that sediment history dating back 200 years can be assessed in the top 300 mm layer of sediments sampled from Lake Charles, which is downgradient from Barry's Run. The arsenic concentrations in shallower profiles of Lake Charles follow an expected trend in which a distinctive depositional period occurred in the 1900s, and then gradually returned to pre-1900 levels over the intervening years. Barry's Run cores taken by Dr. Spooner do not show the same degree of recovery in more recent years of sediment deposition. Dr. Spooners' work suggests that the sediments in Barry's Run were recovering and showed reduced concentrations over the past 20- to 30-year time interval, but the more recently deposited sediments suggest continued contributions from upgradient sources. The reasons behind this are unknown but could be related to a number of factors, such as upstream development, off-road vehicle use on the main tailings site or downstream of that site in Mitchell's Brook, and/or increased erosion due to storm events, etc.

The Dillon (2019) report recommends further study of potential human health and ecological risks related to elevated levels of metals in sediment and surface waters.

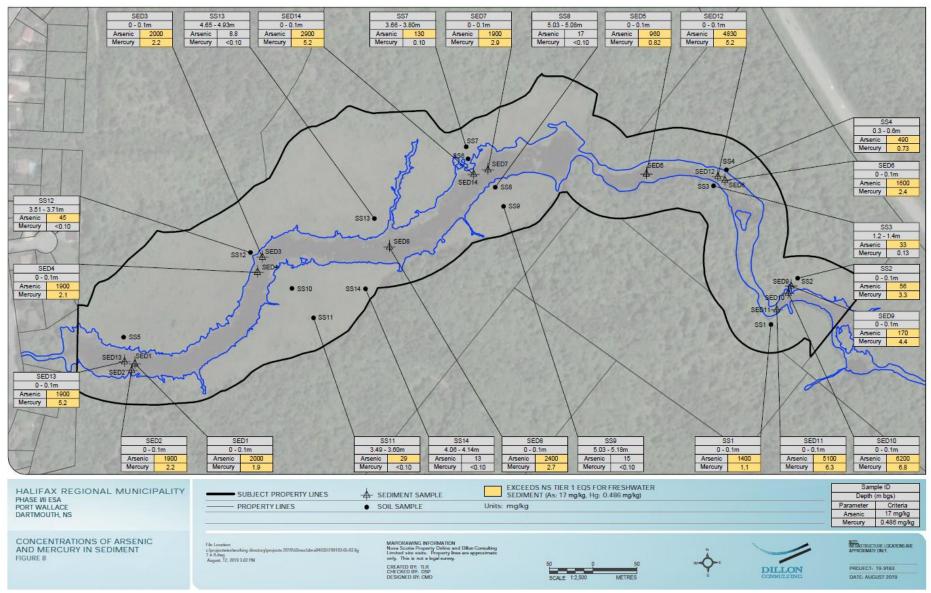


Figure 2-3 Concentration of Arsenic and Mercury in Sediment

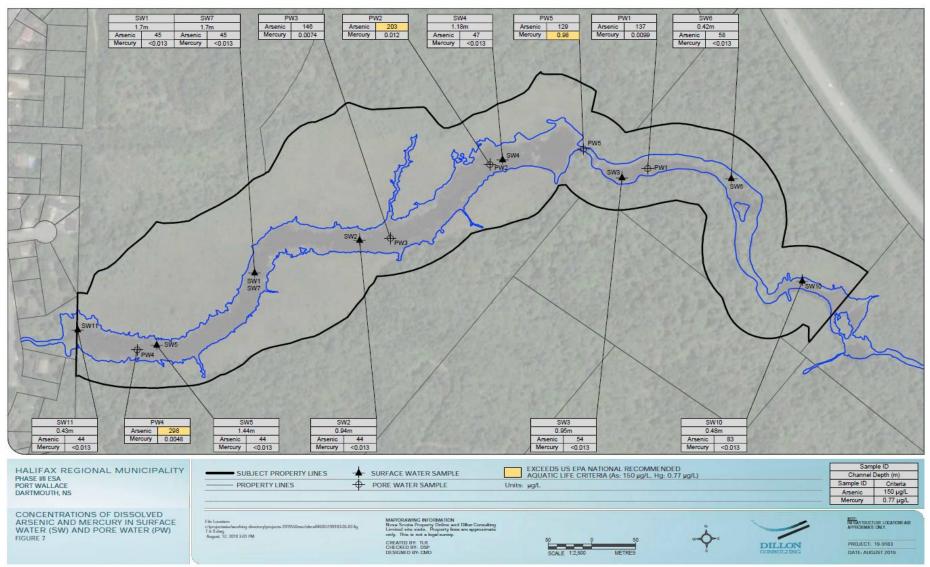


Figure 2-4 Concentration of Dissolved Arsenic and Mercury in Surface Water and Pore Water

2.2 Summary of Fall 2019 Field Program (Appendix A)

Dillon (2020 – see Appendix A), completed additional field work in the fall of 2019 to support the data needs of the HHRA, and the field program included advice from the Intrinsik team prior to implementation. This sampling included the following:

- Fish tissue concentrations of arsenic and mercury from fish captured in Barry's Run;
- Additional sediment chemistry assessment of the fen, and sediments in Mitchell's Brook and Barry's Run, focusing mostly on arsenic and mercury;
- *In vitro* bioaccessibility testing of arsenic in sediments and fish tissues to determine how available arsenic is in these media;
- Speciation analysis of arsenic in fish tissue to determine what form of arsenic is present in fish tissues, since toxicity of arsenic varies with the form present; and,
- Surface water sampling at the top of Mitchell's Brook (eastern edge of site) as well as at the bottom of Barry's Run (western most end of Barry's Run) at three (3) separate sampling intervals to gather additional data on arsenic concentrations in surface water, Total Suspended Solids (TSS) in water, and to enable a calculation of sediment flux through this area.

The details of the sampling methods and locations, field observations, field photographs and raw data are presented in Appendix A, with screening relative to NS Tier 1 EQS provided in Appendix B and discussed in Section 4.1. Briefly, six (6) sediment samples were taken in Barry's Run and Mitchell's Brook, in areas which could be used for recreational purposes. Samples were analyzed for arsenic and mercury at Bureau Veritas (Bedford, NS), and five (5) of these samples were submitted to Royal Military College for arsenic bioaccessibility testing. In addition, 16 samples were taken on the fen area which boarders Barry's Run, and submitted to Bureau Veritas for ICP metals analysis, including mercury. Surface water samples were collected at the eastern edge of the site (Mitchell's Brook) as well as at the bottom of Barry's Run (western edge of the site), on three (3) separate intervals (September 25; November 13 and December 3, 2019). Rain events occurred on the day before the November 13th and December 3rd sampling events. Samples were submitted to Bureau Veritas for general chemistry, total and dissolved metals including mercury, dissolved organic carbon (DOC), and Total Suspended Solids (TSS).

The results of the sediment chemistry data for mercury and arsenic are provided in Figure 2-5, whereas the surface water sampling results are provided in Figure 2-6. All data are provided in Appendix A.

Bioavailability is the extent and rate to which a chemical can be absorbed into the systemic circulation of an organism, and potentially produce an adverse effect (Hrudey et al., 1996; Kelly et al., 2002). A particularly important determinant of oral bioavailability is the bioaccessibility of the contaminant of potential concern (COPC). Bioaccessibility refers to the fraction of the COPC which can be biologically extracted from the exposure media (i.e., soils or sediments) and solubilized within the gastrointestinal tract so that it is available for absorption through the intestinal wall into the blood stream (Kelly et al., 2002). In other words, bioaccessibility sets an upper limit on bioavailability, and the two processes are positively correlated. This is especially relevant when evaluating the degree to which substances bound to soil can be absorbed into the body. Since the early 1990s, an extensive amount of literature and regulatory guidance has been published and developed in relation to soil bioaccessibility of metals and metalloids. These studies and documents provide a wealth of information on the various test methods, the

results of soil bioaccessibility testing of a wide range of soils and other soil-like materials such as sediments, mine tailings, slag, etc., the interpretation and application of soil bioaccessibility data, and the various issues, limitations and uncertainties related to soil bioaccessibility of metals. A considerable amount of work has been completed to characterize the bioaccessibility of arsenic within tailings samples at Montague Mines as well as several other historic tailings sites in Nova Scotia (e.g., Royal Roads University, 2007; Laird et al., 2007; ESG, 2009; Walker et al., 2009; Meunier et al., 2010; Meunier et al., 2011a; 2011b; as well as other publications). The percentage of bioaccessible arsenic varied from less than 1% to 49% at the tested historic gold districts, with a median of 7.3%. Specific results for Montague tailings ranged from 1.1% to 25% bioaccessible arsenic.

Arsenic in the study area sediments may originate from a variety of different anthropogenic and natural sources which can result in substantial differences in arsenic bioaccessibility and/or bioavailability. An understanding of the site-specific bioaccessibility of arsenic in the Study area sediments is critical to the assessment of potential risks associated with exposures. A number of sediment samples were submitted to the Environmental Sciences Group (ESG) at the Royal Military College in Kingston, ON, for in vitro bioaccessibility (IVBA) testing for the purposes of determining the site-specific bioavailability of arsenic in sediments. The bioaccessibility testing followed Health Canada guidance (Health Canada, 2017a) for testing of this nature. The arsenic sediment bioaccessibility results are provided in Appendix A and summarized in Section 6.1.

Fish were collected between September 18 to 26, 2019, along the shoreline of Barry's Run and Mitchell's Brook using both angling and fly-fishing techniques. Seven (7) smallmouthed bass and 13 brook trout were collected. Fish tissues were processed, and fillet samples were submitted to Bureau Veritas (Burnaby, BC) for arsenic and mercury analyses. Fish skin was included with the fillet, and some compositing of samples was required. Five of the fish fillet samples were submitted to ESG at the Royal Military College in Kingston, ON, for arsenic bioaccessibility and speciation analysis. These data were used to estimate the amount of bioaccessible arsenic in the gut following ingestion, and the forms of arsenic within that bioaccessible fraction. Arsenic toxicity varies widely depending on the speciation, and relative non-toxic forms of arsenic are known to occur in fish and seafood, and hence the interest in conducting this type of analysis on fish tissues. The ESG report can be found in Appendix A, and the results are summarized in Section 6.1.

The data from both field programs were considered acceptable for use in the HHRA.

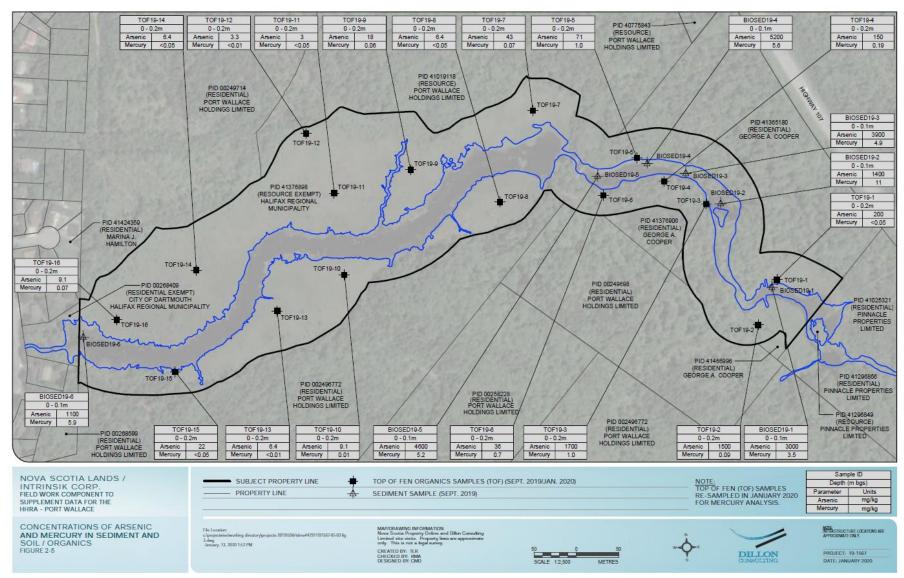


Figure 2-5 Concentration of Arsenic and Mercury in Sediment and Soil/Organics

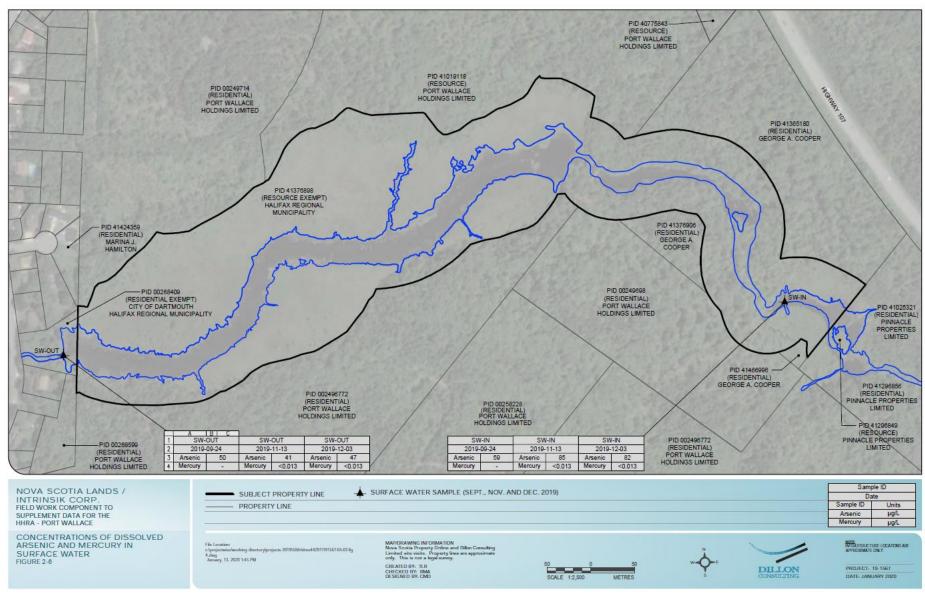


Figure 2-6 Concentration of Arsenic and Mercury in Surface Water

3.0 HUMAN HEALTH RISK ASSESSMENT METHODOLOGY

An HHRA is a scientific study that evaluates the potential for the occurrence of adverse health effects from exposures of people (receptors) to Chemicals of Potential Concern (COPCs) present in surrounding environmental media under existing or predicted exposure conditions. HHRA procedures are based on the fundamental dose-response principle of toxicology. The response of an individual to a chemical exposure increases in proportion to the internal dose. The dose is determined by the degree of exposure, which is proportional to the chemical concentrations in the environment where the receptor resides, works or visits.

The HHRA is based on a conventional risk assessment paradigm developed by such regulatory agencies as Health Canada, the Canadian Council of Ministers of the Environment (CCME) and the United States Environmental Protection Agency (U.S. EPA). This approach is recognized in Canada and worldwide and involves four (4) primary components (Figure 3-1).

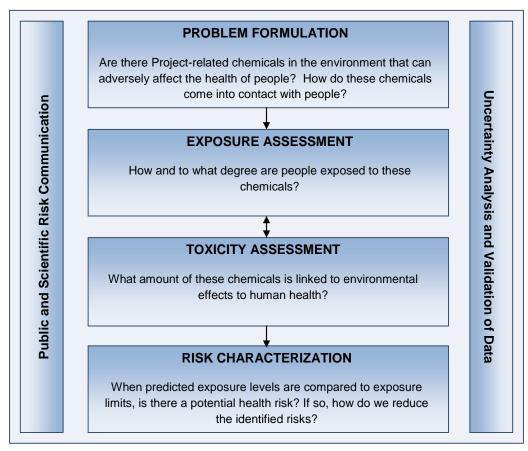


Figure 3-1 Standard Risk Assessment Framework

Since this project involves chemicals (i.e., metals) and exposure pathways (i.e., fish consumption; sediment contact) that are not generally captured in the Atlantic RBCA (Risk Based Corrective Action) model typically used to assess contaminated sites in Nova Scotia, the assessment considered guidance from Health Canada to conduct the HHRA:

- Preliminary Quantitative Risk Assessment Guidance; Health Canada, 2012;
- Detailed Quantitative Risk Assessment Guidance; Health Canada, 2010;
- Supplemental Guidance on Human Health Risk Assessment for Oral Bioavailability of Substances in Soil and Soil-Like Media; Health Canada, 2017a;
- Supplemental Guidance on Human Health Risk Assessment of Contaminated Sediments: Direct Contact Pathways; Health Canada, 2017b; and,
- Human Health Risk Assessment of Mercury in Fish and Health Benefits of Fish Consumption; Health Canada, 2007.

The methods for each of the steps in the HHRA are generally described below, with specific details being provided in later sections of the report.

Problem Formulation

The Problem Formulation Phase of the HHRA is an information gathering and interpretation stage that plans and focuses the study on critical areas of concern for the situation being evaluated. The problem formulation defines the nature and scope of the work to be conducted, permits practical boundaries to be placed on the overall scope of work, and ensures that the assessment is directed at the key areas and issues of concern. This step typically involves the following tasks:

- Screening and identification of chemicals of potential concern (COPCs);
- Identification and description of potential human receptors;
- Identification of operable exposure pathways;
- Development of a Conceptual Site Model (CSM).

The outcome of the Problem Formulation Phase forms the basis of the approach to be taken in the HHRA. The Problem Formulation is presented in Section 4.0.

Exposure Assessment

In the Exposure Assessment, the mechanisms by which the receptors are exposed to COPCs are characterized and the magnitude of these exposures are quantified or categorized.

The types of exposure data needed to evaluate risks to the receptors are determined in the exposure assessment and can include the following:

- On-site contaminant concentrations;
- Physical characteristics of the receptors;
- Exposure frequency and duration for each receptor; and,
- Estimation of total doses (*i.e.*, total contaminant intake from all exposure pathways).

The Exposure Assessment is presented in Section 5.0.

Toxicity Assessment

The toxicity assessment involves identifying and understanding potential health outcomes that could result from exposure to each of the COPCs and the conditions under which the outcomes might be observed. The toxicity assessment methodology is based on the fundamental dose-response principle. That is, the response of biological systems to chemical exposures increases in proportion to the concentration of a chemical in critical target tissues where adverse health outcomes may occur.

Two basic and quite different chemical categories are commonly recognized by regulatory agencies depending on a compound's mode of toxic action when estimating toxicological criteria for humans. The threshold approach (or the no-observed-adverse-effect levels [NOAELs]/benchmark dose with extrapolation/uncertainty factor approach) is typically used to evaluate non-carcinogens, and the non-threshold approach (or the mathematical model-unit risk estimation approach), is typically used for carcinogenic compounds.

<u>Threshold Response Chemicals</u>: For most effects, it is thought that there is a dose-response threshold below which no adverse effects would be expected to occur. This relationship is true for all chemicals that do not cause cancer by altering genetic material. Thresholds are generally assumed for non-carcinogenic effects because, for these types of effects, it is generally believed that homeostatic, compensating, and adaptive mechanisms must be overcome before toxicity is manifested.

<u>Non-threshold Response Chemicals</u>: This means that any exposure greater than zero is assumed to have a non-zero probability of causing some type of response or damage. This relationship is typically used for chemicals that can cause cancer by damaging genetic material. Under a "non-threshold" assumption, any exposure has some potential to cause damage, so it is necessary to define an "acceptable" level of risk associated with these types of exposures.

The approach used to identify the values used in the Toxicity Assessment, known as Toxicity Reference Values (TRVs), as well as the selected values, are provided in Section 6.0.

Risk Characterization

Risk characterization for chemicals with a threshold-type dose-response consists of a comparison between the toxicological criteria (*i.e.*, the rate of exposure that would not produce adverse effects) against the total estimated exposure. This comparison is expressed as an Exposure Ratio (ER) for oral and dermal exposures. These ratios are calculated by dividing the predicted exposure by the TRV, as indicated in the following equation:

 $Expsoure Ratio = \frac{Estimated Exposure (\mu g/kg/day)}{TRV (\mu g/kg/day)}$

For the current assessment, it is assumed that there would be limited opportunity for receptors to be exposed to COPCs in surface water and sediments *via* inhalation. None of the COPCs are sufficiently volatile to warrant assessment *via* the inhalation of vapours, and impacted sediments are not anticipated to be exposed for long enough periods to allow them to become sufficiently dry to become available for inhalation of airborne particulates. Therefore, the current assessment only evaluated exposures *via* oral and dermal pathways.

If the total exposure to a chemical is equal to or less than the exposure limit, then the ER would be 1.0 or less, and no adverse health effects would be expected. For human exposures to non-carcinogens, the TRV represents the level of total exposure derived from multi-source and multimedia exposures, which would not result in adverse health effects, regardless of the source or route of exposure.

In cases where the total exposure has been estimated from both background and site sources, it would be valid to compare the estimated exposure to the entire exposure limit, and an acceptable ER level would be 1.0. If the HHRA addresses risks associated with a single source and a limited number of environmental pathways, the selection of an ER of 1.0 as a benchmark to indicate that exposure does not exceed the TRV is not valid. In an attempt to address this problem, Health Canada (2012) has apportioned 20% of the total exposure to any one environmental medium. ER values for non-carcinogens that are less than 0.20 are considered to represent a situation in which media-related exposures account for less than 20% of the TRV, and no adverse health effects are expected to be associated with the estimated level of exposure. Risks of this magnitude are considered negligible, which means exposures are estimated to be so low that they are considered to have an insignificant impact on human health. For some COPCs, such as methyl mercury, since exposures are predominantly from a single pathway, apportionment is not required and an ER of 1.0 is considered acceptable.

Risk characterization for chemicals with a non-threshold-type dose response (*i.e.*, carcinogens) consists of calculating an Incremental Lifetime Cancer Risk (ILCR). ILCR levels represent the predicted incremental risk of cancer over a lifetime to an individual member of a population of a given size and are expressed as a risk level. For example, if the ILCR is 0.1 (representing 1 person per 10), the predicted incremental risk of any individual developing cancer would be higher than if the ILCR is 0.001 (1 per 1,000). ILCRs are evaluated by comparing predicted ILCR levels to a benchmark risk level considered to be acceptable by regulatory agencies. For example, negligible or *de minimis* cancer risk levels are generally considered to range from 1×10^{-4} to 1×10^{-6} . Health Canada (2012) and the Province of Nova Scotia consider 1×10^{-5} (one in one hundred thousand) an acceptable risk level. The following equation provides the method whereby the ILCR estimates are calculated:

ILCR = *Estimated Exposure* $((\mu g/kg)/day)xq_1^*(\mu g/kg/day)$

ERs and ILCRs are effective tools for expressing potential adverse health effects from exposures to COPCs in that they help simplify the presentation of the HHRA results so that the reader may have a clear understanding of the significance of these results and an appreciation of their significance.

Details of the Risk Characterization are provided in Section 7.0.

By convention, the uncertainty associated with the prediction of potential health risks is accommodated, in part, through the use of reasonable worst-case assumptions, which embrace a sizable degree of conservatism. Using this approach, health risks identified in the assessment are unlikely to be understated but may be considerably overstated. Thus, it is important that the uncertainties and assumptions underlying the potential health risks be known and understood. The assessment uncertainties and the assumptions used in the HHRA are documented in the risk characterization (Section 7.0).

4.0 PROBLEM FORMULATION

The key tasks requiring evaluation within the problem formulation step included the following:

- Identification of the COPCs to be assessed within the HHRA based on environmental sampling data;
- Identification of receptors of concern, which include those persons with the greatest probability of exposure to COPCs from the Site and those with the greatest sensitivity to these chemicals; and,
- Identification of exposure pathways and scenarios considering the various factors that can influence how receptors come into contact with COPCs present in the environment, including: chemical-specific parameters, such as solubility and volatility; characteristics of the Site, such as physical geography, geology, and hydrogeology; as well as the physiology and behavioral patterns of receptors.

Each of these tasks are presented in Figure 4-1 and are used to develop a Conceptual Model (Figure 4-2).

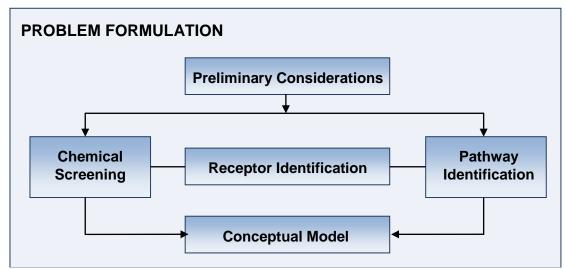


Figure 4-1Components of the Problem Formulation Stage

4.1 Identification of Contaminants of Potential Concern (COPCs) for the HHRA

As discussed in Section 1, the predominant land use for this area is occasional recreational activities, such as swimming (which would involve sediment and surface water contact and incidental ingestion), as well as fishing. To identify which substances merited further assessment in the HHRA, a screening procedure was undertaken as follows:

- Sediment Data:
 - Comparison of measured sediment concentrations to NS Tier 1 EQS for soil (residential, non-potable land use), since sediment guidelines for protection of human health are not currently available. This approach is in keeping with Health Canada (2017b) guidance.

- Where substances exceeded NS Tier 1 EQS for residential soil, comparisons to background soil data for Nova Scotia (based on White et al, 2014), since metals are naturally occurring elements. Comparisons to background data for naturally occurring substances is in keeping with NSE (2014) guidance and assists in focusing the assessment on substances that are elevated over background and associated with historic/site activities.
- COPCs selection was based on consideration of both frequency and degree of exceedance over NS Tier 1 EQS and background, as well as inherent toxicity.
- Surface Water:
 - Comparison of measured surface water concentrations to NS Tier 1 EQS for potable groundwater, since surface water quality guidelines for protection of incidental ingestion of surface water during swimming activities are not available. This is a highly conservative approach, since potable groundwater standards are based on chronic daily exposure.

Appendix B presents the details of the COPC screening, including the site data for both sediments and surface waters from Barry's Run and Mitchell's Brook, and the outcome of the comparisons to the various guidelines and standards outlined above.

Based on the screening conducted, arsenic and mercury were carried forward into the HHRA as COPCs in sediment, whereas only arsenic was identified as meriting further assessment in surface waters.

No formal screening for fish tissues and fish consumption was conducted. The historic mining activities upgradient of the site have been associated with arsenic and mercury releases, and previously conducted fish surveys in lakes associated with historic mining activities by the Province (Leblanc and Halfyard, 2010) have focused on mercury and arsenic tissue levels in fish. Pore water data presented in Dillon (2019) suggests low availability of most metals in sediment pore water, which suggests limited ability of most metals to accumulate in benthos and food chains. While it is possible that some other metals could accumulate in local fish tissues, the degree of exceedance of arsenic in both sediments and surface waters (relative to available guidelines), and the widely known ability of mercury to bio-magnify in aguatic food chains, supports the selection of these two elements as COPCs in fish tissue. Mercury in fish tissues were assessed relative to the Health Canada (2007) limit of 0.5 mg/kg. A limit of 3.5 mg/kg arsenic in fish protein is available (https://www.canada.ca/en/healthcanada/services/food-nutrition/food-safety/chemical-contaminants/contaminants-adulteratingsubstances-foods.html) and while all fish tissue from the Study area were less than this value, it does not account for speciation of arsenic in fish tissues, and hence arsenic was considered in the assessment.

Therefore, both arsenic and mercury were selected as COPCs, and were assessed for all exposure pathways, including fish consumption.

4.2 Identification of Potential Human Receptors

A human receptor is a hypothetical person (*e.g.*, infant, toddler, child, adolescent, adult) who may reside or work in the area being investigated and is, or could potentially be, exposed to the COPCs. General physical and behavioural characteristics specific to the receptor type (*e.g.*, body weight, breathing rate, soil ingestion rate, *etc.*) are often used to determine the amount of

chemical exposure received by each receptor. Due to differences in these characteristics between receptors of different age classes, predicted exposure will vary on a receptor-by-receptor basis. Consequently, the potential risks associated with exposure to COPCs may differ depending on the receptor chosen for evaluation.

It is critical that the assessment is sufficiently comprehensive to ensure that overall risks have been adequately addressed. However, it is not feasible to consider all humans that may potentially be exposed to chemicals from the Site. As a result, it is important to select those human receptors that may be subject to the greatest potential risk. These will be people with the greatest probability of exposure to the chemicals detected on-site and those that have the greatest sensitivity to these chemicals.

For chemicals considered to be carcinogenic, it is common to assess exposure over a lifetime, as development of cancer is a long-term process that may take many years to manifest. For this reason, a special type of receptor called a "lifetime" or "composite" receptor is often selected for evaluation of potential carcinogenic risks. This receptor is a "composite" of all relevant life stages for which exposure will be evaluated. However, given that the adult life-stage represents the majority of the total lifespan (typically 56 years of the assumed 76-year total life expectancy), the characteristics of the lifetime composite receptor are generally consistent with those of the adult. Therefore, the assessment of carcinogenic risks was based on the adult.

Health risks associated with exposure to carcinogenic compounds are usually expressed as an estimate of excess or incremental lifetime cancer risk (ILCR) for a population resulting from exposure to a particular source. Thus, risks associated with carcinogenic compounds are predicted using the average daily dose over a human receptor's entire life span.

For non-carcinogens, the toddler is typically the most sensitive receptor for estimating exposure and risk as a result of an elevated soil ingestion rate during this life stage. The toddler (7 months to 4 years) and the child (5 to 11 years) life stages were included in the current assessment to assess risks associated with non-carcinogenic endpoints.

In order to evaluate potential exposures, it is necessary to characterize the physiological and behavioural characteristics of each receptor group. Several published resources were considered in the selection of these parameters, including:

- Health Canada. 2017b. Supplemental Guidance on Human Health Risk Assessment of Contaminated Sediments: Direct Contact Pathway. Federal Contaminated Site Risk Assessment in Canada. March 2017b.
- Health Canada. 2012. Federal Contaminated Sites Risk Assessment in Canada. PART I: Guidance on Human Health Risk Preliminary Quantitative Risk Assessment (PQRA), Version 2.0.
- Richardson. 1997. Compendium of Canadian Human Exposure Factors for Risk Assessment. O'Connor Associates Environmental Inc.
- US EPA. 2004. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Final. EPA/540//R/99/005. July 2004.

These sources have been used in numerous HHRAs that have been critically reviewed and accepted by regulatory agencies across Canada and the United States. Both the Compendium

of Canadian Human Exposure Factors for Risk Assessment (Richardson, 1997) and Health Canada (2012) rely on data from published and reliable Canadian sources, such as Health Canada, Statistics Canada, and the Canadian Fitness and Lifestyles Research Institute. Where insufficient data are available in these sources to appropriately characterize relevant activity patterns and/or behavioural/physiological characteristics of a certain receptor group, other appropriate sources were used. For fish consumption rates, there is a province-wide fish consumption advisory based on mercury concentrations in fish tissues (Province of Nova Scotia, 2019). This advisory cites a daily serving size of 75 grams of fish, based on Canada's Food Guide. This serving size was used in the exposure calculations for fish consumption, along with the advisory guidance related to number of servings per week or month for a given fish type/size and receptor age class. In addition to the published resources listed above, sitespecific information gathered as part of past and current programs were used to characterize receptor parameters.

4.3 Identification of Exposure Scenarios and Operable Exposure Pathways

The means by which a person comes into contact with a chemical in an environmental medium are referred to as exposure pathways. The means by which a chemical enters the body from the environmental medium are referred to as exposure routes. There are three (3) major exposure routes through which chemicals can enter the body: inhalation; ingestion; and dermal absorption (*i.e.*, uptake through the skin). Exposure pathways may require direct contact between receptors and the environmental media of concern (*e.g.*, incidental ingestion of sediment, dermal contact, etc.), or may be indirect requiring the movement of the chemical from one environmental medium to another.

Barry's Run and Mitchell's Brook are located adjacent to a residential neighbourhood. Therefore, there is the potential for residents from the adjacent neighbourhoods to be exposed to impacted sediment and surface water should they venture into Barry's Run or Mitchell's Brook areas for recreational purposes. In addition, areas on the fen, which is a wide grassy area adjacent to the brook and run, could be accessed by locals for either walking/hiking or fishing. The fen is more soil-like, then sediment (see Photo 3 in Appendix A).

The primary exposure pathways of concern for receptors using the area include:

- Incidental ingestion of shoreline or bedded sediment from watercourses or soils from fen;
- Incidental ingestion of suspended sediment in surface water;
- Incidental ingestion of surface water while swimming;
- Dermal absorption from sediments or soils adhering to skin;
- Dermal absorption from surface water; and,
- Ingestion of fish harvested from Barry's Run and/or Mitchell's Brook.

Four (4) exposure scenarios were selected to address potential risks to receptors utilizing the area for recreational purposes. As a conservative approach, a cancer amortization was not applied in the assessment of carcinogenic risks in any of the exposure scenarios. This essentially assumes that receptors will be exposed to COPCs in sediment, surface water, and fish from the area over an entire lifetime. Although this is considered to overestimate the duration of exposure, this approach was taken to ensure that the assessment was sufficiently

protective of exposure during early life stages rather than amortizing cancer risks per life stage and applying an age-dependent adjustment factor (ADAF).

a) Recreational High Contact - Low Frequency Scenario

This scenario is considered to be reflective of members of the general public that may occasionally be involved in recreational activities within Barry's Run/Mitchell's Brook. In particular, it is anticipated to be protective of receptors utilizing the upper stretch of Barry's Run (closer to Mitchell's Brook) where access to this area is generally limited. This scenario assumes that receptors will have the opportunity for exposure to COPCs in shoreline/bedded sediments, to COPCs in sediments suspended in surface water, and to COPCs dissolved in surface water. Receptors were assumed to have high rates of contact with sediment, resulting in dermal absorption of COPCs through the adherence of shoreline/bedded sediment to the hands, feet, forearms, and lower legs. Incidental ingestion of shoreline/bedded sediment was assumed to occur via hand to mouth activity. While swimming, receptors were assumed to ingest suspended sediment within the water column as well as surface water containing dissolved COPCs. Dermal absorption of dissolved COPCs in water was also assumed to occur across the entire surface area of the body. Consistent with recommendations provided by Health Canada (2012, 2017b), the toddler was selected as the critical receptor for noncarcinogenic threshold substances and an adult was selected as the critical receptor for carcinogenic substances. Receptors were assumed to be involved in recreational activities six (6) times per year. Exposure estimates were not adjusted for less than lifetime exposures; rather, it was assumed that exposure behaviours will occur throughout the entire lifetime of a receptor.

b) Recreational Low Contact - High Frequency Scenario

This scenario is considered to be reflective of members of the general public or residents with homes located along the lower stretch of Barry's Run (western end of Study area) that may be involved in more frequent recreational activities within the water course that generally involve lower contact with sediment. This includes swimming, boating (e.g., kayaking; paddleboarding), and fishing which could result in incidental contact with sediments, primarily suspended within the water column as well as along the shoreline while entering or exiting the water. Receptors were assumed to have lower rates of contact with sediment, resulting in dermal absorption of COPCs through the adherence of shoreline/bedded sediment to the hands and feet, but higher frequency of swimming. Incidental ingestion of shoreline/bedded sediment was assumed to occur via hand to mouth activity. While swimming, receptors were assumed to ingest suspended sediment within the water column as well as surface water containing dissolved COPCs. Dermal absorption of dissolved COPCs in water was also assumed to occur across the entire surface area of the body. Due to the nature of these activities, the child was selected as the critical receptor for non-carcinogenic threshold substances over the toddler, and an adult was selected as the critical receptor for carcinogenic substances. Receptors were assumed to be involved in recreational activities two (2) times per week for 13 weeks (July, August, September). Exposure estimates were not adjusted for less than lifetime exposures; rather, it was assumed that exposure behaviours will occur throughout the entire lifetime of a receptor.

c) Fen Scenario

This scenario considers the possibility that members of the general public or residents with homes located along the lower stretch of Barry's Run may spend time on areas of the fen while accessing the watercourse for recreational activities. It is also possible that receptors spend time hiking/walking and biking on parts of the fen. These receptors could have incidental contact with COPCs in the fen material resulting in dermal absorption through the adherence of this material to the hands and feet. Incidental ingestion of fen material was also assumed to occur via hand to mouth activity. Due to the nature of these activities, the child was selected as the critical receptor for non-carcinogenic threshold substances over the toddler, and an adult was selected as the critical receptor for carcinogenic substances. Receptors were assumed to be involved in recreational activities two (2) times per week for 13 weeks (July, August, September. Exposure estimates were not adjusted for less than lifetime exposures; rather, it was assumed that exposure behaviours will occur throughout the entire lifetime of a receptor.

d) Recreational Fishing - Consumption of Local Fish

This scenario is considered to be reflective of people that catch fish for consumption within Barry's Run and/or Mitchell's Brook. it was assumed that fishing is done wearing waders, thereby limiting exposures to COPCs in surface water and sediment while fishing. If this is not the case, and fishing takes place in bare feet or shoes, these exposures would be similar to those addressed within scenarios a) and b) above. Potential exposures in the fen area during fishing are captured in the fen scenario (c) above. The recreational fishing scenario only assesses exposure *via* the consumption of fish caught within the water course. Human receptors were assumed to consume smallmouth bass and brook trout, since these were the only species captured in the fish survey. Based on the consumption advisory related to mercury in fish for Nova Scotia, a serving size of 75 grams was used to represent a typical serving (Province of Nova Scotia, 2019). Additional details on frequency of consumption are provided in Section 5.2.3, based on the consumption advisory.

e) Combined Exposure Scenario

It is possible that exposures could occur through swimming, sediment exposure and fen soil exposure while fishing. Hence, all scenarios were combined in a combined exposure scenario to consider this possibility.

4.4 Conceptual Model

The conceptual model for the site is critical to understanding the sources from which the COPC originate, the pathways through which the COPCs travel and the receptors that are potentially exposed to the COPCs. The objective of the conceptual model is to understand the components that contribute to the potential risks associated with the sources of COPCs, as well as to identify strategies that will mitigate the sources and/or connections between the sources and receptors. A schematic of the conceptual site model is shown in Figure 4-2.

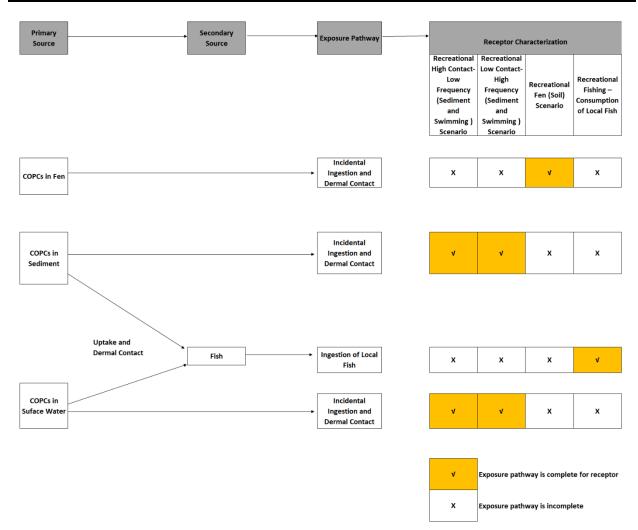


Figure 4-2 Human Health Conceptual Model

5.0 EXPOSURE ASSESSMENT

The exposure assessment evaluates data related to all COPCs, receptors, and exposure pathways identified during the problem formulation phase of the HHRA. The exposure assessment takes into account all potential exposure to COPCs from the different sources or media (*i.e.*, sediment and surface water) which receptors could come in contact with as part of their daily activities.

The primary objective of the exposure assessment is to predict, using site-specific data and a series of conservative assumptions, the rate of exposure (*i.e.*, the quantity of chemical and the rate at which that quantity is received) of the selected receptors to COPCs *via* the various exposure scenarios and pathways identified in the problem formulation step. The rate of exposure to chemicals from the various pathways is usually expressed as the amount of chemical taken in per body weight per unit time (*e.g.*, µg chemical/kg body weight/day).

The degree of exposure of receptors to chemicals in the environment depends on the interactions of a number of parameters, including:

- The concentrations of COPC in various environmental media;
- The physical-chemical characteristics of the COPC which affect their environmental fate and transport and determine such factors as efficiency of absorption into the body of a given external exposure;
- The influence of site-specific environmental characteristics, such as geology, soil type, topography, hydrology, hydrogeology, local meteorology and climatology etc. on a chemical's behaviour within environmental media; and,
- The physiological and behavioural characteristics of the receptors (*e.g.*, respiration rate, soils/dust intake, time spent at various activities and in different areas).

The derivation of the exposure point concentrations (EPCs) for COPCs used to assess exposure is described in Section 5.1.

5.1 Derivation of Exposure Point Concentrations

The derivation of an appropriate EPC (*i.e.*, the concentration of a chemical in any environmental medium to which a receptor could reasonably be expected to be exposed over an extended period of time) is important to the overall exposure assessment. The US EPA Risk Assessment Guidance for Superfund (US EPA, 1989), recommends that the upper 95% confidence interval on the arithmetic mean of the data set (*i.e.*, the 95% UCLM) should be used to represent the EPC. This is considered to be a reasonable estimate of the concentration to which a receptor might be exposed over a significant amount of time. When enough data are present, the 95% UCLM incorporates the central tendency (*i.e.*, the arithmetic mean) and the uncertainty surrounding the arithmetic mean. This is also consistent with Health Canada's (2017b) guidance on HHRAs for contaminated sediments.

EPCs were developed for each COPC in sediment and surface water. All data that were less than the method detection limit (MDL) were assumed to be present at one half the MDL value unless otherwise indicated. The 95% UCLM concentrations were calculated using ProUCL, software (Version 5.1) developed by Lockheed Martin under contract with the US EPA. ProUCL tests the data set for normality, lognormality, and gamma distributions using parametric and non-parametric methods to calculate a conservative and stable 95% UCLM (US EPA, 2015).

The U.S. EPA has peer reviewed this software and endorses its use as a tool in contaminated site risk assessments.

5.1.1 Sediment/Fen Exposure Point Concentrations

The sediment arsenic and mercury data from the two sampling programs were evaluated statistically. The data are presented in Figures 2-3 and 2-5. For the scenarios considered in the assessment, the sediment EPC values varied as follows:

- <u>Recreational high contact Low frequency scenario:</u> The sediment samples from within Barry's Run and Mitchell's Brook (identified as samples named either SED or BIOSED in Figures 2-3 and 2-5) were used to characterize exposure in this scenario. The 95th UCLM was used to represent the EPC. The statistical summary of the data is presented in Table 5-1.
- <u>Recreational low contact High frequency scenario</u>: This scenario considers exposures that may occur in the western end of Barry's Run, near the exit to Lake Charles. Therefore, sediment samples from this area were used to characterize exposure. There were four (4) samples taken in this part of the study area, and the maximum of these data points was used as the EPC. As per the data presented in Figures 2-3 and 2-5, the maximum arsenic concentration in sediment was 2,000 mg/kg; the maximum mercury concentration was 5.9 mg/kg. These values were used in the modelling.
- <u>Recreational contact with Fen</u>: An additional scenario involving contact with soils on the fen was also assessed. The data presented in Figure 2-5 identified as TOF (Top of Fen) samples were used to characterize exposure. Data presented on Figure 2-3 as surface soil samples (identified by symbols SS) are at depth (> 3 metres deep), and hence there is no exposure potential related to these samples. The EPC used for this scenario is the 95th UCLM of arsenic and mercury data presented in Table 5-2.

Table 5-1 Descriptive Statistics for Arsenic and Mercury in Sediment

Metal	Descriptive Statistics (mg/kg DW)								
Metal	n	Min	Max	Mean	95th UCLM				
Arsenic	19	170	6,200	2,638	3,287				
Mercury	19	0.82	11	4.27	5.224				

Table 5-2 Descriptive Statistics for Arsenic and Mercury in Fen Samples (mg/kg DW)

Motol	Descriptive Statistics								
Metal	n	Min	Max	Mean	95th UCLM				
Arsenic	16	3	1,700	237	1,571				
Mercury	14	0.025	1	0.237	0.67				

5.1.2 Surface Water Exposure Point Concentrations

The surface water data from the two sampling programs were evaluated statistically and are presented in Figures 2-4 and 2-5. Pore water samples were not used in the HHRA, as there is limited plausible exposure to these concentrations. The dissolved data were used to characterize potential risk, with suspended sediments also being considered in the HHRA (from an oral and dermal exposure perspective). The statistical summary of the dissolved surface water data for arsenic and mercury is presented in Table 5-3. The mercury data was non-detect in all samples, and ½ of the detection limit was used in all cases of non-detect data. The 95th UCLM was used to characterize the EPC.

Metal		Descriptive Statistics (mg/l)								
metal	n	Min	Max	Mean	95th UCLM					
Arsenic (Dissolved)	15	0.041	0.085	0.055	0.0625					
Mercury (Dissolved)	13	0.0000065	0.0000065	0.0000065	0.0000065					

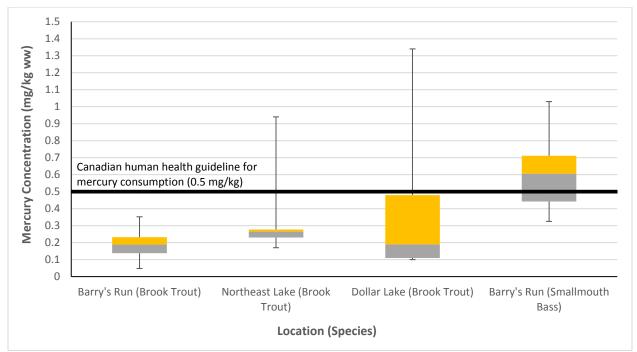
Table 5-3 Descriptive Statistics for Arsenic and Mercury in Surface Water

5.1.3 Fish Tissue Concentrations

Mercury and arsenic concentrations (mg/kg ww) and fish size parameters [i.e., total fish length (cm) and total weight (g)] were obtained for brook trout and smallmouth bass collected from Barry's Run in 2019. A summary of these data are provided in Table 5-4. No available comparative data for fish from control lakes were obtained in this study. To provide additional context, mercury concentration and fish size parameters for brook trout collected between July 2006 and November 2007 from two morphologically similar lakes in Nova Scotia not associated with historic mining activities (i.e., control lakes) (LeBlanc and Halfyard, 2010) were compared to the data from Barry's Run. These data are also presented in Table 5-4. Comparison data for smallmouth bass from control lakes in Nova Scotia were not available in LeBlanc and Halfyard (2010). Raw fish data for both Barry's Run/Mitchell's Brook and the two (2) control lakes are provided in Table B-8 within Appendix B.

Given the small sample sizes for brook trout and smallmouth bass collected from Barry's Run/Mitchell's Brook, regression analysis between fish size and mercury concentration was not conducted. Mercury concentrations in brook trout from Barry's Run (mean=0.191 mg/kg, SD=0.093 mg/kg, n=9) were comparable or lower to mercury concentrations in brook trout from Dollar Lake (mean=0.397 mg/kg, SD=0.447 mg/kg, n=11) and Northeast Lake (mean=0.357 mg/kg, SD=0.289 mg/kg, n=6). However, it is important to note that mercury data from the two control lakes were obtained in 2006-2007; therefore, time could be a confounding factor when comparing metal concentrations from Barry's Run to metal concentrations from the two control lakes. When compared to the Canadian human health guideline for consumption of mercury in fish (0.5 mg/kg)(Health Canada, 2007), mercury concentrations in all brook trout (100%) were below this guideline and the median mercury concentration was more than 2-fold lower than this guideline (Figure 5-1). Given the available data, mercury is not considered to pose a risk to consumers of brook trout from Barry's Run, but was included in the modelling effort for completeness.

		Mean ±SD (range) [N]						
Location	Species	Total Length (cm)	Total Weight (g)	Total Hg (mg/kg ww)	Total As (mg/kg ww)			
Barry's	Brook Trout	21.4 ± 4.6 (12.2-29.5) [13]	103 ± 57.5 (30.0-231) [12ª]	0.191 ± 0.093 (0.048-0.352) [9 ^b]	0.704 ± 0.282 (0.324-1.13) [9 ^b]			
Run/Mitchell's Brook	Smallmouth Bass	24.4 ± 3.0 (21.1-30.5) [7]	147 ± 35.6 (113-194) [5º]	0.610 ± 0.242 (0.325-1.03) [7]	2.67 ± 0.084 (2.54-2.78) [7]			
Dollar Lake	Brook Trout	25.7 ± 4.8 (18.5-34.4) [11]	168 ± 106 (48.0-418) [11]	0.397 ± 0.447 (0.100-1.34) [11]	NDA			
Northeast Lake	Brook Trout	23.6 ± 4.4 (18.5-30.7) [6]	174 ± 81.3 (80.0-305) [6]	0.357 ± 0.289 (0.170-0.940) [6]	NDA			


Table 5-4 Summary of Fish Statistics

a. Fish weight was not evaluated in one fish.

b. Three composite samples were used which were made up of 2 to 3 fish subsamples in order to have sufficient tissue for metal analysis.

- c. Fish weight was not evaluated in two fish.
- NDA=no data available (lake specific data was not available)

Notes: Mercury and arsenic concentrations are presented on a mg/kg ww basis and were not normalized to measures of length or weight.

Figure 5-1 Mercury Concentrations in Brook Trout and Smallmouth Bass

Figure Notes: Mercury and arsenic concentrations are presented on a mg/kg ww basis and were not normalized to measures of length or weight. The components of the boxplot from bottom to top are as follows: 1) the lower whisker represents the minimum mercury concentration, 2) the grey square represents the lower quartile (25th percentile), 3) the intersection between the grey and yellow rectangles represents the median mercury concentration, 4) the yellow rectangle represents the upper quartile (75th percentile), and 5) the upper whisker presents the maximum mercury concentration.

Mercury concentrations in smallmouth bass from Barry's Run were approximately 3-fold greater than mercury concentrations measured in brook trout from Barry's Run (Figure 5-1). When compared to the Canadian human health guideline for consumption of mercury in fish (0.5 mg/kg), mean mercury in smallmouth bass (mean=0.610 mg/kg, SD=0.242 mg/kg, n=7) was greater than the guideline and 57% of the fish sampled had mercury concentrations exceeding this guideline.

Based on the available data, mercury was retained for further evaluation in the HHRA and potential risks associated with mercury following the consumption of smallmouth bass were evaluated using the consumption rates outlined in the Nova Scotia consumption advisory (NSE, 2019). Brook trout mercury data were also assessed, for completeness. The EPC used in the modelling was the 95th UCLM mercury concentration from each species, following consideration of fish size (as per the consumption advisory), with the exception of where sample sizes were limited (n = 3), wherein the maximum value was used (see Table 5-5).

With respect to arsenic, comparative data from the Leblanc and Halfyard (2010) study were not available. Arsenic fish tissue concentrations were included in the HHRA modelling. The EPC used for the arsenic fish tissue were the 95th ULCM concentrations of each species, with consideration of fish size (as per the consumption advisory), with the exception of where sample sizes were limited (n = 3), wherein the maximum value was used (see Table 5-3). Arsenic tissue concentrations were subsequently adjusted for bioaccessibility and speciation (see Section 6.1 for discussion of the bioaccessibility and speciation data).

	Species	Size (cm)		Tota	l Hg (mg	g/kg ww	Total As (mg/kg ww)				
Location			n	Min	Max	Mean	95% UCLM	Min	Max	Mean	95% UCLM
Barry's Run	Brook Trout	<25	6	0.084	0.266	0.188	0.243	0.324	1.130	0.732	0.972
Barry's Run	Brook Trout	>25	3	0.048	0.352	0.196	*	0.432	1.010	0.647	*
Barry's Run	Smallmouth Bass	<35	7	0.325	1.030	0.610	0.787	2.540	2.780	2.674	2.736
Barry's Run	Smallmouth Bass	>35	0	-	-	-	-	-	-	-	-

Table 5-5 Exposure Point Concentrations for Fish

*calculated UCLMs exceed maximum values (due to the small sample size); these UCLMs are considered invalid and maximum values are used for assessment purposes

5.2 Exposure Estimates

The primary objective of the exposure assessment is to predict, using site-specific data and a series of conservative assumptions, the rate of exposure (*i.e.*, the quantity of chemical and the rate at which that quantity is received) of the selected receptors to the COPC *via* the various exposure scenarios and pathways identified in the problem formulation.

Receptors were assumed to move in a random fashion and, over time, come into contact with the EPC of the COPCs in each environmental media. The EPC for any given environmental media (e.g., sediment, fen, surface water, and fish) was defined as the 95% UCLM, except where data were limited, as discussed previously. The rate of exposure to each COPC from

each exposure pathway was expressed as the amount of chemical taken in per body weight per unit time (*e.g.*, µg chemical/kg body weight/day) as a result of exposure to COPC in sediment, surface water, and local fish.

Receptor characteristics were selected for use in the HHRA. A list of parameters and assumptions describing the physiological and behavioural characteristics of each receptor evaluated in the HHRA are provided in Table 5-6. For the sediment exposure scenarios, guidance from health Canada (2017b) was used to derive the exposure characteristics. Some site-specific adjustments were made, since many of the assumptions in the Health Canada guidance relate to exposures of children to a tidal flat scenario (with exposed sediments). The sediment exposures in the Study Area are more related to bedded (underwater) sediments, and hence, some adjustments were made to account for the likelihood that sediment would not remain adhered to feet as someone leaves the water. Fen was assumed to consist of a soil-like material and exposures to fen was assumed to be occur in a manner similar to that defined by Health Canada (2012) for soils.

For fish consumption, the Province of Nova Scotia (2019) identified specific consumption rates for specific species, based on size. Grams/day quantities were calculated based on the Provincial guidance of 75 grams/serving and number of servings per week or month as indicated in the advisory. These consumption rates were used based on the assumption that people consuming fish in the Province should adhere to the guidance provided, which is established to protect against mercury exposures in fish tissues, which result from long range transport of mercury emissions from other areas and naturally occurring levels in the environment. Consumption estimates are provided in Table 5-7.

Description	Units	Recreational – High Contact-Low Frequency		Recreational – Low Contact-High Frequency		Recreational Fishing	Reference	
		Toddler	Adult	Child	Adult	Adult		
Surface area of hands	m²	0.0430	0.089	0.0590	0.089	-	Health Canada (2012,2017); Richardson (1997)	
Surface area of feet	m²	0.0430	0.119	0.0720	0.119	-	Health Canada (2017); Richardson (1997)	
Surface area of lower legs ^a	m²	0.169	0.572	-	-	-	Health Canada (2012,2017); Richardson (1997)	
Surface area of forearms	m²	0.0445	0.125	-	-	-	Health Canada (2012,2017); Richardson (1997)	
Whole body surface area – swimming	m²	0.613	1.760	1.010	1.760	-	Health Canada (2012,2017); Richardson (1997)	
Dermal loading of sediment to hands	kg/m ² -event	0.00490	0.00490	0.00490	0.0049	-	Shoaf <i>et al.</i> (2005); Golder (2010); Health Canada (2017)	
Dermal loading of sediment to feet ^b	kg/m ² -event	0.021	0.021	0.021	0.021	-	Shoaf et al. (2005); Golder (2010)	
Dermal loading of sediment to legs	kg/m ² -event	0.00700	0.00700	-	-	-	Shoaf <i>et al.</i> (2005); Golder (2010); Health Canada (2017)	
Dermal loading of sediment to arms	kg/m ² -event	0.00170	0.00170	-	-	-	Shoaf <i>et al.</i> (2005); Golder (2010); Health Canada (2017)	
Dermal loading of soil (fen) to hands	kg/m ² -event	1.00E-03	1.00E-03	1.00E-03	1.00E-03		Health Canada (2012)	
Dermal loading of soil (fen) to other surfaces	kg/m ² -event	1.00E-04	1.00E-04	1.00E-04	1.00E-04		Health Canada (2012)	
Exposure Frequency	events/day	1	1	1	1	-	Assumed	
Exposure Frequency	days/year	6	6	26	26	-	Assumed	
Exposure Frequency - swimming	hours/event	1	1	1	1		Assumed	
Sediment Ingestion Rate – shoreline sediment ^c	kg/d	0.000072	0.00002	0.000057	0.00002	-	Health Canada (2017); Wilson <i>et al.</i> (2015)	
Sediment Ingestion Rate – suspended sediment ^c	kg/d	0.0000077	0.0000077	0.0000077	0.0000077		Health Canada (2017); Wilson <i>et al.</i> (2015)	
Soil (fen) Ingestion Rate	kg/day	0.00008	0.00002	0.00002	0.00002		Health Canada (2012)	
Ingestion Rate – surface water	L/hour	0.05	0.05	0.05	0.05		U.S. EPA (1989)	
Body weight	kg	16.5	70.7	32.9	70.7		Health Canada (2012,2017)	
Fish Consumption Rate	-	-	-	-	-	See Table 5-6		

Table 5-6 Summary of Exposure Assumptions and Receptor-Specific Parameters

Note: Fen scenario is the same as the sediment scenarios – soil ingestion rates dermal loadings as per Health Canada (2012) guidance for soils ^asurface area the lower legs was assumed to be one half of the surface areas of the legs (upper and lower)

^bdermal loading to feet was adjusted to reflect the nature of the site; a 10-fold rinsing factor was applied to values cited by Health Canada (2017b)

^cIngestion rates recommended by Wilson *et al.* (2015) are mg per hour. For the current assessment, it was assumed that the ingestion rate is event driven with one event occurring per day.

Table 5-7	Fish Con	sumptio	n Rates (f	rom Provin	ce of Nova	Scotia, 2	019)					
		CONSU	IMPTION LIM	IT BASED ON N	IUMBER OF SE	RVINGS ^a	CONSUMPTION RATE BASED ON MERCURY CONSUMPTION LIMITS					
Species	Fish Length (measured nose to tail fork)	General Public Over age 12	Women who are or may become pregnant and / or are breast feeding	Children age 5-11	Children age 1-4	Infants (less than 1 year of age)	General Public Over age 12	Women who are or may become pregnant and / or are breast feeding	Children age 5-11	Children age 1-4	Infants (less than 1 year of age)	
Brook Trout	Under 25 cm (9.8 in)	2 servings per week	1 serving per week	1½ servings per month	3/4 serving per month	¹ / ₂ serving per month	21.4⁵ g/day	10.7 g/day	3.7 g/day	1.8 g/day	1.2 g/day	
Brook Trout	Over 25 cm (9.8 in)	1 serving per week	1 serving per month	Avoid	Avoid	Avoid	10.7 g/day	2.5 g/day	Avoid	Avoid	Avoid	
Smallmouth Bass	Under 35 cm (13.8 in)	3 servings per month	1 serving per month	1½ servings per month	Avoid	Avoid	7.4 g/day	2.5 g/day	3.7 g/day	Avoid	Avoid	
Smallmouth Bass	Over 35 cm (13.8 in)	2 servings per month	Avoid	Avoid	Avoid	Avoid	4.9 g/day	Avoid	Avoid	Avoid	Avoid	

_ . . _ _ _. -. .

^afish consumption rates were based on the information provided in the Nova Scotia fish advisory for mercury that cites a daily serving size of 75 grams of fish, based on Canada's Food Guide, as well as fish species and size specific ingestion restrictions. ^bConsumption rates were calculated as follows: 75 g x 2 servings per week/7 days

5.2.1 Exposure to COPCs in Sediment/Fen

Exposure to COPCs in sediment is assumed to occur *via* incidental ingestion of shoreline/bedded sediment and suspended sediment in the water column, and dermal absorption through exposed skin. Fen is assumed to be soil like material, and exposures are assumed to occur via incidental ingestion and dermal absorption. The methods used to assess exposure to sediment differ from those used for soils as a result of differences in factors such as the frequency of exposure, the amount of exposed skin, and adherence of wet sediment to hands and other body parts (Health Canada, 2012; 2017b).

Incidental Ingestion

Sediment/fen ingestion can occur through hand to mouth contact with material adhered to the skin. Sediment exposure can also occur through the ingestion of water containing suspended sediment. Exposure will be dependent on the ingestion rate, exposure frequency and COPC concentration in the shoreline and suspended sediment.

The effective intake of COPCs is dependent upon the amount of chemical released from sediment/fen during digestion (referred to as the bioaccessible fraction). Only the fraction of COPCs that is released in soluble form from sediment/fen into the stomach or intestines during digestion is considered to be available for uptake. The fraction that is not released from sediment/fen is excreted in the feces and does not have the opportunity to cause adverse health effects. Therefore, in assessing exposure and potential human health risks from sediment/fen ingestion, it is necessary to consider the amount of chemical that is actually released from the sediment/fen into the gut and small intestine, and not just the total amount that is ingested with the sediment/fen. A site-specific bioaccessibility study was conducted to determine the bioaccessibility of arsenic from sediment relative to the medium used to derive the toxicological criterion (referred to as the relative absorption factor (RAF_{oral})). The bioaccessibility results are provided in Appendix A and summarized in Section 6.1. An RAF_{oral} for mercury of 1.0 was assumed. Fen samples were not tested for bioaccessibility. As such, the same value as that used for sediment was used for the fen.

The following equation (Health Canada, 2012; 2017b) was used to predict exposure *via* ingestion of sediment:

Ingestion of Sediment								
where:	$EXP_{Oral} = \frac{C_{sed/fen} * IR * RAF_{oral} * EF}{BW * DPY}$							
EXP _{Oral} = IR	 daily oral exposure <i>via</i> ingestion of sediment/fen (mg/kg/day) sediment/fen ingestion rate (either shoreline sediment or suspended sediment) (kg/d) 							
RAF _{oral} EF	 relative absorption factor from the gastrointestinal tract (unitless) exposure frequency (days/year) 							
BW DPY	 body weight (kg) days per year (365 days/year) 							

Dermal Exposure

To estimate exposure *via* dermal contact with shoreline/bedded sediment/fen, it is assumed that a single dermal exposure event occurs for every day that a receptor is involved in recreational activities that results in contact with sediment/fen in Barry's run. Exposure is a function of the surface area of exposed skin and the sediment adherence to this skin. This will produce an estimate of the mass of COPC adhered to the skin on a daily basis. Since route-specific Toxicity Reference Values (TRVs) are not available for dermal exposure, the dermal exposure must be compared to the oral TRV. The insoluble nature of most metals in sediment/fen limits their potential for uptake through the skin. Available data on dermal uptake of metals indicate that uptake rates are low (Paustenbach, 2000). Since dermal absorption of the COPC are low relative to oral absorption, the dermal exposure was adjusted by applying a relative dermal advermal routes. Therefore, the estimated mass value is multiplied by a chemical-specific RAF_{Dermal} to yield the sediment/fen dermal exposure estimate in mg/kg body weight/day. The RAF_{Dermal} were those recommended by Lowney *et al.* (2007) for arsenic (0.005) and by Moody et al (2009) for mercury (0.466).

The following equation was used to predict exposure *via* dermal contact with sediment, based on Health Canada (2012; 2017b):

Ingestion of Sediment							
where:	$EXP_{Dermal} = \frac{C_{sed/fen} * [\Sigma(SA_i * SL_i)] * RAF_{Dermal} * EF_1 * EF_2}{BW * DPY}$						
EXP _{Dermal} SAi SLi RAF _{Dermal} EF ₁ EF ₂ BW DPY	 daily dermal exposure via contact with sediment/fen (mg/kg/day) surface area of body part exposed for sediment loading (m²) sediment loading rate to exposed skin of body part (kg/m²-event) relative absorption factor through skin (unitless) exposure frequency (days/year) exposure frequency (events/day) body weight (kg) days per year (365 days/year) 						

5.2.2 Exposure to COPCs in Surface Water

Exposure was assumed to occur *via* incidental ingestion of dissolved COPCs in surface water as well as dermal contact of surface water with all skin. The method used to predict dermal absorption was that recommended by the U.S. EPA Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E: Supplemental Guidance for Dermal Risk Assessment) (U.S. EPA, 2004). In this method, the absorption of chemicals from water is a function of the thickness of the outer layer of the skin (known as the stratum corneum) and the duration of the exposure event. This model assumes that absorption continues after the exposure event has ended. The final absorbed dose (DA_{event}) considers the net fraction available for absorption on the stratum corneum after the exposure event. Since the length of the daily exposure events are relatively short (1 hour), it was assumed that a steady-state would not be reached and that neither the viable epidermis nor the cutaneous blood flow would limit

the dermal absorption of the COPC (U.S. EPA, 2004). The following equations were used to predict exposure *via* incidental ingestion and dermal contact with surface water:

Dermal Expo	Dermal Exposure While Swimming						
where:		$EXP_{DermSW} = \frac{DA_{event} * SA * EV * EF * CF}{BW * DPY}$					
EXP _{Derm SW} DA _{event} SA EV EF	= = = =	daily dermal exposure <i>via</i> direct contact with surface water (mg/kg/day) absorbed dose per event (μg/cm ² -event) exposed surface area (cm ²) event frequency (event/day) exposure frequency (days/year)					
BW	=	body weight (kg)					
DPY	=	days per year (365 days/year)					
CF	=	conversion factor (0.001 mg/µg)					

In the above equation, the DA_{event} term was calculated as follows:

$$DA_{event} = K_P * C_{SW} * CF_1 * t_{event} * CF_2$$

where:

DA _{event}	=	absorbed dose per event (µg/cm ² -event)
Kp	=	dermal permeability coefficient of COPC in water (cm/hr)
Csw	=	COPC concentration in surface water (µg/L)
CF₁	=	conversion factor for µg/L to mg/cm ³ (1.0x10 ⁻⁶)
tevent	=	duration of swimming event (hr event)
CF ₂	=	conversion factor for mg/cm ² -event to µg/cm ² -event

The dermal permeability coefficient (Kp) for each COPC was 0.001 cm/hr (U.S. EPA, 2004).

Incidental Ing	Incidental Ingestion of Surface Water While Swimming							
where:		$EXP_{oralSW} = \frac{IR_{SW} * C_{SW} * ED * EF * CF}{BW * AT}$						
EXP _{Oral SW} IR _{SW} C _{SW} ED EF BW DPY CF	= = = = =	daily oral exposure <i>via</i> incidental ingestion of surface water (mg/kg/day) incidental ingestion rate of surface water while swimming (L/hour) concentration in surface water (µg/L) event duration (hours/day) exposure frequency (days/year) body weight (kg) days per year (365 days/year) conversion factor (0.001 mg/µg)						

5.2.3 Exposure to COPCs in Local Fish

For the current assessment it was assumed that receptors would consume local fish an average rate as outlined in Table 5-7. The relative absorption factor for arsenic was determined through a bioaccessibility study for fish tissue similar to that described for sediment. Additionally, since arsenic toxicity varies widely depending on the form or species of arsenic in the fish tissue, and relatively non-toxic forms of arsenic are known to occur in fish and seafood (ATSDR, 2007), a speciation analysis was conducted on fish tissues to determine the proportion of inorganic and organic arsenic. The bioaccessibility and speciation results are provided in Appendix A and summarized in Section 6.1. For mercury, absorption within the gut *via* consumption of local fish was assumed to be 100%. Furthermore, all mercury was assumed to be in a methylated (organic) form within fish tissues, based on Health Canada (2007). Methylmercury has been found to represent a large percentage of total mercury measured in fish tissue, but the relative proportion varies with species. Health Canada (2007) recommends that in the absence of site-specific data, fish tissue mercury levels should be assumed to equal 100% methylmercury.

Ingestion of Local Fish								
		$EXP_{LF} = \frac{CR_{LF} * C_{LF} * EF * RAF_{ORAL} * SP_{inorganic/organic}}{BW * DPY}$						
where:								
EXPLF	=	daily exposure to COPC from ingestion of local fish (mg/kg/day)						
	=	consumption rate of local fish (g/day)						
EF	=	exposure frequency (365 days/year)						
RAFORAL	=	relative absorption factor for ingestion of COPC (unitless)						
SPinorganic/organic	=	fraction of arsenic in fish tissue in as inorganic/organic species						
C_{LF}	=	concentration of COPC in local fish tissue (mg/kg ww)						
BW	=	body weight (kg)						
DPY	=	days per year (365 days/year)						

5.3 Exposure Assessment Results

All exposure estimates were calculated in an Excel® based exposure model. Model printouts, including exposure assessment results, are included as Appendix C.

6.0 TOXICITY ASSESSMENT

6.1 Bioaccessibility and Speciation

One of the most important factors in determining exposure of target tissues to a substance, and the body's ultimate response, is bioavailability. Bioavailability is the fraction of the total amount of a substance to which an organism has been exposed that successfully enters the blood stream. The bioavailability of a substance is dependent on the chemical form, the environmental medium, the route of exposure, physiological characteristics of the organism at time of exposure (e.g., ingested substances may be absorbed to different extents depending on whether the stomach is full or empty) as well as the tissues/organs with which the substance must interact as it passes from the point of entry to target tissues. As discussed in Section 2.2, bioaccessibility refers to the fraction of the COPC which can be biologically extracted from the exposure media (*i.e.*, soils or sediments) and solubilized within the gastrointestinal tract so that it is available for absorption through the intestinal wall into the blood stream (Kelly *et al.*, 2002). In other words, bioaccessibility sets an upper limit on bioavailability, and the two processes are positively correlated. This is especially relevant when evaluating the degree to which substances bound to soil can be absorbed into the body.

Bioaccessibility testing was conducted by ESG of Royal Military College in Kingston, ON, on sediments and fish tissues for the current project (see ESG, 2019; Appendix A). As summarized in ESG (2019), to obtain the bioaccessible arsenic for the humans exposed to soil/sediment, the United States Environmental Protection Agency (U.S. EPA) OLEM 9200.2-164 (April 2017) method (U.S. EPA 2017) was employed. Each dried and sieved sample (< 150 µm fraction) was extracted in 100 mL extraction vessels with a 0.4 M glycine solution adjusted to pH 1.5 in a liquid-to-(dry) solid ratio of 100:1. The extraction was carried out with end-over-end mixing at body temperature (37°C) for 1 hour and liquid was separated from solids through the use of 0.45 um filtration. All extracts were analyzed for arsenic concentrations by ICP-MS, and total concentrations of arsenic in sediment samples were obtained by agua regia digestion and analysis using ICP-MS. Drying, sieving and extraction were carried out in the ESG laboratory. Analysis of extracts and sediments was carried out at the Analytical Services Unit at Queen's University, a laboratory accredited by the Canadian Association for Laboratory Accreditation (CALA). The methods used for analysis (metals in solids by ICP-MS and metals in water by ICP-MS) are listed on ASU's scope of accreditation. All Quality Assurance results were considered acceptable (see ESG, 2019; Appendix A). Table 6-1 provides the results of sediment bioaccessibility testing on 5 submitted samples.

SAMPLE ID	Bioaccessible Concentration of Arsenic (mg/kg)	Total Arsenic Sediment Concentration (mg/kg)	% Bioaccessible Arsenic*	
	As	As	As	
Biosed 19-1 2/2	310	4500	6.9	
Biosed 19-2 2/2	199	990	20	
Biosed 19-4 2/2	255	3200	8.0	
Biosed 19-5 2/2	281	4000	7.0	
Biosed 19-6 2/2	61.2	200	31	

Table 6-1 Bioaccessible Arsenic Concentrations in Sediment

*Results are reported on a dry weight basis, for the <150 um fraction of soil

Based on the results presented in Table 6-2, bioaccessibility of arsenic in sediments ranged from 6.9% to 31% in the submitted samples, with a mean value of 14.6%. Biosed 19-6 had the highest percent bioaccessibility. This sample was taken near the outflow of Barry's Run (towards Lake Charles) and had high level of organic material present in the sample. The measured total arsenic concentration in the sample (200 mg/kg) was noticeably lower than that reported in other samples, which is likely a function of deposited organic matter overlying the sediments. Samples Biosed 19-1, 19-4 and 19-5 have lower bioaccessible arsenic, ranging from 6.9 to 8.0%, and these samples also have higher total arsenic concentrations (ranging from 3200 to 4500 mg/kg), relative to other samples. These samples could contain less organic depositional material and be more representative of tailings, which, based on bioaccessibility testing of the main tailings area at the historic Montague Mines site, was found to have low bioaccessibility (95 UCLM of data: 11.5%, N= 19; ESG, 2009).

For the HHRA, the mean value of 14.6% was selected to represent the bioaccessibility of arsenic in sediments, based on the pretense that areas containing tailings have elevated arsenic concentrations and would be represented by lower bioaccessible arsenic concentrations. Fen samples were not tested for bioaccessibility. As such, the same value as that used for sediment was used for the fen. The mean sediment bioaccessibility value was adjusted using the following equation, which relates the bioaccessibility results with relative bioavailability results (RBA), which is recommended by Health Canada (2017a):

Relative Bioavailability_{arsenic}(%) = $0.79 \times IVBA$ (%) + 3.0

The resultant value used in the modelling was 14.5%.

For fish tissues, arsenic bioaccessibility testing was also conducted, along with arsenic speciation testing. As discussed in ESG (2019; see Appendix A), to obtain the bioaccessible fraction of arsenic in the fish tissue samples, the United States Environmental Protection Agency (U.S. EPA) OLEM 9200.2-164 (April 2017) method (U.S. EPA 2017) was used to conduct the analysis, with modifications for to account for food content in the stomach. Each dried and ground fish tissue sample was extracted in 50 mL extraction vessels with a liquid-to-(dry) solid ratio of approximately 40:1. This was equal to a liquid-to-(wet) solid ratio of approximately 10:1, which was designed to be physiologically representative of ratios during meals. The samples were extracted with a 0.4 M glycine solution adjusted to pH 1.5 with endover-end mixing at body temperature (37°C) for 1 hour and liquid was separated from solids through the use of 0.45 µm filtration. All extracts were analyzed for total arsenic concentrations by ICP-MS, and total concentrations of arsenic in fish samples were obtained by acid digestion and analysis using ICP-MS. Drying, grinding, and extraction were carried out in the ESG laboratory. Analysis of extracts and fish tissues was carried out at the Analytical Services Unit at Queen's University, a laboratory accredited by the Canadian Association for Laboratory Accreditation (CALA). The methods used for analysis (metals in solids by ICP-MS and metals in water by ICP-MS) are listed on ASU's scope of accreditation.

Speciation analysis was carried out in the ESG laboratory on the extracts by high performance liquid chromatography (HPLC)-ICP-MS. The HPLC methods were anion exchange and cation exchange chromatography. The following species (as standards) could be separated by the methods used: arsenobetaine (AB), dimethylarsinic acid (DMA), monomethylarsonic acid (MMA), arsenosugars, trimethylarsine oxide (TMAO), arsenocholine, and tetramethylarsonium ion. Challenges with instrument performance caused delays in the analysis of inorganic AsIII and AsV in the sample extract matrix, and hence, some of the analysis was conducted by ALS

laboratories, to avoid delays in reporting (See Appendix A; ESG, 2019). Quality Assurance reporting from both labs was considered acceptable. Tables 6-2 and 6-3 present the bioaccessibility and speciation data, respectively, for the brook trout and smallmouth bass samples submitted for analysis.

SAMPLE ID	Bioaccessible Concentration	Fish Tissue Concentration	% Bioaccessible Arsenic	
	As	As	As	
F19-01 (brook trout < 25 cm)	0.66	1.1	62%	
F19-02 (brook trout > 25 cm)	0.69	0.88	78%	
F19-03 (small mouth bass < 35 cm)	1.4	2.4	57%	
F19-07 (brook trout < 25 cm)	0.83	1.3	62%	
F19-14 (small mouth bass < 35 cm)	0.97	2.1	46%	

Table 6-2 Bioaccessibile Arsenic Concentrations in Fish Tissue (wet weight)

The maximum bioaccessibility values for each fish species/size range was used to characterize the bioaccessibility of arsenic in each species, due to the small number of samples within each size category.

It is important to understand how arsenic is metabolized in the body following ingestion, since different forms, or species, of arsenic have different toxicological potency. As discussed in ATSDR (2007), the primary method of metabolism of inorganic arsenic in humans is methylation. Arsenic V is reduced to arsenic III, and a portion of this is subsequently methylated to MMA and DMA. These metabolic pathways are presented in Figure 6-1. The main route of arsenic excretion is in the urine, and people exposed to arsenic excrete a combination of inorganic arsenic and its methylated metabolites in the urine. Based on the metabolic biotransformation pathways of inorganic arsenic to organic methylated arsenic (see Figure 6-1), and information related to the toxicity of the different species of arsenic detected, the arsenic species were grouped, where appropriate (see Table 6-3). The various groups were as follows:

- Inorganic arsenic [As (III) and As(V)] were not combined with other forms of arsenic, since these forms are highly toxic, relative to other forms of arsenic (see ATSDR, 2007). Separate TRVs are not available for these two species, and hence, these two inorganic species are combined to enable a conservative assessment of risk.
- Methylated organic forms of arsenic, MMA and DMA, were identified separately in the speciation analysis, along with trimethylarsine oxide (TMAO). As summarized by ATSDR (2007), DMA undergoes additional methylation, which results in the formation of TMAO in some species. Since MMA was not detected in any tissues (see Table 6-3), it was not grouped with other arsenic species, and it was not considered further. Since TMAO is formed from DMA, and there are inadequate toxicity data to characterize the toxicity of TMAO on its own (ATSDR, 2007), it was combined with DMA in Table 6-3, such that the toxicity was assumed to equal that of DMA.
- Another organic arsenic compound, arsenobetaine (AB), was also identified separately in the speciation analysis (see Table 6-3). This compound is commonly found in fish and seafoods and is considered relatively benign from a toxicity perspective (see ATSDR, 2007). They are not assessed further from a human health perspective.

Table 6-3	Arsenic Speciation in Fish Tissue (wet weight)
-----------	--

Sample ID	AsV	AsIII	DMA	ММА	AB	ΤΜΑΟ	SOS	Percent inorganic	Percent DMA/MMA/TMAO	Percent AB
F19-01	0.040	0.011	0.036	< 0.009	0.12	0.53	0.73	7%	77%	16%
F19-02	0.030	0.009	<0.009	< 0.009	0.14	0.62	0.80	5%	78%	18%
F19-03	0.11	0.013	1.2	<0.01	0.11	<0.01	1.5	8%	84%	8%
F19-07	0.071	0.012	0.020	<0.01	0.11	0.77	0.97	9%	81%	11%
F19-14	0.092	0.017	0.75	<0.01	0.21	<0.01	1.1	10%	70%	19%

AsIII = arsenite, AsV = arsenate, MMA = monomethylarsonic acid; DMA = dimethylarsinic acid; AB = arsenobetaine; TMAO = trimethylarsine oxide SOS = sum of species = AsIII + AsV + MMA + DMA + TMAO + AB

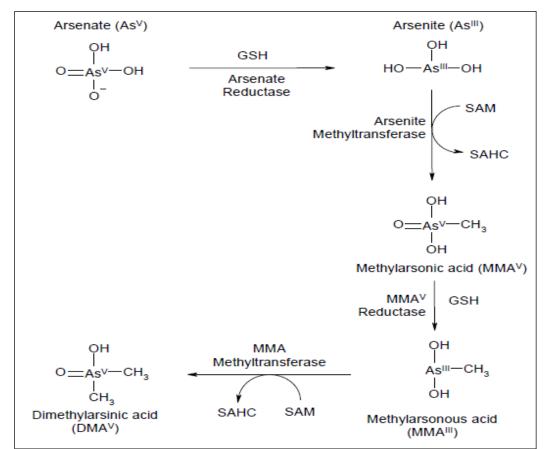


Figure 6-1 Metabolic Biotransformation Pathways for Arsenic (from ATSDR, 2007)

6.2 Selection of Toxicity Reference Values (TRVs)

To evaluate potential risks to human health from exposure to the COPC, oral TRVs were used in the assessment. The priority for selecting TRVs was given to those available from Health Canada (2010). If TRVs were not available from Health Canada (2010), a TRV was selected from other regulatory or recognized scientific agencies, according to Health Canada (2012) guidance, including:

- United States Environmental Protection Agency (US EPA);
- World Health Organization;
- Netherlands National Institute of Public Health and the Environment (RIVM);
- Agency for Toxic Substances and Disease Registry; and,
- California Environmental Protection Agency.

Table 6-4 provides the TRVs selected for this assessment. No TRV was identified for TMAO. The toxicity of this compound was assumed to be represented by that of DMA. Arsenobetaine was also identified in speciation analysis, but was concluded by ATSDR (2007) to be relatively non-toxic and not meriting further assessment in HHRAs.

Chemical of	Т	RV		Reference	
Potential Concern	Non-Cancer (mg/kg bw/day)	<i>Cancer</i> (mg/kg bw/day) ⁻¹	Critical Effect		
Arsenic-inorganic	0.0003	Ι	Hyperpigmentation, keratosis, possible vascular complications	US EPA 2016	
(As (III) and As(V))	-	1.8	Bladder, lung and liver cancer	Health Canada 2010	
Arsenic-organic (DMA)	0.02		Bladder effects	ATSDR, 2007	
Mercury (inorganic)	0.0003	-	Nephrotoxicity	Health Canada 2010	
Mercury (methyl)	0.00047 (general adult population); 0.0002 (women of child-bearing age and children< 12 years)	-	Neurotoxicity	Health Canada 2010	

7.0 RISK CHARACTERIZATION

The fundamental purpose of an HHRA is to estimate whether people living at, working at or visiting a given location are being exposed, or will be exposed, to concentrations of chemicals that have the potential to result in adverse health effects. The assessment of potential occurrences of adverse health effects from chemical exposure is based on the dose-response concept that is fundamental to the responses of biological systems to chemicals, whether they are therapeutic drugs, naturally-occurring substances, or man-made chemicals in the environment. Thus, an HHRA evaluates the likelihood (or risk) of adverse health effects following chemical exposures. It requires consideration of the toxic properties of the chemicals, the presence of receptors, and the existence of exposure pathways to the receptors. When all three factors are present (*i.e.*, chemicals, receptors and exposure pathways), there is a potential for adverse health effects to occur if exposures to the chemicals are elevated above acceptable levels (Figure 7-1)

Figure 7-1 Factors Required for a Risk of Health Effects

The following subsections describe the results of the risk characterization phase. ERs and ILCRs were approximated for all COPCs associated with both non-cancer (threshold dose response mechanisms) and cancer endpoints (non-threshold dose response mechanisms), respectively. ER and ILCR values have been presented for each exposure scenario.

Under typical ambient environmental exposure conditions, humans are exposed to complex mixtures of chemicals, rather than individual compounds. There can be a variety of types of interactions between chemicals in environmental mixtures that can alter the overall absorption, toxicokinetics, toxicodynamics, and toxicity of metals in humans and animals. Additivity of chemical toxicity occurs when chemicals have a similar mode or toxicological mechanism of action. The effect of a mixture of chemicals can be estimated from the sum of the exposure levels (weighted for potency), or the effects of the individual components. Since the COPCs at this site are inorganics and inorganic compounds tend to act via independent and unique modes of action, mixture effects were not considered.

For COPCs assessed in the HHRA, oral TRVs were used to predict risks associated with dermal exposure routes due to a lack of pathway-specific values. Therefore, oral and dermal risk estimates were summed to produce a total oral+dermal ER for threshold COPCs and a total oral+dermal ILCR for non-threshold COPCs.

7.1 Results of Sediment and Surface Water Exposure Assessment

Modelling outputs are provided in Appendix C, and include EPCs, receptor specific exposure estimates and ERs or ILCRs by pathway. Table 7-1 provides a summary of the ERs and ILCRs by pathway and COPC for swimming exposures, whereas Table 7-2 provides a summary of risks from sediment exposures. The assessment results are based on the data collected to date for the Study Area and exposure assumptions used in the assessment.

Table 7-1 Risks Related to Surface Water Exposure from Swimming

		ER				ILCR		
COPCs and Scenario	Oral Exposure (surface water)	Oral Exposure (suspended sediment)	Dermal Exposure	Total ER – Surface Water	Oral Exposure (surface water)	Oral Exposure (suspended sediment)	Dermal Exposure	Total ILCR – Surface Water
High Conta	ct – Low Freq	uency						
Arsenic – Toddler	0.011	0.013	0.0013	0.025	-	-	-	-
Mercury - Toddler	1.08E-6	0.00013	1.31E-7	0.00013	-	-	-	-
Arsenic - Adult	-	-	-	-	1.3E-06	1.5E-06	4.4E-07	3.2E-06
Low Contac	Low Contact – High Frequency							
Arsenic – Child	0.023	0.016	0.0046	0.044	-	-	-	-
Mercury - Child	2.35E-6	0.00033	4.78E-7	0.00033	-	-	-	-
Arsenic – Adult	-	-	-	-	5.7E-06	4.1E-06	1.9E-06	1.2E-05

Bolded values exceed the acceptable ER of 0.2 or ILCR of 1E-05

Table 7-2	Risks Related to Sediment Exposure
-----------	---

		ER			ILCR	
COPCs and Scenario	Oral Exposure (hand to mouth)	Dermal Exposure	Total ER – Sediment	Oral Exposure (hand to mouth)	Dermal Exposure	Total ILCR – Sediment
High Contact –	Low Frequency					
Arsenic – Toddler	0.11	0.10	0.22	-	-	-
Mercury - Toddler	0.0012	0.01	0.02	-	-	-
Arsenic - Adult	-	-	-	4.0E-06	3.5E-05	3.8E-05
Low Contact –	High Frequency					
Arsenic – Child	0.12	0.13	0.27	-	-	-
Mercury - Child	0.0024	0.04	0.04	-	-	-
Arsenic – Adult	-	-	-	1.1E-05	5.3E-05	6.4E-05

Bolded values exceed the acceptable ER of 0.2 or ILCR of 1E-05

<u>Risks Related to Swimming (surface water and suspended sediment ingestion and dermal absorption):</u>

- Non-cancer risks related to surface water dermal contact or ingestion through swimming activities are negligible for both mercury and arsenic, in both the low frequency and high frequency scenarios. Negligible risk means that the exposures are so low they are considered to have an insignificant impact on human health. Incremental cancer risk related to arsenic is negligible for the low frequency scenario but is marginally above the acceptable level of 1.0E-05, at 1.2E-05 for the high frequency scenario. The assumptions in the high frequency scenario assume 26 swimming events per year, over a 56 year timeframe (assumed lifespan of adult), and assume ingestion of a mouthful (total of 50 ml) of water in each swimming event, in conjunction with incidental ingestion of suspended sediments and dermal exposure.

Risk Related to Sediment Exposures (incidental ingestion and dermal contact)

- Risks related to sediment contact or ingestion through wading or playing activities are negligible for mercury in both scenarios.
- Risks related to arsenic through sediment contact or ingestion marginally exceed an ER of 0.2, and also exceed the acceptable benchmark of 1E-05, in both scenarios. The assumptions in the high frequency scenario assume 26 sediment contact events per year, over a 56 year timeframe (assumed lifespan of adult), whereas the low frequency scenario assumes 6 sediment contact events per year (over a lifetime). Due to the tendency of sediments to adhere to skin, exposures (and hence risks) related to dermal contact with sediments are higher than other pathways.

7.2 Results of Fen Exposure Assessment

The results of the fen exposure assessment are presented in Table 7-3.

COPCs and		ER			ILCR	
Scenario	Oral Exposure (hand to mouth)	Dermal Exposure	Total ER – Fen	Oral Exposure (hand to mouth)	Dermal Exposure	Total ILCR – Fen
High Contact -	Low Frequency			· · ·		
Arsenic – Toddler	0.061	1.79E-03	0.0623	-	-	-
Mercury - Toddler	0.0002	7.13E-05	0.000249	-	-	-
Arsenic - Adult	-	-	-	1.9E-06	5.6E-07	2.47E-06
Low Contact –	High Frequency	•				
Arsenic – Child	0.033	3.6E-03	0.037	-	-	-
Mercury - Child	0.0001	1.43E-04	0.00024	-	-	-
Arsenic – Adult	-	-	-	8.3E-06	2.4E-06	1.07E-05

Table 7-3 Risks Related to Exposure to Fen Soils

Bolded values exceed the acceptable ER of 0.2 or ILCR of 1E-05

Risk Related to Fen Exposures (incidental ingestion and dermal contact)

Non-cancer risks related to dermal contact or ingestion of fen soils through hiking, walking or biking activities are negligible for both mercury and arsenic, in both the low frequency and high frequency scenarios. Incremental cancer risk related to arsenic is negligible for the low frequency scenario but is marginally above the acceptable level of 1.0E-05, at 1.07E-05 for the high frequency scenario. The assumptions in the high frequency scenario assume 26 hiking or walking events per year, over a 56 year timeframe (assumed lifespan of adult), and assume incidental ingestion of soils and dermal exposure. The fen has low arsenic concentrations in most areas, with the exception of the eastern part of the property near Mitchell's Brook, where some elevated concentrations are present (see Figure 2-5).

7.3 Fish Consumption Assessment

Risks related to consumption of fish from the Study area are presented in Table 7-4.

Fish Species	Fish Length	General Public (> 12 yrs)	Women who are of may be pregnant and/or breast feeding	Child (age 5 – 12)	Child (age 1-4)	Infants (< 1 year)
Mercury						
Brook Trout	< 25 cm	0.16	0.18	0.14	0.14	0.18
	>25 cm	0.11	0.06	Avoid	Avoid	Avoid
Smallmouth Bass	<35cm	0.18	0.14	0.44	Avoid	Avoid
Arsenic – Non C	Cancer (inorgani	c)				
Brook Trout	<25 cm	0.05	0.03	0.02	0.02	0.03
	>25 cm	0.02	0.005	Avoid	Avoid	Avoid
Smallmouth Bass	<35 cm	0.06	0.02	0.06	Avoid	Avoid
Arsenic – Orgar	nic (DMA+MMA+	TMAO)				
Brook Trout	<25 cm	0.0055	0.0028	0.002	0.002	0.0027
	>25 cm	0.003	0.0007	Avoid	Avoid	Avoid
Smallmouth Bass	<35 cm	0.0067	0.15	0.48		
Arsenic - Cance	r					
Brook Trout	<25 cm	2.79E-05	1.4 E-05	1.04E-05	1.03 E-05	1.35E-05
	>25 cm	1.05E-05	2.46E-06	Avoid	Avoid	Avoid
Smallmouth Bass	<35 cm	3.00E-05	9.99E-06	3.22E-05	Avoid	Avoid

Table 7-4Risks Related to Fish Consumption

Bolded values exceed the acceptable ER of 1.0 for mercury, or 0.2 for arsenic or ILCR of 1E-05; where "avoid" is indicated, it is based on the Provincial consumption advisory (Province of Nova Scotia, 2019)

Risks Related to Fish Consumption:

- Risk related to mercury in fish tissue of either Brook Trout or Smallmouth bass are negligible, as long as consumption rates are in keeping with the current Provincial consumption advisory.
- Risks related to arsenic marginally exceed the acceptable risk level of 1E-05 for both Brook Trout and Smallmouth bass for some age categories, based on the assumption that all fish consumed comes from the Barry's Run area, and that consumption rates equal those cited in the Provincial consumption advisory.

7.4 Risks Related to Combined Exposures

It is possible that exposures could occur through swimming and sediment exposure and fen soil exposure. Hence, these scenarios were combined in Table 7-5 to consider this issue. The risks based on these added exposures increase slightly but are not markedly increased over those previously presented.

COPCs		ER				ILCR	2	
and Scenario	Total ER (surface water)	Total ER (sediment)	Total ER (fen)	Total ER	Total ILCR (surface water)	Total ILCR (sediment)	Total ILCR (fen)	Total ILCR –
High Conta	ct – Low Freq	uency	1	1	1			1
Arsenic – Toddler	0.025	0.21	0.062	0.29	-	-	-	-
Mercury - Toddler	0.00013	0.01	0.00025	0.01	-	-	-	-
Arsenic - Adult	-	-	-	-	3.2E-06	3.8E-05	2.5E-06	4.4E-05
Low Contac	ct – High Freq	uency						I
Arsenic – Child	0.044	0.25	0.037	0.33	-	-	-	-
Mercury - Child	0.00033	0.04	0.00025	0.04	-	-	-	-
Arsenic – Adult	-	-	-	-	1.2E-05	6.4E-05	1.07E-05	8.7E-05

Table 7-5 Risks related	to Surface water, Sedimer	nt and Fen Combined

Bolded values exceed the acceptable ER of 0.2 or ILCR of 1E-05

7.5 Risks Related to Sediment Mobilization

Another important factor to consider, with respect to risks related to this Study area, is that disturbance of the sediments (through recreational activities, or storm water release or flow) can result in mobilization of arsenic contaminated sediments to down stream areas. This is an important factor that must be considered in risk management of this area, which is unrelated to actual risks to site users of Barry's Run, but links to site users further downstream. This factor should drive risk management measures until further information is available in the Conceptual Closure Plan for the Montague Mines site.

8.0 UNCERTAINTIES

There is no prescribed "off the shelf" model or single approach to conduct a HHRA such as the current assessment developed to evaluate health risks in the Barry's Run area. As such, many decisions are made during the course of the assessment that can influence the outcome of the assessment. The quantitative, or numerical, risk assessment requires the input of large amounts of data and numerical variables. Some of these input variables can be obtained from the general published literature, while other information must be area-specific and were obtained through our understanding of the area and its current use. It must be realized that the goal of quantitative exposure assessment is to produce a conservative model to ensure that risks are not underestimated.

Each of the decisions and input variables contain some element of variability and uncertainty and can affect the outcome of the assessment to some degree. This leads to some amount of "uncertainty" with the final results and conclusions. Risk managers need to know the uncertainties surrounding the study conclusions so that they can make recommendations accordingly (e.g., recommend additional experimentation or monitoring and/or risk management).

A summary of key uncertainties and limitations of the assessment include the following:

- Exposure assumptions related to frequency and duration of swimming, fen use, and sediment exposures considered input from field personnel and some local knowledge based on observations but may not adequately capture actual usage frequency by local residents, or future land users. Public consultation and input would be important for refinement of assumptions related to both past, and potential future land use, in order to finalize possible risk management needs.
- Swimmers were assumed to ingest a mouthful of water during every swimming event. This is likely an overestimate.
- The selection of COPCs, arsenic and mercury, is considered appropriate. As discussed in Appendix B, some other metals exceeded NS Tier 1 EQS, most of which were within background ranges, and hence, not considered to merit further study. Cobalt was above background ranges, and above NS Tier 1 EQS, but based on the conclusions of the assessment related to arsenic (which was more predominantly and frequently over NS Tier 1 EQS than cobalt), the presence of cobalt in sediments is not expected to alter the conclusions of the assessment.
- The number of sediment and surface water samples were adequately comprehensive to characterize exposure potential, but some fluctuations of surface water concentrations may occur during storm events. It is considered unlikely that swimming would occur in storm events, and hence, markedly increased exposures related to surface water concentrations are not anticipated. The fish data were limited, when considered on a fish size basis for some size categories. There were only 3 Brook trout > 25 cm, and no Smallmouth bass > 35 cm. Therefore, conclusions related to these size groups in particular are uncertain.
- Surface waters, sediments and fish tissues were only analyzed for total mercury, rather than inorganic and methyl mercury. All mercury in fish tissues was assumed to be methylated, which is a conservative assumption. All mercury in sediments and surface waters was assumed to be inorganic. Some authors indicated that surface water could contain 5.6% methyl mercury (Krabbenhoft et al, 1999) and sediments 2% methyl mercury (US EPA 2005). Estimates of this magnitude would not have a substantial effect

on risk conclusions. It is plausible that methyl mercury could represent a high percentage of total mercury in either medium, but based on the low concentrations of mercury in surface waters (non-detect) and sediments (less than NS Tier 1 residential soil guidelines in almost all samples), it is unlikely that risk conclusions would change dramatically.

- The sampling data from Bureau Veritas (BV) was used to characterize exposures, whereas the analytical data from ESG was used to characterize bioaccessibility for both sediments and fish tissues, as well as fish tissue speciation. This was considered an appropriate approach, as the BV sediment analysis followed standard environmental analytical procedures used for environmental site characterization (sieving to 2 mm size fraction), whereas the ESG dataset required sieving to 150 microns for bioaccessibility testing.
- Sediment adherence factors were characterized based on Health Canada (2017b). The scientific literature supporting these assumptions are based on a tidal flat exposure scenario, which differs from the characteristics of the Study area. There is no tidal influence at this site, exposing large areas of wetted sediments, which could result in higher sediment exposures and adherence during play activities. Adjustments were made based on consideration of this issue, such that a 10-fold "rinsing" factor was applied to the sediment adherence on feet. The risks would increase if this rinsing factor were removed, but the conclusions of the assessment for mercury would remain unchanged, whereas cancer risk related to arsenic would increase by a factor of 5-fold.
- Sediments 19-4 and 19-6 were located in depositional zones, wherein a layer of organic matter (0.1 to 0.2 m deep) was deposited over sediments (see Appendix A). This layer could act as a protective layer, further minimizing exposure to tailings, if present in underlain sediments.
- Oral bioaccessibility data for sediments included 5 samples. This number of samples is limited and hence associated with some degree of uncertainty, but consideration of the bioaccessibility data from the main tailings area (ESG, 2009; n = 19), and the similarities between the datasets suggests that the sediments with high arsenic concentrations (which likely contain tailings) are associated with low arsenic bioaccessibility, and hence the data are considered adequately representative.
- Oral bioaccessibility analysis for fen samples was not conducted. The data from the sediment bioaccessibility testing was assumed to adequately characterize the fen samples. Oral exposure risks are low, and the application of higher bioaccessibility assumptions is unlikely to significantly change conclusions.
- Dermal bioavailability for arsenic was characterized by Lowney et al, 2009. This paper pertains to arsenic pesticide contaminated soils, which may have higher dermal bioaccessibility than those in the current study. Therefore, this assumption is considered to be conservative.
- Some compositing of fish tissues was required in order to obtain enough tissue mass for the various analyses (see Appendix A). F-01, F-07 and F-10 were composite samples. In all cases, fish from the same area (reach) were composited (as opposed to fish from differing reaches, wherein exposures could have varied more). Fish size was within the provincial guidance (< or > 25 cm) for composites F-07 and F-10. For F-01, 3 fish were composited, two of which were < 25 cm, and 1 of which was slightly above 25 cm, at 25.4 cm. This was not considered to have a bearing on the risk results.
- Fish speciation and bioaccessibility was also limited in terms of sample size. Therefore, there is uncertainty related to conclusions associated with speciation and bioaccessibility. A larger dataset would assist in reducing these uncertainties. Maximum speciation and bioaccessibility results were used, where sample sizes were limited.

- Fish consumption risks were based on the assumption that all fish consumed came from Barry's Run. This is considered conservative, as fishing could be occurring in any number of lakes and streams. In addition, it is uncertain how long fish were resident in Barry's Run prior to being caught, and whether fish caught in other seasons may have differing exposures. Additional data collection could reduce uncertainties related to this issue. In addition, the smallmouth bass fish may largely be catch and release, and hence, theoretical risk calculations may be overstated, relative to actual consumption.
- In the derivation of limits by regulatory agencies, large uncertainty factors (i.e., 100-fold or greater) were used in the estimation of the reference dose (RfD) for threshold-type chemicals. These uncertainty factors were applied to exposure levels from studies where no adverse effects are observed (i.e., to the NOAEL). Thus, exceeding the toxicological criterion does not mean that adverse effects would occur. Exposures greater than the calculated toxicological criterion may also be without risk (i.e., below the threshold for adverse effects in humans), but this could not be, or was not, determined by the agency which derived the toxicological criterion. Humans were assumed to be the most sensitive species with respect to toxic effects of chemical. However, for obvious reasons, toxicity assays are not generally conducted on humans, so toxicological data from the most sensitive laboratory species were used in the estimation of toxicological criteria for humans.
- In the case of arsenic, there is agreement in the published literature that the methods used to estimate the oral toxic potency of arsenic based on exposures of Taiwanese populations to arsenic in drinking water would significantly overestimate cancer risks at lower levels of exposures, such as that experienced by the general North American population. The use of such data would thus result in an overestimation of cancer risk for the populations within the study area.
- TRVs, because of their inherent conservatism, are widely considered protective of sensitive subgroups and lifestages. However, risk assessment, and TRV's and environmental quality guidelines for that matter, can only protect most of the people, most of the time. There can always be those individuals that are hypersensitive, and those situations require special consideration. But risk assessments do not investigate these situations unless there is clear evidence that such a situation exists in the study area. There is no such evidence of this in the study area.
- An ecological risk assessment was outside the scope of the current assessment but will be conducted as part of the Stage 2 Conceptual Closure project for the historic Montague Mines site.

9.0 SUMMARY OF CONCLUSIONS AND RISK MANAGEMENT NEEDS

Based on the data and assumptions used in the assessment, the following conclusions can be drawn:

- Infrequent swimming in Barry's Run and Mitchell's Brook within the Study area boundary (< 20 times/year) is estimated to have negligible risk levels for both arsenic and mercury, as long as sediment exposure is minimized. Negligible risk means that the exposures are so low they are considered to have an insignificant impact on human health.
- Sediment contact related to wading or swimming activities within Barry's Run and Mitchell's Brook was predicted to have negligible risk related to mercury. While sediment exposures for arsenic are associated with marginally increased risk levels relative to acceptable levels, it is uncertain whether the exposure assumptions used in the assessment reflect current or possible future land use patterns. Therefore, it is recommended that sediment contact be minimized until exposure assumptions can be further adjusted based on improved knowledge of public usage and as future land use in and around Barry's Run is more defined. Ultimately, clear statements related to site usage and risk management should be provided for area residents, and the assessment should reflect input from local land users related to exposure assumptions.
- Contact with soils along the fen was predicted to be associated with negligible risk levels, with the exception of the high hiking frequency scenario (which assumed 26 hikes or walking events per year, over a 56 year timeframe), wherein risks related to arsenic were marginally elevated.
- Fish consumption risks due to mercury levels in Brook trout and Smallmouth bass are negligible, as long as consumption rates are in keeping with the current Provincial fish consumption advisory. Risks related to arsenic in Brook trout and Smallmouth bass tissues marginally exceed acceptable risk levels for both species of fish, based on the assumption that all the fish people consume comes from Barry's Run, and that fish consumption rates equal those cited in the Provincial consumption advisory. These assumptions likely overestimate the amount and frequency of fish consumption from Barry's Run. Hence, a fish consumption advisory is unlikely to be needed, but input from the local fishing population, Nova Scotia Department of Health and Nova Scotia Department of Fisheries and Aquaculture should be sought prior to finalizing decisions related to the need for a consumption advisory.

Given the current levels of arsenic in sediments within Barry's Run and based on the assumptions related to current usage and exposure, risks are considered low, as the predicted exceedances are marginal using relatively high exposure scenarios which are likely conservative assumptions. Risk management is currently being implemented through public health warning signage, which instructs people to avoid disturbing the sediments, swimming, or consuming fish, until further notice. It is recommended that input be obtained on the exposure assumptions, so that the assessment can be refined to reflect intended use, for the purposes of finalizing risk management needs. Based on the results of this assessment, there is no need for additional risk management at this time, and the existing risk management approach (signage) should remain in place, in order to reduce the potential for sediment disturbance and mobilization downstream while a final closure plan for Montague Mines is being completed. In addition, the final closure project currently underway for the Montague Mines site is expected to

further reduce concentrations of arsenic (and mercury) in surface waters, and suspended sediment deposition in the study area. Additional study and design are currently underway on this closure plan.

The fen is likely acting as a sink for arsenic impacted sediments from upstream areas. Future land development involving release of storm waters to this area, or disturbance of sediments by public land users (through ATV usage in upgradient stream areas or dirt biking on exposed tailings at the Montague Mines site), has the potential to mobilize sediments in these areas and transport them further downstream into Lake Charles, if not properly managed.

10.0

DOCUMENT SIGN-OFF

Intrinsik Corp. (Intrinsik) has provided this report to NS Lands solely for the purpose stated in the report. The information contained in this report was prepared and interpreted exclusively for NS Lands, and may not be used in any manner by any other party. Intrinsik does not accept any responsibility for the use of this report for any purpose other than as specifically intended by NS Lands. Intrinsik does not have, and does not accept, any responsibility or duty of care whether based in negligence or otherwise, in relation to the use of this report in whole or in part by any third party. Any alternate use, including that by a third party, or any reliance on or decision made based on this report, are the sole responsibility of the alternative user or third party. Intrinsik does not accept responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

The HHRA has been performed in accordance with accepted practice and usual standards of thoroughness and competence for the profession of toxicology and human health risk assessment. Any information or facts provided by others, and referred to or utilized in the preparation of this report, is believed to be accurate without any independent verification or confirmation by Intrinsik. The information, opinions and recommendations provided within the aforementioned report have been developed using reasonable and responsible practices, and the report was completed to the best of our knowledge and ability.

Intrinsik Corp.

Christine Moore, M.Sc. Senior Scientist

wood.

Elliot Sigal, B.Sc. (Hon.), QPRA, UKRT, ERT Vice President/Senior Toxicologist

This Ell

Chris Elliot, P.Eng. Principal Environmental Engineer; Site Professional

11.0 References

ATSDR (2007). Toxicological Profile for Arsenic. US Department of Health and Human Services. Public Health Service. Agency for Toxic Substances and Disease Registry. August 2007. <u>https://www.atsdr.cdc.gov/toxprofiles/tp2.pdf</u>

DeSisto, S. 2014. Hydrogeochemical evaluation and impact of remediation design on arsenic mobility at historical gold mine sites. PhD thesis, submitted to the Department of Geological Sciences & Geological Engineering. Queen's University.

DeSisto, S.L. H. Jamieson, and M. Parsons. 2017. Arsenic mobility in weathered gold mine tailings under low-organic soil cover. Environmental Earth Sciences (2017) 76:773.

Dillon. 2019. Phase I/II Environmental Site Assessment. Port Wallace, Dartmouth, Nova Scotia. Prepared for Halifax Regional Municipality. August 2019.

Dillon. 2020. Field Work Component in Support of Human Health Risk Assessment. Port Wallace, Dartmouth, NS. Prepared for Nova Scotia Lands/Intrinsik Corp. January 2020. See Appendix A.

Environmental Sciences Group (ESG). 2009. Bioaccessibility of Arsenic from Tailings and Soils of the Gold Mine Districts in Nova Scotia, Canada. 2009. Prepared By: Royal Military College Kingston, Ontario.

Golder Associates. 2010. Identification and Evaluation of Protocols for the Derivation of Human Health Sediment Quality Guidelines. Submitted to Health Canada, March 25, 2010.

Health Canada, 2007. Human Health Risk Assessment of Mercury in Fish and Health Benefits of Fish Consumption. Bureau of Chemical Safety Food Directorate. Health Products and Food Branch.

Health Canada. 2010. Part II: Health Canada Toxicological Reference Values (TRVs) and Chemical- Specific Factors. Version 2.0. September 2010. Federal Contaminated Site Risk Assessment in Canada.

Health Canada. 2012. Federal Contaminated Sites Risk Assessment in Canada. PART I: Guidance on Human Health Risk Preliminary Quantitative Risk Assessment (PQRA), Version 2.0.

Health Canada. 2017a. Supplemental Guidance on Human Health Risk Assessment of Oral Bioavailability of Substances in Soil and Soil-Like Media. Federal Contaminated Site Risk Assessment in Canada. August 2017.

Health Canada. 2017b. Supplemental Guidance on Human Health Risk Assessment of Contaminated Sediments: Direct Contact Pathway. Federal Contaminated Site Risk Assessment in Canada. March 2017.

Hrudey, S.E., Chen, W., C.G. Rousseaux. 1996. Exposure Routes and Bioavailability Factors for Selected Contaminants. I. Arsenic. In: S.E. Hrudey (Ed.), Bioavailability in Environmental Risk Assessment. CRC Press, Boca Raton, FL.

Intrinsik et al, 2019. Conceptual Closure Study for the Historic Montague Mines Tailings Areas, Halifax Nova Scotia. Final Report. Submitted to Nova Scotia Lands, Sydney Nova Scotia. Submitted by: Intrinsik Corp, EcoMetrix, Klohn Crippen Berger and Wood. July 24, 2019.

Kelly, M.E., Brauning, S.E., Schoof, R.A., Ruby, M.V. 2002. Assessing Oral Bioavailability of Metals in Soil. Battelle Press, Columbus, Ohio.

Krabbenhoft, D.P., J.G. Wiener, W.G. Brumbaugh, M.L. Olson, J.F. DeWild, and T.J. Sabin. 1999. A national pilot study of mercury contamination of aquatic ecosystems along multiple gradients. U. S. Geological Survey Toxic Substances Hydrology Program: Proceedings of the Technical Meeting. Charleston, South Carolina, March 8-12, 1999. Volume 2 of 3: contamination of hydrologic systems and related ecosystems, water-resources investigation report 99-4018B. <u>Http://toxics.usgs.gov./pubs/wri99-</u> 4018/Volume2/sectionB/2301_Krabbenhoft/index.html

Laird, B.D., Van De Wiele, T.R., Corriveau, M.C., Jamieson, H.E., Parsons, M.B., Verstraete, W. and Siciliano, S.D. 2007.Gastrointestinal Microbes Increase Arsenic Bioaccessibility of Ingested Mine Tailings Using the Simulator of the Human Intestinal Microbial Ecosystem. Environ Sci Technol, 41:5542-5547.

LeBlanc, J.E., & Halfyard, E.A. 2010. Mercury and arsenic concentrations in fish tissues and the influence of historic gold mines in Nova Scotia. Department of Fisheries and Oceans, Nova Scotia Environment.

Lowney, Y. R. Wester, R. Schoof, C. Cushing, <. Edwards and M. Ruby. 2007. Dermal absorption of arsenic from soils as measured in Rhesus Monkey. Toxicological sciences. 100(2), 381-392.

Meunier, L., Koch, I. and Reimer, K.J. 2011a. Effects of organic matter and ageing on the bioaccessibility of arsenic. Environmental Pollution, 159:2530-2536.

Meunier, L., Koch, I. and Reimer, K.J. 2011b. Effect of particle size on arsenic bioaccessibility in gold mine tailings of Nova Scotia. Science of the Total Environment, 409:2233-2243.

Moody, R.P, J. Jonca, M. Richardson, S. Petrovic, and I. Chu. 2009. Contaminated soils (II) In vitro dermal absorption of nickel (N-63) and mercury (Hg-203) in human skin. J. Toxicol Environ Health Part A: 72(8):551-559.

NSE, 2014. Nova Scotia Environment Environmental Quality Standards for Contaminated Sites. Rationale and Guidance Document. April 2014

Parsons, M., K. LeBlanc, G. Hall, A. Sangster, J. Vaive, and P. Pelchat. 2012a. Environmental geochemistry of tailings, sediments and surface waters collected from 14 historical gold mining districts in Nova Scotia. Open File 7150 doi:10.4095/291923

Parsons, M., S. DeSisto and H. Jamison. 2012b. Leaching of gold mine tailings under different cover scenarios: A comparison of field and laboratory results. Presentation given to Nova Scotia Environment, June 2012.

Paustenbach, D.J. 2000. The practice of exposure assessment: a state-of-the-art review. J Toxicol Environ Health, Part B 3: 179-291.

Province of Nova Scotia, 2019. Fish Consumption Advisory. <u>https://novascotia.ca/nse/fish-consumption-advisory.asp</u>)

Richardson. 1997. Compendium of Canadian Human Exposure Factors for Risk Assessment. O'Connor Associates Environmental Inc.

Royal Roads University, 2007. Analysis and Assessment of the Bioaccessibility of arsenic in historic Nova Scotia gold mine tailings using Physiological Based Extraction Tests (PBET). Prepared for Environmental Health Assessment Services, Health Impact Bureau, Safe Environment Program. Health Canada. Draft report.

Shoaf, M, JH Shirai, G. Kedan, J, Schaum, JC Kissel. 2005. Child dermal sediment loads following play in a tidal flat. J.Expo. Anal. Environ/. Epidemiol. 15(5):407-412

U.S. EPA. 1989 Risk Assessment Guidance for Superfund. US Environmental Protection Agency, Washington, DC. EPA.

U.S. EPA. 2004. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E: Supplemental Guidance for Dermal Risk Assessment). U.S. Environmental Protection Agency, Washington, DC. EPA/540/R/99/005. July 2004. Available online: https://www.epa.gov/sites/production/files/2015-09/documents/part_e_final_revision_10-03-07.pdf

US EPA OSW. 2005. Human Health Risk Assessment Protocol for Hazardous Waste Combustion Facilities. Final. US EPA Region VI. Multimedia Planning and Permitting Division. Center for Combustion Science and Engineering. Office of Solid Waste.

US EPA. 2015. ProUCL Version 5.1 User Guide: Statistical Software for Environmental Applications for Data Sets with and without Nondetect Observations. US Environmental Protection Agency, Washington, DC. EPA. October, 2015. Available at https://www.epa.gov/sites/production/files/2016-05/documents/proucl_5.1_user-guide.pdf [January 16, 2020].

US EPA (United States Environmental Protection Agency). 2016. Integrated Risk Information System (IRIS) Chemical Assessment Summary. Arsenic, inorganic; CASRN 7440-38-2. Website: https://cfpub.epa.gov/ncea/iris2/chemicalLanding.cfm?substance_nmbr=278.

Walker, S.R., Parsons, M.B., Jamieson, H. E. and Lanzirotti, A. 2009. Arsenic mineralogy of near-surface tailings and soils: influences on arsenic mobility and bioaccessibility in the nova scotia gold mining districts. The Canadian Mineralogist, 47:533-556.

Wilson, R. H. Jones-Otazo, S. Petrovic, M. Roushome, L. Smith-Munoz, D. Williams, and I Mitchell. 2015. Estimation of Sediment Ingestion Rates based on hand-to-Mouth Contact and Incidental Surface Water Ingestion. Hum. Ecol. Risk Assess. 21(6) 1700-1713.

NOVA SCOTIA LANDS/INTRINSIK CORP.

Field Work Component in Support of Human Health Risk Assessment

Port Wallace, Dartmouth, NS

January 2020 - 19-1567

January 13, 2020

NOVA SCOTIA LANDS Harbourside Place Harbourside Commercial Park 45 Wabana Court Sydney, NS B1P 0B9

Attention: Mr. Donnie Burke

Report on Field Work Component in Support of Human Health Risk Assessment of Recreational Exposure Scenarios, Port Wallace, Dartmouth, Nova Scotia

Dillon Consulting Limited (Dillon) is pleased to present the following report detailing field work components in support of the Human Health Risk Assessment of Recreational Exposure Scenarios for the Halifax Regional Municipality (HRM) properties along Mitchell's Brook and Barry's Run (the site) which are located at Port Wallace within Dartmouth, Nova Scotia, with parcel identification designations (PID No.) 413071789 and 41376898, respectively.

Dillon would like to thank Nova Scotia Lands and Intrinsik Corp. for the opportunity to work together on this project. If you have any questions or comments regarding this report, please to not hesitate to contact the undersigned.

Sincerely,

DILLON CONSULTING LIMITED

Rebecca Appleton, P.Eng. Project Manager Lisa Marshall BBD MES

Lisa Marshall, PBD, MES Senior Technical Review

RMA:jes cc: Christine Moore, Intrinsik Corp.

Our file: 19-1567-1000

137 Chain Lake Drive Suite 100 Halifax Nova Scotia Canada B3S 1B3 Telephone **902.450.4000** Fax 902.450.2008

Table of Contents

Introduc	tion	1
1.1	Objectives	1
Field Wo	rk Components in Support of the Human Health Risk Assessment	3
2.1	Sediment and Surface Soil/Organics Sample Collection	3
2.2	Surface Water Sample Collection	5
2.3	Fish Tissue Sample Collection	5
Findings		6
3.1	Field Observations	6
3.1.1	Sediment and Surface Soil/Organic Sample Collection	6
3.1.2	Surface Water Sample Collection	6
3.1.3	Fish Tissue Sample Collection	6
3.2	Laboratory Analytical Results	7
3.2.1	Sediment	7
3.2.2	Metals in Surface Soils/Organics	7
3.2.3	Surface Water	7
3.2.4	Fish Tissue	8
Figures		
Figure 1:	Site Location Map	2
Figure 2:	Sample Locations	4
	Concentrations of Arsenic and Mercury in Sediment and Surface Soil/Organics	9
Figure 3:	concentrations of Arsenic and Mercury in Sediment and Surface Solly organics	

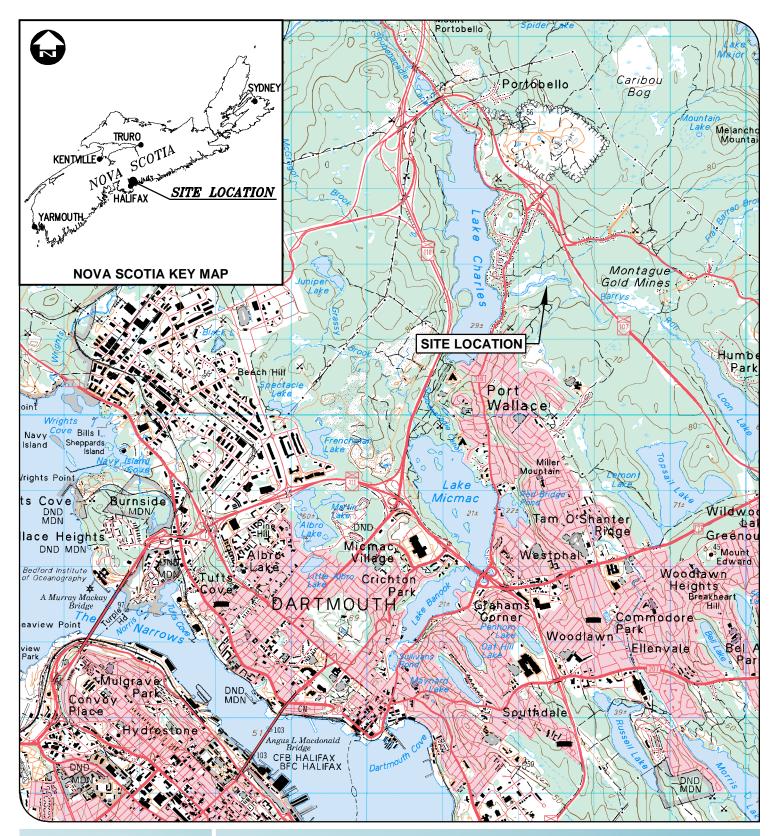
Appendices

- A Site Photographs
- B Field Observations
- C Analytical Results Tables
- D Laboratory Analytical Certificates
- E Disclaimer

References

1.0 Introduction

Dillon Consulting Limited (Dillon) is pleased to present the following report detailing field work components in support of the Human Health Risk Assessment (HHRA) for the Halifax Regional Municipality (HRM) properties along Mitchell's Brook and Barry's Run (the Site). The properties are located at Port Wallace within Dartmouth, Nova Scotia, with parcel identification designations (PID No.) 413071789 and 41376898, respectively. Dillon's Phase I/II ESA (Dillon, 2019) identified arsenic and mercury impacts at the Site from historical mining activities at the upstream former Montague Mines site. A site location map is presented on Figure 1.


Parts of Mitchell's Brook and Barry's Run are currently used for recreational purposes such as fishing and swimming. Given the degree of chemical impact identified in Mitchell's Brook and Barry's Run during the Phase I/II ESA (Dillon, 2019), the current recreational use of the area and its proposed future residential development, an assessment of potential human health risks associated with recreational exposures from the Site was initiated by the Province (through Nova Scotia Lands). The assessment of potential human health risks is being completed by Intrinsik Corp. (as part of the Mine Closure team which includes Wood, EcoMetrix and Klohn Crippen Berger) for the overall area, including the Site, in addition to the former Montague Mine site. Dillon was retained to collect additional data from the Site to be used by Intrinsik Corp. in their completion of an HHRA for the area and the site.

This report details the methodology, field observations and analytical results from the field work components in support of the HHRA being completing on the Site.

1.1 Objectives

The objectives of this project were as follows:

- 1. Further delineate metals surface soils/organics contamination in the fen immediately adjacent to Barry's Run and Mitchell's Brook;
- 2. Determine the in vitro bioaccessibility (IVBA) of arsenic in site sediments;
- 3. Determine arsenic (including speciation) and total mercury concentrations of arsenic in fish tissue from areas of the site where recreational fishing occurs;
- 4. Examine arsenic and mercury concentrations and sediment flux in surface water entering and leaving the Site through monthly surface water sampling; and,
- 5. Provide analytical results to the Nova Scotia Lands/Intrinsik Corp. team.

NOVA SCOTIA LANDS / INTRINSIK CORP. FIELD WORK COMPONENT TO SUPPLEMENT DATA FOR THE HHRA - PORT WALLACE

SITE LOCATION MAP FIGURE 1

MAP/DRAWING INFORMATION National Topographic System Mapsheet 11D/12.

CALE 1	1:50,000	
250	500	1000m

PROJECT: 19-1567

DATE: JANUARY 2020

CREATED BY: TLR CHECKED BY: RMA DESIGNED BY: SMG File Location: c:\projectwise\working directory\projects 2019\50tir\dms44291\191567-05-03 fig 1.dwg January, 13, 2020 1:48 PM

2.0 Field Work Components in Support of the Human Health Risk Assessment

2.1 Sediment and Surface Soil/Organics Sample Collection

On September 24, 2019, Dillon field personnel waded into the Barry's Run and Mitchell's Brook waterways and collected sediment samples from the bottom of the channel with a spade shovel in six sample locations (BIOSED19-1 to BIOSED19-6), which based on visual observations, appeared to contain minerogenic material believed to be mine tailings originating from the former Montague Mine site upstream. Upon completion, each sample was drained of excess water and then placed into a laboratory supplied container as a bulk sample. The samples were submitted to Bureau Veritas in Bedford, NS for total arsenic and total mercury analysis. Sample locations are presented on Figure 2. Upon receipt of analytical results from Bureau Veritas, five of the sediment samples (BIOSED19-1, 19-2, 19-4, 19-5 and 19-6) were submitted to the Royal Military College of Canada (RMC) Laboratory in Kingston, Ontario for total arsenic and bioaccessibility analysis. The five sediment samples sent to RMC were chosen to ensure a range of concentrations and areas of the Site were represented.

On September 24, 2019, Dillon field personnel collected surface soil/organics within the top 0.20 meters of the fen immediately adjacent to the Barry's Run and Mitchell's Brook waterways with a spade shovel in sixteen sample locations (TOF19-1 to TOF19-16). Upon completion, each sample was placed into a large zip lock bag as a bulk sample. The samples were submitted to Bureau Veritas in Bedford, NS for metals (including mercury) analysis. Sample locations are presented on Figure 2. Locations were strategically placed to achieve horizontal coverage across the two HRM land parcels which make up the Site.

Upon receipt of the laboratory analysis from Bureau Veritas, it was identified that Bureau Veritas did not analyze the surface soil / organics samples collected from the top of the fen for mercury. Since Bureau Veritas did not have adequate sample remaining to analyze for mercury, Dillon re-sampled the surface soil / organics in the same sixteen sampling locations within the top 0.20 meters of the fen immediately adjacent to the Barry's Run and Mitchell's Brook waterways on January 6, 2020. Two blind field duplicate samples (TOF20-FD1 and TOF20-FD2) were also collected and submitted to Bureau Veritas for mercury analysis.

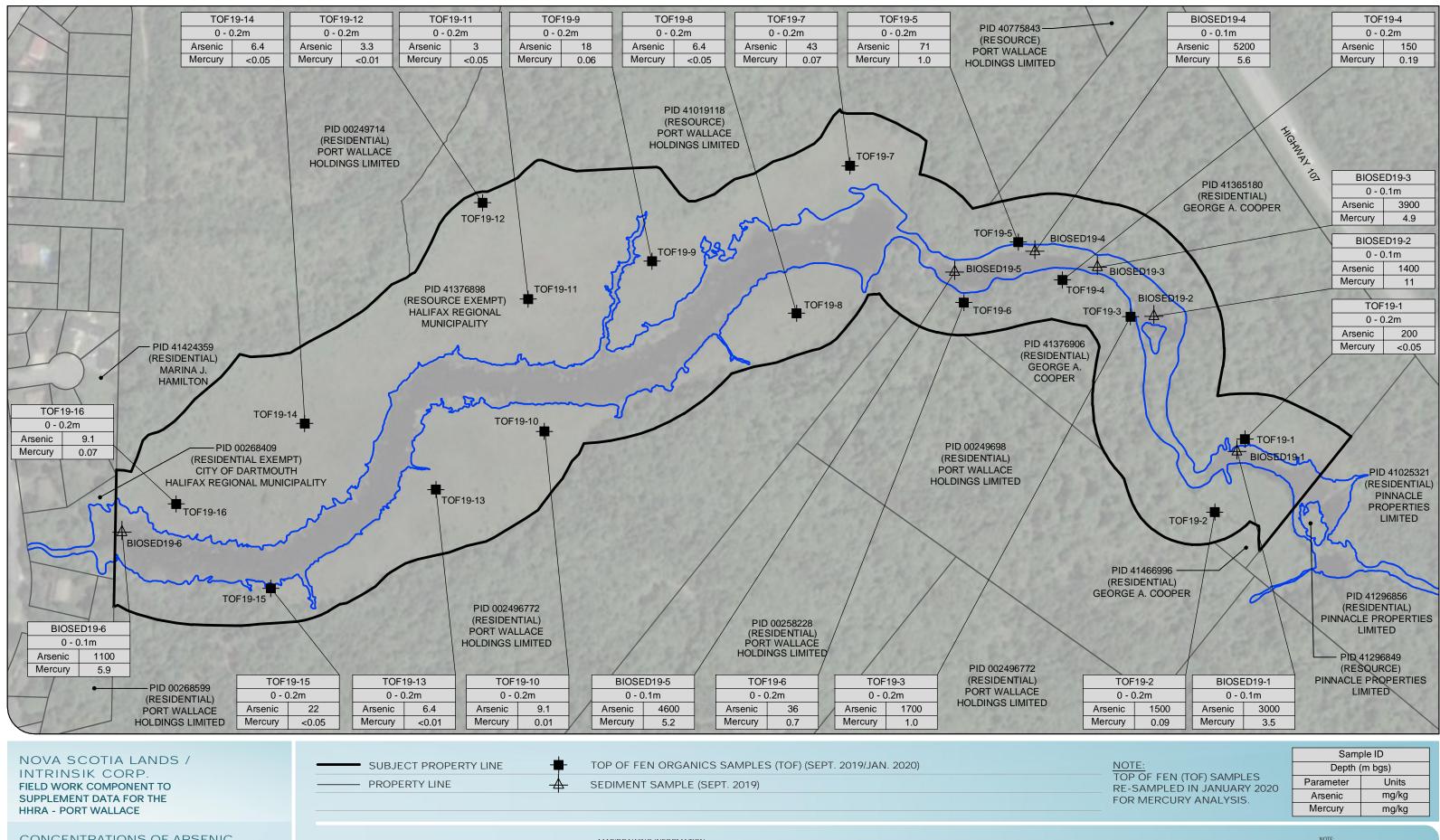
2.2 Surface Water Sample Collection

Dillon field personnel collected surface water samples at two locations, SW-IN located at the top of Mitchell's Brook and SW-OUT located at the bottom of Barry's Run (Figure 2) for three consecutive sampling events (September 25, November 13, and December 3, 2019 respectively). During the December 3, 2019 event, surface water samples were collected at the end of a rain event to capture potential variance associated with an influx of rainwater to the waterways. Significant precipitation (rain) fell the day prior to the November 13, 2019 surface water sampling event. Less than 5 mm of rain was recorded on November 13, 2019.

Surface water samples were collected and placed into laboratory supplied containers. Each sample was submitted to Bureau Veritas in Bedford, Nova Scotia (NS) for laboratory analysis of general chemistry, total and dissolved metals including mercury, dissolved organic carbon (DOC) and total suspended solids (TSS).

2.3 Fish Tissue Sample Collection

Between September 18 and 26, 2019, fish were caught from the shoreline of Barry's Run and Mitchell's Brook within the Site, using various techniques, including angling and fly-fishing. Twenty fish were collected in total; seven smallmouth bass and 13 brook trout. Sample lengths and whole fish weights were measured and recorded (See Appendix B, Table 3). The fish samples were de-headed and gutted and weighed. These weights represent the processed weight. The processed weights were used to create 16 fish fillet tissue samples. When required, fish of the same species collected from the same area of the site were composited to make up the required sample weight for one sample (i.e., samples F19-01, F19-07 and F19-10). Fish tissue samples (i.e., fillets) were stored on ice in a cooler in the field and placed in a freezer upon return to Dillon's office. The sixteen samples were submitted to Bureau Veritas laboratory in Burnaby, BC, for total arsenic and total mercury analysis. The Burnaby lab was selected as it was able to provide lower detection limits for the tissue samples than the Halifax lab.


Upon receipt of analytical results from Bureau Veritas, five of the fish fillet samples (F19-01, F19-02, F19-03, F19-07 and F19-14) were submitted to the RMC Laboratory in Kingston, Ontario for total arsenic, arsenic speciation and arsenic bioaccessibility analysis. The five samples sent to RMC were chosen based on the following considerations to ensure representative samples:

- Total arsenic (based on analytical results received from Bureau Veritas for the 16 fish tissue samples collected);
- Size of the fish (to represent those which would be more likely be consumed by humans);
- Type of fish so that, where available, both species observed on the Site were represented; and,
- Location where fish were caught to confirm fish caught in both Barry's Run and Mitchell's Brook were represented.

3.0	Findings
3.1	Field Observations
3.1.1	Sediment and Surface Soil/Organic Sample Collection
	Field observations of the sediment (minerogenic material) sampled during field activities are presented in Table 1 in Appendix B. Five of the six samples were collected from the Mitchell's Brook portion of the site (BIOSED19-1 to BIOSED19-5). The sediment within Mitchell's Brook collected from samples BIO19-1 BIOSED19-2, BIOSED19-3 and BIOSED19-5 consisted of grey, dense, fine-grained minerogenic material that was visually observed from water surface along the bottom of the channel in areas where organic matter had been scoured out by turbulent water. It is assumed that the minerogenic material is mine tailings originating from the former Montague mine located upstream of the Site. In areas where sediment was not visually observed from water surface (sample location BIOSED19-4 and BIOSED19-6), sediment was identified below 0.1 to 0.2 meters of organic matter.
	Field observations of the surface soil/organic samples collected from the fen during field activities are presented in Table 1 in Appendix B. The soil/organics within the top 0.2 meters of the fen adjacent to Barry's Run and Mitchell's Brook consisted of organic-rich material comprised mainly of sphagnum and grass-like sedges root mass and dark brown hydric soil.
3.1.2	Surface Water Sample Collection
	Field parameters measured from surface water quality during field activities are presented in Table 2 in Appendix B. Surface water was clear with light tannin staining during all three sampling events. During the first two sampling events (September 25, and November 13, 2019) there were no visual signs of suspended organics at both SW-IN and SW-OUT. During the third sampling event (December 3, 2019) there was visual signs of suspended organic matter at SW-IN.
3.1.3	Fish Tissue Sample Collection
	Field observations from the fish tissue sample collection field activities are presented in Table 3 in Appendix B. Twenty fish were collected in total; seven smallmouth bass and 13 brook trout. Sixteen fish were caught in Barry's Run and four fish were caught in Mitchell's Brook. Both brook trout and smallmouth bass were caught in Barry's Run. Brook trout were also caught in Mitchell's Brook; however no smallmouth bass were caught in Mitchell's Brook. Eight of the fish were observed to be female fish with eggs.

3.2	Laboratory Analytical Results
3.2.1	Sediment
3.2.1.1	Arsenic and Mercury in Sediment
	Laboratory analytical results for arsenic and mercury in sediment are presented in Table 1 in Appendix C and Figure 3. Laboratory analytical certificates are attached in Appendix D.
3.2.1.2	Bioaccessibility and Total Arsenic in Sediment
	Laboratory analytical results for bioaccessibility and total arsenic in sediment are presented in Appendix D. Bioaccessibility ranged from 6.9% in BIOSED19-1 to 31% in BIOSED19-6.
3.2.2	Metals in Surface Soils/Organics
	Laboratory analytical results for metals in the surface soil/organic samples collected from the top of fen are presented in Table 1 in Appendix C and Figure 3 (for arsenic and mercury only). Laboratory analytical certificates are attached in Appendix D.
3.2.2.1	Field QA/QC Results
	As previously discussed, the surface soil / organics was re-sampled in the sixteen sample locations on January 6, 2020 and submitted for mercury analysis. Two blind field duplicate samples were collected and submitted to Bureau Veritas for mercury analysis; one at sample location TOF19-5 (TOF20-FD1) and one at sample location TOF19-8 (TOF20-FD2). The analytical results are presented in Table 1 in Appendix C.
	Acceptable quality assurance relative percent difference (RPD) ranges for blind field duplicate samples are less than 40% at concentrations greater than five times the detection limit. Mercury was not detected above the detection limit in sample TOF19-8 or the field duplicate collected at this location (both results were reported as <0.05 mg/kg). The concentration of mercury in sample TOF19-5 (1.0 mg/kg) is less than five times the detection limit (detection limit of 0.3 mg/kg). A such, RPD calculations could not be performed on these samples.
3.2.3	Surface Water
	Laboratory analytical results for general chemistry parameters, metals, total suspended solids and dissolved organic carbon in surface water are presented in Table 2 in Appendix C. The results of arsenic and mercury in surface water are summarized on Figure 4. Laboratory analytical certificates are attached in Appendix D.

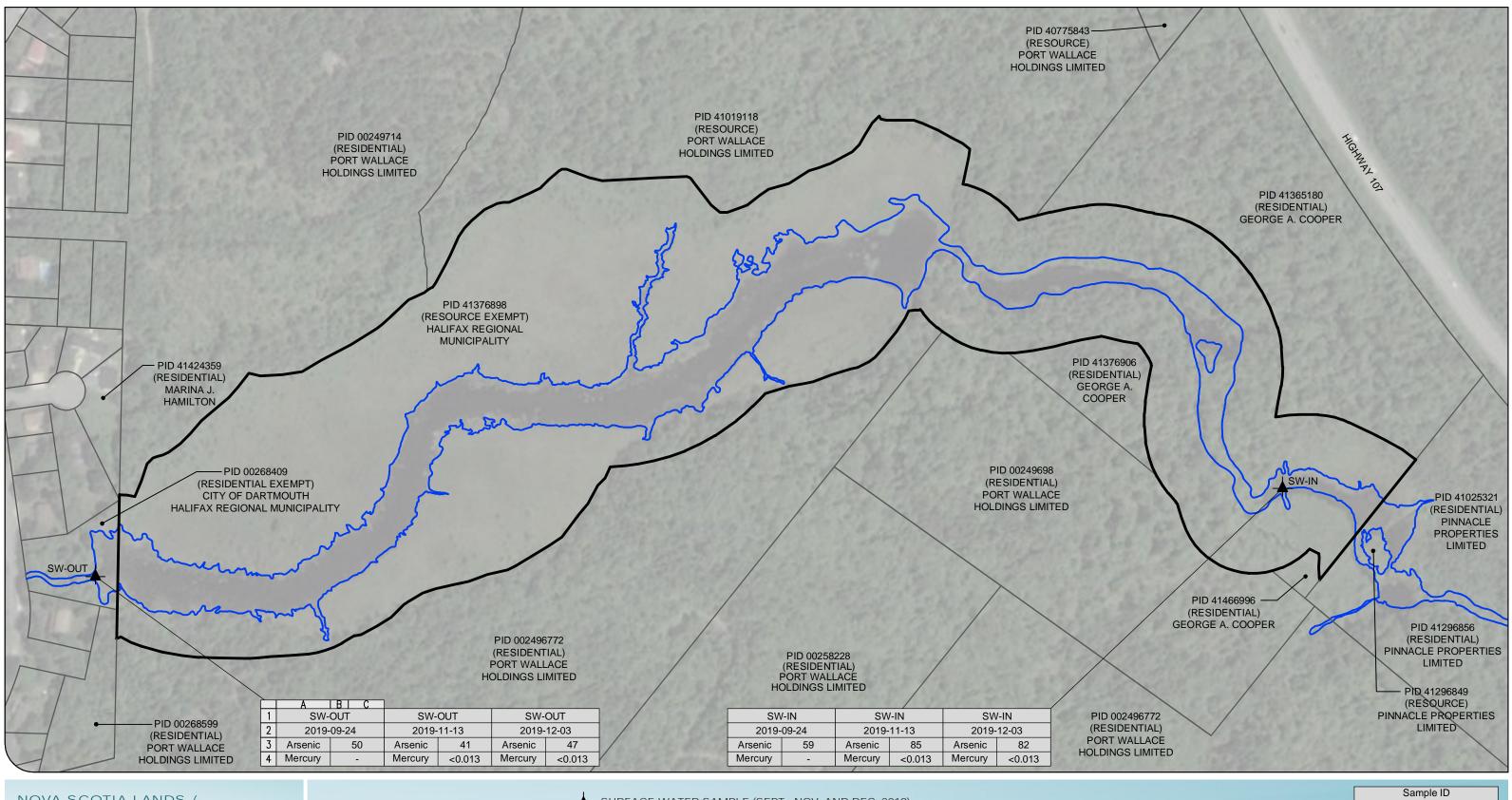
3.2.3.1	Sediment Flux
	The scope of work for this project included examining the monthly surface water analytical data to estimate sediment flux of arsenic and mercury entering Mitchell's Brook and leaving Barry's Run at the boundaries of the Site. The goal was to understand the level of suspended particulate being transported into and out of the Site to provide baseline information. The estimation of sediment flux is dependent on the concentration of Total Suspended Solids (TSS) in surface water. The analytical results showed that TSS was not detected in any of the surface water samples submitted and as such, it was not possible to estimate sediment flux.
3.2.4	Fish Tissue
3.2.4.1	Arsenic and Mercury in Fish Tissue
	Laboratory analytical results for total arsenic and total mercury in fish tissue are presented in Table 3 in Appendix C.
3.2.4.2	Arsenic Speciation and Total Arsenic in Fish Tissue
	Laboratory analytical results for arsenic speciation and total arsenic in fish tissue are presented in Appendix D.

CONCENTRATIONS OF ARSENIC AND MERCURY IN SEDIMENT AND SOIL / ORGANICS FIGURE 3

c:\projectwise\working directory\projects 2019\50tlr\dms44291\191567-05-03 fig 3.dwg January, 13, 2020 1:52 PM

MAP/DRAWING INFORMATION Nova Scotia Property Online and Dillon Consulting Limited site visits. Property lines are approximate only. This is not a legal survey.

CREATED BY: TLR CHECKED BY: RMA DESIGNED BY: CMD



Sam	ole ID									
Depth (m bgs)										
Parameter	Units									
Arsenic	mg/kg									
Mercury	mg/kg									

NOTE: INFRASTRUCTURE LOCATIONS ARE APPROXIMATE ONLY.

PROJECT: 19-1567 DATE: JANUARY 2020

NOVA SCOTIA LANDS / INTRINSIK CORP. FIELD WORK COMPONENT TO SUPPLEMENT DATA FOR THE HHRA - PORT WALLACE

CONCENTRATIONS OF DISSOLVED ARSENIC AND MERCURY IN SURFACE WATER FIGURE 4 SUBJECT PROPERTY LINE

SURFACE WATER SAMPLE (SEPT., NOV. AND DEC. 2019)

PROPERTY LINE

File Location: c:\projectWise\working directory\projects 2019\50tlr\dms44291\191567-05-03 fig 4.dwg January, 13, 2020 1:45 PM MAP/DRAWING INFORMATION Nova Scotla Property Online and Dillon Consulting Limited site visits. Property lines are approximate only. This is not a legal survey.

only. This is not a legal survey. CREATED BY: TLR CHECKED BY: RMA DESIGNED BY: CMD

Sam	ole ID
Da	ate
Sample ID	Units
Arsenic	µg/L
Mercury	µg/L

W S E

NOTE: INFRASTRUCTURE LOCATIONS ARE APPROXIMATE ONLY.

PROJECT: 19-1567 DATE: JANUARY 2020

Appendix A

Site Photographs

Nova Scotia Lands/Intrinsik Corp. Field Work Component in Support of Human Health Risk Assessment January 2020 - 19-1567

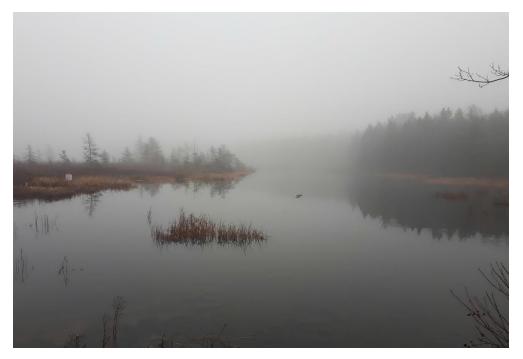


Photo 1: Barry's Run, facing east (December 3, 2019).

Photo 2: Stream at the junction of Mitchell's Brook and Barry's Run post-rain event, facing west (December 3, 2019).

Photo 3: Fish harvesting technique on Barry's Run, facing west (September 18, 2019).

Photo 4: Fish Species: Brook Trout, Fish ID: F3, Sample ID: F19_02 Fish (September 18, 2019).

Photo 5: Fish Species: Brook Trout, Fish ID: F14, Sample ID: F19_10 Fish (September 20, 2019).

Photo 6: Fish Species: Smallmouth Bass, Fish ID: F15, Sample ID: F19_11 Fish (September 20, 2019).

Photo 7: Surface soil / organics sample collected from the top of fen adjacent to Mitchell's Brook (September 24, 2019).

Photo 8: Surface soil / organics sample collected from the top of fen adjacent to Barry's Run (September 24, 2019).

Photo 9: Surface soil / organics sample collected from the top of fen adjacent to Barry's Run (September 24, 2019).

Photo 10: Sediment sample collected in Mitchell's Brook (September 24, 2019).

Photo 11: Sediment sample BIOSED19-5 collected in Mitchell's Brook (September 24, 2019).

Photo 12: Sediment sample BIOSED 19-4 collected in Mitchell's Brook with organics on top (September 24, 2019).

Photo 13: Visual of sediment on channel bottom of Mitchell's Brook with disturbed turbid cloud of sediment on the left following disturbance (September 24, 2019).

Photo 14: Up-gradient of Mitchell's Brook in the vicinity of SW-IN location, facing west (September 24, 2019).

Appendix B

Field Observations

Nova Scotia Lands/Intrinsik Corp. Field Work Component in Support of Human Health Risk Assessment January 2020 - 19-1567

Table 1: Field Observations from Sediment and Surface Soil / Organics (Top of Fen) Sampling Program (September 2019) Field Work Component in Support of the Human Health Risk Assessment - Port Wallace, Dartmouth , NS 19-1567

Sample ID	Coordinates	Matrix	Sample Depth (mbgs)	Description	Notes
BIOSED19-1	N44 43.022, W63 32.023	Sediment	0 - 0.1	Grey, dense, fine grained minerogenic material	Sample Submitted for Bioaccessibility
BIOSED19-2	N44 43.076, W63 32.069	Sediment	0 - 0.1	Grey, dense, fine grained minerogenic material. Approximately 3" of grey tailings observed, followed by organic sediments beneath.	Sample Submitted for Bioaccessibility
BIOSED19-3	N44 43.094, W63 32.104	Sediment	0 - 0.1	Grey, dense, fine grained minerogenic material	J
BIOSED19-4	N44 43.102, W63 32.134	Sediment	0 - 0.1	Brownish grey, dense, fine grained minerogenic material. Approximately 5 cm of organics was present above the sediment.	Sample Submitted for Bioaccessibility
BIOSED19-5	N44 43.094, W63 32.179	Sediment	0 - 0.1	Grey, dense, fine grained minerogenic material	Sample Submitted for Bioaccessibility
BIOSED19-6	N44 42.995, W63 32.641	Sediment	0 - 0.1	Brownish grey, dense, fine grained minerogenic material. Approximately 10 cm of organics was present above the sediment.	Sample Submitted for Bioaccessibility
TOF19-1	N44 43.027, W63 32.019	Organics	0 - 0.2	Grass-like sedge and sphagnum moss root mass with dark brown hydric soil	
TOF19-2	N44 43.033, W63 32.407	Organics	0 - 0.2	Grass-like sedge and sphagnum moss root mass with dark brown hydric soil	
TOF19-3	N44 43.086, W63 32.415	Organics	0 - 0.2	Grass-like sedge and sphagnum moss root mass with dark brown hydric soil	
TOF19-4	N44 43.124, W63 32.440	Organics	0 - 0.2	Grass-like sedge and sphagnum moss root mass with dark brown hydric soil	
TOF19-5	N44 43.011, W63 32.467	Organics	0 - 0.2	Grass-like sedge and sphagnum moss root mass with dark brown hydric soil	
TOF19-6	N44 43.037, W63 32.540	Organics	0 - 0.2	Grass-like sedge and sphagnum moss root mass with dark brown hydric soil	
TOF19-7	N44 42.973, W63 32.559	Organics	0 - 0.2	Grass-like sedge and sphagnum moss root mass with dark brown hydric soil	
TOF19-8	N44 43.007, W63 32.611	Organics	0 - 0.2	Grass-like sedge and sphagnum moss root mass with dark brown hydric soil	
TOF19-9	N44 42.998, W63 32.036	Organics	0 - 0.2	Grass-like sedge and sphagnum moss root mass with dark brown hydric soil	
TOF19-10	N44 43.076, W63 32.082	Organics	0 - 0.2	Grass-like sedge and sphagnum moss root mass with dark brown hydric soil	
TOF19-11	N44 43.100, W63 32.119	Organics	0 - 0.2	Grass-like sedge and sphagnum moss root mass with dark brown hydric soil	
TOF19-12	N44 43.106, W63 32.143	Organics	0 - 0.2	Grass-like sedge and sphagnum moss root mass with dark brown hydric soil	
TOF19-13	N44 43.088, W63 32.168	Organics	0 - 0.2	Grass-like sedge and sphagnum moss root mass with dark brown hydric soil	
TOF19-14	N44 43.137, W63 32.235	Organics	0 - 0.2	Grass-like sedge and sphagnum moss root mass with dark brown hydric soil	
TOF19-15	N44 43.079, W63 32.266	Organics	0 - 0.2	Grass-like sedge and sphagnum moss root mass with dark brown hydric soil	
TOF19-16	N44 43.100,W63 32.346	Organics	0 - 0.2	Grass-like sedge and sphagnum moss root mass with dark brown hydric soil	

Notes

BIOSED: Sediment Sample Collected in the Waterway

TOF: Top of Fen Organics Sample Collected in the Fen

Sample depth: samples were collected at surface of sediment / water interface. Sample depth represents depth of sediment from top of sediment in the channel. For samples BIOSED19-4 and BIOSED19-6, a small layer of organics was present above the sediment. The organics were removed prior to sampling.

Table 2: Field Observations from Surface Water Sampling Program (September, November and December 2019)Field Work Component in Support of the Human Health Risk Assessment - Port Wallace, Dartmouth , NS19-1567

	EVEN	JT #1	EVEN	NT #2	EVENT #3			
Sample ID	SW-IN	SW-OUT	SW-IN	SW-OUT	SW-IN	SW-OUT		
Date	2019-	09-25	2019-	11-13	2019-12-	03		
Approximate Flow Rate (m/s)	-	-	0.03	0.14	0.07	0.25		
Temperature (°C)	15.6	19.5	5.0	4.9	2.1	2.3		
pH*	6.52	6.45	6.90	6.91	6.28	6.13		
Conductivity (us/cm)	271	246	252	141	190	174		
Stream water observations	clear / light yellow	5 0		clear / light yellow	light yellow / mainly clear with some organic particulate	clear / light yellow		
Approximate Precipitation in 24 hours leading up to sampling event	~ /	mm	~35	mm	~15 mr	n		

Notes

SW-IN SW-OUT

*

N44 43.019, W63 32.025

N44 42.995, W63 32.657

lab pH reported for the November 2019 sampling event due to calibration issue with field pH meter

Flow rate not measured during September 2019 sampling event

Table 3: Field Observations from Fish Sample Collection Program (September 2019) Field Work Component in Support of the Human Health Risk Assessment - Port Wallace, Dartmouth, NS 19-1567

Sample ID	Fish ID	Species	Date Collected	Length (inches)	Total Weight ¹	Processed Weight ²	General Sample	Additional	Notes ³
	-	•		-	(g)	(g)	Area	Observations	
	F1	Brook Trout	09/18/2019	7.5	66	43	Mitchell's Brook	female with eggs	Sample Submitted
F19_01	F2	Brook Trout	09/18/2019	6.625	45	33	Mitchell's Brook		to RMC
	F4	Brook Trout	09/18/2019	7	49	36	Mitchell's Brook		
F19_02	F3	Brook Trout	09/18/2019	10	157	96	Mitchell's Brook	female with eggs	Sample Submitted to RMC
F19_03	F5	Smallmouth Bass	09/18/2019	10	194	141	Barry's Run		Sample Submitted to RMC
F19_04	F6	Brook Trout	09/18/2019	11.5	231	84	Barry's Run		
F19_05	F7	Smallmouth Bass	09/18/2019	8.625	118	83	Barry's Run		
F19_06	F8	Smallmouth Bass	09/18/2019	8.25	113	80	Barry's Run		
F10 07	F9	Brook Trout	09/19/2019	7.5	63	43	Barry's Run	female with eggs	Sample Submitted
F19_07	F10	Brook Trout	09/19/2019	4.75	30	22	Barry's Run		to RMC
F19_08	F11	Brook Trout	09/20/2019	9.25	125	91	Barry's Run	female with eggs	
F19_09	F12	Brook Trout	09/20/2019	8.75	111	81	Barry's Run		
F19_10	F13	Brook Trout	09/20/2019	8.5	98	65	Barry's Run	female with eggs	
F19_10	F14	Brook Trout	09/20/2019	9.25	121	84	Barry's Run	female with eggs	
F19_11	F15	Smallmouth Bass	09/20/2019	9.5	174	123	Barry's Run		
F19_12	F16	Brook Trout	09/20/2019	9.75	143	101	Barry's Run		
F19_13	F17	Smallmouth Bass	09/20/2019	9	136	93	Barry's Run		
F19_14	F18	Smallmouth Bass	09/26/2019	12	-	187	Barry's Run		Sample Submitted to RMC
F19_15	F19	Smallmouth Bass	09/26/2019	9.5	-	125	Barry's Run	female with eggs	
F19_16	F20	Brook Trout	09/26/2019	8.75	-	73	Barry's Run	female with eggs	

Notes

1. Total Weight - Weight of fish

2. Processed Weight - Weight of fish cleaned and gutted

3. Sample submitted to RMC: following receipt of analytical resuls from Bureau Veritas, five samples were submitted to RMC for total arsenic and arsenic speciation analysis

Appendix C

Analytical Results Tables

Nova Scotia Lands/Intrinsik Corp. Field Work Component in Support of Human Health Risk Assessment January 2020 - 19-1567

Metals in Freshwater Sediment and Soil / Organics Port Wallace, NS

Table 1: Metals Analytical Results - Sediment and Soil / Organics (Port Wallace, Dartmouth, NS) - Samples Collected September 2019 and January 2020

	Metals														!											
				1			1	1				1	1	Ivieta				1	1	1						/ !
		ma/kg	antimony	Arsenic Arsenic	mg/kg	Beryllium	Boron ma/ka	Cadmium Ma/ka	by/chromium Total (III+VI)	Cobalt Ba/km	Lapher Copper mg/kg	E J mg/kg	Lead ma/ka	Lithium Wa/ka	Manganese		/kg	molybdenum	Nickel Moleckel	Selenium	w/kg	by/ba	mg/kg	mg/kg	wadium Wanadium	Zinc
RDL (Reportable Detection Limit)	-	10	2	2	5	2	5	0.3		1119/ Kg	2	50	0.5	2	2		1 1	2	2	2	0.5	<u>пц/ку</u> 5	0.1	0.1	2	5
	1	10		2	1 3	<u> </u>	1 3	0.3	2		<u> </u>	1 30	0.5	2	<u> </u>	0.1		1 2	1 2	2	0.5	5	0.1	0.1		
Sample ID Coordinates	Depth (m)																									
BIOSED19-1 N44 43.022, W63 32.023	0 - 0.1	· ·	-	3000	-	-	-	-	-	-	-	-	-	-	-	3.5		-	-	-	-	-	-	-	-	· · ·
BIOSED19-2 N44 43.076, W63 32.069	0 - 0.1	· ·	-	1400	-	-	-	-	-	-	-	-	-	-	-	11		-	-	-	-	-	-	-	-	- I
BIOSED19-3 N44 43.094, W63 32.104	0 - 0.1	· ·	-	3900	-	-	-	-	-	-	-	-	-	-	-	4.9		-	-	-	-	-	-	-		- I
BIOSED19-4 N44 43.102, W63 32.134	0 - 0.1	· ·	-	5200	-	-	-	-	-	-	-	-	-	-	-	5.6		-	-	-	-	-	-	-	-	· ·
BIOSED19-5 N44 43.094, W63 32.179	0 - 0.1	· ·	-	4600	-	-	-	-	-	-	-	-	-	-	-	5.2		-	-	-	-	-	-	-	-	· ·
BIOSED19-6 N44 42.995, W63 32.641	0 - 0.1	-	-	1100	-	-	-	-	-	-	-	-	-	-	-	5.9		-	-	-	-	-	-	-	-	· ·
TOF19-1 N44 43.027, W63 32.019	0 - 0.2	8200	2.2	200	74	<2	<5	0.51	7.3	3.9	18	6300	69	3.1	320	-	<0.05 **	<2	13	<2	<0.5	46	<0.1	0.91	27	32
TOF19-2 N44 42.998, W63 32.036	0 - 0.2	14,000	2.1	1500	240	<2	5.2	2.3	9.1	98	37	23,000	58	3.9	14,000	-	0.09 *	3.5	57	2.9	<0.5	41	0.43	0.77	72	160
TOF19-3 N44 43.076, W63 32.082	0 - 0.2	18,000	2	1700	140	<2	<5	1.2	15	83	40	34,000	79	19	3500	-	1.0 ***	* <2	37	<2	<0.5	20	0.35	1.1	50	160
TOF19-4 N44 43.100, W63 32.119	0 - 0.2	5600	<2	150	66	<2	<5	<0.3	5.6	3.3	17	7600	110	3.2	110	-	0.19 **	<2	12	<2	<0.5	27	<0.1	0.36	18	26
TOF19-5 N44 43.106, W63 32.143	0 - 0.2	7100	<2	71	83	<2	<5	1.1	7	3.5	18	6500	260	4.3	160	-	1.0 **	<2	13	<2	<0.5	59	<0.1	0.82	23	59
TOF20-FD1 (Field Dup of TOF19-5)	0 - 0.2	· ·	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.08 **	-	-	-	-	-	-	-	-	· · /
TOF19-6 N44 43.088, W63 32.168	0 - 0.2	4100	<2	37	46	<2	<5	<0.3	4.3	3.4	11	4700	110	<2	150	-	0.7 **	<2	7.9	<2	<0.5	16	<0.1	0.36	17	20
TOF19-7 N44 43.137, W63 32.235	0 - 0.2	7700	<2	43	38	<2	<5	<0.3	6.6	1.3	16	2800	71	<2	36	-	0.07 **	<2	8.6	<2	<0.5	7.7	<0.1	0.43	30	16
TOF19-8 N44 43.079, W63 32.266	0 - 0.2	2700	<2	6.4	67	<2	<5	0.31	2.9	1.4	7.3	4100	22	<2	220	-	<0.05 **	<2	7.8	<2	<0.5	38	<0.1	0.27	16	28
TOF20-FD2 (Field Dup of TOF19-8)	0 - 0.2	· ·	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.05 **	-	-	-	-	-	-	-	- 1	· · /
TOF19-9 N44 43.100,W63 32.346	0 - 0.2	6400	<2	18	64	<2	<5	0.61	4.1	7	10	8900	61	<2	430	-	0.06 **	<2	12	<2	<0.5	43	<0.1	0.86	42	22
TOF19-10 N44 43.033, W63 32.407	0 - 0.2	3100	<2	9.1	78	<2	<5	0.41	3	2.6	6.4	2500	39	<2	200	-	0.01 *	<2	11	<2	<0.5	27	<0.1	0.26	14	25
TOF19-11 N44 43.086, W63 32.415	0 - 0.2	1600	<2	3	38	<2	<5	0.36	3.4	1.8	4.6	4400	38	<2	79	-	<0.05 **	<2	10	<2	<0.5	20	<0.1	<0.1	8.1	27
TOF19-12 N44 43.124, W63 32.440	0 - 0.2	4500	<2	3.3	31	<2	<5	<0.3	3	1.1	7.4	2700	42	<2	42	-	<0.01 *	<2	7.9	<2	<0.5	11	<0.1	<0.1	31	18
TOF19-13 N44 43.011, W63 32.467	0 - 0.2	3400	<2	6.4	110	<2	<5	0.65	2.6	2.2	7.4	2000	53	<2	130	-	<0.01 *	<2	14	<2	<0.5	44	<0.1	0.31	34	28
TOF19-14 N44 43.037, W63 32.540	0 - 0.2	3200	<2	6.4	56	<2	<5	< 0.3	3.4	1.7	8.7	2600	76	<2	29	-	<0.05 **	<2	16	<2	<0.5	19	<0.1	0.33	34	25
TOF19-15 N44 42.973, W63 32.559	0 - 0.2	11,000	<2	22	10	<2	<5	0.73	2.9	5.4	15	4400	110	<2	38	-	<0.05 **	<2	20	<2	<0.5	<5	<0.1	0.16	18	17
TOF19-16 N44 43.007, W63 32.611	0 - 0.2	2500	<2	9.1	40	<2	<5	0.35	3.5	1.6	6.7	2200	73	<2	17	-	0.07 **	<2	8	<2	<0.5	23	<0.1	0.23	23	12
Notes:																										
¹ * / ** / *** / **** : RDLs of 0.01 / 0.05 / 0.	3 / 0.5 for top of	f fen merci	urv resu	lts																						

¹ * / ** / *** / **** : RDLs of 0.01 / 0.05 / 0.3 / 0.5 for top of fen mercury results ²Top of fen surface soil / organics samples re-sampled in January 2020 for mercury analysis

Table 2: General Chemistry and Metals Analytical Results - Surface Water (Port Wallace, Dartmouth, NS)

			Sample ID		SW-IN						
			Coordinates	N44 -	43.019, W63 3	2.025					
		D	ate Sampled		2019-11-13		2019-09-24	2019-11-13	2019-12-03		
Vethod	Parameter	Unit	EQL								
Calculated	Langelier Index (@ 4C)	-		-1.99	-2.95	-2.91	-2.22	-2.96	-2.79		
Parameters	Langelier Index (@20C)	-		-1.74	-2.7	-2.65	-1.97	-2.71	-2.54		
	Saturation pH (@ 20C)	-		9.08	9.6	9.55	9.15	9.62	9.35		
	Saturation pH (@ 4C)	-		9.33	9.85	9.81	9.41	9.87	9.6		
	Nitrate (as N)	mg/L	0.05	< 0.05	< 0.05	0.086	< 0.05	< 0.05	0.14		
	Alkalinity (Bicarbonate as CaCO3)	mg/L	1	21	10	11	18	10	18		
	Alkalinity (Carbonate as CaCO3)	mg/L	1	<1	<1	<1	<1	<1	<1		
	Ionic Balance	%		0.21	6.37	5.81	1.2	6.22	8.16		
	Anions Total	meq/L		2.35	1.42	1.82	2.05	1.28	1.79		
	Cations Total	meq/L		2.36	1.25	1.62	2.1	1.13	1.52		
	Hardness as CaCO3	mg/L	1	30	17	19	29	16	19		
	Total Dissolved Solids (TDS) - Calculated	mg/L	1	140	82	100	120	75	100		
Inorganics	Alkalinity (total) as CaCO3	mg/L	5	21	10	11	18	10	18		
	Ammonia (as N)	mg/L	0.05	< 0.05	0.051	< 0.05	< 0.05	< 0.05	< 0.05		
	Nitrate + Nitrite (as N)	mg/L	0.05	< 0.05	< 0.05	0.086	< 0.05	< 0.05	0.14		
	Nitrite (as N)	mg/L	0.01	< 0.01	< 0.01	< 0.02 ^{#1}	< 0.01	< 0.01	< 0.02 #1		
	Phosphate	mg/L	0.01	0.016	0.021	0.02	0.014	0.013	0.013		
	Phosphorus	ug/L	100	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1		
	Phosphorus (Dissolved)	ug/L	100	<0.1	<0.1	<100	<0.1	<0.1	<100		
	Electrical conductivity (lab)	μS/cm	1	240	150	190	230	130	180		
	Chloride (Filtered)	mg/L	1	63	36	50	53	32	44		
	Dissolved Organic Carbon (Filtered)	mg/L	0.5	3.1	6.4	4	3.4	8.4	4.6		
	Total Organic Carbon (TOC)	mg/L	0.5	3.1	6.4	4.2	3.5	8.4	4.5		
	pH (Lab)	pH Unit		7.35	6.9	6.9	7.19	6.91	6.81		
	Silica as SiO2	mg/L	0.5	3.1	3.1	2	3	3.3	2.5		
	Sulphate (SO4) (Filtered)	mg/L	2	8.2	8.7	8.8	10	8.4	9		
	Total Suspended Solids (TSS)	mg/L	1	<1	<1	<1	<1	<1	<1		
	Turbidity	NTU	0.1	0.72	0.84	0.52	0.82	0.52	0.56		
	Colour	TCU	5	9.2	37	17	13	57	23		
Metals	Aluminium	mg/L	0.005	0.017	0.097	0.047	0.023	0.14	0.064		
	Aluminium (Dissolved)	mg/L	0.005	0.02	0.076	0.04	0.018	0.11	0.056		
	Antimony	mg/L	0.001	< 0.001	<0.001	<0.001	<0.001	< 0.001	< 0.001		
	Antimony (Dissolved)	mg/L	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.001		
	Arsenic	mg/L	0.001	0.065	0.093	0.091	0.055	0.046	0.049		
	Arsenic (Dissolved)	mg/L	0.001	0.059	0.085	0.082	0.05	0.041	0.047		
	Barium	mg/L	0.001	0.0082	0.0046	0.0038	0.0066	0.0053	0.004		
	Barium (Dissolved)	mg/L	0.001	0.008	0.0049	0.0034	0.0068	0.0049	0.004		
	Beryllium	mg/L	0.001	< 0.000	<0.001	<0.001	< 0.001	<0.001	< 0.001		
	Beryllium (Dissolved)	mg/L	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.001		
	Bismuth	mg/L	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.001		
	Bismuth (Dissolved)	mg/L	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.002		
	Boron	mg/L	0.05	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.002		
	Boron (Dissolved)	mg/L	0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05		

General Chemistry and Metals in Freshwater Surface Water Port Wallace, NS

			Sample ID		SW-IN		SW-OUT				
			Coordinates		43.019, W63 3	2.025	N44 42.995, W63 32.657				
			Date Sampled	2019-09-24	2019-11-13	2019-12-03	2019-09-24	2019-11-13	2019-12-03		
/lethod	Parameter	Unit	EQL								
/letals	Cadmium	mg/L	0.00001	<0.00001	< 0.00001	<0.00001	<0.00001	< 0.00001	<0.00001		
	Cadmium (Dissolved)	mg/L	0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001		
	Calcium	mg/L	0.1	9.5	5.2	5.6	8.7	5.1	5.7		
	Calcium (Dissolved)	mg/L	0.1	9.3	5.2	5.5	8.8	4.9	5.6		
	Chromium Total (III+VI)	mg/L	0.001	< 0.001	0.0012	<0.001	< 0.001	0.0012	<0.001		
	Chromium Total (III+VI) (Dissolved)	mg/L	0.001	< 0.001	<0.001	<0.001	0.0011	0.0011	<0.001		
	Cobalt	mg/L	0.0004	< 0.0004	< 0.0004	< 0.0004	< 0.0004	< 0.0004	< 0.0004		
	Cobalt (Dissolved)	mg/L	0.0004	< 0.0004	< 0.0004	< 0.0004	< 0.0004	< 0.0004	< 0.0004		
	Copper	mg/L	0.0005	0.0008	0.00078	0.001	0.0031	0.00084	0.0013		
	Copper (Dissolved)	mg/L	0.0005	0.00066	0.0019	0.00083	0.00054	0.00089	0.00075		
	Iron	mg/L	0.05	0.077	0.13	0.053	0.12	0.15	0.073		
	Iron (Dissolved)	mg/L	0.05	< 0.05	0.084	< 0.05	0.074	0.11	0.051		
	Lead	mg/L	0.0005	<0.0005	<0.0005	< 0.0005	<0.0005	< 0.0005	<0.0005		
	Lead (Dissolved)	mg/L	0.0005	<0.0005	<0.0005	< 0.0005	<0.0005	< 0.0005	<0.0005		
	Magnesium	mg/L	0.1	1.7	1.1	1.2	1.6	1.1	1.2		
	Magnesium (Dissolved)	mg/L	0.1	1.7	1	1.2	1.7	0.96	1.1		
	Manganese	mg/L	0.002	0.14	0.052	0.018	0.12	0.047	0.02		
	Manganese (Dissolved)	mg/L	0.002	0.13	0.023	0.012	0.11	0.028	0.017		
	Mercury	mg/L	0.000013		0.000013	< 0.000013		< 0.000013	<0.00001		
	Mercury (Dissolved)	mg/L	0.000013		< 0.000013	< 0.000013		< 0.000013	<0.00001		
	Molybdenum	mg/L	0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002		
	Molybdenum (Dissolved)	mg/L	0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	<0.002		
	Nickel	mg/L	0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	<0.002		
	Nickel (Dissolved)	mg/L	0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	<0.002		
	Potassium	ug/L	100	1200	910	0.88	1000	960	0.88		
	Potassium (Dissolved)	ug/L	100	1200	960	910	1000	980	880		
	Selenium	mg/L	0.0005	<0.0005	< 0.0005	< 0.0005	<0.0005	< 0.0005	<0.0005		
	Selenium (Dissolved)	mg/L	0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	<0.0005		
	Silver	mg/L	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	< 0.0001	<0.0001		
	Silver (Dissolved)	mg/L	0.0001	<0.0001	<0.0001	< 0.0001	<0.0001	< 0.0001	<0.0001		
	Sodium	mg/L	0.1	40	21	29	32	19	26		
	Sodium (Dissolved)	mg/L	0.1	40	20	28	34	18	26		
	Strontium	mg/L	0.002	0.035	0.019	0.019	0.032	0.018	0.018		
	Strontium (Dissolved)	mg/L	0.002	0.031	0.019	0.018	0.031	0.018	0.018		
	Thallium	mg/L	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001		
	Thallium (Dissolved)	mg/L	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001		
	Tin	mg/L	0.002	< 0.002	< 0.002	<0.002	< 0.002	< 0.002	<0.002		
	Tin (Dissolved)	mg/L	0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	<0.002		
	Titanium	mg/L	0.002	<0.002	< 0.002	<0.002	<0.002	< 0.002	<0.002		
	Titanium (Dissolved)	mg/L	0.002	< 0.002	< 0.002	<0.002	<0.002	< 0.002	<0.002		
	Uranium	mg/L	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001		
	Uranium (Dissolved)	mg/L	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001		
	Vanadium	mg/L	0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	<0.002		
	Vanadium (Dissolved)	mg/L	0.002	< 0.002	< 0.002	<0.002	< 0.002	< 0.002	<0.002		
	Zinc	mg/L	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005		
	Zinc (Dissolved)	mg/L	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005		

Notes

#1 Elevated reporting limit due to method blank performance.

Table 3: Fish Parameters and Analytical Results (Total Arsenic and Total Mercury) for Fish Tissue - Samples Submitted to Bureau Veritas, Burnaby, BC Field Work Component in Support of the Human Health Risk Assessment - Port Wallace, Dartmouth , NS 19-1567

Sample ID	Fish ID	Species	Date Collected	Length (inches)	Total Weight ¹	Processed Weight ² (g)	General Sample Area	Additional Observations	Total As (mg/kg ww)	Total Hg (mg/kg ww)	Notes ³
	E1	Brook Trout	09/18/2019	7.5	(g) 66	43	Mitchell's Brook	female with eggs	0000)	(TTG/ Kg WW)	Commis
F19_01	F1 F2	Brook Trout	09/18/2019	6.625	45	33	Mitchell's Brook	Ternale with eggs	0.989	0.183	Sample Submitted to
117_01	FZ F4	Brook Trout	09/18/2020	10	43	36	Mitchell's Brook		0.707	0.105	RMC
	14	Brook frout	07/10/2020	10	47	30	WITCHEI S DIOOK				Sample
F19_02	F3	Brook Trout	09/18/2021	10	157	96	Mitchell's Brook	female with eggs	1.01	0.048	Submitted to RMC
F19_03	F5	Smallmouth Bass	09/18/2022	10	194	141	Barry's Run		2.72	0.606	Sample Submitted to RMC
F19_04	F6	Brook Trout	09/18/2023	11.5	231	84	Barry's Run		0.432	0.189	
Lab-Dup of F19_04									0.427	0.184	
F19_05	F7	Smallmouth Bass	09/18/2024	8.625	118	83	Barry's Run		2.71	0.325	
F19_06	F8	Smallmouth Bass	09/18/2025	8.25	113	80	Barry's Run		2.54	0.44	
F19_07	F9	Brook Trout	09/19/2019	7.5	63	43	Barry's Run	female with eggs	1.13	0.232	Sample Submitted to
	F10	Brook Trout	09/19/2019	4.75	30	22	Barry's Run				RMC
F19_08	F11	Brook Trout	09/20/2019	9.25	125	91	Barry's Run	female with eggs	0.324	0.0836	
F19_09	F12	Brook Trout	09/20/2019	8.75	111	81	Barry's Run		0.708	0.138	
F10 10	F13	Brook Trout	09/20/2019	8.5	98	65	Barry's Run	female with eggs	0.682	0.266	
F19_10	F14	Brook Trout	09/20/2019	9.25	121	84	Barry's Run	female with eggs	0.082	0.200	
F19_11	F15	Smallmouth Bass	09/20/2019	9.5	174	123	Barry's Run		2.66	0.62	
F19_12	F16	Brook Trout	09/20/2019	9.75	143	101	Barry's Run		0.498	0.352	
F19_13	F17	Smallmouth Bass	09/20/2019	9	136	93	Barry's Run		2.59	0.444	
F19_14	F18	Smallmouth Bass	09/26/2019	12	-	187	Barry's Run		2.78	1.03	Sample Submitted to RMC
F19_15	F19	Smallmouth Bass	09/26/2019	9.5	-	125	Barry's Run	female with eggs	2.72	0.803	
F19_16	F20	Brook Trout	09/26/2019	8.75	-	73	Barry's Run	female with eggs	0.561	0.223	

Notes

1. Total Weight - Weight of fish

2. Processed Weight - Weight of fish cleaned and gutted

3. Sample submitted to RMC: following receipt of analytical resuls from Bureau Veritas, five samples were submitted to RMC for total arsenic and arsenic speciation analysis

Appendix D

Laboratory Analytical Certificates

Your Project #: 19-1567-1000 Site Location: PORT WALLACE Your C.O.C. #: D 36950, D 36951

Attention: Rebecca Appleton

Dillon Consulting Limited 137 Chain Lake Dr Suite 100 Halifax , NS CANADA B3S 1B3

> Report Date: 2019/10/25 Report #: R5936194 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: B9R7076

Received: 2019/10/02, 16:56

Sample Matrix: Tissue # Samples Received: 16

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Elements by CRC ICPMS - Tissue Wet Wt (1)	8	2019/10/10	2019/10/22	BBY7SOP-00021,	EPA 6020b R2 m
Elements by CRC ICPMS - Tissue Wet Wt (1)	8	2019/10/10	2019/10/23	BBY7SOP-00021,	EPA 6020b R2 m
Moisture in Tissue (Subcontracted) (1, 2)	16	2019/10/17	2019/10/17	BBY8SOP-00017	BCMOE BCLM Dec2000 m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Bedford to Burnaby - Offsite

(2) Offsite analysis requires that subcontracted moisture be reported.

Your Project #: 19-1567-1000 Site Location: PORT WALLACE Your C.O.C. #: D 36950, D 36951

Attention: Rebecca Appleton

Dillon Consulting Limited 137 Chain Lake Dr Suite 100 Halifax , NS CANADA B3S 1B3

> Report Date: 2019/10/25 Report #: R5936194 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: B9R7076 Received: 2019/10/02, 16:56

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Heather Macumber, Senior Project Manager Email: Heather.MACUMBER@bvlabs.com Phone# (902)420-0203 Ext:226

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

RESULTS OF ANALYSES OF TISSUE

BV Labs ID		К	/E034	KYE0	35	KYE03	86	KYE03	37				KYE037				
Sampling Date		201	9/09/18	8 2019/0	9/18	2019/09	9/18	2019/09	9/18			20	19/09/1	8			
COC Number		D	36950	D 369	50	D 3695	50	D 369	50			(D 36950				
	U	INITS F	L9-01	F19-0	02	F19-0	3	F19-0)4	RDL	QC Bat	ch	F19-04 .ab-Dup	RI	DL	QC B	atch
Metals																	
Total (Wet Wt) Arsenic (A	As) n	ng/kg (.989	1.02	1	2.72		0.43	2	0.0040	640282	22	0.427	0.0	040	6402	2822
Total (Wet Wt) Mercury	(Hg) n	ng/kg (.183	0.048	30	0.606	<u>5</u>	0.18	9	0.0020	640282	22	0.184	0.0	020	6402	2822
PHYSICAL PROPERTIES																	
Moisture-Subcontracted		%	76	80		78		74		0.30	640282	23					
RDL = Reportable Detecti QC Batch = Quality Contr Lab-Dup = Laboratory Init	ol Batch	ı															
BV Labs ID		KYE03	8	KYE039		(YE040	к	YE041	k	(YE042	KYE	043	KYE0	44			
Sampling Date		2019/0		019/09/18	-		-	19/09/20		19/09/20							
COC Number		D 369	-	D 36950		36950		36950		36950	-	6950	D 369				
	UNIT			F19-06		F19-07		F19-08		F19-09	F19-10				RD	LC	QC Batc
Metals	•	•	÷		•		•		•		*		*	•		•	
Total (Wet Wt) Arsenic (As)	mg/k	g 2.71		2.54		1.13		0.324		0.708	0.6	682	2.6	6	0.00	40 (5402822
Total (Wet Wt) Mercury (Hg)	mg/k	g 0.32	5	0.440		0.232	0	0.0836		0.138	0.2	266	0.62	20	0.00	20 (6402822
PHYSICAL PROPERTIES		•					4						•				
Moisture-Subcontracted	%	73		74		76		76		75	7	8	79		0.3	0 0	6402823
RDL = Reportable Detection I QC Batch = Quality Control B																	
/ Labs ID		KYE045	k	(YE046	KY	'E047	KY	E048	KY	'E049			ŀ	YE04	9		
ampling Date		2019/09/	20 201	19/09/20	2019	9/09/26	2019	/09/26	2019	9/09/26			203	19/09	/26		
OC Number		D 3695	L D	36951	Dŝ	36951	D 3	6951	Dŝ	36951			D	3695	1		
	UNITS	F19-12	F	F19-13	F1	19-14	F1	9-15	F1	9-16	RDL	QC B	atch	=19-16 ab-Du		RDL	QC Bat
letals																	
otal (Wet Wt) Arsenic (As)	mg/kg	0.498		2.59	2	2.78	2	.72	0	.561	0.0040	6402	822				
otal (Wet Wt) Mercury (Hg)	mg/kg	0.352		0.444	1	1.03	0.	803	0	.223	0.0020	6402	822				
IYSICAL PROPERTIES													•				
oisture-Subcontracted	%	76		75		66		76		76	0.30	6402	823	74		0.30	64028
DL = Reportable Detection Lir C Batch = Quality Control Bat b-Dup = Laboratory Initiated	ch	ate															

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 1.7°C

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
JLP	Matrix Spike [KYE047-01]	Total (Wet Wt) Arsenic (As)	2019/10/23		NC	%	75 - 125
		Total (Wet Wt) Mercury (Hg)	2019/10/23		NC	%	75 - 125
JLP	QC Standard	Total (Wet Wt) Arsenic (As)	2019/10/22		98	%	75 - 125
		Total (Wet Wt) Mercury (Hg)	2019/10/22		91	%	75 - 125
JLP	Spiked Blank	Total (Wet Wt) Arsenic (As)	2019/10/22		94	%	75 - 125
		Total (Wet Wt) Mercury (Hg)	2019/10/22		94	%	75 - 125
JLP	Method Blank	Total (Wet Wt) Arsenic (As)	2019/10/22	<0.0040		mg/kg	
		Total (Wet Wt) Mercury (Hg)	2019/10/22	<0.0020		mg/kg	
JLP	RPD	Total (Wet Wt) Arsenic (As)	2019/10/22	NC		%	40
		Total (Wet Wt) Mercury (Hg)	2019/10/22	NC		%	40
JLP	RPD [KYE037-01]	Total (Wet Wt) Arsenic (As)	2019/10/22	1.2		%	40
		Total (Wet Wt) Mercury (Hg)	2019/10/22	2.9		%	40
éCE	Method Blank	Moisture-Subcontracted	2019/10/17	<0.30		%	
éCE	RPD [KYE049-01]	Moisture-Subcontracted	2019/10/17	2.5		%	20
	JLP JLP JLP JLP JLP JLP éCE	JLPMatrix Spike [KYE047-01]JLPQC StandardJLPSpiked BlankJLPMethod BlankJLPRPDJLPRPD [KYE037-01]éCEMethod Blank	JLP Matrix Spike [KYE047-01] Total (Wet Wt) Arsenic (As) JLP QC Standard Total (Wet Wt) Mercury (Hg) JLP QC Standard Total (Wet Wt) Arsenic (As) JLP Spiked Blank Total (Wet Wt) Mercury (Hg) JLP Method Blank Total (Wet Wt) Arsenic (As) JLP Method Blank Total (Wet Wt) Mercury (Hg) JLP RPD Total (Wet Wt) Arsenic (As) Total (Wet Wt) Mercury (Hg) Total (Wet Wt) Arsenic (As) JLP RPD Total (Wet Wt) Mercury (Hg) JLP RPD Total (Wet Wt) Arsenic (As) Total (Wet Wt) Mercury (Hg) Total (Wet Wt) Arsenic (As) JLP RPD [KYE037-01] Total (Wet Wt) Arsenic (As) Total (Wet Wt) Mercury (Hg) Total (Wet Wt) Mercury (Hg) éCE Method Blank Moisture-Subcontracted	JLPMatrix Spike [KYE047-01]Total (Wet Wt) Arsenic (As)2019/10/23JLPQC StandardTotal (Wet Wt) Mercury (Hg)2019/10/23JLPQC StandardTotal (Wet Wt) Arsenic (As)2019/10/22JLPSpiked BlankTotal (Wet Wt) Mercury (Hg)2019/10/22JLPSpiked BlankTotal (Wet Wt) Arsenic (As)2019/10/22JLPMethod BlankTotal (Wet Wt) Mercury (Hg)2019/10/22JLPMethod BlankTotal (Wet Wt) Arsenic (As)2019/10/22JLPRPDTotal (Wet Wt) Mercury (Hg)2019/10/22JLPRPDTotal (Wet Wt) Arsenic (As)2019/10/22JLPRPDTotal (Wet Wt) Arsenic (As)2019/10/22JLPRPDTotal (Wet Wt) Arsenic (As)2019/10/22JLPRPD [KYE037-01]Total (Wet Wt) Arsenic (As)2019/10/22GeteMethod BlankMoisture-Subcontracted2019/10/22	JLPMatrix Spike [KYE047-01]Total (Wet Wt) Arsenic (As) Total (Wet Wt) Mercury (Hg)2019/10/23 2019/10/22JLPQC StandardTotal (Wet Wt) Arsenic (As) Total (Wet Wt) Arsenic (As)2019/10/22 2019/10/22JLPSpiked BlankTotal (Wet Wt) Mercury (Hg)2019/10/22 2019/10/22JLPMethod BlankTotal (Wet Wt) Arsenic (As) Total (Wet Wt) Mercury (Hg)2019/10/22 2019/10/22JLPMethod BlankTotal (Wet Wt) Arsenic (As) Total (Wet Wt) Mercury (Hg)2019/10/22 2019/10/22JLPRPDTotal (Wet Wt) Arsenic (As) Total (Wet Wt) Arsenic (As)2019/10/22 2019/10/22JLPRPDTotal (Wet Wt) Arsenic (As) Total (Wet Wt) Arsenic (As)2019/10/22 2019/10/22JLPRPDTotal (Wet Wt) Arsenic (As) Total (Wet Wt) Mercury (Hg)2019/10/22 2019/10/22JLPRPD [KYE037-01]Total (Wet Wt) Arsenic (As) Total (Wet Wt) Mercury (Hg)2019/10/22 2019/10/22JLPRPD [KYE037-01]Total (Wet Wt) Arsenic (As) Total (Wet Wt) Mercury (Hg)2019/10/22 	JLPMatrix Spike [KYE047-01]Total (Wet Wt) Arsenic (As) Total (Wet Wt) Mercury (Hg)2019/10/23NCJLPQC StandardTotal (Wet Wt) Mercury (Hg)2019/10/2298JLPQC StandardTotal (Wet Wt) Arsenic (As)2019/10/2291JLPSpiked BlankTotal (Wet Wt) Arsenic (As)2019/10/2291JLPSpiked BlankTotal (Wet Wt) Arsenic (As)2019/10/2294JLPMethod BlankTotal (Wet Wt) Arsenic (As)2019/10/2294JLPMethod BlankTotal (Wet Wt) Arsenic (As)2019/10/22<0.0040	JLPMatrix Spike [KYE047-01]Total (Wet Wt) Arsenic (As) Total (Wet Wt) Mercury (Hg)2019/10/23NC%JLPQC StandardTotal (Wet Wt) Mercury (Hg)2019/10/2298%JLPQC StandardTotal (Wet Wt) Arsenic (As)2019/10/2291%JLPSpiked BlankTotal (Wet Wt) Arsenic (As)2019/10/2294%JLPSpiked BlankTotal (Wet Wt) Arsenic (As)2019/10/2294%JLPMethod BlankTotal (Wet Wt) Arsenic (As)2019/10/2294%JLPMethod BlankTotal (Wet Wt) Arsenic (As)2019/10/22<0.0040

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Rob Reinert, B.Sc., Scientific Specialist

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your Project #: 19-1567-1000 Site Location: PORT WALLACE Your C.O.C. #: D36948, D36947, D36949

Attention: Rebecca Appleton

Dillon Consulting Limited 137 Chain Lake Dr Suite 100 Halifax , NS CANADA B3S 1B3

> Report Date: 2019/10/15 Report #: R5921757 Version: 3 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: B9R0093

Received: 2019/09/26, 14:31

Sample Matrix: Sediment # Samples Received: 6

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Metals Solids Acid Extr. ICPMS	5	2019/09/30	2019/10/04	ATL SOP 00058	EPA 6020B R2 m
Metals Solids Acid Extr. ICPMS	1	2019/09/30	2019/10/07	ATL SOP 00058	EPA 6020B R2 m

Sample Matrix: Solid # Samples Received: 16

Analyses	Quantity	Date Extracted	Date Analyzed	Laboratory Method	Reference
Metals in Terrestrial Biota	14	2019/10/11	2019/10/11	ATL SOP 00058	EPA 6020B R3 m
Metals in Terrestrial Biota	2	2019/10/11	2019/10/15	ATL SOP 00058	EPA 6020B R3 m

Sample Matrix: Water # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Carbonate, Bicarbonate and Hydroxide	2	N/A	2019/10/03	N/A	SM 23 4500-CO2 D
Alkalinity	2	N/A	2019/10/05	ATL SOP 00013	EPA 310.2 R1974 m
Chloride	2	N/A	2019/10/03	ATL SOP 00014	SM 23 4500-Cl- E m
Colour	2	N/A	2019/10/03	ATL SOP 00020	SM 23 2120C m
Organic carbon - Diss (DOC) (1)	2	N/A	2019/10/05	ATL SOP 00203	SM 23 5310B m
Conductance - water	2	N/A	2019/10/02	ATL SOP 00004	SM 23 2510B m
Hardness (calculated as CaCO3)	2	N/A	2019/10/01	ATL SOP 00048	Auto Calc
Metals Water Diss. MS (as rec'd)	2	N/A	2019/10/02	ATL SOP 00058	EPA 6020B R2 m
Metals Water Total MS	2	2019/09/30	2019/09/30	ATL SOP 00058	EPA 6020B R2 m
Ion Balance (% Difference)	2	N/A	2019/10/07	N/A	Auto Calc.
Anion and Cation Sum	2	N/A	2019/10/04	N/A	Auto Calc.
Nitrogen Ammonia - water	2	N/A	2019/10/03	ATL SOP 00015	EPA 350.1 R2 m
Nitrogen - Nitrate + Nitrite	2	N/A	2019/10/04	ATL SOP 00016	USGS I-2547-11m
Nitrogen - Nitrite	2	N/A	2019/10/02	ATL SOP 00017	SM 23 4500-NO2- B m
Nitrogen - Nitrate (as N)	2	N/A	2019/10/07	ATL SOP 00018	ASTM D3867-16
рН (2)	2	N/A	2019/10/02	ATL SOP 00003	SM 23 4500-H+ B m
Phosphorus - ortho	2	N/A	2019/10/03	ATL SOP 00021	SM 23 4500-P E m
Sat. pH and Langelier Index (@ 20C)	2	N/A	2019/10/07	ATL SOP 00049	Auto Calc.
Sat. pH and Langelier Index (@ 4C)	2	N/A	2019/10/07	ATL SOP 00049	Auto Calc.

Page 1 of 20

Your Project #: 19-1567-1000 Site Location: PORT WALLACE Your C.O.C. #: D36948, D36947, D36949

Attention: Rebecca Appleton

Dillon Consulting Limited 137 Chain Lake Dr Suite 100 Halifax , NS CANADA B3S 1B3

> Report Date: 2019/10/15 Report #: R5921757 Version: 3 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: B9R0093

Received: 2019/09/26, 14:31

Sample Matrix: Water # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Reactive Silica	2	N/A	2019/10/02	ATL SOP 00022	EPA 366.0 m
Sulphate	2	N/A	2019/10/02	ATL SOP 00023	ASTM D516-16 m
Total Dissolved Solids (TDS calc)	2	N/A	2019/10/07	N/A	Auto Calc.
Organic carbon - Total (TOC) (1)	2	N/A	2019/10/05	ATL SOP 00203	SM 23 5310B m
Total Suspended Solids	2	2019/10/01	2019/10/02	ATL SOP 00007	SM 23 2540D m
Turbidity	2	N/A	2019/10/05	ATL SOP 00011	EPA 180.1 R2 m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) TOC / DOC present in the sample should be considered as non-purgeable TOC / DOC.

(2) The APHA Standard Method require pH to be analyzed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the APHA Standard Method holding time.

Your Project #: 19-1567-1000 Site Location: PORT WALLACE Your C.O.C. #: D36948, D36947, D36949

Attention: Rebecca Appleton

Dillon Consulting Limited 137 Chain Lake Dr Suite 100 Halifax , NS CANADA B3S 1B3

> Report Date: 2019/10/15 Report #: R5921757 Version: 3 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: B9R0093 Received: 2019/09/26, 14:31

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Heather Macumber, Senior Project Manager Email: Heather.MACUMBER@bvlabs.com Phone# (902)420-0203 Ext:226

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

ELEMENTS BY ATOMIC SPECTROSCOPY (SEDIMENT)

BV Labs ID		KWQ711	KWQ712	KWQ713		KWQ714		
Sampling Date		2019/09/24	2019/09/24	2019/09/24		2019/09/24		
COC Number		D36948	D36948	D36948		D36948		
	UNITS	BIOSED19-1 0-0.1M	BIOSED19-2 0-0.1M	BIOSED19-3 0-0.1M	RDL	BIOSED19-4 0-0.1M	RDL	QC Batch
Metals								
Acid Extractable Arsenic (As)	mg/kg	3000	1400	3900	20	5200	200	6359706
	IIIg/ Kg	3000	1400	5900	20	3200	200	0333700
Acid Extractable Mercury (Hg)	mg/kg		1400	4.9	0.10	5.6		6359706

QC Batch = Quality Control Batch

BV Labs ID		KWQ715	KWQ716							
Sampling Date		2019/09/24	2019/09/24							
COC Number		D36948	D36948							
	UNITS	BIOSED19-5 0-0.1M	BIOSED19-6 0-0.1M	RDL	QC Batch					
Metals										
Acid Extractable Arsenic (As)	mg/kg	4600	1100	20	6359706					
Acid Extractable Mercury (Hg)	mg/kg	5.2	5.9	0.10	6359706					
RDL = Reportable Detection Limit										
QC Batch = Quality Control Batch										

ELEMENTS BY ATOMIC SPECTROSCOPY (SOLID)

BV Labs ID		KWQ717	KWQ717		KWQ718	KWQ719		KWQ720	KWQ726		
Sampling Date		2019/09/24	2019/09/24		2019/09/24	2019/09/24		2019/09/24	2019/09/24		
COC Number		D36948	D36948		D36948	D36948		D36948	D36947		
	UNITS	TOF19-1	TOF19-1 Lab-Dup	RDL	TOF19-2	TOF19-3	RDL	TOF19-4	TOF19-5	RDL	QC Batch
Metals											
Acid Extractable Aluminum (Al)	mg/kg	8200	8000	10	14000	18000	10	5600	7100	10	6382132
Acid Extractable Antimony (Sb)	mg/kg	2.2	2.4	2.0	2.1	2.0	2.0	<2.0	<2.0	2.0	6382132
Acid Extractable Arsenic (As)	mg/kg	200	200	2.0	1500	1700	20	150	71	2.0	6382132
Acid Extractable Barium (Ba)	mg/kg	74	72	5.0	240	140	5.0	66	83	5.0	6382132
Acid Extractable Beryllium (Be)	mg/kg	<2.0	<2.0	2.0	<2.0	<2.0	2.0	<2.0	<2.0	2.0	6382132
Acid Extractable Boron (B)	mg/kg	<5.0	<5.0	5.0	5.2	<5.0	5.0	<5.0	<5.0	5.0	6382132
Acid Extractable Cadmium (Cd)	mg/kg	0.51	0.50	0.30	2.3	1.2	0.30	<0.30	1.1	0.30	6382132
Acid Extractable Chromium (Cr)	mg/kg	7.3	7.3	2.0	9.1	15	2.0	5.6	7.0	2.0	6382132
Acid Extractable Cobalt (Co)	mg/kg	3.9	3.8	1.0	98	83	1.0	3.3	3.5	1.0	6382132
Acid Extractable Copper (Cu)	mg/kg	18	18	2.0	37	40	2.0	17	18	2.0	6382132
Acid Extractable Iron (Fe)	mg/kg	6300	6200	50	23000	34000	50	7600	6500	50	6382132
Acid Extractable Lead (Pb)	mg/kg	69	68	0.50	58	79	0.50	110	260	0.50	6382132
Acid Extractable Lithium (Li)	mg/kg	3.1	3.1	2.0	3.9	19	2.0	3.2	4.3	2.0	6382132
Acid Extractable Manganese (Mn)	mg/kg	320	320	2.0	14000	3500	2.0	110	160	2.0	6382132
Acid Extractable Molybdenum (Mo)	mg/kg	<2.0	<2.0	2.0	3.5	<2.0	2.0	<2.0	<2.0	2.0	6382132
Acid Extractable Nickel (Ni)	mg/kg	13	14	2.0	57	37	2.0	12	13	2.0	6382132
Acid Extractable Selenium (Se)	mg/kg	<2.0	<2.0	2.0	2.9	<2.0	2.0	<2.0	<2.0	2.0	6382132
Acid Extractable Silver (Ag)	mg/kg	<0.50	<0.50	0.50	<0.50	<0.50	0.50	<0.50	<0.50	0.50	6382132
Acid Extractable Strontium (Sr)	mg/kg	46	45	5.0	41	20	5.0	27	59	5.0	6382132
Acid Extractable Thallium (Tl)	mg/kg	<0.10	<0.10	0.10	0.43	0.35	0.10	<0.10	<0.10	0.10	6382132
Acid Extractable Uranium (U)	mg/kg	0.91	0.89	0.10	0.77	1.1	0.10	0.36	0.82	0.10	6382132
Acid Extractable Vanadium (V)	mg/kg	27	26	2.0	72	50	2.0	18	23	2.0	6382132
Acid Extractable Zinc (Zn)	mg/kg	32	33	5.0	160	160	5.0	26	59	5.0	6382132
RDL = Reportable Detection Limit QC Batch = Quality Control Batch											

Lab-Dup = Laboratory Initiated Duplicate

ELEMENTS BY ATOMIC SPECTROSCOPY (SOLID)

BV Labs ID		KWQ727	KWQ728	KWQ729	KWQ730	KWQ731	KWQ732		
Sampling Date		2019/09/24	2019/09/24	2019/09/24	2019/09/24	2019/09/24	2019/09/24		
COC Number		D36947	D36947	D36947	D36947	D36947	D36947		
	UNITS	TOF19-6	TOF19-7	TOF19-8	TOF19-9	TOF19-10	TOF19-11	RDL	QC Batch
Metals									
Acid Extractable Aluminum (Al)	mg/kg	4100	7700	2700	6400	3100	1600	10	6382132
Acid Extractable Antimony (Sb)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	6382132
Acid Extractable Arsenic (As)	mg/kg	37	43	6.4	18	9.1	3.0	2.0	6382132
Acid Extractable Barium (Ba)	mg/kg	46	38	67	64	78	38	5.0	6382132
Acid Extractable Beryllium (Be)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	6382132
Acid Extractable Boron (B)	mg/kg	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	5.0	6382132
Acid Extractable Cadmium (Cd)	mg/kg	<0.30	<0.30	0.31	0.61	0.41	0.36	0.30	6382132
Acid Extractable Chromium (Cr)	mg/kg	4.3	6.6	2.9	4.1	3.0	3.4	2.0	6382132
Acid Extractable Cobalt (Co)	mg/kg	3.4	1.3	1.4	7.0	2.6	1.8	1.0	6382132
Acid Extractable Copper (Cu)	mg/kg	11	16	7.3	10	6.4	4.6	2.0	6382132
Acid Extractable Iron (Fe)	mg/kg	4700	2800	4100	8900	2500	4400	50	6382132
Acid Extractable Lead (Pb)	mg/kg	110	71	22	61	39	38	0.50	6382132
Acid Extractable Lithium (Li)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	6382132
Acid Extractable Manganese (Mn)	mg/kg	150	36	220	430	200	79	2.0	6382132
Acid Extractable Molybdenum (Mo)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	6382132
Acid Extractable Nickel (Ni)	mg/kg	7.9	8.6	7.8	12	11	10	2.0	6382132
Acid Extractable Selenium (Se)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	6382132
Acid Extractable Silver (Ag)	mg/kg	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	6382132
Acid Extractable Strontium (Sr)	mg/kg	16	7.7	38	43	27	20	5.0	6382132
Acid Extractable Thallium (TI)	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	6382132
Acid Extractable Uranium (U)	mg/kg	0.36	0.43	0.27	0.86	0.26	<0.10	0.10	6382132
Acid Extractable Vanadium (V)	mg/kg	17	30	16	42	14	8.1	2.0	6382132
Acid Extractable Zinc (Zn)	mg/kg	20	16	28	22	25	27	5.0	6382132
RDL = Reportable Detection Limit									
QC Batch = Quality Control Batch									

ELEMENTS BY ATOMIC SPECTROSCOPY (SOLID)

BV Labs ID		KWQ733	KWQ734	KWQ735	KWQ753	KWQ754		
Sampling Date		2019/09/24	2019/09/24	2019/09/24	2019/09/24	2019/09/24		
COC Number		D36947	D36947	D36947	D36949	D36949		
	UNITS	TOF19-12	TOF19-13	TOF19-14	TOF19-15	TOF19-16	RDL	QC Batch
Metals								
Acid Extractable Aluminum (Al)	mg/kg	4500	3400	3200	11000	2500	10	6382132
Acid Extractable Antimony (Sb)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	6382132
Acid Extractable Arsenic (As)	mg/kg	3.3	6.4	6.4	22	9.1	2.0	6382132
Acid Extractable Barium (Ba)	mg/kg	31	110	56	10	40	5.0	6382132
Acid Extractable Beryllium (Be)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	6382132
Acid Extractable Boron (B)	mg/kg	<5.0	<5.0	<5.0	<5.0	<5.0	5.0	6382132
Acid Extractable Cadmium (Cd)	mg/kg	<0.30	0.65	<0.30	0.73	0.35	0.30	6382132
Acid Extractable Chromium (Cr)	mg/kg	3.0	2.6	3.4	2.9	3.5	2.0	6382132
Acid Extractable Cobalt (Co)	mg/kg	1.1	2.2	1.7	5.4	1.6	1.0	6382132
Acid Extractable Copper (Cu)	mg/kg	7.4	7.4	8.7	15	6.7	2.0	6382132
Acid Extractable Iron (Fe)	mg/kg	2700	2000	2600	4400	2200	50	6382132
Acid Extractable Lead (Pb)	mg/kg	42	53	76	110	73	0.50	6382132
Acid Extractable Lithium (Li)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	6382132
Acid Extractable Manganese (Mn)	mg/kg	42	130	29	38	17	2.0	6382132
Acid Extractable Molybdenum (Mo)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	6382132
Acid Extractable Nickel (Ni)	mg/kg	7.9	14	16	20	8.0	2.0	6382132
Acid Extractable Selenium (Se)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	6382132
Acid Extractable Silver (Ag)	mg/kg	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	6382132
Acid Extractable Strontium (Sr)	mg/kg	11	44	19	<5.0	23	5.0	6382132
Acid Extractable Thallium (Tl)	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	6382132
Acid Extractable Uranium (U)	mg/kg	<0.10	0.31	0.33	0.16	0.23	0.10	6382132
Acid Extractable Vanadium (V)	mg/kg	31	34	34	18	23	2.0	6382132
Acid Extractable Zinc (Zn)	mg/kg	18	28	25	17	12	5.0	6382132
RDL = Reportable Detection Limit QC Batch = Quality Control Batch							-	

RESULTS OF ANALYSES OF WATER

BV Labs ID		KWQ755		KWQ756		
Sampling Date		2019/09/24		2019/09/24		
COC Number		D36949		D36949		
	UNITS	SW-IN	QC Batch	SW-OUT	RDL	QC Batch
Calculated Parameters					- -	
Anion Sum	me/L	2.35	6356238	2.05	N/A	6356238
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	21	6356229	18	1.0	6356229
Calculated TDS	mg/L	140	6356250	120	1.0	6356250
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	6356229	<1.0	1.0	6356229
Cation Sum	me/L	2.36	6356238	2.10	N/A	6356238
Hardness (CaCO3)	mg/L	30	6356234	29	1.0	6356234
Ion Balance (% Difference)	%	0.210	6356236	1.20	N/A	6356236
Langelier Index (@ 20C)	N/A	-1.74	6356246	-1.97		6356246
Langelier Index (@ 4C)	N/A	-1.99	6356248	-2.22		6356248
Nitrate (N)	mg/L	<0.050	6356240	<0.050	0.050	6356240
Saturation pH (@ 20C)	N/A	9.08	6356246	9.15		6356246
Saturation pH (@ 4C)	N/A	9.33	6356248	9.41		6356248
Inorganics						
Total Alkalinity (Total as CaCO3)	mg/L	21	6364921	18	5.0	6364921
Dissolved Chloride (Cl-)	mg/L	63	6364928	53	1.0	6364928
Colour	TCU	9.2	6364936	13	5.0	6364936
Nitrate + Nitrite (N)	mg/L	<0.050	6364940	<0.050	0.050	6364940
Nitrite (N)	mg/L	<0.010	6364956	<0.010	0.010	6364956
Nitrogen (Ammonia Nitrogen)	mg/L	<0.050	6364378	<0.050	0.050	6364378
Dissolved Organic Carbon (C)	mg/L	3.1	6369507	3.4	0.50	6369507
Total Organic Carbon (C)	mg/L	3.1	6369499	3.5	0.50	6369495
Orthophosphate (P)	mg/L	0.016	6364939	0.014	0.010	6364939
рН	рН	7.35	6364217	7.19	N/A	6364217
Reactive Silica (SiO2)	mg/L	3.1	6364934	3.0	0.50	6364934
Total Suspended Solids	mg/L	<1.0	6361914	<1.0	1.0	6361914
Dissolved Sulphate (SO4)	mg/L	8.2	6364931	10	2.0	6364931
Turbidity	NTU	0.72	6369763	0.82	0.10	6369763
Conductivity	uS/cm	240	6369710	230	1.0	6369710
RDL = Reportable Detection Limit QC Batch = Quality Control Batch N/A = Not Applicable						

ELEMENTS BY ICP/MS (WATER)

BV Labs ID		KWQ755	KWQ756		
Sampling Date		2019/09/24	2019/09/24		
COC Number		D36949	D36949		
	UNITS	SW-IN	SW-OUT	RDL	QC Batch
NA -+ - -		500-114	30-001	NDL	QC Datch
Metals					
Dissolved Aluminum (Al)	ug/L	20	18	5.0	6359671
Total Aluminum (Al)	ug/L	17	23	5.0	6359400
Dissolved Antimony (Sb)	ug/L	<1.0	<1.0	1.0	6359671
Total Antimony (Sb)	ug/L	<1.0	<1.0	1.0	6359400
Dissolved Arsenic (As)	ug/L	59	50	1.0	6359671
Total Arsenic (As)	ug/L	65	55	1.0	6359400
Dissolved Barium (Ba)	ug/L	8.0	6.8	1.0	6359671
Total Barium (Ba)	ug/L	8.2	6.6	1.0	6359400
Dissolved Beryllium (Be)	ug/L	<1.0	<1.0	1.0	6359671
Total Beryllium (Be)	ug/L	<1.0	<1.0	1.0	6359400
Dissolved Bismuth (Bi)	ug/L	<2.0	<2.0	2.0	6359671
Total Bismuth (Bi)	ug/L	<2.0	<2.0	2.0	6359400
Dissolved Boron (B)	ug/L	<50	<50	50	6359671
Total Boron (B)	ug/L	<50	<50	50	6359400
Dissolved Cadmium (Cd)	ug/L	<0.010	<0.010	0.010	6359671
Total Cadmium (Cd)	ug/L	<0.010	<0.010	0.010	6359400
Dissolved Calcium (Ca)	ug/L	9300	8800	100	6359671
Total Calcium (Ca)	ug/L	9500	8700	100	6359400
Dissolved Chromium (Cr)	ug/L	<1.0	1.1	1.0	6359671
Total Chromium (Cr)	ug/L	<1.0	<1.0	1.0	6359400
Dissolved Cobalt (Co)	ug/L	<0.40	<0.40	0.40	6359671
Total Cobalt (Co)	ug/L	<0.40	<0.40	0.40	6359400
Dissolved Copper (Cu)	ug/L	0.66	0.54	0.50	6359671
Total Copper (Cu)	ug/L	0.80	3.1	0.50	6359400
Dissolved Iron (Fe)	ug/L	<50	74	50	6359671
Total Iron (Fe)	ug/L	77	120	50	6359400
Dissolved Lead (Pb)	ug/L	<0.50	<0.50	0.50	6359671
Total Lead (Pb)	ug/L	<0.50	<0.50	0.50	6359400
Dissolved Magnesium (Mg)	ug/L	1700	1700	100	6359671
Total Magnesium (Mg)	ug/L	1700	1600	100	6359400
Dissolved Manganese (Mn)	ug/L	130	110	2.0	6359671
Total Manganese (Mn)	ug/L	140	120	2.0	6359400
Dissolved Molybdenum (Mo)	ug/L	<2.0	<2.0	2.0	6359671
Total Molybdenum (Mo)	ug/L	<2.0	<2.0	2.0	6359400
RDL = Reportable Detection Li				1	
QC Batch = Quality Control Bat					

ELEMENTS BY ICP/MS (WATER)

BV Labs ID		KWQ755	KWQ756		
Sampling Date		2019/09/24	2019/09/24		
COC Number		D36949	D36949		
	UNITS	SW-IN	SW-OUT	RDL	QC Batch
Dissolved Nickel (Ni)	ug/L	<2.0	<2.0	2.0	6359671
Total Nickel (Ni)	ug/L	<2.0	<2.0	2.0	6359400
Dissolved Phosphorus (P)	ug/L	<100	<100	100	6359671
Total Phosphorus (P)	ug/L	<100	<100	100	6359400
Dissolved Potassium (K)	ug/L	1200	1000	100	6359671
Total Potassium (K)	ug/L	1200	1000	100	6359400
Dissolved Selenium (Se)	ug/L	<0.50	<0.50	0.50	6359671
Total Selenium (Se)	ug/L	<0.50	<0.50	0.50	6359400
Dissolved Silver (Ag)	ug/L	<0.10	<0.10	0.10	6359671
Total Silver (Ag)	ug/L	<0.10	<0.10	0.10	6359400
Dissolved Sodium (Na)	ug/L	40000	34000	100	6359671
Total Sodium (Na)	ug/L	40000	32000	100	6359400
Dissolved Strontium (Sr)	ug/L	31	31	2.0	6359671
Total Strontium (Sr)	ug/L	35	32	2.0	6359400
Dissolved Thallium (TI)	ug/L	<0.10	<0.10	0.10	6359671
Total Thallium (Tl)	ug/L	<0.10	<0.10	0.10	6359400
Dissolved Tin (Sn)	ug/L	<2.0	<2.0	2.0	6359671
Total Tin (Sn)	ug/L	<2.0	<2.0	2.0	6359400
Dissolved Titanium (Ti)	ug/L	<2.0	<2.0	2.0	6359671
Total Titanium (Ti)	ug/L	<2.0	<2.0	2.0	6359400
Dissolved Uranium (U)	ug/L	<0.10	<0.10	0.10	6359671
Total Uranium (U)	ug/L	<0.10	<0.10	0.10	6359400
Dissolved Vanadium (V)	ug/L	<2.0	<2.0	2.0	6359671
Total Vanadium (V)	ug/L	<2.0	<2.0	2.0	6359400
Dissolved Zinc (Zn)	ug/L	<5.0	<5.0	5.0	6359671
Total Zinc (Zn)	ug/L	<5.0	<5.0	5.0	6359400
RDL = Reportable Detection Lin	nit				
QC Batch = Quality Control Bat	ch				

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	6.3°C
Package 2	5.0°C
Package 3	5.7°C

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
6359400	BAN	Matrix Spike	Total Aluminum (Al)	2019/09/30		97	%	80 - 120
			Total Antimony (Sb)	2019/09/30		104	%	80 - 120
			Total Arsenic (As)	2019/09/30		97	%	80 - 120
			Total Barium (Ba)	2019/09/30		NC	%	80 - 120
			Total Beryllium (Be)	2019/09/30		100	%	80 - 120
			Total Bismuth (Bi)	2019/09/30		97	%	80 - 120
			Total Boron (B)	2019/09/30		101	%	80 - 120
			Total Cadmium (Cd)	2019/09/30		97	%	80 - 120
			Total Calcium (Ca)	2019/09/30		NC	%	80 - 120
			Total Chromium (Cr)	2019/09/30		95	%	80 - 120
			Total Cobalt (Co)	2019/09/30		96	%	80 - 120
			Total Copper (Cu)	2019/09/30		97	%	80 - 120
			Total Iron (Fe)	2019/09/30		100	%	80 - 120
			Total Lead (Pb)	2019/09/30		98	%	80 - 120
			Total Magnesium (Mg)	2019/09/30		100	%	80 - 120
			Total Manganese (Mn)	2019/09/30		97	%	80 - 120
			Total Molybdenum (Mo)	2019/09/30		104	%	80 - 120
			Total Nickel (Ni)	2019/09/30		99	%	80 - 120
			Total Phosphorus (P)	2019/09/30		102	%	80 - 120
			Total Potassium (K)	2019/09/30		97	%	80 - 120
			Total Selenium (Se)	2019/09/30		95	%	80 - 120
			Total Silver (Ag)	2019/09/30		100	%	80 - 120
			Total Sodium (Na)	2019/09/30		93	%	80 - 120
			Total Strontium (Sr)	2019/09/30		NC	%	80 - 120
			Total Thallium (Tl)	2019/09/30		101	%	80 - 120
			Total Tin (Sn)	2019/09/30		103	%	80 - 120
			Total Titanium (Ti)	2019/09/30		100	%	80 - 120
			Total Uranium (U)	2019/09/30		104	%	80 - 120
			Total Vanadium (V)	2019/09/30		100	%	80 - 120
			Total Zinc (Zn)	2019/09/30		96	%	80 - 120
6359400	BAN	Spiked Blank	Total Aluminum (Al)	2019/09/30		99	%	80 - 120
			Total Antimony (Sb)	2019/09/30		102	%	80 - 120
			Total Arsenic (As)	2019/09/30		96	%	80 - 120
			Total Barium (Ba)	2019/09/30		101	%	80 - 120
			Total Beryllium (Be)	2019/09/30		99	%	80 - 120
			Total Bismuth (Bi)	2019/09/30		100	%	80 - 120
			Total Boron (B)	2019/09/30		102	%	80 - 120
			Total Cadmium (Cd)	2019/09/30		99	%	80 - 120
			Total Calcium (Ca)	2019/09/30		102	%	80 - 120
			Total Chromium (Cr)	2019/09/30		97	%	80 - 120
			Total Cobalt (Co)	2019/09/30		99	%	80 - 120
			Total Copper (Cu)	2019/09/30		99	%	80 - 120
			Total Iron (Fe)	2019/09/30		102	%	80 - 120
			Total Lead (Pb)	2019/09/30		100	%	80 - 120
			Total Magnesium (Mg)	2019/09/30		103	%	80 - 120
			Total Manganese (Mn)	2019/09/30		101	%	80 - 120
			Total Molybdenum (Mo)	2019/09/30		104	%	80 - 120
			Total Nickel (Ni)	2019/09/30		101	%	80 - 120
			Total Phosphorus (P)	2019/09/30		102	%	80 - 120
			Total Potassium (K)	2019/09/30		100	%	80 - 120
			Total Selenium (Se)	2019/09/30		95	%	80 - 120
			Total Silver (Ag)	2019/09/30		100	%	80 - 120
			Total Sodium (Na)	2019/09/30		98	%	80 - 120

Page 12 of 20

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Total Strontium (Sr)	2019/09/30		103	%	80 - 120
			Total Thallium (Tl)	2019/09/30		102	%	80 - 120
			Total Tin (Sn)	2019/09/30		102	%	80 - 120
			Total Titanium (Ti)	2019/09/30		99	%	80 - 120
			Total Uranium (U)	2019/09/30		104	%	80 - 120
			Total Vanadium (V)	2019/09/30		101	%	80 - 120
			Total Zinc (Zn)	2019/09/30		99	%	80 - 120
6359400	BAN	Method Blank	Total Aluminum (Al)	2019/09/30	<5.0		ug/L	
			Total Antimony (Sb)	2019/09/30	<1.0		ug/L	
			Total Arsenic (As)	2019/09/30	<1.0		ug/L	
			Total Barium (Ba)	2019/09/30	<1.0		ug/L	
			Total Beryllium (Be)	2019/09/30	<1.0		ug/L	
			Total Bismuth (Bi)	2019/09/30	<2.0		ug/L	
			Total Boron (B)	2019/09/30	<50		ug/L	
			Total Cadmium (Cd)	2019/09/30	<0.010		ug/L	
			Total Calcium (Ca)	2019/09/30	<100		ug/L	
			Total Chromium (Cr)	2019/09/30	<1.0		ug/L	
			Total Cobalt (Co)	2019/09/30	<0.40		ug/L	
			Total Copper (Cu)	2019/09/30	<0.50		ug/L	
			Total Iron (Fe)	2019/09/30	<50		ug/L	
			Total Lead (Pb)	2019/09/30	<0.50		ug/L	
			Total Magnesium (Mg)	2019/09/30	<100		ug/L	
			Total Manganese (Mn)	2019/09/30	<2.0		ug/L	
			Total Molybdenum (Mo)	2019/09/30	<2.0		ug/L	
			Total Nickel (Ni)	2019/09/30	<2.0		ug/L	
			Total Phosphorus (P)	2019/09/30	<100		ug/L	
			Total Potassium (K)	2019/09/30	<100		ug/L	
			Total Selenium (Se)	2019/09/30	<0.50		ug/L	
			Total Silver (Ag)	2019/09/30	<0.10		ug/L	
			Total Sodium (Na)	2019/09/30	<100		ug/L	
			Total Strontium (Sr)	2019/09/30	<2.0		ug/L	
			Total Thallium (TI)	2019/09/30	<0.10		ug/L	
			Total Tin (Sn)	2019/09/30	<2.0			
			Total Titanium (Ti)	2019/09/30	<2.0		ug/L ug/L	
			Total Uranium (U)	2019/09/30	<0.10		ug/L ug/L	
							-	
			Total Vanadium (V)	2019/09/30	<2.0		ug/L	
C2E0400	DAN	DDD	Total Zinc (Zn)	2019/09/30	<5.0		ug/L	20
6359400	BAN	RPD	Total Aluminum (Al)	2019/09/30	5.7	00	%	20
6359671	AFM	Matrix Spike	Dissolved Aluminum (Al)	2019/10/02		99	%	80 - 120
			Dissolved Antimony (Sb)	2019/10/02		98	%	80 - 120
			Dissolved Arsenic (As)	2019/10/02		97	%	80 - 120
			Dissolved Barium (Ba)	2019/10/02		99	%	80 - 120
			Dissolved Beryllium (Be)	2019/10/02		102	%	80 - 120
			Dissolved Bismuth (Bi)	2019/10/02		95	%	80 - 120
			Dissolved Boron (B)	2019/10/02		NC	%	80 - 120
			Dissolved Cadmium (Cd)	2019/10/02		96	%	80 - 120
			Dissolved Calcium (Ca)	2019/10/02		NC	%	80 - 120
			Dissolved Chromium (Cr)	2019/10/02		96	%	80 - 120
			Dissolved Cobalt (Co)	2019/10/02		97	%	80 - 120
			Dissolved Copper (Cu)	2019/10/02		94	%	80 - 120
			Dissolved Iron (Fe)	2019/10/02		102	%	80 - 120
			Dissolved Lead (Pb)	2019/10/02		96	%	80 - 120
			Dissolved Magnesium (Mg)	2019/10/02		NC	%	80 - 120

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Manganese (Mn)	2019/10/02		NC	%	80 - 120
			Dissolved Molybdenum (Mo)	2019/10/02		106	%	80 - 120
			Dissolved Nickel (Ni)	2019/10/02		96	%	80 - 120
			Dissolved Phosphorus (P)	2019/10/02		102	%	80 - 120
			Dissolved Potassium (K)	2019/10/02		100	%	80 - 120
			Dissolved Selenium (Se)	2019/10/02		98	%	80 - 120
			Dissolved Silver (Ag)	2019/10/02		86	%	80 - 120
			Dissolved Sodium (Na)	2019/10/02		97	%	80 - 120
			Dissolved Strontium (Sr)	2019/10/02		NC	%	80 - 120
			Dissolved Thallium (TI)	2019/10/02		100	%	80 - 120
			Dissolved Tin (Sn)	2019/10/02		103	%	80 - 120
			Dissolved Titanium (Ti)	2019/10/02		101	%	80 - 120
			Dissolved Uranium (U)	2019/10/02		104	%	80 - 120
			Dissolved Vanadium (V)	2019/10/02		102	%	80 - 120
			Dissolved Zinc (Zn)	2019/10/02		99	%	80 - 120
6359671	AFM	Spiked Blank	Dissolved Aluminum (Al)	2019/10/02		104	%	80 - 120
		•	Dissolved Antimony (Sb)	2019/10/02		99	%	80 - 120
			Dissolved Arsenic (As)	2019/10/02		96	%	80 - 120
			Dissolved Barium (Ba)	2019/10/02		97	%	80 - 120
			Dissolved Beryllium (Be)	2019/10/02		98	%	80 - 120
			Dissolved Bismuth (Bi)	2019/10/02		98	%	80 - 120
			Dissolved Boron (B)	2019/10/02		101	%	80 - 120
			Dissolved Cadmium (Cd)	2019/10/02		95	%	80 - 120
			Dissolved Calcium (Ca)	2019/10/02		103	%	80 - 120
			Dissolved Chromium (Cr)	2019/10/02		96	%	80 - 120
			Dissolved Cobalt (Co)	2019/10/02		98	%	80 - 120
			Dissolved Copper (Cu)	2019/10/02		96	%	80 - 120
			Dissolved Iron (Fe)	2019/10/02		103	%	80 - 120
			Dissolved Lead (Pb)	2019/10/02		97	%	80 - 120
			Dissolved Magnesium (Mg)	2019/10/02		107	%	80 - 120
			Dissolved Magnesium (Mg)	2019/10/02		98	%	80 - 120
			Dissolved Molybdenum (Mo)	2019/10/02		102	%	80 - 120 80 - 120
				2019/10/02		98		
			Dissolved Nickel (Ni) Dissolved Phosphorus (P)	2019/10/02		98 107	% %	80 - 120 80 - 120
			Dissolved Priosphorus (P) Dissolved Potassium (K)					
				2019/10/02		103	%	80 - 120
			Dissolved Selenium (Se)	2019/10/02		97	%	80 - 120
			Dissolved Silver (Ag)	2019/10/02		96	%	80 - 120
			Dissolved Sodium (Na)	2019/10/02		102	%	80 - 120
			Dissolved Strontium (Sr)	2019/10/02		97	%	80 - 120
			Dissolved Thallium (TI)	2019/10/02		101	%	80 - 120
			Dissolved Tin (Sn)	2019/10/02		102	%	80 - 120
			Dissolved Titanium (Ti)	2019/10/02		102	%	80 - 120
			Dissolved Uranium (U)	2019/10/02		102	%	80 - 120
			Dissolved Vanadium (V)	2019/10/02		101	%	80 - 120
	:		Dissolved Zinc (Zn)	2019/10/02	- -	102	%	80 - 120
6359671	AFM	Method Blank	Dissolved Aluminum (Al)	2019/10/02	<5.0		ug/L	
			Dissolved Antimony (Sb)	2019/10/02	<1.0		ug/L	
			Dissolved Arsenic (As)	2019/10/02	<1.0		ug/L	
			Dissolved Barium (Ba)	2019/10/02	<1.0		ug/L	
			Dissolved Beryllium (Be)	2019/10/02	<1.0		ug/L	
			Dissolved Bismuth (Bi)	2019/10/02	<2.0		ug/L	
			Dissolved Boron (B)	2019/10/02	<50		ug/L	
			Dissolved Cadmium (Cd)	2019/10/02	<0.010		ug/L	

Page 14 of 20

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Calcium (Ca)	2019/10/02	<100		ug/L	
			Dissolved Chromium (Cr)	2019/10/02	<1.0		ug/L	
			Dissolved Cobalt (Co)	2019/10/02	<0.40		ug/L	
			Dissolved Copper (Cu)	2019/10/02	<0.50		ug/L	
			Dissolved Iron (Fe)	2019/10/02	<50		ug/L	
			Dissolved Lead (Pb)	2019/10/02	<0.50		ug/L	
			Dissolved Magnesium (Mg)	2019/10/02	<100		ug/L	
			Dissolved Manganese (Mn)	2019/10/02	<2.0		ug/L	
			Dissolved Molybdenum (Mo)	2019/10/02	<2.0		ug/L	
			Dissolved Nickel (Ni)	2019/10/02	<2.0		ug/L	
			Dissolved Phosphorus (P)	2019/10/02	<100		ug/L	
			Dissolved Potassium (K)	2019/10/02	<100		ug/L	
			Dissolved Selenium (Se)	2019/10/02	<0.50		ug/L	
			Dissolved Silver (Ag)	2019/10/02	<0.10		ug/L	
			Dissolved Sodium (Na)	2019/10/02	<100		ug/L	
			Dissolved Strontium (Sr)	2019/10/02	<2.0		ug/L	
			Dissolved Thallium (TI)	2019/10/02	<0.10		ug/L	
			Dissolved Tin (Sn)	2019/10/02	<2.0		ug/L	
			Dissolved Titanium (Ti)	2019/10/02	<2.0		ug/L	
			Dissolved Uranium (U)	2019/10/02	<0.10		ug/L	
			Dissolved Vanadium (V)	2019/10/02	<2.0		ug/L	
			Dissolved Zinc (Zn)	2019/10/02	<5.0		ug/L	
359671	AFM	RPD	Dissolved Aluminum (Al)	2019/10/02	13		%	20
555071		N D	Dissolved Antimony (Sb)	2019/10/02	NC		%	20
			Dissolved Arsenic (As)	2019/10/02	NC		%	20
			Dissolved Barium (Ba)	2019/10/02	3.8		%	20
			Dissolved Barldin (Ba) Dissolved Beryllium (Be)	2019/10/02	NC		%	20
			Dissolved Bismuth (Bi)	2019/10/02	NC		%	20
			Dissolved Bismuth (B)	2019/10/02	0.58		%	20
			Dissolved Cadmium (Cd)	2019/10/02	2.0		%	20
			Dissolved Calcium (Ca)	2019/10/02	0.41		%	20
							%	
			Dissolved Chromium (Cr)	2019/10/02	NC			20
			Dissolved Cobalt (Co)	2019/10/02	NC		% %	20
			Dissolved Copper (Cu)	2019/10/02	NC			20
			Dissolved Iron (Fe)	2019/10/02	NC		%	20
			Dissolved Lead (Pb)	2019/10/02	NC		%	20
			Dissolved Magnesium (Mg)	2019/10/02	0.53		%	20
			Dissolved Manganese (Mn)	2019/10/02	0.72		%	20
			Dissolved Molybdenum (Mo)	2019/10/02	2.4		%	20
			Dissolved Nickel (Ni)	2019/10/02	NC		%	20
			Dissolved Phosphorus (P)	2019/10/02	NC		%	20
			Dissolved Potassium (K)	2019/10/02	5.7		%	20
			Dissolved Selenium (Se)	2019/10/02	NC		%	20
			Dissolved Silver (Ag)	2019/10/02	NC		%	20
			Dissolved Sodium (Na)	2019/10/02	0.46		%	20
			Dissolved Strontium (Sr)	2019/10/02	0.18		%	20
			Dissolved Thallium (TI)	2019/10/02	NC		%	20
			Dissolved Tin (Sn)	2019/10/02	NC		%	20
			Dissolved Titanium (Ti)	2019/10/02	NC		%	20
			Dissolved Uranium (U)	2019/10/02	2.6		%	20
			Dissolved Vanadium (V)	2019/10/02	NC		%	20
			Dissolved Zinc (Zn)	2019/10/02	NC		%	20
5359706	BAN	Matrix Spike	Acid Extractable Arsenic (As)	2019/10/04		NC	%	75 - 125

Page 15 of 20

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Acid Extractable Mercury (Hg)	2019/10/04		NC	%	75 - 125
6359706	BAN	Spiked Blank	Acid Extractable Arsenic (As)	2019/10/04		103	%	75 - 125
			Acid Extractable Mercury (Hg)	2019/10/04		105	%	75 - 125
6359706	BAN	Method Blank	Acid Extractable Arsenic (As)	2019/10/03	<2.0		mg/kg	
			Acid Extractable Mercury (Hg)	2019/10/03	<0.10		mg/kg	
6359706	BAN	RPD	Acid Extractable Arsenic (As)	2019/10/04	11		%	35
			Acid Extractable Mercury (Hg)	2019/10/04	11		%	35
6361914	AM6	QC Standard	Total Suspended Solids	2019/10/02		95	%	80 - 120
6361914	AM6	Method Blank	Total Suspended Solids	2019/10/02	<1.0		mg/L	
6361914	AM6	RPD	Total Suspended Solids	2019/10/02	2.6		%	20
6364217	КМС	QC Standard	рН	2019/10/02		100	%	97 - 103
6364217	КМС	RPD	рН	2019/10/02	0.16		%	N/A
6364378	MCN	Matrix Spike	Nitrogen (Ammonia Nitrogen)	2019/10/03		85	%	80 - 120
6364378	MCN	Spiked Blank	Nitrogen (Ammonia Nitrogen)	2019/10/03		101	%	80 - 120
6364378	MCN	Method Blank	Nitrogen (Ammonia Nitrogen)	2019/10/03	<0.050		mg/L	
6364378	MCN	RPD	Nitrogen (Ammonia Nitrogen)	2019/10/03	0.19		%	20
6364921	MCN	Matrix Spike	Total Alkalinity (Total as CaCO3)	2019/10/05		NC	%	80 - 120
6364921	MCN	Spiked Blank	Total Alkalinity (Total as CaCO3)	2019/10/05		108	%	80 - 120
6364921	MCN	Method Blank	Total Alkalinity (Total as CaCO3)	2019/10/05	<5.0		mg/L	
6364921	MCN	RPD	Total Alkalinity (Total as CaCO3)	2019/10/05	11		%	25
6364928	MCN	Matrix Spike	Dissolved Chloride (Cl-)	2019/10/03		NC	%	80 - 120
6364928	MCN	Spiked Blank	Dissolved Chloride (Cl-)	2019/10/03		100	%	80 - 120
6364928	MCN	Method Blank	Dissolved Chloride (Cl-)	2019/10/03	<1.0		mg/L	
6364928	MCN	RPD	Dissolved Chloride (Cl-)	2019/10/03	0.33		%	25
6364931	MCN	Matrix Spike	Dissolved Sulphate (SO4)	2019/10/02		87	%	80 - 120
6364931	MCN	Spiked Blank	Dissolved Sulphate (SO4)	2019/10/02		101	%	80 - 120
6364931	MCN	Method Blank	Dissolved Sulphate (SO4)	2019/10/02	<2.0		mg/L	
6364931	MCN	RPD	Dissolved Sulphate (SO4)	2019/10/02	0.59		%	25
6364934	MCN	Matrix Spike	Reactive Silica (SiO2)	2019/10/02		95	%	80 - 120
6364934	MCN	Spiked Blank	Reactive Silica (SiO2)	2019/10/02		97	%	80 - 120
6364934	MCN	Method Blank	Reactive Silica (SiO2)	2019/10/02	<0.50		mg/L	
6364934	MCN	RPD	Reactive Silica (SiO2)	2019/10/02	1.3		%	25
6364936	MCN	Spiked Blank	Colour	2019/10/03		100	%	80 - 120
6364936	MCN	Method Blank	Colour	2019/10/03	<5.0		TCU	
6364936	MCN	RPD	Colour	2019/10/03	NC		%	20
6364939	MCN	Matrix Spike	Orthophosphate (P)	2019/10/03		98	%	80 - 120
6364939	MCN	Spiked Blank	Orthophosphate (P)	2019/10/03		104	%	80 - 120
6364939	MCN	Method Blank	Orthophosphate (P)	2019/10/03	<0.010		mg/L	
6364939	MCN	RPD	Orthophosphate (P)	2019/10/03	2.7		%	25
6364940	MCN	Matrix Spike	Nitrate + Nitrite (N)	2019/10/04		101	%	80 - 120
6364940	MCN	Spiked Blank	Nitrate + Nitrite (N)	2019/10/04		92	%	80 - 120
6364940	MCN	Method Blank	Nitrate + Nitrite (N)	2019/10/04	<0.050		mg/L	
6364940	MCN	RPD	Nitrate + Nitrite (N)	2019/10/04	4.0		%	25
6364956	MCN	Matrix Spike	Nitrite (N)	2019/10/02		99	%	80 - 120
6364956	MCN	Spiked Blank	Nitrite (N)	2019/10/02		99	%	80 - 120
6364956	MCN	Method Blank	Nitrite (N)	2019/10/02	<0.010		mg/L	
6364956	MCN	RPD	Nitrite (N)	2019/10/02	NC		%	20
6369495	SSI	Matrix Spike	Total Organic Carbon (C)	2019/10/05		100	%	85 - 115
6369495	SSI	Spiked Blank	Total Organic Carbon (C)	2019/10/05		101	%	80 - 120
6369495	SSI	Method Blank	Total Organic Carbon (C)	2019/10/05	<0.50		mg/L	
6369495	SSI	RPD	Total Organic Carbon (C)	2019/10/05	NC		%	15
6369499	SSI	Matrix Spike	Total Organic Carbon (C)	2019/10/05		102	%	85 - 115
6369499	SSI	Spiked Blank	Total Organic Carbon (C)	2019/10/05		102	%	80 - 120

Page 16 of 20

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
6369499	SSI	Method Blank	Total Organic Carbon (C)	2019/10/05	<0.50		mg/L	
6369499	SSI	RPD	Total Organic Carbon (C)	2019/10/05	NC		%	15
6369507	SSI	Matrix Spike	Dissolved Organic Carbon (C)	2019/10/05		101	%	85 - 115
6369507	SSI	Spiked Blank	Dissolved Organic Carbon (C)	2019/10/05		101	%	80 - 120
6369507	SSI	Method Blank	Dissolved Organic Carbon (C)	2019/10/05	<0.50		mg/L	
6369507	SSI	RPD	Dissolved Organic Carbon (C)	2019/10/05	0.69		%	15
6369710	SSI	QC Standard	Conductivity	2019/10/04		99	%	80 - 120
6369710	SSI	Method Blank	Conductivity	2019/10/04	<1.0		uS/cm	
6369710	SSI	RPD	Conductivity	2019/10/04	0.43		%	10
6369763	КМС	QC Standard	Turbidity	2019/10/05		101	%	80 - 120
6369763	КМС	Spiked Blank	Turbidity	2019/10/05		100	%	80 - 120
6369763	КМС	Method Blank	Turbidity	2019/10/05	<0.10		NTU	
6369763	КМС	RPD	Turbidity	2019/10/05	2.3		%	20
6382132	BAN	Matrix Spike [KWQ717-01]	Acid Extractable Antimony (Sb)	2019/10/11		103	%	75 - 125
			Acid Extractable Arsenic (As)	2019/10/11		NC	%	75 - 125
			Acid Extractable Barium (Ba)	2019/10/11		NC	%	75 - 125
			Acid Extractable Beryllium (Be)	2019/10/11		114	%	75 - 125
			Acid Extractable Boron (B)	2019/10/11		106	%	75 - 125
			Acid Extractable Cadmium (Cd)	2019/10/11		109	%	75 - 125
			Acid Extractable Chromium (Cr)	2019/10/11		109	%	75 - 125
			Acid Extractable Cobalt (Co)	2019/10/11		108	%	75 - 125
			Acid Extractable Copper (Cu)	2019/10/11		105	%	75 - 125
			Acid Extractable Lead (Pb)	2019/10/11		NC	%	75 - 125
			Acid Extractable Lithium (Li)	2019/10/11		119	%	75 - 125
			Acid Extractable Manganese (Mn)	2019/10/11		NC	%	75 - 125
			Acid Extractable Molybdenum (Mo)	2019/10/11		117	%	75 - 125
			Acid Extractable Nickel (Ni)	2019/10/11		109	%	75 - 125
			Acid Extractable Selenium (Se)	2019/10/11		109	%	75 - 125
			Acid Extractable Silver (Ag)	2019/10/11		105	%	75 - 125
			Acid Extractable Strontium (Sr)	2019/10/11		112	%	75 - 125
			Acid Extractable Thallium (TI)	2019/10/11		112	%	75 - 125
			Acid Extractable Uranium (U)	2019/10/11		110	%	75 - 125
			Acid Extractable Vanadium (V)	2019/10/11		110	%	75 - 125
			Acid Extractable Zinc (Zn)	2019/10/11		112	%	75 - 125
6382132	BAN	Spiked Blank	Acid Extractable Antimony (Sb)	2019/10/11		107	%	75 - 125
			Acid Extractable Arsenic (As)	2019/10/11		102	%	75 - 125
			Acid Extractable Barium (Ba)	2019/10/11		104	%	75 - 125
			Acid Extractable Beryllium (Be)	2019/10/11		103	%	75 - 125
			Acid Extractable Boron (B)	2019/10/11		104	%	75 - 125
			Acid Extractable Cadmium (Cd)	2019/10/11		98	%	75 - 125
			Acid Extractable Chromium (Cr)	2019/10/11		97	%	75 - 125
			Acid Extractable Cobalt (Co)	2019/10/11		100	%	75 - 125
			Acid Extractable Copper (Cu)	2019/10/11		97	%	75 - 125
			Acid Extractable Lead (Pb)	2019/10/11		102	%	75 - 125
			Acid Extractable Lithium (Li)	2019/10/11		104	%	75 - 125
			Acid Extractable Manganese (Mn)	2019/10/11		101	%	75 - 125
			Acid Extractable Molybdenum (Mo)	2019/10/11		105	%	75 - 125
			Acid Extractable Nickel (Ni)	2019/10/11		98	%	75 - 125
			Acid Extractable Selenium (Se)	2019/10/11		104	%	75 - 125
			Acid Extractable Silver (Ag)	2019/10/11		99	%	75 - 125
			Acid Extractable Strontium (Sr)	2019/10/11		103	%	75 - 125
			Acid Extractable Thallium (TI)	2019/10/11		102	%	75 - 125

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Acid Extractable Uranium (U)	2019/10/11		101	%	75 - 125
			Acid Extractable Vanadium (V)	2019/10/11		101	%	75 - 125
			Acid Extractable Zinc (Zn)	2019/10/11		99	%	75 - 125
6382132	BAN	Method Blank	Acid Extractable Aluminum (Al)	2019/10/11	<10		mg/kg	
			Acid Extractable Antimony (Sb)	2019/10/11	<2.0		mg/kg	
			Acid Extractable Arsenic (As)	2019/10/11	<2.0		mg/kg	
			Acid Extractable Barium (Ba)	2019/10/11	<5.0		mg/kg	
			Acid Extractable Beryllium (Be)	2019/10/11	<2.0		mg/kg	
			Acid Extractable Boron (B)	2019/10/11	<5.0		mg/kg	
			Acid Extractable Cadmium (Cd)	2019/10/11	<0.30		mg/kg	
			Acid Extractable Chromium (Cr)	2019/10/11	<2.0		mg/kg	
			Acid Extractable Cobalt (Co)	2019/10/11	<1.0		mg/kg	
			Acid Extractable Copper (Cu)	2019/10/11	<2.0		mg/kg	
			Acid Extractable Iron (Fe)	2019/10/11	<50		mg/kg	
			Acid Extractable Lead (Pb)	2019/10/11	<0.50		mg/kg	
			Acid Extractable Lithium (Li)	2019/10/11	<2.0		mg/kg	
			Acid Extractable Manganese (Mn)	2019/10/11	<2.0		mg/kg	
			Acid Extractable Molybdenum (Mo)	2019/10/11	<2.0		mg/kg	
			Acid Extractable Nickel (Ni)	2019/10/11	<2.0		mg/kg	
			Acid Extractable Selenium (Se)	2019/10/11	<2.0		mg/kg	
			Acid Extractable Silver (Ag)	2019/10/11	<0.50		mg/kg	
			Acid Extractable Strontium (Sr)	2019/10/11	<5.0		mg/kg	
			Acid Extractable Thallium (Tl)	2019/10/11	<0.10		mg/kg	
			Acid Extractable Uranium (U)	2019/10/11	<0.10		mg/kg	
			Acid Extractable Vanadium (V)	2019/10/11	<2.0		mg/kg	
			Acid Extractable Zinc (Zn)	2019/10/11	<5.0		mg/kg	
6382132	BAN	RPD [KWQ717-01]	Acid Extractable Aluminum (Al)	2019/10/11	3.0		%	35
			Acid Extractable Antimony (Sb)	2019/10/11	8.8		%	35
			Acid Extractable Arsenic (As)	2019/10/11	0.80		%	35
			Acid Extractable Barium (Ba)	2019/10/11	3.2		%	35
			Acid Extractable Beryllium (Be)	2019/10/11	NC		%	35
			Acid Extractable Boron (B)	2019/10/11	NC		%	35
			Acid Extractable Cadmium (Cd)	2019/10/11	2.1		%	35
			Acid Extractable Chromium (Cr)	2019/10/11	0.33		%	35
			Acid Extractable Cobalt (Co)	2019/10/11	2.2		%	35
			Acid Extractable Copper (Cu)	2019/10/11	1.3		%	35
			Acid Extractable Iron (Fe)	2019/10/11	0.86		%	35
			Acid Extractable Lead (Pb)	2019/10/11	1.5		%	35
			Acid Extractable Lithium (Li)	2019/10/11	2.2		%	35
			Acid Extractable Manganese (Mn)	2019/10/11	1.3		%	35
			Acid Extractable Molybdenum (Mo)	2019/10/11	NC		%	35
			Acid Extractable Nickel (Ni)	2019/10/11	1.1		%	35
			Acid Extractable Selenium (Se)	2019/10/11	NC		%	35
			Acid Extractable Silver (Ag)	2019/10/11	NC		%	35
			Acid Extractable Strontium (Sr)	2019/10/11	2.2		%	35
			Acid Extractable Thallium (TI)	2019/10/11	NC		%	35
			Acid Extractable Uranium (U)	2019/10/11	2.5		%	35
			Acid Extractable Vanadium (V)	2019/10/11	1.4		%	35

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Acid Extractable Zinc (Zn)	2019/10/11	3.8		%	35
N/A = N	ot Applic	able						

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

allama

Eric Dearman, Scientific Specialist

Mike Mac Gille

Mike MacGillivray, Scientific Specialist (Inorganics)

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

	Invoice Information			Report	t Infor	matic	on (if c	liffers	from	1 invoi	ce)		CHAIN		10000		Inform			e appl	icable)	0.000	T		6949 Page 3 of
pany Name:	Dillon Cons	ling	Compan	y Name:	_								Qu	iotatio	n#:		_		_			_	-		Rej	egular TAT (5 business days) Most
act Name: -	Resecca Apple	ton	Contact	Name:	_	_		_					P.0	D, #:						_				. 1	PLEASE	E PROVIDE ADVANCE NOTICE FOR RU PROJECTS
ess: _	137 Christe	he Dr.	Address				1		2				Pro	oject II	b		10	5;	12	67	- 6	00	D	-	IF RUSH	H please specify date (Surcharges
1100.1	HFX Postal Code:		5		-		Posta	Code	н -	-		-	Sit	e Loca	tion:		-Y.	051	i h	ا م ل	lac	و		-	DATER	be applied) REQUIRED:
10: 450-			Phone:		-	÷		ax:	÷	-	-		Sit	e #:			-	1.1	1	1.0.1	_			-	DATCH	EQUINED:
: <u>r</u> a	pp ton ed.lla	parcq	Email:				-						Sa	mpled	By:		7	ĄΜ	IN	JCI	5	-		-		
	Laboratory Use	: Only															Analy	sis Rec	queste	ed						
CUSTODY SEAL	COOLER TEMPERATURE	s cool	ER TEMPERATU	RES				ă,	ers		etals /ater)	Τ		Metals (Soil)		Γ	ficy	_					Τ			Regulatory Requirements (Speci
sent Intact								e wat	d waters	T I			1001	T		1	pil) Po	F2-F4)	Η						19	- 1
	12, DIT		_	-			- 1	Surfac	roun			OLVE	(Available) Digest Ocean	40	(ilitit)	(32)	el Oli S	BTEX.	level T.E.H				nce/Absence)		[]]]	ng in the second
_	1,200			-	A			Nell /	als) G		La .	DISS	(lable)	- Control	al/la	13	NS Fuel	+C F1/	Low		-	1	ce/Ab		E L I	
-	5 5 9 COOLING MEDIA PRES	ENT Y / N	-		UBMITTED	ERVEC	IRED	tals)	d Met	lethod e wate	d wat	DTAL		(CIO4)	on icultur	BTEX.	Potable), C32	W5-PI	ć, VPH,	r/50()	dimen	1	resen	Count)	3E	
						& PRES	REQU	al Me	solve	surfact	troun	E) 10	ry actable est -for.	3/HF/F	le Bor AE Agr		oll (Pot C6-C32	ons (C	er BTE	r wate	ME Sel	20	Coli e	Coli (NOT ANALYZE	
AMPLES MUST BEI	KEPT COOL (< 10 °C) FROM TIME	OF SAMPLING UNTIL D	ELIVERY TO M	AXXAM	LAINER	ERED 2	ATION	(Tot	S (Dis	st (Del ater &	I for E	(CIRC	& Mercury Acid Extra Total Dige	(HNO union	Solub pr CCA	drocar	ons So BTEX	rocarb	e Wate	sult fo	AL/CO	22	orm/E	arm/E	NOT A	
SAN	APLE IDENTIFICATION	DATE SAMPLED (YYYY/MM/DD)	TIME SAMPLED (HH:MM)	MATRIX	4 OF CONTAINERS	FIELD FILTERED & PRESERVED	AB FILTRATION REQUIRED	RCAP-MS <u>(Total Metals)</u> Well / Surface water	RCAP-MS (Dissolved Metals) Ground	otal Digest (Default Method) or well water & surface water	Dissolved for ground water	Mercury (CIRCLE) TOTAL/ DISSOLVED	Metals & Mercury Default Acid Extractable Metals Total Digest -for	sediments (HNO3/HF/HCI04) Macenter I our lavel her Cold Venour AA	Hot Water Soluble Boron required for CCME Agricu	RBCA Hydrocarbons	Aydrocarbon: ow Level BTE	COME Hydrocarbons (CWS-PHC F1/BTEX.	VB Potable Water BTEX,	PAHs (Default for water/sol)	AHs (FWAL /COME Sediment)		otal Coliform/E.coli (Preser	otal Coliform/E.Coli (Count)	101D- DO	COMMENTS
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Star and a spectrum	partyber	D/	0 #	E.	LAB	RC/	2 2 2	Tota	Dis	Me	Met Defa	Sed	Hot	88 BB	Hyd	S	NB	PAF	PAF		Tota	Tota	10H	
TOF	14-15	Sept 24/19		026	1			-				-	/	_	+	_	-				_	_	_	-	$\left  + \right $	
10F	19-16	Sept 21/19 5-pt 25/17		ORG	1			1	4	- /	4		$\checkmark$	_		-		-	-		+		-	+		
				14,0	6	-		1	_	V	5	_		+		+	-	-	-			1	4	-		lotal Mietals
SW-	031	Sept 24/P	·	1tco	6	-		1	_	~	<u> </u>			-	-	-	-	-	-		_)		-	-	++	bottle mort
					-				_	_	-	_		_		-	+	-	-		_	+	-	-		6A CGP
					-	-		_			-	-		+	-	⊢	-		-		-	+	+	-		1.11.
					-	-			-		÷					+	+	-	-		-	-	+	+		
					-	-		_	_		+	+		_	_	+	+	-		$\left  - \right $		+	-	-	$\square$	
$\wedge$					+	-	-	$\dashv$	_				-		_	+-				$\left  - \right $	_	_		-		
	ISH&D BY: (Signature/Print)	DATE: (YYYY	/MM/DD)	TIME: {	HH:M	IN)			R	ECEIVE	D BY:(	Signat	turg/Prir	11)			ATE: ('	YYYY/1	MM/D	<u>ן</u> סו	TI	ME: (I	HH:MD	(1)	ĽЦ	MAXXAM JOB #
1/-1	H	9/26		2:1		-	1		C	V	01	50	RA		_	Ť			N			-		3		
MM		1100		1 6 %	SIC	e -	I		4	NT	111	IV	10N			1									1 3	BGRØØ93

White: Maxxam

Pink: Client

A Bureau Veritas Group Compe	www.maxxam	ica E-	mail: Customers		1.2	_	_	iner.	8	10	5.3		CHA	IN O	FC	0.10.0	1993 A.	10 0000						CC	DC #:	D	_	6948 _{Page}	_of
	e Information	5.		Repo	rt Info	ormat	ion (if	differs	tron	n invo	ice)					Pro	ojecti	Inform	ation (	where	appi	icable	9	_			1-	urnaround Time (TAT) Requestion and the second s	STREES.
0.1	Ilon Consolt	ng	- Compar	ny Name:	-	_			-	_	-	_	1	Quota	tion #		9							-	<u> </u>	Ľ	Janah	luces	
intact Name: Keber	ica Applet	5	Contact	Name:	_									P.O. #	£										_		PLEASE	E PROVIDE ADVANCE NOTICE PROJECTS	FOR RUSH
ldress: <u>137</u>	Chain Lel	re Dr	Address		_									Projec	t #:			-10	7-	12	67	- 1	OC	0		1F	RUSH	H please specify date (Surcl	harges will
HFX	Postal Code:			_			Posta	al Code	2)					Site Lo	catio	1:		Tor	rt	Wa	119	CR	_					be applied)	
ione: 450-4000	Fax: 150-20		Phone:	_	_			Fax:						Site #:												<u>D/</u>	ATE RE	EQUIRED:	
nail: Tappet	on ed.110.	1.69	Email:					-	_					Sampl	ed By			5	AM	1/1	JC	B		_					
11	Laboratory Use Only																	Analys	is Req	ueste	đ					6	0	,	
CUSTODY SEAL	DOLER TEMPERATURES	co	DLER TEMPERAT	URES	Ĺ	Т		er	waters		Aetals Water)			Meta (Soi				Policy	-		Т				T	P	- L	Regulatory Requirements	(Specify)
Present Intact	(8 7	4			1	1		te water	d wat									pill Po	F2-F4)	ΕH						17	2		
12	Q; I	-	_	_	-			Surfac	Ground			OLVE	Diges		4V	(IIII)	C32)	el Oll 5	втех,	evel T.E.H					sence	121	2		
	3,5	_	_	-				/ Ile/	als) G		5	DISS	lable)	e .	pour	al/ La	8	NS Fuel	IC F1/	VPH, Low		~		141	ce/AD				
<u></u>	ING MEDIA PRESENT	V / N	-		MITTE	RVED	RED	als)	Met	ethod wate	wat:	TAL /	EVA) a	Clo4)	old Va	cultur	BTEX,	(Potable), -C32	MS-PI		(IIDS/	Imen			resen	(Count)	ξ _B		
					S SUB	FIELD FILTERED & PRESERVED	AB FILTRATION REQUIRED	RCAP-MS (Total Metals) Well / Surface	RCAP-MS (Dissolved Metals)	otal Digest (Default Method) or well water & surface water	Dissolved for ground wate	Mercury (CIRCLE) TOTAL / DISSOLVED	ry actable (Available)	s Total Digest -for Oces ents (HNO3/HF/HCIO4)	Mercury Low level by Cold Vap	fot Water Soluble Boron required for CCME Agricu	RBCA Hydrocarbons (BTEX,		CCME Hydrocarbons (CWS-PHC F1/BTEX,	VB Potable Water BTEX,	PAHs (Default for water/soil)	PAHs (FWAL /COME Sediment)		10.00	Total Coliform/E.coll (Presence/Absence)	= 34	TANALY		
SAMPLES MUST BE KEPT COOL ( <	10 °C ) FROM TIME OF SA	MPLING UNTIL	DELIVERY TO N	MAXXAM	# OF CONTAINERS	ERED &	TION	(Tota	(Diss	tter B	for g	CIRC	Metals & Mercury Default Acid Extrac	Vietals Total Digest - ediments (HNO3/HF	w lev	Solub cir CCN	drocar	lydrocarbons Soll ow Level BTEX ,C6	rocarb	Wate	sult fo	11/100		4	orm/E	N A	202		
SAMPLE IDENTIFIC	ATION	DATE SAMPLE		MATRIX	CONT	0 FILTE	FILTR/	P-MS	P-MS	Diges rell wa	olved	cury	als & P ult Aci	als Tot	cury Lo	Water Jired f	AHW	ocarbons S Level BTEX	E Hyd	otable	s (Defa	(FW/			Colify	L' COINT	HOLD-DO	COMMENTS	
		(YYYY/MM/DD)	(HH:MM)	10000	10 #	FIELD	LAB	RCA	RCA	Tota for v	Diss	Mei	Meta	Met	Men	Hot (req	RBC	Hydi	CCM	NB P	PAH	PAH	PCBs	VOC5	Tota	Lota	HOLD-		
1 BIOSED19-1	0-0.1-	5=pt24/19	۱ <u> </u>	SED	ì																					J	1	1+2/10	eingt
2 BIOSED 19-2				1	1																					V		6-0.110	5
3 BIOSED19-3					1																					1	/	11	
BIDSED19-L					1																					V	/		
5 BIOSED19-5					1				_																	J			
· BIDSED19-	6 0-0.1-	4		4	1																					N	$\Lambda$		ae 4.
7 TOF19-1		Sept 24/19	Ň	ORG	1								1															China Maria	17.0 T.
* TOF19-2		1		1	1								1																
· TOF19-3					1								1																
10 TOF19-4		4		1	1								$\bigvee$																
RELINQUISHED BY: (Sigr	nature/Print)		(Y/MM/DD)	TIME:	<u>.</u>		L			-	_	11 E.	ature,	'Print)			D	ATE: (Y	YYY/N	/M/D	D)	T	IME: (	HH:N	A1/A)			MAXXAM JOB #	
M-MAT		9/24	/19	1 2:	31	Ø		(	91	20	Im	K	ĺ														B	39R Ø Ø 93	
-1		î		1	_		1	_	-				the second				í –				-1	_	_	_		-1	V		

White: Maxxam

Pink: Client

	200 Bluewater Road, Suite 49-55 Elizabeth Avenue, St 465 George Street,Unit G,S	John's, NL A1A 1W ydney, NS B1P 1K5	19. i	T.	el: 709 el: 903	9-754-0 2-567-1	203 Fa	ix: 709-	-420-86 754-86 -539-65	12 Toll 04 Toll	Free: Free:	1-888-4 1-888-5	192-722 135-777	!7 '0	0.51		~~~						n	31	ATL FCD 00149 / 22	
Invoice Informat		E-mail: Customers	(Steller 10)	rd@ma t Infori	0.00	121	ffors fr	om inv	nical		CHA		FC	-					annli	rablel		COC	:#:0	_	UJ4 / Page of Turnaround Time (TAT) Required	
	as Ibag			c mion	nauo	0 (0 0)	nersn	on ny	oncej	-		Project Information (where applicable) Quotation #:														
npany Name:	11.5											-	_						-	-	Regular TAT (5 business days) Most analyses PLEASE PROVIDE ADVANCE NOTICE FOR RUSH					
tact Name: Liberces Ap	puter	Contact		-	-	-	-	-	-	_		P.O. #			-	10	- 1	51	2	-1-	4.7			PROJECTS		
ess: St Char	Lebe UT	Address						BILLI				10	1000 IF RUSH please specify date (Surcharges v be applied)													
	tal Code: 17 - 2008	Phone:	-	-	-				-		21	Site #	ocatior	12	1	10	21 1	1	K- 1	uc	-		•	DATE	REQUIRED:	
rappletoned		Email:	Fax:					novere v	led By:		-	T	ĮM	1	JC	R			- 1							
	itory Use Only			1	-	-	-	_	_	-	_	samp	ica of.			Analys		-	_		-			-		
			-	┝	-1	1			Metals	T		Met	als				is neg	1			1			-1-	Regulatory Requirements (Specify)	
CUSTODY SEAL COOLER TEMP	ERATURES	COOLER TEMPERATU	JRES				water		(Water	-		(So	ii)	_		Policy	F4)	-								
12.01	7			1	2		/ Surrace water			VED	dest			(ii)		oil spill	EX, F2-	evel T.E.H				(apt			Contraction of the second	
73	5			1			u / u			ISSOL	le) Di		UL AA	Landf	5-C32)	Fuel C	F1/BT					/Abser			2000 T 11	
53	9			TTED	VED	9 3	Antrolo	(poul	water	U/ IV	Availat	Icean D4)	d Vapo	e Boron E Agricultural/L	rex, ce	le), NS	S-PHC	/PH, Lo	fie	(tuat)		sence,	(tun			
COÓLING MED	IA PRESENT Y / N			IMBUS	RESERV	QUIRE	Vietai	It Met	v bruu v aber	TOT	able (	-for O	oy Calt	Agricu	LB) SU	Potab C32	s (CW)	ITEX, (	water/soll)	Sedin		li (Pre	ii (Cot	ALVZE		
MPLES MUST BE KEPT COOL ( < 10 °C ) FRO	M TIME OF SAMPLING UN	TIL DELIVERY TO N	MAXXAM	INERS 3	ED &PI	ION RE	Diccol	(Defau	or gro	JIRCLE	Extract	Total Digest its (HNO3/)	v level I	CCME	ocarbo	ts Soil ( EX ,CB	carbon	Mater F	ht for w	/CCME		m/E.co	m/E.Co	OT AN		
SAMPLE IDENTIFICATION	DATE SAMP (YYYY/MM/		MATRIX	# OF CONTAINERS	FIELD FILTERED & PRESERVED	LAB FILTRATION REQUIRED	RCAP-INS [10131 [WELAIS] Well / Surrace	fotal Digest (Defa	tor well water & surface Dissolved for ground	Mercury (CIRCLE) TOTAL / DISSOLVED	Metals & Mercury Default Acid Extractable (Available)	Metals Total Dig sediments (HND)	Mercury Law level by Cald Vap	Hot Water Soluble required for CCME	RBCA Hydrocarbons (BTEX, C6-C32)	Hydrocarbons Soil (Potable), NS Fuel Oil Low Level BTEX ,C6-C32	CCME Hydrocarbons (CWS-PHC F1/BTEX, F2-F4)	NB Potable Water BTEX, VPH, Low	PAHs (Default for	PAHs (FWAL /CCME Sediment) PCBs	VOCs	Tatal Coliform/E.coli (Presence/Absence)	Total Coliform/E.Coli (Count)	HOLD- DO NOT ANALYZE	COMIMENTS	
TOF19-5	Sater	19	SRG	1				T			1										1					
TOF 19-6			1	1							1															
TDF19-7				1							1															
TOF19-8				1							J			_			_								3914 SEP 26 14:	
TOF19-9				1							1															
TOF19-10				1							$\checkmark$															
TOF 19-11				1	-						1															
TOF-19-12				1							1															
TOF 19-13				1							1	_			_									_		
TOF19-14	*		2	1							~															
RELINQUISHED BY: (Signature/Prin			TIME:				0.1	RECEI	VED BY	:(Sign:	ature/	Print)			DA	ATE: (Y	YYY/1	/IM/D	D)	TIN	1E: (HI	H:MIN	1)		MAXXAM JOB #	
Mina		4/19	2:	ØC	>	_	H	51	VV	4	-			_	-				_				_		139RQØ93	
JAKAMOR	diffed on this Chain of Cont-	du le cubiert te ta-	want's st	odard 7	arm	and C	no dha -	nr. 71		the co	anie a	Tuek	(1	1000 million	in rat	newle	lares	a seed	100000	in the second	f riter t	ater	whield	200.0	callable for utaulay at	
s otherwise agreed to in writing, work subm maxiam.ca/terms.	nued on this chain of Custo	uy is subject to Ma	ixxam sista	ndard I	erms	and G	pridició	ns: Sig	ning of	UNIS CI	nam ci	CUSTO	ay doc	ument	15 ack	nowle	Igmer	it and	accep	ance o	rount	erms	which	are av	valiable for viewing at	

White: Maxxam

Pink: Client



Your Project #: 19-1567-1000 Site Location: PORT WALLACE Your C.O.C. #: D37846

### **Attention: Rebecca Appleton**

Dillon Consulting Limited 137 Chain Lake Dr Suite 100 Halifax , NS CANADA B3S 1B3

> Report Date: 2019/12/02 Report #: R5988044 Version: 2 - Revision

## **CERTIFICATE OF ANALYSIS – REVISED REPORT**

### BV LABS JOB #: B9W0593

Received: 2019/11/13, 15:36

Sample Matrix: Water # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Carbonate, Bicarbonate and Hydroxide	1	N/A	2019/11/18	N/A	SM 23 4500-CO2 D
Carbonate, Bicarbonate and Hydroxide	1	N/A	2019/11/19	N/A	SM 23 4500-CO2 D
Alkalinity	2	N/A	2019/11/19	ATL SOP 00013	EPA 310.2 R1974 m
Chloride	2	N/A	2019/11/20	ATL SOP 00014	SM 23 4500-Cl- E m
Colour	2	N/A	2019/11/20	ATL SOP 00020	SM 23 2120C m
Organic carbon - Diss (DOC) (1)	2	N/A	2019/11/18	ATL SOP 00203	SM 23 5310B m
Conductance - water	1	N/A	2019/11/18	ATL SOP 00004	SM 23 2510B m
Conductance - water	1	N/A	2019/11/19	ATL SOP 00004	SM 23 2510B m
Hardness (calculated as CaCO3)	2	N/A	2019/11/18	ATL SOP 00048	Auto Calc
Mercury - Dissolved (CVAA,LL)	2	2019/11/28	2019/11/29	ATL SOP 00026	EPA 245.1 R3 m
Mercury - Total (CVAA,LL)	2	2019/11/28	2019/11/29	ATL SOP 00026	EPA 245.1 R3 m
Metals Water Diss. MS (as rec'd)	2	N/A	2019/11/15	ATL SOP 00058	EPA 6020B R2 m
Metals Water Total MS	2	2019/11/18	2019/11/18	ATL SOP 00058	EPA 6020B R2 m
Ion Balance (% Difference)	2	N/A	2019/11/20	N/A	Auto Calc.
Anion and Cation Sum	2	N/A	2019/11/20	N/A	Auto Calc.
Nitrogen Ammonia - water	2	N/A	2019/11/20	ATL SOP 00015	EPA 350.1 R2 m
Nitrogen - Nitrate + Nitrite	2	N/A	2019/11/19	ATL SOP 00016	USGS I-2547-11m
Nitrogen - Nitrite	2	N/A	2019/11/20	ATL SOP 00017	SM 23 4500-NO2- B m
Nitrogen - Nitrate (as N)	2	N/A	2019/11/20	ATL SOP 00018	ASTM D3867-16
рН (2)	1	N/A	2019/11/18	ATL SOP 00003	SM 23 4500-H+ B m
рН (2)	1	N/A	2019/11/19	ATL SOP 00003	SM 23 4500-H+ B m
Phosphorus - ortho	2	N/A	2019/11/20	ATL SOP 00021	SM 23 4500-P E m
Sat. pH and Langelier Index (@ 20C)	2	N/A	2019/11/20	ATL SOP 00049	Auto Calc.
Sat. pH and Langelier Index (@ 4C)	2	N/A	2019/11/20	ATL SOP 00049	Auto Calc.
Reactive Silica	2	N/A	2019/11/19	ATL SOP 00022	EPA 366.0 m
Sulphate	2	N/A	2019/11/20	ATL SOP 00023	ASTM D516-16 m
Total Dissolved Solids (TDS calc)	2	N/A	2019/11/20	N/A	Auto Calc.
Organic carbon - Total (TOC) (1)	1	N/A	2019/11/18	ATL SOP 00203	SM 23 5310B m
Organic carbon - Total (TOC) (1)	1	N/A	2019/11/19	ATL SOP 00203	SM 23 5310B m
Total Suspended Solids	2	2019/11/15	2019/11/19	ATL SOP 00007	SM 23 2540D m
Turbidity	2	N/A	2019/11/15	ATL SOP 00011	EPA 180.1 R2 m

#### Page 1 of 15



Your Project #: 19-1567-1000 Site Location: PORT WALLACE Your C.O.C. #: D37846

#### **Attention: Rebecca Appleton**

Dillon Consulting Limited 137 Chain Lake Dr Suite 100 Halifax , NS CANADA B3S 1B3

> Report Date: 2019/12/02 Report #: R5988044 Version: 2 - Revision

## CERTIFICATE OF ANALYSIS – REVISED REPORT

#### BV LABS JOB #: B9W0593 Received: 2019/11/13, 15:36

#### **Remarks:**

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) TOC / DOC present in the sample should be considered as non-purgeable TOC / DOC.

(2) The APHA Standard Method require pH to be analyzed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the APHA Standard Method holding time.

**Encryption Key** 

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Heather Macumber, Senior Project Manager Email: Heather.MACUMBER@bvlabs.com Phone# (902)420-0203 Ext:226

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.



## **RESULTS OF ANALYSES OF WATER**

BV Labs ID		LHN561			LHN561			LHN562		
Converting Data		2019/11/13			2019/11/13			2019/11/13		
Sampling Date		09:45			09:45			10:15		
COC Number		D37846			D37846			D37846		
	UNITS	SW-IN	RDL	QC Batch	SW-IN Lab-Dup	RDL	QC Batch	SW-OUT	RDL	QC Batch
Calculated Parameters										
Anion Sum	me/L	1.42	N/A	6441797				1.28	N/A	6441797
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	10	1.0	6441791				10	1.0	6441791
Calculated TDS	mg/L	82	1.0	6441807				75	1.0	6441807
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	6441791				<1.0	1.0	6441791
Cation Sum	me/L	1.25	N/A	6441797				1.13	N/A	6441797
Hardness (CaCO3)	mg/L	17	1.0	6441793				16	1.0	6441793
Ion Balance (% Difference)	%	6.37	N/A	6441795				6.22	N/A	6441795
Langelier Index (@ 20C)	N/A	-2.70		6441803				-2.71		6441803
Langelier Index (@ 4C)	N/A	-2.95		6441805				-2.96		6441805
Nitrate (N)	mg/L	<0.050	0.050	6441799				<0.050	0.050	6441799
Saturation pH (@ 20C)	N/A	9.60		6441803				9.62		6441803
Saturation pH (@ 4C)	N/A	9.85		6441805				9.87		6441805
Inorganics										
Total Alkalinity (Total as CaCO3)	mg/L	10	5.0	6449591				10	5.0	6449591
Dissolved Chloride (Cl-)	mg/L	36	1.0	6449598				32	1.0	6449598
Colour	TCU	37	5.0	6449610				57	25	6449610
Nitrate + Nitrite (N)	mg/L	<0.050	0.050	6449612				<0.050	0.050	6449612
Nitrite (N)	mg/L	<0.010	0.010	6449613				<0.010	0.010	6449613
Nitrogen (Ammonia Nitrogen)	mg/L	0.051	0.050	6449794				<0.050	0.050	6449794
Dissolved Organic Carbon (C)	mg/L	6.4	0.50	6444176	6.4	0.50	6444176	8.4	0.50	6444176
Total Organic Carbon (C)	mg/L	6.4	0.50	6444181				8.4	0.50	6444181
Orthophosphate (P)	mg/L	0.021	0.010	6449611				0.013	0.010	6449611
рН	рН	6.90	N/A	6444118				6.91	N/A	6447426
Reactive Silica (SiO2)	mg/L	3.1	0.50	6449608				3.3	0.50	6449608
Total Suspended Solids	mg/L	<1.0	1.0	6444665				<1.0	1.0	6444665
Dissolved Sulphate (SO4)	mg/L	8.7	2.0	6449601				8.4	2.0	6449601
Turbidity	NTU	0.84	0.10	6444228				0.52	0.10	6444228
Conductivity	uS/cm	150	1.0	6444120				130	1.0	6447428
RDL = Reportable Detection Limit										
QC Batch = Quality Control Batch										
Lab-Dup = Laboratory Initiated Du	plicate									
N/A - Not Applicable										

N/A = Not Applicable



## **RESULTS OF ANALYSES OF WATER**

BV Labs ID		LHN562		
Sampling Date		2019/11/13		
		10:15		
COC Number		D37846		
	UNITS	SW-OUT Lab-Dup	RDL	QC Batch
Inorganics				
Total Organic Carbon (C)	mg/L	8.1	0.50	6444181
RDL = Reportable Detection Limit				
QC Batch = Quality Control Batch				
Lab-Dup = Laboratory Initiated Dup	olicate			



## MERCURY BY COLD VAPOUR AA (WATER)

BV Labs ID		LHN561	LHN562						
formaling Data		2019/11/13	2019/11/13						
Sampling Date		09:45	10:15						
COC Number		D37846	D37846						
	UNITS	SW-IN	SW-OUT	RDL	QC Batch				
Metals									
Dissolved Mercury (Hg)	ug/L	<0.013 (1)	<0.013 (1)	0.013	6468190				
Total Mercury (Hg)	ug/L	0.013 (2)	<0.013 (2)	0.013	6468155				
RDL = Reportable Detection Limit									
QC Batch = Quality Control Batch									
(1) Dissolved mercury analysis performed on a nitric acid preserved sample									

(2) Total mercury analysis performed on a nitric acid preserved sample aliquot.

aliquot.

Page 5 of 15 Bureau Veritas Laboratories 200 Bluewater Rd, Suite 105, Bedford, Nova Scotia Canada B4B 1G9 Tel: 902-420-0203 Toll-free: 800-565-7227 Fax: 902-420-8612 www.bvlabs.com



# **ELEMENTS BY ICP/MS (WATER)**

BV Labs ID		LHN561	LHN562						
		2019/11/13	2019/11/13						
Sampling Date		09:45	10:15						
COC Number		D37846	D37846						
	UNITS	SW-IN	SW-OUT	RDL	QC Batch				
Metals			•		-				
Dissolved Aluminum (Al)	ug/L	76	110	5.0	6444466				
Total Aluminum (Al)	ug/L	97	140	5.0	6447335				
Dissolved Antimony (Sb)	ug/L	<1.0	<1.0	1.0	6444466				
Total Antimony (Sb)	ug/L	<1.0	<1.0	1.0	6447335				
Dissolved Arsenic (As)	ug/L	85	41	1.0	6444466				
Total Arsenic (As)	ug/L	93	46	1.0	6447335				
Dissolved Barium (Ba)	ug/L	4.9	4.9	1.0	6444466				
Total Barium (Ba)	ug/L	4.6	5.3	1.0	6447335				
Dissolved Beryllium (Be)	ug/L	<1.0	<1.0	1.0	6444466				
Total Beryllium (Be)	ug/L	<1.0	<1.0	1.0	6447335				
Dissolved Bismuth (Bi)	ug/L	<2.0	<2.0	2.0	6444466				
Total Bismuth (Bi)	ug/L	<2.0	<2.0	2.0	6447335				
Dissolved Boron (B)	ug/L	<50	<50	50	6444466				
Total Boron (B)	ug/L	<50	<50	50	6447335				
Dissolved Cadmium (Cd)	ug/L	<0.010	<0.010	0.010	6444466				
Total Cadmium (Cd)	ug/L	<0.010	<0.010	0.010	6447335				
Dissolved Calcium (Ca)	ug/L	5200	4900	100	6444466				
Total Calcium (Ca)	ug/L	5200	5100	100	6447335				
Dissolved Chromium (Cr)	ug/L	<1.0	1.1	1.0	6444466				
Total Chromium (Cr)	ug/L	1.2	1.2	1.0	6447335				
Dissolved Cobalt (Co)	ug/L	<0.40	<0.40	0.40	6444466				
Total Cobalt (Co)	ug/L	<0.40	<0.40	0.40	6447335				
Dissolved Copper (Cu)	ug/L	1.9	0.89	0.50	6444466				
Total Copper (Cu)	ug/L	0.78	0.84	0.50	6447335				
Dissolved Iron (Fe)	ug/L	84	110	50	6444466				
Total Iron (Fe)	ug/L	130	150	50	6447335				
Dissolved Lead (Pb)	ug/L	<0.50	<0.50	0.50	6444466				
Total Lead (Pb)	ug/L	<0.50	<0.50	0.50	6447335				
Dissolved Magnesium (Mg)	ug/L	1000	960	100	6444466				
Total Magnesium (Mg)	ug/L	1100	1100	100	6447335				
Dissolved Manganese (Mn)	ug/L	23	28	2.0	6444466				
Total Manganese (Mn)	ug/L	52	47	2.0	6447335				
Dissolved Molybdenum (Mo)	ug/L	<2.0	<2.0	2.0	6444466				
RDL = Reportable Detection Limit									
QC Batch = Quality Control Ba	tch								



# **ELEMENTS BY ICP/MS (WATER)**

BV Labs ID		LHN561	LHN562							
Compling Date		2019/11/13	2019/11/13							
Sampling Date		09:45	10:15							
COC Number		D37846	D37846							
	UNITS	SW-IN	SW-OUT	RDL	QC Batch					
Total Molybdenum (Mo)	ug/L	<2.0	<2.0	2.0	6447335					
Dissolved Nickel (Ni)	ug/L	<2.0	<2.0	2.0	6444466					
Total Nickel (Ni)	ug/L	<2.0	<2.0	2.0	6447335					
Dissolved Phosphorus (P)	ug/L	<100	<100	100	6444466					
Total Phosphorus (P)	ug/L	<100	<100	100	6447335					
Dissolved Potassium (K)	ug/L	960	980	100	6444466					
Total Potassium (K)	ug/L	910	960	100	6447335					
Dissolved Selenium (Se)	ug/L	<0.50	<0.50	0.50	6444466					
Total Selenium (Se)	ug/L	<0.50	<0.50	0.50	6447335					
Dissolved Silver (Ag)	ug/L	<0.10	<0.10	0.10	6444466					
Total Silver (Ag)	ug/L	<0.10	<0.10	0.10	6447335					
Dissolved Sodium (Na)	ug/L	20000	18000	100	6444466					
Total Sodium (Na)	ug/L	21000	19000	100	6447335					
Dissolved Strontium (Sr)	ug/L	19	18	2.0	6444466					
Total Strontium (Sr)	ug/L	19	18	2.0	6447335					
Dissolved Thallium (Tl)	ug/L	<0.10	<0.10	0.10	6444466					
Total Thallium (Tl)	ug/L	<0.10	<0.10	0.10	6447335					
Dissolved Tin (Sn)	ug/L	<2.0	<2.0	2.0	6444466					
Total Tin (Sn)	ug/L	<2.0	<2.0	2.0	6447335					
Dissolved Titanium (Ti)	ug/L	<2.0	<2.0	2.0	6444466					
Total Titanium (Ti)	ug/L	<2.0	<2.0	2.0	6447335					
Dissolved Uranium (U)	ug/L	<0.10	<0.10	0.10	6444466					
Total Uranium (U)	ug/L	<0.10	<0.10	0.10	6447335					
Dissolved Vanadium (V)	ug/L	<2.0	<2.0	2.0	6444466					
Total Vanadium (V)	ug/L	<2.0	<2.0	2.0	6447335					
Dissolved Zinc (Zn)	ug/L	<5.0	<5.0	5.0	6444466					
Total Zinc (Zn)	ug/L	<5.0	<5.0	5.0	6447335					
RDL = Reportable Detection Li	RDL = Reportable Detection Limit									
QC Batch = Quality Control Bat	ch.									



## **GENERAL COMMENTS**

Each te	mperature is the ave	rage of up to th	ree cooler temperatures taken at receipt
I	Package 1	3.0°C	
Revised	Report: Total and Di	ssolved Mercury	addded to both samples as per request from Rebecca. HWS Nov 26/19
•		•	acceptable. Anion/cation agreement within 0.2 meq/L. sis of new aliquots from client supplied bottles confirmed original results.
Sample	LHN562 [SW-OUT] :	RCAp Ion Balan	ce acceptable. Anion/cation agreement within 0.2 meq/L.
Results	relate only to the ite	ems tested.	



## **QUALITY ASSURANCE REPORT**

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
6444118	SHW	QC Standard	рН	2019/11/19		101	%	97 - 103
6444118	SHW	RPD	рН	2019/11/19	3.0		%	N/A
6444120	SHW	Spiked Blank	Conductivity	2019/11/19		101	%	80 - 120
6444120	SHW	Method Blank	Conductivity	2019/11/19	1.2,		uS/cm	
					RDL=1.0			
6444120	SHW	RPD	Conductivity	2019/11/19	0.25		%	10
6444176	MGN	Matrix Spike [LHN561-02]	Dissolved Organic Carbon (C)	2019/11/18		101	%	85 - 115
6444176	MGN	Spiked Blank	Dissolved Organic Carbon (C)	2019/11/18	0.50	97	%	80 - 120
6444176	MGN	Method Blank	Dissolved Organic Carbon (C)	2019/11/18	< 0.50		mg/L	45
6444176	MGN	RPD [LHN561-02]	Dissolved Organic Carbon (C)	2019/11/18	0.97		%	15
6444181	MGN	Matrix Spike [LHN562-02]	Total Organic Carbon (C)	2019/11/18		92	%	85 - 115
6444181	MGN	Spiked Blank	Total Organic Carbon (C)	2019/11/15	-0.50	99	%	80 - 120
6444181	MGN	Method Blank	Total Organic Carbon (C)	2019/11/15	<0.50		mg/L	15
6444181	MGN	RPD [LHN562-02]	Total Organic Carbon (C)	2019/11/18	2.8	111	%	15
6444228	SHW	QC Standard	Turbidity	2019/11/15		111	%	80 - 120
6444228	SHW	Spiked Blank	Turbidity	2019/11/15	-0.10	98	%	80 - 120
6444228 6444228	SHW SHW	Method Blank RPD	Turbidity Turbidity	2019/11/15	<0.10 1.6		NTU %	20
6444228 6444466			Turbidity Dissolved Aluminum (Al)	2019/11/15 2019/11/15	1.0	96	%	20 80 - 120
0444400	MLB	Matrix Spike				98 100	%	
			Dissolved Antimony (Sb) Dissolved Arsenic (As)	2019/11/15 2019/11/15		96	%	80 - 120 80 - 120
			Dissolved Arsenic (As) Dissolved Barium (Ba)	2019/11/15		90	%	80 - 120 80 - 120
			Dissolved Beryllium (Be)	2019/11/15		101	%	80 - 120 80 - 120
			Dissolved Bismuth (Bi)	2019/11/15		101	%	80 - 120 80 - 120
			Dissolved Boron (B)	2019/11/15		96	%	80 - 120 80 - 120
			Dissolved Cadmium (Cd)	2019/11/15		99	%	80 - 120
			Dissolved Calcium (Ca)	2019/11/15		NC	%	80 - 120
			Dissolved Chromium (Cr)	2019/11/15		95	%	80 - 120
			Dissolved Cobalt (Co)	2019/11/15		97	%	80 - 120
			Dissolved Copper (Cu)	2019/11/15		95	%	80 - 120
			Dissolved Iron (Fe)	2019/11/15		98	%	80 - 120
			Dissolved Lead (Pb)	2019/11/15		100	%	80 - 120
			Dissolved Magnesium (Mg)	2019/11/15		97	%	80 - 120
			Dissolved Manganese (Mn)	2019/11/15		94	%	80 - 120
			Dissolved Molybdenum (Mo)	2019/11/15		103	%	80 - 120
			Dissolved Nickel (Ni)	2019/11/15		95	%	80 - 120
			Dissolved Phosphorus (P)	2019/11/15		104	%	80 - 120
			Dissolved Potassium (K)	2019/11/15		101	%	80 - 120
			Dissolved Selenium (Se)	2019/11/15		101	%	80 - 120
			Dissolved Silver (Ag)	2019/11/15		93	%	80 - 120
			Dissolved Sodium (Na)	2019/11/15		91	%	80 - 120
			Dissolved Strontium (Sr)	2019/11/15		100	%	80 - 120
			Dissolved Thallium (Tl)	2019/11/15		103	%	80 - 120
			Dissolved Tin (Sn)	2019/11/15		105	%	80 - 120
			Dissolved Titanium (Ti)	2019/11/15		95	%	80 - 120
			Dissolved Uranium (U)	2019/11/15		108	%	80 - 120
			Dissolved Vanadium (V)	2019/11/15		95	%	80 - 120
			Dissolved Zinc (Zn)	2019/11/15		96	%	80 - 120
6444466	MLB	Spiked Blank	Dissolved Aluminum (Al)	2019/11/15		102	%	80 - 120
			Dissolved Antimony (Sb)	2019/11/15		91	%	80 - 120
			Dissolved Arsenic (As)	2019/11/15		94	%	80 - 120
			Dissolved Barium (Ba)	2019/11/15		98	%	80 - 120
			Dissolved Beryllium (Be)	2019/11/15		99	%	80 - 120



QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Bismuth (Bi)	2019/11/15		94	%	80 - 120
			Dissolved Boron (B)	2019/11/15		91	%	80 - 120
			Dissolved Cadmium (Cd)	2019/11/15		96	%	80 - 120
			Dissolved Calcium (Ca)	2019/11/15		104	%	80 - 120
			Dissolved Chromium (Cr)	2019/11/15		94	%	80 - 120
			Dissolved Cobalt (Co)	2019/11/15		95	%	80 - 120
			Dissolved Copper (Cu)	2019/11/15		95	%	80 - 120
			Dissolved Iron (Fe)	2019/11/15		106	%	80 - 120
			Dissolved Lead (Pb)	2019/11/15		98	%	80 - 120
			Dissolved Magnesium (Mg)	2019/11/15		106	%	80 - 120
			Dissolved Manganese (Mn)	2019/11/15		95	%	80 - 120
			Dissolved Molybdenum (Mo)	2019/11/15		93	%	80 - 120
			Dissolved Nickel (Ni)	2019/11/15		96	%	80 - 120
			Dissolved Phosphorus (P)	2019/11/15		109	%	80 - 120
			Dissolved Potassium (K)	2019/11/15		108	%	80 - 120
			Dissolved Selenium (Se)	2019/11/15		98	%	80 - 120
			Dissolved Silver (Ag)	2019/11/15		98	%	80 - 120
			Dissolved Sodium (Na)	2019/11/15		100	%	80 - 120
			Dissolved Strontium (Sr)	2019/11/15		100	%	80 - 120
			Dissolved Thallium (TI)	2019/11/15		94	%	80 - 120
			Dissolved Tin (Sn)	2019/11/15		98	%	80 - 120
			Dissolved Titanium (Ti)	2019/11/15		94	%	80 - 120
			Dissolved Uranium (U)	2019/11/15		106	%	80 - 120
			Dissolved Vanadium (V)	2019/11/15		92	%	80 - 120
			Dissolved Zinc (Zn)	2019/11/15		94	%	80 - 120
6444466	MLB	Method Blank	Dissolved Aluminum (Al)	2019/11/15	<5.0		ug/L	
			Dissolved Antimony (Sb)	2019/11/15	<1.0		ug/L	
			Dissolved Arsenic (As)	2019/11/15	<1.0		ug/L	
			Dissolved Barium (Ba)	2019/11/15	<1.0		ug/L	
			Dissolved Beryllium (Be)	2019/11/15	<1.0		ug/L	
			Dissolved Bismuth (Bi)	2019/11/15	<2.0		ug/L	
			Dissolved Boron (B)	2019/11/15	<50		ug/L	
			Dissolved Cadmium (Cd)	2019/11/15	<0.010		ug/L	
			Dissolved Calcium (Ca)	2019/11/15	<100		ug/L	
			Dissolved Chromium (Cr)	2019/11/15	<1.0		ug/L	
			Dissolved Cobalt (Co)	2019/11/15	<0.40		ug/L	
			Dissolved Copper (Cu)	2019/11/15	<0.50		ug/L	
			Dissolved Iron (Fe)	2019/11/15	<50		ug/L	
			Dissolved Lead (Pb)	2019/11/15	<0.50		ug/L	
			Dissolved Magnesium (Mg)	2019/11/15	<100		ug/L	
			Dissolved Manganese (Mn)	2019/11/15	<2.0		ug/L	
			Dissolved Molybdenum (Mo)	2019/11/15	<2.0		ug/L	
			Dissolved Nickel (Ni)	2019/11/15	<2.0		ug/L	
			Dissolved Phosphorus (P)	2019/11/15	<100		ug/L	
			Dissolved Potassium (K)	2019/11/15	<100		ug/L	
			Dissolved Selenium (Se)	2019/11/15	<0.50		ug/L	
			Dissolved Silver (Ag)	2019/11/15	<0.10		ug/L	
			Dissolved Sodium (Na)	2019/11/15	<100		ug/L	
			Dissolved Strontium (Sr)	2019/11/15	<2.0		ug/L	
			Dissolved Thallium (TI)	2019/11/15	<0.10		ug/L	
			Dissolved Tin (Sn)	2019/11/15	<2.0		ug/L	
			Dissolved Titanium (Ti)	2019/11/15	<2.0		ug/L	
			Dissolved Uranium (U)	2019/11/15	<0.10		ug/L	



QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Pecoverv	UNITS	QC Limits
Datti	mit	QC Type	Dissolved Vanadium (V)	2019/11/15	<2.0	Recovery	ug/L	QC LITIIIIS
			Dissolved Vanadian (V) Dissolved Zinc (Zn)	2019/11/15	<5.0		ug/L	
6444466	MLB	RPD	Dissolved Aluminum (Al)	2019/11/15	2.1		ug/L %	20
0444400	IVILD	NF D	Dissolved Antimony (Sb)	2019/11/15	NC		%	20
			Dissolved Antinony (55) Dissolved Arsenic (As)	2019/11/15	2.2		%	20
			Dissolved Arsenic (As) Dissolved Barium (Ba)		0.31			
			Dissolved Barluin (Ba) Dissolved Beryllium (Be)	2019/11/15	NC		%	20 20
				2019/11/15			%	
			Dissolved Bismuth (Bi)	2019/11/15	NC		%	20
			Dissolved Boron (B)	2019/11/15	NC		%	20
			Dissolved Cadmium (Cd)	2019/11/15	0.15		%	20
			Dissolved Calcium (Ca)	2019/11/15	0.78		%	20
			Dissolved Chromium (Cr)	2019/11/15	NC		%	20
			Dissolved Cobalt (Co)	2019/11/15	NC		%	20
			Dissolved Copper (Cu)	2019/11/15	3.4		%	20
			Dissolved Iron (Fe)	2019/11/15	NC		%	20
			Dissolved Lead (Pb)	2019/11/15	NC		%	20
			Dissolved Magnesium (Mg)	2019/11/15	0.48		%	20
			Dissolved Manganese (Mn)	2019/11/15	2.5		%	20
			Dissolved Molybdenum (Mo)	2019/11/15	NC		%	20
			Dissolved Nickel (Ni)	2019/11/15	NC		%	20
			Dissolved Phosphorus (P)	2019/11/15	NC		%	20
			Dissolved Potassium (K)	2019/11/15	4.7		%	20
			Dissolved Selenium (Se)	2019/11/15	NC		%	20
			Dissolved Silver (Ag)	2019/11/15	NC		%	20
			Dissolved Sodium (Na)	2019/11/15	0.71		%	20
			Dissolved Strontium (Sr)	2019/11/15	1.5		%	20
			Dissolved Thallium (TI)	2019/11/15	NC		%	20
			Dissolved Tin (Sn)	2019/11/15	NC		%	20
			Dissolved Titanium (Ti)	2019/11/15	NC		%	20
			Dissolved Uranium (U)	2019/11/15	3.8		%	20
			Dissolved Vanadium (V)	2019/11/15	NC		%	20
			Dissolved Zinc (Zn)	2019/11/15	1.4		%	20
6444665	DME	QC Standard	Total Suspended Solids	2019/11/19		99	%	80 - 120
6444665	DME	Method Blank	Total Suspended Solids	2019/11/19	<1.0		mg/L	
6444665	DME	RPD	Total Suspended Solids	2019/11/19	12		%	20
6447335	MLB	Matrix Spike	Total Aluminum (Al)	2019/11/18		103	%	80 - 120
			Total Antimony (Sb)	2019/11/18		100	%	80 - 120
			Total Arsenic (As)	2019/11/18		100	%	80 - 120
			Total Barium (Ba)	2019/11/18		98	%	80 - 120
			Total Beryllium (Be)	2019/11/18		101	%	80 - 120
			Total Bismuth (Bi)	2019/11/18		100	%	80 - 120
			Total Boron (B)	2019/11/18		102	%	80 - 120
			Total Cadmium (Cd)	2019/11/18		98	%	80 - 120
			Total Calcium (Ca)	2019/11/18		104	%	80 - 120
			Total Chromium (Cr)	2019/11/18		100	%	80 - 120
			Total Cobalt (Co)	2019/11/18		99	%	80 - 120
			Total Copper (Cu)	2019/11/18		98	%	80 - 120
			Total Iron (Fe)	2019/11/18		104	%	80 - 120
			Total Lead (Pb)	2019/11/18		99	%	80 - 120
			Total Magnesium (Mg)	2019/11/18		106	%	80 - 120
			Total Manganese (Mn)	2019/11/18		104	%	80 - 120
			Total Molybdenum (Mo)	2019/11/18		104	%	80 - 120
			Total Nickel (Ni)	2019/11/18		102	%	80 - 120



QA/QC						_		
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Total Phosphorus (P)	2019/11/18		105	%	80 - 120
			Total Potassium (K)	2019/11/18		103	%	80 - 120
			Total Selenium (Se)	2019/11/18		101	%	80 - 120
			Total Silver (Ag)	2019/11/18		99	%	80 - 120
			Total Sodium (Na)	2019/11/18		NC	%	80 - 120
			Total Strontium (Sr)	2019/11/18		103	%	80 - 120
			Total Thallium (TI)	2019/11/18		102	%	80 - 120
			Total Tin (Sn)	2019/11/18		103	%	80 - 120
			Total Titanium (Ti)	2019/11/18		102	%	80 - 120
			Total Uranium (U)	2019/11/18		106	%	80 - 120
			Total Vanadium (V)	2019/11/18		101	%	80 - 120
			Total Zinc (Zn)	2019/11/18		101	%	80 - 120
6447335	MLB	Spiked Blank	Total Aluminum (Al)	2019/11/18		103	%	80 - 120
			Total Antimony (Sb)	2019/11/18		100	%	80 - 120
			Total Arsenic (As)	2019/11/18		101	%	80 - 120
			Total Barium (Ba)	2019/11/18		99	%	80 - 120
			Total Beryllium (Be)	2019/11/18		104	%	80 - 120
			Total Bismuth (Bi)	2019/11/18		103	%	80 - 120
			Total Boron (B)	2019/11/18		106	%	80 - 120
			Total Cadmium (Cd)	2019/11/18		96	%	80 - 120
			Total Calcium (Ca)	2019/11/18		105	%	80 - 120
			Total Chromium (Cr)	2019/11/18		102	%	80 - 120
			Total Cobalt (Co)	2019/11/18		100	%	80 - 120
			Total Copper (Cu)	2019/11/18		99	%	80 - 120
			Total Iron (Fe)	2019/11/18		106	%	80 - 120
			Total Lead (Pb)	2019/11/18		100	%	80 - 120
			Total Magnesium (Mg)	2019/11/18		108	%	80 - 120
			Total Manganese (Mn)	2019/11/18		104	%	80 - 120
			Total Molybdenum (Mo)	2019/11/18		103	%	80 - 120
			Total Nickel (Ni)	2019/11/18		104	%	80 - 120
			Total Phosphorus (P)	2019/11/18		107	%	80 - 120
			Total Potassium (K)	2019/11/18		107	%	80 - 120
			Total Selenium (Se)	2019/11/18		100	%	80 - 120
			Total Silver (Ag)	2019/11/18		99	%	80 - 120
			Total Sodium (Na)	2019/11/18		104	%	80 - 120
			Total Strontium (Sr)	2019/11/18		103	%	80 - 120
			Total Thallium (TI)	2019/11/18		102	%	80 - 120
			Total Tin (Sn)	2019/11/18		105	%	80 - 120
			Total Titanium (Ti)	2019/11/18		105	%	80 - 120
			Total Uranium (U)	2019/11/18		108	%	80 - 120
			Total Vanadium (V)	2019/11/18		103	%	80 - 120
			Total Zinc (Zn)	2019/11/18		103	%	80 - 120
6447335	MLB	Method Blank	Total Aluminum (Al)	2019/11/18	<5.0	105	ug/L	00 - 120
5447555	IVILD		Total Antimony (Sb)	2019/11/18	<1.0		ug/L	
			Total Arsenic (As)	2019/11/18	<1.0 <1.0		ug/L	
			Total Barium (Ba)	2019/11/18	<1.0 <1.0		ug/L	
			Total Beryllium (Be)	2019/11/18	<1.0 <1.0			
			, , , ,				ug/L	
			Total Bismuth (Bi)	2019/11/18	<2.0		ug/L	
			Total Boron (B)	2019/11/18	<50		ug/L	
			Total Cadmium (Cd)	2019/11/18	<0.010		ug/L	
			Total Calcium (Ca)	2019/11/18	<100		ug/L	
			Total Chromium (Cr)	2019/11/18	<1.0		ug/L	
			Total Cobalt (Co)	2019/11/18	<0.40		ug/L	



### **QUALITY ASSURANCE REPORT(CONT'D)**

QA/QC		0.07				5		
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Total Copper (Cu)	2019/11/18	<0.50		ug/L	
			Total Iron (Fe)	2019/11/18	<50		ug/L	
			Total Lead (Pb)	2019/11/18	<0.50		ug/L	
			Total Magnesium (Mg)	2019/11/18	<100 <2.0		ug/L	
			Total Manganese (Mn)	2019/11/18			ug/L	
			Total Molybdenum (Mo)	2019/11/18	<2.0		ug/L	
			Total Nickel (Ni)	2019/11/18	<2.0		ug/L	
			Total Phosphorus (P)	2019/11/18	<100		ug/L	
			Total Potassium (K)	2019/11/18	<100		ug/L	
			Total Selenium (Se) Total Silver (Ag)	2019/11/18 2019/11/18	<0.50 <0.10		ug/L	
				2019/11/18	<0.10		ug/L	
			Total Sodium (Na) Total Strontium (Sr)	2019/11/18	<100		ug/L	
							ug/L	
			Total Thallium (Tl)	2019/11/18 2019/11/18	<0.10		ug/L	
			Total Tin (Sn)		<2.0		ug/L	
			Total Titanium (Ti) Total Uranium (U)	2019/11/18 2019/11/18	<2.0 <0.10		ug/L	
			Total Vanadium (V)	2019/11/18	<2.0		ug/L	
			Total Zinc (Zn)	2019/11/18	<5.0		ug/L	
6447335	MLB	RPD	Total Lead (Pb)	2019/11/18	NC		ug/L %	20
6447333 6447426	SHW	QC Standard	pH	2019/11/18	NC	101	%	20 97 - 103
6447426	SHW	RPD	рН	2019/11/18	1.9	101	%	97 - 103 N/A
6447420 6447428	SHW	Spiked Blank	Conductivity	2019/11/18	1.9	101	%	80 - 120
6447428	SHW	Method Blank	Conductivity	2019/11/18	<1.0	101	uS/cm	80 - 120
6447428 6447428	SHW	RPD	Conductivity	2019/11/18	1.2		% %	10
6449591	MCN	Matrix Spike	Total Alkalinity (Total as CaCO3)	2019/11/19	1.2	95	%	80 - 120
6449591	MCN	Spiked Blank	Total Alkalinity (Total as CaCO3)	2019/11/19		101	%	80 - 120
6449591	MCN	Method Blank	Total Alkalinity (Total as CaCO3)	2019/11/19	<5.0	101	mg/L	00 - 120
6449591	MCN	RPD	Total Alkalinity (Total as CaCO3)	2019/11/19	NC		۳. %	25
6449598	MCN	Matrix Spike	Dissolved Chloride (Cl-)	2019/11/20	Ne	94	%	80 - 120
6449598	MCN	Spiked Blank	Dissolved Chloride (Cl-)	2019/11/20		97	%	80 - 120
6449598	MCN	Method Blank	Dissolved Chloride (Cl-)	2019/11/20	<1.0	57	mg/L	00 120
6449598	MCN	RPD	Dissolved Chloride (Cl-)	2019/11/20	1.2		%	25
6449601	MCN	Matrix Spike	Dissolved Sulphate (SO4)	2019/11/20	1.2	95	%	80 - 120
6449601	MCN	Spiked Blank	Dissolved Sulphate (SO4)	2019/11/20		94	%	80 - 120
6449601	MCN	Method Blank	Dissolved Sulphate (SO4)	2019/11/20	<2.0	5.	mg/L	00 120
6449601	MCN	RPD	Dissolved Sulphate (SO4)	2019/11/20	2.7		%	25
6449608	MCN	Matrix Spike	Reactive Silica (SiO2)	2019/11/19		96	%	80 - 120
6449608	MCN	Spiked Blank	Reactive Silica (SiO2)	2019/11/19		98	%	80 - 120
6449608	MCN	Method Blank	Reactive Silica (SiO2)	2019/11/20	<0.50		mg/L	
6449608	MCN	RPD	Reactive Silica (SiO2)	2019/11/19	0.30		%	25
6449610	MCN		Colour	2019/11/20		95	%	80 - 120
6449610	MCN	Method Blank	Colour	2019/11/20	<5.0		TCU	
6449610	MCN	RPD	Colour	2019/11/20	7.1		%	20
6449611	MCN	Matrix Spike	Orthophosphate (P)	2019/11/20		88	%	80 - 120
6449611	MCN	Spiked Blank	Orthophosphate (P)	2019/11/20		92	%	80 - 120
6449611	MCN	Method Blank	Orthophosphate (P)	2019/11/20	<0.010		mg/L	
6449611	MCN	RPD	Orthophosphate (P)	2019/11/20	NC		%	25
6449612	MCN	Matrix Spike	Nitrate + Nitrite (N)	2019/11/19		87	%	80 - 120
6449612	MCN	Spiked Blank	Nitrate + Nitrite (N)	2019/11/19		97	%	80 - 120
6449612	MCN	Method Blank	Nitrate + Nitrite (N)	2019/11/19	<0.050		mg/L	
6449612	MCN	RPD	Nitrate + Nitrite (N)	2019/11/19	NC		%	25
6449613	MCN	Matrix Spike	Nitrite (N)	2019/11/20		99	%	80 - 120

Page 13 of 15



### QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
6449613	MCN	Spiked Blank	Nitrite (N)	2019/11/20		103	%	80 - 120
6449613	MCN	Method Blank	Nitrite (N)	2019/11/20	<0.010		mg/L	
6449613	MCN	RPD	Nitrite (N)	2019/11/20	NC		%	20
6449794	MCN	Matrix Spike	Nitrogen (Ammonia Nitrogen)	2019/11/20		105	%	80 - 120
6449794	MCN	Spiked Blank	Nitrogen (Ammonia Nitrogen)	2019/11/19		104	%	80 - 120
6449794	MCN	Method Blank	Nitrogen (Ammonia Nitrogen)	2019/11/19	<0.050		mg/L	
6449794	MCN	RPD	Nitrogen (Ammonia Nitrogen)	2019/11/20	NC		%	20
6468155	NHU	Matrix Spike	Total Mercury (Hg)	2019/11/29		106	%	80 - 120
6468155	NHU	Spiked Blank	Total Mercury (Hg)	2019/11/29		105	%	80 - 120
6468155	NHU	Method Blank	Total Mercury (Hg)	2019/11/29	<0.013		ug/L	
6468155	NHU	RPD	Total Mercury (Hg)	2019/11/29	NC		%	20
6468190	NHU	Matrix Spike	Dissolved Mercury (Hg)	2019/11/29		106	%	80 - 120
6468190	NHU	Spiked Blank	Dissolved Mercury (Hg)	2019/11/29		106	%	80 - 120
6468190	NHU	Method Blank	Dissolved Mercury (Hg)	2019/11/29	<0.013		ug/L	
6468190	NHU	RPD	Dissolved Mercury (Hg)	2019/11/29	NC		%	20

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).



#### VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

allianna

Eric Dearman, Scientific Specialist

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.



Your Project #: 19-1567-1000 Site#: Port Wallace Site Location: Port Wallace Your C.O.C. #: 750543-01-01

### **Attention: Rebecca Appleton**

Dillon Consulting Limited 137 Chain Lake Dr Suite 100 Halifax , NS CANADA B3S 1B3

> Report Date: 2019/12/11 Report #: R6000824 Version: 1 - Final

## **CERTIFICATE OF ANALYSIS**

#### BV LABS JOB #: B9Y1228

### Received: 2019/12/03, 16:20

Sample Matrix: Water # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Carbonate, Bicarbonate and Hydroxide	2	N/A	2019/12/10	N/A	SM 23 4500-CO2 D
Alkalinity	2	N/A	2019/12/10	ATL SOP 00013	EPA 310.2 R1974 m
Chloride	2	N/A	2019/12/11	ATL SOP 00014	SM 23 4500-Cl- E m
Colour	2	N/A	2019/12/10	ATL SOP 00020	SM 23 2120C m
Organic carbon - Diss (DOC) (as rec'd) (1)	2	N/A	2019/12/09	ATL SOP 00203	SM 23 5310B m
Conductance - water	2	N/A	2019/12/10	ATL SOP 00004	SM 23 2510B m
Hardness (calculated as CaCO3)	2	N/A	2019/12/06	ATL SOP 00048	Auto Calc
Mercury - Dissolved (CVAA,LL)	2	2019/12/09	2019/12/10	ATL SOP 00026	EPA 245.1 R3 m
Mercury - Total (CVAA,LL)	2	2019/12/09	2019/12/10	ATL SOP 00026	EPA 245.1 R3 m
Metals Water Diss. MS (as rec'd)	2	N/A	2019/12/06	ATL SOP 00058	EPA 6020B R2 m
Metals Water Total MS	2	2019/12/10	2019/12/10	ATL SOP 00058	EPA 6020B R2 m
Ion Balance (% Difference)	2	N/A	2019/12/11	N/A	Auto Calc.
Anion and Cation Sum	2	N/A	2019/12/11	N/A	Auto Calc.
Nitrogen Ammonia - water	2	N/A	2019/12/10	ATL SOP 00015	EPA 350.1 R2 m
Nitrogen - Nitrate + Nitrite	2	N/A	2019/12/10	ATL SOP 00016	USGS I-2547-11m
Nitrogen - Nitrite	2	N/A	2019/12/10	ATL SOP 00017	SM 23 4500-NO2- B m
Nitrogen - Nitrate (as N)	2	N/A	2019/12/11	ATL SOP 00018	ASTM D3867-16
рН (2)	2	N/A	2019/12/10	ATL SOP 00003	SM 23 4500-H+ B m
Phosphorus - ortho	2	N/A	2019/12/10	ATL SOP 00021	SM 23 4500-P E m
Sat. pH and Langelier Index (@ 20C)	2	N/A	2019/12/11	ATL SOP 00049	Auto Calc.
Sat. pH and Langelier Index (@ 4C)	2	N/A	2019/12/11	ATL SOP 00049	Auto Calc.
Reactive Silica	2	N/A	2019/12/10	ATL SOP 00022	EPA 366.0 m
Sulphate	2	N/A	2019/12/10	ATL SOP 00023	ASTM D516-16 m
Total Dissolved Solids (TDS calc)	2	N/A	2019/12/11	N/A	Auto Calc.
Organic carbon - Total (TOC) (3)	1	N/A	2019/12/09	ATL SOP 00203	SM 23 5310B m
Organic carbon - Total (TOC) (3)	1	N/A	2019/12/10	ATL SOP 00203	SM 23 5310B m
Total Suspended Solids	2	2019/12/05	2019/12/06	ATL SOP 00007	SM 23 2540D m
Turbidity	2	N/A	2019/12/09	ATL SOP 00011	EPA 180.1 R2 m

#### Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used



Your Project #: 19-1567-1000 Site#: Port Wallace Site Location: Port Wallace Your C.O.C. #: 750543-01-01

#### **Attention: Rebecca Appleton**

Dillon Consulting Limited 137 Chain Lake Dr Suite 100 Halifax , NS CANADA B3S 1B3

> Report Date: 2019/12/11 Report #: R6000824 Version: 1 - Final

### **CERTIFICATE OF ANALYSIS**

### BV LABS JOB #: B9Y1228

### Received: 2019/12/03, 16:20

by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) TOC / DOC present in the sample should be considered as non-purgeable TOC / DOC

(2) The APHA Standard Method require pH to be analyzed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the APHA Standard Method holding time.

(3) TOC / DOC present in the sample should be considered as non-purgeable TOC / DOC.

**Encryption Key** 

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Heather Macumber, Senior Project Manager Email: Heather.MACUMBER@bvlabs.com Phone# (902)420-0203 Ext:226

-----

This report has been generated and distributed using a secure automated process.

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total Cover Pages : 2 Page 2 of 14



## **RESULTS OF ANALYSES OF WATER**

BV Labs ID		LMD218		LMD219			LMD219		
Sampling Date		2019/12/03 14:30		2019/12/03 15:30			2019/12/03 15:30		
COC Number		750543-01-01		750543-01-01			750543-01-01		
	UNITS	SW-IN	QC Batch	SW-OUT	RDL	QC Batch	SW-OUT Lab-Dup	RDL	QC Batch
Calculated Parameters									
Anion Sum	me/L	1.82	6477852	1.79	N/A	6477852			
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	11	6477847	18	1.0	6477847			
Calculated TDS	mg/L	100	6477860	100	1.0	6477860			
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	6477847	<1.0	1.0	6477847			
Cation Sum	me/L	1.62	6477852	1.52	N/A	6477852			
Hardness (CaCO3)	mg/L	19	6477850	19	1.0	6477850			
Ion Balance (% Difference)	%	5.81	6477851	8.16	N/A	6477851			
Langelier Index (@ 20C)	N/A	-2.65	6477856	-2.54		6477856			
Langelier Index (@ 4C)	N/A	-2.91	6477858	-2.79		6477858			
Nitrate (N)	mg/L	0.086	6477853	0.14	0.050	6477853			
Saturation pH (@ 20C)	N/A	9.55	6477856	9.35		6477856			
Saturation pH (@ 4C)	N/A	9.81	6477858	9.60		6477858			
Inorganics	•								•
Total Alkalinity (Total as CaCO3)	mg/L	11	6488072	18	5.0	6488072			
Dissolved Chloride (Cl-)	mg/L	50	6488078	44	1.0	6488078			
Colour	TCU	17	6488091	23	5.0	6488091			
Nitrate + Nitrite (N)	mg/L	0.086	6488094	0.14	0.050	6488094			
Nitrite (N)	mg/L	<0.020 (1)	6488096	<0.020 (1)	0.020	6488096			
Nitrogen (Ammonia Nitrogen)	mg/L	<0.050	6488294	<0.050	0.050	6488294	<0.050	0.050	6488294
Dissolved Organic Carbon (C)	mg/L	4.0	6482912	4.6	0.5	6482912			
Total Organic Carbon (C)	mg/L	4.2	6482903	4.5	0.50	6487950			
Orthophosphate (P)	mg/L	0.020	6488092	0.013	0.010	6488092			
рН	рН	6.90	6487879	6.81	N/A	6487876			
Reactive Silica (SiO2)	mg/L	2.0	6488084	2.5	0.50	6488084			
Total Suspended Solids	mg/L	<1.0	6480274	<1.0	1.0	6480274			
Dissolved Sulphate (SO4)	mg/L	8.8	6488079	9.0	2.0	6488079			
Turbidity	NTU	0.52	6485966	0.56	0.10	6485966			
Conductivity	uS/cm	190	6487880	180	1.0	6487878			
RDL = Reportable Detection Limit	•		•	•	•	• •		•	•
QC Batch = Quality Control Batch									
Lab-Dup = Laboratory Initiated Du	plicate								
N/A = Not Applicable									

(1) Elevated reporting limit due to method blank performance.



## MERCURY BY COLD VAPOUR AA (WATER)

BV Labs ID		LMD218	LMD219				
Sampling Date		2019/12/03 14:30	2019/12/03 15:30				
COC Number		750543-01-01	750543-01-01				
	UNITS	SW-IN	SW-OUT	RDL	QC Batch		
Metals	Metals						
Dissolved Mercury (Hg)	ug/L	<0.013	<0.013	0.013	6486342		
Total Mercury (Hg)	ug/L	<0.013	<0.013	0.013	6486328		
RDL = Reportable Detection Limit QC Batch = Quality Control Batch							



# **ELEMENTS BY ICP/MS (WATER)**

BV Labs ID		LMD218	LMD219		
Sampling Date		2019/12/03	2019/12/03		
		14:30	15:30		
COC Number		750543-01-01	750543-01-01		
	UNITS	SW-IN	SW-OUT	RDL	QC Batch
Metals					
Dissolved Aluminum (Al)	ug/L	40	56	5.0	6480654
Total Aluminum (Al)	ug/L	47	64	5.0	6487928
Dissolved Antimony (Sb)	ug/L	<1.0	<1.0	1.0	6480654
Total Antimony (Sb)	ug/L	<1.0	<1.0	1.0	6487928
Dissolved Arsenic (As)	ug/L	82	47	1.0	6480654
Total Arsenic (As)	ug/L	91	49	1.0	6487928
Dissolved Barium (Ba)	ug/L	3.4	4.0	1.0	6480654
Total Barium (Ba)	ug/L	3.8	4.0	1.0	6487928
Dissolved Beryllium (Be)	ug/L	<1.0	<1.0	1.0	6480654
Total Beryllium (Be)	ug/L	<1.0	<1.0	1.0	6487928
Dissolved Bismuth (Bi)	ug/L	<2.0	<2.0	2.0	6480654
Total Bismuth (Bi)	ug/L	<2.0	<2.0	2.0	6487928
Dissolved Boron (B)	ug/L	<50	<50	50	6480654
Total Boron (B)	ug/L	<50	<50	50	6487928
Dissolved Cadmium (Cd)	ug/L	<0.010	<0.010	0.010	6480654
Total Cadmium (Cd)	ug/L	<0.010	<0.010	0.010	6487928
Dissolved Calcium (Ca)	ug/L	5500	5600	100	6480654
Total Calcium (Ca)	ug/L	5600	5700	100	6487928
Dissolved Chromium (Cr)	ug/L	<1.0	<1.0	1.0	6480654
Total Chromium (Cr)	ug/L	<1.0	<1.0	1.0	6487928
Dissolved Cobalt (Co)	ug/L	<0.40	<0.40	0.40	6480654
Total Cobalt (Co)	ug/L	<0.40	<0.40	0.40	6487928
Dissolved Copper (Cu)	ug/L	0.83	0.75	0.50	6480654
Total Copper (Cu)	ug/L	1.0	1.3	0.50	6487928
Dissolved Iron (Fe)	ug/L	<50	51	50	6480654
Total Iron (Fe)	ug/L	53	73	50	6487928
Dissolved Lead (Pb)	ug/L	<0.50	<0.50	0.50	6480654
Total Lead (Pb)	ug/L	<0.50	<0.50	0.50	6487928
Dissolved Magnesium (Mg)	ug/L	1200	1100	100	6480654
Total Magnesium (Mg)	ug/L	1200	1200	100	6487928
Dissolved Manganese (Mn)	ug/L	12	17	2.0	6480654
Total Manganese (Mn)	ug/L	18	20	2.0	6487928
Dissolved Molybdenum (Mo)	ug/L	<2.0	<2.0	2.0	6480654
Total Molybdenum (Mo)	ug/L	<2.0	<2.0	2.0	6487928
RDL = Reportable Detection Li	mit				
QC Batch = Quality Control Ba	tch				



# **ELEMENTS BY ICP/MS (WATER)**

BV Labs ID		LMD218	LMD219		
Sampling Date		2019/12/03	2019/12/03		
		14:30	15:30		
COC Number		750543-01-01	750543-01-01		
	UNITS	SW-IN	SW-OUT	RDL	QC Batch
Dissolved Nickel (Ni)	ug/L	<2.0	<2.0	2.0	6480654
Total Nickel (Ni)	ug/L	<2.0	<2.0	2.0	6487928
Dissolved Phosphorus (P)	ug/L	<100	<100	100	6480654
Total Phosphorus (P)	ug/L	<100	<100	100	6487928
Dissolved Potassium (K)	ug/L	910	880	100	6480654
Total Potassium (K)	ug/L	880	880	100	6487928
Dissolved Selenium (Se)	ug/L	<0.50	<0.50	0.50	6480654
Total Selenium (Se)	ug/L	<0.50	<0.50	0.50	6487928
Dissolved Silver (Ag)	ug/L	<0.10	<0.10	0.10	6480654
Total Silver (Ag)	ug/L	<0.10	<0.10	0.10	6487928
Dissolved Sodium (Na)	ug/L	28000	26000	100	6480654
Total Sodium (Na)	ug/L	29000	26000	100	6487928
Dissolved Strontium (Sr)	ug/L	18	18	2.0	6480654
Total Strontium (Sr)	ug/L	19	18	2.0	6487928
Dissolved Thallium (Tl)	ug/L	<0.10	<0.10	0.10	6480654
Total Thallium (Tl)	ug/L	<0.10	<0.10	0.10	6487928
Dissolved Tin (Sn)	ug/L	<2.0	<2.0	2.0	6480654
Total Tin (Sn)	ug/L	<2.0	<2.0	2.0	6487928
Dissolved Titanium (Ti)	ug/L	<2.0	<2.0	2.0	6480654
Total Titanium (Ti)	ug/L	<2.0	<2.0	2.0	6487928
Dissolved Uranium (U)	ug/L	<0.10	<0.10	0.10	6480654
Total Uranium (U)	ug/L	<0.10	<0.10	0.10	6487928
Dissolved Vanadium (V)	ug/L	<2.0	<2.0	2.0	6480654
Total Vanadium (V)	ug/L	<2.0	<2.0	2.0	6487928
Dissolved Zinc (Zn)	ug/L	<5.0	<5.0	5.0	6480654
Total Zinc (Zn)	ug/L	<5.0	<5.0	5.0	6487928
RDL = Reportable Detection Li	mit				
QC Batch = Quality Control Ba	tch				



## **GENERAL COMMENTS**

Each temperature is the average of up to three cooler temperatures taken at receipt								
	Package 1	1.7°C						
Sample	LMD218 [SW-IN]	: RCAp Ion Bala	nce acceptable. Anion/cation agreement within 0.2 meq/L.					
Sample	Sample LMD219 [SW-OUT] : Poor RCAp Ion Balance due to sample matrix.							
Result	Results relate only to the items tested.							



**Dillon Consulting Limited** Client Project #: 19-1567-1000 Site Location: Port Wallace

# QUALITY ASSURANCE REPORT

QA/QC		~~-	- · ·	<b>_</b>		-		
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limit
6480274	AM6	QC Standard	Total Suspended Solids	2019/12/06		98	%	80 - 120
6480274	AM6	Method Blank	Total Suspended Solids	2019/12/06	<1.0		mg/L	
6480274	AM6	RPD	Total Suspended Solids	2019/12/06	2.4		%	20
6480654	BAN	Matrix Spike	Dissolved Aluminum (Al)	2019/12/06		95	%	80 - 120
			Dissolved Antimony (Sb)	2019/12/06		99	%	80 - 120
			Dissolved Arsenic (As)	2019/12/06		96	%	80 - 120
			Dissolved Barium (Ba)	2019/12/06		97	%	80 - 120
			Dissolved Beryllium (Be)	2019/12/06		100	%	80 - 120
			Dissolved Bismuth (Bi)	2019/12/06		97	%	80 - 120
			Dissolved Boron (B)	2019/12/06		NC	%	80 - 120
			Dissolved Cadmium (Cd)	2019/12/06		91	%	80 - 120
			Dissolved Calcium (Ca)	2019/12/06		NC	%	80 - 120
			Dissolved Chromium (Cr)	2019/12/06		93	%	80 - 120
			Dissolved Cobalt (Co)	2019/12/06		93	%	80 - 120
			Dissolved Copper (Cu)	2019/12/06		93	%	80 - 120
			Dissolved Iron (Fe)	2019/12/06		97	%	80 - 120
			Dissolved Lead (Pb)	2019/12/06		97	%	80 - 120
			Dissolved Magnesium (Mg)	2019/12/06		92	%	80 - 120
			Dissolved Maganese (Mn)	2019/12/06		94	%	80 - 120
			Dissolved Molybdenum (Mo)	2019/12/06		NC	%	80 - 120
						96	%	
			Dissolved Nickel (Ni)	2019/12/06				80 - 12
			Dissolved Phosphorus (P)	2019/12/06		101	%	80 - 12
			Dissolved Potassium (K)	2019/12/06		NC	%	80 - 12
			Dissolved Selenium (Se)	2019/12/06		87	%	80 - 12
			Dissolved Silver (Ag)	2019/12/06		79 (1)	%	80 - 12
			Dissolved Sodium (Na)	2019/12/06		NC	%	80 - 12
			Dissolved Strontium (Sr)	2019/12/06		NC	%	80 - 12
			Dissolved Thallium (TI)	2019/12/06		99	%	80 - 12
			Dissolved Tin (Sn)	2019/12/06		101	%	80 - 12
			Dissolved Titanium (Ti)	2019/12/06		102	%	80 - 12
			Dissolved Uranium (U)	2019/12/06		104	%	80 - 12
			Dissolved Vanadium (V)	2019/12/06		98	%	80 - 12
			Dissolved Zinc (Zn)	2019/12/06		96	%	80 - 12
6480654	BAN	Spiked Blank	Dissolved Aluminum (Al)	2019/12/06		98	%	80 - 12
		•	Dissolved Antimony (Sb)	2019/12/06		97	%	80 - 12
			Dissolved Arsenic (As)	2019/12/06		95	%	80 - 12
			Dissolved Barium (Ba)	2019/12/06		98	%	80 - 12
			Dissolved Beryllium (Be)	2019/12/06		100	%	80 - 12
			Dissolved Bismuth (Bi)	2019/12/06		99	%	80 - 12
			Dissolved Boron (B)	2019/12/06		97	%	80 - 12
			Dissolved Cadmium (Cd)	2019/12/06		96	%	80 - 12
			Dissolved Calcium (Ca)	2019/12/06		100	%	80 - 12
			Dissolved Chromium (Cr)	2019/12/06		94	%	80 - 12
			Dissolved Cobalt (Co)	2019/12/06		94	%	80 - 12
			Dissolved Copper (Cu)	2019/12/06		96	%	80 - 12
			Dissolved Iron (Fe)	2019/12/06		99	%	80 - 12
			Dissolved Lead (Pb)	2019/12/06		98	%	80 - 12
			Dissolved Magnesium (Mg)	2019/12/06		99	%	80 - 12
			Dissolved Manganese (Mn)	2019/12/06		97	%	80 - 12
			Dissolved Molybdenum (Mo)	2019/12/06		101	%	80 - 12
			Dissolved Nickel (Ni)	2019/12/06		98	%	80 - 12
			Dissolved Phosphorus (P)	2019/12/06		99	%	80 - 120
			Dissolved Potassium (K)	2019/12/06		97	%	80 - 12
			Dissolved Selenium (Se)	2019/12/06		94	%	80 - 120



**Dillon Consulting Limited** Client Project #: 19-1567-1000 Site Location: Port Wallace

# QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
Battin		~~ · /pc	Dissolved Silver (Ag)	2019/12/06	. and C	97	%	80 - 120
			Dissolved Sodium (Na)	2019/12/06		96	%	80 - 120
			Dissolved Strontium (Sr)	2019/12/06		101	%	80 - 120
			Dissolved Thallium (TI)	2019/12/06		100	%	80 - 120
			Dissolved Tin (Sn)	2019/12/06		99	%	80 - 120
			Dissolved Titanium (Ti)	2019/12/06		98	%	80 - 120
			Dissolved Uranium (U)	2019/12/06		102	%	80 - 120
			Dissolved Vanadium (V)	2019/12/06		98	%	80 - 120
			Dissolved Zinc (Zn)	2019/12/06		100	%	80 - 120
6480654	BAN	Method Blank	Dissolved Aluminum (Al)	2019/12/06	<5.0		ug/L	
			Dissolved Antimony (Sb)	2019/12/06	<1.0		ug/L	
			Dissolved Arsenic (As)	2019/12/06	<1.0		ug/L	
			Dissolved Barium (Ba)	2019/12/06	<1.0		ug/L	
			Dissolved Beryllium (Be)	2019/12/06	<1.0		ug/L	
			Dissolved Bismuth (Bi)	2019/12/06	<2.0		ug/L	
			Dissolved Boron (B)	2019/12/06	<50		ug/L	
			Dissolved Cadmium (Cd)	2019/12/06	<0.010		ug/L	
			Dissolved Calcium (Ca)	2019/12/06	<100		ug/L	
			Dissolved Chromium (Cr)	2019/12/06	<1.0		ug/L	
			Dissolved Cobalt (Co)	2019/12/06	<0.40		ug/L	
			Dissolved Copper (Cu)	2019/12/06	<0.50		ug/L	
			Dissolved Iron (Fe)	2019/12/06	<50		ug/L	
			Dissolved Lead (Pb)	2019/12/06	<0.50		ug/L	
			Dissolved Magnesium (Mg)	2019/12/06	<100		ug/L	
			Dissolved Magnese (Mn)	2019/12/06	<2.0		ug/L	
			Dissolved Molybdenum (Mo)	2019/12/06	<2.0		ug/L	
			Dissolved Nickel (Ni)	2019/12/06	<2.0		ug/L	
			Dissolved Phosphorus (P)	2019/12/06	<100		ug/L	
			Dissolved Potassium (K)	2019/12/06	<100		ug/L	
			Dissolved Selenium (Se)	2019/12/06	<0.50		ug/L	
			Dissolved Selendin (Se)	2019/12/06	<0.10		ug/L	
			Dissolved Sodium (Na)	2019/12/06	<100		ug/L	
			Dissolved Strontium (Sr)	2019/12/06	<2.0		ug/L	
			Dissolved Thallium (TI)	2019/12/06	<0.10		ug/L ug/L	
			Dissolved Thaildin (11) Dissolved Tin (Sn)	2019/12/06	<2.0		ug/L ug/L	
			Dissolved Titanium (Ti)	2019/12/06	<2.0		ug/L	
			Dissolved Uranium (1)	2019/12/06	<0.10			
			Dissolved Vanadium (V)	2019/12/06	<2.0		ug/L	
			Dissolved Zinc (Zn)		<5.0		ug/L	
6480654	BAN	RPD	Dissolved Aluminum (Al)	2019/12/06 2019/12/06	<5.0 0.37		ug/L %	20
0460054	DAIN	RPD	Dissolved Antimoty (Sb)	2019/12/06	11		%	20
			Dissolved Antimony (SD) Dissolved Arsenic (As)					
				2019/12/06	1.0		%	20
			Dissolved Barium (Ba)	2019/12/06 2019/12/06	0.050		%	20
			Dissolved Beryllium (Be)	2019/12/06	NC		%	20
			Dissolved Bismuth (Bi) Dissolved Boron (B)	2019/12/06	NC		%	20
					1.5		%	20
			Dissolved Cadmium (Cd)	2019/12/06	NC (2)		%	20
			Dissolved Calcium (Ca)	2019/12/06	0.14		%	20
			Dissolved Chromium (Cr)	2019/12/06	2.4		%	20
			Dissolved Cobalt (Co)	2019/12/06	NC		%	20
			Dissolved Copper (Cu)	2019/12/06	NC		%	20
			Dissolved Iron (Fe)	2019/12/06	NC		%	20
			Dissolved Lead (Pb)	2019/12/06	NC		%	20
			Dissolved Magnesium (Mg)	2019/12/06	0.50		%	20



# QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Manganese (Mn)	2019/12/06	0.030		%	20
			Dissolved Molybdenum (Mo)	2019/12/06	0.020		%	20
			Dissolved Nickel (Ni)	2019/12/06	NC		%	20
			Dissolved Phosphorus (P)	2019/12/06	NC		%	20
			Dissolved Potassium (K)	2019/12/06	0.81		%	20
			Dissolved Selenium (Se)	2019/12/06	19		%	20
			Dissolved Silver (Ag)	2019/12/06	NC		%	20
			Dissolved Sodium (Na)	2019/12/06	0.55		%	20
			Dissolved Strontium (Sr)	2019/12/06	0.099		%	20
			Dissolved Thallium (TI)	2019/12/06	NC		%	20
			Dissolved Tin (Sn)	2019/12/06	NC		%	20
			Dissolved Titanium (Ti)	2019/12/06	NC		%	20
			Dissolved Uranium (U)	2019/12/06	9.1		%	20
			Dissolved Vanadium (V)	2019/12/06	1.1		%	20
			Dissolved Zinc (Zn)	2019/12/06	NC		%	20
6482903	SSI	Matrix Spike	Total Organic Carbon (C)	2019/12/09		99	%	85 - 115
6482903	SSI	Spiked Blank	Total Organic Carbon (C)	2019/12/09		98	%	80 - 120
6482903	SSI	Method Blank	Total Organic Carbon (C)	2019/12/09	<0.50		mg/L	
6482903	SSI	RPD	Total Organic Carbon (C)	2019/12/09	2.1		%	15
6482912	SSI	Matrix Spike	Dissolved Organic Carbon (C)	2019/12/09		96	%	85 - 115
6482912	SSI	Spiked Blank	Dissolved Organic Carbon (C)	2019/12/09		99	%	80 - 120
6482912	SSI	Method Blank	Dissolved Organic Carbon (C)	2019/12/09	<0.5		mg/L	
6482912	SSI	RPD	Dissolved Organic Carbon (C)	2019/12/09	NC		%	15
6485966	SHW	QC Standard	Turbidity	2019/12/09		103	%	80 - 120
6485966	SHW	Spiked Blank	Turbidity	2019/12/09		101	%	80 - 120
6485966	SHW	Method Blank	Turbidity	2019/12/09	<0.10		NTU	
6485966	SHW	RPD	Turbidity	2019/12/09	NC		%	20
6486328	NHU	Matrix Spike	Total Mercury (Hg)	2019/12/10		104	%	80 - 120
6486328	NHU	Spiked Blank	Total Mercury (Hg)	2019/12/10		105	%	80 - 120
6486328	NHU	Method Blank	Total Mercury (Hg)	2019/12/10	<0.013		ug/L	
6486328	NHU	RPD	Total Mercury (Hg)	2019/12/10	NC		%	20
6486342	NHU	Matrix Spike	Dissolved Mercury (Hg)	2019/12/10		105	%	80 - 120
6486342	NHU	Spiked Blank	Dissolved Mercury (Hg)	2019/12/10		105	%	80 - 120
6486342	NHU	Method Blank	Dissolved Mercury (Hg)	2019/12/10	<0.013		ug/L	
6486342	NHU	RPD	Dissolved Mercury (Hg)	2019/12/10	NC		%	20
6487876	SHW	QC Standard	рН	2019/12/10		100	%	97 - 103
6487876	SHW	RPD	рН	2019/12/10	0.95		%	N/A
6487878		Spiked Blank	Conductivity	2019/12/10		100	%	80 - 120
6487878	SHW	Method Blank	Conductivity	2019/12/10	<1.0		uS/cm	
6487878	SHW	RPD	Conductivity	2019/12/10	0.93		%	10
6487879	SHW	QC Standard	рН	2019/12/10		101	%	97 - 103
6487879	SHW	RPD	pH	2019/12/10	0.57		%	N/A
6487880	SHW	Spiked Blank	Conductivity	2019/12/10		102	%	80 - 120
6487880	SHW	Method Blank	Conductivity	2019/12/10	<1.0		uS/cm	
6487880	SHW	RPD	Conductivity	2019/12/10	0.98		%	10
6487928	BAN	Matrix Spike	Total Aluminum (Al)	2019/12/10		99	%	80 - 120
			Total Antimony (Sb)	2019/12/10		104	%	80 - 120
			Total Arsenic (As)	2019/12/10		101	%	80 - 120
			Total Barium (Ba)	2019/12/10		100	%	80 - 120
			Total Beryllium (Be)	2019/12/10		102	%	80 - 120
			Total Bismuth (Bi)	2019/12/10		101	%	80 - 120
			Total Boron (B)	2019/12/10		101	%	80 - 120
			Total Cadmium (Cd)	2019/12/10		96	%	80 - 120
			Total Calcium (Ca)	2019/12/10		103	%	80 - 120

Page 10 of 14



# QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
		. //	Total Chromium (Cr)	2019/12/10		100	%	80 - 120
			Total Cobalt (Co)	2019/12/10		101	%	80 - 120
			Total Copper (Cu)	2019/12/10		98	%	80 - 120
			Total Iron (Fe)	2019/12/10		104	%	80 - 120
			Total Lead (Pb)	2019/12/10		100	%	80 - 120
			Total Magnesium (Mg)	2019/12/10		106	%	80 - 120
			Total Manganese (Mn)	2019/12/10		102	%	80 - 120
			Total Molybdenum (Mo)	2019/12/10		101	%	80 - 120
			Total Nickel (Ni)	2019/12/10		101	%	80 - 120
			Total Phosphorus (P)	2019/12/10		102	%	80 - 120
			Total Potassium (K)	2019/12/10		105	%	80 - 120
			Total Selenium (Se)	2019/12/10		99	%	80 - 120
			Total Silver (Ag)	2019/12/10		99	%	80 - 120
			Total Sodium (Na)	2019/12/10		101	%	80 - 120
			Total Strontium (Sr)	2019/12/10		99	%	80 - 120
			Total Thallium (TI)	2019/12/10		101	%	80 - 120
			Total Tin (Sn)	2019/12/10		101	%	80 - 120
			Total Titanium (Ti)	2019/12/10		106	%	80 - 120
			Total Uranium (U)	2019/12/10		106	%	80 - 120
			Total Vanadium (V)	2019/12/10		104	%	80 - 120
			Total Zinc (Zn)	2019/12/10		97	%	80 - 120
6487928	BAN	Spiked Blank	Total Aluminum (Al)	2019/12/10		101	%	80 - 120
			Total Antimony (Sb)	2019/12/10		101	%	80 - 120
			Total Arsenic (As)	2019/12/10		102	%	80 - 120
			Total Barium (Ba)	2019/12/10		100	%	80 - 120
			Total Beryllium (Be)	2019/12/10		102	%	80 - 120
			Total Bismuth (Bi)	2019/12/10		101	%	80 - 120
			Total Boron (B)	2019/12/10		101	%	80 - 120
			Total Cadmium (Cd)	2019/12/10		96	%	80 - 120
			Total Calcium (Ca)	2019/12/10		104	%	80 - 120
			Total Chromium (Cr)	2019/12/10		102	%	80 - 120
			Total Cobalt (Co)	2019/12/10		103	%	80 - 120
			Total Copper (Cu)	2019/12/10		102	%	80 - 120
			Total Iron (Fe)	2019/12/10		107	%	80 - 120
			Total Lead (Pb)	2019/12/10		101	%	80 - 120
			Total Magnesium (Mg)	2019/12/10		107	%	80 - 120
			Total Manganese (Mn)	2019/12/10		105	%	80 - 120
			Total Molybdenum (Mo)	2019/12/10		103	%	80 - 120
			Total Nickel (Ni)	2019/12/10		102	%	80 - 120
			Total Phosphorus (P)	2019/12/10		104	%	80 - 120 80 - 120
			Total Potassium (K)	2019/12/10		104	%	80 - 120
			Total Selenium (Se)	2019/12/10		99	%	80 - 120
			Total Silver (Ag)	2019/12/10		101	%	80 - 120
			Total Sodium (Na)	2019/12/10		104	%	80 - 120
			Total Strontium (Sr)	2019/12/10		102	%	80 - 120
			Total Thallium (TI)	2019/12/10		101	%	80 - 120
			Total Tin (Sn)	2019/12/10		101	%	80 - 120
			Total Titanium (Ti)	2019/12/10		105	%	80 - 120
			Total Uranium (U)	2019/12/10		105	%	80 - 120
			Total Vanadium (V)	2019/12/10		107	%	80 - 120
			Total Zinc (Zn)	2019/12/10		100	%	80 - 120
6487928	BAN	Method Blank	Total Aluminum (Al)	2019/12/10	<5.0		ug/L	
			Total Antimony (Sb)	2019/12/10	<1.0		ug/L	
			Total Arsenic (As)	2019/12/10	<1.0		ug/L	



# QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Total Barium (Ba)	2019/12/10	<1.0		ug/L	
			Total Beryllium (Be)	2019/12/10	<1.0		ug/L	
			Total Bismuth (Bi)	2019/12/10	<2.0		ug/L	
			Total Boron (B)	2019/12/10	<50		ug/L	
			Total Cadmium (Cd)	2019/12/10	<0.010		ug/L	
			Total Calcium (Ca)	2019/12/10	<100		ug/L	
			Total Chromium (Cr)	2019/12/10	<1.0		ug/L	
			Total Cobalt (Co)	2019/12/10	<0.40		ug/L	
			Total Copper (Cu)	2019/12/10	<0.50		ug/L	
			Total Iron (Fe)	2019/12/10	<50		ug/L	
			Total Lead (Pb)	2019/12/10	<0.50		ug/L	
			Total Magnesium (Mg)	2019/12/10	<100		ug/L	
			Total Manganese (Mn)	2019/12/10	<2.0		ug/L	
			Total Molybdenum (Mo)	2019/12/10	<2.0		ug/L	
			Total Nickel (Ni)	2019/12/10	<2.0		ug/L	
			Total Phosphorus (P)	2019/12/10	<100		ug/L	
			Total Potassium (K)	2019/12/10	<100		ug/L	
			Total Selenium (Se)	2019/12/10	<0.50		ug/L	
			Total Silver (Ag)	2019/12/10	<0.10		ug/L ug/L	
			Total Sodium (Na)	2019/12/10	<100		ug/L ug/L	
							-	
			Total Strontium (Sr)	2019/12/10	<2.0		ug/L	
			Total Thallium (TI)	2019/12/10	<0.10		ug/L	
			Total Tin (Sn)	2019/12/10	<2.0		ug/L	
			Total Titanium (Ti)	2019/12/10	<2.0		ug/L	
			Total Uranium (U)	2019/12/10	<0.10		ug/L	
			Total Vanadium (V)	2019/12/10	<2.0		ug/L	
			Total Zinc (Zn)	2019/12/10	<5.0		ug/L	
5487928	BAN	RPD	Total Aluminum (Al)	2019/12/10	0.57		%	20
			Total Iron (Fe)	2019/12/10	NC		%	20
			Total Manganese (Mn)	2019/12/10	1.4		%	20
			Total Zinc (Zn)	2019/12/10	1.5		%	20
6487950	SSI	Matrix Spike	Total Organic Carbon (C)	2019/12/10		96	%	85 - 115
6487950	SSI	Spiked Blank	Total Organic Carbon (C)	2019/12/10		97	%	80 - 120
5487950	SSI	Method Blank	Total Organic Carbon (C)	2019/12/10	<0.50		mg/L	
5487950	SSI	RPD	Total Organic Carbon (C)	2019/12/10	3.4		%	15
6488072	EMT	Matrix Spike	Total Alkalinity (Total as CaCO3)	2019/12/10		102	%	80 - 120
6488072	EMT	Spiked Blank	Total Alkalinity (Total as CaCO3)	2019/12/10		107	%	80 - 120
6488072	EMT	Method Blank	Total Alkalinity (Total as CaCO3)	2019/12/10	<5.0		mg/L	
488072	EMT	RPD	Total Alkalinity (Total as CaCO3)	2019/12/10	NC		%	25
5488078	EMT	Matrix Spike	Dissolved Chloride (Cl-)	2019/12/11		91	%	80 - 120
5488078	EMT	Spiked Blank	Dissolved Chloride (Cl-)	2019/12/11		95	%	80 - 120
5488078	EMT	Method Blank	Dissolved Chloride (Cl-)	2019/12/11	<1.0		mg/L	
5488078	EMT	RPD	Dissolved Chloride (Cl-)	2019/12/11	24		%	25
5488079	EMT	Matrix Spike	Dissolved Sulphate (SO4)	2019/12/10	27	110	%	80 - 120
5488079 5488079	EMT	Spiked Blank	Dissolved Sulphate (SO4)	2019/12/10		108	%	80 - 120
5488079 5488079	EMT	Method Blank	Dissolved Sulphate (SO4)	2019/12/10	<2.0	100	mg/L	00 - 120
		RPD	Dissolved Sulphate (SO4)					25
488079	EMT			2019/12/10	NC	06	%	25 80 - 120
488084	EMT	Matrix Spike	Reactive Silica (SiO2)	2019/12/10		96	%	
488084	EMT	Spiked Blank	Reactive Silica (SiO2)	2019/12/10	.0.50	99	%	80 - 120
5488084	EMT	Method Blank	Reactive Silica (SiO2)	2019/12/10	<0.50		mg/L	
6488084	EMT	RPD	Reactive Silica (SiO2)	2019/12/10	6.2		%	25
5488091	EMT	Spiked Blank	Colour	2019/12/10		104	%	80 - 120
5488091	EMT	Method Blank	Colour	2019/12/10	<5.0		TCU	
5488091	EMT	RPD	Colour	2019/12/10	11		%	20

Page 12 of 14



## QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
6488092	EMT	Matrix Spike	Orthophosphate (P)	2019/12/10		86	%	80 - 120
6488092	EMT	Spiked Blank	Orthophosphate (P)	2019/12/10		91	%	80 - 120
6488092	EMT	Method Blank	Orthophosphate (P)	2019/12/10	<0.010		mg/L	
6488092	EMT	RPD	Orthophosphate (P)	2019/12/10	NC		%	25
6488094	EMT	Matrix Spike	Nitrate + Nitrite (N)	2019/12/10		87	%	80 - 120
6488094	EMT	Spiked Blank	Nitrate + Nitrite (N)	2019/12/10		96	%	80 - 120
6488094	EMT	Method Blank	Nitrate + Nitrite (N)	2019/12/10	<0.050		mg/L	
6488094	EMT	RPD	Nitrate + Nitrite (N)	2019/12/10	NC		%	25
6488096	EMT	Matrix Spike	Nitrite (N)	2019/12/11		100	%	80 - 120
6488096	EMT	Spiked Blank	Nitrite (N)	2019/12/11		108	%	80 - 120
6488096	EMT	Method Blank	Nitrite (N)	2019/12/11	0.012,		mg/L	
					RDL=0.010			
6488096	EMT	RPD	Nitrite (N)	2019/12/11	NC (3)		%	20
6488294	EMT	Matrix Spike	Nitrogen (Ammonia Nitrogen)	2019/12/10		97	%	80 - 120
		[LMD219-09]						
6488294	EMT	Spiked Blank	Nitrogen (Ammonia Nitrogen)	2019/12/10		101	%	80 - 120
6488294	EMT	Method Blank	Nitrogen (Ammonia Nitrogen)	2019/12/10	<0.050		mg/L	
6488294	EMT	RPD [LMD219-09]	Nitrogen (Ammonia Nitrogen)	2019/12/10	NC		%	20

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Recovery is within QC acceptance limits. < 10 % of compounds in multi-component analysis in violation.

(2) Elevated reporting limit due to sample matrix.

(3) Elevated reporting limit due to method blank performance.



## VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Mike Mac Gulle

Mike MacGillivray, Scientific Specialist (Inorganics)

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.



Your Project #: 19-1567-2000 Site Location: PORT WALLACE Your C.O.C. #: D36959, D36960

#### **Attention: Rebecca Appleton**

Dillon Consulting Limited 137 Chain Lake Dr Suite 100 Halifax , NS CANADA B3S 1B3

> Report Date: 2020/01/10 Report #: R6032999 Version: 2 - Final

## **CERTIFICATE OF ANALYSIS**

#### BV LABS JOB #: C003411

Received: 2020/01/07, 10:56

Sample Matrix: Biota # Samples Received: 18

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Mercury in Vegetation by CVAA (1)	4	2020/01/09	2020/01/10	CAM SOP-00453	Health Canada Method
Mercury in Sludge by CVAA (1)	14	2020/01/09	2020/01/09	CAM SOP-00453	EPA 7470A m

#### Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Bureau Veritas Laboratories Mississauga



Your Project #: 19-1567-2000 Site Location: PORT WALLACE Your C.O.C. #: D36959, D36960

#### Attention: Rebecca Appleton

Dillon Consulting Limited 137 Chain Lake Dr Suite 100 Halifax , NS CANADA B3S 1B3

> Report Date: 2020/01/10 Report #: R6032999 Version: 2 - Final

## **CERTIFICATE OF ANALYSIS**

BV LABS JOB #: C003411 Received: 2020/01/07, 10:56

**Encryption Key** 

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Heather Macumber, Senior Project Manager Email: Heather.MACUMBER@bvlabs.com Phone# (902)420-0203 Ext:226

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.



# **ELEMENTS BY ATOMIC SPECTROSCOPY (BIOTA)**

BV Labs ID		100	C611				LSC	212				LSC61	2		LSC61	1		
			/01/0	6			2020/				2	020/01		2	020/01			
Sampling Date			6959	0			2020/ D36		,		2	D3695		2	D3695	-		
COC Number	UNIT		6959 F20-1	RD		Batch	TOF		RDL	QC B	atak	TOF20		DL	TOF20			QC Bato
	UNIT	5 101	-20-1	RD	L	. Datch	TUP	20-2	KUL	UL D	atch	TUFZU	-3 K	DL	TUFZU	-4 r		
Metals																		
Mercury (Hg)	ug/{						0.0	)9	0.01	6530	320							
Acid Extractable Mercury (Hg	) ug/g	g <0	0.05	0.0	5 65	30120						1.0	0	).5	0.19	0	.05	653012
RDL = Reportable Detection L	imit																	
QC Batch = Quality Control Ba	atch																	
BV Labs ID				LSC6	15	ISC	616		LSC	517	ISC	618	ISC	619				
Sampling Date			2			2020/			2020/0		-		2020/		5			
COC Number				D369	·	-	959		D369		-	61,00 6959		61,00 6959	-			
		UN	IITS	TOF2		-	<b>20-6</b>	RDL	TOF2		-	20-8		20-9	RDL	QC B	atch	
Metals																40.5		
Acid Extractable Me	arcury (F	Ia)	g/g	1.(	<u> </u>	0	.7	0.3	0.0	17	<0	.05	0	06	0.05	6530	120	
	, ,	0, 0	8/8	1.(	)	0	./	0.5	0.0	,,	<0.	.05	0.	00	0.05	0550	120	
RDL = Reportable D																		
QC Batch = Quality	Control	Batch																
BV Labs ID			LSC62	20			Ľ	SC628	3			LSC	629	LS	6C630			
				1								<u> </u>					_	
Sampling Date		20	20/01	1/06			202	0/01	/06			2020/	/01/06	2020	0/01/0	6		
Sampling Date COC Number			020/01	·				0/01, 3696					/01/06 5960	-	0/01/0 36960	6		
				, 59	RDL	QC Bat	D	<u> </u>	0	DL QC	C Batch	D36		D			_ QC	Batch
COC Number	UI		, D3695	, 59	RDL	QC Bat	D	, , 3696	0	DL QC	C Batch	D36	, 5960	D	36960		. QC	Batch
COC Number Metals		I NITS T	D3695	59 - <b>10</b>			D ch TC	, , 3696	0	DL QC	C Batch	D36	5960 2 <b>0-12</b>	D: <b>TO</b>	36960 F <b>20-13</b>	RDI		
COC Number Metals Mercury (Hg)	u	s/g	, D3695	59 - <b>10</b>		<b>QC Bat</b> 653032	D ch TC 20	3696 ) <b>F20-</b> :	0 11 RC			D36	, 5960	D: <b>TO</b>	36960			Batch 30320
COC Number Metals Mercury (Hg) Acid Extractable Mercury (	u Hg) u	I NITS T	D3695	59 - <b>10</b>			D ch TC 20	, , 3696	0 11 RC		<b>Batch</b>	D36	5960 2 <b>0-12</b>	D: <b>TO</b>	36960 F <b>20-13</b>	RDI		
COC Number Metals Mercury (Hg) Acid Extractable Mercury ( RDL = Reportable Detectio	u Hg) u n Limit	s/g	D3695	59 - <b>10</b>			D ch TC 20	3696 9 <b>F20-</b> :	0 11 RC			D36	5960 2 <b>0-12</b>	D: <b>TO</b>	36960 F <b>20-13</b>	RDI		
COC Number Metals Mercury (Hg) Acid Extractable Mercury (	u Hg) u n Limit	s/g	D3695	59 - <b>10</b>			D ch TC 20	3696 9 <b>F20-</b> :	0 11 RC			D36	5960 2 <b>0-12</b>	D: <b>TO</b>	36960 F <b>20-13</b>	RDI		
COC Number Metals Mercury (Hg) Acid Extractable Mercury ( RDL = Reportable Detectio	u Hg) u n Limit	NITS T g/g	0.01	59 - <b>10</b>			D ch TC 20	3696 ) <b>F20</b> -: <0.05	0 11 RC	05 65		<pre></pre>	5960 2 <b>0-12</b>	D3 TO	36960 F20-13	RDI		
COC Number Metals Mercury (Hg) Acid Extractable Mercury ( RDL = Reportable Detectio QC Batch = Quality Control	u Hg) u n Limit	g/g g/g	0.01	59 - <b>10</b>		653032	20 D	3696 9 <b>F20</b> -: <0.05	0	32	30120	<pre></pre>	.01	033	36960 F20-13	0.01	L 65	
COC Number Metals Mercury (Hg) Acid Extractable Mercury ( RDL = Reportable Detectio QC Batch = Quality Control	u Hg) u n Limit	g/g g/g LSC63	0.01 0.01 30 1/06	59 - <b>10</b>		653032	D ch TC 20 LSC63:	3696 <b>9F20</b> -: <0.05	0	05 65 32 1/06	530120 LSC6	Control 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	.01 LSC6	033 01/06	20.01 LSC 2020/	0.01	L 65	
COC Number Metals Mercury (Hg) Acid Extractable Mercury ( RDL = Reportable Detectio QC Batch = Quality Control Y Labs ID mpling Date	u Hg) u n Limit	I           NITS         T           g/g         g/g           g/g         LSC63           2020/02         LSC63	0.01 0.01 30 1/06 60 - <b>13</b>	- <b>10</b>		653032	D ch TC 20 LSC63: 020/01,	<0.05	0	05 65 32 1/06 60	530120 LSC6 2020/0	33 10/06 2	.01 LSC6	033 01/06 060 0-16	LSC 2020/ D36	0.01 634 01/06	L 65	
COC Number Metals Mercury (Hg) Acid Extractable Mercury ( RDL = Reportable Detectio QC Batch = Quality Control Y Labs ID mpling Date	u Hg) u n Limit Batch	g/g g/g LSC63 2020/02 D3690 TOF20	0.01 0.01 30 1/06 60 - <b>13</b>	- <b>10</b>	0.01	653032	D ch TC 20 LSC63: 020/01, D3696	<0.05	0	05 65 32 1/06 60	530120 LSC6 2020/0 D369	D36           TOF2           <0	.01 LSC6 2020/0 D365 TOF20	033 01/06 060 0-16	LSC 2020/ D36	0.01 0.01	L 65	30320
COC Number Metals Mercury (Hg) Acid Extractable Mercury ( RDL = Reportable Detectio QC Batch = Quality Control / Labs ID mpling Date DC Number	u Hg) u n Limit Batch UNITS	g/g g/g LSC63 2020/02 D3690 TOF20 Lab-D	0.01 0.01 30 1/06 60 13 up	RDL	0.01	653032 2 atch	D ch TC 20 LSC63: 020/01, D3696	<0.05	0	05 65 32 1/06 60	530120 LSC6 2020/0 D369	D36           TOF2           <0	.01 LSC6 2020/0 D365 TOF20	033 01/06 060 0-16	LSC 2020/ D36	0.01 0.01	L 65	30320
COC Number Metals Mercury (Hg) Acid Extractable Mercury ( RDL = Reportable Detectio QC Batch = Quality Control Labs ID mpling Date DC Number etals	u Hg) u n Limit Batch	g/g g/g LSC63 2020/02 D3690 TOF20	0.01 0.01 30 1/06 60 13 up	RDL	0.01	653032 2 atch	D ch TC 20 LSC63: 020/01, D3696	<pre></pre>	0	05 65 32 1/06 60 - <b>15</b>	530120 LSC6 2020/0 D369	D36           TOF2           <0	.01 LSC6 2020/0 D365 TOF20	033 333 01/06 0-16 Dup	LSC 2020/ D36	0.01 0.01	L 65	30320

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate



# **ELEMENTS BY ATOMIC SPECTROSCOPY (BIOTA)**

BV Labs ID		LSC635		
Sampling Date		2020/01/06		
COC Number		D36960		
	UNITS	TOF20-FD2	RDL	QC Batch
Metals				
Acid Extractable Mercury (Hg)	ug/g	<0.05	0.05	6530120
RDL = Reportable Detection Lim QC Batch = Quality Control Batc				



## **GENERAL COMMENTS**

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 2.3°C

Results relate only to the items tested.



## **QUALITY ASSURANCE REPORT**

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
6530120	MEN	Matrix Spike [LSC633-01]	Acid Extractable Mercury (Hg)	2020/01/09		92	%	75 - 125
6530120	MEN	Spiked Blank	Acid Extractable Mercury (Hg)	2020/01/09		105	%	75 - 125
6530120	MEN	Method Blank	Acid Extractable Mercury (Hg)	2020/01/09	<0.05		ug/g	
6530120	MEN	RPD [LSC633-01]	Acid Extractable Mercury (Hg)	2020/01/09	28		%	35
6530320	MEN	Matrix Spike [LSC630-01]	Mercury (Hg)	2020/01/10		98	%	75 - 125
6530320	MEN	QC Standard	Mercury (Hg)	2020/01/10		96	%	70 - 130
6530320	MEN	Method Blank	Mercury (Hg)	2020/01/10	<0.01		ug/g	
6530320	MEN	RPD [LSC630-01]	Mercury (Hg)	2020/01/10	NC		%	35

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).



### VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Anastassia Hamanov, Scientific Specialist

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.



# **ENVIRONMENTAL SCIENCES GROUP**

# ANALYSIS REPORT COVER NOTE

Report Number: RMC-AR-ESG-0005
Report Date: 17 December 2019
# Sample(s) reported: 5
Issue Status: Final – amended 2
Analysis commenced on: 21 October 2019 (drying of sediments); 1 November 2019 (extraction)

The following data are reported in this report on a dry weight basis: total arsenic (Soil conc As), extracted arsenic (BA conc As) and percent bioaccessibility of arsenic (%BA As). Percent moisture is also reported.

# Methods

Samples were on ice and contained in clear glass 250 mL jars with white plastic lids. The lid of BIODES19-1 was cracked on the side portion of lid, with a piece missing at the crack, and the lid of sample BIOSED19-5 was deeply scratched. Samples were mixed thoroughly before weighing subsamples (40–115 g) into plastic weigh boats. Water was not poured off. Samples were dried at room temperature (<40°C, as stipulated in the method, U.S. EPA 2017) in the weigh boats (covered) for up to 1 week with occasional mixing to prevent the formation of lumps. When dry, samples were sieved (<150 µm) prior to analysis.

To obtain the bioaccessible As for the human receptor exposed to soil, the United States Environmental Protection Agency (U.S. EPA) OLEM 9200.2-164 (April 2017) method (U.S. EPA 2017) was employed. Each dried and sieved sample was extracted in 100 mL extraction vessels with a 0.4 M glycine solution adjusted to pH 1.5 in a liquid-to-(dry) solid ratio of 100:1. The extraction was carried out with end-over-end mixing at body temperature (37°C) for 1 hour and liquid was separated from solids through the use of 0.45  $\mu$ m filtration.

All extracts were analyzed for As concentrations by ICP-MS, and total concentrations of As in soil samples were obtained by aqua regia digestion and analysis using ICP-MS. Drying, sieving and extraction were carried out in the ESG laboratory. Analysis of extracts and soils was carried out at the Analytical Services Unit at Queen's University, a laboratory accredited by the Canadian Association for Laboratory Accreditation (CALA). The methods used for analysis (metals in solids by ICP-MS and metals in water by ICP-MS) are listed on ASU's scope of accreditation.

Environmental Sciences Group

Royal Military College of Canada

P.O. Box 17000 Stn. Forces

Kingston, Ontario

K7K 7B4

# Quality Assurance and Quality Control (QA/QC)

The bioaccessibility of a standard reference material, NIST 2710a, was measured at the same time as the samples and NIST 2710a control limits are specified in the OLEM 9200.2-164 (April 2017) method (U.S. EPA 2017).

Two types of fortified samples were included in the analysis, following the prescribed U.S. EPA OLEM 9200.2-164 QC/QC procedures: a laboratory control sample (LCS) and a matrix spike (MS). The LCS contained As in the extraction fluid (at a concentration of 10 mg/L) and was taken through the entire extraction procedure. The MS contained As (10 mg/L) and was prepared in the extraction fluid from a sample prior to analysis. A second MS with a different sample was prepared in the same way to ensure data quality.

The % recovery for As in the LCS was 97%, well within the prescribed limits for LCS (85–115% recovery). The % recovery for As in the first MS was 34%, which is outside the prescribed limit (75–125% recovery) (U.S. EPA 2017). The % recovery for As in the second MS was 86%, which was acceptable.

Blank results (method blank and reagent blank) were acceptable (less than the reporting limit, which was the lower of reporting limits specified in U.S. EPA 2017). Precision from the analytical duplicates was deemed acceptable with a relative percent difference (RPD) of 0.4%.

The QC results were reviewed for ASU reports and the results for duplicates, blanks, and water and soil controls (including CRMs) were all considered acceptable as follows. Duplicate RPDs were zero for all samples. Blanks were below reporting limits. CRMs and other laboratory controls were within 30% of certified and laboratory target values.

Acceptance limits were obtained from CCME 2016, unless otherwise indicated (i.e., for As bioaccessibility results, for which acceptance limits are from U.S. EPA 2017).

# **Data Interpretation and Limitations**

The first MS sample is thought to have been prepared with a faulty pipette but the second MS sample gave acceptable results, suggesting the analysis was free of matrix effects.

An error in sample labeling in the report ASU 17226 As in Soil-1 prompted ASU to re-digest and reanalyze all sediment samples for total arsenic. Sample results from the second report (ASU 17226 As in Soil-1 Redigest) were used for the calculations of bioaccessibility in the present report.

For As, an equation relating bioaccessibility results with relative bioavailability (RBA) results are provided in U.S. EPA OLEM 9200.2-164 (U.S. EPA 2017) and is recommended by Health Canada (2017):

 $RBA_{arsenic}(\%) = 0.79 \cdot IVBA(\%) + 3.0 (R^2 = 0.87)$ 

The use of this equation should be considered within the caveats and precautions discussed in Canadian guidance (Health Canada 2017).

Because of limitations with the current software used for reporting data, the number of significant figures quoted in the attached table may not be representative of the actual uncertainty. Data should be considered accurate to no more than two significant figures. This report is issued under final status.

The results given relate only to the items tested.

Report authorised by:

ginte

Iris Koch, Senior Analytical and Arsenic Research Manager, ESG

David J. Patch, Laboratory Technician, ESG

Date: 17 December 2019

## **References**

Canadian Council of Ministers of the Environment (CCME) 2016. Guidance Manual For Environmental Site Characterization In Support Of Environmental And Human Health Risk Assessment, Volume 4 Analytical Methods.

Health Canada 2017. Federal Contaminated Site Risk Assessment in Canada. Supplemental Guidance on Human health Risk Assessment for Oral Bioavailability of Substances In Soil and Soil-Like Media. Prepared by Contaminated Sites Division.

U.S. EPA 2017. EPA OLEM 9200.2-164, April 20, 2017. Standard Operating Procedure for an In Vitro Bioaccessibility Assay for Lead and Arsenic in Soil.

# ESG Bioaccessibility Report - RMC-AR-ESG-0005 - Amended 2

Intrinsik sediments - Dillon # Samples: 5 Analyst: David Patch **Reference Reports:** ASU 17226 As Extracts-1 **Extraction Date:** 01-Nov-19 ASU 17226 As in Soil-1 Redigest U.S. EPA OLEM 9200.2-164 Method: Report Date: 17-Dec-19 Ratio: 100 to 1

## RESULTS

Site:

Results are reported on a dry weight basis, for the <150 um fraction of soil

SAMPLE ID	BA conc (mg/kg)	Soil conc (mg/kg)	%BA	% Moisture
	As	As	As	
Biosed 19-1 2/2	310	4500	6.9	31
Biosed 19-2 2/2	199	990	20	75
Biosed 19-4 2/2	255	3200	8.0	51
Biosed 19-5 2/2	281	4000	7.0	29
Biosed 19-6 2/2	61.2	200	31	34

#### **Bioaccessibility Extraction QA/QC**

Sample	As
BLANK	Extract conc
BLANK	(mg/L)
Method Blank	< 0.005
Reagent Blank	< 0.005
ACCEPTABLE?	Yes
CONTROL	%BA
NIST 2710A	34
Control Limits (U.S. EPA 2017)	%BA
NIST 2710A	32.9-49.1
Control Limits (ESG/CCME 2016)	%BA
NIST 2710A	28.7-53.3
ACCEPTABLE?	Yes
SPIKES	% Recovery
LCS	97
MS Method blank spiked	34
MS LC-22-14	86
ACCEPTABLE?	Yes; No; Yes
DUPLICATES	%RPD
LC-22-14	0.41
ACCEPTABLE?	Yes

## Extract Analysis QA/QC (ASU)

Report:	ASU 17226 As Extracts-1
All concentrations in ug/L	
Sample	As
Blank (ug/L)	<2.0
Blank (ug/L)	<2.0
ACCEPTABLE?	Yes
Control 1	25
Control Target	25
% Recovery	100
ACCEPTABLE?	Yes
Control 2	25
Control Target	25
% Recovery	100
ACCEPTABLE?	Yes
1643e CRM 1	55
1643e Target	60
% Recovery	109
ACCEPTABLE?	Yes
1643e CRM 2	56
1643e Target	60
% Recovery	107
ACCEPTABLE?	Yes
EU-H CRM	690
EU-H Target	690
% Recovery	100
ACCEPTABLE?	Yes
Int-10	430
Int-10 Duplicate	430
AVERAGE	430
RPD (%)	0
ACCEPTABLE?	Yes
Spiked Blank	3400
Spiked Blank Duplicate	3400
AVERAGE	3400
RPD (%)	0
ACCEPTABLE?	Yes

# Soil QAQC (ASU)

Report:	ASU 17226 As	in Soil-1 Redigest
Sample	As	
Blank (mg/kg)	<1.0; <1.0	
ACCEPTABLE?	Yes	
Control 1 (ug/mL)	4	
Control 1 Target (ug/mL)	4	
% Recovery	100	
ACCEPTABLE?	Yes	
Mess-4 CRM (mg/kg) 1	17	
Mess-4 CRM (mg/kg) 2	18	
Mess-4 CRM target (mg/kg)	17	
Arsenic certified (mg/kg)	21.7 ± 2.8	
% Recovery (of target) 1	100	
% Recovery (of target) 2	106	
% Recovery (of certified) 1	78	
% Recovery (of certified) 2	83	
ACCEPTABLE?	Yes	
Int-12 Soil (mg/kg)	220	
Int-12 Soil Duplicate (mg/kg)	230	
AVERAGE	225	
RPD (%)	4	
ACCEPTABLE?	Yes	



Analytical Services Unit School of Environmental Studies Biosciences Complex, Queen's University Kingston, Ontario, Canada K7L 3N6 Tel: 613 533-2642 Fax: 613 533-2897

ASU#	17226		Report ID:	ASU 17226 As Extracts-1
Client:	ESG		Date Submitted:	5-Nov-19
	19-045		Date Tested:	6-Nov-19
Site:	RSA-RMC-13-Intrinsik		Date:	7-Nov-19
Technique:	ICP-MS		Matrix:	Bioaccessibility Extracts
eport of Analysis of I	Extracts: all results in ng/ml			
esults relate only to t	the items tested			
	Int-1	Int-2	Int-4	Int-5
Arsenic	3100	2000	2600	2800
	Int-6	Int-7	Int-8	Int-9
Arsenic	610	590	700	530
	Int-10	Int-10 Duplicate	Int-11	Int-12
Arsenic	430	430	780	420
	Int-12D	Int NIST 2710a	Int Method Blank	Reagent-B
Arsenic	420	4800	3.1	2.0
	Int-LCS	Spiked Blank	Spiked Blank Duplicate	
Arsenic	9700	3400	3400	
Laboratory QA/QC	Blank	Special Reporting Limit		
Arsenic	<2.0; <2.0	<2.0		
	Control 1	Control 1 Target	1643e CRM	1643e Target
Arsenic	25; 25	25	55; 56	60
	EU-H CRM	EU-H Target		
Arsenic	690	690		
NOTES:		d as internal standards. Gas dilution (HM	I) used: N.	
	All extracts were diluted x 10 prior to an	alysis.		
	GUT		a. Nutter	
Prepared by:	<u></u> GMM>	Authorized by:	d. Huller	
	1			



ASU 1726

•

CHAIN OF CUSTODY/ ANALYTICAL REQUEST FORM

								-		
Project ID:	RSA-RMC-13-Intrinsik	rinsik								
Request #:	Req #19-045		Due Date:	ate:	11-Nov				Page 1 of	
Requested By:	Iris Koch									
Sampled by:	David Patch/Iris Koch	Koch	Δ	Date:	04-Nov					
Received by:			Δ	Date:		jc			-	
Relinquished by:	Iris Koch		D	Date:	04-Nov	uəs.		,		
Received at lab by:	( Cher	Ń	a. PI VONZO	Date:		ie le:		isyle isyle		
Sample Number	Date	Time	Matrix	Container	er	toT				Cooler ID
Int-1 Soil	01-Nov	17:00	17:00 Soil/sediment	50 mL C-tube		×			Aqua regia digestion	
Int-2 Soil	01-Nov	17:00	17:00 Soil/sediment	50 mL C-tube		×			Aqua regia digestion	
Int-4 Soil	01-Nov	17:00	17:00 Soil/sediment	50 mL C-tube		×			Aqua regia digestion	
Int-5 Soil	01-Nov	17:00	17:00 Soil/sediment	50 mL C-tube		×			Aqua regia digestion	
Int-6 Soil	01-Nov	17:00	17:00 Soil/sediment	50 mL C-tube		×			Aqua regia digestion	
Int-7 Soil	01-Nov	17:00	17:00 Soil/sediment	50 mL C-tube		×			Aqua regia digestion	
Int-8 Soil	01-Nov	17:00	17:00 Soil/sediment	50 mL C-tube		×			Aqua regia digestion	
Int-9 Soil	01-Nov	17:00	17:00 Soil/sediment	50 mL C-tube		×			Aqua regia digestion	
Int-10 Soil	01-Nov	17:00	17:00 Soil/sediment	50 mL C-tube		×			Aqua regia digestion	
Int-11 Soil	VON-10	17:00	17:00 Soil/sediment	50 mL C-tube		×			Aqua regia digestion	
Int-12 Soil	VoN-10	17:00	17:00 Soil/sediment	50 mL C-tube		×	_		Aqua regia digestion	
Int-1	01-Nov	17:00	17:00 Bioaccessibility extract	50 mL C-tube		×	-			
Int-2	01-Nov	17:00	17:00 Bioaccessibility extract	50 mL C-tube		×				
Int-4	01-Nov	17:00	17:00 Bioaccessibility extract	50 mL C-tube		×				
Int-5	01-Nov	17:00	17:00 Bioaccessibility extract	50 mL C-tube		×				
Int-6	01-Nov	17:00	17:00 Bioaccessibility extract	50 mL C-tube		×				
Int-7	01-Nov	17:00	17:00 Bioaccessibility extract	50 mL C-tube		×				
Int-8	01-Nov		17:00 Bioaccessibility extract	50 mL C-tube		×				
Int-9	01-Nov		17:00 Bioaccessibility extract			×				
Int-10	01-Nov	17:00	17:00 Bioaccessibility extract	50 mL C-tube		×			ала — — — — — — — — — — — — — — — — — —	
Int-11	01-Nov	17:00	17:00 Bioaccessibility extract	50 mL C-tube		×				
Int-12	01-Nov		17:00 Bioaccessibility extract			×				
Int-12D	01-Nov		17:00 Bioaccessibility extract			×				
Int NIST 2710a	VON-EO		17:00 Bioaccessibility extract	50 mL C-tube		×				
Int Method Blank	01-Nov		17:00 Bioaccessibility extract	50 mL C-tube		×				
Reagent-B	01-Nov		17:00 Bioaccessibility extract			×				
Int-LCS	01-Nov		17:00 Bioaccessibility extract			×			10 mg/L spike	
Cuitod Blank	1 Now			11 m C tubo		~	-	-	10 mg/l chiko	

Bioaccessibility extracts have no specified hold times but should be kept refrigerated until analysis. Required detection limit is 10 - 25 ug/L in original extract.



Asalytical Services Unit. School of Environmental Studies Biosciences Complex, Queen's University Kingstan, Dutaino, Canada K71, 3145 Tel: 613 533-2642 Fax: 613 533-2897

ASU #	17226		Report ID:	ASU 17226 As in Soil-1 Redigest
Client:	ESG		Date Submitted:	5-Nov-19
	19-045		Date Tested:	13-Dec-19
	RSA-RMC-13-Intrinsik		Date:	16-Dec-19
Technique:	ICP-OES		Matrix:	Soil
Report of Analysis: all r	results in ug/g (unless otherwise noted)			
Results relate only to the	e items tested			
	Int-1 Soil	Int-2 Soil	Int-4 Soil	Int-5 Soil
Arsenic	4500	990	3200	4000
	Int-6 Soil	Int-7 Soil	Int-8 Soil	Int-9 Soil
Arsenic	200	470	510	520
	Int-10 Soil	Int-11 Soil	Int-12 Soil	Int-12 Soil Duplicate
Arsenic	540	600	220	230
Laboratory QA/QC				
	Blank			
Arsenic	<1.0; <1.0			
	Control 1 (ug/mL)	Control 1 Target (ug/mL)	Mess-4 CRM	Mess-4 CRM target
Arsenic	4.0	4.0	17; 18	17
Prepared by:	Glos	Authorized by:	Paula Whiley	



Asalytical Services Unit. School of Environmental Studies Biosciences Complex, Queen's University Kingstan, Dutaino, Canada K71, 3145 Tel: 613 533-2642 Fax: 613 533-2897

ASU #				
ASU #	17245		Report ID:	ASU 17245 As Extracts-1
Client:	ESG		Date Submitted:	19-Nov-19
	19-046		Date Tested:	21-Nov-19
Site:	RSA-RMC-13-Intrinsik		Date:	22-Nov-19
Technique:	ICP-MS		Matrix:	Bioaccessibility Extracts
<b>^</b>				
eport of Analysis of	Extracts: all results in ng/ml			
esults relate only to	8			
	CHP-3	COMP 12	COMP 13	COMP 14
Arsenic	130	36	9.6	19
moenie	150		2.0	17
	COMP 15	COMP 16	COMP 17	COMP 17 Duplicate
Arsenic	24	23	28	26
Arsenic	27	25	20	20
	F19-01	F19-02	F19-03	F19-07
Anconio	71	80	130	87
Arsenic	/1	80	130	87
	F10.14	COMP 170	Descent D	Mathe J Dian
	F19-14	COMP 17D	Reagent-B	Method Blank
Arsenic	93	25	<2.0	<2.0
	LCS	NIST 2710a	Tuna CRM	Tuna CRM Duplicate
Arsenic	10000	6900	87	87
	CHP-3 MS	Int-12 MS		
Arsenic	8500	9000		
Laboratory OA/OC				
Laboratory QA/QC		Special Reporting Limit		
	Blank	Special Reporting Limit		
Laboratory QA/QC Arsenic		Special Reporting Limit <2.0		
	Blank <2.0; <2.0	<2.0	1643e CPM	1643e Target
Arsenic	Blank <2.0; <2.0 Control 1	<2.0 Control 1 Target	1643e CRM	1643e Target
	Blank <2.0; <2.0	<2.0	1643e CRM 51; 52	1643e Target 60
Arsenic	Blank           <2.0; <2.0	<2.0 Control 1 Target 25		
Arsenic	Blank <2.0; <2.0 Control 1 24; 23 EU-H CRM	<2.0 Control 1 Target 25 EU-H Target		
Arsenic	Blank           <2.0; <2.0	<2.0 Control 1 Target 25		
Arsenic	Blank <2.0; <2.0 Control 1 24; 23 EU-H CRM	<2.0 Control 1 Target 25 EU-H Target		
Arsenic	Blank <2.0; <2.0 Control 1 24; 23 EU-H CRM	<2.0 Control 1 Target 25 EU-H Target		
Arsenic	Blank <2.0; <2.0 Control 1 24; 23 EU-H CRM	<2.0 Control 1 Target 25 EU-H Target		
Arsenic	Blank <2.0; <2.0 Control 1 24; 23 EU-H CRM	<2.0 Control 1 Target 25 EU-H Target		
Arsenic	Blank <2.0; <2.0 Control 1 24; 23 EU-H CRM	<2.0 Control 1 Target 25 EU-H Target		
Arsenic	Blank <2.0; <2.0 Control 1 24; 23 EU-H CRM	<2.0 Control 1 Target 25 EU-H Target		
Arsenic	Blank           <2.0; <2.0	<2.0 Control 1 Target 25 EU-H Target	51; 52	
Arsenic Arsenic Arsenic	Blank           <2.0; <2.0	<2.0 Control 1 Target 25 EU-H Target 690 das internal standards. Gas dilution (HM	51; 52	
Arsenic Arsenic Arsenic	Blank           <2.0; <2.0	<2.0 Control 1 Target 25 EU-H Target 690 das internal standards. Gas dilution (HM	51; 52	
Arsenic Arsenic Arsenic	Blank           <2.0; <2.0	<2.0 Control 1 Target 25 EU-H Target 690 das internal standards. Gas dilution (HM	51; 52	
Arsenic Arsenic Arsenic NOTES:	Blank         <2.0; <2.0	Control 1 Target          25         EU-H Target         690         as internal standards. Gas dilution (HM nalysis.	51; 52	
Arsenic Arsenic Arsenic	Blank           <2.0; <2.0	<2.0 Control 1 Target 25 EU-H Target 690 das internal standards. Gas dilution (HM	51; 52	
Arsenic Arsenic Arsenic NOTES:	Blank         <2.0; <2.0	Control 1 Target          25         EU-H Target         690         as internal standards. Gas dilution (HM nalysis.	51; 52	
Arsenic Arsenic Arsenic NOTES:	Blank         <2.0; <2.0	Control 1 Target          25         EU-H Target         690         as internal standards. Gas dilution (HM nalysis.	51; 52	

ļ			!			Analysis Reminest	Perillect			
Project ID:	RSA-RMC-13-Intrinsik	trinsik	но. 							
Request #:	Req #19-046		Due Date:	27-Nov					Page 1 of	
Requested By:	Iris Koch									
Sampled by:	David Patch/Iris Koch	Koch	Date:	19-Nov						
Received by:			Date:		:					
Relinquished by:	Iris Koch		Date:	19-Nov	enic					
Received at lab by:	K.N.N.S	Ę	Date:	19/100	alars		lysis	lysis		
Sample Number	Date	Time (	ע Matrix	-	Tota		Ana	Ana	Comments	Conler ID
CHP-3	14-Nov	17:00	17:00 Bioaccessibility extract	50 mL C-tube	×			-		
COMP 12	14-Nov.	17:00	17:00 Bioaccessibility extract	50 mL C-tube	×					
COMP 13	14-Nov	17:00	17:00 Bioaccessibility extract	50 mL C-tube	×					
COMP 14	14-Nov	17:00	17:00 Bioaccessibility extract	50 mL C-tube	×					
COMP 15	14-Nov	17:00	17:00 Bioaccessibility extract	50 mL C-tube	×					
COMP 16	14-Nov	17:00	17:00 Bioaccessibility extract	50 mL C-tube	x					
COMP 17	14-Nov	17:00	17:00 Bioaccessibility extract	50 mL C-tube	×					
F19-01	14-Nov	17:00	17:00 Bioaccessibility extract	50 mL C-tube	×					
F19-02	14-Nov	17:00	17:00 Bioaccessibility extract	50 mL C-tube	×					
F19-07	14-Nov	17.00	17:00 Binarcessibility extract	50 ml C-tube	< >					
F19-14	14-Nov	17:00	17:00 Bioaccessibility extract	50 mL C-tube	×		-			
COMP 17D	14-Nov	17:00	17:00 Bioaccessibility extract	50 mL C-tube	×		_			
Reagent-B	14-Nov	17:00	17:00 Bioaccessibility extract	50 mL C-tube	×					
Method Blank	14-Nov	17:00	17:00 Bioaccessibility extract	50 mL C-tube	×					
S.	14-Nov	17:00	17:00 Bioaccessibility extract	50 mL C-tube	×			_	10 mg/L spike	
NIST 2710a	14-Nov	17:00	17:00 Bioaccessibility extract	50 mL C-tube	×					
Tuna CRM	15-Nov	17:00	17:00 Bioaccessibility extract	50 mL C-tube	×					
CHP-3 MS	15-Nov	17:00	17:00 Bioaccessibility extract	15 mL C-tube	×				10 mg/L spike	
t-12 MS	15-Nov	17:00	17:00 Bioaccessibility extract	15 mL C-tube	×				10 mg/L spike	
CHP-3	14-Nov	17:00 Fish	Fish	125 mL plastic jar	×				Acid digestion	
COMP 12	14-Nov	17:00 Fish	Fish	125 mL plastic jar	×				Acid digestion	
COMP 13	14-Nov	17:00 Fish	Fish	125 mL plastic jar	×				Acid digestion	
COMP 14	14-Nov	17:00 Fish	Fish	125 mL plastic jar	×				Acid digestion	
COMP 15	14-Nov	17:00 Fish	Fish	125 mL plastic jar	×				Acid digestion	
COMP 16	14-Nov	17:00 Fish	Fish	125 mL plastic jar	×				Acid digestion	
COMP 17	14-Nov	17:00 Fish	Fish	125 mL plastic jar	×				Acid digestion	
F19-01	14-Nov	17:00 Fish	Fish	125 mL plastic jar	×				Acid digestion	
F19-02	14-Nov	17:00 Fish	Fish	125 mL plastic jar	×				Acid digestion	
F19-03	14-Nov	17:00 Fish	Fish	125 mL plastic jar	×				Acid digestion	
F19-07	14-Nov	17:00 Fish	Fish	125 mL plastic jar	×				Acid digestion	
F19-14	14-Nov	17:00   Fish	Fish	125 mL plastic jar	×				Acid dispetion	

Page 1 of ____1___

# ENVIRONMENTAL SCIENCES GROUP CHAIN OF CUSTODY / REQUEST FORM

Client	Contact:			ine Moore (Ir ca Appleton		Client email:	cmoore@intrinsik.com / rappleton@dillon.ca	Analys	is Reque	est		
ESG Co	ontact:		Mike DeArruc	la: mike.dearrud	la@rmc.ca	Iris Koch: koch-i@	rmc.ca	Ship to:	Mike De	Arruda/I	ris Koch	
Cooler	Identification:		Small	blue a	coler vi	oith AGAT	written on tep		mental S			
	t Code:			Wallace HHRA.	Contract #: 20	19-013-RSA	1				Verite Av	<i>r</i> e
Prepar	ed By:		R.Appleton		1-	1			x 17000 S		orces	
Signati	ure/Date:		Belly	alpot	<u>Ch</u>	2019-10-10			n, ON K7		532 or 37	725
Relinq	uished By:		Reber	cca" app	leton			Phone.	013-341-		552 01 57	
Signati	ure/Date:		Release	ant	J	2019-10	-10	<u>5</u>	. U	tion	lts	A.
Receiv	ed By (Print Na	ime):		411-				sibil	Seni	ecia	ify)	Decil
Signati	ure/Date:					2019/_/_ (уууу	mmdd)	cces	Total Arsenic	ic Sp	er eleme ^(specify)	er (sj
IN	Client ID	Storage Medium	Sample Matrix	Date Collected	Time Collected	Comments	ESG Comments	Bioaccessibility	Tot	Arsenic Speciation	Other elements (specify)	Other (specify)
	BIOSED19-1	250 mL glass jar	sediment	09/24/2019	9:00	onice		×	x			
	BIOSED19-2	250 mL glass jar	sediment	09/24/2019	10:00	on ice		x	x			
	BIOSED19-4	250 mL glass jar	sediment	09/24/2019	10:45	on ice		x	x			
	BIOSED19-5	250 mL glass jar	sediment	09/24/2019	13:00	on ice		x	x			
	BIOSED19-6	250 mL glass jar	sediment	09/24/2019	15:00	on ice		x	x			
		ts, sample issues, et			L							



# **ENVIRONMENTAL SCIENCES GROUP**

# ANALYSIS REPORT COVER NOTE

Report Number: RMC-AR-ESG-0008
Report Date: 18 December 2019
# Sample(s) reported: 5
Issue Status: Final
Analysis commenced on: 7 November 2019 (drying of fish); 12 November 2019 (extraction)

The following data are reported in this report on a dry weight and wet weight basis: total arsenic (Fish conc As), extracted arsenic (BA conc As), arsenic species in extracts, and percent bioaccessibility of arsenic (%BA As). Percent moisture is also reported.

## Methods

Samples were received on ice and consisted of cleaned fish tissue (including skin and bones) contained in Ziplocs. Samples were composited according to the labels on the bags and freeze-dried. When dry, samples were ground prior to analysis.

To obtain the bioaccessible As for the human receptor exposed to food, the United States Environmental Protection Agency (U.S. EPA) OLEM 9200.2-164 (April 2017) method (U.S. EPA 2017) was employed with modifications for food content in the stomach. Each dried and ground sample was extracted in 50 mL extraction vessels with a liquid-to-(dry) solid ratio of approximately 40:1. This was equal to a liquid-to-(wet) solid ratio of approximately 10:1, which was designed to be physiologically representative of ratios during meals. Specifically, about 10-30% solid is estimated to be present during a meal, which is equal to a liquid-to-(wet) solid ratio ranging from 10:1 to 3:1; the ratio specifically used as the most conservative one was 10:1. The samples were extracted with a 0.4 M glycine solution adjusted to pH 1.5 with end-over-end mixing at body temperature ( $37^{\circ}$ C) for 1 hour and liquid was separated from solids through the use of 0.45 µm filtration.

All extracts were analyzed for total As concentrations by ICP-MS, and total concentrations of As in fish samples were obtained by acid digestion and analysis using ICP-MS. Drying, grinding, and extraction were carried out in the ESG laboratory. Analysis of extracts and fish tissues was carried out at the Analytical Services Unit at Queen's University, a laboratory accredited by the Canadian Association for Laboratory Accreditation (CALA). The methods used for analysis (metals in solids by ICP-MS and metals in water by ICP-MS) are listed on ASU's scope of accreditation.

Speciation analysis was carried out in the ESG laboratory on the extracts by high performance liquid chromatography (HPLC)-ICP-MS. The HPLC methods were anion exchange and cation exchange chromatography. The following species (as standards) could be separated by the methods used: arsenobetaine (AB), dimethylarsinic acid (DMA),

Sciences Group

Environmental

Royal Military College of Canada

P.O. Box 17000 Stn. Forces

Kingston, Ontario

K7K 7B4

monomethylarsonic acid (MMA), arsenosugars, trimethylarsine oxide (TMAO), arsenocholine, and tetramethylarsonium ion. Challenges with instrument performance caused delays in the analysis of inorganic AsIII and AsV in the sample extract matrix.

These instrument delays in the ESG laboratory led to the decision to also have extracts analysed for arsenic species by HPLC-ICP-MS at ALS Environmental in Burnaby, BC, a laboratory accredited by CALA. The method used was arsenic species in water, which is listed on ALS's scope of accreditation. ALS reports only the following species: AsIII, AsV, DMA, MMA and AB.

Results from ALS were used for ASIII, AsV, DMA, MMA and AB, but were not available for TMAO, seen in the ESG analysis; results for this compound were obtained from the ESG analysis. Results for the sample extracted in duplicate were incomplete from ALS, and ESG results were used for this sample.

# Quality Assurance and Quality Control (QA/QC)

# **Bioaccessibility and Total Arsenic**

The bioaccessibility of a standard reference material, NIST 2710a, was measured at the same time as the samples and NIST 2710a control limits are specified in the OLEM 9200.2-164 (April 2017) method (U.S. EPA 2017). This sample was extracted according to the method (at a 100:1 liquid-to-solid ratio). The percent bioaccessibility for this sample was just outside the limits (50% measured vs. 49.1 % upper range value) but at 121% recovery, the result is within the 70–130 % recovery limits recommended by CCME for certified reference materials (CCME 2016), and was considered acceptable.

Two types of fortified samples were included in the analysis, following the prescribed U.S. EPA OLEM 9200.2-164 QC/QC procedures: a laboratory control sample (LCS) and a matrix spike (MS). The LCS contained As in the extraction fluid (at a concentration of 10 mg/L) and was taken through the entire extraction procedure. The MS contained As (10 mg/L) and was prepared in a fish extract sample prior to analysis. Results were acceptable.

Blank results (method blank and reagent blank) were acceptable (less than the reporting limit, which was the lower of reporting limits specified in U.S. EPA 2017). Precision from the analytical duplicates was deemed acceptable with a relative percent difference (RPD) of 9.7%.

The QC results were reviewed for ASU reports and the results for duplicates, blanks, and water and fish controls (including CRMs) were all considered acceptable.

Acceptance limits were obtained from CCME 2016, unless otherwise indicated (i.e., for As bioaccessibility results, for which acceptance limits are from U.S. EPA 2017).

# **Speciation Analysis**

The column recovery (CR) was calculated as the sum of species (SOS) divided by the total arsenic in the extract (BA Conc). In the samples analyzed, % CRs were in the range 79–139%, indicating that column recovery is within the measurement error of the method and within recoveries recommended by CCME for control samples in other speciation analyses (for methylmercury, CCME 2016).

A standard reference material, BCR 627 (tuna fish tissue), was also included to monitor the speciation analysis. For the ALS analysis, results were within the certified range. For the ESG analysis, results were just outside the certified range but within 20% of the certified values (well within recoveries recommended by CCME for control samples in other speciation analyses i.e., for methylmercury, CCME 2016).

LCS recoveries (ALS and ESG analyses) and the recovery of a travel spike prepared by ESG and sent to ALS (containing the most prevalent species in the samples, DMA and AB) were acceptable. Blank results were acceptable.

As mentioned, results for the sample extracted in duplicate were incomplete from ALS (one of the duplicates was not included in the request form) and ESG results were used for this sample. RPDs of the two arsenic species in this sample were 10% and 36%, which are considered acceptable as they are within the range suggested by CCME for duplicates in other speciation analyses (for methylmercury, CCME 2016).

For the species that were detected and reported by both laboratories (DMA and AB), results were comparable, with an average RPD of 21%. For a few samples, the lower detection limits that could be obtained in the ALS laboratory resulted in DMA being detected by ALS but not ESG.

## **Data Interpretation and Limitations**

Although speciation analysis was conducted at the ESG laboratory, difficulties with instrument performance meant that more delays would have been incurred while trying to troubleshoot these difficulties, which involved the detection of inorganic arsenic species in the sample extract matrix. Therefore ESG sub-contracted ALS to complete speciation analysis on extracts to ensure reporting of results in a timely manner. To ensure consistency of data, ALS results were used for all reported (by ALS) arsenic species.

One of the species detected and quantified in the ESG laboratory was TMAO, an arsenic species not included in the ALS analysis (although ALS confirmed that an additional peak was seen). Therefore the TMAO results from the ESG laboratory were included in this report to ensure complete speciation of the arsenic in the extracts.

Percent bioaccessibility values ranged from 46 to 78%, suggesting that not all the arsenic in the samples could be identified with respect to arsenic species. However, CR values averaging 112% suggests that species identification in the extracts was complete. In general,

arsenic that was not extracted (i.e. was not bioaccessible), while likely not of relevance when ingested, should not be assumed to be organic arsenic. Arsenic researchers have not yet determined the nature of unextracted tissue arsenic.

Of the organoarsenic species detected, only AB should be assumed to be non-toxic. DMA has been associated with carcinogenic activity (e.g., Cohen et al., 2001) and TMAO should also be considered potentially toxic since it is not well characterized with respect to its toxicity. No arsenosugars or arsenocholine were detected.

Because of limitations with the current software used for reporting data, the number of significant figures quoted in the attached table may not be representative of the actual uncertainty. Data should be considered accurate to no more than two significant figures. This report is issued under final status.

The results given relate only to the items tested.

Report authorised by:

Sinke

Iris Koch, Senior Analytical and Arsenic Research Manager, ESG

David J. Patch, Laboratory Technician, ESG

Date: 18 December 2019

## References

Canadian Council of Ministers of the Environment (CCME) 2016. Guidance Manual For Environmental Site Characterization In Support Of Environmental And Human Health Risk Assessment, Volume 4 Analytical Methods.

Cohen, S.M., Cano, M., St.John, M.K., Ryder, P.C., Uzvolgyi, E., Arnold, L.L. 2001. The carcinogenicity of dimethylarsinic acid (DMA) in rats. In Arsenic Exposure and Health Effects IV, Eds. W.R. Chappell, C.O. Abernathy, R.L. Calderon, Elsevier, Oxford, pp 277-283.

Health Canada 2017. Federal Contaminated Site Risk Assessment in Canada. Supplemental Guidance on Human health Risk Assessment for Oral Bioavailability of Substances In Soil and Soil-Like Media. Prepared by Contaminated Sites Division.

U.S. EPA 2017. EPA OLEM 9200.2-164, April 20, 2017. Standard Operating Procedure for an In Vitro Bioaccessibility Assay for Lead and Arsenic in Soil.

## ESG Bioaccessibility/Speciation Report - RMC-AR-ESG-0008

Site:	Intrinsik fish - Dillon	# Samples:	5
Analyst:	David Patch	Reference Reports:	ASU 17245 As Extracts-1
Extraction Date:	12-Nov-19		ASU 17245 As Tissue-1
Method:	Modified U.S. EPA OLEM		ALS L2389610
	9200.2-164	Report Date:	18-Dec-19
Ratio:	40 to 1		

#### **RESULTS**

#### Concentrations are in mg/kg, unless otherwise noted

AsIII = arsenite, AsV = arsenate, MMA = monomethylarsonic acid; DMA = dimethylarsinic acid; AB = arsenobetaine; TMAO = trimethylarsine oxide SOS = sum of species = AsIII + AsV + MMA + DMA + TMAO + AB

% CR = column recovery = sum of species/BA conc x 100%

AsV, AsII, DMA, MMA and AB results are from ALS; TMAO results are from ESG. Exceptions are noted; see cover letter for details.

#### Dry weight concentrations

SAMPLE ID	BA conc	Fish conc	%BA	AsV	AsIII	DMA	MMA	AB	TMAO	SOS	% CR	% Moisture
	As	As	As	As	As	As	As	As	As	As	As	
F19-01	2.8	4.6	62	0.17	0.05	0.16	<0.04	0.50	2.3	3.2	111	77
F19-02	3.2	4.1	78	0.14	0.04	< 0.04	<0.04	0.66	2.9	3.8	117	79
F19-03	5.2	9.1	57	0.41	0.05	4.6	< 0.04	0.43	< 0.04	5.5	106	74
F19-07	3.5	5.6	62	0.30	0.05	0.084	< 0.04	0.44	3.2	4.1	117	76
F19-14	3.7	8.0	46	0.35	0.06	2.9	<0.04	0.80	<0.04	4.1	110	74

#### Wet weight concentrations

SAMPLE ID	BA conc	Fish conc	%BA	AsV	Aslli	DMA	MMA	AB	TMAO	SOS	% CR
	As	As	As	As	As	As	As	As	As	As	As
F19-01	0.66	1.1	62	0.040	0.011	0.036	<0.009	0.12	0.53	0.73	111
F19-02	0.69	0.88	78	0.030	0.009	<0.009	<0.009	0.14	0.62	0.80	117
F19-03	1.4	2.4	57	0.11	0.013	1.2	< 0.01	0.11	< 0.01	1.5	106
F19-07	0.83	1.3	62	0.071	0.012	0.020	< 0.01	0.11	0.77	0.97	117
F19-14	0.97	2.1	46	0.092	0.017	0.75	< 0.01	0.21	< 0.01	1.1	110

NR = not reported (see cover letter)

#### **Bioaccessibility Extraction QA/QC**

Sample	As
BLANK	Extract conc
Method Blank	< 0.002
Reagent Blank	< 0.002
ACCEPTABLE?	Yes
CONTROL	%BA
NIST 2710A	50
Control Limits (U.S. EPA 2017)	%BA
NIST 2710A	32.9-49.1
Control Limits (ESG/CCME 2016)	%BA
NIST 2710A	28.7-53.3
ACCEPTABLE?	Yes
SPIKES	% Recovery
LCS	100
MS CHP-3	86
ACCEPTABLE?	Yes; Yes
DUPLICATES	%RPD
COMP 17	9.7
ACCEPTABLE?	Yes

#### Speciation QAQC (ALS)

Sample	AsV	Asili	DMA	ММА	AB	ТМАО	sos	BA conc (ppm)	%CR
Blank (µg/L)	< 0.020	<0.020	<0.020	<0.020	< 0.050	NR	n/a	n/a	n/a
Method Blank (MBLANK) (µg/L)	<1.0	<1.0	<1.0	<1.0	<2.5	NR	n/a	n/a	n/a
ACCEPTABLE?	Yes; Yes	Yes; Yes	Yes; Yes	Yes; Yes	Yes; Yes	n/a	n/a	n/a	n/a
LCS % Recovery	110	111	100	108	112	NR	n/a	n/a	n/a
ACCEPTABLE?	Yes	Yes	Yes	Yes	Yes	n/a	Yes	Yes	Yes
CRM BCR-627 (Tuna) (mg/kg)	< 0.04	< 0.04	0.142	<0.04	3.9	NR	4.0	3.4	117
CRM BCR-627 (Tuna) certified values	n/a	n/a	$0.15 \pm 0.022$	n/a	$3.9 \pm 0.22$	n/a	n/a	n/a	n/a
CRM BCR-627 (Tuna) % Recovery	n/a	n/a	95	n/a	99	n/a	n/a	n/a	n/a
ACCEPTABLE?	Yes	Yes	Yes	Yes	Yes	n/a	n/a	n/a	Yes
Travel Spike (TSPIKE) % Recovery	n/a	n/a	119	n/a	102	n/a	n/a	n/a	n/a
ACCEPTABLE?	Yes	Yes	Yes	Yes	Yes	n/a	n/a	n/a	n/a

#### Speciation QAQC (ESG)

Sample	AsV	Asili	DMA	ММА	AB	ТМАО	sos	BA conc (ppm)	%CR
Blank (µg/L)	<1	<1	<1	<1	<1	<1	n/a	n/a	n/a
Method Blank (μg/L)	<1	<1	<1	<1	<1	<1	n/a	n/a	n/a
ACCEPTABLE?	Yes; Yes	Yes; Yes	Yes; Yes	Yes; Yes	Yes; Yes	Yes; Yes	n/a	n/a	n/a
LCS 1 % Recovery (cation)	n/a	n/a	127	n/a	126	129	n/a	n/a	n/a
LCS 2 % Recovery (cation)	n/a	n/a	124	n/a	131	122	n/a	n/a	n/a
LCS 3 % Recovery (anion)	93	91	93	84	n/a	n/a	n/a	n/a	n/a
ACCEPTABLE?	Yes	Yes	Yes; Yes; Yes	Yes	Yes; Yes	Yes; Yes	n/a	n/a	n/a
CRM BCR-627 (Tuna) (mg/kg)	NR	NR	0.12	<0.04	3.4	< 0.04	3.6	3.4	104
CRM BCR-627 (Tuna) Certified values	n/a	n/a	$0.15 \pm 0.022$	n/a	3.9 ± 0.22	n/a	n/a	n/a	n/a
CRM BCR-627 (Tuna) % Recovery	n/a	n/a	81	n/a	88	n/a	n/a	n/a	n/a
ACCEPTABLE?	Yes	Yes	Yes	Yes	Yes	n/a	n/a	n/a	Yes
COMP 17 (mg/kg)	n/a	n/a	0.74	<0.04	0.28	< 0.04	1.0	1.1	95
COMP 17D (mg/kg)	NR	NR	0.51	<0.04	0.26	< 0.04	0.77	1.0	79
RPD (%)	NR	NR	36	both nd	10	both nd	29	10	19
ACCEPTABLE?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

n/a = not applicable; NR = not reported; nd = not detected

#### Extract QAQC (ASU)

RPD (%)

ACCEPTABLE?

ASU 17245 As Extracts-1

0

Yes

Report: All concentrations in ug/L Sample As Blank <2.0 Blank <2.0 ACCEPTABLE? Yes Control 1 24 Control Target % Recovery 25 104 ACCEPTABLE? Yes Control 2 23 Control Target 25 109 % Recovery ACCEPTABLE? Yes 1643e CRM 1 51 1643e Target 60 % Recovery 118 ACCEPTABLE? Yes 1643e CRM 2 52 60 1643e Target % Recovery 115 ACCEPTABLE? Yes EU-H CRM 670 EU-H Target 690 % Recovery 103 ACCEPTABLE? Yes EU-H CRM 660 EU-H Target 690 % Recovery 105 ACCEPTABLE? Yes COMP 17 28 COMP 17 Duplicate 26 27 7.4 AVERAGE RPD (%) ACCEPTABLE? Yes Tuna CRM 87 87 Tuna CRM Duplicate AVERAGE 87

#### Fish Total Arsenic QAQC (ASU)

Report:	ASU 17245 As Tissue-1
Sample	As
Blank (mg/kg)	<0.5
ACCEPTABLE?	Yes
Control 1 (µg/mL)	25
Control 1 Target (ug/mL)	25
% Recovery	100
ACCEPTABLE?	Yes
Control 2 (µg/mL)	25
Control 2 Target (ug/mL)	25
% Recovery	100
ACCEPTABLE?	Yes
TORT-3 CRM (mg/kg)	58
TORT-3 CRM target (mg/kg)	59
Arsenic certified (mg/kg)	59.5 ± 3.8
% Recovery (of target)	98
% Recovery (of certified)	97
ACCEPTABLE?	Yes
COMP 14 (mg/kg)	2.1
COMP 14 Duplicate (mg/kg)	2.4
AVERAGE	2.25
RPD (%)	13
ACCEPTABLE?	Yes



Asalytical Services Unit. School of Environmental Studies Biosciences Complex, Queen's University Kingstan, Dutaino, Canada K71, 3145 Tel: 613 533-2642 Fax: 613 533-2897

A CIT 7 4				
ASU #	17245		Report ID:	ASU 17245 As Extracts-1
Client:	ESG		Date Submitted:	19-Nov-19
	19-046		Date Tested:	21-Nov-19
Site:	RSA-RMC-13-Intrinsik		Date:	22-Nov-19
Technique:	ICP-MS		Matrix:	Bioaccessibility Extracts
<b>^</b>				
eport of Analysis of	Extracts: all results in ng/ml			
esults relate only to	8			
	CHP-3	COMP 12	COMP 13	COMP 14
Arsenic	130	36	9.6	19
moenie	150	50	2.0	17
	COMP 15	COMP 16	COMP 17	COMP 17 Duplicate
Arsenic	24	23	28	26
Arsenic	27	25	20	20
	F19-01	F19-02	F19-03	F19-07
Anconio	71	80	130	87
Arsenic	/1	80	130	87
	F10 14	COMP 17D	Desc	Madl J D11-
	F19-14	COMP 17D	Reagent-B	Method Blank
Arsenic	93	25	<2.0	<2.0
	LCS	NIST 2710a	Tuna CRM	Tuna CRM Duplicate
Arsenic	10000	6900	87	87
	CHP-3 MS	Int-12 MS		
Arsenic	8500	9000		
Laboratory OA/OC				
Laboratory QA/QC		Special Reporting Limit		
	Blank	Special Reporting Limit		
Laboratory QA/QC Arsenic		Special Reporting Limit <2.0		
	Blank <2.0; <2.0	<2.0	1643e CPM	1643e Target
Arsenic	Blank <2.0; <2.0 Control 1	<2.0 Control 1 Target	1643e CRM	1643e Target
	Blank <2.0; <2.0	<2.0	1643e CRM 51; 52	1643e Target 60
Arsenic	Blank           <2.0; <2.0	<2.0 Control 1 Target 25		
Arsenic	Blank <2.0; <2.0 Control 1 24; 23 EU-H CRM	<2.0 Control 1 Target 25 EU-H Target		
Arsenic	Blank           <2.0; <2.0	<2.0 Control 1 Target 25		
Arsenic	Blank <2.0; <2.0 Control 1 24; 23 EU-H CRM	<2.0 Control 1 Target 25 EU-H Target		
Arsenic	Blank <2.0; <2.0 Control 1 24; 23 EU-H CRM	<2.0 Control 1 Target 25 EU-H Target		
Arsenic	Blank <2.0; <2.0 Control 1 24; 23 EU-H CRM	<2.0 Control 1 Target 25 EU-H Target		
Arsenic	Blank <2.0; <2.0 Control 1 24; 23 EU-H CRM	<2.0 Control 1 Target 25 EU-H Target		
Arsenic	Blank <2.0; <2.0 Control 1 24; 23 EU-H CRM	<2.0 Control 1 Target 25 EU-H Target		
Arsenic	Blank <2.0; <2.0 Control 1 24; 23 EU-H CRM	<2.0 Control 1 Target 25 EU-H Target		
Arsenic	Blank           <2.0; <2.0	<2.0 Control 1 Target 25 EU-H Target	51; 52	
Arsenic Arsenic Arsenic	Blank           <2.0; <2.0	<2.0 Control 1 Target 25 EU-H Target 690 data data data data data data data dat	51; 52	
Arsenic Arsenic Arsenic	Blank           <2.0; <2.0	<2.0 Control 1 Target 25 EU-H Target 690 data data data data data data data dat	51; 52	
Arsenic Arsenic Arsenic	Blank           <2.0; <2.0	<2.0 Control 1 Target 25 EU-H Target 690 data data data data data data data dat	51; 52	
Arsenic Arsenic Arsenic NOTES:	Blank         <2.0; <2.0	Control 1 Target          25         EU-H Target         690         ed as internal standards. Gas dilution (HM nalysis.	51; 52	
Arsenic Arsenic Arsenic	Blank           <2.0; <2.0	<2.0 Control 1 Target 25 EU-H Target 690 data data data data data data data dat	51; 52	
Arsenic Arsenic Arsenic NOTES:	Blank         <2.0; <2.0	Control 1 Target          25         EU-H Target         690         ed as internal standards. Gas dilution (HM nalysis.	51; 52	
Arsenic Arsenic Arsenic NOTES:	Blank         <2.0; <2.0	Control 1 Target          25         EU-H Target         690         ed as internal standards. Gas dilution (HM nalysis.	51; 52	



Asalytical Services Unit. School of Environmental Studies Biosciences Complex, Queen's University Kingstan, Dutaino, Canada K71, 3145 Tel: 613 533-2642 Fax: 613 533-2897

ASU #	17245		Report ID:	ASU 17245 As Tissue-1
Client:	ESG		Date Submitted:	20-Nov-19
	19-046		Date Tested:	22-Nov-19
Site:	RSA-RMC-13-Intrinsik		Date:	28-Nov-19
Technique:	ICP-MS		Matrix:	Tissue
Papart of Applysis of T	fissue: all results in ug/g (unless ot	horwise noted)		
Results relate only to the				
·				
	CHP-3	COMP 12	COMP 13	COMP 14
Arsenic	6.6	4.1	1.9	2.1
	COMP 14 Duplicate	COMP 15	COMP 16	COMP 17
Arsenic	2.4	3.4	3.7	4.7
	F19-01	F19-02	F19-03	F19-07
Arsenic	4.6	4.1	9.1	5.6
Arsenic	4.0	4.1	9.1	5.0
	F19-14			
Arsenic	8.0			
Laboratory QA/QC				
	Blank	Normal Reporting Limit		
Arsenic	<0.5	<0.5		
	Control 1 (molect)	Control 1 Toward (control)		TOPT 2 Townsh
	Control 1 (ng/mL)	Control 1 Target (ng/mL)	TORT-3 CRM	TORT-3 Target
Arsenic	25; 25	25	58	59
NOTES:	Scandium, Indium and Bismith wer	e used as internal standards. Gas dilution	on (HMI) used: Y (med)	
Prepared by:	Glass	Authorized by:	– Paula Whilley. –	
-				

ASU 17245 As Tissue-1 Page 1 of 1

ļ			!			Analysis Reminest	Perillect			
Project ID:	RSA-RMC-13-Intrinsik	trinsik	но. 							
Request #:	Req #19-046		Due Date:	27-Nov					Page 1 of	
Requested By:	Iris Koch									
Sampled by:	David Patch/Iris Koch	Koch	Date:	19-Nov						
Received by:			Date:		:					
Relinquished by:	Iris Koch		Date:	19-Nov	enic					
Received at lab by:	K.N.N.S	Ę	Date:	19/100	alars		lysis	lysis		
Sample Number	Date	Time (	ש Matrix	-	Tota		Ana	Ana	Comments	Conler ID
CHP-3	14-Nov	17:00	17:00 Bioaccessibility extract	50 mL C-tube	×			-		
COMP 12	14-Nov.	17:00	17:00 Bioaccessibility extract	50 mL C-tube	×					
COMP 13	14-Nov	17:00	17:00 Bioaccessibility extract	50 mL C-tube	×					
COMP 14	14-Nov	17:00	17:00 Bioaccessibility extract	50 mL C-tube	×					
COMP 15	14-Nov	17:00	17:00 Bioaccessibility extract	50 mL C-tube	×					
COMP 16	14-Nov	17:00	17:00 Bioaccessibility extract	50 mL C-tube	x					
COMP 17	14-Nov	17:00	17:00 Bioaccessibility extract	50 mL C-tube	×					
F19-01	14-Nov	17:00	17:00 Bioaccessibility extract	50 mL C-tube	×					
F19-02	14-Nov	17:00	17:00 Bioaccessibility extract	50 mL C-tube	×					
F19-07	14-Nov	17.00	17:00 Binarcessibility extract	50 ml C-tube	< >					
F19-14	14-Nov	17:00	17:00 Bioaccessibility extract	50 mL C-tube	×		-			
COMP 17D	14-Nov	17:00	17:00 Bioaccessibility extract	50 mL C-tube	×		_			
Reagent-B	14-Nov	17:00	17:00 Bioaccessibility extract	50 mL C-tube	×					
Method Blank	14-Nov	17:00	17:00 Bioaccessibility extract	50 mL C-tube	×					
S.	14-Nov	17:00	17:00 Bioaccessibility extract	50 mL C-tube	×			_	10 mg/L spike	
NIST 2710a	14-Nov	17:00	17:00 Bioaccessibility extract	50 mL C-tube	×					
Tuna CRM	15-Nov	17:00	17:00 Bioaccessibility extract	50 mL C-tube	×					
CHP-3 MS	15-Nov	17:00	17:00 Bioaccessibility extract	15 mL C-tube	×				10 mg/L spike	
t-12 MS	15-Nov	17:00	17:00 Bioaccessibility extract	15 mL C-tube	×				10 mg/L spike	
CHP-3	14-Nov	17:00 Fish	Fish	125 mL plastic jar	×				Acid digestion	
COMP 12	14-Nov	17:00 Fish	Fish	125 mL plastic jar	×				Acid digestion	
COMP 13	14-Nov	17:00 Fish	Fish	125 mL plastic jar	×				Acid digestion	
COMP 14	14-Nov	17:00 Fish	Fish	125 mL plastic jar	×				Acid digestion	
COMP 15	14-Nov	17:00 Fish	Fish	125 mL plastic jar	×				Acid digestion	
COMP 16	14-Nov	17:00 Fish	Fish	125 mL plastic jar	×				Acid digestion	
COMP 17	14-Nov	17:00 Fish	Fish	125 mL plastic jar	×				Acid digestion	
F19-01	14-Nov	17:00 Fish	Fish	125 mL plastic jar	×				Acid digestion	
F19-02	14-Nov	17:00 Fish	Fish	125 mL plastic jar	×				Acid digestion	
F19-03	14-Nov	17:00 Fish	Fish	125 mL plastic jar	×				Acid digestion	
F19-07	14-Nov	17:00 Fish	Fish	125 mL plastic jar	×				Acid digestion	
F19-14	14-Nov	17:00   Fish	Fish	125 mL plastic jar	×				Acid dispetion	



ROYAL MILITARY COLLEGE ATTN: Iris Koch Royal Military College of Canada 12 Verite Ave, P.O. Box 17000 Station Fo Kingston ON K7K 7B4 Date Received:29-NOV-19Report Date:16-DEC-19 11:44 (MT)Version:FINAL

Client Phone: 613-541-6000

## Certificate of Analysis

Lab Work Order #: L2389610 Project P.O. #: 4501 993 747 Job Reference: ROYAL MILITARY COLLEGE - SPECIATED ARSENIC C of C Numbers: Legal Site Desc: 19-036

Edward Ngai / Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 💭

www.alsglobal.com

**RIGHT SOLUTIONS RIGHT PARTNER** 

## ALS ENVIRONMENTAL ANALYTICAL REPORT

L2389610 CONTD.... PAGE 2 of 5 16-DEC-19 11:44 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2389610-1 WATER 14-NOV-19 17:00 CHP-3	L2389610-2 WATER 14-NOV-19 17:00 COMP12	L2389610-3 WATER 14-NOV-19 17:00 COMP13	L2389610-4 WATER 14-NOV-19 17:00 COMP14	L2389610-5 WATER 14-NOV-19 17:00 COMP15
Grouping	Analyte					
WATER						
Speciated Metals	Arsenate (As V) (ug/L)	<1.0	DLM <1.0	DLM <1.0	DLM <1.0	<1.0 DL
	Arsenite (As III) (ug/L)	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0
	Dimethylarsinic Acid (DMA, as As) (ug/L)	4.3	39.5	8.0	12.5	21.3
	Monomethylarsonic Acid (MMA, as As)	ч.3 DLM <1.0	<1.0	<1.0 DLM	<1.0	<1.0
	(ug/L)	<1.0		<1.0	<1.0	<1.0
	Arsenobetaine (AsB, as As) (ug/L)	176	9.0	2.9	7.0	7.0

* Please refer to the Reference Information section for an explanation of any qualifiers detected.

## ALS ENVIRONMENTAL ANALYTICAL REPORT

L2389610 CONTD.... PAGE 3 of 5 16-DEC-19 11:44 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2389610-6 WATER 14-NOV-19 17:00 COMP16	L2389610-7 WATER 14-NOV-19 17:00 F19-01	L2389610-8 WATER 14-NOV-19 17:00 F19-02	L2389610-9 WATER 14-NOV-19 17:00 F19-03	L2389610-10 WATER 14-NOV-19 17:00 F19-07
Grouping	Analyte					
WATER	-					
Speciated Metals	Arsenate (As V) (ug/L)	DLM <1.0	4.3	3.5	10.3	7.4
-	Arsenite (As III) (ug/L)	<1.0 _{DLM}	1.2	1.1	1.2	1.3
	Dimethylarsinic Acid (DMA, as As) (ug/L)	21.8	3.9	оли <1.0	116	2.1
	Monomethylarsonic Acid (MMA, as As) (ug/L)	<1.0 DLM	<1.0 DLM	<1.0 DLM	<1.0 DLM	<1.0
	Arsenobetaine (AsB, as As) (ug/L)	4.4	12.5	16.5	10.8	11.1

* Please refer to the Reference Information section for an explanation of any qualifiers detected.

## ALS ENVIRONMENTAL ANALYTICAL REPORT

L2389610 CONTD.... PAGE 4 of 5 16-DEC-19 11:44 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2389610-11 WATER 14-NOV-19 17:00 F19-14	L2389610-12 WATER 14-NOV-19 17:00 COMP17D	L2389610-13 WATER 14-NOV-19 17:00 TUNA	L2389610-14 WATER 14-NOV-19 17:00 MBLANK	L2389610-15 WATER 14-NOV-19 17:00 TSPIKE
Grouping	Analyte					
Grouping WATER Speciated Metals	Arsenate (As V) (ug/L) Arsenite (As III) (ug/L) Dimethylarsinic Acid (DMA, as As) (ug/L) Monomethylarsonic Acid (MMA, as As) (ug/L) Arsenobetaine (AsB, as As) (ug/L)	8.8 1.6 72.0 <1.0 19.9	<1.0 LIM <1.0 19.0 LIM <1.0 5.5	<1.0 LIM <1.0 3.6 LIM <1.0 98.1	<1.0 LIM <1.0 DLM <1.0 DLM <1.0 CLM <2.5	<1.0 21.0 57.1 21.0 46.1 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0

* Please refer to the Reference Information section for an explanation of any qualifiers detected.

## **Reference Information**

#### **Qualifiers for Individual Parameters Listed:**

Qualifier	Description	า		
DLM	Detection	Limit Adjus	ted due to sample matrix effects (e.g. chemical inte	erference, colour, turbidity).
est Method I	References:			
ALS Test Code	e	Matrix	Test Description	Method Reference**
AS-SPEC-HPL	.C/CCMS-VA	Water	Arsenic Species in Water by HPLC/CCMS	USGS WRIR 02-4144
4144 and AW 163 and Agile elevated due	WA Preservation of the extraction of the extract	tion of Arse es applicat f arsenic s	enic Species, 2006. Instrumental analysis based on	eservation and holding times outlined in USGS Report 02- Afton et al, Journal of Chromatography A, 1208 (2008) 156- on. Results for unfiltered, preserved samples may be ported results for some arsenic species.
* ALS test meth	nods may inco	rporate mo	difications from specified reference methods to imp	prove performance.
The last two let	tters of the ab	ove test co	de(s) indicate the laboratory that performed analytic	cal analysis for that test. Refer to the list below:
Laboratory De	finition Code	Labo	ratory Location	

#### Chain of Custody Numbers:

#### **GLOSSARY OF REPORT TERMS**

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.



Arsenobetaine (AsB, as As)

## **Quality Control Report**

			Quali	ty Cont	rol Report			
		Workorder:	L238961	0	Report Date: 16	-DEC-19	Pa	age 1 of 2
Client:	ROYAL MILITARY COLL	EGE						
	Royal Military College of (	Canada 12 Verite	e Ave, P.O. E	Box 17000 Sta	tion Fo			
	Kingston ON K7K 7B4							
Contact:	Iris Koch							
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
AS-SPEC-HP	LC/CCMS-VA Water							
Batch	R4941480							
WG324084	47-2 LCS							
Arsenate	(As V)		109.9		%		80-120	11-DEC-19
Arsenite (A	As III)		110.9		%		80-120	11-DEC-19
Dimethyla	rsinic Acid (DMA, as As)		100.1		%		80-120	11-DEC-19
Monometh	nylarsonic Acid (MMA, as As)		107.7		%		80-120	11-DEC-19
Arsenobet	taine (AsB, as As)		111.7		%		80-120	11-DEC-19
WG324084	47-1 MB							
Arsenate	(As V)		<0.020		ug/L		0.02	11-DEC-19
Arsenite (A	As III)		<0.020		ug/L		0.02	11-DEC-19
Dimethyla	rsinic Acid (DMA, as As)		<0.020		ug/L		0.02	11-DEC-19
Monometh	nylarsonic Acid (MMA, as As)		<0.020		ug/L		0.02	11-DEC-19

ug/L

0.05

11-DEC-19

< 0.050

## **Quality Control Report**

Workorder: L2389610

Report Date: 16-DEC-19

#### Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

#### Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

			quest Form	n		L2389610	-CO	FC			J				CO	C Nurr	Iber: Pa	ge	1 1	9-036 of _	2	- 
(ALS)	Environmental	Canada To	oli Free: 1 800			_					_	M		•								
Report To					t / Distribution		ļ												lable for			
Company:	Environmental Sciences Group (ESG)		Select Report F			EDD (DIGITAL)	ŀ		ilar [R]		∠ Star	ndard T/	AT - if r	received	by 3 p	m - bus	iness d	ays - no	o surcha	rges app	ply	
Contact:	Mike DeArruda			ort - provide details bek			È .		iy [P4-2	-		BINC	1 Bus	siness	day [l	E - 100	%]					
Address:	R36 - 8 Verite Ave.		Select Distribut	tion: I EN mike.dearruda@rr		FAX	PRIORI (Busine Days)	3 da	iy (P3-2	-									liday [E	2 -200	)%	
Dhanoi	Kingston, ON K7K 7B4		Email 1	thomas.partridge(					iy [P2-!					ratory	open			apply)				
Phone:	813-341-0000 x0332 01 813-464-8540		Email 2 Email 3	koch-i@rmc.ca	<u>Dime.ca</u>	·	Date	and III	ne Rec	uired i		LOP TA	_	alysis	Poge		aa-mn	n-yy n	h:mm	<u> </u>		-
Invoice To	Same as Report To	I No	Email 4	Koch-Agime.ca			<u> </u>	<u> </u>		ndicate	Filtere	d (F), P	_		<u> </u>	_	Preserv	ed (F/P	) below			
	Copy of Invoice with Report Ves	□ No		Invoice D	istribution		1			.		<u> </u>						ŤΤ				
Company:	Environmental Sciences Group (ESG)		Select Invoice	Distribution:		FAX	6	15									· · ·			-+		
Contact:	Mike DeArruda		Email 1	mike.dearruda@rr	mc.ca		Ē	25	25	13	<b>쁥</b>		M.				劇門	<b>L</b>				6
	Project Information		•O	il and Gas Require	ed Fields (client	use)	CONTAINERS	S-S								and the			J.	<b>A TOPP</b>		로
ALS Quote #:	Q75792		AFE/Cost Center		PO#	Te-	Š	/CCMS-V	AN A	S.												No
Job #:	Royal Military College - Speciated Arsenic	artart.	Major/Minor Code:	<u></u>	Routing Code:	est particular	Ъ.	ğ	OSAI													
PO / AFE:	4501993747		Requisitioner:	<u>.</u>				РЕС-НРГС	DISPO													1
LSD:			Location:	·	· . ··		Ë	РП С	С. Ц													SAMPLES
ALS Lab Wo	ork Order # (lab use only)	3961078	ALS Contact:	-	Sampler:		NUMBER	- AS-9	SAMPL				÷.									Ĩ
ALS Sample	# Sample Identification a		•	Date	Time	Sample Type		WATER	SC	Trank				t T								
hate when and and	This description will ap	pear on the report)		(dd-mmm-yy)	(hh:mm)		<b>_</b>	_	₩Ž⊮	间前 NB	副 開					Jeeeling (						
		· · · · ·		14-Nov-19	17:00	Water	┣	R											⊢ Ì	$\rightarrow$		
	COMP12			14-Nov-19	17:00	Water	· · · ·	R	-										<u> </u>		$ \rightarrow $	
				14-Nov-19	17:00	Water		R	<b></b>												$\rightarrow$	
				14-Nov-19	17:00	Water		R	_						·		-		$\rightarrow$		-+	
		·		14-Nov-19	17:00	Water	<u> </u>	R	-										$\rightarrow$	-+	<u> </u>	
				14-Nov-19	17:00	Water	<b> </b>	R												$\rightarrow$	$\rightarrow$	
	iii F19-01		·	14-Nov-19	17:00	Water	┨──	R	<u> </u>													
	書 F19-02			14-Nov-19	17:00	Water	╂	R	·					· · ·					$\rightarrow$		-+	
	F19-03 F19-07			14-Nov-19 14-Nov-19	17:00	Water		R R											$\rightarrow$	+		
The second se	∦F19-07 ₩F19-14	· · · · · · · · · · · · · · · · · · ·		14-Nov-19	17:00	Water Water		R						<u> </u>					<u> </u>	-+	—ł	
	COMP17D			· 14-Nov-19	17:00	Water		R											<u> </u>	$\rightarrow$		
R. W. C. P. WE			<u> </u>	14-1100-13	17.00	Vvalei	ig out		e and	SA	MPIF	CON	οιτιο	N AS	REC	IVED	/lab.	ise or	nlÿ) 🐪	19 <b>1</b> 0	in contra	(1879) (M.
Drinkin	g Water (DW) Samples ¹ (client use)	Special	Í Instructions / Sp	pecify Criteria to add	d on report (client	Use)	Froz	eñ														
	ken from a Regulated DW System? Yes F-No						1月1月1月1月1月1月1日	acks ing Ini	fiated	ď	n	Custo	HILP SEC	網想!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	ALL PROPERTY LAND	自己的	Same ile	请问题通过	19			
Are samples fo	r human drinking water use? /es FXNo						"INIIT	IAL CO	OLERJ	EMPE	RATUR	ES °C		18	EIN/		LER'TI	MPER		s •c		
	SHIPMENT RELEASE (client use)			SHIPMENT/RECE	PTION (lab use o	șnl <b>y)</b>			in and the		FINA	SHIF	MEN	TREC	CEPTI	ON (la	ib use	"only)			er sin	
Released by:	DEARRUPA NUV 28/19	Time: Receiv	rediby:		Date:	Time:		eive		Ø	D	j,		Date	<u>de</u>	9	Tipes (	1	$\overline{O}$	R	0	
Failure to complet	K PAGE FOR ALS LOCATIONS AND SAMPLIN e all portions of this form may delay analysis. Please f nples are taken from a Regulated Drinking Water (D	Ill in this form LEGIBLY, B		m the user acknowledge	ITE - LABORATOF		DW - C	ecified		· · ·		ie white				tile v08 From			8-5	$\mathcal{T}$	Ar	7

.

.,

·

Ice cubes

	Ch Envíronmental	Re	ody (COC) quest Form 11 Free: 1 800			L2389610	-CO	FC			· <b>-</b> · ·			cod	C Num	ıber: Pa	ge _		9-036 of	2	
				Denert Ferme			a na sana sana sana sana sana sana sana	s NG ( I )		Polesianus	ere dinan		<u>.</u>								
Report To					t / Distribution					•			Turnarou		-						
Company:	Environmental Sciences Group (ESG)		Select Report F			EDD (DIGITAL)	<u> </u>	-	lar [R]				f received			-	ys - no	surchar	jes appl	Y	
Contact:	Mike DeArruda			ort - provide details belo			Ł.		y [P4-2	-		5	lusiness	s day [l	E - 100	%]					
Address:	R36 - 8 Verite Ave.		Select Distribut			🗌 FAX	PRIOF Day		y [P3-2	-			ne Day,						2 -2009	6	
Dhanai	Kingston, ON K7K 7B4			mike.dearruda@rr		· · · · · · · · · · · · · · · · · · ·			y [P2-5				boratory	/ open				-			
Phone:	613-541-6000 x6532 or 613-484-8540		Email 2	Shari.Reed@rmc.	<u>ca</u>		Date	and Im	ne Req	puired to	or all E8	P TATS:	<u> </u>		-	dd-mn	1-yy h	h:mm			_
L		· · ·	Email 3				┣──						nalysis								
Invoice To	Same as Report To		Email 4				4 ·			Indicate	Filtered	F), Prese	rved (P)	or Filter	ed and l	Preserv	ed (F/P)	) below	· · · · · ·		
·	Copy of Invoice with Report				istribution		1							<u> </u>							
Company:	Environmental Sciences Group (ESG)		Select Invoice I	Distribution:	EMAIL MAIL	FAX	S 2 2 2					-mula r	ŀ								
Contact:	Mike DeArruda		Email 1	mike.dearruda@rr			CONTAINERS	<b>1</b> . 1	####												9
	Project Information			il and Gas Require		use)	Į₹.	S.			the second se								Ť.		ON HOLD
ALS Quote #:	Q75792		AFE/Cost Center		PO#		Į Į	SCN	Ň	N.											Ξ
Job #:	Royal Military College - Speciated Arsenic		Major/Minor Code:	ine.	Routing Code:	a a la ana an	L C	ĹĊ	SA												
PO / AFE:	4501 993 747		Requisitioner	.⊜.•		14 A	۳.	우	SPC												2
LSD:	19-036		Location: 🗉		ay 400 11	: <u>1</u> ,1	Ë	ЪП	μŪ						١.	999 yr 199		<b>R</b> ids (		腰戰	SAMPLES
ALS Lab Wo	rk Order # (lab use only)		ALS Contact:		Sampler:		NUM	L-AS-SPEC-HPLC/CCMS-V	SAMPLI					Ŷ.							S
ALS Sample #	Sample Identification and/o	or Coordinates		Date	Time	Sample Type	1	WATER	ġ.										R ja P	<b>b</b> .	
ALS Sample #	(This description will appear	r on the report)		(dd-mmm-yy)	(hh:mm)	Sample Type		MAN N	MISC												
	TUNA		· .	14-Nov-19	17:00	Water		R													
	MBLANK		• .	14-Nov-19	17:00 ·	Water		R	•												
	TSPIKE			14-Nov-19	17:00	Water		R													
							1									·					
					,								1								
				•																	-1
			· · · · ·	· · · ·	<u></u>		1.														
The state of the second				· · · ·			╂─	-										<u> </u>			_
	· · · · · · · · · · · · · · · · · · ·						1				•										
	······		· · · · · · · · · · · · · · · · · · ·					· · _			·										
											•										
	······	· · · · · · · · · · · · · · · · · · ·	·····	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·											_				
	l				l			er uddia	1 OBath				ION AS			186	ic of the second	15 A Miller	<ul> <li>inefficiellists</li> </ul>		ite - mi
Drinking	Water (DW) Samples ¹ (client use)	Special	Instructions / Sp	pecify Criteria to add	d on report (client	Use)				SAI La A				distant	Yes	(igo i	shu32		and and a second se Second second s		i kali Mili
	en from a Regulated DW System?	· · · · ·		<u> </u>			Froz	acks				Builting and	ervation seal int	1. 1. 10 10 10 10	Yes		No No				
		•			*		MARY 12-54	ing Init	hater			usiouy									
Are samples for	human drinking water use?	•		·			1.245	CORE COM	<ul> <li>itidade - Bri</li> </ul>	·	ATURE	Sec				LER TE	MPER	ATURE		annan Mirtí Tak	1000
								N. H		N I			18:	N.		AUP				r.aittí	
	SHIPMENT RELEASE (client use)	in the second		SHIPMENT RECE	PTION /Ish user	5661 TTT					CINAL	SHIPMI	NT RE	CEPT	ON (1	abuse	(vino)				11014
Released by:		CORP. Chefferen	Tanta Internet	STIF WEN PARESE	Date:	Time:	Rec	eived I	5v: ***	<b>6</b> -			Date	en gant		Time:		<u></u>			
MILLE	ELERIDA NULS/19							1. <b>1</b> .		₽\l	1			1172			3	G	-2(	D	
REFER TO BACK	K PAGE FOR ALS LOCATIONS AND SAMPLING IN	FORMATION		WH	ITE - LABORATOR	Y COPY YELLO	DW - C	LIENT	COPY	<u> </u>				NA-FM-03	26e v08 Fro	nt 03 Octobe	r 2013	and the second s			التقسر
	all portions of this form may delay analysis. Please fill in the		/ the use of this for	m the user acknowledge	es and agrees with th	e Terms and Condition	ns as sp	ecified (	on the b	back par	ر je of the	white - re	port copy			•	•				•
-	ples are taken from a Regulated Drinking Water (DW) S													1	۴	8-	J	Ai	1		
-	· ·						` <i>`</i> )	$\sim$		3	( ⁽ ),	)ec be	リ	l.	~	-					
	· · ·								Т	í n	<u></u>	1	~								
				-					·Y-	Ω.	(U	ve	ク								
			•																		

.

.

	6
	7
Δ.	
GROI	Ē
~	÷.
()	
_	
S	-
8	C
¥	Ľ
- SCIENCES	ē
õ	
S	
<	
<b>JENTAL</b>	C F
2	Ĥ
ш	ċ
2	
⋝	7
5	
2	L
	1
VIRONI	
Z	
ш	-

# **CHAIN OF CUSTODY / REQUEST FORM**

		CHAIN C			RECO	CHAIN UP CUSIOUT / REQUEST FURIVI	VI VI					
Client (	Client Contact:		Chrishne M	OOR /ROBUCI	a Appleton	Client email: 🖉	Chrishne Moore / Roberce Appleton Client email: Construction Con Amarysis Request	Analysis	Reques	it		
ESG Contact:	ontact:		Mike DeArrud	Mike DeArruda: mike.dearruda@rmc.ca	Ja@rmc.ca	Iris Koch: koch-i@rmc.ca	mc.ca	Ship to: Mike DeArruda/Iris Koch	dike DeA	rruda/Iri	s Koch	
Cooler	Cooler Identification:		Red	5 mappel	( )	U Dillon Mulinar	lake	Environmental Sciences Group	nental Sci	ences Gr	dno	
Project	Project Code:		19-1567	Port Wallace	2	A. Contract t	HURA. (out out t: 2019-013-RSA	Royal Military College, 8 Verite Ave	litary Coll	lege, 8 Ve	erite Ave	
Prepar	Prepared By:		N.Booth					P.O. Box 17000 Station Forces	17000 St	ation For	seo.	
Signatu	Signature/Date:	1	22 als	mel		2019/ <u>/ð/31</u> (yyymmdd)	(ppmu	Kingston, ON K7K 7B4	ON K7K	7B4	Kingston, ON K7K 7B4	
Reling	Relinquished By:							Phone: 6	0-T+C-ET		32 OF 373:	
Signatu	Signature/Date:					2019/(yyyymmdd)	(ppmu	ļţλ	S			(٨,
Receive	Received By (Print Name):	me):						!I!qis		uoit	1/1	ţiɔəq
Signatu	Signature/Date:					2019/(yyyymmdd)	(ppmu	Səcces	IA le:	Arsei Bioac	224	ls) _{Jə}
Z	Client ID	Storage Medium	Sample Matrix	Date Collected	Time Collected	Comments	ESG Comments	50i8		lc		4 <del>1</del> 0
	F19-01	Zip lock by	Fish	9118/19	9:00	on 166		Х	χ	χ		
	F19-02	Ziplack beg	_	2118/19	00;01			Х	Х	λ		
	K19-03	Ziplock bas		11 18/14	05;01			X	X	X	_	
	£0-615	Belock 6cx	-	9114119	8:30			X	X	X		
	F19-14	Zyplock by	~	9126/19	1100	$\mathbf{k}$		X	χ	X	_	
	×.											
											-	
											_	1
		5										
											-	
											-	
										-		
											_	
	Add rows as needed	eeded									_	
Notes:	Other element	Notes: Other elements, sample issues, etc.	ن									٦

Page 1 of

# **Appendix E**

Disclaimer



Dillon Consulting Limited (Dillon) has used the degree of care and skill ordinarily exercised under similar circumstances at the time the work was performed by reputable members of the environmental consulting profession practicing in Canada. Dillon assumes no responsibility for conditions it was not authorized to investigate or which were beyond its scope of work. There is no warranty expressed or implied by Dillon that the work will discover all potential contamination since it may not be possible, even with exhaustive sampling, testing and analysis, to document all potential contamination on the site.

This report was prepared by Dillon for the sole benefit of Nova Scotia Lands and Intrinsik Corp. The material in the report reflects Dillon's best judgment in light of the information available to Dillon at the time of preparation. Any use which a third party (i.e. a party other than Nova Scotia Lands and Intrinsik Corp.) makes of this report, or any reliance on or decisions made based on it, are the responsibilities of such third parties. Dillon accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

# References

Dillon Consulting Limited, Phase I/II Environmental Site Assessment, Port Wallace, Dartmouth, Nova Scotia, Submitted to Halifax Regional Municipality, August 2019.

Nova Scotia Lands/Intrinsik Corp. Field Work Component in Support of Human Health Risk Assessment - Port Wallace, Dartmouth, NS January 2020 - 19-1567

#### APPENDIX B

#### CHEMICALS OF POTENTIAL CONCERN – HUMAN HEALTH AND ECOLOGICAL SCREENING



# APPENDIX B: CHEMICALS OF POTENTIAL CONCERN – HUMAN HEALTH AND ECOLOGICAL SCREENING

This assessment is a human health risk assessment study. Screening outcomes of COPCs for the HHRA are presented in this appendix. In addition, screening for ecological receptors was also completed, and is presented in this appendix. An Ecological Risk Assessment (ERA) has not yet been completed but will be conducted in a separate study.

#### B-1.0 HUMAN HEALTH SCREENING

#### B-1.1 Sediments

The Nova Scotia (NS) Environmental Quality Standards (EQS) for Contaminated Sites (NSE, 2014) were developed to provide numerical environmental quality standards for relevant environmental media typically evaluated at contaminated sites in Nova Scotia. Although standards protective of human health have been developed for soil and groundwater, health-based sediment and surface water criteria for incidental swimming exposure pathways have not been developed.

Two separate sampling campaigns have been conducted in Barry's Run between 2019 and 2020. The first set of sediment and surface water data were collected in April, 2019 (Dillon, 2019), whereas the second set was collected in September through December 2019 (see Appendix A), and included sediments, surface water, and fish tissues. As part of the second sampling campaign, sampling of sediment from the fen area ("TOF") was conducted in January, 2020 (see Appendix A for further details). This section of the screening appendix provides screening outcomes related to the comparison of the sediment and surface water data to human health NS EQS.

Given the lack of human health-based sediment criteria, Dillon (2019) compared the spring sediment data to NS Tier 1 residential soil standards (residential soils; non-potable groundwater usage; coarse-grained soils; NSE, 2014) as a surrogate for sediment guidance levels (see Table E4 from Dillon (2019), inserted below as Table B-1). A number of metals exceeded the Tier 1 soil standards, including aluminum, antimony, arsenic, cobalt, iron, mercury and vanadium.

Consideration of background environmental conditions is part of the standard screening process for substances which occur naturally in the environment, and the use of regional data is considered an accepted comparison approach (NSE, 2014; see Table B-1). Metals with concentrations in excess of the NS Tier 1 soil standards and typical Nova Scotian background soil concentrations were discussed further or retained as COPCs for further evaluation in the HHRA. Aluminium, iron and vanadium were concluded to be within background ranges by Dillon (2019; see Section 4.4.2.2), and do not merit further evaluation.

Antimony concentrations in sediments range from < 2 mg/kg to 9.5 mg/kg (see Table B-1), with the NS Tier 1 soil standard being 7.5 mg/kg. Only 2 of the 14 samples exceed the guideline. Background soil antimony concentrations provided in White et al (2014) range from 0.6 mg/kg to 0.8 mg/kg, which is lower than the analytical detection limit in the current study. Since only 2 samples exceed the NS EQS, antimony is considered to be unlikely to pose a risk, or drive remedial decision making at this site. Therefore, it was not considered further.

#### Table B-1 General Chemistry and Metals in Sediment (taken from Dillon, 2019)

				Sample ID	SED01	SED02	SED03	SED04	SED05	SED06	SED07	SED07B (Dup of	SED08	SED09	SED10	SED10 (Lab Dup -	SED11	SED12	SED13	SED14
												SED07)				Maxxam Burnaby)				
				Date	2019-04-16	2019-04-16	2019-04-16	2019-04-16	2019-04-16	2019-04-16	2019-04-16	2019-04-16	2019-04-16	2019-04-25	2019-04-25	2019-04-25	2019-04-25	2019-04-25	2019-04-26	2019-04-26
				Sample Depth (mbgs)	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1
			NS Tier 1 EQS	NS Tier 1 EQS Soil																
			Freshwater	Residential Non-																
			Sediment	Potable Coarse	I															
					I															
Parameter	Units	EQL																		
General Chemistry																				
Phosphorus	mg/kg	10	-	· ·	-	-	-	-	-	-	-	-	-	-	-	731	-	694	-	-
Cyanide Anion	mg/kg	0.2	-	29	-	-	-	-	-	-	-	-	-	-	-	0.36	-	<0.4	-	-
Total Organic Carbon (TOC)	mg/kg	0.0005			170000	-	-	-	-	-	130000	-	-	-	1300	1300	-	8800	-	-
pH (aqueous extract)	pH Unit					-	-	-	-	-	-	-	-	-	-	5.81	-	6.19	-	-
Sulphate (SO4)	mg/kg	10			1500	-	-	-	-	-	2300	-	-	-	59	585	-	170	-	-
Sulphide	mg/kg	0.3			-	-	-	-	-	-	-	-	-	-	-	0.45	-	32.7	-	-
Metals							_				_	_							_	
Aluminium	mg/kg	10		15400	17,000	18,000	20,000	18,000	27,000	22,000	25,000	22,000	23,000	12,000	14,000	13,500	12,000	13,900	11,000	12,000
Antimony	mg/kg	0.1	25	7.5	<2	<2	<2	<2	<2	<2	2.4	2.3	2.3	<2	9.5	9.36	8.1	7.38	3.3	4.6
Arsenic	mg/kg	0.5	17	31	2000	1900	2000	1900	960	1600	1900	1900	2400	170	6200	6480	5100	4830	1900	2900
Barium	mg/kg	0.1		10000	150	250	230	250	160	150	230	240	260	84	58	54.5	70	64.4	74	91
Beryllium	mg/kg	0.2		38	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	0.37	<2	0.42	<2	<2
Bismuth	mg/kg	0.1			<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	0.89	<2	0.85	<2	<2
Boron	mg/kg	50		4300	<50	<50	<50	<50	<50	<50	<50	<50	<50	<\$0	<\$0	-	<50	-	<50	<50
Cadmium	mg/kg	0.05	3.5	14	2.6	2.6	2.1	1.9	1.7	1.4	2.5	2.4	2.6	<0.3	< 0.3	0.176	<0.3	0.268	<0.3	<0.3
Calcium	mg/kg	100			-	-	-	-	-	-	-	-	-	-	-	4810	-	3980	-	-
Chromium Total (III+VI)	mg/kg	1	90	220	12	14	15	14	21	19	17	16	17	13	15	15.9	14	15.9	12	13
Cobalt		0.3		22	100	120	130	110	84	87	160	150	160	4.1	16	18.5	17	17.9	8.1	15
Copper	mg/kg	0.5	197	1100	32	35	36	33	34	35	43	39	40	30	53	50.5	47	52.1	34	38
Iron	mg/kg	50	43766	11000	40,000	40,000	54,000	44,000	41,000	36,000	45,000	42,000	54,000	17,000	31,000	33,600	27,000	32,100	18,000	23,000
Lead	mg/kg	0.1	91.3	140	63	72	73	62	96	74	78	72	74	35	73	57.3	62	54	40	45
Lithium	mg/kg	2	-		12	16	16	15	25	22	21	19	20	24	25	-	24		22	23
Magnesium	mg/kg	100				-									-	9780		9090		
Manganese	mg/kg	0.2	1100		4900	15.000	14.000	17,000	4800	7700	14.000	14.000	13.000	250	660	703	890	1210	280	930
	mg/kg	0.05	0.486	6.6	1.9	2.2	2.2	2.1	0.82	2.4	2.9	2.7	2.7	4.4	6.8	4.55	6.3	5.35	5.2	5.2
Mercury Molybdenum		0.05	0.486	110	<2	<2	<2			<2		<2			<2	0.23	<2	0.28	<2	
	mg/kg	_	75	330	86	76	53	<2 48	2.2	41	<2 75	65	<2 67	<2	34	38.5	29	35.6	17	25
Nickel	mg/kg	0.8	/5		80	/6	- 53	48	38	41	/5	65	6/	12	34		29		1/	- 25
Potassium	mg/kg	100						-								4520		4370		
Rubidium	mg/kg	2	-	-	8.5	11	11	9.8	11	15	12	12	12	20	32	-	29	-	19	25
Selenium	mg/kg	0.5	2	80	1.7	1.9	2	1.8	2.7	2.5	2	2	2.2	4	<1	<0.5	4	<0.5	<1	<1
Silver	mg/kg	0.05	1	77	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.157	<0.5	0.164	<0.5	<0.5
Sodium	mg/kg	100	•		•	-	-	-	-	-			-	-	-	<100		<100	-	
Strontium	mg/kg	0.1	-	9400	23	24	24	29	40	27	29	26	31	12	17	20.5	14	18.6	13	14
Sulphur (as S)	mg/kg	500	•		•	-	-	-	-	-	-	-	-	-	-	-	-	2950	-	-
Thallium	mg/kg	0.05		1	0.29	0.34	0.37	0.32	0.34	0.36	0.43	0.4	0.48	0.16	0.28	0.304	0.26	0.327	0.2	0.26
Tin	mg/kg	0.1	•	9400	1.2	1.3	1.3	1.3	1.3	1.4	1.5	1.3	1.3	<1	<1	0.28	4	0.36	<1	<1
Titanium	mg/kg	1		· ·	-	-	-	-	-	-	-	-	-	-	-	610	-	582	-	-
Uranium	mg/kg	0.1		23	0.85	1.2	1.1	1	2.5	1.4	1.3	1.2	1.2	1.1	1.1	-	1.1	-	1.1	1.1
Vanadium	mg/kg	2		39	60	63	69	56	58	56	66	61	75	16	15	16.4	14	16.8	12	15
Zinc	mg/kg	1	315	5600	260	270	250	230	200	180	330	290	320	58	120	119	100	135	64	94
Zirconium	mg/kg	0.5			-	-	-	-	-	-	-	-	-	-	-	29.3	-	22.8	-	-

				Sample ID	5501	SS02	\$\$03	5504	SS07	SS08	\$\$09	5510	5511	5512	5513	SS13B (Dup of SS13)	SS14
				Date	2019-04-25	2019-04-25	2019-04-25	2019-04-25	2019-04-25	2019-04-25	2019-04-25	2018-04-25	2019-04-25	2019-04-25	2019-04-29	2019-04-29	2019-04-29
				Sample Depth (mbgs)		0-0.1	1.2-1.4	0.3-0.6	3.66-3.8	5.03-5.08	5.03-5.18	3.36-3.56	3.49-3.6	3.51-3.71	4.65-4.93	4.65-4.93	4.06-4.14
			NS Tier 1 EQS	NS Tier 1 EQS Soil													
			Freshwater	Residential Non-													
			Sediment	Potable Coarse													
Parameter	Units	EQL	1														
General Chemistry																	
Phosphorus	mg/kg	10	· ·	· ·	-	-	-	-	-	-	-	665	-	-	-	-	-
Cyanide Anion	mg/kg	0.2		29	-	-	-	-	-	-	-	-	-	-	-	-	-
Total Organic Carbon (TOC)	mg/kg	0.0005	-	•	-	-	-	-	-	6800	-	2900	-	-	<500	-	-
pH (aqueous extract)	pH Unit				-	-	-	-	-	-	-	5.46	-	-	-	-	-
Sulphate (SO4)	mg/kg	10		•	-	-	-	-	-	11	-	<100	-	-	20	-	-
Sulphide	mg/kg	0.3		•	-	-	-	-	-	•	-	<0.3	-	-	•	-	-
Metals						-	-	-	-	-		-			-	-	F.
Aluminium	mg/kg	10		15400	-	-	-	-	8300	6000	6800	10,600	12,000	12,000	5600	5500	13,000
Antimony		0.1	25	7.5	-	-	-	-	<2	<2	<2	0.24	<2	<2	<2	<2	<2
Arsenic	mg/kg	0.5	17	31	1400	56	33	490	130	17	15	16.4	29	45	8.8	8.1	13
Barium	mg/kg	0.1		10000	-	-	-	-	23	20	20	25	32	30	11	9.5	35
Beryllium	mg/kg	0.2		38	-	-	-	-	<2	<2	<2	0.27	<2	<2	<2	<2	<2
Bismuth	mg/kg	0.1				-	-	-	<2	<2	<2	0.14	<2	<2	- 2	<2	<2
Boron	mg/kg	50		4300		-	-		<50	<50	<50		<50	<50	<50	<50	<50
Cadmium	mg/kg	0.05	3.5	14		-			<0.3	<0.3	<0.3	0.075	<0.3	<0.3	<0.3	<0.3	<0.3
Calcium	mg/kg	100										2120	-				-
Chromium Total (III+VI)	mg/kg	1	90	220					14	9.7	11	17.1	19	19	8.7	8.8	21
Cobalt	mg/kg	0.3		22			-	-	9.3	5.8	6.4	10.4	12	13	5.5	5.9	12
Copper	mg/kg	0.5	197	1100		-	-		18	16	16	18	20	22	12	12	21
Iron	mg/kg	50	43766	11000					15,000	10,000	13,000	20,500	23,000	25,000	11,000	11,000	23,000
Lead	mg/kg	0.1	91.3	140			-		13,000	8.2	8.4	9.66	13	11	6.7	4.3	14
Lithium	mg/kg	2	91.5	- 140	-	-	-	-	11	11	13	9.66	23	23	11	4.3	25
	_	100						-	- 10		- 13	6240		23		- 12	
Magnesium	mg/kg mg/kg	0.2	1100						260	190	250	390	410	420	200	200	430
Manganese Mercury	_	0.2	0.486	6.6		3.3	0.13	0.73	0.1	<0.1	<0.1	<0.05	<0.1	420 <0.1	<0.1	<0.1	430 <0.1
	mg/kg	0.05		6.6	1.1				0.1 <2	<0.1	<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1
Molybdenum Nickel	mg/kg		- 75	330	-	-	-	-	19	16	15	24.4	26	3.8			
	mg/kg	0.8			-	-			19	16	15			- 34	12	11	29
Potassium Rubidium	mg/kg	100 2			-	-	•	-	5.9	4,4	4.4	700	- 7	6.6	2.6	2.6	7.3
Selenium	mg/kg		2	- 80			-	-	<1	4,4	4.4	<0.5				<1	
	mg/kg	0.5		80	-	-			<0.5				<1 <0.5	<1	<1	<0.5	<1
Silver	mg/kg		1		-	-	-	-		<0.5	<0.5	<0.05		<0.5	<0.5		<0.5
Sodium	mg/kg	100	•		-	-	-	-	-	-	-	<100	-	-	-	-	-
Strontium	mg/kg	0.1	•	9400		-	-	-	8.1	7.5	8.7	14.9	13	15	7.2	6.9	16
Sulphur (as S)	mg/kg	500	•	•	-	-	-	-	-	-	-	<500	-	-	-	-	-
Thallium	mg/kg	0.05		1	-	-	-	-	<0.1	<0.1	<0.1	0.055	<0.1	<0.1	<0.1	<0.1	<0.1
Tin	mg/kg	0.1	•	9400	-	-	-	-	<1	<1	<1	0.23	<1	<1	4	<1	<1
Titanium	mg/kg	1	•	•	-	-	-	-	-	-		498	-	-	-	-	-
Uranium	mg/kg	0.1	•	23	-	-	-	-	1.3	1	0.82	-	1.2	2.1	0.52	0.52	3
Vanadium	mg/kg	2	•	39	-	-	-	-	13	8.2	9.3	14	16	14	8	8.3	17
Zinc	mg/kg	1	315	5600	-	-	-	-	48	37	41	51.8	61	67	26	26	66
Zirconium	mg/kg	0.5	-	-	-	-	-	-	-	-	-	6.06	-	-	-	-	-



Arsenic exceeded the soil standard in all 14 samples taken, whereas mercury only exceeded the soil standard in 1 sample. Both of these substances are associated with historic mining activities, and hence are carried forward for further evaluation in the human health risk assessment.

Cobalt concentrations ranged from 4.1 mg/kg to 160 mg/kg in sediments, relative to the NS Tier 1 standard of 22 mg/kg (see Table B-1) and exceeded the standard in 8 of the 14 sediment samples. Maximum concentrations were 7-fold above the standard. Background concentrations of cobalt in Nova Scotia soils also are above the standard, ranging from 23 to 29 mg/kg, depending on the depth profile of soils (White et al, 2014). When considered in conjunction with arsenic, the degree of exceedance for cobalt is unlikely to drive risks or remedial decision making at this site, as arsenic markedly exceeds the soil standard (see Table B-1).

A number of inorganic substances did not have NS Tier 1 EQS, such as bismuth, calcium, lithium, magnesium, manganese, potassium, rubidium, sodium, sulphur, titanium, and zirconium. Bismuth was largely below detection limits and is of low toxicity, whereas calcium, magnesium, potassium, sodium and sulphur are naturally occurring elements which are regulated by the body and hence, would not merit further study. Lithium, rubidium, titanium and zirconium are not anticipated to be associated with historic mining activities and are not considered to be drivers in terms of toxicity related to this site, and hence, were not considered further. While manganese is present at concentrations in sediments which are higher than background soil ranges cited by White et al (2014; 2,972 to 6,874 mg/kg), manganese is a naturally occurring element and would be associated with the natural geology of the area. It is an essential element for humans (IOM, 2001) and of reasonably low oral toxicity, relative to the primary COPC of interest, arsenic, and hence, was not considered to merit further evaluation in the risk assessment.

Dillon (2019) also analyzed sediments for BTEX and TPH (see Table E5 from Dillon, 2019, inserted below as Table B-2). These samples were all non-detect for BTEX lighter end TPH, and hence, did not merit further evaluation. Some heavier carbon TPH was detected, but upon further analyses it was concluded to be biogenic in nature, due to the presence of organic matter, and hence, was not considered to merit further study.

Therefore, only arsenic and mercury were considered to merit further study in the HHRA, based on the data presented in Dillon (2019).

The fall sediment data collected by Dillon (see Appendix A) were compared to the Tier 1 NS soil standards as a surrogate for sediment guidance levels. This is in keeping with guidance provided by Health Canada, related to human sediment exposures (Health Canada, 2017). Concentrations of aluminum, arsenic, cobalt, iron, lead, mercury and vanadium in one or more sediment samples exceeded the NS Tier 1 soil standards (Table B-3). As shown in Table B-3, soil standards were not available for lithium and manganese. While exposure to lithium and manganese is not anticipated to result in any unacceptable risks to human health, these two metals were considered further, in conjunction with those metals which exceeded the NS Tier 1 soil standards (aluminum, arsenic, cobalt, lead, iron, mercury and vanadium), based on the outcomes in Table B-3.

#### Table B-2 Petroleum Hydrocarbons in Sediment (taken from Dillon, 2019)

				Sample ID	SED10	SED10 ¹	SED12	SED121
				Date	2019-04-25	2019-04-25	2019-04-25	2019-04-25
				Sample Depth (mbgs)	0-0.1	0-0.1	0-0.1	0-0.1
			NS Tier 1 EQS	NS Tier 1 EQS Soil				
			Freshwater	Residential Non-Potable				
			Sediment	Coarse				
Parameter	Units	EQL						
BTEX			-	•				
Benzene	mg/kg	0.025	1.2	0.099	<0.025	-	< 0.025	-
Toluene	mg/kg	0.05	1.4	77	< 0.05	-	< 0.05	-
Ethylbenzene	mg/kg	0.025	1.2	30	<0.025	-	< 0.025	-
Xylenes Total	mg/kg	0.05	1.3	8.8	< 0.05	-	< 0.05	-
Petroleum Hydrocarbons (PHCs)								
C6-C10 - BTEX	mg/kg	2.5	-		<2.5	-	<2.5	-
>C10-C16	mg/kg	10	-		<10	<10	<10	<10
>C16-C21	mg/kg	10	-		18	15	23	20
>C21-C32	mg/kg	15	-		100	100	100	95
Modified TPH	mg/kg		15* 25** 43***	74* 270** 1100***	120***	120***	130***	110***
Resemblance					G	G	K,L, Possible G	K,L, Possible G

Note: Applicable Criteria Based on resemblance as indicated

¹Silica Gel Treatment performed prior to analysis

Resemblance:

- A Gasoline Fraction F One Product in Fuel Range
- B Weathered Gasoline Fraction
- tion G Lube Oil Fraction H -One Product In Lube Oil Range
- C One Product in Gas Range D - Fuel Oil Fraction
- I No Resemblance
- E Weathered Fuel Oil Fraction J Unidentified Peaks in the C6-C10 Range
  - K Unidentified Peaks in the C10-C21 Range
  - L Unidentified Peaks in the C21-C32 Range

													Metals												
		ninium	huo	<u>.</u>	E	ium		m	mium Total (III+VI)		ır			ε	anese	Iry	odenum		En En		ium	Ę	nium	lium	
		Alumi	Antimony	Arsenic	Bariun	Berylliu	Boron	Cadmiu	Chrom	Cobalt	Coppe	Iron	Lead	Lithium	Manga	Mercu	Molyb	Nickel	Selenium	Silver	Strontiu	Thallium	Uraniu	Vanadiu	Zinc
QL		mg/kg 10	mg/kg	mg/kg	mg/kg 5	mg/kg 2	mg/kg 5	mg/kg 0.3	mg/kg 2	mg/kg	mg/kg 2	mg/kg 50	mg/kg 0.5	mg/kg 2	mg/kg 2		mg/kg 2	mg/kg 2		mg/kg 0.5	mg/kg	mg/kg 0.1	mg/kg 0.1	mg/kg	mg/k
			2	2	-	2	-	0.5	2	1				2	2	0.1	2		2	0.5		0.1	0.1	2	
IS Tier 1 EQS Soil Residential Non-Potable Coarse		<u>15400</u>	<u>7.5</u>	<u>31</u>	<u>10000</u>	<u>38</u>	<u>4300</u>	<u>14</u>	<u>220</u>	<u>22</u>	<u>1100</u>	<u>11000</u>	<u>140</u>	<u>NV</u>	<u>NV</u>	<u>6.6</u>	<u>110</u>	<u>330</u>	<u>80</u>	<u>77</u>	<u>9400</u>	<u>1</u>	<u>23</u>	<u>39</u>	<u>5600</u>
ample ID	Sample Depth (cm)																								
IOSED19-1	0 - 0.1	-	-	<u>3000</u>	-	-	-	-	-	-	-	-	-	-	-	3.5	-	-	-	-	-	-	-	-	-
IOSED19-2	0 - 0.1	-	-	<u>1400</u>	-	-	-	-	-	-	-	-	-	-	-	<u>11</u>	-	-	-	-	-	-	-	-	-
IOSED19-3	0 - 0.1	-	-	<u>3900</u>	-	-	-	-	-	-	-	-	-	-	-	4.9	-	-	-	-	-	-	-	-	-
OSED19-4	0 - 0.1	-	-	<u>5200</u>	-	-	-	-	-	-	-	-	-	-	-	5.6	-	-	-	-	-	-	-	-	-
IOSED19-5	0 - 0.1	-	-	<u>4600</u>	-	-	-	-	-	-	-	-	-	-	-	5.2	-	-	-	-	-	-	-	-	-
OSED19-6	0 - 0.1	-	-	<u>1100</u>	-	-	-	-	-	-	-	-	-	-	-	5.9	-	-	-	-	-	-	-	-	-
DF19-1	0 - 0.2	8200	2.2	<u>200</u>	74	<2	<5	0.51	7.3	3.9	18	6300	69	3.1	320	-	<2	13	<2	<0.5	46	<0.1	0.91	27	32
DF19-10	0 - 0.2	3100	<2	9.1	78	<2	<5	0.41	3	2.6	6.4	2500	39	<2	200	-	<2	11	<2	<0.5	27	<0.1	0.26	14	25
DF19-11	0 - 0.2	1600	<2	3	38	<2	<5	0.36	3.4	1.8	4.6	4400	38	<2	79	-	<2	10	<2	<0.5	20	<0.1	<0.1	8.1	27
DF19-12	0 - 0.2	4500	<2	3.3	31	<2	<5	<0.3	3	1.1	7.4	2700	42	<2	42	-	<2	7.9	<2	<0.5	11	<0.1	<0.1	31	18
DF19-13	0 - 0.2	3400	<2	6.4	110	<2	<5	0.65	2.6	2.2	7.4	2000	53	<2	130	-	<2	14	<2	<0.5	44	<0.1	0.31	34	28
DF19-14	0 - 0.2	3200	<2	6.4	56	<2	<5	<0.3	3.4	1.7	8.7	2600	76	<2	29	-	<2	16	<2	<0.5	19	<0.1	0.33	34	25
DF19-15	0 - 0.2	11,000	<2	22	10	<2	<5	0.73	2.9	5.4	15	4400	110	<2	38	-	<2	20	<2	<0.5	<5	<0.1	0.16	18	17
OF19-16	0 - 0.2	2500	<2	9.1	40	<2	<5	0.35	3.5	1.6	6.7	2200	73	<2	17	-	<2	8	<2	<0.5	23	<0.1	0.23	23	12
OF19-2	0 - 0.2	14,000	2.1	<u>1500</u>	240	<2	5.2	2.3	9.1	<u>98</u>	37	<u>23,000</u>	58	3.9	14,000	-	3.5	57	2.9	<0.5	41	0.43	0.77	<u>72</u>	160
OF19-3	0 - 0.2	<u>18,000</u>	2	<u>1700</u>	140	<2	<5	1.2	15	<u>83</u>	40	<u>34,000</u>	79	19	3500	-	<2	37	<2	<0.5	20	0.35	1.1	<u>50</u>	160
OF19-4	0 - 0.2	5600	<2	<u>150</u>	66	<2	<5	<0.3	5.6	3.3	17	7600	110	3.2	110	-	<2	12	<2	<0.5	27	<0.1	0.36	18	26
OF19-5	0 - 0.2	7100	<2	<u>71</u>	83	<2	<5	1.1	7	3.5	18	6500	<u>260</u>	4.3	160	-	<2	13	<2	<0.5	59	<0.1	0.82	23	59
OF19-6	0 - 0.2	4100	<2	<u>37</u>	46	<2	<5	<0.3	4.3	3.4	11	4700	110	<2	150	-	<2	7.9	<2	<0.5	16	<0.1	0.36	17	20
OF19-7	0 - 0.2	7700	<2	<u>43</u>	38	<2	<5	<0.3	6.6	1.3	16	2800	71	<2	36	-	<2	8.6	<2	<0.5	7.7	<0.1	0.43	30	16
OF19-8	0 - 0.2	2700	<2	6.4	67	<2	<5	0.31	2.9	1.4	7.3	4100	22	<2	220	-	<2	7.8	<2	<0.5	38	<0.1	0.27	16	28
OF19-9	0 - 0.2	6400	<2	18	64	<2	<5	0.61	4.1	7	10	8900	61	<2	430	-	<2	12	<2	<0.5	43	<0.1	0.86	<u>42</u>	22
OF20-1	0 - 0.2	-	-	-	-	-	-	-	-	-	-	-	-	-	_	<0.05	-	-	-	-	-	-	-	-	-
OF20-3	0 - 0.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-
DF20-4	0 - 0.2	-	-	-	-	-	-	-	-	-	-	-	-	-	_	0.19	-	-	-	-	-	-	-	-	-
DF20-5	0 - 0.2	-	-	-	-	-	-	-	-	-	-	-	-	-	_	1	-	-	-	-	-	-	-	-	-
DF20-6	0 - 0.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.7	-	-	-	-	-	-	-	-	-
DF20-7	0 - 0.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.07	-	-	-	-	-	-	-	-	-
OF20-8	0 - 0.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.05	-	-	-	-	-	-	-	-	-
DF20-9	0 - 0.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.06	-	-	-	-	-	-	-	-	_
OF20-11	0 - 0.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.05	-	-	-	-	-	-	-	-	-
DF20-14	0 - 0.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.05	-	-	-	-	-	-	-	-	-
OF20-15	0 - 0.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.05	-	-	-	-	-	-	-	-	-
OF20-16	0 - 0.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.07	-	-	-	-	-	-	-	-	-
DF20-16_D	0 - 0.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.05	-	-	-	-	-	-	-	-	-
OF20-FD1 (Field Dup of TOF19-5)	0 - 0.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.08	-	-	-	-	-	-	-	-	_
OF20-FD2 (Field Dup of TOF19-8)	0 - 0.2	_	-	-	_	_	_	-	_	_	-	-	_	-	_	<0.05	-	_	_	-	_	_	-	_	_

Table B-3 Comparison of Metal Concentrations in Sediment Samples to NS Tier 1 Soil Standards for Residential Land Use with Coarse Textured Soils (Fall Data)

Environmental Standards Comments

<u>Italics/Underline</u>

NV

Concentration exceeds Nova Scotia Environment Tier 1 Environmental Quality Standards (July 2013) for Soil at a Non-Potable Site (Residential, Coarse-grained) Indicates that a standard was not provided by Nova Scotia Environment



Following this primary screening, the identified metals exceeding the soil standards (or lacking soil standards) were compared to background concentrations reported for Nova Scotian soils, based on White et al (2014). Metals with concentrations in excess of the NS Tier 1 soil standards and typical Nova Scotian background soil concentrations (as indicated by White et al. 2014) were discussed further or retained as COPCs for further evaluation in the HHRA. While it is recognized that Table B-4 compares soil background concentrations to sediments, in light of the lack of robust sediment background datasets, this approach was still considered reasonable (since natural geology would be reflected in both soils and sediments). Table B-4 provides a summary of maximum site concentrations of these metals in sediment, relative to the 98th percentile soil concentrations cited by White et al (2014). Although concentrations of aluminum, iron and vanadium exceeded the NS Tier 1 soil standards in one or more sediment samples, concentrations of these metals in all samples were below the 98th percentile background concentrations reported for these metals in Nova Scotian soils (White et al. 2014). Therefore, concentrations of aluminum, iron and vanadium in sediment were considered to be representative of typical background soil concentrations in Nova Scotia and these metals were not retained for further evaluation, similar to the findings of Dillon (2019), relative to that dataset.

Metal	Maximum Concentration in	Backgrou	nd Soil 98tl	h Percentile	es (mg/kg)
	Sediment (mg/kg)	PH-98th	A-98th	B-98th	C-98th
Aluminum	18,000	34,644	37,948	43,722	37,680
Arsenic	5,200	24	31	36	38
Cobalt	98	23	24	29	27
Iron	34,000	39,814	51,260	63,470	69,160
Lead	260	71	60	40	56
Lithium	19	NDA	NDA	NDA	NDA
Manganese	14,000	2,972	6,847	5,932	3,449
Mercury	11	0.4	0.2	0.2	0.1
Vanadium	72	124	138	124	104

Table B-4 Comparison of Maximum Concentrations of Metals in Sediment Exceeding NS
Tier 1 Soil Standards to Typical Nova Scotia Soil Background Concentrations (from
White et al, 2014)

**BOLDED** values in greyscale indicate that maximum measured concentration in Barry's Run sediment was greater than the Nova Scotia soil background concentrations reported in White et al (2014).

A=A soil horizon; B=B soil horizon; C=C soil horizon; PH=public health interval (0-5 cm); NDA: no data available

There was no available background data for lithium. Lithium is largely less than detection (<2 mg/kg; see Table B-3), is not anticipated to be associated with historic mining activities and is not considered to be a driver in terms of toxicity related to this site.

Both arsenic and mercury are associated with historic mining activities. Arsenic is markedly elevated relative to the NS Tier 1 soil standard in sediment samples taken in Barry's Run and Mitchells' Brook (see Table B-3; "biosed" samples), but many parts of the fen area ("TOF" samples; Table B-3) met the NS Tier 1 standard. Mercury only exceeds the soil standard in one sample in the area (see Table B-3) but has the potential to biomagnify in fish tissue. Therefore, both of these substances were carried forward into the HHRA for further assessment. Maximum cobalt concentrations are elevated relative to typical background concentrations (see Table B-4). Only two samples were found to have concentrations exceeding background ranges, with the remaining samples being well within the NS EQS. As discussed previously with the spring Dillon (2019) screening, cobalt is unlikely to be a significant risk driver, due to the degree of exceedance of arsenic over the NS EQS. Therefore, cobalt was not considered further in the HHRA.



With respect to lead, the maximum sediment concentration was elevated relative to the background data provided in Table B-4. However, only one of the sediment samples exceeded the NS Tier 1 soil standard and this exceedance was less than 2-fold of the standard, relative to the primary COPC, arsenic, wherein mean sediment concentrations were markedly above the NS Tier 1 soil standard. Lead has also not been reported to be associated with historic mining activities to any significant extent, and hence, lead was not considered further as a COPC. The maximum sediment manganese concentration was elevated relative to background soil concentrations (Table B-4). Of the data presented in Table B-3, only the maximum data point was outside the background data cited in Table B-4 (second maxima is 3,500 mg/kg; see Tables B-3 and B-4). As discussed previously, manganese is a naturally occurring element and would be associated with the natural geology of the area. It is an essential element for humans (IOM, 2001) and of reasonably low oral toxicity, relative to the primary COPC of interest, arsenic, and hence, was not considered to merit further evaluation in the risk assessment.

In conclusion, only arsenic and mercury were retained as COPCs in sediment for further evaluation in the HHRA, based on consideration of both the spring (Dillon, 2019) and fall (Appendix A) datasets.

#### B-1.2 Surface Water

Given the lack of human health based surface water criteria for incidental ingestion scenarios such as that which might occur during swimming, the selection of COPCs in Barry's Run surface water was based on a comparison of the concentrations of metals measured in Barry's Run surface water during the spring and fall to the Nova Scotia Tier 1 potable groundwater drinking water standards (Table B-5). As shown in Table B-5, the concentration of aluminum, arsenic and manganese exceeded the NS Tier 1 potable groundwater drinking water standard in one or more surface water samples. As shown in Table B-5, the concentration of arsenic exceeded the NS Tier 1 potable groundwater drinking water standard in all surface water samples collected in both the spring and fall. Therefore, arsenic was retained as a COPC in surface water for further evaluation in the HHRA. Aluminum and manganese exceeded their NS Tier 1 potable groundwater drinking water standard in only one surface water sample collected in the spring, and the exceedances were marginal. The standard developed for aluminum is based on operational guidance (i.e., non-health based), and both of these guidelines are based on chronic life time daily drinking water exposure. Therefore, incidental consumption during swimming activities of these metals measured in surface waters from Barry's Run would not be associated with any health risks, and these substances were not considered further. Many substances lack health based drinking water standards. Of these, bismuth, phosphorus and titanium were nondetectable in all samples, and hence, would not be expected to pose a risk in an incidental surface water consumption exposure scenario. Metals that were detected, but lack drinking water guidelines included calcium (5.6 to 9.5 mg/L), magnesium (0.96 to 1.7 mg/L) and potassium (0.9 to 1.2 mg/L), all of which are ions that are essential elements, and would not be associated with any health risks.

# In conclusion, only arsenic was retained as a COPC in surface water for further evaluation in the HHRA, based on consideration of both the spring (Dillon, 2019) and fall (Appendix A) datasets.

			Sample ID	KWQ755 (SW-IN)	LHN561 (SW-IN)	LMD218 (SW-IN)	KWQ756 (SW-OUT)	LHN562 (SW-OUT)	LMD219 (SW-OUT)	JPE946	JPE947	JPE947	JPE948	JPE949	JPE950	JPE951	JPE952	JPE953	JPE9
			Sampling Date	2019-09-24	2019-11-13	2019-12-03	2019-09-24	2019-11-13	2019-12-03	4/29/19	4/29/19	4/29/19	4/29/19	4/29/19	4/29/19	4/29/19	4/29/19	4/29/19	4/29
			Code NS Tier 1 Potable Groundwater	NA	NA	NA	NA	NA	NA	2019SW1	2019SW2	2019SW2 Lab-Dup	2019SW3	2019SW4	2019SW5	2019SW6	2019SW10	2019SW11	201
Parameter	Unit	EQL	Drinking Water Standards																
Aluminium	mg/L	0.005	0.1a	0.017	0.097	0.047	0.023	0.14	0.064	0.081	0.071	0.073	0.063	0.070	0.079	0.057	0.046	0.086	0.0
Aluminium (Filtered)	mg/L	0.005	0.1a	0.02	0.076	0.04	0.018	0.11	0.056	0.081	0.077	NDA	0.066	0.068	0.080	0.055	0.048	0.088	0.0
Antimony	mg/L	0.001	0.006	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.
Antimony (Filtered)	mg/L	0.001	0.006	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.001	< 0.001	NDA	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.
Arsenic	mg/L	0.001	0.01	0.065	0.093	0.091	0.055	0.046	0.049	0.045	0.047	0.048	0.054	0.050	0.046	0.059	0.086	0.045	0.0
Arsenic (Filtered)	mg/L	0.001	0.01	0.059	0.085	0.082	0.05	0.041	0.047	0.045	0.044	NDA	0.054	0.047	0.044	0.058	0.083	0.044	0.0
Barium	mg/L	0.001	1	0.0082	0.0046	0.0038	0.0066	0.0053	0.004	0.0045	0.0041	0.0044	0.0041	0.0055	0.0045	0.0044	0.0045	0.0045	0.0
Barium (Filtered)	mg/L	0.001	1	0.008	0.0049	0.0034	0.0068	0.0049	0.004	0.0044	0.0043	NDA	0.0044	0.0044	0.0044	0.0044	0.0046	0.0047	0.0
Beryllium	mg/L	0.001	0.004	<0.001	< 0.001	< 0.001	<0.001	<0.001	<0.001	< 0.001	< 0.001	<0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.0
Beryllium (Filtered)	mg/L	0.001	0.004	<0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	< 0.001	<0.001	NDA 10.002	<0.001	<0.001	< 0.001	<0.001	<0.001	<0.001	<0.0
Bismuth Bismuth (Filtered)	mg/L	0.002	NV NV	<0.002 <0.002	<0.002 <0.002	<0.002 <0.002	<0.002 <0.002	<0.002	<0.002	<0.002 <0.002	<0.002 <0.002	<0.002 NDA	<0.002 <0.002	<0.002 <0.002	<0.002 <0.002	<0.002 <0.002	<0.002 <0.002	<0.002 <0.002	<0.0
Boron	mg/L mg/L	0.002	ινν ς	<0.002	<0.002	<0.02	<0.02	<0.002	<0.002	<0.002	<0.002	<0.05	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.0
Boron (Filtered)	mg/L	0.05	5	<0.05	<0.03	<0.05	<0.03	<0.05	<0.05	<0.05	< 0.05	NDA	< 0.05	<0.05	<0.05	<0.05	<0.03	<0.05	<0.
Cadmium	mg/L	0.00001	0.005	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.00001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.00
Cadmium (Filtered)	mg/L	0.00001	0.005	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	< 0.00001	NDA	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	<0.0
Calcium	mg/L	0.1	NV	9.5	5.2	5.6	8.7	5.1	5.7	5.7	5.7	5.7	5.7	5.9	5.6	5.9	6.2	5.7	5.
Calcium (Filtered)	mg/L	0.1	NV	9.3	5.2	5.5	8.8	4.9	5.6	5.8	5.8	NDA	5.8	5.6	5.7	6.0	6.2	5.7	5.
Chromium Total (III+VI)	mg/L	0.001	0.05	<0.001	0.0012	<0.001	<0.001	0.0012	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.001	< 0.001	< 0.001	<0.0
Chromium Total (III+VI) (Filtered)	mg/L	0.001	0.05	<0.001	< 0.001	< 0.001	0.0011	0.0011	<0.001	< 0.001	< 0.001	NDA	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.
Cobalt	mg/L	0.0004	0.01	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	< 0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0
Cobalt (Filtered)	mg/L mg/L	0.0004	0.01 1b	<0.0004 0.0008	<0.0004 0.00078	<0.0004 0.001	<0.0004 0.0031	<0.0004 0.00084	<0.0004 0.0013	<0.0004 0.00089	<0.0004 0.00087	0.00095	<0.0004 0.00130	<0.0004 0.00080	<0.0004 0.00092	<0.0004 0.00097	<0.0004 0.00098	<0.0004 0.00092	<0.0
Copper Copper (Filtered)	mg/L	0.0005	10	0.00066	0.0019	0.00083	0.00054	0.00084	0.00075	0.00089	0.00076	NDA	0.00130	0.00080	0.00092	0.00037	0.00098	0.00092	0.00
Iron	mg/L	0.0005	0.3b	0.077	0.13	0.053	0.12	0.15	0.073	0.073	0.055	0.057	<0.05	0.052	0.067	0.060	< 0.05	0.00000	0.00
Iron (Filtered)	mg/L	0.05	0.3b	<0.05	0.084	<0.05	0.074	0.11	0.051	0.059	0.053	NDA	<0.05	< 0.05	0.059	<0.05	< 0.05	0.170	0.0
Lead	mg/L	0.0005	0.005 (revised value 2019)	< 0.0005	< 0.0005	< 0.0005	<0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	<0.0005	< 0.0005	<0.0005	< 0.0005	< 0.0005	< 0.0005	<0.0005	<0.0
Lead (Filtered)	mg/L	0.0005	0.005 (revised value 2019)	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	NDA	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0
Magnesium	mg/L	0.1	NV	1.7	1.1	1.2	1.6	1.1	1.2	1.1	1.1	1.1	1.0	1.1	1.0	1.1	1.1	1.1	1
Magnesium (Filtered)	mg/L	0.1	NV	1.7	1	1.2	1.7	0.96	1.1	1.1	1.1	NDA	1.1	1.1	1.1	1.1	1.2	1.1	1
Manganese	mg/L	0.002	0.12 (revised value 2019)	0.14	0.052	0.018	0.12	0.047	0.02	0.027	0.020	0.021	0.019	0.019	0.026	0.018	0.018	0.026	0.0
Manganese (Filtered) Mercury	mg/L mg/L	0.002	0.12 (revised value 2019) 0.001	0.13 NDA	0.023	0.012	0.11 NDA	0.028	0.017 <0.000013	0.024 <0.000013 [1]	0.020 NDA	NDA NDA	0.017 NDA	0.018 NDA	0.023	0.015 ]<0.000013 [1	0.018 NDA	0.025 <0.000013 [1	0.0 L]<0.000
Mercury (dissolved)	mg/L	0.000013	0.001	NDA	<0.000013	<0.000013	NDA	<0.000013	<0.000013	< 0.000013 [1]	<0.000013	NDA	<0.000013	<0.000013	<0.000013 [1]	<0.000013 [1	<0.000013	< 0.000013 [1	<0.00
Molybdenum	mg/L	0.002	0.07	<0.002	< 0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.002	< 0.002	<0.002	< 0.002	<0.002	<0.0
Molybdenum (Filtered)	mg/L	0.002	0.07	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	<0.002	<0.002	NDA	< 0.002	0.004	< 0.002	< 0.002	< 0.002	< 0.002	<0.0
Nickel	mg/L	0.002	0.1	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.002	<0.002	<0.0
Nickel (Filtered)	mg/L	0.002	0.1	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	NDA	<0.002	<0.002	<0.002	<0.002	< 0.002	<0.002	<0.0
Phosphorus	ug/L	100	NV	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0
Phosphorus (Filtered)	ug/L	100	NV	<0.1	<0.1	<100	<0.1	<0.1	<100	<100	<100	NDA	<100	<100	<100	<100	<100	<100	<1
Potassium (K)	ug/L	100	NV	1200 1200	910	880 910	1000	960	880 880	930	900	910 NDA	940	950	950	950	1000	930	96
Potassium (K) (Filtered) Selenium	ug/L mg/L	100 0.0005	NV 0.05 (revised 2014)	<0.0005	960 <0.0005	<0.0005	1000 <0.0005	980 <0.0005	<0.0005	970 <0.001	1000 <0.001	<0.001	980 <0.001	980 <0.001	980 <0.001	990 <0.001	1100 <0.001	980 <0.001	97 <0.0
Selenium (Filtered)	mg/L	0.0005	0.05 (revised 2014)	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.001	<0.001	NDA	<0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.0
Silver	mg/L	0.0001	0.1	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	< 0.0001	< 0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0
Silver (Filtered)	mg/L	0.0001	0.1	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	NDA	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0
Sodium	mg/L	0.1	200b	40	21	29	32	19	26	28.0	28.0	29.0	30.0	30.0	28.0	31.0	32.0	28.0	28
Sodium (Filtered)	mg/L	0.1	200b	40	20	28	34	18	26	29.0	30.0	NDA	31.0	30.0	29.0	32.0	34.0	28.0	29
Strontium	mg/L	0.002	7.0 (revised 2019)	0.035	0.019	0.019	0.032	0.018	0.018	0.019	0.019	0.020	0.020	0.021	0.020	0.021	0.022	0.020	0.0
Strontium (Filtered)	mg/L	0.002	7.0 (revised 2019)	0.031	0.019	0.018	0.031	0.018	0.018	0.020	0.021	NDA	0.020	0.021	0.020	0.022	0.022	0.019	0.0
Thallium Thallium (Filtered)	mg/L mg/L	0.0001	0.002	<0.0001 <0.0001	<0.0001 <0.0001	<0.0001 <0.0001	<0.0001 <0.0001	<0.0001 <0.0001	<0.0001 <0.0001	0.0001 <0.0001	<0.0001 <0.0001	<0.0001 NDA	<0.0001 <0.0001	<0.0001 <0.0001	<0.0001 <0.0001	<0.0001 <0.0001	<0.0001 <0.0001	<0.0001 <0.0001	<0.0
Tin	mg/L	0.0001	4.4	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.0001	<0.001	<0.002	<0.0001	<0.001	<0.0001	<0.0001	<0.0001	<0.001	<0.0
Tin (Filtered)	mg/L	0.002	4.4	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	NDA	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.0
Titanium	mg/L	0.002	NV	<0.002	< 0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.002	<0.0
Titanium (Filtered)	mg/L	0.002	NV	<0.002	< 0.002	< 0.002	<0.002	<0.002	<0.002	< 0.002	< 0.002	NDA	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	<0.
Uranium	mg/L	0.0001	0.02	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0
Uranium (Filtered)	mg/L	0.0001	0.02	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	NDA	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0
Vanadium	mg/L	0.002	0.0062	<0.002	< 0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.002	< 0.002	<0.002	< 0.002	< 0.002	< 0.002	<0.0
Vanadium (Filtered)	mg/L	0.002	0.0062	<0.002	< 0.002	<0.002	<0.002	<0.002	< 0.002	< 0.002	<0.002	NDA	< 0.002	<0.002	< 0.002	<0.002	<0.002	<0.002	<0.0
Zinc	mg/L	0.005	5b	<0.005	< 0.005	<0.005	< 0.005	<0.005	< 0.005	< 0.005	<0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	<0.0
Zinc (Filtered)	mg/L	0.005	5b	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	0.0054	< 0.005	NDA	< 0.005	0.0065	< 0.005	< 0.005	0.0074	< 0.005	<0.0

Table B-5 Comparison of Metal Concentrations in Surface Water Samples to NS Tier 1 Potable Groundwater Drinking Water Standards (Spring and Fall Data)

Bold Concentration exceeds Nova Scotia Environment Tier 1 Potable Groundwater Drinking Water Standards

NV Indicates that the standards provided were aesthetic objectives, operational guidance or that a standard was not provided by Nova Scotia Environment NA Not applicable

NDA No data available

Revised value indicates that Health Canada has updated the drinking water quality guideline since NS EQS were published; hence the updated value is provided and used in screening [1] A mercury bottle was not received for Total Mercury analysis

a Indicates groundwater drinking water standard is an operational guidance (non-health based standard) b Indicates groundwater drinking water standard is an aesthetic objective (non-health based standard)



#### B-1.3 References

Dillon. 2019. Phase I/II Environmental Site Assessment Port Wallace, Dartmouth, Nova Scotia. Dillon Consulting. File: 19-9183-1000. August 15, 2019.

Health Canada, 2017. Supplemental Guidance on Human Health Risk Assessment of Contaminated Sediments: Direct Contact Pathways. Federal Contaminated Sites Risk Assessment in Canada. March, 2017.

IOM. 2001. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium and Zinc. A report of the Panel on Micronutrients, Subcommittees on Upper Reference Levels of Nutrients and of the Interpretation and uses of Dietary Intakes and Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. Food and Nutrition Board of the Institute of Medicine of the National Academies, National Academy Press, Washington, DC.

Nova Scotia Environment. 2014. Environmental Quality Standards For Contaminated Sites. Rationale And Guidance Document. April 2014.

White, L.M., O'Brien, K., Little, M., & Goodwin, T. 2014. Soil sampling for exposure – does depth matter? Geological considerations of background metal concentrations in Nova Scotia soils. Health Canada.



#### B-2.0 ECOLOGICAL SCREENING

While an Ecological Risk Assessment (ERA) is not currently part of the scope for the current project, ecological risk screening was completed to confirm the potential need for further ecological assessment of the Barry's Run receiving environment, based on comparisons to NSE EQS (NSE, 2014). The COPCs identified will be evaluated in an ERA, which will be conducted in conjunction with the mine closure project for the Historic Montague Mine site. Both datasets from the two sampling campaigns were considered in the screening.

#### B-2.1 Sediments

Dillon (2019) compared the spring sediment data to NS Tier 1 freshwater sediment standards (see Table B-1 in Section B-1.1, which is Table E4 from Dillon, 2019). A number of metals exceeded the NS Tier 1 freshwater sediment standards, including arsenic, iron, lead, manganese, mercury, nickel, selenium and zinc. Iron was concluded to be within background ranges (See Section 4.4.2.2, Dillon, 2019), and does not merit further evaluation. Exceedances for all remaining metals were identified within the top 10 cm of sediment (sediment associated with greatest potential for exposure to freshwater aquatic organisms). Arsenic and mercury exceeded the sediment standards in 18 surface sediment ( $\leq 10$  cm) samples. Both of these substances are associated with historic mine activities, and hence should be carried forward for further evaluation in the ERA. Although lead exceeded the applicable standards in one surface sediment (≤10 cm) sample, this exceedance was marginal (e.g., less than 1.1-fold) and lead has not been reported to be associated with historic mining activities to a significant extent, based on the existing site data from the main tailings area, where lead is only marginally elevated over human or ecological health standards in the main tailings area (see Appendix B-2; Intrinsik et al, 2019). Nickel and zinc exceedances were noted in two surface sediment samples and selenium exceeded the standards in three surface sediment samples. Similar to lead, these exceedances were marginal (i.e., 1.1 to 1.4-fold of each standard). Based on the limited and marginal exceedances in surface sediment samples noted for lead, nickel, selenium and zinc, these metals were considered unlikely to be major drivers of toxicity or remedial outcomes when compared to the exceedances noted for other metals. As such, lead, nickel, selenium and zinc were not retained for further evaluation in the ERA. Background sediment data could not be found in the literature reviewed for manganese and manganese is typically enriched in mining locations. Background soil manganese concentrations provided in Section B-1.1 (human health screening - sediment) indicate that manganese concentrations are elevated, relative to typical manganese levels in Nova Scotia soils. While manganese is unlikely to be a driver of toxicity based on the degree of exceedance, relative to sediment quality guidelines, it will be considered in the future ERA as a possible contributor to toxicity.

Dillon (2019) also analyzed sediments for BTEX and TPH (see Table B-2 in Section B-1.1). These samples were all non-detect for BTEX lighter end TPH, and hence, did not merit further evaluation. Some heavier carbon TPH was detected, but upon further analyses it was concluded to be biogenic in nature, due to the presence of organic matter, and hence, was not considered to merit further study.

Similar to the approach taken by Dillon (2019), the selection of COPCs in Barry's Run and Mitchells' Brook sediment and fen samples collected in September through January 2020 by Dillon (see Appendix A) was based on a comparison of the concentrations of metals measured in sediment samples to the NS Tier 1 freshwater sediment standards (Table B-6). Metals with concentrations in excess of the NS Tier 1 freshwater sediment standards were retained for further evaluation. As shown in Table B-6, the concentrations of arsenic, lead, manganese,



mercury and selenium exceeded the freshwater sediment standards in one or more sediment samples. Exceedances for all of these metals were identified at sample depths of 0-10 cm and/or 0-20 cm (sediment associated with potential for exposure to freshwater aquatic organisms). Selenium only exceeded the standards in a single sediment sample collected at a depth of 0-20 cm in the fen area (i.e., TOF sample) and this exceedance was marginal (e.g. less than 1.5-fold). Based on the marginal exceedance noted for selenium in this single sediment sample, this metal was considered unlikely to be a major driver of toxicity or remedial outcomes when compared to the exceedances noted for other metals and was not retained as COPC for further evaluation in the ERA. Lead exceeded the applicable standards and 98th percentile typical Nova Scotia soil background concentrations in four surface sediment samples (25% of samples) collected in the fen area. While it is not substantially linked to site activities upgradient (Montague mines), it will be considered further in the ERA as a COPC. As noted previously, background sediment data could not be found in the literature reviewed for manganese and manganese is typically enriched in mining locations. While manganese is unlikely to be a driver of toxicity based on the degree of exceedance, relative to sediment quality guidelines, it will be considered in the future ERA as a possible contributor to toxicity. Arsenic and mercury exceeded the standards in 15 and 9 surface sediment samples, respectively. These metals are associated with historic mining activities, and hence are considered to be COPCs. Many other metals did not have sediment quality guidelines. All of these metals are naturally occurring substances, but some may have some additional association with historic mining activities. Based on the reported concentrations of arsenic and mercury in upstream environments, these two metalloids are expected to be the primary COPCs, and hence, the focus of any future ERA will largely be on these two substances, but can consider possible involvement of other metals or metalloids, as necessary.

# In conclusion, arsenic, lead, mercury and manganese were retained as COPCs in sediment for further evaluation in the ERA.

		Aluminium	Antimony	Arsenic	Barium	Beryllium	Boron	Cadmium	Chromium Total (III+VI)	Cobalt	Copper	Iron	Lead	Lithium	Manganese	Mercury	Molybdenum	Nickel	Selenium	Silver	Strontium	Thallium	Uranium	Vanadium	Zinc
		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
QL		10	2	2	5	2	5	0.3	2	1	2	50	0.5	2	2	0.1	2	2	2	0.5	5	0.1	0.1	2	5
IS Tier 1 EQS Freshwater Sediment		NV	25	17	NV	NV	NV	3.5	90	NV	197	43766	91.3	NV	1100	0.486	NV	75	2	1	NV	NV	NV	NV	315
ample ID	Sample Depth (cm)					1					1	1		•						1		1			
IOSED19-1	0 - 0.1	-	-	3000	-	-	-	-	-	-	-	-	-	-	-	3.5	-	-	-	-	-	-	-	-	-
IOSED19-2	0 - 0.1	-	-	1400	-	-	-	-	-	-	-	-	-	-	-	11	-	-	-	-	-	-	-	-	-
IOSED19-3	0 - 0.1	-	-	3900	-	-	-	-	-	-	-	-	-	-	-	4.9	-	-	-	-	-	-	-	-	-
IOSED19-4	0 - 0.1	-	-	5200	-	-	-	-	-	-	-	-	-	-	-	5.6	-	-	-	-	-	-	-	-	-
IOSED19-5	0 - 0.1	-	-	4600	-	-	-	-	-	-	-	-	-	-	-	5.2	-	-	-	-	-	-	-	-	-
IOSED19-6	0 - 0.1	-	-	1100	-	-	-	-	-	-	-	-	-	-	-	5.9	-	-	-	-	-	-	-	-	-
OF19-1	0 - 0.2	8200	2.2	200	74	<2	<5	0.51	7.3	3.9	18	6300	69	3.1	320	-	<2	13	<2	<0.5	46	<0.1	0.91	27	32
OF19-10	0 - 0.2	3100	<2	9.1	78	<2	<5	0.41	3	2.6	6.4	2500	39	<2	200	-	<2	11	<2	<0.5	27	<0.1	0.26	14	25
OF19-11	0 - 0.2	1600	<2	3	38	<2	<5	0.36	3.4	1.8	4.6	4400	38	<2	79	-	<2	10	<2	<0.5	20	<0.1	<0.1	8.1	27
OF19-12	0 - 0.2	4500	<2	3.3	31	<2	<5	<0.3	3	1.1	7.4	2700	42	<2	42	-	<2	7.9	<2	<0.5	11	<0.1	<0.1	31	18
OF19-13	0 - 0.2	3400	<2	6.4	110	<2	<5	0.65	2.6	2.2	7.4	2000	53	<2	130	-	<2	14	<2	<0.5	44	<0.1	0.31	34	28
OF19-14	0 - 0.2	3200	<2	6.4	56	<2	<5	<0.3	3.4	1.7	8.7	2600	76	<2	29	-	<2	16	<2	<0.5	19	<0.1	0.33	34	25
OF19-15	0 - 0.2	11,000	<2	22	10	<2	<5	0.73	2.9	5.4	15	4400	110	<2	38	-	<2	20	<2	<0.5	<5	<0.1	0.16	18	17
OF19-16	0 - 0.2	2500	<2	9.1	40	<2	<5	0.35	3.5	1.6	6.7	2200	73	<2	17	-	<2	8	<2	<0.5	23	<0.1	0.23	23	12
OF19-2	0 - 0.2	14,000	2.1	1500	240	<2	5.2	2.3	9.1	98	37	23,000	58	3.9	14,000	-	3.5	57	2.9	<0.5	41	0.43	0.77	72	160
OF19-3	0 - 0.2	18,000	2	1700	140	<2	<5	1.2	15	83	40	34,000	79	19	3500	-	<2	37	<2	<0.5	20	0.35	1.1	50	160
OF19-4	0 - 0.2	5600	<2	150	66	<2	<5	<0.3	5.6	3.3	17	7600	110	3.2	110	-	<2	12	<2	<0.5	27	<0.1	0.36	18	26
OF19-5	0 - 0.2	7100	<2	71	83	<2	<5	1.1	7	3.5	18	6500	<b>260</b>	4.3	160	-	<2	13	<2	<0.5	59	<0.1	0.82	23	59
OF19-6	0 - 0.2	4100	<2	37	46	<2	<5	<0.3	4.3	3.4	11	4700	110	<2	150	-	<2	7.9	<2	<0.5	16	<0.1	0.36	17	20
OF19-7	0 - 0.2	7700	<2	43	38	<2	<5	<0.3	6.6	1.3	16	2800	71	<2	36	-	<2	8.6	<2	<0.5	7.7	<0.1	0.43	30	16
OF19-8	0 - 0.2	2700	<2	6.4	67	<2	<5	0.31	2.9	1.4	7.3	4100	22	<2	220	-	<2	7.8	<2	<0.5	38	<0.1	0.27	16	28
OF19-9	0 - 0.2	6400	<2	18	64	<2	<5	0.61	4.1	7	10	8900	61	<2	430	-	<2	12	<2	<0.5	43	<0.1	0.86	42	22
OF20-1	0 - 0.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.05	-	-	-	-	-	-	-	-	I
OF20-3	0 - 0.2	-	-	-	-	-	I	-	I	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-
OF20-4	0 - 0.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.19	-	-	-	-	-	-	-	-	-
OF20-5	0 - 0.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-
OF20-6	0 - 0.2	-	-	-	-	-	_	-	-	-	-	-	-	-	-	0.7	-	-	-	-	-	-	-	-	-
OF20-7	0 - 0.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.07	-	-	-	-	-	-	-	-	-
OF20-8	0 - 0.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.05	-	-	-	-	-	-	-	-	-
OF20-9	0 - 0.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.06	-	-	-	-	-	-	-	-	-
OF20-11	0 - 0.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.05	-	-	-	-	-	-	-	-	-
OF20-14	0 - 0.2	-		-	-	-	_	-	-	-	-	-	-	-	-	<0.05	-	-	_	-	_		-	-	
OF20-15	0 - 0.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.05	-	-	-	-	-	-	-	-	-
OF20-16	0 - 0.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.07	-	-	-	-	-	-	-	-	-
OF20-16_D	0 - 0.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.05	-	-	-	-	-	-	-	-	-
 OF20-FD1 (Field Dup of TOF19-5)	0 - 0.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.08	-	-	-	-	-	-	-	-	-
OF20-FD2 (Field Dup of TOF19-8)	0 - 0.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.05	-	-	-	-	-	-	-	-	-



#### B-2.2 Surface Water

The selection of COPCs in Barry's Run surface water was based on a comparison of the concentrations of metals measured in surface water samples collected during the spring and fall to the NS Tier 1 freshwater surface water standards (Table B-7). Following this primary screening, metals exceeding the freshwater surface water standards were compared to revised guidelines (based on site-specific water quality characteristics) or site-specific surface water quality guideline values. Metals with concentrations markedly greater than the NS Tier 1 freshwater surface water standards and revised guidelines or site-specific guideline values were retained as COPCs for further evaluation in the ERA.

As shown in Table B-7, the concentrations of aluminum and arsenic exceeded the NS Tier 1 freshwater surface water standards in all surface water samples and the concentration of copper exceeded the standards in a single surface water sample (i.e., SW-OUT collected in September of 2019). Although the concentrations of aluminum and copper in surface water samples exceeded the NS Tier 1 freshwater surface water standards, it is important to note that the toxicity of aluminum and copper are dependent on pH and water hardness, respectively. National water quality guideline values for the protection of aquatic life, which take pH and water hardness into consideration, have been developed for these metals by the Canadian Council of Ministers of the Environment (CCME). When taking into consideration the pH of surface water samples collected from Barry's Run (range: 6.81-7.35), the concentrations of aluminum in all samples were below the CCME (1987) water quality guideline for the protection of aguatic life (i.e., 0.1 mg/L assuming a pH of ≥6.5), with the exception of surface water sample SW-OUT collected in November of 2019. However, the exceedance noted for this single surface water sample was marginal (e.g., less than 1.5-fold). When taking into consideration the water hardness of surface water sample SW-OUT collected in September of 2019 (i.e., 29 mg/L CaCO₃), the concentration of copper in this surface water sample (i.e., 0.0031 mg/L) exceeded the CCME (1987) long-term freshwater water guality guideline value for the protection of aguatic life (i.e.,0.002 mg/L). However, this exceedance was marginal (e.g., less than 1.5-fold), and only occurred in a single sample. Based on the limited and marginal exceedances in surface water samples noted for aluminum and copper, these metals were considered unlikely to be major drivers of toxicity or remedial outcomes when compared to the exceedances noted for other metals and were not retained as COPCs for further evaluation in the ERA.

Concentrations of arsenic in all surface water samples exceeded the NS Tier 1 freshwater surface water standards, as well as the Site Specific Tier 2 SSD Guideline of 0.030 mg/L (Intrinsik et al., 2019). Therefore, based on the available information, arsenic was retained as a COPC in surface water for further evaluation in the ERA.

Several metals were lacking freshwater aquatic life guidelines. Many of these are salts which are naturally occurring and unlikely to be associated with any toxicity (e.g., calcium, potassium, sodium). Phosphorus, ammonia, and nitrate and nitrite are not associated with the mine site, and hence, are not considered further. Bismuth, chromium, tin and titanium are non-detect in all samples, and therefore are not considered further.

# In conclusion, arsenic in surface water was retained as COPC for further evaluation in the ERA.

				Sample ID Sampling Date Code	KWQ755 (SW-IN) 2019-09-24 NA	LHN561 (SW-IN) 2019-11-13 NA	LMD218 (SW-IN) 2019-12-03 NA	KWQ756 (SW-OUT) 2019-09-24 NA	LHN562 (SW-OUT) 2019-11-13 NA	LMD219 (SW-OUT) 2019-12-03 NA	JPE946 4/29/19 2019SW1	JPE947 4/29/19 2019SW2	JPE947 4/29/19 2019SW2 Lab-Dup	JPE948         JPE949           4/29/19         4/29/19           2019SW3         2019SW4	JPE950 4/29/19 2019SW5	JPE951 4/29/19 2019SW6	JPE952 4/29/19 2019SW10	JPE953 4/29/19 2019SW11	4/29/19	JPE954 4/29/19 2019SW7 Lab-Dup
od P	arameter	Unit	EQL	NS Tier 1 EQS Freshwater Surface Water																
ated I	angelier Index (@ 4C)				-1.99	-2.95	-2.91	-2.22	-2.96	-2.79	-2.69	-2.86	NDA	-2.79 -2.81	-2.73	-2.75	-2.67	-2.87	-2.85	NDA
	angelier Index (@ 40)	-			-1.74	-2.95	-2.65	-1.97	-2.71	-2.54	-2.03	-2.61	NDA	-2.54 -2.56	-2.48	-2.73	-2.42	-2.62	-2.60	NDA
	aturation pH (@ 20C)	-			9.08	9.6	9.55	9.15	9.62	9.35	9.54	9.54	NDA	9.55 9.57	9.54	9.54	9.53	9.57	9.54	NDA
	aturation pH (@ 4C)	-			9.33	9.85	9.81	9.41	9.87	9.6	9.79	9.79	NDA	9.81 9.82	9.79	9.79	9.78	9.82	9.79	NDA
	litrate (as N)	mg/L	0.05		<0.05	< 0.05	0.086	<0.05	< 0.05	0.14	0.092	0.092	NDA	0.066 0.27	0.084	<0.050	<0.050	0.076	0.076	NDA
	Ikalinity (Bicarbonate as CaCO3) Ikalinity (Carbonate as CaCO3)	mg/L mg/L	1		21 <1	10 <1	11 <1	18 <1	10 <1	18 <1	11 <1.0	11 <1.0	NDA NDA	11 11 <1.0 <1.0	11 <1.0	11 <1.0	11 <1.0	10 <1.0	11 <1.0	NDA NDA
	pnic Balance	%	-		0.21	6.37	5.81	1.2	6.22	8.16	2.03	3.43	NDA	3.60 3.66	3.24	1.88	1.82	2.96	2.89	NDA
A	nions Total	meq/L			2.35	1.42	1.82	2.05	1.28	1.79	1.76	1.81	NDA	1.87 1.84	1.75	1.90	1.96	1.74	1.78	NDA
	ations Total	meq/L			2.36	1.25	1.62	2.1	1.13	1.52	1.69	1.69	NDA	1.74 1.71	1.64	1.83	1.89	1.64	1.68	NDA
	ardness as CaCO3	mg/L	1		30	17	19	29	16	19	19	19	NDA	19 19	19	20	20	19	19	NDA
	otal Dissolved Solids (TDS) - Calculated Ikalinity (total) as CaCO3	mg/L mg/L	1 5		140 21	82 10	100 11	120 18	75 10	100 18	100 11	100 11	NDA NDA	110 110 11 11	100	110	110 11	100 11	100	NDA NDA
- F	mmonia (as N)	mg/L	0.05		<0.05	0.051	<0.05	<0.05	<0.05	<0.05	<0.050	<0.050	<0.050	<0.050 <0.050	<0.050	<0.050	<0.050	<0.050	<0.050	NDA
	litrate + Nitrite (as N)	mg/L	0.05		<0.05	< 0.05	0.086	<0.05	<0.05	0.14	0.092	0.092	NDA	0.066 0.27	0.084	<0.050	<0.050	0.076	0.076	NDA
Ν	litrite (as N)	mg/L	0.01		<0.01	<0.01	< 0.02 #1	<0.01	<0.01	< 0.02 #1	<0.010	<0.010	NDA	<0.010 <0.010	<0.010	<0.010	<0.010	<0.010	<0.010	NDA
	hosphate	mg/L	0.01		0.016	0.021	0.02	0.014	0.013	0.013	0.013	0.013	NDA	0.014 0.013	0.013	0.015	0.020	0.012	0.012	NDA
	hosphorus hosphorus (Dissolved)	ug/L	100		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	hosphorus (Dissolved) lectrical conductivity (lab)	ug/L uS/cm	100 1		<0.1 240	<0.1 150	<100 190	<0.1 230	<0.1 130	<100 180	<100 200	<100 200	NDA 200	<100 <100 210 210	<100 200	<100 220	<100 230	<100 200	<100 200	NDA 200
	hloride (Filtered)	mg/L	1		63	36	50	53	32	44	48	50	NDA	52 50	48	54	56	48	49	NDA
	issolved Organic Carbon (Filtered)	mg/L	0.5		3.1	6.4	4	3.4	8.4	4.6	NDA	NDA	NDA	NDA NDA	NDA	NDA	NDA	NDA	NDA	NDA
	otal Organic Carbon (TOC)	mg/L	0.5		3.1	6.4	4.2	3.5	8.4	4.5	5.3	5.2	NDA	4.9 4.9	5.4	4.8	4.4	5.3	5.3	NDA
	H (Lab)	pH Unit	0.5		7.35	6.9	6.9	7.19	6.91	6.81	7.10	6.93	6.97	7.02 7.01	7.06	7.04	7.11	6.95	6.94	6.98 NDA
	ilica as SiO2 ulphate (SO4) (Filtered)	mg/L mg/L	0.5		3.1 8.2	3.1 8.7	2 8.8	<u> </u>	3.3 8.4	2.5 9	1.6 8.4	1.5 8.5	NDA NDA	1.3         1.5           8.4         9.0	1.6	1.2 8.4	1.1 8.5	1.6 8.9	1.6 8.4	NDA NDA
	otal Suspended Solids (TSS)	mg/L	1		<1	<1	<1	<1	<1	<1	NDA	NDA	NDA	NDA NDA	NDA	NDA	NDA	NDA	NDA	NDA
	urbidity	NTU	0.1		0.72	0.84	0.52	0.82	0.52	0.56	0.25	0.26	NDA	0.31 0.27	0.24	0.33	<0.10	0.41	0.47	NDA
	olour	TCU	5		9.2	37	17	13	57	23	33	28	NDA	28 27	32	25	24	31	31	NDA
_	luminium	mg/L	0.005	0.005	0.017	0.097	0.047	0.023	0.14	0.064	0.081	0.071	0.073	0.063 0.070	0.079	0.057	0.046	0.086	0.080	NDA
	luminium (Filtered) ntimony	mg/L mg/L	0.005	0.005	0.02 <0.001	0.076 <0.001	0.04 <0.001	0.018 <0.001	0.11 <0.001	0.056 <0.001	0.081 <0.001	<b>0.077</b> <0.001	NDA <0.001	0.066 0.068 <0.001 <0.001	<b>0.080</b> <0.001	0.055 <0.001	0.048 <0.001	<b>0.088</b> <0.001	0.091 <0.001	NDA NDA
_	ntimony (Filtered)	mg/L	0.001	0.02	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	NDA	<0.001 <0.001	<0.001	<0.001	<0.001	<0.001	<0.001	NDA
	rsenic	mg/L	0.001	0.005	0.065	0.093	0.091	0.055	0.046	0.049	0.045	0.047	0.048	0.054 0.050	0.046	0.059	0.086	0.045	0.046	NDA
А	rsenic (Filtered)	mg/L	0.001	0.005	0.059	0.085	0.082	0.05	0.041	0.047	0.045	0.044	NDA	0.054 0.047	0.044	0.058	0.083	0.044	0.045	NDA
	arium	mg/L	0.001	1	0.0082	0.0046	0.0038	0.0066	0.0053	0.004	0.0045	0.0041	0.0044	0.0041 0.0055	0.0045	0.0044	0.0045	0.0045	0.0046	NDA
	arium (Filtered) eryllium	mg/L mg/L	0.001	0.0053	0.008 <0.001	0.0049 <0.001	0.0034 <0.001	0.0068 <0.001	0.0049 <0.001	0.004 <0.001	0.0044	0.0043	NDA <0.001	0.0044 0.0044 <0.001 <0.001	0.0044	0.0044	0.0046	0.0047 <0.001	0.0046	NDA NDA
	eryllium (Filtered)	mg/L	0.001	0.0053	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	NDA	<0.001 <0.001	<0.001	<0.001	<0.001	<0.001	<0.001	NDA
В	ismuth	mg/L	0.002	NV	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002 <0.002	<0.002	<0.002	<0.002	<0.002	<0.002	NDA
В	ismuth (Filtered)	mg/L	0.002	NV	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	NDA	<0.002 <0.002	<0.002	<0.002	<0.002	<0.002	<0.002	NDA
	oron oron (Filtered)	mg/L mg/L	0.05 0.05	1.2 1.2	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 NDA	<0.05 <0.05 <0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	NDA NDA
	admium	mg/L	0.00001	0.00001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.00001	<0.0001 <0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	NDA
С	admium (Filtered)	mg/L	0.00001	0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	NDA	<0.00001 <0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	NDA
	alcium	mg/L	0.1	NV	9.5	5.2	5.6	8.7	5.1	5.7	5.7	5.7	5.7	5.7 5.9	5.6	5.9	6.2	5.7	5.7	NDA
_	alcium (Filtered) hromium Total (III+VI)	mg/L mg/L	0.1	NV NV	9.3 <0.001	5.2 0.0012	5.5 <0.001	8.8 <0.001	4.9 0.0012	5.6 <0.001	5.8 <0.001	5.8 <0.001	NDA <0.001	5.8 5.6 <0.001 <0.001	5.7	6.0	6.2 <0.001	5.7 <0.001	5.7 <0.001	NDA NDA
	hromium Total (III+VI) (Filtered)	mg/L	0.001	NV	<0.001	<0.0012	<0.001	0.0011	0.0012	<0.001	<0.001	<0.001	NDA	<0.001 <0.001	<0.001	<0.001	<0.001	<0.001	<0.001	NDA
	obalt	mg/L	0.0004	0.01	<0.0004	<0.0004	<0.0004	< 0.0004	<0.0004	<0.0004	< 0.0004	< 0.0004	<0.0004	<0.0004 <0.0004	<0.0004	<0.0004	< 0.0004	< 0.0004	< 0.0004	NDA
С	obalt (Filtered)	mg/L	0.0004	0.01	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	NDA	<0.0004 <0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	NDA
	opper	mg/L	0.0005	0.002	0.0008	0.00078	0.001	0.0031	0.00084	0.0013	0.00089	0.00087	0.00095	0.00130 0.00080		0.00097		0.00092	0.00097	NDA
	opper (Filtered)	mg/L mg/L	0.0005	0.002	0.00066	0.0019 0.13	0.00083	0.00054	0.00089 0.15	0.00075	0.00076	0.00076	NDA 0.057	0.00082 0.00076 <0.05 0.052	0.00076	0.00086	0.00081 <0.05	0.00080	0.00088	NDA NDA
li Ir	on (Filtered)	mg/L	0.05	0.3	<0.05	0.084	<0.05	0.074	0.11	0.073	0.073	0.053	NDA	<0.05 <0.052	0.059	<0.05	<0.05	0.170	0.056	NDA
	ead	mg/L	0.0005	0.001	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	< 0.0005	< 0.0005	<0.0005	<0.0005 <0.0005	< 0.0005	<0.0005	< 0.0005	<0.0005	< 0.0005	NDA
	ead (Filtered)	mg/L	0.0005	0.001	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	NDA	<0.0005 <0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	NDA
	Aagnesium Aagnesium (Filtered)	mg/L	0.1	NV	1.7	1.1	1.2	1.6	1.1	1.2	1.1	1.1	1.1	1.0 1.1	1.0	1.1	1.1	1.1	1.1	NDA
	1agnesium (Filtered) 1anganese	mg/L mg/L	0.1	NV 0.82	1.7 0.14	1 0.052	1.2 0.018	<u> </u>	0.96	1.1 0.02	1.1 0.027	1.1 0.020	NDA 0.021	1.1         1.1           0.019         0.019	1.1 0.026	1.1 0.018	1.2 0.018	1.1 0.026	1.1 0.028	NDA NDA
	Aanganese (Filtered)	mg/L	0.002	0.82	0.14	0.023	0.018	0.12	0.028	0.02	0.027	0.020	NDA	0.017 0.018	0.020	0.018	0.018	0.020	0.028	NDA
	Aercury	mg/L	0.000013	0.000026	NDA	0.000013	<0.000013	NDA	<0.000013	<0.000013	<0.000013 [1]	NDA	NDA	NDA NDA	<0.000013 [1]	<0.000013 [1]	NDA	<0.000013 [1]	] <0.000013 [1]	
	Aercury (dissolved)	mg/L	0.000013	0.000026	NDA	<0.000013	<0.000013	NDA	<0.00013	<0.000013	<0.000013	<0.000013	NDA	<0.000013 <0.00001	3 <0.000013	<0.000013	< 0.000013	<0.000013	<0.000013	NDA
	10lybdenum Achthdonum (Filtered)	mg/L	0.002	0.073	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002 <0.002	<0.002	<0.002	<0.002	<0.002	<0.002	NDA
	1olybdenum (Filtered) lickel	mg/L mg/L	0.002	0.073 0.025	<0.002 <0.002	<0.002 <0.002	<0.002 <0.002	<0.002	<0.002 <0.002	<0.002 <0.002	<0.002 <0.002	<0.002 <0.002	NDA <0.002	<0.002 0.004 <0.002 <0.002	<0.002 <0.002	<0.002 <0.002	<0.002 <0.002	<0.002 <0.002	<0.002 <0.002	NDA NDA
	lickel (Filtered)	mg/L	0.002	0.025	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	NDA	<0.002 <0.002	<0.002	<0.002	<0.002	<0.002	<0.002	NDA
Р	otassium (K)	ug/L	100	NV	1200	910	880	1000	960	880	930	900	910	940 950	950	950	1000	930	960	NDA
	otassium (K) (Filtered)	ug/L	100	NV	1200	960	910	1000	980	880	970	1000	NDA	980 980	980	990	1100	980	970	NDA
	elenium elenium (Filtered)	mg/L mg/L	0.0005	0.001 0.001	<0.0005 <0.0005	<0.0005 <0.0005	<0.0005 <0.0005	<0.0005 <0.0005	<0.0005 <0.0005	<0.0005 <0.0005	<0.001 <0.001	<0.001 <0.001	<0.001 NDA	<0.001 <0.001 <0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	NDA NDA
	ilver	mg/L mg/L	0.0005	0.001	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.001	<0.001	<0.0001	<0.001 <0.001	<0.001	<0.001	<0.001	<0.001	<0.001	NDA NDA
	ilver (Filtered)	mg/L	0.0001	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	NDA	<0.0001 <0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	NDA
_	odium	mg/L	0.1	NV	40	21	29	32	19	26	28.0	28.0	29.0	30.0 30.0	28.0	31.0	32.0	28.0	28.0	NDA
	odium (Filtered)	mg/L	0.1	NV 21	40	20	28	34	18	26	29.0	30.0	NDA	31.0 30.0	29.0	32.0	34.0	28.0	29.0	NDA
_	trontium trontium (Filtered)	mg/L mg/L	0.002	21 21	0.035 0.031	0.019 0.019	0.019 0.018	0.032	0.018	0.018	0.019 0.020	0.019 0.021	0.020 NDA	0.020 0.021 0.020 0.021	0.020	0.021	0.022	0.020	0.019	NDA NDA
	hallium (Filtered)	mg/L mg/L	0.002	0.0008	<0.0001	<0.0001	<0.001	<0.001	<0.001	<0.001	0.020	<0.0001	<0.0001	<pre></pre>	<0.020	<0.0022	<0.0001	<0.019	<0.020	NDA NDA
	hallium (Filtered)	mg/L	0.0001	0.0008	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	NDA	<0.0001 <0.0001 <0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	NDA
Т	in	mg/L	0.002	NV	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002 <0.002	<0.002	<0.002	<0.002	<0.002	<0.002	NDA
	in (Filtered)	mg/L	0.002	NV	<0.002	<0.002	<0.002	< 0.002	<0.002	<0.002	< 0.002	< 0.002	NDA	<0.002 <0.002	< 0.002	< 0.002	< 0.002	<0.002	<0.002	NDA
	itanium itanium (Filtered)	mg/L mg/L	0.002	NV	<0.002 <0.002	<0.002 <0.002	<0.002 <0.002	<0.002	<0.002 <0.002	<0.002 <0.002	<0.002 <0.002	<0.002 <0.002	<0.002 NDA	<pre>&lt;0.002 &lt;0.002 &lt;0.002 &lt;0.002</pre>	<0.002	<0.002 <0.002	<0.002 <0.002	<0.002 <0.002	<0.002 <0.002	NDA NDA
	Itanium (Filtered) Iranium	mg/L mg/L	0.002	0.3	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.0001	<0.002 <0.002 <0.002 <0.001	<0.002	<0.002	<0.002	<0.002	<0.002	NDA NDA
	Iranium (Filtered)	mg/L	0.0001	0.3	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	NDA	<0.0001 <0.0001 <0.0001		<0.0001	<0.0001	<0.0001	<0.0001	NDA
		mg/L	0.002	0.006	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002 <0.002	<0.002	<0.002	<0.002	<0.002	<0.002	NDA
	anadium	- 0,																		
V	anadium (Filtered) inc	mg/L mg/L	0.002	0.006	<0.002 <0.005	<0.002 <0.005	<0.002 <0.005	<0.002 <0.005	<0.002 <0.005	<0.002 <0.005	<0.002 <0.005	<0.002 <0.005	NDA <0.005	<pre>&lt;0.002 &lt;0.002 &lt;0.005 &lt;0.005</pre>	<0.002 <0.005	<0.002 <0.005	<0.002 <0.005	<0.002 <0.005	<0.002 <0.005	NDA NDA

Table B7 Comparison of Metal Concentrations in Surface Water Samples to NS Tier 1 Environmental Quality Standards for Surface Water (Freshwater )

Environmental Standards Comments

**Bold** Concentration exceeds Nova Scotia Environment Tier 1 Environmental Quality Standards (July 2013) for Freshwater Surface Water **#1** Elevated reporting limit due to method blank performance.

[1] A mercury bottle was not received for Total Mercury analysis

NA Not applicable

NV Indicates that a standated was not provided by Nova Scotia Environment



#### B-2.3 References

CCME. 1987. Aluminum. Water Quality for the Protection of Aquatic Life. Canadian Council of Ministers of the Environment. Available at <u>http://st-</u>ts.ccme.ca/en/index.html?lang=en&factsheet=4#aql_fresh_date [Accessed January 2, 2020].

CCME. 1987. Copper. Water Quality for the Protection of Aquatic Life. Canadian Council of Ministers of the Environment. Available at <u>http://st-</u> <u>ts.ccme.ca/en/index.html?lang=en&factsheet=71#aql_fresh_concentration</u> [Accessed January 2, 2020].

Dillon. 2019. Phase I/II Environmental Site Assessment Port Wallace, Dartmouth, Nova Scotia. Dillon Consulting. File: 19-9183-1000. August 15, 2019.

Intrinsik et al. 2019. Conceptual Closure Study for the Historic Montague Mines Tailings Areas, Halifax, Nova Scotia. For Nova Scotia Lands Inc. Final Report July 24, 2019. Intrinsik Corp., EcoMetrix, Klohn Crippen Berger and Wood.

Nova Scotia Environment. 2014. Environmental Quality Standards For Contaminated Sites. Rationale And Guidance Document. April 2014.

#### APPENDIX C

### MODEL OUTPUTS FOR HUMAN HEALTH RISK ASSESSMENT

		Oral Exposure - Shoreline Sediment	Hand to Mouth			De	ermal Exposure	1	· · · · · · · · · · · · · · · · · · ·	I			
Chemical	EPC (mg/kg)	Oral Exposure (mg/kg/day)	Risk (ER or ILCR)	Hands (mg/kg/day)	Feet (mg/kg/day)	Legs (mg/kg/day)	Arms (mg/kg/day)	Forearms (mg/kg/day)	Whole Body (mg/kg/day)	Total Dermal (mg/kg/day)	Risk (ER or ILCR)	Total Risk (ER or ILCR)	
Non-Cancer Endpoints													
High Contact-Low Frequency													
Arsenic - Toddler	3287	3.4E-05	0.1147	3.4E-06	1.5E-05	9.7E-06	1.2E-06			2.9E-05	0.10	2.12E-01	
Mercury - Toddler	5.22	3.74E-07	0.0012	5.1E-07	2.2E-06	1.4E-06	1.8E-07			4.3E-06	0.01	1.56E-02	
Low-Contact-High Frequency													
Arsenic - Child Mercury - Child	2000 5.9	3.6E-05 7.3E-07	0.1201 0.0024	6.3E-06 1.7E-06	3.3E-05 9.0E-06					3.9E-05 1.1E-05	0.13	2.50E-01 3.82E-02	
	5.9	7.3E-07	0.0024	1.7E-00	9.02-00					1.100	0.04	5.02E-02	
Cancer Endpoints													
High Contact-Low Frequency			1.05.00		0.55.00	7 7 7 00	0.45.05			0.05.05	0.55.05		
Arsenic - Adult	3287	2.2E-06	4.0E-06	1.7E-06	9.5E-06	7.7E-06	8.1E-07			2.0E-05	3.5E-05	3.94E-05	
Low-Contact-High Frequency	2000	5.9E-06	1.15.05	4.4E-06							E 2E 0E	C 285 05	
Arsenic - Adult	2000	5.9E-00	1.1E-05	4.4⊏-00	2.5E-05					3.0E-05	5.3E-05	6.38E-05	
				Arsenic	Mercury								
RfD	Oral Refe	erence Dose ⁶	mg/kg/day	3.00E-04	3.00E-04								
ILCR	Oral ILCF		mg/kg/day ⁻¹	1.80E+00	-								
AF _G		absorption factor for gut 7	unitless	1.46E-01	1.00E+00	Mean arsenic bioac		. ,					
AF _S	Relative	absorption factor for skin ¹	unitless	5.00E-03	4.66E-01	Arsenic value based	l on Lowney et al.	2007					
BSC	Backgrou	und sediment concentration ⁴	mg/kg	2.00E+02	3.74E-01	Arsenic value based	l on Spooner 2019						
RECEPTOR AND LAND-USE	SPECIFIC PARAMETERS												
				Toddler	Adult	Child	Adult				Comments		
Parameter		Description	Units					_	Reference				
				High Contact	High Contact	Low Contact	Low Contact						
SA _H	Surface a	area of hands	m²	4.30E-02	8.90E-02	5.90E-02	8.90E-02		HC (2017)		¹ As per the minutes of the	Sediment Workshop, RAFs	for soil should be used given the lack of dermal RAF da
SA _F	Surface a	area of feet	m²	4.30E-02	1.19E-01	7.20E-02	1.19E-01		HC (2017)		absorption of wet Colorado	residential soil in Lowney e	et al. 2007
SAL	Surface a	area of legs (lower)	m²	8.45E-02	2.86E-01				HC (2017)				ng Group, would like to assume that hands, feet and for $(2017)$ , $O(2017)$ ,
SA _A		area of arms (upper and lower)	m²	8.90E-02	2.50E-01	1.48E-01	2.50E-01		HC (2017)				C (2017), O'Connor (1997) or EPA (2008) for children. It I d that the US EPA (1997) EFH does provide forearm sur
SA _{FA}		area of forearms ²	2 m ²	4.45E-02	1.25E-01	7.40E-02	1.25E-01		HC (2017)		50% of the total arm surfac		
SA _{WB} SA _{HT}		ody surface area area of head and torso	m²	6.13E-01 3.54E-01	1.76E+00				HC (2017)				rage of those values recommended by Shoaf (2005) and om individual CCME SQG doucments), these data were
DL _H		bading of sediment to hands	kg/m ² -event	4.90E-03	4.90E-03	4.90E-03	4.90E-03		HC (2017)	(2010)	-		present the sum of the hand-to-mouth contact sediment
DL _F		bading of sediment to feet	kg/m ² -event	2.10E-02	2.10E-02	2.10E-02	2.10E-02		oaf (2005); Golder oaf (2005); Golder		-		g/hour to kg/d assuming 1 hour of exposure per event
DLL		pading of sediment to legs	kg/m ² -event	7.00E-03	7.00E-03	7.00E-03	7.00E-03	1	oaf (2005); Golder		·		onic RfD and oral slope factor from the US EPA (1993) a samples was selected for use for the relative absorption
DL _A		pading of sediment to arms	kg/m ² -event	1.70E-03	1.70E-03	1.70E-03	1.70E-03		oaf (2005); Golder			solution Daily of Null a	
DL _{FA}	Dermal lo	oading of sediment to forearms	kg/m ² -event	1.70E-03	1.70E-03	1.70E-03	1.70E-03	1	oaf (2005); Golder				
DL _{HT}	Dermal lo	bading of sediment to head and torso ³	kg/m ² -event	4.35E-03	4.35E-03	4.35E-03	4.35E-03		oaf (2005); Golder				
EF	Exposure	e Frequency	events/d	1		1	1		CCME (2006)	*			
EF	Exposure	e Frequency	days/year	6	6	26	26						
DPY	Days per		days/year	365	365	365	365				_		
SIR _{Shoreline}		t Ingestion rate - shoreline sediment 5	kg/d	7.20E-05	2.00E-05	5.70E-05	2.00E-05		HC (2017)				
SIR _{SS}		t Ingestion rate - suspended sediment ⁵	kg/d	7.70E-06	7.70E-06	7.70E-06	7.70E-06						
BW	Body wei		kg	16.5	70.7	32.9	70.7		CCME(2006)	3			1 1
	Cancer A	Amortization	unitless		1.00E+00		1.00E+00	Y MARKAN AND AND AND AND AND AND AND AND AND A		-			

- data for sedir	ments. RAF for	skin is based on	the average percent
. It has been as	ssumed that 509	% of the total arr	low contact scenario. m (upper and lower) oximately equal to
	010) for legs and		
ere used.			a contract and dimension
nt			contact sediment
	cury the chronic ut (ESG, 2019)	RfD is from WH	IO (2010)
Ū	( · · · )		

			<u> </u>		-						_					L					
	Dissolved	<b>(</b>	Dral Exposure t	to Surface Wat	ter	T				Dermal E	Exposure to	o Surface W	/ater		1	T			Oral Ex	posure to Suspend	led \$
	Surface Water Concentration	Daily Ingestion	(ug/kg/day)	Exposure Limit/ q1*	Exposi	ure Ratio/C	Cancer Risk	Dermal Permeability Coefficient	Absorbed Dose	Daily	Dermal (ug	/kg/day)	Exposure Limit/ q1*	Exposure	Ratio/ Car	ncer Risk	Total Risk	from Surface Wa	ater Sediment Concentratio	Oral n Exposure	
Chemical	(ug/L)	Toddler	Child	(ug/kg/day)	Toddler	Child	Adult	(cm/hr)	per Event (mg/cm2-event)	Toddler	Child	Adult	(ug/kg/day)	Toddler	Child	Adult	Toddler	Child Adı		(mg/kg/day)	(
Non-Carcinogens																					
High Contact-Low Frequency																					
Arsenic - Toddler	6.3E+01	3.1E-03		3.0E-01	0.0105			1.0E-03	6.3E-08	3.8E-04			3.0E-01	0.00127			0.0117		3287	3.7E-06	
Mercury - Toddler	6.5E-03	3.2E-07		3.0E-01	0.000001	1		1.0E-03	6.5E-12	3.9E-08			3.0E-01	0.0000001			0.0000012		5.22	4.0E-08	
Low Contact-High Frequency																					
Arsenic - Child Mercury - Child	6.3E+01 6.5E-03		6.8E-03 7.0E-07	3.0E-01 3.0E-01		0.0227		1.0E-03 1.0E-03	6.3E-08 6.5E-12		1.4E-03 1.4E-07		3.0E-01 3.0E-01		0.00464 0.00000			0.0274 0.0000	2000 5.9	4.9E-06 9.8E-08	
Carcinogens																					
High Contact-Low Frequency	6 20F ±01						1.25.06	1 005 02	6.25.08			2.465.04				4 4 5 07		1 05	00 2007	0.65.07	
Arsenic - Adult	6.30E+01			1.80E-03			1.3E-06	1.00E-03	6.3E-08			2.46E-04	1.80E-03			4.4E-07		1.8E	-06 3287	8.6E-07	
Low-Contact-High Frequency Arsenic - Adult	6.30E+01			1.80E-03			5.7E-06	1.00E-03	6.3E-08			1.07E-03	1.80E-03			1.9E-06		7.6E	-06 2000	2.3E-06	
				1.00E-03			5.7					1.07 E-03	1.000-03			1.32-00		/.0E		2.32-00	
Reference Dose																					
Arsenic	0.3	ug/kg/day																			
Mercury	0.3	ug/kg/day																			
Oral Slope Factor																					
Arsenic	1.80E-03	ug/kg/day ⁻¹																			
Receptor Parameters																					
Body Weight - Infant	8.2	ka																			
Body Weight - Toddler	16.5	kg kg																			
Body Weight - Child	32.9	kg																			
Body Weight - Teen Body Weight - Adult	59.7 70.7	kg ka																			
SW ingestion Rate - Infant	0.05	L/hour	US EPA (19	989)																	
SW ingestion Rate - Toddler	0.05	L/hour	US EPA (19	989)																	
SW ingestion Rate - Child SW ingestion Rate - Teen	0.05 0.05	L/hour L/hour	US EPA (19 US EPA (19																		
SW ingestion Rate - Adult	0.05	L/hour	US EPA (19																		
Exposed Skin Surface Area - Infant	3510	cm ²	Richardson	າ (1997)																	
Exposed Skin Surface Area - Toddler	6050	cm ²	Richardson																		
Exposed Skin Surface Area - Child	10200	cm ²	Richardson	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~																	
Exposed Skin Surface Area - Teen	15000	cm ² cm ²	Richardson																		
Exposed Skin Surface Area - Adult	16800	cm	Richardson	1 (1997)																	
High Contact-Low Frequency																					,
Hours per event Swimming Swimming events per day	1	hours/event events/day																			
Days per Year with Exposure to SW	6	days/year																			
Days per Year	365	days/year																			
Cancer Amortization	1.00E+00																				
Low Contact-High Frequency																					
Hours per event Swimming	1	hours/event																			
Swimming events per day Days per Year with Exposure to SW	26	events/day days/year																			
Days per Year	365	days/year																			
Cancer Amortization	1.00E+00																				
pi	3.14159																				
Conversion Factor	1000	cm3-kg/m3-g																			
Conversion Factor		mg to ug L/m3																			
Conversion Factor Conversion Factor	1000 1.00E-06																				
	1.00E-06	ug/L to mg/cm3																			
SW Dermal Permeability Coefficient																					
Arsenic		cm/hr																			
Mercury	1.00E-03	cm/hr																			
Suspended Sediment Gut RAF																					
Arsenic	0.146																				
Mercury	1																				
Suspended Sediment Ingestion Rate	7.70E-06	kg/d				1			1				1		1	t	+				



•		d to Soil (Fen) in Barry's Run								
		Oral Exposure - Soil (	fen)			C	ermal Exposure			
Chemical	EPC (mg/kg)	Oral Exposure (mg/kg/day)	Risk (ER or ILCR)		Hands (mg/kg/day)	Other Surfaces (mg/kg/day)		Total Dermal (mg/kg/day)	Risk (ER or ILCR)	Total Risk (E or ILCR)
on-Cancer Endpoints										
ligh Contact-Low Frequency	1571	1.8E-05	0.06094		3.4E-07	2.0E-07		5.4E-07	1.79E-03	6.27E-02
Mercury - Toddler	0.67	5.34E-08	0.00018		1.3E-08	8.0E-09		2.1E-08	7.13E-05	2.49E-04
Low-Contact-High Frequency										
Arsenic - Child Mercury - Child	1571 0.67	9.9E-06 2.9E-08	0.0331		1.0E-06 4.0E-08	7.7E-08 3.1E-09		1.1E-06 4.3E-08	3.60E-03 1.43E-04	3.67E-02 2.40E-04
Cancer Endpoints										
High Contact-Low Frequency										
Arsenic - Adult	1571	1.1E-06	1.9E-06		1.6E-07	1.5E-07		3.1E-07	5.6E-07	2.48E-06
Low-Contact-High Frequency Arsenic - Adult	1571	4.6E-06	8.3E-06		7.0E-07	6.5E-07		1.4E-06	2.4E-06	1.08E-05
		4.02-00			7.02-07	0.52-07				
				Arsenic	Mercury					
RfD		Dral Reference Dose	mg/kg/day	3.00E-04	3.00E-04					
ILCR	(	Dral ILCR	mg/kg/day ⁻¹	1.80E+00	-					
AF _G	F	Relative absorption factor for gut	unitless	1.46E-01	1.00E+00	Mean arsenic bioac	cessibility from ES	G (2019)		
AFs		Relative absorption factor for skin	unitless	5.00E-03	4.66E-01	Arsenic value base				
BSC	E	Background sediment concentration	mg/kg	2.00E+02	3.74E-01	Arsenic value base	d on Spooner 2019	)		
RECEPTOR AND LAND-USE S										
				Toddler	Adult	Child	Adult		Reference	
Parameter		Description	Units	High Contact	High Contact	Low Contact	Low Contact	1		
SA _H		Surface area of hands		4.30E-02	8.90E-02	5.90E-02	8.90E-02		HC (2012)	
SA _{OS}		Surface area of Other Surfaces	m ²	2.58E-01	8.22E-01	4.55E-02	8.22E-01		HC (2012)	
DL _H DL _{OS}	Dermal loading of soils to hands Dermal loading of soil to other surfaces		kg/m ² -event kg/m ² -event	1.00E-03 1.00E-04	1.00E-03 1.00E-04	1.00E-03 1.00E-04	1.00E-03 1.00E-04			
EF		Exposure Frequency	events/d	1		1	1		CCME (2006)	
EF		Exposure Frequency	days/year	6	6	26	26			
DPY		Days per year	days/year	365	365	365	365			
SIR _{fen}		Soil Ingestion rate - Fen	kg/d	8.00E-05	2.00E-05	2.00E-05	2.00E-05		HC (2012)	
BW	E	Body weight	kg	16.5	70.7	32.9	70.7		CCME(2006)	
	(	Cancer Amortization	unitless		1.00E+00		1.00E+00			

#### From Nova Scotia Environment Fish Consumption Advisory

https://novascotia.ca/nse/fish-consumption-advisory.asp

			N	IERCURY CONSUMPTION LI	MIT		MERCURY CONSUMPTION LIMIT								
Species	Fish Length < (measured nose to tail fork)	General Public Over age 12	Women who are or may become pregnant and / or are breast feeding	or may become pregnant Children age 5-11 and / or are		Infants (less than 1 year of age)	General Public Over age 12	Women who are or may become pregnant and / or are breast feeding	Children age 5-11	Children age 1-4	Infants (less than 1 year of age)				
Brook Trout	Under 25 cm	2 servings	1 serving	1½ servings	3/4 serving	1/2 serving	21.4	10.7	3.7	1.8	1.2				
	(9.8 in)	per week	per week	per month	per month	per month	g/day	g/day	g/day	g/day	g/day				
	Over 25 cm	1 serving	1 serving			Avoid	10.7	2.5							
Brook Trout	(9.8 in)	per week	per month	Avoid	Avoid		g/day	g/day	Avoid	Avoid	Avoid				
Smallmouth Bass	Under 35 cm	3 servings	1 serving	1½ servings	Avoid	Avoid	7.4	2.5	3.7	Avoid	Avoid				
Smallmouth Bass	(13.8 in)	per month	per month	per month	Avoid	AVOID	g/day	g/day	g/day	AVOID	Avoid				
	Over 35 cm	2 servings	Avoid	Avoid			4.9	Avoid	Avoid		Avoid				
Smallmouth Bass	(13.8 in)	per month	Avoid	AVOID	Avoid	Avoid	g/day	Avoid	Avoid	Avoid	Avoid				
1 serving = 75g or 2	1/202 or 125mL or 1/2	cup of cooked fish (0	anada's Food Guide)						-	-					

if consumption advisory followed due to mercury, mercury and arsenic exposures and risks for fish in Barry's Run

		FISH CONSUMPTION			FISH CONCENTRATION MERCURY EXPOSURE					TRV (ug/kg/day) MERCURY FISH CONSUMPTION RISK						1				
Species	Fish Length < (measured nose to tail fork)	General Public Over age 12	Women who are or may become pregnant and / or are breast feeding	Children age 5-11	Children age 1-4	Infants (less than 1 year of age)	MERCURY TISSUE CONCENTRATION ug/g ww	General Public Over age 12	Women who are or may become pregnant and / or are breast feeding	Children age 5-11	Children age 1-4	Infants (less than 1 year of age)	Oral RfD (general pop) Oral RfD (children and women bearing age)	General Public Over age 12	Women who are or may become pregnant and / or are breast feeding	Children age 5-12	Children age 1-4	Infants (less than 1 year of age)		
							receptor body weight	70.7	70.7	32.9	16.5	8.2								
Brook Trout	Under 25 cm (9.8 in)	21.4 g/day	10.7 g/day	3.7 g/day	1.8 g/day	1.2 g/day	0.243	0.07 ug/kg/day	0.04 ug/kg/day	0.03 ug/kg/day	0.03 ug/kg/day	0.04 ug/kg/day	0.47	0.16	0.18	0.14	0.14	0.18		
Brook Trout	Over 25 cm (9.8 in)	10.7 g/day	2.5 g/day	Avoid	Avoid	Avoid	0.352	0.05 ug/kg/day	0.01 ug/kg/day	Avoid	Avoid	Avoid		0.11	0.06	Avoid	Avoid	Avoid		
Smallmouth Bass	Under 35 cm (13.8 in)	7.4 g/day	2.5 g/day	3.7 g/day	Avoid	Avoid	0.787	0.08 ug/kg/day	0.03 ug/kg/day	0.09 ug/kg/day	Avoid	Avoid		0.18	0.14	0.44	Avoid	Avoid	1	
Smallmouth Bass	Over 35 cm (13.8 in)	4.9 g/day	Avoid	Avoid	Avoid	Avoid		0.00 ug/kg/day	Avoid	Avoid	Avoid	Avoid		0.00	Avoid	Avoid	Avoid	Avoid		
				FISH CONSUMPTION				FISH CONCENTRATION				ARSENIC EXPOSURE			TRV		ADEF	NIC FISH CONSUMPTION	nicr	
Species	Fish Length < (measured nose to tail fork)	General Public Over age 12	Women who are or may become pregnant and / or are breast feeding	Children age 5-11	Children age 1-4	Infants (less than 1 year of age)	ARSENIC TISSUE CONCENTRATION ug/g ww	BIOACCESSIBILITY	INORGANIC FRACTION	General Public Over age 12	Women who are or may become pregnant and / or are breast feeding	Children age 5-11	Children age 1-4	Infants (less than 1 year of age)	Oral RfD (ug/kg/day) oral ILCR (ug/kg/day) ⁻¹	General Public Over age 12	Women who are or may become pregnant and / or are breast feeding		Children age 1-4	Infants (less than 1 year of age)
							receptor body weight			70.7	70.7	32.9	16.5	8.2						
Brook Trout	Under 25 cm (9.8 in)	21.4 g/day	10.7 g/day	3.7 g/day	1.8 g/day	1.2 g/day	0.972	62%	9%	0.02 ug/kg/day	0.01 ug/kg/day	0.01 ug/kg/day	0.01 ug/kg/day	0.01 ug/kg/day	0.30 1.80E-03	0.05 2.79E-05	0.03 1.40E-05	0.02 1.04E-05	0.02 1.03E-05	0.03 1.39E-05
Brook Trout	Over 25 cm (9.8 in)	10.7 g/day	2.5 g/day	Avoid	Avoid	Avoid	1.01	78%	5%	0.0058 ug/kg/day	0.0014 ug/kg/day	Avoid	Avoid	Avoid		0.02 1.05E-05	0.0045 2.46E-06	Avoid	Avoid	Avoid
Smallmouth Bass	Under 35 cm (13.8 in)	7.4 g/day	2.5 g/day	3.7 g/day	Avoid	Avoid	2.74	57%	10%	0.017 ug/kg/day	0.006 ug/kg/day	0.018 ug/kg/day	Avoid	Avoid		0.06 3.00E-05	0.02 9.99E-06	0.06 3.22E-05	Avoid	Avoid
Smallmouth Bass	Over 35 cm (13.8 in)	4.9 g/day	Avoid	Avoid	Avoid	Avoid		57%	10%	0.00 ug/kg/day	Avoid	Avoid	Avoid	Avoid		0.00 0.00E+00	Avoid	Avoid	Avoid	Avoid
							r	FISH CONCENTRATION		ARSENIC EXPOSURE					TRV		ARSENIC FISH CONSUMPTION RISK			
							ARSENIC TISSUE CONCENTRATION ug/g ww	BIOACCESSIBILITY	DMA/MMA/TMAO FRACTION	General Public Over age 12	Women who are or may become pregnant and / or are breast feeding	Children age 5-11	Children age 1-4	Infants (less than 1 year of age)	DMA MRL	General Public Over age 12	Women who are or may become pregnant and / or are breast feeding	Children age 5-12	Children age 1-4	Infants (less than 1 year of age)
							receptor body weight		11	70.7	70.7	32.9	16.5	8.2			breast reeding	1		
							0.730	62%	81%	0.110 ug/kg/day	0.055 ug/kg/day	0.041 ug/kg/day	0.041 ug/kg/day	0.055 ug/kg/day	20	0.0055	0.0028	0.0020	0.0020	0.0027
							0.65	78%	78%	0.060 ug/kg/day	0.014 ug/kg/day	Avoid	Avoid	Avoid		0.0030	0.0007	Avoid	Avoid	Avoid
							2.67	57%	84%	0.134 ug/kg/dav	0.045 ug/kg/day	0.144 ug/kg/day	Avoid	Avoid		0.0067	0.1488	0.4796	Avoid	Avoid
								57%	84%	0.000 ug/kg/day	Avoid	Avoid	Avoid	Avoid		0.0000	Avoid	Avoid	Avoid	Avoid