
EDITOR USER MANUAL

Version 2.2

David A. Clarke

Institute for Computational Astrophysics

Saint Mary’s University

Halifax NS, Canada B3H 3C3

http://www.ap.smu.ca/~dclarke/editor

June, 2004; revised 10/07, 6/11

Copyright c© David A. Clarke, 2004, 2007, 2011

http://www.ap.smu.ca/~dclarke/editor

Contents

Disclaimer iii

1 Introduction 1

1.1 VERSION 2.1 . 1
1.2 VERSION 2.2 . 2

2 PRECOM: Precompiling source code 3

2.1 Basic precompiling . 3
2.2 The NAMELIST extension . 9
2.3 Inserting micro-tasking directives . 13
2.4 Splitting a source code; generating a makefile 18
2.5 The precom.s script file . 19

3 NUMBER: Generating a numbered listing 23

3.1 Reformatting a file . 23
3.2 The number.s script file . 23

4 MERGE: Merging source code 25

4.1 Change decks . 25
4.2 The merge.s and merge_precom.s script files 28

5 TARGET: FORTRAN tidy-up 32

5.1 The target.s script file . 35

6 COMPARE: Comparing similar ASCII files 37

6.1 Comparing entire files . 37
6.2 Comparing declaration contents . 39
6.3 The compare.s script file . 41

7 SPLIT: Splitting source code 43

7.1 Splitting a file . 43
7.2 The split.s script file . 43

8 CONCAT: Concatenating files 44

8.1 The concat.s script file . 44

9 Installing EDITOR 45

9.1 Installation . 45
9.2 The script file edit22.s . 47
9.3 EDITOR parameters . 49

A Error messages 51

A.1 Fatal errors . 51
A.2 Non-fatal errors . 53
A.3 Warnings . 59

i

Contents ii

A.4 NAMELIST errors . 59

Disclaimer

NOTICE: This software was developed by the author at the National Center for
Supercomputing Applications (NCSA) at the University of Illinois in Urbana-
Champaign between 1988 and 1990, and is currently maintained by the author
at the Institute for Computational Astrophysics at Saint Mary’s University in
Halifax, NS. It and this manual are offered “as is” by the author to anyone for
non-profit, educational use with no expressed or implied warranty or suitability.
It is requested that the author’s name and this disclaimer remain associated with
this manual and software, as well as any descendents of this software that may
be developed by a third party.

iii

EDITOR USER MANUAL
Version 2.2, David A. Clarke, ICA, June 2011

1 Introduction

1.1 VERSION 2.1

EDITOR is a highly portable text manipulator written in FORTRAN77 designed to manage
and compile large computer codes, and placed in the public domain by the author (see Dis-
claimer on page iii). Version 2.1 is available as part of the ZEUS-3D tar file zeus35.tar.gz,
available at http://www.ica.smu.ca/zeus3d, including a user manual with instructions to
install and use EDITOR on the user’s home platform.

EDITOR is designed for source code written in FORTRAN , although some of its func-
tionality is independent of the contents of the ASCII text it manipulates. It was born, in
part, out of the author’s frustration in porting software from CTSS to UNICOS in 1988 when
the NCSA switched the operating system on its Cray machines. For those familiar with the
CTSS environment, EDITOR was initially designed to mimic the CTSS precompiler, HIS-

TORIAN , much of whose functionality was not carried into MPPL, the first precompiler
under UNICOS. Since then, EDITOR has blossomed into a rather sophisticated package in
excess of 13,000 lines of FORTRAN capable of a variety of text manipulations. Each of
these functionalities shall be referred to as a job, of which there are seven in this release.
These include:

1. precompiling source code, including inserting modules (e.g., common block declara-
tions) into source code, selecting source code to be compiled, replacing namelist

statements and their associated reads/writes with calls to subroutines in a portable
library, “micro-tasking” nested do-loops, and splitting up the source code into modules
(PRECOM, §2);

2. generating a multi-columned source code listing complete with a table of contents
(NUMBER, §3);

3. merging a “change deck” with a source code, thereby upgrading the source code without
making changes directly to the master file (MERGE, §4);

4. tidying up FORTRAN source code including relabelling targets, indentation, renum-
bering continuation characters, alphabetising modules, etc. (TARGET, §5);

5. comparing two ASCII files and reporting the differences found (COMPARE, §6), overlook-
ing some differences of specified type;

6. splitting a long file into subroutine modules (SPLIT, §7); and

1

http://www.ica.smu.ca/zeus3d

Introduction 2

7. concatenating all files with a common suffix found in the current directory and all its
subdirectories into a single file (CONCAT, §8).

These jobs are all described in the sections indicated. In addition to describing EDI-

TOR’s most important task (precompilation), §2 introduces the first-time user to language
of EDITOR. Finally, §9 describes how EDITOR may be installed on a new platform.

DAC, November, 1992.

1.2 VERSION 2.2

This is the first new release in almost 20 years. In addition to half a dozen bugs found and
corrected in that time, the main difference to version 2.2 is correcting (finally) the mistaken
notion that differences in specific FORTRAN calls (e.g., timing functions) had to do with
the OS, and not the compiler specifically. In this version, all mention of SUNOS, LINUX ,
etc., are replaced in favour of compiler names, such as G95, IFORT, etc.

Supported compilers in this release include:

1. CF77 (Cray, nearest former OS “equivalent”: UNICOS);

2. F90 (Sun, nearest former OS “equivalent”: SUNOS);

3. G95 (Gnu);

4. GFORTRAN (Gnu);

5. IFORT (Intel);

6. PGF77 (Portland Group);

7. XLF (IBM, nearest former OS “equivalent”: AIX),

with some being tested more thoroughly than others. Former OS designations LINUX and
CONVEXOS have no specific replacements. Some warnings:

- CF77 and XLF have not been tested at all ; they are carried over directly from UNICOS

and AIX in Version 2.1.

- There were certain peculiarities for f77 under SUNOS (SOLARIS) such as requiring
a double backslash in subroutine UPDATE, and non-standard OpenMP statements in
subroutine PARALLEL that may or may not still be true for Sun’s f90 -f77 compiler.

- G95, GFORTRAN, and IFORT are the three best-tested compilers.

Other changes include:

1. Parallelisation commands c*shared and c*private have been added (§2.3);

2. EDITOR now has its own web site: http://www.ap.smu.ca/~dclarke/editor.

DAC, June, 2011.

http://www.ap.smu.ca/~dclarke/editor

2 PRECOM: Precompiling source code

2.1 Basic precompiling

The main purpose of EDITOR is to precompile large FORTRAN source codes. By default,
the EDITOR precompiler creates a separate file (whose name is the same as the original file
with the extension .f appended) containing the precompiled source listing. The file contain-
ing the original source code is left as is. EDITOR was designed to mimic HISTORIAN , the
precompiler available under the Cray Time Sharing System (CTSS) which was widely used
on Cray machines before 1989 and, in the opinion of the author, one of the most useful and
flexible precompilers of its day. In the years since, EDITOR has undergone many changes
that has taken it beyond HISTORIAN and it remains the precompiler for the ZEUS family
of astrophysical MHD codes (http://www.ica.smu.ca/zeus3d).

To use EDITOR, one must insert various types of EDITOR commands, all relatively
unobtrusive, into an existing FORTRAN source code. All EDITOR commands go on sep-
arate lines and begin with an asterisk (*) in the first column. There may be one EDITOR

command per line. Depending on the task chosen, EDITOR will make from 1 to 7 passes
through the source code carrying out various directives as specified by the EDITOR com-
mands. During precompilation, the resulting source code will be standard FORTRAN , void
of any EDITOR commands and ready for the compiler.

It is unlikely that users with small, easily managed source codes will want to bother with
any precompiler. But curators of particularly large codes which offer a variety of features,
work for a variety of compilers, and are modified by several people simultaneously will want
to consider some sort of preprocessor such as EDITOR. For example, codes which need to
work with more than one compiler will almost certainly require a separate version for each
compiler to accommodate the different extensions (e.g., timing routines). The last thing a
curator of a large code wants is to have multiple versions of the same code to upgrade for
every change. The precompiler in EDITOR will allow these disparate versions to be merged
into a single master code, and thus upgrades need be implemented only once.

EDITOR considers a source code as being made up of separate “decks” (a throw-back
from the days when computer programs consisted of decks of cards), which may or may not
be grouped into designated “groups”. There are two types of decks that EDITOR recognises.
“Ordinary decks” normally consist of individual program modules, such as subroutines,
functions, and the main program. “Common decks” are pieces of code which are to appear
verbatim in one or more ordinary deck(s). Common decks can be thought of as EDITOR’s
answer to include statements which is a common though not ANSI-standard extension of
many FORTRAN compilers. Normally, common decks consist of common block definitions
which are required by more than one program module. Common decks could also be used
as a way of “in-lining” a segment of code into more than one place throughout the master
code.

The first thing a user should do in preparing a source code for EDITOR is to insert
*deck and *cdeck statements at the beginning of all source code modules. The syntax is as
follows:

*cdeck deckname
*cd deckname

3

http://www.ica.smu.ca/zeus3d

Precompiling source code 4

*deck deckname
*dk deckname

where deckname is a user-designated name for the deck unique from all other decknames.
*cdeck (or equivalently, *cd for short) tells EDITOR that everything that follows up to but
not including the next *cdeck, *cd, *deck, or *dk statement belongs to the common deck
so named. Similarly, *deck (*dk) indicates an ordinary deck. One is free, for example, to
give an ordinary deck the same name as the module (i.e. program, subroutine, or function
name) it contains.

Optionally, the user may designate “groups” of decks with the *group (or *gp for short)
statement:

*group groupname
*gp groupname

where groupname is a user-designated name for the group, not necessarily unique from those
named in other group statements. All ordinary decks will then be considered part of the
group named in the most recent group statement. The *group command is designed for
user convenience; it has no effect on how the program is compiled. They allow, for example,
the FORTRAN tidy-up routine (TARGET, see §5) to re-alphabetise all decks within a certain
group, then arrange the groups themselves alphabetically. In some sense, one can think of
groups as analogous to “directories” aiding the user to locate a particular module within a
large source code.

Having designated the decks (and perhaps groups), one may now insert the various
precompiler commands which will be carried out during the first two passes the precompiler
makes through the code. The first pass establishes which decks the user has defined, their
extent, and which EDITOR “macros” have been set. The second pass precompiles the source
code according to the macro settings. In this way, the compiler will only see that portion of
the code which the user has deemed relevant to the problem at hand.

There are two types of EDITOR macros – “definitions” and “aliases”. Setting macros is
done by inserting any number of the following EDITOR commands anywhere in the master
source file, or in the change deck if MERGE is being used in tandem with PRECOM (§4). Note
that these statements are global in that they will have effect throughout the code no matter
where in the code they appear. There is, for example, no way to impose a macro for part of
the source code, then “turn it off” for the rest.

*define def1 , def2 , ...
*def def1 , def2 , ...
*alias alias1 alias2
*al alias1 alias2

where def1 , def2 , etc. are user-selected alpha-numeric keywords which determine “active”
segments of the source code. The *alias statement instructs EDITOR to replace all occur-
rences of the alpha-numeric keyword alias1 with alias2 (except for those which appear in
comment statements). Note that *define and *def are synonyms, as are *alias and *al.

Having determined which EDITOR macros have been set, the precompiler makes a
second pass through the source code to look for *if define or *if alias statements. These

Precompiling source code 5

determine which segments of the program are to be included in the precompiled version of
the source code which is ultimately sent to the compiler. The following lists the legal syntax
for EDITOR *if statements.

1. *if define,macro – the following source code is kept provided the macro is defined
by a *define statement somewhere in the file.

Note that the comma following “*if define,” is optional. It was introduced in order
to mimic HISTORIAN where it is not optional. Note to HISTORIAN users: the
alias feature has no analogue in HISTORIAN .

2. *if -define,macro – the following source code is kept provided the macro is not
defined by a *define statement somewhere in the file.

3. *if def,.not.macro – same as 2. Note that def is an acceptable abbreviation for
define.

4. *if def,macro1.and.macro2 – the following source code is kept provided both macros
are defined by a *def statement somewhere in the file.

5. *if def,macro1.or.macro2 – the following source code is kept provided either macro
is defined by a *def statement somewhere in the file.

6. *if alias macro.eq.phrase – the following source code is kept provided the alias
macro has been set to the character string phrase by an *alias statement somewhere
in the file.

7. *if al macro.ne.phrase – the following source code is kept provided the alias macro
has not been set to the character string phrase by an *alias statement somewhere in
the file. Note that *al is an acceptable abbreviation for *alias.

8. *else – the following source code is kept if the source code following the previous *if
(and all the way to this *else statement) was not kept, i.e. if the truth value of the
previous *if is false. Note that *el is an acceptable abbreviation.

9. *endif – closes the previous *if, *else structure. All source code following the
*endif statement is not affected by the previous *if or *else statements. For every
*if statement, there must be an *endif statement which follows. Note that *ei is an
acceptable abbreviation.

10. *call deckname – includes the contents of the common deck deckname at the location
of the *call statement. Note that *ca is an acceptable abbreviation for *call.

Finally, one may insert comment statements if desired by putting an asterisk in both
columns 1 and 2. These comments will appear in the master source code where the user
places them, but will not be copied over to the file which EDITOR prepares for the compiler.

Following is a simple example showing how these statements can be used. The function
of the program is simply to return the time of day. Note that the line numbers in the first

Precompiling source code 6

five columns are included for reference only, and are not modifications made by the EDITOR

precompiler.

Master source file:

1 **
2 ** Select compiler. Choices are: CF77, PGF77, or XLF
3 **
4 *define PGF77
5 **
6 ** Select i/o subroutine by setting an alias for WRITE.
7 **
8 *alias WRITE write1
9 *cdeck implicit
10 implicit none
11 *cdeck common
12 *if define,CF77
13 character*8 tod
14 *endif CF77
15 *if define,PGF77
16 character*24 tod
17 *endif PGF77
18 *if define,XLF
19 character*26 tod
20 *endif XLF
21 common / com1 / tod
22 *cdeck declare
23 *call implicit
24 *call common
25 *deck tod
26 c===+====1====+====2====+====3====+====4====+====5====+====6====+====7==
27 c
28 program tod
29 c
30 c PURPOSE: This program returns the time of day on various systems.
31 c
32 c---
33 c
34 *call declare
35 *if define,PGF77
36 character*24 fdate
37 *endif PGF77
38 external WRITE
39 c
40 c---
41 c
42 c Get time of day ("tod").
43 c
44 *if define,CF77
45 call date (tod)
46 *endif CF77
47 *if define,PGF77
48 tod = fdate ()
49 *endif PGF77
50 *if define,XLF
51 call fdate_(tod)
52 *endif XLF
53 c

Precompiling source code 7

54 c Write result to CRT using desired i/o routine aliased to WRITE.
55 c
56 call WRITE
57 stop
58 end
59 c
60 *deck write1
61 c===+====1====+====2====+====3====+====4====+====5====+====6====+====7==
62 c
63 c subroutine write1
64 *if alias WRITE.eq.write1
65 c
66 c PURPOSE: This subroutine writes "tod" to the CRT.
67 c
68 c---
69 c
70 *call declare
71 c
72 c---
73 c
74 write(6,2000) tod
75 *if define,CF77
76 2000 format(’Time of day according to Cray’’s CF77 is: ’,a)
77 *endif CF77
78 *if define,PGF77
79 2000 format(’Time of day according to Portland Group’’s PGF77 is: ’,a)
80 *endif PGF77
81 *if define,XLF
82 2000 format(’Time of day according to IBM’’s XLF is: ’,a)
83 *endif XLF
84 *endif
85 return
86 end
87 c
88 *deck write2
89 c===+====1====+====2====+====3====+====4====+====5====+====6====+====7==
90 c
91 subroutine write2
92 *if alias WRITE.eq.write2
93 c
94 c PURPOSE: This subroutine writes "tod" to the CRT using a different
95 c format than WRITE1.
96 c
97 c---
98 c
99 *call declare

100 c
101 c---
102 c
103 write(6,2000) tod
104 2000 format(’Time of day is: ’,a)
105 *endif
106 return
107 end

With the EDITOR macros settings as defined in lines 4 and 8, the precompiler would convert
this code into the following form (e.g., see tod.s at the end of §2.5) which would be read by
the compiler. Note that the line numbers from the master code have been preserved.

Precompiling source code 8

Precompiled source file:

26 c===+====1====+====2====+====3====+====4====+====5====+====6====+====7==
27 c
28 c program tod
29 c
30 c PURPOSE: This program returns the time of day on various systems.
31 c
32 c---
33 c
10 implicit none
16 character*24 tod
21 common / com1 / tod
36 character*24 fdate
38 external write1
39 c
40 c---
41 c
42 c Get time of day ("tod").
43 c
48 tod = fdate ()
53 c
54 c Write result to CRT using desired i/o routine aliased to WRITE.
55 c
56 call write1
57 stop
58 end
59 c
61 c===+====1====+====2====+====3====+====4====+====5====+====6====+====7==
62 c
63 c subroutine write1
65 c
66 c PURPOSE: This subroutine writes "tod" to the CRT.
67 c
68 c---
69 c
10 implicit none
16 character*24 tod
21 common / com1 / tod
71 c
72 c---
73 c
74 write(6,2000) tod
79 2000 format(’Time of day according to Portland Group’’s PGF77 is: ’,a)
85 return
86 end
87 c
89 c===+====1====+====2====+====3====+====4====+====5====+====6====+====7==
90 c
91 subroutine write2

106 return
107 end

In this example, the EDITOR definitions are used to account for the differences in
system calls for different compilers (e.g., lines 12–20 in the master code). They may also
be used to tailor a code so that the compiler will generate a binary code optimised for the
problem to be solved. For example, if the master source code is one which computes self-
gravitating hydrodynamical flows and it has been determined that self-gravity is irrelevant

Precompiling source code 9

to the problem at hand, one does not want to waste memory by declaring gravitational
variables, nor does one want to perform the computations necessary to evolve the unwanted
gravitational potential. EDITOR definitions may be used to eliminate those portions of
the code peculiar to the self-gravity feature, thereby streamlining the code for a non-self-
gravitating problem.

Note the two uses for alias macros illustrated in this example. Aliases can be used to
select the module to which execution is passed without having to change the body of the
source code itself (line 56). They can also be used to prevent an unwanted segment of the
code from being compiled (line 92). While the latter function may be performed by the
definition macros, the former may not and thus the alias feature represents a real extension
of the functionality of HISTORIAN .

Common decks (such as implicit, common, and declare beginning on lines 9, 11, 22
respectively) appear in the precompiled version of the code only if they are inserted in
the code by a *call statement (e.g., line 34). Common decks not referred to by a *call

statement will not appear in the precompiled version of the code and, in particular, the
common decks themselves are not echoed to the precompiled version as separate modules.
Common decks may call other common decks (e.g., lines 23 and 24), but they may not call
themselves. Calls to common decks may be nested (i.e., common deck 1 calls common deck
2 which calls common deck 3, etc.) as many as 10 deep, so long as none of the common
decks in the nest are the same (no closed loops!).

2.2 The NAMELIST extension

Namelists first appeared at the Lawrence Livermore Labs around 1980 and were incorporated
as a CTSS FORTRAN extension. Since then, most operating systems offer FORTRAN 77
compilers with namelist extensions, and namelist has become a standard feature of FOR-

TRAN 90 (f90). However, until the arrival of f90 (sometime in 1994!), there was no namelist
standard, and this caused great headaches for the ZEUS development project which, in 1990,
had to operate under three different compilers. Thus, a portable namelist emulator was de-
veloped and EDITOR can be instructed to replace all namelist syntax in the code with calls
to a namelist library, which includes features that the f90 namelist does not (e.g., ability
to assign values to 2D arrays, allowing variables passed by a subroutine argument list to be
namelist variables). The discussion in this subsection, therefore, is restricted to the EDITOR

flavour of namelists.
Namelists provide an extremely useful and flexible way of supplying user-determined

data to a program. Traditionally, FORTRAN source codes have relied upon prompting
users for data and/or formatted reads to disc files. For many input parameters, the former
can tax the user’s patience while the latter can be frustrating because of the need to comply
with a strict format for the input data. Namelists eliminate these problems, as illustrated
in the following example:

1 integer in, jn
2 parameter (in=100, jn=100)
3 c
4 character*128 cscalar, cvector(in), carray(in,jn)
5 integer iscalar, ivector(in), iarray(in,jn)

Precompiling source code 10

6 real rscalar, rvector(in), rarray(in,jn)
7 logical lscalar, lvector(in), larray(in,jn)
8 c
9 ...
10 ...
11 c
12 c Open the ASCII file "infile" which contains the namelist data and
13 c ASCII file "outfile" to which a namelist summary may be written.
14 c
15 open (51, file=’indata’, status=’old’)
16 open (52, file=’outdata’, status=’unknown’)
17 c
18 c Define list of parameters which may be set by namelist "data1".
19 c
20 namelist / data1 / cscalar, iscalar, rscalar, lscalar
21 , cvector, ivector, rvector, lvector
22 , carray , iarray , rarray , larray
23 c
24 c Default values for namelist parameters
25 c
26 cscalar = ’ ’
27 iscalar = 0
28 rscalar = 0.0e00
29 lscalar = .false.
30 do 10 i=1,in
31 cvector(i) = ’ ’
32 ivector(i) = 0
33 rvector(i) = 0.0e00
34 lvector(i) = .false.
35 10 continue
36 do 30 j=1,jn
37 do 20 i=1,in
38 carray(i) = ’ ’
39 iarray(i) = 0
40 rarray(i) = 0.0e00
41 larray(i) = .false.
42 20 continue
43 30 continue
44 c
45 c Read namelist from logical unit 51.
46 c
47 read (51, data1)
48 c
49 c Write a namelist summary to logical unit 52.
50 c
51 write (52, data1)

Namelists read data from an ASCII namelist input data file (named indata in this
example) which the user prepares before executing the binary. Line 15 is an ordinary open

statement appropriate for linking an existing ASCII disc file to the program at execution
time. Unit 51 was chosen arbitrarily. Most any unit number other than 5 or 6 may be chosen.
The namelist statement on line 20 defines which variables belong to the namelist data1 and
thus which variables may be assigned values in the namelist input data file indata. Line 47
is where the data in the namelist data1 are read from indata. As many namelists as desired
may be so defined and read throughout the program and for every namelist defined, there
should be a corresponding entry in the namelist input data file indata, as described below.

Precompiling source code 11

Line 51 writes a summary of the namelist settings to unit 52. This is not a necessary part of
the namelist structure, and many users may not want to bother with this feature. Indeed,
many implementations of namelist don’t even offer the option to write a summary of the
namelist settings. The EDITOR namelist does, however, support the write (or equivalently,
print) statement.

While it is not necessary, it may be useful to assign all the namelist parameters default
values before the read statement (lines 26 through 43). This is so that in case the user
does not assign values to all the parameters in the namelist input data file (by no means a
requirement), all parameters will be initialised to something and hopefully to a useful default
value.

To use the EDITOR namelist, one must abide by the following rules:

1. Do not use namelist as a variable name in any module that reads data from namelists.

2. Do not name any subroutines nlsdacnn, where nn varies from 01 to 24.

3. Link the library namelist.a for single precision applications, and dnamelist.a for
double precision applications to your code during the link step. The namelist.f and
dnamelist.f source codes and the script files to build the libraries are in the directory
nmlst of dzeus35.tar downloaded from www.ica.smu.ca/zeus3d).

Otherwise, use namelists as indicated above, and prepare your namelist input data file as in
the following example:

1 c ==+====1====+====2====+====3====+====4====+====5====+====6====+====7==
2 $data1 rscalar=1.0, iscalar=1, lscalar=.true., cscalar=’abcdefg’
3 , ivector=3*1,2,3, ivector(20:30)=2, ivector(40)=4*3
4 c , ivector(1)=1,1,1,2,3, ivector(20)=11*2, ivector(40)=3,3,3,3
5 , iarray(1:100,1:100)=1, iarray(1:10,91:100)=2
6 , cvector(3)="abcdefghijklmnopqrstuvwxyz01234567890ABCDEFGHIJKL
7 MNOPQRSTUVWXYZ", lvector(98)=.t.,.false.,.f. $

Various aspects of this data file warrant discussion. Again, line numbers are not part of the
data file; they are included for reference only.

1. Each line in a namelist input data file may be at most 72 characters wide. Anything
beyond the 72nd column will be ignored. Thus, one might consider including a number
line, such as line 1, which will allow one to see at a glance whether the data extend
beyond the 72nd column.

2. Only one of three characters are allowed in column 1: c, C (for “commenting out”
lines as in lines 1 and 4), or a blank. Anything else will cause an error message to be
generated and execution to abort. Note that all lines commented out will be echoed
to the CRT at execution time.

3. Only one of two characters are allowed in column 2: the $ sentinel (for opening a
namelist), or a blank. Anything else will cause an error message to be generated and
execution to abort.

Precompiling source code 12

4. The first word to appear after the opening $ sentinel should be the namelist name as
defined in the program—in this case, data1. There may be spaces between the opening
$ sentinel and the namelist name, but nothing else.

5. After the namelist name, the user is free to set whichever variables within the namelist
to whatever values are desired. Note that the order in which the variables are set need
not be the same as the order in which they are listed in the namelist statement. One
does not need to set all the variables listed either. However, any variable set in the
data file which is not listed in the corresponding namelist statement in the program
will generate an error message and abort execution.

6. Variable assignments may appear anywhere between and including columns 3 and 72.
Variable assignments are separated by a comma and as many (including none) blanks
as desired.

7. Variables are set by typing the variable name, followed by an equals sign (=), followed
by the desired value in a format consistent with the variable type.

8. Legal values which may be assigned to a logical variable are .true., .t., .false., or
.f., where the first two and last two are synonyms. Note that the periods must be
included.

9. Character strings are set by enclosing the desired text inside a pair of single quotes or
a pair of double quotes. If a character string is too long to fit within the 72 column
constraint, one may type all the way to the 72nd column and resume the string in
the third column on the following line. Note that even with the character string so
split, only one opening and one closing quote should be used (e.g., lines 6 and 7). This
“wrap-around” feature is supported by the EDITOR namelist for character variable
assignments only.

10. Hollerith strings are not supported by the EDITOR namelist. Use true character
variables.

11. Setting values for vectors may be done in a number of ways, as illustrated on lines 3
and 4. Thus ivector=3*1,2,3 will set ivector(1)=1, ivector(2)=1, ivector(3)=1,
ivector(4)=2, and ivector(5)=3; ivector(20:30)=2 will set inclusively the 20th
through 30th elements of ivector to 2; and ivector(40)=4*3 will set the 40th through
43rd elements of ivector to 3. Note that line 4 which is commented out would perform
the identical assignments. Note that ivector=3*1,2,3 is, by convention, identical to
ivector(1)=3*1,2,3. The redundancy in notation for assigning vector values is so
that namelist input data files prepared for the CTSS namelist may be read by the
EDITOR namelist.

12. Setting values for rank 2 arrays may be done only by using the full colon notation (line
5). This notation is peculiar to the EDITOR namelist and, so far as is known by the
author, is not supported by f90 namelist. Setting values for arrays of greater rank
than 2 is not supported.

Precompiling source code 13

13. The last character on the last line of a namelist assignment must be the closing $

sentinel. Be careful that this does not go beyond the 72nd column. If it is left out or
inadvertently placed beyond the 72nd column, an error message will be generated, and
execution will abort.

14. One is free to define as many namelists as desired in the source code. However, once
one namelist is defined, it must be read from the namelist input data file by a read

statement (line 47 above) before a new namelist is defined. Thus, only one namelist
may be pending at a time. This is not a restriction of f90 namelist.

15. The order of the namelists (not the variables, but the namelists themselves) must be
the same in the namelist input data file as they are read by the source code. Thus, if
the source code is written so that namelist data2 is read after namelist data1, then the
variable assignments for data2 must appear after the variable assignments for data1

in the namelist input data file. If data2 should appear before data1 in the namelist
input data file, the read to data1 will cause the data for data2 to be skipped. Thus,
when it comes time to read data2, these data will not be found and an error message
will ensue.

16. For every namelist read by the source code, there must be an entry with the same
namelist name in the namelist input data file. If, for example, none of the parameters
for namelist data2 are to be assigned values, it is still necessary to include a minimal
entry in the namelist input data file of the form:

$data2 $

Failure to do so will generate an error message and abort execution.

Should any of these rules be broken, namelist error messages are generated at run time.
These are discussed in §A.4.

2.3 Inserting micro-tasking directives

While single processor speed is still increasing with each new technology released, most of the
progress in raw compute power over the past decade has been through parallelisation. Two
paradigms for parallel computing have emerged. The “Beowulf” is an example of a distributed
multi-processing environment in which memory is distributed over the constituent processors.
A great deal of thought must be given to how the processors communicate with each other,
and for many applications this can be a very time-consuming task. Shared multi-processing
(SMP) is the second and more expensive parallel environment, but can simplify enormously
the task of parallelising a code. On an SMP, all processors have access to the same memory
and communication among the processors is greatly reduced. The “auto-parallelisation”
feature of EDITOR is designed for applications on SMP architectures.

There are two basic strategies to “multi-tasking” (i.e., parallelising) a source code. One
may “macro-task” a code by arranging for the individual processors to work on individual
calls to one or more subroutine(s) whose results are independent of each other, and/or

Precompiling source code 14

one may “micro-task” a code by sending separate iterations through a do-loop to separate
processors. Of the two micro-tasking is really the only way to fully exploit the inherent
parallelism in a code.

Critical to micro-tasking a code is the concept of “private” and “shared” variables.
Private variables are those for which each processor has a separate and independent copy.
Shared variables are those which all processors read from and perhaps write to. The rules
for determining which variables are private and which are shared are fairly straight forward.
A variable is private if:

1. The first time it appears within a do-loop structure, it appears on the left hand side
of an equals sign; and

2. It is not indexed by the outer do-loop index.

Otherwise the variable is shared. The key to micro-tasking is to identify correctly which
variables are private and which are shared—a task known as “scoping”. Only if the variables
are scoped properly can a micro-tasked code be generated which yields the same results as the
original serial code. A number of platforms offer compiler options to help users macro-task
and micro-task their codes. In developing the ZEUS code, for example, the author found
that the auto-tasking features provided by Cray around 1990 often made scoping errors,
and/or were too timid in some of the loops they attempted to scope and a more aggressive
and accurate auto-scoping feature was incorporated into EDITOR.

After scoping the variables in a nested loop, EDITOR inserts the appropriate “cmic$”
auto-tasking directives recognised by Cray’s CF77 and Sun’s f90 compilers or “c$omp” for
OpenMP at the beginning of the scoped loop. Should the code then be passed through
the compiler’s auto-tasker, the presence of these cmic$ or c$omp statements will tell the
auto-tasker that these loops have already been scoped and parallelised, and can be passed
over.

For all other parallelisation opportunities, the vendor’s auto-tasking tools should be used.
Indeed, the auto-scoping features of most vendors compilers may by now be superior to
EDITOR’s and it may be better to use the vendor’s auto-parallelisation features exclusively.

Note that the EDITOR auto-scoper will only scope those variables declared at the begin-
ning of the program module. Undeclared scalars (allowed when implicit none is not used)
will probably be scoped correctly by the compiler’s auto-tasker by virtue of the autoscope

(default(auto)) directive included in all EDITOR-supplied cmic$ (c$omp) statements
but, in the author’s experience, not necessarily.

Below are some examples using Cray’s cmic$ syntax to illustrate the use of the EDITOR

auto-scoper. There is a one-to-one correspondence between all cmic$ and c$omp commands
which can be gleaned from the code (edit22) or from any OpenMP manual if the reader
is interested. In all cases, assume that all variables including scalars have been specifically
declared as real, integer, etc. at the beginning of the program module. Note that the line
numbers in the first 5 columns are included for reference and are not modifications made by
the EDITOR precompiler to the source code.

Example 1: A straight forward nested loop. EDITOR has scoped the nested loop and has
inserted the appropriate cmic$ directives. Only the outer loop is micro-tasked. On a vector

Precompiling source code 15

machine such as a Cray, the inner loop will be vectorised.

1 cmic$ do all private (k, kp1, j, jp1, i, ip1, b1av, b2av, b3av)
2 cmic$1 shared (kmax, jmax, imax, b1, b2, b3, btot)
3 cmic$1 autoscope
4 do 30 k=1,kmax
5 kp1 = k + 1
6 do 20 j=1,jmax
7 jp1 = j + 1
8 do 10 i=1,imax
9 ip1 = i + 1
10 b1av = b1(i,j,k) + b1(ip1,j ,k)
11 b2av = b2(i,j,k) + b2(i ,jp1,k)
12 b3av = b3(i,j,k) + b3(i ,j ,kp1)
13 btot(i,j,k) = 0.25 * (b1av**2 + b2av**2 + b3av**2)
14 btot(i,j,k) = amax1 (sqrt(btot(i,j,k)), tiny)
15 10 continue
16 20 continue
17 30 continue

The variable tiny (line 14) was not scoped (i.e., EDITOR did not include it in either the
private or the shared lists in lines 1 and 2) because in the program from which this example
was extracted, tiny is a parameter and not a variable. Parameters are not scoped since the
compiler replaces parameters with their assigned numerical values.

Functions and subroutines should not be scoped. Note that the EDITOR auto-scoper
is able to distinguish between proper arrays with argument lists (such as btot in lines 13
and 14) which are declared and scoped, and intrinsic functions (such as sqrt in line 14)
which are not declared, nor scoped. Similarly, user-written functions whose attribute (real,
integer, etc.) is not declared will not be scoped. User-written functions whose attribute
is declared will not be scoped provided they are also declared as external . A user-written
function with declared attribute not declared external will be scoped, and this may or may
not have deleterious effects.

Example 2: If dependencies and/or reductions are found in the loop, the loop, as written,
is not parallelisable and is not scoped. A reduction is when the value assigned to a private
variable depends on the value of that variable as determined by a previous iteration, as is
the case for imax below, or on another element of that variable should the variable be an
array. A dependency is where a variable is first used as a shared variable, then as a private
variable, as is the case for ival below. A loop containing either a dependency or a reduction
will, in general, generate different answers depending upon whether it is run serially or in
parallel and thus is non-parallelisable. Most compilers are sophisticated enough to rewrite
code to eliminate most reductions and some dependencies and thus if EDITOR finds a non-
parallel loop, it inserts a “No cmic$-directive report” below the loop (in comments) and
adds no cmic$ statement before it so that the compiler can have to have a crack at it if its
auto-parallelisation feature is enabled.

In addition, I/O and character operations within a loop will prevent parallelisation.

1 imax = 0
2 ival = i1
3 do 40 j=j1,j2

Precompiling source code 16

4 do 30 i=i1,i2
5 iarray(i,j) = ival
6 ival = i + 1
7 imax = max0 (imax, iarray(i,j))
8 30 continue
9 40 continue
10 c***
11 c*********** EDITOR NO-CMIC$-DIRECTIVE REPORT FOR LOOP 40 ***********
12 c***
13 c** No parallel directives issued because the following variable(s) **
14 c** was/were found to generate dependencies or reductions: **
15 c** ival (dependency) **
16 c** imax (reduction) **
17 c***
1 do 130 j=j1,j2
2 do 120 i=i1,i2
3 chqty(i,j) = char (iqty(i,j))
4 120 continue
5 write (iodmp) (chqty(i,j), i=i1,i2)
6 130 continue
7 c***
8 c*********** EDITOR NO-CMIC$-DIRECTIVE REPORT FOR LOOP 130 ***********
9 c***
10 c** Char. operations prevented parallel directives from being issued. **
11 c** I/O prevented parallel directives from being issued. **
12 c***

Example 3: Occasionally, the EDITOR autotasker needs some help auto-scoping a nested
loop. On line 7 in the example below, the variable ar is indexed by mm rather than the outer
loop index ny, and is assigned a value which depends on some other element of ar. Thus,
ar would be scoped as private and, since line 7 is then a reduction on a private variable,
EDITOR declares the loop non-parallelisable.

1 do 40 ny=1,nyz
2 m1 = m0 + 2 * (ny - 1) * nxz
3 n1 = n0 + 2 * (ny - 1) * nxz
4 do 30 nx=1,nxz
5 mm = m1 + nx
6 nn = n1 - nx + 1
7 ar(mm) = ar(nn)
8 30 continue
9 40 continue

However, for every value of ny, there is a unique value of mm and thus mm is really a “ghost”
of ny. Hence, ar should actually be scoped as a shared variable and, since a reduction on
a shared variable does not inhibit parallelism, this loop is parallelisable. EDITOR is not
sophisticated enough to determine this on its own.

We can help EDITOR by scoping such variables manually using the c*shared and
c*private commands (new to Version 2.2) inserted immediately before the loop to be scoped.
Thus, the previous example can be scoped properly by inserting:

c*shared (ar)

immediately before line 1. Once ar is classified as shared, the reduction in line 7 no longer
inhibits parallelism, and EDITOR inserts the directives:

Precompiling source code 17

cmic$ do all private (ny, m1, n1, nx, mm, nn)
cmic$1 shared (ar, nyz, m0, nxz, n0)
cmic$1 autoscope

immediately before line 1.
If more than one variable is to be scoped manually, they can be put in the same argument

list separated by commas;

c*shared (x, y, z)

with spaces optional. If there are too many variables to fit on a single line, close the list with
a close-parenthesis, then begin a new line immediately following. As many c*shared and
c*private lines may be inserted above the loop as needed, but there should be no FOR-

TRAN statements (including comments) among the c*shared and c*private statements
nor between the last c*shared or c*private statement and the opening line of the loop.

Example 4: The EDITOR auto-scoper can fail if a goto statement appears within the nested
do-loop structure. If a goto statement redirects execution to somewhere else within the loop,
parallelism is not affected and multi-tasking is desirable. However, if execution is taken
outside the nested loop structure, parallelism is destroyed, and the loop should not be multi-
tasked. The EDITOR auto-scoper has not been endowed with the ability to distinguish
where execution is redirected, and so blindly scopes the loop. In this way, the EDITOR

auto-scoper is perhaps overly aggressive. Thus, the user should be aware of nested loops
with goto statements which redirect execution outside the loop and instruct the EDITOR

auto-scoper to pass over the loop. This is done with the c*nopar directive.

1 c*nopar
2 do 30 i=i1,i2
3 do 20 k=k1,k2
4 do 10 j=j1,j2
5 if (d(i,j,k) .gt. factor*d(ism1,j,k)) go to 40
6 10 continue
7 20 continue
8 30 continue
9 40 continue

Note that the c*nopar is interpreted only by EDITOR. Thus, if source code unscoped
by the EDITOR auto-scoper is passed through the compiler’s auto-tasker, an attempt may
still be made by the compiler to generate the appropriate cmic$ directives.

Example 5: The second case where the EDITOR auto-scoper can fail is more subtle. The
EDITOR auto-scoper will scope nested loops in which there is a call to a subroutine. If the
user determines that the subroutine call destroys parallelism, the loop should not be scoped,
and the user should place a c*nopar directive before the outer loop.

If, on the other hand, the subroutine call does not destroy parallelism, one still has to be
careful. There may still be the problem of scoping the variables in the subroutine argument
list. In the example below, the variable vp is assigned values by the subroutine x3zc1d

and not by an assignment statement explicitly in the loop itself. Without looking in the
subroutine (and EDITOR is not sophisticated enough to do this), EDITOR declares vp to

Precompiling source code 18

be shared since its first appearance on line 6 is not to the left of an equals sign. If vp is, in
fact, shared, there is no need to intervene. Conversely, if vp is private, line 1 in the example
below assures that it is scoped as such.

1 c*private (vp)
2 do 60 j=j1,j2
3 do 20 i=i1,i2
4 vtmp(i) = v2(i,j) - vg2(j)
5 20 continue
6 call x3zc1d (vtmp, vp)
7 do 30 i=i1,i2
8 v2star(i,j) = vp(i) * qty(i)
9 30 continue
10 60 continue

There is still a potential trap, however. Normally, local variables within a subroutine are
considered private for the purpose of multitasking loops that contain calls to that subroutine.
This is as it should be. However, if any of the subroutine’s local variables are placed in
common or equivalenced to variables in common, this will cause those variables to act as
though they were shared, and this invariably leads to incorrect and irreproducible results
that are notoriously difficult to dig out with a debugger. Unless you know such constructs
will not cause conflicts, it is best to avoid calls to routines that use common blocks inside a
loop you wish to micro-task, or avoid micro-tasking such a loop altogether.

2.4 Splitting a source code; generating a makefile

For code developers who prefer to work with a single master file containing all the program
modules, UNIX often poses a dilemma. Two useful UNIX facilities, MAKE and DBX, work
best if the source code is split into individual files, one for each program module. Using
FSPLIT is unsatisfactory because it pays no attention to which modules have been changed
and which have not, forcing MAKE to recompile all the program modules, not just the ones
that were changed.

The EDITOR precompiler offers an easy way around this problem. One may instruct
the precompiler to make yet another pass through the master source file and this time split
it into individual files for each module. The naming convention for these files is as one
might hope—the name of the module with a specified extension (default is .f). One can
even specify in which directory these files should be placed. Before writing a file to disc, the
precompiler will check to see if there is already a file by that name on disc in the specified
directory. If there is not, a new file is created. If there is, the precompiler compares line for
line the version of the module it just split off the master file with the disc file. If the two
differ, the disc file is updated. If the two are identical, the disc file is not updated leaving
its “timestamp” unaltered. In this way, MAKE will not recompile unaltered program modules.
For large source codes and slow compilers, this is no small consideration.

At the same time, the EDITOR preprocessor will generate a makefile if makename is
specified (see §2.5). The user may tell EDITOR which compiler, compiler options, loader,
and loader options to use in the makefile, or to use “sensible” defaults. If you need to
compile a few routines with different compiler options than the majority, you may specify
these special compiler options as well as the routines for which these special options apply.

Precompiling source code 19

In addition, the desired name for the binary executable may be specified. Thus, once the
EDITOR preprocessor has processed the master source code, the code may be compiled
simply by typing:

make -f makename

where makename is the name of the makefile specified by the user.

2.5 The precom.s script file

A precompiled version of a FORTRAN source code may be generated by issuing the following
command:

csh -v precom.s

where precom.s is an ordinary C-shell script file as follows:

1 #---+----1----+----2----+----3----+--+----3----+----2----+----1----+---#
2 #=============== SCRIPT FILE TO PRECOMPILE A SOURCE CODE ==============#
3 # #
4 # User sets: DIRECTORY, SOURCECODE, MAKEFILE, EXECUTABLE, COMPILER, #
5 # LIBRARIES #
6 # #
7 # Supported compilers have preset "optimise" and "debug" settings: #
8 # #
9 # compiler optimise debug #
10 # cf77 -O4 -g #
11 # f90 -f77 -O4 -g -C -ftrap=common #
12 # g95 -O2 -g -fbounds-check -ftrace=full #
13 # gfortran -O2 -g -fbounds-check -ffpe-trap=i,z,o #
14 # ifort -O2 -m32 -g -debug-parameters -check -fpe1 -traceback -m32#
15 # pgf77 -fast -g -Ktrap=fp -Mbounds #
16 # xlf -O4 -g -C -qextchk -qflttrap -qsigtrap #
17 # #
18 # otherwise, user sets compiler, coptions, loader, loptions directly. #
19 # #
20 #=======================================> Get files from home directory.
21 if(! -e ./xedit22) cp ~dclarke/editor/version2.2/xedit22 .
22 #======================> If necessary, create the directory "DIRECTORY".
23 if(! -e ./DIRECTORY) mkdir ./DIRECTORY
24 #-----------------------> Create the input deck for EDITOR, and execute.
25 rm -f ./inedit
26 cat << EOF > ./inedit
27 \$editpar inname=’SOURCECODE’, ibanner=1, job=4, idump=1
28 , inmlst=1, iutask=0, iupdate=0, ext=’.f’
29 , branch=’DIRECTORY’, makename=’MAKEFILE’, xeq=’EXECUTABLE’
30 , compiler=’COMPILER’, coptions=’debug’
31 , libs=’LIBRARIES’ \$
32 EOF
33 chmod 755 ./xedit22
34 ./xedit22
35 #===> Tidy up directory.
36 rm -f ./editlp ./inedit ./output ./xedit22

A softcopy of precom.s may be found in the file edit22.tar downloaded from the EDITOR

website: http://www.ap.smu.ca/~dclarke/editor. Note that the line numbers in the first
five columns are not part of the file and are included only for reference.

http://www.ap.smu.ca/~dclarke/editor

Precompiling source code 20

Comments for C-shell script files are indicated by a # in column 1. For all EDITOR

C-shell script files listed in this manual, there are, by convention, two types of comments.
Those lead by a double line (==========>) indicate that the following portion of the script
file should rarely, if ever, require changing. Those lead by a single line (---------->)
indicate segments of the script file which will probably have to be altered every time the
script file is used.

After the header listing the various compiler options, the first segment of precom.s

copies the necessary files (in this case, just the edit22—EDITOR, Version 2.2—executable)
to the present working directory. Note that the UNIX phrase “if(! -e ...)” on line 21
ensures that the named file will not be retrieved if it already exists in the pwd.

The second segment creates a directory on disc into which all source files split from the
master code during precompilation (§2.4) and all corresponding object and listing files are
placed, should this option be used.

The third segment is where the input parameters for EDITOR are specified. Input
parameters are read in by a “namelist”, as discussed in §2.2. Specifying the parameters in
the namelist editpar is how EDITOR is controlled. In the example, DIRECTORY, SOURCECODE
and all words in allcaps have to be specified by the user. Note that the $ sentinel is preceded
by a backslash (\). This prevents the script file from interpreting the $ as a control character
and instead treats it as an ASCII character to be passed (without the leading backslash) to
the text file inedit.

There are 46 valid namelist parameters in editpar, but only 21 are relevant for precom-
piling source code. These include six general parameters which all or most EDITOR jobs
use, and 15 additional parameters peculiar to PRECOM.

parameter description default

GENERAL

inname name of source code to be edited (character*64).
ibanner =1 => print banner to screen at beginning of execution 0

=0 => no banner
job =1 => number lines in source code 1

=2 => tidy source code (retarget, indent, alphabetise)
=3 => update source code with change decks
=4 => prepare source code for compilation.
=5 => compares two files and reports location of first

"ndiff" differences.
=6 => splits master file into module files.
=7 => concatenates module files to master file.

idump =1 => diagnostic dumps are written to "output". 0
=0 => no diagnostic dumps.

safety Memory management parameter. k2*safety lines of 0.0
"inname" are read at a time. 0.0 => 0.9 (job=1,2,5,6,7),
0.4 (job=3,4)

outname name of outfile. If unspecified, outfile will be named
according to internal naming convention (character*64).

PRECOM (job=4)

swcase =0 => Switches (but not aliases) are case-insensitive; 0
*def MHD and *def mhd are identical

=1 => Switches are case-sensitive; *def MHD and *def mhd

Precompiling source code 21

are different
inmlst =0 => leave NAMELIST and associated I/O alone. 0

>0 => substitute all occurrences of NAMELIST and
associated I/O for calls to subroutines in
(D)NAMELIST.A. A maximum of "inmlst" assignments
can be made in the input deck per NAMELIST.
"inmlst"=1 => 1000.

iutask =0 => no microtasking attempted 0
=1 => insert Cray microtasking directives (cmic$)

in front of parallelisable nested do-loops.
=2 => insert OpenMP parallelisation directives (c$omp)

in front of parallelisable nested do-loops.
=-1, -2 => same as 1, 2, except directives are inserted

before single (non-nested) loops too.
iupdate =0 => PRECOMpiled source code is dumped to one file. 0

=1 => PRECOMpiled subroutines stored to separate files.
Subroutine is written only if different from
version on disc, or if it doesn’t exist on disc.

branch character*32 string indicating default directory in blank
which to write subroutine files.

ext desired extension for files (character*8) ’.f’
makename name of makefile to be created (character*16). If blank

blank, no makefile is created. The files compiled by
MAKE are those in the directory ’branch’.

compiler overrides default compiler used by MAKE to compile see chart
"inname" (character*16). The default compiler depends
on how EDITOR itself was compiled, which depends on
which EDITOR compiler macro was defined in edit22.s.
There is no requirement that EDITOR create the
makefile for "inname" with the same compiler with which
it was compiled. The compiler that compiled EDITOR
just serves as a reasonable default.

macro default compiler origin
--
none gfortran GNU
CF77 cf77 Cray
F90 f90 -f77 SUN
G95 g95 GNU
GFORTRAN gfortran GNU
IFORT ifort Intel
PGF77 pgf77 Portland Group
XLF xlf IBM

coptions compiler options (character*128). For convenience, optimise
two generic compiler options, ’debug’ and ’optimise’,
are supported, where:

compiler debug => optimise =>
--
cf77 -g -O4
f90 -f77 -g -C -ftrap=common -O4
g95 -g -fbounds-check -ftrace=full -O2
gfortran -g -fbounds-check -ffpe-trap=i,z,o -O2
ifort -g -debug-parameters -check -fpe1 -O2 -m32

-traceback -m32 -diag-disable remark
pgf77 -g -O2
xlf -g -C -qextchk -qflttrap -qsigtrap -O4

Precompiling source code 22

These are in addition to ’-c -o $*.o’ (or equivalent)
that suppress the link step and give the object file
the same name as the module, and which are included
automatically in PRECOM for each default compiler. If
a different compiler is used, the equivalent of
’-c -o $*.o’ should be included with "coptions".

speccopt specifies compiler options for special decks named in blank
array specdk. Occasionally, one needs to compile a few
routines with special compiler options in order for the
computations to be done correctly (character*128).

specdk those decks to be compiled with compiler options blank
speccopt (character*16(k4)).

loader specifies loader to be used by MAKE (character*16; blank
blank => "compiler"; ’segldr’ if compiler=’cf77’).

loptions specifies loader options other than -o. These are blank
appended to ’-o \$(EXE)’, which is needed for the
makefile (character*128).

libs are the libraries to be linked by the loader. As many blank
libraries can be specified as will fit in character*512.

xeq name of executable to be created by MAKE (character*64 blank
to allow for directory specification as well, blank =>
’inname’ with extension ’.x’).

Some notes:

1. Default name for precompiled disc file (outname) is inname with extension .f.

2. EDITOR is unable to interpret tab characters. For programmers who habitually use
tabs in their source code, these should all be replaced manually with the appropriate
number of blanks before attempting to preprocess it with EDITOR.

3. Should the EDITOR precompiler detect any EDITOR syntax errors, EDITOR will in-
sert an error message immediately following the offending statement in the precompiled
file (with the .f extension). Detection of error message will render the precompiled
file unusable for compilation purposes, and may prevent additional passes through the
code requested by the user (replacing namelists, for example). The user will be told
that errors were detected and how to find them in the precompiled disc file. Once
the errors are corrected in the master file, the user can attempt to precompile the file
again. See §A for a description of the error messages generated by EDITOR.

4. Incidentally, the following and very simplified script file (csh -v tod.s) precompiles
the program tod in §2.1 to create tod.f.

1 #============= SCRIPT FILE TO PRECOMPILE TOD USING XEDIT22 ============#
2 #===> Prepare input deck inedit.
3 rm -f ./inedit
4 cat << EOF > ./inedit
5 \$editpar inname=’tod’, job=4 \$
6 EOF
7 #==> Retrieve xedit22 and execute.
8 if(! -e ./xedit22) cp ~dclarke/editor/version2.2/xedit22 .
9 chmod 755 ./xedit22
10 ./xedit22
11 rm ./editlp ./inedit ./xedit22

3 NUMBER: Generating a numbered listing

3.1 Reformatting a file

The NUMBER feature of EDITOR will take as input any ordinary ASCII source code and
reformat it so that each line of the source code appears with various labels. By default, a
separate file (whose name is the same as the input file with the extension .n appended) is
created containing the reformatted source listing. The original file is left as is.

Each line is labelled with as many as 6 labels. The first and third columns of the
reformatted file is the line number since the beginning of the file, with the source code itself
(72 characters wide) in the second column. The fourth column is the number of executable
statements (i.e., not including comments and continuation lines) since the beginning of the
current module. The statement number takes into account the number of statements implied
by each *call statement (§2.1). This is useful, for example, if compiler and/or debugger
diagnostics refer to the executable statement number within a module, rather than the ASCII
line number as more modern compilers and debuggers do. The fifth column is the number of
lines since the beginning of the current module (see inumber below). The sixth column is the
“group” name in which the current module is grouped (§2.1), while the seventh column lists
the name of the current module. The user has some control over what labels are put on each
line (see inumber below) and how the number of executable statements since the beginning
of the current module is computed (see ixclude below). A full compliment of labels will
expand an ordinary 72 column FORTRAN source listing to 132 columns, so an appropriate
printer must be used to print out the reformatted listing. In addition, EDITOR may be
instructed to place a table of contents at the beginning of the listing. To aid in locating a
module rapidly, the table of contents list the modules both sequentially and alphabetically.

3.2 The number.s script file

A source listing may be reformatted with NUMBER by issuing the following command:

csh -v number.s

where number.s, is as follows:

1 #---+----1----+----2----+----3----+--+----3----+----2----+----1----+---#
2 #============== SCRIPT FILE TO CREATE A NUMBERED LISTING ==============#
3 # #
4 # User sets: SOURCECODE #
5 # #
6 #=======================================> Get files from home directory.
7 if(! -e ./xedit22) cp ~dclarke/editor/version2.2/xedit22 .
8 #-----------------------> Create the input deck for EDITOR, and execute.
9 rm -f ./inedit
10 cat << EOF > ./inedit
11 \$editpar inname=’SOURCECODE’
12 , ibanner=1, job=1, inumber=3, itable=1, ixclude=1 \$
13 EOF
14 chmod 755 ./xedit22
15 ./xedit22
16 #===> Tidy up directory.
17 rm -f ./editlp ./inedit ./output ./xedit22

23

Generating a numbered listing 24

A softcopy of number.s may be found in the file edit22.tar downloaded from the EDITOR

website: http://www.ap.smu.ca/~dclarke/editor.
The first segment gets xedit22 from the user’s home directory, if needed. The second

segment prepares the input deck for EDITOR appropriate for reformatting a source listing.
In addition to the general namelist parameters described in §2.5, there are three namelist
parameters which may be used specifically to control NUMBER.

parameter description default

NUMBER (job=1)

inumber =1 => sequential numbering of source code only. 3
=2 => sequential, statement, and by subroutine.
=3 => sequential, statement, and by deck.

itable =1 => creates a table of contents (inumber=3 only) 1
=0 => no table of contents

ixclude =1 => won’t label line with statement number if excluded 1
by *if, *else, *endif logic (inumber=3 only)

=0 => labels all executable statements.

Some notes:

1. Selecting inumber=3 specifies that line numbering in the fifth column will be done
relative to *deck and *cdeck statements, rather than FORTRAN module statements
such as program, subroutine, function, etc. (inumber=2).

2. Setting ixclude=1 will exclude “dormant” parts of the source code (as determined by
the settings of the EDITOR macro definitions; see §2.1) from the computation of the
current statement number (fourth column).

http://www.ap.smu.ca/~dclarke/editor

4 MERGE: Merging source code

4.1 Change decks

One important feature of EDITOR is the ability to merge a “change deck” into an existing
source code. This feature is useful from the standpoint of keeping the changes to a working
version of a source code separate from the source code itself. Further, change decks are useful
to code development projects in which there are several contributors. In principle, a curator
of a code may gather in all change decks and let EDITOR merge these change decks into
the current master code, thereby generating the next version. Finally, each code developer
may independently and temporarily merge their own change deck into the current version of
the code in order to develop and debug their changes.

Change decks consist largely of the new lines of FORTRAN that the user wishes to
place into an existing code, along with any EDITOR precompiler statements that may be
required. These code segments may either be inserted into the code at a specified location,
or replace a specified part of existing code. There are four EDITOR commands that control
a MERGE:

1. *insert deckname.n – inserts text immediately following the *insert command into
the source code directly after line n in (c)deck deckname.

2. *delete deckname.n,m – deletes lines n through m in (c)deck deckname, and replaces
it with the text immediately following the *delete command, if any. Note that m
must be greater than n. If m is missing altogether, then m = n will be assumed.

3. *ident changedeckname – identifies the name of the change deck to the code developer.
It has no internal (to EDITOR) function, and is included for the sole purpose of
preserving backward compatibility with HISTORIAN . In practise, it never needs to be
used.

4. *read filename – replaces the statement with the contents of the named file. This is
how more than one change deck may be merged with a source file at the same time.

The line numbers m and n are relative to the most recent *(c)deck statement, where
the *(c)deck statement itself is line 1. The line numbers may be attained most easily from
the fifth column of a listing of the source code reformatted by NUMBER (§3).

Note that *i, *d, *id and *r are valid abbreviations of *insert, *delete *ident and
*read respectively. For those who don’t like the fact that the delete command can actually
be used to replace text, the command *replace (or *rp for short) is a recognised synonym
for *delete. Use the two interchangeably. Together, *delete, *insert, and *replace

commands shall be referred to as “MERGE edits”.
EDITOR’s MERGE may be given one master source file and one change deck (containing

an arbitrary number of *reads to other change decks if desired) and creates a new merged
file whose name, by default, is the same as the input master source file with the extension
.m appended. The merger also generates an amalgamated change deck with all the *read

commands, if any, carried out. This change deck has the same name as the user-specified

25

Merging source code 26

change deck with the extension .m appended and is where error messages, if any, are inserted.
The original files are not changed.

An example might be appropriate at this point. Following is another version of the
time-of-day program used in §2, a change deck, and the result of having the two merged by
EDITOR.

Master source file (named, for example, tod):

1 *deck tod
2 c===+====1====+====2====+====3====+====4====+====5====+====6====+====7==
3 c
4 program tod
5 c
6 c PURPOSE: This program returns the time of day on various systems.
7 c
8 c---
9 c
10 implicit none
11 *if define,CF77
12 character*8 tod
13 *endif CF77
14 *if define,XLF
15 character*26 tod
16 *endif XLF
17 c
18 c---
19 c
20 c Get time of day ("tod").
21 c
22 *if define,CF77
23 call date (tod)
24 *endif CF77
25 *if define,XLF
26 call fdate_(tod)
27 *endif XLF
28 c
29 c Write result to CRT.
30 c
31 write (6, 2000) tod
32 2000 format(’Time of day is: ’,a)
33 stop
34 end

Change deck (named, for example, chgtod):

1 *define XLF
2 *delete tod.32
3 *if define,CF77
4 2000 format(’Time of day according to Cray’’s CF77 is: ’,a)
5 *endif CF77
6 *if define,XLF
7 2000 format(’Time of day according to IBM’’s XLF is: ’,a)
8 *endif XLF
9 *insert tod.6
10 c Supported compilers include Cray’s CF77 and IBM’s XLF.

Merging source code 27

Master source file (tod) merged with change deck (chgtod) to form new master source file
(tod.m):

1 *deck tod
2 c===+====1====+====2====+====3====+====4====+====5====+====6====+====7==
3 c
4 program tod
5 c
6 c PURPOSE: This program returns the time of day on various systems.
7 c Supported compilers include Cray’s CF77 and IBM’s XLF. *
8 c
9 c---
10 c
11 implicit none
12 *if define,CF77
13 character*8 tod
14 *endif CF77
15 *if define,XLF
16 character*26 tod
17 *endif XLF
18 c
19 c---
20 c
21 c Get time of day ("tod").
22 c
23 *if define,CF77
24 call date (tod)
25 *endif CF77
26 *if define,XLF
27 call fdate_(tod)
28 *endif XLF
29 c
30 c Write result to CRT.
31 c
32 write (6, 2000) tod
33 *if define,CF77 *
34 2000 format(’Time of day according to Cray’’s CF77 is: ’,a) *
35 *endif CF77 *
36 *if define,XLF *
37 2000 format(’Time of day according to IBM’’s XLF is: ’,a) *
38 *endif XLF *
39 stop
40 end
41 *define XLF *

Some notes:

1. MERGE commands may not appear in the master file, only in the change deck.

2. Anything before the first MERGE edit will be placed at the end of the merged file (e.g.,
line 41 of tod.m).

3. An asterisk (*) is placed in the 74th column of every line put into the merged master
source file by the change deck. This asterisk is only to aid the user to see at a glance
which lines are new to this version of the code. If the .m file is then passed through
PRECOM (§2), NUMBER (§3), or TARGET (§5), the asterisk in column 74 is not copied to
the .f, .n, or .t file respectively.

Merging source code 28

4. Note that the line numbers used in the MERGE edit statements are always those of the
original master file. That is to say, the user does not have to worry that a MERGE edit
made somewhere else in the change deck might affect the line numbering for other
MERGE edits. By the same token, one may not make a MERGE edit on a MERGE edit in
the current change deck. Changes to MERGE edits should be done directly in the change
deck(s).

5. Obviously, care should be taken to ensure that MERGE edits do not refer to lines in
the master source that have been deleted by other MERGE edits. Such a conflict will
generate a (non-fatal) error message (see §A.2).

6. All the punctuation in the MERGE commands is optional. “*d tod 1 3” is just as
valid as “*d tod.1,3”. The punctuation used in these examples reflects HISTORIAN

syntax which EDITOR permits for the sake of compatibility.

As a source code preprocessor, EDITOR is probably in its most useful state when the
MERGE and PRECOM features are used in tandem which is accomplished by setting the appro-
priate input parameter (§4.2). One can take a master file and a change deck, merge them
together to produce a .m file, precompile the .m file to generate a .f file, replace all the
namelists, micro-task it, update only those modules that were affected by whatever change
you might have made to the change deck, and generate the new makefile, all with one execu-
tion of EDITOR. It is in this mode that the author uses EDITOR to manage the ZEUS-3D

code (http://www.ica.smu.ca/zeus3d), and therefore the mode which is probably the most
debugged and robust. The second sample script file in §4.2 is a template for using EDITOR

in just this way.
Curators of large codes should be warned that change decks can become too cumber-

some and numerous to make this strategy practical. As a first guide, one might consider
permanently merging a change deck with the master code once it has grown to 25% the size
of the master code. Then a new change deck may be started with references to line numbers
in the new version of the master source file.

4.2 The merge.s and merge_precom.s script files

A merged source listing may be generated by issuing the following command:

csh -v merge.s

where merge.s, is as follows:

1 #---+----1----+----2----+----3----+--+----3----+----2----+----1----+---#
2 #======== SCRIPT FILE TO MERGE A CHANGE DECK INTO A SOURCE CODE =======#
3 # #
4 # User sets: CHANGEDECK, SOURCECODE, OUTNAME #
5 # #
6 #=======================================> Get files from home directory.
7 if(! -e ./xedit22) cp ~dclarke/editor/version2.2/xedit22 .
8 #--> Create change deck.
9 rm -f ./changes
10 cat << EOF > ./changes
11 *ident changes

http://www.ica.smu.ca/zeus3d

Merging source code 29

12 *read CHANGEDECK
13 EOF
14 #-----------------------> Create the input deck for EDITOR, and execute.
15 rm -f ./inedit
16 cat << EOF > ./inedit
17 \$editpar inname=’SOURCECODE’, outname=’OUTNAME’
18 , ibanner=1, job=3, idump=1, inum=0, ipre=0, chgdk=’changes’ \$
19 EOF
20 chmod 755 ./xedit22
21 ./xedit22
22 #===> Tidy up directory.
23 rm -f ./editlp ./inedit ./output ./xedit22 ./changes ./changes.m

A softcopy of merge.s may be found in the file edit22.tar downloaded from the EDITOR

website: http://www.ap.smu.ca/~dclarke/editor.
The first segment retrieves xedit22 from the user’s home directory, if needed. You could

add lines here to retrieve the source code and change deck from their home directory as well.
The second segment generates the change deck to be merged with the master file. The

script file will create a disc file called changes after it has removed any such disc file which
may already exist. Thus, don’t run this script file verbatim within a directory in which
there is a file called changes that you can’t live without! The file changes contains the
inert *ident command, followed by a *read command which copies the contents of the
user-supplied file CHANGEDECK (with the changes required to the master file) onto the file
changes.

Finally, the third segment creates the input deck for EDITOR appropriate for the merge
being performed, and then executes EDITOR. In addition to the general namelist parameters
described in §2.5, there are three namelist parameters which are peculiar to MERGE.

parameter description default

MERGE (job=3)

chgdk name of change deck to be merged with "inname"
(character*64).

inum =1 => a NUMBERed file will be created. 0
=0 => no NUMBERed file

ipre =1 => a PRECOMpiled file will be created. 0
=0 => no PRECOMpiled file

One can use MERGE in tandem with either or both NUMBER and PRECOM. In the case of the
former, inum should be set to 1 and all the input parameters peculiar to NUMBER (3.2) become
applicable. If the cse of the latter, ipre should be set to 1 and all the input parameters
peculiar to PRECOM (§2.5) become applicable.

Probably the most useful function performed by EDITOR is the MERGE and PRECOM

features used in tandem. A precompiled version of a merged FORTRAN source code may
be generated by issuing the following command:

csh -v merge_precom.s

where merge_precom.s, is as follows:

1 #---+----1----+----2----+----3----+--+----3----+----2----+----1----+---#

http://www.ap.smu.ca/~dclarke/editor

Merging source code 30

2 #====== SCRIPT FILE TO MERGE TWO FILES AND PRECOMPILE THE RESULT ======#
3 # #
4 # User sets: DIRECTORY, CHANGEDECK, SOURCECODE, MAKEFILE, EXECUTABLE, #
5 # COMPILER, LIBRARIES #
6 # #
7 # See precom.s for list of compilers and preset compiler options. #
8 # #
9 #=======================================> Get files from home directory.
10 if(! -e ./xedit22) cp ~dclarke/editor/version2.2/xedit22 .
11 #========================> If necessary, create the directory DIRECTORY.
12 if(! -e ./DIRECTORY) mkdir ./DIRECTORY
13 #--> Create change deck.
14 rm -f ./changes
15 cat << EOF > ./changes
16 *ident changes
17 *delete par.3
18 parameter (idim=100, jdim=100, kdim=100)
19 *read CHANGEDECK
20 EOF
21 #-----------------------> Create the input deck for EDITOR, and execute.
22 rm -f ./inedit
23 cat << EOF > ./inedit
24 \$editpar inname=’SOURCECODE’, chgdk=’changes’
25 , ibanner=1, job=3, idump=1, inum=0, ipre=1
26 , inmlst=1, iutask=0, iupdate=1, ext=’.f’
27 , branch=’DIRECTORY’, makename=’MAKEFILE’, xeq=’EXECUTABLE’
28 , compiler=’COMPILER’, coptions=’debug’
29 , libs=’LIBRARIES’ \$
30 EOF
31 chmod 755 ./xedit22
32 ./xedit22
33 #===> Tidy up directory.
34 rm -f ./editlp ./inedit ./output ./xedit22 ./changes ./changes.m

A softcopy of merge_precom.s may be found in the file edit22.tar downloaded from the
EDITOR website: http://www.ap.smu.ca/~dclarke/editor.

There are a three differences of note between merge.s and merge_precom.s. First, the
second segment creates the directory DIRECTORY in anticipation of precompiled subroutines
(§2.5).

Second, in the now third segment, lines 17 and 18 have been added which replace line 3
of a deck named par with a parameter statement setting idim, etc. to 100. This illustrates a
structure that the author finds very useful, and is why this specific example has been included
in this otherwise general template. In this case, a program has been written with all the
parameter statements placed together in a common deck called par. Every subroutine that
requires knowledge of the parameter values then has a *call par statement at the beginning
of the declaration list. If for every job run, a different set of parameter values is required, the
easiest and most accessible place to make this change is right in the script file which merges
and precompiles the source code. Thus, right in merge_precom.s, one might include the
most often-needed changes using the MERGE edit structures described in this section. Then,
as before, one can issue a *read command to bring in the bulk of the changes contained in
the user-supplied file CHANGEDECK.

Third, the now fourth segment includes settings to the input parameters peculiar to
PRECOM, as discussed in §2.5.

http://www.ap.smu.ca/~dclarke/editor

Merging source code 31

Some notes:

1. Should the EDITOR merger detect any EDITOR syntax errors, EDITOR will insert
an error message immediately following the offending statement in the amalgamated
change deck (.m extension). The user will be told that errors were detected and how
to find them. Once the errors are corrected in the original change deck (i.e., not the
.m file where the errors were reported), the user can attempt to merge the files again.
See §A.2 for a description of the non-fatal error messages generated by EDITOR.

2. If, on the one hand, MERGE and PRECOM are performed together on the file myprog, then
EDITOR will generate two additional source files, namely myprog.m and myprog.f.
The former will be the result of the merger with all the precompiler commands, if
any, remaining while the latter will be a precompiled version ready for the compiler
containing nothing but FORTRAN (having had all the precompiler commands carried
out and then expunged). If, on the other hand, MERGE is used with ipre=0, then only
a .m file will be generated. Then, if myprog.m is passed through the precompiler using
precom.s, the precompiled file will be named myprog.m.f. Note that if the EDITOR

namelist parameters in the two scenarios have the same values, then the files myprog.f
and myprog.m.f will be identical.

5 TARGET: FORTRAN tidy-up

The TARGET feature of EDITOR was designed to rewrite a user’s source code with uniform
origin-target labels, continuation characters, and indentation, as well as rearranging the
various decks and groups alphabetically. TARGET can also be instructed to replace do-enddo

structures with targeted do-loops (but not the reverse—reflecting the author’s bias!). By
default, a separate file (whose name is the same as the input file with the extension .t

appended) is created containing the tidied source listing. The original file is left as is.
TARGET’s primary function is to resequence numbered statements (“targets”) and their

corresponding “origins” to regain the order that the writer may have originally intended.
Examples of origin and target statements are as follows:

1 do 10 i=1,imax
2 ...
3 go to 20
4 ...
5 20 continue
6 ...
7 10 continue

Lines 1 and 3 are origins while lines 7 and 5 are their respective targets.
TARGET can recognise virtually all FORTRAN structures in which origins and targets

may lurk. These include:

1. (nested) do-loops with numbered targets

do 100 i=1,imax
do 100 j=1,jmax

100 ...

2. go to statements

go to 20
20 ...

3. computed go to statements

go to (10,20,30) i
10 ...
20 ...
30 ...

4. if statements

if (j.eq.1) go to (10,20) i
10 ...
20 ...

5. computed if statements,

if (10,20,30) x
10 ...
20 ...
30 ...

32

FORTRAN tidy-up 33

6. i/o statements (write, print, encode, read, decode, open)

write (6,1000) x
1000 format(f5.2)

read (lu,end=20,err=100) x
20 ...
100 ...

open (unit=lu,file=infile,status=’old’,err=10,form=’unformatted’)
10 ...

As mentioned, TARGET may be instructed to convert all do-enddo structures into targeted
do-loops. TARGET will scan each program module (i.e. deck, program, function, subroutine)
for origin and targets and reassign the numerical values of the labels so that the targets
(not the origins) appear sequentially (with a specified increment between each consecutive
target). Three levels of targets are identified and are resequenced independently. All do-loop
and goto targets (including the end and err options in the parameter lists of read and open

statements) are considered together and by default, are assigned labels between 10 and 990.
All input statements (read, decode) are resequenced between 1010 and 1990, and all output
statements (write, print, encode) are resequenced between 2010 and 2990. This allows one
to identify, at a glance, which targets belong to do/goto statements, which belong to input
statements, and which belong to output statements.

As part of the resequencing process, TARGET will force all do-loop and goto statements
to “land” on a continue statement, thus displacing the original targeted statement by
one line. For do-loop targets, the continue statement is put after the original targeted
statement while for goto statements, the continue statement is placed before the original
targeted statement. This leaves the logical intent of the code intact.

Besides resequencing origin-target statements, TARGET may be instructed to relabel con-
tinuation statements and force uniform indentation. These three features are illustrated in
the following example:

Original code:

subroutine sub1 (in, jn, x, y, array, iret)
c

real x(in), y(jn), array(in,jn)
c

go to (1,31) iret
31 continue

do 10 j=1,jn
do 10 i=1,in

10 array(i,j) = x(i)**2
. + 2.0 * x(i) * y(j)
. + y(j)**2
if (imax.le.100) then
imax = 100
else
imax = 200
endif

1 continue
return
end

FORTRAN tidy-up 34

Tidied code:

subroutine (in, jn, x, y, array, iret)
c

real x(in), y(jn), array(in,jn)
c

go to (40,10) iret
10 continue

do 30 j=1,jn
do 20 i=1,in
array(i,j) = x(i)**2

1 + 2.0 * x(i) * y(j)
2 + y(j)**2

20 continue
30 continue

if (imax.le.100) then
imax = 100

else
imax = 200

endif
40 continue

return
end

Indentation is applied to both (nested) do-loops and if-else-endif structures as illustrated
above. Note that applying uniform indentation forces the source code to begin in column
8, rather than column 7, the minimum allowed by FORTRAN syntax. Starting in column
8 means that there will always be at least one space between a continuation character in
column 6 and the first character in the statement, thus improving readability. Note also that
applying uniform indentation will preserve any vertical structure imposed by the user. Thus,
in the example above, the +s remain under the =. If the application of uniform indentation (or
resequencing origins) causes the line to extend beyond the 72nd column, TARGET will break
the line at the 72nd column (without regard to word breaks) and generate a continuation
statement with an ampersand (&) in column 6. This will not affect the logic of the source
code, but may offend the user’s notion of aesthetics. Thus, after TARGET has finished with
the source code, one merely needs to search the tidied version for an & in column 6 and then
make the desired changes manually.

Resequencing continuation characters will cause continuation statements to be given
numerical continuation characters in the following sequence: 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3,
etc. Zero (0) is not used, since it is an illegal continuation character in FORTRAN .

Finally, TARGET can be instructed to rearrange the modules alphabetically according
to the full deck name which consists of the group name (as determined by the most recent
*group statement; §2.1) followed by the deck name (as determined by the most recent *deck
or *cdeck statement; §2.1). Common decks will be placed before ordinary decks. The user
may single out a few decks to be placed before all else regardless of where they belong
alphabetically. Thus, for example, if there were a deck containing opening comments, or if
it was desired to place the program before the subroutines, this may be accommodated by
setting the appropriate namelist parameters, as described in the next subsection.

FORTRAN tidy-up 35

5.1 The target.s script file

A source listing may be tidied by issuing the following command:

csh -v target.s

where target.s, is as follows:

1 #---+----1----+----2----+----3----+--+----3----+----2----+----1----+---#
2 #============ SCRIPT FILE TO TIDY UP FORTRAN SOURCE CODE ==============#
3 # #
4 # User sets: SOURCECODE, FIRST, SECOND, FIRSTCD, FIRSTDK #
5 # #
6 #=======================================> Get files from home directory.
7 if(! -e ./xedit22) cp ~dclarke/editor/version2.2/xedit22 .
8 #-----------------------> Create the input deck for EDITOR, and execute.
9 rm -f ./inedit
10 cat << EOF > ./inedit
11 \$editpar inname=’SOURCECODE’, ibanner=1, job=2, idump=1
12 , ibegdo= 10, ienddo= 990, ibegre=1010, iendre=1990
13 , ibegwr=2010, iendwr=2990
14 , inc=10, irepl=1, ireseq=1, indent=2, ialpha=1
15 , first=’FIRST’, secnd=’SECOND’, firstcd=’FIRSTCD’
16 , firstdk=’FIRSTDK’ \$
17 EOF
18 chmod 755 ./xedit22
19 ./xedit22
20 #===> Tidy up directory.
21 rm -f ./editlp ./inedit ./output ./xedit22

A softcopy of target.s may be found in the file edit22.tar downloaded from the EDITOR

website: http://www.ap.smu.ca/~dclarke/editor.
The first segment retrieves xedit22 from the user’s home directory, if needed. The

second segment prepares the input deck for EDITOR appropriate for tidying up a source
listing. In addition to the general namelist parameters described in §2.5, there are 15 namelist
parameters peculiar to TARGET. These are described below.

parameter description default

TARGET (job=2)

ibegdo lowest target value for "goto" and "do" stmnts. 10
ienddo highest target value for "goto" and "do" stmnts. 990
ibegre lowest target value for "read" and "decode" stmnts. 1010
iendre highest target value for "read" and "decode" stmnts. 1990
ibegwr lowest target value for "write" and "encode" stmnts. 2010
iendwr highest target value for "write" and "encode" stmnts. 2990
inc increment between successive targets. 10
irepl =1 => replace "do-enddo"s with targeted "do"s. 1

=0 => do not replace "do-enddo"s.
ireseq =1 => resequence 6th character in continuation stmnts. 1

=0 => no resequence.
indent =0 => no uniform indentation is imposed. 2

>0 => impose uniform indentation of "indent" spaces.
ialpha =0 => no alphabetisation of decks. 1

=1 => modulo specification of "first" etc., "common
decks" and "ordinary "decks" are arranged

http://www.ap.smu.ca/~dclarke/editor

FORTRAN tidy-up 36

alphabetically. "Common decks" are listed
before "ordinary decks".

first name of "deck" (common or ordinary) to be listed before
all others (character*16).

secnd name of "deck" (common or ordinary) to be listed right
after "first" (character*16).

firstcd name of "common deck" to be listed before all other
"common decks" but after "secnd" (character*16).

firstdk name of ordinary "deck" to be listed before all other
ordinary "decks" but after "secnd" (character*16).

It should be noted that TARGET is particularly sensitive to tab characters. EDITOR is
known to make mistakes and even crash if it encounters a tab character during a TARGET ses-
sion and so, as mentioned in §2.5, all tab characters should be replaced with the appropriate
number of blanks.

6 COMPARE: Comparing similar ASCII files

6.1 Comparing entire files

EDITOR may be instructed to compare two ASCII files character for character and report
the differences found in the two files. The locations of where the files diverge and reconverge
are reported. Obviously, for two totally dissimilar files, such a report may become unwieldy
as chance alignments of the two files are discovered.

What makes EDITOR’s COMPARE different from diff on most UNIX platforms is that
it may be instructed to ignore superficial or unimportant differences such as those found in
FORTRAN comments (i.e., lines with a c or C in the first column), the number of blanks left
between “words”, and the FORTRAN continuation characters chosen (character in column
6). This is an attempt to get beyond the most common differences in programming style
and uncover only those differences which may alter the logic of the program. COMPARE is also
much better at finding where the files reconverge than diff. Finally, if there are an unruly
number of differences, one may instruct EDITOR to stop searching after a specified number
of differences have been found.

EDITOR reports the differences by dumping the portion of the line from both files where
the difference was found and points to the very character which triggered the report. It also
tells the user on which line the two files reconverge. Below is an example of two files with
some differences, and the EDITOR COMPARE reports generated by comparing these two files
un various ways.

File 1 (tod1):

1 program tod
2 c-------------> This program returns the time of day on various systems.
3 character*8 tod
4 c
5 call date (tod)
6 write (6,10) tod
7 10 format(’Time of day is: ’,a)
8 stop
9 end

File 2 (tod2):

1 c===+====1====+====2====+====3====+====4====+====5====+====6====+====7==
2 c
3 program tod
4 c
5 c PURPOSE: This program returns the time of day on various systems.
6 c
7 c---
8 c
9 implicit none
10 character*8 tod
11 c
12 external date
13 c
14 c---
15 c

37

Comparing similar ASCII files 38

16 c Get time of day ("tod").
17 c
18 call date (tod)
19 c
20 c Write result to CRT.
21 c
22 write (6, 2000) tod
23 2000 format(’Time of day is: ’,a)
24 stop
25 end

These two versions of (presumably) the same program show different programming styles.
The task is to find all important differences between these two files, if any. In the report
that follows, no superficial differences were ignored and COMPARE behaves much like diff.

COMPARE :
COMPARE : diff "tod1 " "tod2 "
COMPARE : line context line context
COMPARE : --
COMPARE : 1 diff @ 1 progra 1 c===+====1==
COMPARE : same @ 4 ^ 2 ^
COMPARE : 2 diff @ 5 call date (t 3 program tod
COMPARE :
COMPARE : Number of differences reported = 2
COMPARE :

First the anatomy of this report. The first column (headed by diff) labels the differences
sequentially. The second column (headed by tod1, the name of the first file) gives the line
number and a segment of the indicated line in which the difference was discovered for the first
file. The third column (headed by tod2, the name of the second file) gives similar information
for the second file. Each difference report consists of two lines; where the files diverge (diff
@) and where the files reconverge (same @). The “diff @” line gives the context of the file in
which the difference was discovered centred over a carat (^) which indicates the first character
found to be different. For entirely different lines, this will generally be the first character
in the line. The “same A” line indicates on which line in each file the files reconverge, and
contains the carats.

This particular report is of little use. It basically states that the two files differ right from
the start (note that one file is indented with six blanks, the other with seven), happen to
be the same again where both files have an empty comment line, then differ throughout the
rest of the files. Since the files never reconverge, the “same at” line for the second difference
report is never issued, and thus neither are the carats. These two files are basically too
different for an all-difference report to be of much use.

In the second report which follows, differences stemming from blanks were ignored. It is
a bit more useful than the first report since reported differences are more localised.

COMPARE :
COMPARE : diff "tod1 " "tod2 "
COMPARE : line context line context
COMPARE : --
COMPARE : 1 diff @ 1 program 1 c===+====1==
COMPARE : same @ 1 ^ 3 ^
COMPARE : 2 diff @ 2 c------------ 4 c

Comparing similar ASCII files 39

COMPARE : same @ 4 ^ 4 ^
COMPARE : 3 diff @ 5 call dat 5 c PURPOSE:
COMPARE : same @ 5 ^ 18 ^
COMPARE : 4 diff @ 6 write (6 19 c
COMPARE : same @ 8 ^ 24 ^
COMPARE :
COMPARE : Number of differences reported = 4
COMPARE :

The first difference reports that the first two lines of each file are different (tod2 begins
with a comment, tod1 begins with the program statement) and that the two files reconverge
again at line 1 of tod1 and line 3 of tod2. Still, there is chaff amongst the wheat if one is
not interested in the differences generated by comment statements.

Finally, the third report which follows was generated with differences in comments and
blanks overlooked.

COMPARE :
COMPARE : diff "tod1 " "tod2 "
COMPARE : line context line context
COMPARE : --
COMPARE : 1 diff @ 3 character*8 9 implicit
COMPARE : same @ 3 ^ 10 ^
COMPARE : 2 diff @ 5 call date (t 12 external
COMPARE : same @ 5 ^ 18 ^
COMPARE : 3 diff @ 6 write (6,10) tod 22 rite (6, 2000) tod
COMPARE : same @ 8 ^ 24 ^
COMPARE :
COMPARE : Number of differences reported = 3
COMPARE :

In this case, COMPARE reports that tod2 has an implicit statement and an external

statement whereas tod1 does not, and that the target for the write statement differs in the
two versions (10 in tod1, 2000 in tod2). This is perhaps the most useful of all reports, and
illustrates the power of being able to ignore selectively various types of differences.

6.2 Comparing declaration contents

The second way EDITOR may compare two files is by comparing the contents of their
respective declaration lists without regard to format . This mode of comparison does not
extend into the body of the FORTRAN module containing the FORTRAN executables.
The utility of this feature is perhaps best illustrated by an example. In an attempt to
align a subroutine with a particular coding style, suppose one wishes to reformat all the
declarations at the beginning of a program module from the style illustrated in the file dec1

to that in file dec2 below:

Style 1 (file dec1):

implicit none
integer idim, jdim
parameter (idim=100,jdim=100)
integer i,j,is,ie,js,je,ieqs(10)
real s1,v1(idim),w1(jdim),a1(idim,jdim),s2,v2(idim),w2(jdim),

Comparing similar ASCII files 40

.a2(idim,jdim)s3,v3(idim),w3(jdim)s4,s5,s6,s7,s8,s9,s10,

.reqs(10),reqv(3*idim+3*jdim)
c

equivalence (ieqs(1),i),(ieqs(2),is),(ieqs(3),ie),(ieqs(4),j),
.(ieqs(5),js),(ieqs(6),je)
equivalence (reqs(1),s1),(reqs(2),s2),(reqs(3),s3),(reqs(4),s4),
.(reqs(5),s5),(reqs(6),s6),(reqs(7),s7),(reqs(8),s8),(reqs(9),s9),
.(reqs(10),s10),(reqv(1),v1(1)),(reqv(idim+1),v2(1)),
.(reqv(2*idim+1),v3(1)),(reqv(3*idim+1),w1(1)),
.(reqv(jdim+3*idim+1),w2(1)),(reqv(2*jdim+3*idim+1),w3(1))
common /comi/ ieqs
common /comr/ reqs,reqv,a1,a2

Style 2 (file dec2):

c---
c-------------------------- IMPLICIT STATEMENT -------------------------
c---

implicit none
c---
c------------------------------ PARAMETERS -----------------------------
c---

integer idim , jdim
parameter (idim = 100, jdim = 100)

c---
c------------------------------ VARIABLES ------------------------------
c---

integer i , is , ie
1 , j , js , je
real s1 , s2 , s3 , s4 , s5

1 , s6 , s7 , s8 , s9 , s10
2 , s11 , s12

c
real v1 (idim), v2 (idim), v3 (idim)

1 w1 (jdim), w2 (jdim), w3 (jdim)
c

real a1 (idim,jdim), a2 (idim,jdim)
c---
c------------------------ EQUIVALENCE STATEMENTS -----------------------
c---

integer ieqs (10)
equivalence

1 (ieqs(1),i),(ieqs(2),is),(ieqs(3),ie)
2 ,(ieqs(4),j),(ieqs(5),js),(ieqs(6),je)

c
real reqs (20)
equivalence

1 (reqs(1),s1),(reqs(2),s2),(reqs(2),s3)
2 ,(reqs(4),s4),(reqs(5),s5),(reqs(6),s6)
3 ,(reqs(7),s7),(reqs(8),s8),(reqs(9),s9)
4 ,(reqs(10),s10),(reqs(11),s11),(reqs(12),s12)

c
real reqv (3*idim+3*jdim)
equivalence (reqv (1), v1 (1))

1 , (reqv (idim+1), v2 (1))
2 , (reqv (2*idim+1), v3 (1))
3 , (reqv (3*idim+1), w1 (1))
4 , (reqv (jdim+3*idim+1), w1 (1))

Comparing similar ASCII files 41

5 , (reqv (2*jdim+3*idim+1), w3 (1))
c---
c---------------------------- COMMON BLOCKS ----------------------------
c---

common / comi / ieqs
common / comr / reqs , reqv , a1 , a2

Upon comparing these two declaration modules, EDITOR would issue the following differ-
ence report:

COMPARE :
COMPARE : The following declarations were not found in file "dec1 "
COMPARE : real s11
COMPARE : real s12
COMPARE : real reqs(20)
COMPARE : equivalence (reqs(2),s3)
COMPARE : equivalence (reqs(11),s11)
COMPARE : equivalence (reqs(12),s12)
COMPARE : equivalence (reqv(jdim+3*idim+1),w1(1))
COMPARE :
COMPARE : The following declarations were not found in file "dec2 "
COMPARE : real reqs(10)
COMPARE : equivalence (reqs(3),s3)
COMPARE : equivalence (reqv(jdim+3*idim+1),w2(1))
COMPARE :

Obviously, several changes other than formatting changes were introduced when dec1 was
recast into dec2. Some of the changes may have been deliberate (the addition of variables
s11 and s12, increasing the dimension of reqs from 10 to 20) while the remainder are
probably typos (in the equivalence statements in dec2, reqs(2) and w1 appear twice while
reqs(3) and w2 do not appear at all).

6.3 The compare.s script file

Two source listings may be compared by issuing the following command:

csh -v compare.s

where compare.s, is as follows:

1 #---+----1----+----2----+----3----+--+----3----+----2----+----1----+---#
2 #================= SCRIPT FILE TO COMPARE TWO LISTINGS ================#
3 # #
4 # User sets: SOURCECODE1, SOURCECODE2 #
5 # #
6 #=======================================> Get files from home directory.
7 if(! -e ./xedit22) cp ~dclarke/editor/version2.2/xedit22 .
8 #-----------------------> Create the input deck for EDITOR, and execute.
9 rm -f ./inedit
10 cat << EOF > ./inedit
11 \$editpar inname=’SOURCECODE1’, in2name=’SOURCECODE2’
12 , ibanner=1, job=5, icompar=1, ndiff=100, ignore=0,0,0 \$
13 EOF
14 chmod 755 ./xedit22
15 ./xedit22
16 #===> Tidy up directory.
17 rm -f ./editlp ./inedit ./output ./xedit22

Comparing similar ASCII files 42

A softcopy of compare.s may be found in the file edit22.tar downloaded from the EDITOR

website: http://www.ap.smu.ca/~dclarke/editor.
The first segment retrieves xedit22 from the user’s home directory, if needed. You

may wish to add two similar lines to retrieve from their home directories the two files to be
compared (SOURCECODE1 and SOURCECODE2). The second segment prepares the input deck for
EDITOR appropriate for comparing two source listings. In addition to the general namelist
parameters described in §2.5, there are four namelist parameters peculiar to COMPARE. These
are described below.

parameter description default

COMPARE (job=5)

in2name name of file to be compared with "inname" (char*64).
icompar =1 => report first "ndiff" differences 1

=2 => list discrepancies in declarations
ndiff maximum number of differences to report 100

(icompar=1 only).
ignore integer vector indicating types of differences to 0,0,0

report (0) or ignore (1). ignore(1): continuation
characters; ignore(2): blanks; ignore(3): comments
(icompar=1 only).

Some notes:

1. ignore is a vector with 3 elements. The first, second, and third elements pertain to
continuation characters, blanks, and comments respectively. If any element is 1, that
type of difference is ignored, otherwise, it is reported. So, for example, if one wanted
to find the differences between two files with differences in continuation characters
and comments overlooked (but differences in the number of blanks between words
reported), one would set ignore=1,0,1.

2. Comparison of declarations may cause an overflow to occur if EDITOR was compiled
with parameter k9 set too small. See §9.3 and §A.1.

http://www.ap.smu.ca/~dclarke/editor

7 SPLIT: Splitting source code

7.1 Splitting a file

As part of the precompilation process, splitting up a file was discussed in §2.4. One can
perform the split outside PRECOM using SPLIT, but it does not include the checking feature
that the precompilation split allows. That is to say, no effort is made to check if the file
being overwritten needs to be updated.

This feature of EDITOR is very similar to fsplit. The EDITOR SPLIT names each file
it creates with the module name and the user-specified extension appended. It will allow the
user to specify in which directory all files are to be placed.

7.2 The split.s script file

A source listing may be split by issuing the following command:

csh -v split.s

where split.s, is as follows:

1 #---+----1----+----2----+----3----+--+----3----+----2----+----1----+---#
2 #==== SCRIPT FILE TO SPLIT A SOURCE CODE INTO FILES FOR EACH DECK =====#
3 # #
4 # User sets: DIRECTORY, SOURCECODE #
5 # #
6 #=======================================> Get files from home directory.
7 if(! -e ./xedit22) cp ~dclarke/editor/version2.2/xedit22 .
8 #======================> If necessary, create the directory "DIRECTORY".
9 if(! -e ./DIRECTORY) mkdir ./DIRECTORY
10 #-----------------------> Create the input deck for EDITOR, and execute.
11 rm -f ./inedit
12 cat << EOF > ./inedit
13 \$editpar inname=’SOURCECODE’, ibanner=1, job=6, idump=1, ext=’.f’
14 , branch=’DIRECTORY’ \$
15 EOF
16 chmod 755 ./xedit22
17 ./xedit22
18 #===> Tidy up directory.
19 rm -f ./editlp ./inedit ./output ./xedit22

A softcopy of split.s may be found in the file edit22.tar downloaded from the EDITOR

website: http://www.ap.smu.ca/~dclarke/editor.
The first segment retrieves xedit22 from the user’s home directory, if needed. The second

segment prepares the input deck for EDITOR appropriate for splitting a source listing. In
addition to the general namelist parameters described in §2.5, two of the namelist parameters
used to control PRECOM are also used by SPLIT. These are described below.

parameter description default

SPLIT (job=6)
branch character*32 string indicating directory in which blank

separate files are written.
ext desired extension for files (character*8) ’.src’

43

http://www.ap.smu.ca/~dclarke/editor

8 CONCAT: Concatenating files

EDITOR’s CONCAT goes beyond the UNICOS utility cat by bringing together all files with
the same specified extension located in the specified directory or any of its subdirectories
into a single source file.

8.1 The concat.s script file

Source listings may be concatenated by issuing the following command:

csh -v concat.s

where concat.s, is as follows:

1 #---+----1----+----2----+----3----+--+----3----+----2----+----1----+---#
2 #=========== SCRIPT FILE TO CONCATENATE FILES INTO ONE FILE ===========#
3 # #
4 # User sets: OUTFILE, DIRECTORY #
5 # #
6 #=======================================> Get files from home directory.
7 if(! -e ./xedit22) cp ~dclarke/editor/version2.2/xedit22 .
8 #-----------------------> Create the input deck for EDITOR, and execute.
9 rm -f ./inedit
10 cat << EOF > ./inedit
11 \$editpar outname=’OUTFILE’, ibanner=1, job=7, idump=1, ext=’.f’
12 , branch=’DIRECTORY’ \$
13 EOF
14 chmod 755 ./xedit22
15 ./xedit22
16 #===> Tidy up directory.
17 rm -f ./editlp ./inedit ./output ./xedit22

A softcopy of concat.s may be found in the file edit22.tar downloaded from the EDITOR

website: http://www.ap.smu.ca/~dclarke/editor.
The first segment retrieves xedit22 from the user’s home directory, if needed. The

second segment prepares the input deck for EDITOR appropriate for concatenating source
listings. In addition to the general namelist parameters described in §2.5, two of the namelist
parameters used to control PRECOM are also used by CONCAT. These are described below.

parameter description default

CONCAT (job=7)

branch character*32 string indicating top directory from blank
which files are sought.

ext common extension of files (character*8). ’.src’

44

http://www.ap.smu.ca/~dclarke/editor

9 Installing EDITOR

9.1 Installation

This section describes how to install EDITOR on your UNIX -based system.
From the website http://www.ap.smu.ca/~dclarke/editor, download the “gzipped”

file edit22.tar.gz into a directory you wish to contain the EDITOR directory. Then, upon
issuing the commands:

gunzip edit22.tar.gz
tar -xvf edit22.tar
cd editor_v2.2_ICA
ls -FC *

the following should appear on your screen:

README bldlib2*

editor:
compare.s edit22.GFORTRAN.f merge_precom.s
concat.s edit22.IFORT.f number.s
edit22 edit22.PGF77.f precom.s
edit22.CF77.f edit22.XLF.f split.s
edit22.F90.f edit22.s target.s
edit22.G95.f merge.s

manuals:
edit22_man.pdf

nmlst:
dnamelist dnamelist.s namelist namelist.s

These are all the files needed to run and operate the program edit22, version 2.2 of EDITOR.
EDITOR actually manages itself. That is, peppered throughout EDITOR are numerous

EDITOR commands described in §2.1. Other than the *dk and *cd statements, these
are mostly *if def...*endif constructs to account for the various compilers EDITOR

supports. Therefore, to get things started, precompiled versions of edit22 for each supported
compiler (named edit22.<comp>.f, where <comp> is one of CF77, F90, . . . , XLF) are provided
in the directory editor, each stripped of all EDITOR commands and tailored for the named
compiler.

The following instructions are written assuming Gnu’s gfortran is being used. For other
compilers, make the appropriate substitutions.

STEP 1: Create a preliminary edit22 executable, xedit22. Since edit22 manages itself,
in principle one needs the edit22 executable in order to compile it! Thus, a bit of a “boot-
strap” process is required to complete the compilation.

Go to directory editor.

1.1) If using one of the supported compilers (e.g., gfortran), type:

gfortran -o xedit22 edit22.GFORTRAN.f

45

http://www.ap.smu.ca/~dclarke/editor

Installing EDITOR 46

This creates the preliminary xedit22 executable. Move on to step 2.

1.2 If using a compiler not supported by edit22 (let’s call it FCOMP), you will have to
modify edit22.GFORTRAN.f as follows. Type:

cp edit22.GFORTRAN.f edit22.FCOMP.f

FCOMP -o xedit22 edit22.FCOMP.f

If this fails (and it may not!), it will likely do so by citing calls to unknown subroutines
such as cpu_time, date_and_time, and system. For many compilers, these subroutines
do the following:

cpu_time returns the cpu time since the beginning of the run in seconds;
date_and_time returns eight integers giving the year, month, day, etc. Search for

date_and_time in edit22 for details.
system executes a systems call (such as removing a disc file) at run time.

You will have to find the equivalents to these functionalities for your compiler. Once
determined, open up edit22.FCOMP.f in a text editor, find the offending system calls,
and make the necessary replacements. Then, once again, type:

FCOMP -o xedit22 edit22.FCOMP.f

remembering to replace FCOMP with the actual name of your compiler. This should
produce a preliminary edit22 executable (xedit22) needed through step 4.

Step 2: From directory editor_v2.2_ICA, open the script file bldlib2 in your text editor.
The entire file should be platform independent with the possible exception of line 33 which
invokes the gfortran compiler whose given options create object files without linking (-c),
and uses the fastest safe optimisation level (-O2). If a compiler other than gfortran is being
used, line 33 must be changed appropriately. Options for other commonly used compilers
(for optimising and debugging) are given in the header.

Step 3: From the directory nmlst, issue the following commands:

csh -v namelist.s
csh -v dnamelist.s

These commands will create single- and double-precision versions of the platform-independent
namelist libraries (libnmlst.a and libdnmlst.a respectively). The former is required for
edit22 while the latter is included to link to double precision software that the user may
wish to manage with EDITOR.

Step 4: If you are using one of the seven supported compilers, go to step 5. If not, you must
put all the changes you made to create edit22.FCOMP.f into the “master copy” of EDITOR,
namely edit22.

From the directory editor, open edit22.FCOMP.f in one text editing window, edit22
in another. Without deleting any lines in edit22, add your system-dependent changes to
edit22. Make sure each addition is bracketed with:

Installing EDITOR 47

*if def FCOMP
...
*endif FCOMP

using the other compiler options (CF77, GFORTRAN, etc.) as a template.
It may be that some of the compiler-dependent calls in edit22.GFORTRAN.f worked

just fine for your compiler. Find these by searching for “if def,GFORTRAN”, and add your
compiler name to the list of compilers in the “if def,” statements surrounding the seg-
ments of code that work for your compiler. Thus, change “if def,GFORTRAN” for “if
def,GFORTRAN.or.FCOMP”, etc.

Step 5: From the directory editor, open edit22.s (described in §9.2) and, for compilers
other than gfortran, replace gfortran in line 9 with the desired compiler. Then type:

csh -v edit22.s

which creates your final working version of xedit22 (replacing the temporary executable
created in step 1), and leaves it in the directory editor. You are now ready to go.

9.2 The script file edit22.s

The script file edit22.s used in the previous section to install EDITOR serves as a good
example of how the author uses EDITOR in practise. For the purposes of this discussion,
the file is reproduced below, with an electronic copy of the same file in the directory editor

of edit22.tar downloaded from http://www.ap.smu.ca/~dclarke/editor.

1 #---+----1----+----2----+----3----+--+----3----+----2----+----1----+---#
2 #============= SCRIPT FILE TO CREATE THE EDITOR EXECUTABLE ============#
3 #---> Select FORTRAN compiler.
4 #
5 # Supported compilers include:
6 # cf77 (Cray), f90 (Sun), g95 (Gnu), gfortran (Gnu), ifort (Intel),
7 # pgf77 (Portland Group), xlf (IBM)
8 #
9 setenv FCOMP gfortran
10 #=======================================> Get files from home directory.
11 if(! -e ./libnmlst.a) cp ../nmlst/libnmlst.a .
12 #======================> If necessary, create the directory "editor2.2".
13 if(! -e ./editor2.2) mkdir ./editor2.2
14 #--> Create the change deck.
15 rm -f ./chgedit
16 cat << EOF > ./chgedit
17 *define $FCOMP
18 *delete par.10,11
19 parameter (k1=1000, k2=100000, k3=2000, k4=2000, k5=2000
20 1 , k6=128, k7=1000, k8=1000, k9=4000)
21 EOF
22 #=======================> Create the input deck for EDITOR, and execute.
23 rm -f ./inedit
24 cat << EOF > ./inedit
25 \$editpar inname=’edit22’, chgdk=’chgedit’, safety=0.4
26 , idump=1 ,job=3, ipre=1, inmlst=1, iupdate=1, iutask=0
27 , ext=’.f’, branch=’editor2.2’, xeq=’xedit22’

http://www.ap.smu.ca/~dclarke/editor

Installing EDITOR 48

28 , compiler=’$FCOMP’, makename=’makeedit’
29 c , coptions=’debug’
30 , coptions=’optimise’
31 , libs=’libnmlst.a’ \$
32 EOF
33 chmod 755 ./xedit22
34 ./xedit22
35 #==> MAKE the EDITOR executable.
36 make -f ./makeedit
37 #===> Tidy up directory.
38 rm -f ./inedit ./output ./editlp ./chgedit ./chgedit.m ./libnmlst.a

On line 9 of the first segment, the desired FORTRAN compiler is selected. Here, FCOMP
is a “system variable” (no longer representing the user’s hypothetical FORTRAN compiler
in §9.1) set by the UNIX setenv command, and is used in two places. First, on line 17
it serves as the EDITOR macro to tailor edit22 to the chosen compiler. Second, on line
28 it is the setting for the namelist parameter compiler in the input deck inedit which
determines which compiler is used to compile edit22.

Line 11 of the second segment retrieves the namelist library libnmlst.a from the direc-
tory ../nmlst.

Line 13 of the third segment creates the directory editor2.2 into which all files split
from the master source file edit22 and object files once compiled are placed.

The fourth segment (lines 14–21) generates the change deck chgedit which gets merged
with the master file edit22. Line 17 sets the compiler by defining the appropriate EDITOR

definition and, if there were any other EDITOR definitions or aliases to set, they could be
set here too. Next, the change deck sets values for the parameters described in §9.3. Because
of the memory management built into EDITOR, it is unlikely that these values would ever
have to be changed from those given.

If there were numerous EDITOR macro settings, one might consider placing them all in
a separate file (called, for example, edit22.mac) and then replace line 17 with the statement
*read edit22.mac. In this way, the script file will remain concise, and only those changes
which need to be the most accessible (setting the parameter values, for example) would
remain in the script file itself. Similarly, if there were numerous changes to be merged into
the code before precompilation, these could be put into a separate file called chged22, say,
then the statement *read chged22 would be inserted after line 20. Again, this keeps the
file edit22.s uncluttered.

The fifth segment generates the namelist input data file inedit which instructs the
current version of the EDITOR binary executable xedit22 how to preprocess edit22. In
this example, the namelist parameters are set so that chgedit will first be merged into
edit22 which is then precompiled (since ipre=1) for gfortran with the namelist replace-
ment feature on (inmlst=1), the conditional splitting feature on (iupdate=1), and the
micro-tasking feature off (iutask=0). All files split from the merged master source code
will be placed in the directory editor2.2 and will have the extension .f, appropriate for
FORTRAN source code. Since iupdate=1 and makename is set to a non-blank character
string in the input deck, a makefile with the name makeedit will be generated. The makefile
will use the compiler gfortran -c and loader gfortran with the highest safe optimisa-
tion (coptions=’optimise’ not commented out). The library libnmlst.a will be linked

Installing EDITOR 49

with the EDITOR object code to generate a binary executable called xedit22. Finally, the
current version of xedit22 is launched by line 34, and edit22 is preprocessed.

Line 36 in the sixth segment fires up the makefile makeedit generated in the previ-
ous segment. This compiles and links the new EDITOR code generating a new version of
xedit22, overwriting the version of xedit22 which did the preprocessing.

Finally, line 38 of the last segment removes some of the intermediate files no longer
needed. A few of the intermediate files (e.g., edit22.f, edit22.m, and makeedit) are left
intact, as these can be useful for debugging should something go awry.

9.3 EDITOR parameters

As FORTRAN uses static memory, there are numerous parameters that EDITOR requires
to set internal array sizes. For the most part, the default settings should be fine for any
application with any compiler. However, in case the user needs to change any of them, an
exhaustive list of EDITOR’s parameters, what they limit, and their default values are given
below.

parameter interpretation default

k1 maximum number of errors to be reported 1,000
k2 maximum number of lines in source code to be processed 100,000
k3 maximum number of origins per module (TARGET) 2,000
k4 maximum number of decks in source code 2,000
k5 maximum number of targets per module (TARGET) 2,000
k6 maximum number of characters per line of source code 128
k7 maximum number of EDITOR definitions 1,000
k8 maximum number of EDITOR aliases 1,000
k9 maximum number of variables within a module 4,000

The purpose of the last parameter k9 depends on the EDITOR function. When compar-
ing declaration lists of two files (§6.2), COMPARE will only allow as many k9 variables of each
type (real, integer, etc.). The namelist replacement feature (§2.2) will allow as many as k9
variables to be defined in each namelist. Finally, the micro-tasking feature (§2.3) will scope
as many as k9 variables in each nested loop structure it encounters. The default values listed
above should be more than adequate for most purposes.

The parameter k2 sets the maximum number of lines read at a time from the user’s
source file being processed. A source file of any arbitrary size may be read. However, if the
source code is too long, the file will be read in pieces rather than all at once in order to avoid
surpassing the memory available on your machine. Thus, EDITOR is built with an effort
made toward memory management, and this should be entirely transparent to the user. A
100,000 line source code may be read in and processed all at once (with k2 set as high as
need be) or in various pieces. The end result will be identical. There are a few factors to be
considered in choosing the appropriate value of k2.

1. EDITOR is slightly faster if k2 is large enough to read the entire input file at once,
but only slightly.

2. The amount of memory required by EDITOR is largely dictated by k2. There are
four character*128 arrays dimensioned with k2. Thus, the memory required by these

Installing EDITOR 50

arrays for k2=100000 (the default) is 51.2 Mbytes. It turns out that the size of the
EDITOR executable with k2=100000 is 52.4 Mbytes, so it is clear that the k2 arrays
are the dominant sink of memory. Use these numbers to guide your selection for k2

and choose as large a value as may be conveniently handled by your machine.

3. The number of lines read by EDITOR at a time will be at most safety*k2. The
variable safety may be set in the namelist input data file inedit (§2.5 and §9.2) and
reflects the fact that the source code is apt to expand during preprocessing. For NUMBER,
the expansion is minimal (table of contents only), and so safety=0.9 is probably
OK. For TARGET, the same. However, for MERGE the amount of expansion depends
on how much extra coding is being merged with the original file. For PRECOM the
*call statements can result in substantial expansion of the source file. Thus, setting
safety=0.4 or smaller may be appropriate. If safety is set too high and an overflow
results, execution will be aborted and the user will be asked to use a smaller value for
safety (see §A.1). Since EDITOR reads only complete decks and in general, a deck
won’t happen to end after exactly safety*k2 lines, EDITOR will usually read less than
safety*k2 lines at a time. If there are individual decks with more than safety*k2

lines, this will create an overflow condition, and execution will abort (§A.1). The user
must then do one or more of the following: resubmit the EDITOR job with a larger
value of safety (at the risk of generating overflows when the new files expand); rewrite
the source code with smaller decks; or recompile EDITOR with a larger value of k2.
If none of these can be done, EDITOR may not be used for the desired task on the
chosen machine.

A Error messages

Error messages come in four flavours. The most serious cause EDITOR to abort execution
and usually require it to be recompiled with higher values for one or more parameters. The
second type consist of error messages caused by incorrect EDITOR syntax in the files being
processed. These are not fatal to EDITOR itself, but will mean that the files processed
by EDITOR will be unusable for their intended purpose. EDITOR will insert these error
messages directly below the offending line in the output file. Note that original input files
supplied by the user are never altered by EDITOR. The third type are warning messages
which are echoed on the terminal screen. In this release, there is only one warning, and it
is completely innocuous. Finally, if the user’s program is preprocessed with the namelist
replacement feature (§2.2), syntax errors in the user’s namelist input data file will generate
fatal error messages at run time.

A.1 Fatal errors

Fatal error messages which abort EDITOR arise under two conditions. Either an overflow
has occurred (in which case EDITOR may have to be recompiled with one of its parameters
set to a higher value), or the file that EDITOR was trying to read was not found or was
found to be corrupted. All fatal error messages indicate which EDITOR subroutine found
the problem (of no real use except possibly to EDITOR programmers) and what the problem
is, followed by the unwelcome message: ABORTS!. Internally, the ABORTS! message is always
followed by a stop statement, so this message really means what it says.

These messages are listed here alphabetically, with some descriptive text interleaved
where necessary. The first set of messages come from COMPARE (§6) and, in particular,
when the declarations of two files are being compared. These all require that EDITOR be
recompiled with a larger value of k9 (§9.3). Note that n indicates the current value of k9 as
already compiled.

COMPARE : Number of character variables exceeded n. Increase parameter k9.
COMPARE : ABORTS!

COMPARE : Number of data assignments exceeded n. Increase parameter k9.
COMPARE : ABORTS!

COMPARE : Number of equivalences exceeded n. Increase parameter k9.
COMPARE : ABORTS!

COMPARE : Number of externals declared exceeded n. Increase parameter k9.
COMPARE : ABORTS!

COMPARE : Number of integer variables exceeded n. Increase parameter k9.
COMPARE : ABORTS!

COMPARE : Number of logical variables exceeded n. Increase parameter k9.
COMPARE : ABORTS!

COMPARE : Number of parameters exceeded n. Increase parameter k9.
COMPARE : ABORTS!

51

Error messages 52

COMPARE : Number of real variables exceeded n. Increase parameter k9.
COMPARE : ABORTS!

COMPARE : Number of variables in common exceeded n. Increase parameter k9.
COMPARE : ABORTS!

CONCAT (§8) has one trap which will abort execution should it have trouble reading a
particular line (i) in a named file (filename). This indicates that the file may be corrupted
or is shorter than EDITOR anticipated. Check the contents of the file, particularly around
the indicated line.

CONCAT : Problem reading line i in file "filename"
CONCAT : ABORTS!

If a user-specified input file isn’t actually there, the following message will be issued.
Check that filename was spelled correctly, or that the file is in the proper directory.

OFILE : Problem opening file "filename"
OFILE : ABORTS!

While EDITOR has been designed with considerable effort toward memory management
(§9.3), it is still possible for overflows to occur. There are two types of overflow. One can
be corrected only by recompiling EDITOR with a larger value for the parameter k2 (§9.3).
The other may be corrected by resetting the parameter safety in the namelist input data
file indata (§2.5 and §9.2) to a lower value, then executing EDITOR again. Note that the
latter case does not require recompiling EDITOR.

The overflowed text is not written to the intended file, but to an emergency file called
“OVERFLOW.TXT” that the subroutine OVERFLOW opens, writes to, and closes before it aborts
execution. It may help to examine the contents of this file, but in all likelihood, all one can
do is to reset k2 and/or safety. Following are the OVERFLOW fatal error messages. They
indicate which subroutine originally detected the overflow and whether to recompile with a
higher value for k2 or to resubmit with a lower value of safety. The last message is probably
trouble since it implies that enough error messages were inserted to exceed array bounds.

OVERFLOW: File overflow in CDECKS. Increase parameter "k2"
OVERFLOW: Overflowed text file written to file "OVERFLOW.TXT"
OVERFLOW: ABORTS!

OVERFLOW: File overflow in MERGE. Increase parameter "k2"
OVERFLOW: Overflowed text file written to file "OVERFLOW.TXT"
OVERFLOW: ABORTS!

OVERFLOW: File overflow in MERGE. Specify lower value for "safety" than x
OVERFLOW: Overflowed text file written to file "OVERFLOW.TXT"
OVERFLOW: ABORTS!

OVERFLOW: File overflow in NMLST. Specify lower value for "safety" than x
OVERFLOW: Overflowed text file written to file "OVERFLOW.TXT"
OVERFLOW: ABORTS!

OVERFLOW: File overflow in PARALLEL. Increase parameter "k2"
OVERFLOW: Overflowed text file written to file "OVERFLOW.TXT"

Error messages 53

OVERFLOW: ABORTS!

OVERFLOW: File overflow in PRECOM. Specify lower value for "safety" than x
OVERFLOW: Overflowed text file written to file "OVERFLOW.TXT"
OVERFLOW: ABORTS!

OVERFLOW: File overflow in TARGET. Specify lower value for "safety" than x
OVERFLOW: Overflowed text file written to file "OVERFLOW.TXT"
OVERFLOW: ABORTS!

OVERFLOW: In ERRMSG, attempt to insert error message causes a file overflow
OVERFLOW: Overflowed text file written to file "OVERFLOW.TXT"
OVERFLOW: ABORTS!

Finally, the subroutine which reads text once a text file is opened (RFILE) can fall into
traps. EDITOR will always attempt to read entire decks or modules of a source code (§9.3).
If it cannot (that is, if safety*k2 is less than the number of lines in the largest deck),
then execution will abort. In addition, if the file being read is corrupted or smaller than
anticipated, a fatal error message will be generated.

RFILE : A module in file "filename" is longer than i lines
RFILE : Increase parameter "k2"
RFILE : ABORTS!

RFILE : Array bounds exceeded while reading file "filename"
RFILE : Increase parameter "k2"
RFILE : ABORTS!

RFILE : Problem reading line i in file "filename"
RFILE : ABORTS!

A.2 Non-fatal errors

There are a variety of error messages that EDITOR inserts into the output files should
it uncover any EDITOR syntax errors or some selected FORTRAN syntax errors. These
errors do not abort execution. EDITOR simply notes the error, leaves the errant line in the
output file (as opposed to syntactically correct EDITOR statements which once carried out
are expunged from the output file), and moves on. Every effort has been made to ensure
that the error message will appear immediately after the offending line in the output file.
This requires a rather elaborate accounting scheme which keeps track of every line added
or deleted from the file so that the pointers which indicate where the error messages should
be inserted are kept up to date. This logic is prone to flaws and, while the author hasn’t
noted a single case of a misplaced error message in several years of constant use, it is still
conceivable that the occasional error message will appear out of context.

Non-fatal error messages may be generated only by PRECOM (§2), MERGE (§4), or TARGET
(§5). The appropriate section should be consulted for the correct syntax of the desired
operation. Note that the input files are never altered by EDITOR. Thus, error messages
appear in the .f, .m, or .t output files only, not the input files. Nevertheless, corrections
should be made to the original input files—making them to the output files where the error
messages appear will have no effect.

Error messages 54

CDECKS : **** ERROR 1 **** > 10 nested *calls. Does a *cdeck call itself?

This indicates that the user has exceeded the internal EDITOR limit of 10 nested *calls

to common decks. Since it is unlikely such a complex structure would be deliberate, the
message suggests that perhaps the calling tree is closed. e.g., perhaps, common deck 1 calls
common deck 2 which calls common deck 3 which calls common deck 1, or something to that
effect. If so, this should be corrected.

CDECKS : **** ERROR 2 **** Call made to an unknown common deck.

A call has been made to an undefined common deck. Misspelling a common deck name in a
*call statement is the most probable cause for this error.

COLLECT : **** ERROR 3 **** Expecting a character expression.

If a *call statement appears without a common deck named, or if any other EDITOR

command is incomplete, this error message will result. Check syntax.

COLLECT : **** ERROR 4 **** Too many switches defined.

This indicates that the user has specified more switches (definitions) than allowed by the
array bounds. One either needs to define fewer macros, or to recompile EDITOR with a
larger value of k7.

COLLECT : **** ERROR 5 **** Too many aliases defined.

This indicates that the user has specified more aliases than allowed by the array bounds.
One either needs to set fewer aliases, or to recompile EDITOR with a larger value of k8.

COLLECT : **** ERROR 6 **** Too many common decks defined.

This indicates that the user has specified more common decks than allowed by the array
bounds. One either needs to define fewer common decks, or to recompile EDITOR with a
larger value of k4.

COPY : **** ERROR 7 **** Syntax! First character is illegal.

This message is a combined EDITOR-FORTRAN syntax error message, and indicates that
the only allowed characters in the first column of legal FORTRAN/EDITOR statements is
a blank, a digit (0 through 9), c, C, or *.

COPY : **** ERROR 8 **** Syntax! EDITOR sentinel (*) not in column 1.

This message indicates that the EDITOR command does not begin in the first column.
EDITOR will not attempt to read statements that do not adhere to the precise syntax.

COPY : **** ERROR 9 **** Syntax! Extra space after EDITOR sentinel (*).

This message indicates that the EDITOR sentinel (*) is not followed immediately by the
rest of the command. Again, strict compliance with the syntax is required.

Error messages 55

CTOI : **** ERROR 10 **** A non-numeric character detected.

Some EDITOR commands have fields inside which integers are expected. Thus, if a user
inadvertently types *delete sub1.io where the io should have been a 10, ERROR 10 will
be generated.

There is no error message 11.

ERRSET : **** ERROR 12 **** Number of issued errors exceeds "k1".

Trouble. If one really wants to see all the errors at the same time, go ahead and recompile
EDITOR with a higher value of k1. However, there is probably something really wrong
with the input files, and this will have to be corrected. Once the errors are fixed, this error
message should go away as well.

INOREX : **** ERROR 13 **** Unrecognised EDITOR command.

EDITOR didn’t recognise what followed the * sentinel as a valid EDITOR command. Check
syntax.

INOREX : **** ERROR 14 **** More than ten nested *if statements.

EDITOR only allows as many as 10 nested *if statements, whether they be *if define or
*if alias. One needs to simplify the nested structure.

INOREX : **** ERROR 15 **** Expecting a character expression.

See ERROR 3.

INOREX : **** ERROR 16 **** Expecting a Boolean .and. or .or..

If an EDITOR *if define statement lists more than one macro, these macros must be
separated by an .and. or an .or..

INOREX : **** ERROR 17 **** Expecting a Boolean .eq. or .ne..

An *if alias statement must have either an .eq. or a .ne. in the fourth field.

INOREX : **** ERROR 18 **** Dangling *endif statement.

More *endif statements than the number of pending *if statements have been discovered.
All *endifs must have a corresponding *if statement appearing before it in the deck.

INOREX : **** ERROR 19 **** Too few *endif statements in previous deck.

At least one *if statement was not closed by an *endif statement by the time the previous
deck was closed. All *if statements must be closed by an *endif statement before the
next deck begins. This message is placed immediately after the *deck statement of the deck
immediately following the deck with the unbalanced *if statement(s).

Error messages 56

LIST : **** ERROR 20 **** Unbalanced parentheses.

A FORTRAN statement with an argument list (if, computed goto, etc.) has unbalanced
parentheses. This FORTRAN syntax error is only reported when it interferes with the
desired preprocessing (e.g., looking for targets at the end of an if statement).

MERGE : **** ERROR 21 **** Expecting a character expression.

See ERROR 3

MERGE : **** ERROR 22 **** Reference made to an undefined deck.

A MERGE edit (*insert, *delete, or *replace) has been issued which refers to a deck not
found in the master source code. The most likely reason is that the deckname has been
misspelled.

MERGE : **** ERROR 23 **** Expecting a line number to follow deck name.

MERGE edits require at least one reference to a line number. If no line numbers were given,
this error message is issued.

MERGE : **** ERROR 24 **** Last line number must be greater than first.

For the MERGE edit: *delete filename.n,m, m must be greater than n.

MERGE : **** ERROR 25 **** Specified range not found in deck.

The specified lines in the *delete statement were not found in the specified deck. Check
the fifth column of the source code formatted by NUMBER and make sure the lines do indeed
exist.

MERGE : **** ERROR 26 **** Cannot find specified line. Was it deleted?

Probable cause of this error message is a previous *delete statement removed the line(s)
that the current MERGE edit is trying to affect.

NMLST : **** ERROR 27 **** Missing opening delimiter /.

The NMLST errors should not be confused with the namelist error messages that may
appear during run time of the user’s program should syntax errors be found in the namelist
input data file. The NMLST errors are those generated by improper syntax of the namelist
statement in the user’s source code itself. This error message indicates that the opening
slash is absent from the namelist designation. See §2.2 for an example of proper namelist
syntax.

NMLST : **** ERROR 28 **** Missing closing delimiter /.

This error message indicates that the closing slash is absent from the namelist designation.
See §2.2 for an example of proper namelist syntax.

Error messages 57

NMLST : **** ERROR 29 **** Too many variables in namelist. Increase "k9".

This error message indicates that the user has defined more variables in the namelist state-
ment than may be accommodated by the current setting of the internal parameter k9. One
may break up the namelist into smaller namelists, or recompile EDITOR with a larger value
of k9 (§9.3).

NMLST : **** ERROR 30 **** Too many vars. in namelist. Increase "inmlst".

This error message indicates that the user has defined more variables in the namelist state-
ment than the user-selected value of inmlst (§2.5) would allow. One may break up the
namelist into smaller namelists, or reset inmlst to a higher value.

NMLST : **** ERROR 31 **** No variables found in namelist.

There must be at least one valid variable listed in each namelist defined.

NMLST : **** ERROR 32 **** Unrecognised syntax in dimension statement.

In replacing the namelist statement with calls to subroutines in namelist.a, EDITOR must
make decisions as to which subroutines to call. In so doing, EDITOR scans the declarations
at the head of the program module to learn about the attributes (real, integer, etc.) and
dimensions, if any, of each variable in the namelist. Should it find any FORTRAN syntax
error in the declaration list that impedes its scan, EDITOR generates this message.

NMLST : **** ERROR 33 **** Blank "nlsdac" suffix! Check declarations.

This error stems (usually) from some syntax error (such as a missing comma) in the dec-
laration list that wasn’t detected while the declaration list was being scanned and left the
variable attribute undetermined. In this event, EDITOR is unable to determine which of
the namelist.lib subroutines (named nlsdacnn, where nn ranges from 01 to 24) to call.
Check which variable is involved with the statement to which this error message refers and
examine how that variable is declared in that program module.

PRECOM : **** ERROR 34 **** Call made to an unknown common deck.

See ERROR 2.

TARGET : **** ERROR 35 **** Unrecognised character in first five columns.

TARGET errors refer always to incorrect FORTRAN syntax which impedes the tidy-up process.
This particular error is generated if there is anything other than a digit (0 to 9) in the first
5 columns of any statement that is not a comment, blank, or EDITOR statement.

TARGET : **** ERROR 36 **** Too many targets - Going on to next deck.

Too many targeted statements in the program module. The tidy-up process cannot continue
with current module, so execution continues with the next module. Either break the module
up into smaller modules, or recompile EDITOR with a larger value of k5 (§9.3).

Error messages 58

TARGET : **** ERROR 37 **** Unrecognised syntax.

The statement does not conform to ANSI-standard FORTRAN 77.

TARGET : **** ERROR 38 **** Expecting a numerical target.

A FORTRAN statement which is supposed to include a numerical target (e.g., goto) did
not have a numerical target where one was expected.

TARGET : **** ERROR 39 **** Too many origins - Going on to next deck.

Too many origins in the program module. The tidy-up process cannot continue with current
module, so execution continues with the next module. Either break the module up into
smaller modules, or recompile EDITOR with a larger value of k3 (§9.3).

TARGET : **** ERROR 40 **** Target defined more than once.

Two or more target statements use the same target number.

TARGET : **** ERROR 41 **** Origin has no target.

The origin refers to a non-existent targeted statement.

TARGET : **** ERROR 42 **** Ambiguous targets.

This error stems from the TARGET feature which replaces do-enddo structures with targeted
do-loops. This is a badly designed feature because it requires the enddo statement to include
the do-loop index in order to perform the replacement. Thus the statement do i=i1,i2 must
end on the statement enddo i, not just enddo. The trouble is that compilers which offer
the do-enddo extension treat the do-loop index on the enddo statement as optional , not
mandatory . Thus the TARGET feature to replace do-enddos with targeted do-loops is not as
general as it could be. In particular, enddo statements which do not echo the do-loop index
will result in this error message being issued.

TARGET : **** ERROR 43 **** Too many "do"s and/or "goto"s in this deck.

The sum of the number of do-loops and the number of goto statements (including gotos im-
plied by the err and end parameters in open and read statements) exceed ienddo-ibegdo+1,
where ibegdo and ienddo are namelist input parameters (see §5.1). One must either de-
crease the number of targets in this module, or increase the difference between ibegdo and
ienddo.

TARGET : **** ERROR 44 **** Too many "read"s in this deck.

The number of formatted read statements exceeds iendre-ibegre+1, where ibegre and
iendre are namelist input parameters (see §5.1). One must either decrease the number of
read targets in this module, or increase the difference between ibegre and iendre.

Error messages 59

TARGET : **** ERROR 45 **** Too many "write"s in this deck.

The number of formatted write statements exceeds iendwr-ibegwr+1, where ibegwr and
iendwr are namelist input parameters (see §5.1). One must either decrease the number of
write targets in this module, or increase the difference between ibegwr and iendwr.

TARGET : **** ERROR 46 **** More than i decks defined. Part of file lost.

Program has more modules (subroutines or decks) than can be accommodated by EDITOR

as compiled. Either reduce the number of modules in the program, or recompile EDITOR

with a larger value for k4.

PARALLEL: **** ERROR 47 **** Too many variables in do-loop. Increase "k9".

The number of variables to be scoped in the nested do-loop structure being micro-tasked is
more than can be accommodated by EDITOR as compiled. Either reduce the number of
variables being used in the offending do-loop, or recompile EDITOR with a larger value for
k9.

MERGE : **** ERROR 48 **** Too many nested *reads.

Like the *call statement, as many as 10 *read statements may be nested. Since it is
unlikely that more than 10 nested *reads would ever be deliberate, this is probably caused
by a closed loop. That is, change deck 1 reads change deck 2 which reads change deck 3
which reads change deck 1, or something to that effect.

ERRMSG : **** ERROR 999 **** Unspecified error.

No guidance, other than to say this message should never come up.

A.3 Warnings

In this release, there is only one warning message, per se, and this is completely harmless.
It is echoed to the user’s CRT and is not placed into any of the output files.

TARGET : **** WARNING **** Increment for deck: deckname reduced from i1 to i2 .

If the number of targets found in the current module exceeds (ienddo-ibegdo)/inc, where
ienddo, ibegdo, and inc are namelist input parameters chosen by the user (see §5.1),
then the user-supplied value for inc is reduced until the number of targets is less than
(ienddo-ibegdo)/inc. If choosing inc=1 still doesn’t do it, then error message 43 (or 44,
or 45) will result. Note that the reduction of the value of inc applies to the current module
only. Where ever possible, EDITOR will abide by the user’s choice for inc.

A.4 NAMELIST errors

Namelist error messages (as opposed to the NMLST error messages described in §A.2) arise
only at run time of software that was precompiled with the namelist replacement option

Error messages 60

turned on. These messages appear if any syntax errors are found in the namelist input disc
files. An example of an EDITOR namelist error message follows.

**
, q1=1.0e-10, infile=’indata’ inam=1,1,2,2,3

^
NAMELIST ERROR 4 ---> unexpected character - check syntax
**

The error message echos the offending line in the namelist input data file, places a carat (^)
immediately under the offending character in that line, then explains what is wrong. In this
case, there is a missing comma. The only problem with EDITOR namelist error messages
is that only one message can be generated at a time. Each error message aborts execution
and thus it may take several tries before all the syntax errors are found and corrected.

Below is a list of the possible namelist errors along with brief descriptions.

NAMELIST ERROR 1 ---> column 1 reserved for comment sentinel: c

The rules of namelist input decks must be adhered to exactly. If a character other than a
blank, c, or C appears in the first column anywhere in the input data file, this message will
be issued.

NAMELIST ERROR 2 ---> column 2 reserved for $ delimiter

If a character other than a blank or $ appears in the first column anywhere in the input data
file, this message will be issued.

NAMELIST ERROR 3 ---> variable not found in namelist

A variable is being set which was not part of the namelist declaration in the source code.
The usual reason for this error is a misspelled variable.

NAMELIST ERROR 4 ---> unexpected character - check syntax

The usual reason for this message, as in the example above, is a missing comma. Check the
syntax of the offending line carefully.

NAMELIST ERROR 5 ---> invalid logical expression

A logical variable has been assigned a value other than .true., .t., .false., or .f. (in-
cluding the periods).

NAMELIST ERROR 6 ---> namelist does not exist, or is out of sequence

The source code attempts to read a namelist not found in the namelist input data file. This
is usually caused by a misspelled namelist name or a namelist that appears out of order in
the data file. Note that the order of the namelists in the data file must be the same as the
order in which the source code reads them.

Error messages 61

NAMELIST ERROR 7 ---> error reading input deck

Does the namelist input data file exist on disc in the directory in which the executable was
executed?

NAMELIST ERROR 8 ---> variable not declared as a vector

A scalar is assigned values as though it were a vector.

NAMELIST ERROR 9 ---> next namelist begun before closing quote found

Character assignments may run over several lines. Thus, if a namelist opening sentinel $
is found in the second column of a line before the closing quote of the current character
assignment is found, this message results. A common cause of this message is if the closing
quote has been inadvertently shoved beyond the 72nd column, or if the closing quote is a
single (double) quote while the opening quote is a double (single) quote.

NAMELIST ERROR 10 ---> missing opening quote

If the first non-blank character after the = in a character assignment is not a single or a
double quote, this message is issued.

NAMELIST ERROR 11 ---> blank data

A variable is assigned a null field.

NAMELIST ERROR 12 ---> premature end of file

File appears to have ended before the closing sentinel $ of the current namelist was found.
Common cause is if the closing sentinel of the last namelist was inadvertently shoved beyond
the 72nd column.

NAMELIST ERROR 13 ---> missing $ sentinel to close namelist

Next namelist has begun (a $ sentinel was found in column 2) before the closing sentinel
of the current namelist was found. Common cause is if the closing sentinel is inadvertently
shoved beyond the 72nd column.

NAMELIST ERROR 14 ---> exponent must not exceed 999

The EDITOR namelist will not permit exponents in real variable assignments to exceed 999
(or be lower than −999). Obviously, a 32-bit word machine will have even more stringent
limits.

NAMELIST ERROR 15 ---> no more than 15 digits in single precision

The tone of this message is a fossil of the days when EDITOR ran only under UNICOS, and
where single precision was 15 significant digits (double precision on most other platforms).
The EDITOR namelist will only allow as many as 15 significant figures to be specified in a
real variable assignment.

	Disclaimer
	Introduction
	VERSION 2.1
	VERSION 2.2

	PRECOM: Precompiling source code
	Basic precompiling
	The NAMELIST extension
	Inserting micro-tasking directives
	Splitting a source code; generating a makefile
	The precom.s script file

	NUMBER: Generating a numbered listing
	Reformatting a file
	The number.s script file

	MERGE: Merging source code
	Change decks
	The merge.s and merge95precom.s script files

	TARGET: FORTRAN tidy-up
	The target.s script file

	COMPARE: Comparing similar ASCII files
	Comparing entire files
	Comparing declaration contents
	The compare.s script file

	SPLIT: Splitting source code
	Splitting a file
	The split.s script file

	CONCAT: Concatenating files
	The concat.s script file

	Installing EDITOR
	Installation
	The script file edit22.s
	EDITOR parameters

	Error messages
	Fatal errors
	Non-fatal errors
	Warnings
	NAMELIST errors

