A DBX PRIMER

David A. Clarke
Saint Mary’s University, Halifax NS, Canada

david.clarke@smu.ca

March 2003; revised 1/11, 5/12
Copyright (¢) David A. Clarke 2012

mailto:david.clarke@smu.ca

Contents

Preface

1 Overview

2 Compiling your program for DBX

3 Syntax
3.1 1ist m,m . . .
3.2 func modulename
3.3 stop in modulenameo
34 stop at m
3.5 stop at n -if expressiono
3.6 status e e
3.7 deletemm e e e
3.8 TUN . o L L e
3.9 cont ...
3.10 mext . .. oL e
311 step . . . e
3.12 Control-C e
3.13 print vartablename
3.14 display variablenameo Lo
3.15 undisplay wvariablenameo
3.16 assign expression Lo o
3.17 whereis variablenameo
3.18 where
3.19 help commandname
320 quit e

ii

—

LT OO O R R R W W W N NN

Preface

This primer gives a quick guide to DBX, a line debugger developed and distributed by SUN
Microsystems™. It has since been ported to a variety of other platforms and has been used
as the base of several windows-based debuggers. As a FORTRAN programmer, I have used
a debugger of one form or another since the late 1980s. In my view, while there are more
powerful debugging environments, DBX is one of the easiest debuggers to use and one of
the most effective I have come across.

These notes were originally written for my students, particularly those in my undergraduate
computational physics course. I make them available to anyone else to use, distribute, and
modify as needed so long as they remain in the public domain and are passed on to others
free of charge.

David Clarke
Saint Mary’s University
January, 2011; revised May, 2012

Primers by David Clarke:

1. A FORTRAN PRIMER

2. A UNIX PRIMER

3. A DBX (DEBUGGER) PRIMER

4. A PRIMER ON TENSOR CALCULUS

5. A PRIMER ON MAGNETOHYDRODYNAMICS

6. A PRIMER ON ZEUS-3D

I also give a link to David R. Wilkins’ excellent primer GETTING STARTED WITH IXTEX, in
which I have added a few sections on adding figures, colour, and HTML links.

i

http://www.ap.smu.ca/~dclarke/home/documents/byDAC/fprimer.pdf
http://www.ap.smu.ca/~dclarke/home/documents/byDAC/uprimer.pdf
http://www.ap.smu.ca/~dclarke/home/documents/byDAC/dprimer.pdf
http://www.ap.smu.ca/~dclarke/home/documents/byDAC/tprimer.pdf
http://www.ap.smu.ca/~dclarke/home/documents/byDAC/mhd_primer.pdf
http://www.ap.smu.ca/~dclarke/home/documents/byDAC/zeus_primer.pdf
http://www.ap.smu.ca/~dclarke/home/documents/latex/lprimer.pdf

A DBX PRIMER

1 Overview

DBX is an interactive debugging environment that allows run-time interaction with your
program for the purpose of uncovering programming bugs. Running your program through
DBX or any debugger allows you to step through the program line by line, set breakpoints,
probe variable values, and even change some variable values in case you are wondering “what
would happen if ...”.

Learning to use a debugger can take a bit of time but, without exception, those who learn
to use them never look back. There is nothing more frustrating and less productive in
code development than having to recompile and rerun a program every time you add a new
write statement in your hunt for the first place a certain variable runs afoul. Using write
statements to debug a code wvs. a proper debugger is the difference between carrying your
water from a well in a leaky bucket, and turning on the kitchen faucet.

2 Compiling your program for DBX

DBX was developed by SUN Microsystems, and while it has been ported to many UNIX
systems (e.g., venus is an Intel system running its flavour of UNIX: Cent0S 5), it doesn’t
seem to work with non-SUN compilers. The universal compiler option to prepare a program
for a debugger is -g, though different compilers do different things to a code when the -g
flag is set and, on venus at least, DBX cannot analyse an executable unless it is prepared
by the SUN compiler £90 (which venus supports).

Thus, to prepare your program for DBX, you must compile your program using;:
f90 -g -C -ftrap=common program

In addition to the -g flag, the -C flag checks to make sure all arrays stay in bounds (i.e.,
that you don’t try to access arr(11) when arr is declared with only ten elements), while
the -ftrap=common checks for overflows, divides by zero, and invalid operations (vz < 0).
While your code is in development, it is always a good idea to have these flags set.

Once compiled, type:

dbx a.out

to put you into the DBX environment. After several welcoming and introductory messages,
you will find the cursor waiting for you at the DBX prompt, (dbx), after which you are to
enter your DBX commands.

SYNTAX 2

Incidentally, DBX was initially designed for use with C**, and compiling your C** program
with cc -g program (cc is SUN’s C-compiler) will give you an executable suitable for DBX.
Finally, a gnu debugger that works with gfortran is gdb, which you can download free of
charge with gfortran, and which bears some similarity to DBX.

3 Syntax

The following subsections give the syntax and a brief description of a subset of DBX com-
mands that I have found allows me to do pretty well all I need to do in a line-command
debugger. Commands are given roughly in the order that a novice user might need them.
Still, it is probably best to peruse all the commands quickly before launching into your first
DBX session to know what is available. An alphabetical listing of the commands discussed
and their subsection number follows.

command § ‘ command g
assign expression 3.16 quit 3.20
cont 3.9 run 3.8
Control-C 3.12 status 3.6
delete n m 3.7 step 3.11
display wariablename 3.14 stop at n 3.4
func modulename 3.2 stop at n -if expression 3.5
help commandname 3.19 stop in modulename 3.3
list n,m 3.1 undisplay variablename 3.15
next 3.10 where 3.18
print wvariablename 3.13 whereis variablename 3.17

3.1 1listn,m

Lists lines n, m in the current module, 7.e., the module in which execution has paused or to
which func has redirected the scope. When DBX is first fired up, you are paused just before
the first line of the main program. You need to know line numbers for setting breakpoints,
namely locations in the program where you wish to pause execution so you can probe the
values of various variables, and these line numbers appear on the far left of the 1ist listing.

3.2 func modulename

Shifts the “scope” to that of the named module (see print for a brief discussion on “scope”).
By default, the scope is that of the module in which execution is stopped. Changing the
scope to a different module means, among other things, that 1ist will list the contents of
the new module, variables within the scope of the new module can be probed, etc. Note
that issuing the func command does not cause execution to advance to the named module;
it simply redirects the scope.

SYNTAX 3

3.3 stop in modulename

Sets a breakpoint right at the top of module modulename.

3.4 stop atn

Sets a breakpoint at line n of the “current module”, where n is the left-most number of the
listing generated by 1ist. The current module can be changed with func, if desired. If line
n is not an executable line (e.g., a comment), the breakpoint is set to the first executable
line following.

3.5 stop at m -if expression

This is a conditional breakpoint, and applies equally well to the stop in command. Execu-
tion is stopped at line n of the current module only if the expression indicated is true. This
is particularly useful for stopping inside a long do-loop. For example, if I wanted to probe
the value for d(i,j) when j = 67 and ¢ = 33 in the following coding snippet:

210 do j=1, jmax

211 do i=1,imax

212 d(i,j) = d@i,j) - (mflx(i+1l) - mflx(i)) * dt / vol(i)
213 e(i,j) = e(i,j) - (eflx(i+1) - eflx(i)) * dt / vol(i)
214 enddo

215 enddo

I would issue the following commands:

stop at 211 -if j==67
cont
stop at 212 -if i==33
cont

W

Note the “double equal sign” to indicate equality; why isn’t enough, I couldn’t tell you.
Other legal operators include greater than (>), greater than or equal (>=), less than (<), and
less than or equal (<=). Thus,

stop at 212 -if i>=33

would stop at line 212 when 1=33, and then every value of i thereafter.

3.6 status

Lists all current breakpoints. If you are currently stopped at a breakpoint, it will have an
asterisk to the far left of the status listing. The breakpoint numbers appearing on the left
of the list are how you refer to breakpoints when you want to, for example, delete them (see
delete).

SYNTAX 4

3.7 deleten m

Deletes breakpoints n and m, where n and m are the breakpoint numbers on the list generated
by status.

3.8 run

Begins execution of the program from the very beginning, and continues until the first
breakpoint is reached. Execution is stopped just before the line of the breakpoint is executed.
See also cont.

3.9 cont

Continues execution from the current location, and up to but not including the next break-
point. See also run.

3.10 next

Executes the next line of the current module, then stops. If the next line is a call to
a subroutine, that entire subroutine is executed so that execution is paused in the same
module. See also step.

3.11 step

Executes the next line encountered. If the next line is a subroutine call, then execution is
broken at the first line of the subroutine, and you are now paused inside the subroutine,
rather than the calling module. See also next.

3.12 Control-C

Control-C is captured by DBX, and stops the execution of your program without exiting
DBX. In fact, it gives you a DBX prompt, which you can use to find out where you are, set
more breakpoints, probe variable values, or quit.

3.13 print variablename

Prints the value of the variable on the screen. If variablename is an array, all elements of
the array are printed (or perhaps the first hundred values, I forget). To print just a portion
of variablename if it is an array, type

print variablename (my:mq,ny:ng, .. .)
where a specific range is specified for every dimension of the array.
Note on “scope”: Variables that can be accessed (e.g., whose values can be printed) from

within a programming module (subroutine or function) must be within that module’s scope,
a subset of the program visible from within the module. Generally, to be in a module’s

SYNTAX

scope, a variable must be accessed by that module (e.g., used in an assignment statement,
passed to another module, etc..), though there are numerous exceptions and I have yet to
determine the definitive criteria which define what the scope of a module is.

SYNTAX 6

The following session shows what can happen when a requested variable is not in scope, and
what can be done to access the variable:

(dbx) print nhy

dbx: "nhy" is not defined in the scope ‘xdzeus36‘srcstep.f‘srcstep’
(dbx) whereis nhy

Common variable: ‘xdzeus36‘zeus3d.f‘MAIN‘nhy

(dbx) print ‘xdzeus36‘zeus3d.f‘MAIN‘nhy

nhy = 0

(dbx)

Alternatively, one can change the scope using func, and then probe for the variable value:

(dbx) print nhy

dbx: "nhy" is not defined in the scope ‘xdzeus36‘srcstep.f‘srcstep’
(dbx) func zeus3d

(dbx) print nhy

nhy = 0

(dbx)

Annoyingly, not all installations of DBX are the same. Under the old SUN Sparc machines,
all common variables were considered in scope; on venus, this isn’t the case. Even worse,
sometimes whereis gets confused, and the answer it gives is insufficient to access the desired
variable. In these cases, I find all I can do is quit DBX, put into the module a dummy
statement just to put the variable I want to access in the module’s scope [e.g., something
innocuous like d(1,1,1)=d(1,1,1)], recompile, and then resume my debugging session.

See also display.

3.14 display wvariablename

Like print, the value of the variable is printed on the screen. However, displayed variables
are echoed at every subsequent breakpoint with their updated values shown. This list can
get long, so it should be used sparingly. See also print and undisplay. In particular, see
print for what to do if variables are declared “not in scope”.

3.15 undisplay wvariablename

Removes a variable from a display list. See also display.

3.16 assign expression

Sometimes, you want to see what would happen if the value of a variable were to change.
The assign statement allows you to do this. For example, if iter were the variable keeping
track of the number of iterations, and you wanted to test your escape trap for when iter
exceeds the maximum allowed value (say 100), then you might type:

SYNTAX 7

assign iter=101
cont

3.17 whereis variablename

Indicates the module within which the specified variable is “in scope”. See print for an
example.

3.18 where

If you lose track of where you are. ..

3.19 help commandname

Provides on-line help for the specified command; e.g., help print

3.20 quit
Exits from DBX.

	Preface
	Overview
	Compiling your program for DBX
	Syntax
	list n,m
	func modulename
	stop in modulename
	stop at n
	stop at n -if expression
	status
	delete n m
	run
	cont
	next
	step
	Control-C
	print variablename
	display variablename
	undisplay variablename
	assign expression
	whereis variablename
	where
	help commandname
	quit

